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Abstract: We study the asymptotic speed of a random front for solutions u,(x) to
stochastic reaction—diffusion equations of the form

1 .
du = §a§u+ fw) +oJu(l—u)W(t,x), t >0, x €R,

arising in population genetics. Here, f is a continuous function with f(0) = f(1) =0,
and suchthat | f(u)| < Klu(1—u)|” withy > 1/2,and W (¢, x) is a space-time Gaussian
white noise. We assume that the initial condition uq(x) satisfies 0 < ug(x) < 1 for all
x € R,ug(x) = 1 forx < Lo and up(x) = 0 for x > Ry. We show that when o > 0,
for each r > 0 there exist R(u;) < 400 and L(u;) < —oo such that u,(x) = 0 for
x > R(u;) and u;(x) = 1 for x < L(u;) even if f is not Lipschitz. We also show that
forall 0 > 0 there exists a finite deterministic speed V (o) € Rsothat R(u;)/t — V(o)
ast — +00, almost surely. This is in dramatic contrast with the deterministic case 0 = 0
for nonlinearities of the type f (1) = u™ (1—u) withO < m < 1 when solutions converge
to 1 uniformly on R as ¢+ — +oo. Finally, we prove that when y > 1/2 there exists
cr € R,sothat 02V (o) — ¢y as 0 — +oo and give a characterization of ¢ s. The last
result complements a lower bound obtained by Conlon and Doering (J Stat Phys 120(3—
4):421-4717, 2005) for the special case of f(u) = u(l — u) where a duality argument is
available.

1. Introduction

Reaction—diffusion equations of the form
1o
ou = Eaxu+f(u), (1.1)

with f(0) = f(1) = 0, are often used to model biological invasions and other spreading
phenomena, with one steady state, say, # = 1 invading another, u = 0, or vice versa.
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Under very mild assumptions on f(u), such as, for instance, that f(«) is Lipschitz on
[0, 1] and either f(u) > O foru € (0, 1), or there exists 6 € (0, 1) so that f(u) < 0 for
u € (0,60) and f(u) > O0foru € (0, 1), such equations admit traveling wave solutions
of the form u;(x) = U (x — ct) such that

—cU' = %U”+f(U), U(—o0) =1, U(+oo) =0. (1.2)

Note that, in the probabilistic spirit of the present paper, the subscript ¢ denotes the time
dependence of the function u;(x) rather than a time derivative, common to the PDE
literature. It is easy to see that

1
c/ U’ (x)|?dx =/ f(2)dz, (1.3)
R 0

thus ¢ has the same sign as

1
I1f] :=/O fw)du, (1.4)

sothatif I[ f] > Othen the steady state u = 1 is more stable, and invades the “less stable”
steady state u = 0, and if I[ f] < O then the opposite happens, while if I[ f] = 0 then
(1.1) has a time-independent solution. It is also well-known that traveling wave solutions
to (1.1) determine the spreading speed for the solutions of the Cauchy problem. More
precisely, let u;(x) be the solution to (1.1) with an initial condition ug(x) such that
0 < ugp(x) < 1forall x € R, and there exist Ly < R so that ug(x) = 1 for x < Lg
and ug(x) = 0 for x > Rp. There exists a function m(t) such that

|m(t) — cet| = o(t) as t — +00, (1.5)
so that
lus(x +m(t)) — U, (x)| = o(l) as t — +o0. (1.6)

Here, depending on the nature of the nonlinearity f(u), the spreading speed c, may be
either the speed of the unique traveling wave, or the minimal speed of a traveling wave
if traveling waves are not unique. The latter happens for the class of the Fisher-KPP
nonlinearities, such that f is Lipschitz, f(0) = f(1) =0, f(u) > O forall u € (0, 1),
and f(u) < f'(0)u for all u € [0, 1]. In that case, we have

cx = V21(0). (1.7)

Much more precise results than (1.5)—(1.6) on the convergence of the solutions to the
Cauchy problem to traveling waves are available, and we refer to the classical pa-
pers [AW78,Bra78,Bra83] for the basic results, and to [NRR18,Rob13] and references
therein for more recent developments. We also point out the relation

cy = lim / fur(x))dx = / S (WU, (x))dx, (1.8)
1—=>+00 Jp R
that can be obtained simply by integrating (1.1) and (1.2) in space.

Note that if f’(0) blows up, then the speed of propagation may also tend to infinity, as
can be seen from (1.7). For Holder nonlinearities such that f («) ~ u? with p € (0, 1), it
was shown in [AE86] that solutions become instantaneously strictly positive everywhere:
u(t,x) > ct'/4=P) for t « 1. In particular, if we approximate such nonlinearity by a
sequence of Lipschitz nonlinearities f;,, then the corresponding spreading speeds ci")
blow up as n — +00.
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1.1. Reaction—diffusion equations withnoise. The physical and biological systems mod-
eled by reaction—diffusion equations are often subject to noise. In this paper, we study
solutions u; (x), to the stochastic reaction—diffusion equations of the form

du = %agu + f(u) +oy/u(l —u)W(t, x) (1.9)

where W (z, x) is a space-time Gaussian white noise, and o > 0 measures its strength.
Our interest is in the effect of the noise term on the spreading speed. Since traveling
waves will no longer maintain a fixed shape due to the noise, we will refer instead to the
speed of the random front, which is defined below.

Let us give an motivation for the noise term in (1.9) similar to that given by Fisher
in his pioneering work [Fis37]. See also [Shi88]. Imagine that two populations, type A
and type B, move in a Brownian way along R, and let u,(x) is the proportion of the
population of type A at time ¢ at position x. When an individual of type A meets an
individual of type B, it can be converted into type B, and vice versa, and the outcome
is partially random. The function f(x) in (1.9) describes the deterministic evolution
of the population of type A, due to these interactions, and it is natural to assume that
f(0) = f(1) = 0 since there are no interactions when one type is absent. The random
term in (1.9) accounts for the stochastic aspect of the interactions. We assume that for
each such meeting we have a mean-zero random variable affecting the outcome, and
these random variables are i.i.d. By the central limit theorem, the sum of such variables
would be approximately Gaussian. The independence of the variables means that the
random input should be independent for different values of # and x, giving rise to the
space-time noise W (¢, x). The rate of such meetings at a given site x and time ¢ would
be proportional to u,(x)(1 — u,(x)), which is the variance of the noise at (¢, x). Thus we
should multiply the white noise W (z, x) by the standard deviation +/u; (1 — u;). This
leads to the noise term in (1.9).

As we have mentioned, we are interested in the long time speed of a random front for
the solutions to (1.9). To this end, we define the left and the right edge of the solution as
follows. Given a function i (x) such that 0 < h(x) < 1 forall x € R, with h(x) — 1 as
x — —ooand h(x) — 0as x — 400, we set

L(h)=inf{x e R:h(x) <1}
R(h) =sup{x e R: h(x) > 0}. (1.10)

In the absence of the noise, when o = 0, and for Lipschitz nonlinearities f(«), we have
L(u;) = —oo and R(u;) = +oo for all + > 0. This, however, is not necessarily the case
in the presence of the noise. In order to make this claim precise, we assume that

f is continuous on [0, 1] and there exists
K¢ > Osuch that | f(u)| < K¢/|u(l —u)|. (1.11)
As for the initial condition uq(x), we will assume that

0 <ug(x) <lforallx € R,
and both L(u¢) and R(u) are finite. (1.12)
We will denote by C; the set of continuous functions satisfying (1.12). In addition B;

will denote the space of functions on R taking values in [0, 1] and CI will denote the
space of continuous functions on R taking values in [0, 1].
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We say that u; has a speed V (o) if the following limit exists:

V(o) = lim Ru)

—00 t
We prove the following theorem in Sect. 2.

Theorem 1.1. Let f(u) satisfy (1.11) and uo(x) be as in (1.12), then (1.9) with an initial
condition ug(x) has a solution u;(x) taking values in Cy fort > 0. The solution is unique
in law. Moreover, L(u;) and R(u;) are almost surely finite for all t > 0 and the solution
has a speed V(o) € R.

We see that the noise has a very strong slowdown effect: V (o) is finite forall o > 0
evenif f(u)is Holder with an exponentm > 1/2, and not Lipschitz, such as, for instance
f () = u™(1 — u), for which, as we have mentioned, the speed of the front is infinite
when o = 0.

Most of the papers dealing with (1.9), such as Mueller and Sowers [MS95] have
treated the Fisher-KPP nonlinearity f(x) = u(1 — u), and small noise, where o is close
to 0. Mueller, Mytnik, and Quastel [MMQI11] studied the behavior of V(o) aso | 0
and verified some conjectures of Brunet and Derrida [BD97] and [BDOO]. Less attention
has been devoted to V (o) for large or intermediate values of o, but Conlon and Doering
[CDO5] proved that for f(#) = u(1 — u) there exists an asymptotic velocity V(o) > 0
for solutions u to (1.9) for all ¢ > 0, and that

liminf 62V (o) > 1. (1.13)
o —> 00

Note that (1.13) differs from (1.7) in [CDOS5] because the diffusivity in that paper is
taken to be 1 rather than 1/2 as chosen here. To formulate our main result, we note that
a rescaling of (1.9), discussed in detail in Sect. 4.1 below allows us to move the noise
coefficient into the nonlinearity, and obtain the rescaled equation

dv = %afu +o )+ Vol —v)W(r, x). (1.14)

Here v is a rescaling of # which we specify later. Later we will use the results of Tribe
[Tri95], and Mueller and Tribe [MT97] for (1.14) with f = 0, a version of a continuous
voter model, or a stepping stone model in population genetics:

dw = %Bfw +y/w(l —w)W(t, x). (1.15)

By Theorem 1 of [MT97], we know that the law of w;(L(w;) + x) converges weakly
to a stationary distribution as t — oco. We denote the expectation with respect to the
stationary distribution of w by E,, s;, where “st” is an abbreviation for “stationary”. For
the next theorem we need an assumption on f which is slightly stronger than (1.11): we
assume that

f is continuous on [0, 1] and there exists K >0
st | f(u) < Ef|u(1 — u)|¥ for some y € (1/2,1]. (1.16)
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Theorem 1.2. Suppose that ug satisfies (1.12) and f satisfies (1.16). Then we have

UlewGZV(a) =cy, (1.17)
where
cr=Eyy [/R f(w(x))dx] (1.18)
and
eyl < oo. (1.19)

Note that Lemma 2.1 of [Tri95] shows that

tlim Ey |:/ wr(x)(1 — w;(x)) dxi| =1. (1.20)
— 00 R

Let us explain why c is finite, at least for Lipschitz f that satisfy (1.16) with y = 1.
Using Theorem 1 of [MT97] and the Skorokhod representation theorem to switch to the
probability space where w; converges to w almost surely, we get

Eu| / lim_f(w,(0)dx |

lef| = ‘Ew,st[/ f(w(x))dx]

Then by (1.16) and the Fatou lemma we have
sl < Ewa[/ lim w; (x)(1 — wt(x))dx]
11— 00
< K lim Ew[fw,(x)(l - wt(x))dx] < +00.
11— 00

For general f satisfying (1.16), we show that (1.19) holds in Lemma 3.4.
In particular, as a consequence of Theorem 1.2 and (1.20), we get that for the Fisher-
KPP nonlinearity f(u) = u(l — u), we have

lim o2V(o) =1,
g —>00

giving a matching upper bound to the lower bound (1.13) of Conlon and Doering in
[CDO05], after adjusting for the different diffusivities adopted in the present paper and in
[CDO5].

We also see the slowdown due to strong noise in Theorem 1.2 even for Lipschitz
nonlinearities. As discussed in Sect. 4.1 below, the large noise asymptotics in (1.17)
corresponds to the speed of the front for solutions of (1.14) that is V) (o) ~ ¢ 1 Jot.
However, solutions of the corresponding equation without the noise

15 —4
8tv:§8xv+a f) (1.21)

spread with the speed V(o) = ¢4 /02, where ¢, is the speed of the traveling wave for
(1.21) with o = 1, so that V¥ (¢) « V(o) for o > 1, and the noise slows down the
propagation.
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Let us also point out that expression (1.17)—(1.18) for the front speed V(o) is a
direct analog of (1.8) except now the role of the traveling wave is played by the invariant
measure of w; (x). One may conjecture that instead of the convergence to a traveling wave
in shape, as in (1.6) that happens in the deterministic case, here, in the limit 0 — +o0,
the law of u;(x) after rescaling converges, as t — +00, in the frame moving with the
speed V (o), to the invariant distribution of w; (x).

Another interesting observation is that the noise, despite its symmetry with respect
tou = 0 and u = 1 can change the direction of the invasion. One may construct a
nonlinearity f* such that I (f) given by (1.4) has a different sign than ¢y, meaning that
that the speed of propagation for & = 0, in the absence of the noise, may have a different
sign than V (o) for large o > 1, changing the direction of the invasion, because of the
noise.

The paper is organized as follows. The proof of Theorem 1.1 is in Sect. 2. Section 3
contains some auxiliary results on solutions to (1.15). They are used later in the proof of
Theorem 1.2, presented in Sect. 4 for the upper bound, and in Sect. 5 for the matching
lower bound on the speed V (o) for o > 1.

2. The Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Existence of a solution to (1.9) follows by a
rather standard argument. To prove the uniqueness, we use Girsanov’s theorem. In order
to be able to apply this theorem, we need to have an a priori bound showing that for any
solutions to (1.9) taking values in B; for all t > 0 with R(ug) < +00, L(ug) > —o0,
we have —oo < L(u;) < R(u;) < +oo for all ¢+ > 0, almost surely.

2.1. Existence of a solution. We first show that (1.9) has a mild solution. The notion of
a mild solution to (1.9) follows the standard definition, see Walsh [Wal86]. We interpret
(1.9) as a shorthand for the mild form,

t
i (x) = /R Gy — Vuo(»dy + /0 fR Gys(x — y) f (us(V)dyds
t
. fo fR Gy (x — Vs ) — 1, O W (dyds), @.1)

where ug(x) is the given initial condition. Here,
Gi(x) = @0 Pexp (—2%/21).

is the fundamental solution of the heat equation

1 2
5G = S7G.

In what follows, with some abuse of notation {G, , ¢t > 0} will also denote the corre-
sponding semigroup, that is,

Gip(x) = fRGz(x — ¢y .dy, 1 >0, 2.2

for any function ¢ for which the above integral is well-defined.
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Almost sure existence and uniqueness of mild solutions to SPDEs of the form

oru = %8§u + f(w) +a@)W(t, x) 2.3)
is standard [Wal86] when the coefficients are Lipschitz continuous functions of u. Be-
cause in our case f(u) may be not Lipschitz, and a(u) = +/u(1 — u) is not Lipschitz,
one needs to be slightly more careful. Solutions to (1.9) are constructed as follows.
Let the initial condition ug satisfy (1.12). We approximate f(x) and a(u) by Lipschitz
functions f;,(«) and a, (1) such that

fu(0) = f(1) = a,(0) = a,(1) =0,

and construct the corresponding solutions u} (x) using the standard theory. The com-
parison principle implies that u} (x) take values in [0, 1], see [Shi94] and [Mue91]. The
proof of Theorem 2.6 of [Shi94], on pp. 436—437 of that paper, shows that the sequence
u} (x) is tight. Note that in [Shi94] the tightness (and therefore existence of a solution)
is proved for the processes taking values in a space of unbounded functions. We can
follow the proof of Theorem 2.6 of [Shi94] line by line to show that in our situation
the tightness holds for the sequence of function-valued processes with functions taking
values in [0, 1]. Passing to the limit n — 400 we obtain a mild solution u;(x) to (1.9)
taking values in [0, 1]. This proves existence of a solution.

Remark 2.1. (Comparison principle) Using the above existence proof it is easy to show
existence of two solutions uﬁl)(x), u§2) (x) to (1.9) with initial values g1 < g, re-

spectively, defined on the same probability space, and such that that with probability

1, we have uﬁl)(x) < ufz) (x) for all ¢, x. To show this, we approximate f(u) and
a(u) = ~/u(l — u) by Lipschitz functions f,(«) and a, («) such that

Jn(0) = fu(1) = an(0) = a,(1) =0,

and construct the corresponding solutions utl’"(x), u>™" with initial values g1 < g,

respectively. The comparison principle implies that utl M(x) < utz’” (x) for all 7, x (see
[Shi94]) and all n. Using again the proof of Theorem 2.6 of [Shi94], we see that the
sequence of pairs of processes (11", u>™) is tight. Any limit point will preserve the
inequality u) < u®. So we can always construct a pair of solutions u", u® to (1.9)
on the same probability space with initial data g; < g», respectively, coupled in a way
so that uV) < 4@ After the proof of the weak uniqueness for (1.9) in Theorem 1.1 is
finished, we get that both «" and «® are unique in law (but not necessarily as a pair!).

2.2. Uniqueness via the Girsanov theorem. In order to prove uniqueness in law of the
solution to (1.9), we will use a version of the Girsanov theorem that will allow us to
compare the laws of the solution u;(x) to (1.9) and w; (x), the solution to (1.15), which
corresponds to f = 0 in (1.9), with the same initial condition wo(x) = uo(x). Recall
that we have set o = 1, including in (1.15). Let P, , be the measure induced on the
canonical path space up to time ¢ by u, and P; ,, be the measure induced by w, also up
to time ¢. We also define the corresponding expectations E; , and E; ,,, and write P, for
Poo.u, and likewise P, for P ,,,. We will not use the subscripts in the situations when
it is clear which probability measure is used.

In [Daw78], Dawson gives a version of Girsanov’s theorem which applies to IP; ,, and
P;..,. We will use its variant, Theorem IV.1.6 in [Per02]. In such theorems, the change
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of measure always involves an exponential term which must be a martingale. In our
situation, let

t t 2
7, = f f F@s) e as — / / flos@)?
0 JR Vws ()1 — ws(x)) 2 Jo Jr ws((0)1 — ws(x))

(2.4)
Here, and elsewhere we adopt the convention in the integrands that
S (u) .
——— =0ifu=0o0ru=1.
Ju(l —u)
Then Girsanov’s theorem for stochastic PDE [Daw78,Per02] says that
dP
LU o4, (2.5)
dP;
as long as
2
/ / ACHIC) ————————dxds < +0o, P,-almost surely. (2.6)
s (x) (1 — ug (x))

In particular, if (2.6) holds then (2.5) and uniqueness in law for solutions of (1.15) (see
[Shi88]) imply immediately that the solution to (1.9) is unique in law. For the moment,
as we do not have any information on the support of f (us(x)), we can not conclude that
(2.6) holds. The bulk of the rest of this section is to show that (2.6) holds for any solution
to (1.9) taking values in 3; for all # > 0 and such that R (1¢) < +o0 and L(ugp) > —oo.

First, we make a much simpler observation that allows us to use Girsanov’s theorem
to eliminate the drift on a finite interval. Fix and arbitrary b > 0 and let v* denote a
solution to a modified version of (1.9), with the nonlinearity set to zero on the interval
[—10b, 10b]:

vl (x) = —32vtb(X) + f(? (X)L {xe(—o00,—106)U(10b,00)}

+,/vt (x)(1 =y (x))W(t x). 2.7)

We again write this equation in the mild form:
vg’(x) = Gtvg(x)

t
" / /R Gy (x — 2) F W () e oo 10810(105.000 42 + NP (6, (2.8)
0
where

t
N (x) = /o /};{Gt—s(x — 2/ V2@ — v ()W (ds, d2). (2.9)

Let P, ,» be the measure induced on the canonical path space up to time ¢ by vP, with
the corresponding expectation E, ,», and P, ,» be P ». Note that by (1.11) we have

t 21
/ s () {xe(_mb’mb)}dxds < 20bK]2ct < +00, P,-almost surely(2.10)
0 Jr  us(x)(1 —ug(x))



The Speed of a Random Front for Stochastic Reaction—Diffusion 707

Thus we can use Girsanov’s theorem for stochastic PDE [Daw78,Per02] to get

Pru _ 2t @2.11)
dP,; b

where

//f(vb(x))l{xE( 1001900 w (dx, ds)
VP (T = vb(x)

__/ F @2 () 1 xe(—10p, A0B) 5o (2.12)
2Jo Jr vb((x)1 —vb(x))

2.3. A bound on the front speed. The next step is to get the following bound on the speed
of the front of u.

Lemma 2.2. Let u;(x) be a solution to (1.9) taking values in g[ forall t > 0 such that
the initial condition uy(x) satisfies (1.12). Then, for all T > 0, both sup, .1 R(u;) and
inf; <7 L(u;) are almost surely finite. Moreover, for all T > 0 there exists Ct > 0 so
that for all b > 4\/7(T||f||OO Vv 1) we have, with Ry := R(ug), Lo = L(up):

P( sup (R(u;) — Ro) > b)

0<t<T
b2
+P Lo—L b)<C (— ) 2.13
(o?fﬁr( 0= L)) >b) = Crexp( = 107 (2.13)
Since
[R(u(r) — L(u(t)| < (R(us) — Ro)+ + (Lo — L(us))+ +|Ro — Lol,
an immediate consequence is
Corollary 2.3. Under conditions of Lemma 2.2, we have, for each T > 0:
]E[ sup (R(u;) — Ro)+] < +00,
0<t<T
E[ sup (L() — L(Mt))+] < +00, (214)
0<t<T

E[ sup [R(u;) — L(uy)|] < +o0.
0<t<T

In other words, the length of the interface of any solution to (1.9) has a finite expectation.
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2.3.1. Bounds on the martingale with the cut-off The proof of Lemma 2.2 relies on a
priori bounds on the propagation of v”, solution to (2.7). First, we need to control the
modulus of continuity of the martingale N,b (+) defined in (2.9).

Lemma 2.4. Let vf’ (x) be a solution to (2.7) taking values in g[ forallt > 0, such that
the initial condition vg (x) satisfies (1.12). Then, for all p > 1, there exists C(p) > 0 so

that forallt > s >0, and x, y € [b/2, 9b] we have
E[|N/ (x) = NP (»)*7]
< C(p)(x — yl A £V2)P=14172 /R(G’(x — 9+ Gi(y - 2)

X (08 (2) + 11| £l oo 1 {ze(— 00, 10)U(10b.00))) 2, (2.15)
E[IN? (x) — NP (x)?P]

< C(p)lt —s| P~ D212 / (Gi(x —2) + Gy(x — 2)) (2.16)
R
X (v(l)’(Z) + 1| f lloo{ze(—o00,—106)U(10b,00)}) dZ.-

Proof. The proof follows the lines of the proof of Lemma 3.1 in [Tri95]. We only
verify (2.15). Note that

/ t / (Gi—s(x —2) — Gi—s(y — 2))*dzds
0 JR
<C(x—y|At"?) Vi >0,x,y €R. (2.17)
Burkholder’s and Holder’s inequalities give
E[IN? (x) = N} (y)*]

<C(pE [(/Ot /R(Gz—s(x —2) = G- (y — )P () (1 — v’ (2)) dz ds)pi|

< C(p)(lx =yl At'/Hr!
- /0 t fR (Grs(x —=2) = Gi—s(y — ) (W0 (@)1 — v (2)))" dz ds}
< Cp)x =yl A 12y
<E| /0 t /R (Gis(x —2) = Gy s (y — 2)*v0(2) dz ds]
< Cp)(x — yl A 12y (2.18)

r t
xE / (t—s)_l/Z/(G,_s(x—z)+Gt_S(y—z))vf(z)dzds].
LJO R

x[E

We used the fact that 0 < v” < 1 in the third inequality above. Note that

E[vf(x)] = vag(x)+E|:fg fR GS—”(x_z)f(v;l](Z))l{ze(—oo,—10b)U(10b,00)} dz dl’] (219)

< Goob @)+ flloo J§ S Gs—r (X — D 1{ze(—o00,—106)U(10b,00)} d2 AT
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We substitute this bound into the right side of (2.18) and use the semi-group property
of G, to get

E[IN?(x) = N?(0)*P] < C(p)(Ix — y| At'/2)P!
t
x{/ (t — s)*1/2</ (Gix —2)+ G, (y — z))vg(z) dz
0 R
+/ 1 fllse / (Gror (& = 2) + Gy (y = 2))
0 R
X1{ze(~00,—106)U(10b,00)}) 2 dr) ds}

< C(p)(x — y| At!/HP=1fl2 (/R(Gt(x — 2+ G (y — )G (2) dz
t
+||f||oo/ /R(Gz—r(x —2)+ G (¥ — 2))1{ze(=00,— 106)U(10b,00)} 42 dr) .
0
Since x, y € (b/2,9b) and z > 10b we have

/ Gr(x_Z)dZS/ G:(x —z)dz, V¥x € (b/2,9b), 0 <r <t,
2>10b 2>10b

(2.20)
and thus we get
E[IN/(x) = NPOD)IPP] < C(p)(x =yl Ale = 5|27~ 2.21)
xr‘/Z/(G,(x —2)+Gi(y = 2)
R
X (162 + 111 oo Lce(-oe,-10100105.001 ) 4
which is (2.15). The proof of (2.16) goes along similar lines. O
A corollary of Lemma 2.4 is a bound on the size of N?(x).

Lemma 2.5. Let vf’ (x) be a solution to (2.7), taking values in g[ forallt > 0, and the
initial condition vg (x) satisfies (1.12). Then, for all t > 0, there exists C such that

P(|Nf(x)| > ¢ for some x € (b/2,9b), s € [0, t])

< c8—2°(rvr22)f [ Gi(x —2)
RJR

X (v(l;(Z) + t||f||ool{ze(—oo,—lob)u(lob,oo)}) dzlixep/2,9p)) dx. (2.22)

Proof. The proof goes exactly as the second part of the proof of Lemma 3.1 in [Tri95]
(on p. 295) while taking v5(2)+7 | £ lloo 1 {ze(—oo,— 105)U(105,00)) instead of £ and (b/2, 9b)
instead of (A, oo) there. O
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2.3.2. The support of the solution with a cut-off Now, we prove the following lemma.

Lemma 2.6. Let vf (x) be a solution to (2.7) taking values in E] forall t > 0 such that
the initial condition vg(x) satisfies (1.12) with R(vg) < 0. Then, for all t > O there
exists C(t, || flloo) > 0 so that for all b > 4/t (t]| f|leo V 1) we have

b2
P(sup sup vP(x) > 0) < C(t, | flloo) exp ( — —) (2.23)
0<s<t xe[b,2b] 50¢
Proof. We will follow the proof of Proposition 3.2 in [Tri95]. Let us take a function
v e LY(R) N C(R)

such that 0 < ¥(x) < 1 forall x € Rand {x : ¥(x) > 0} = (0, b), and set Yp(x) =
¥ (x — b). For simplicity of notation, we define

(h,g) =/h(X)g(X)dx
R

for any functions , g such that the integral above exists.
Fix r > 0 and let d)? (x), 0 < s <t,x € R be the unique non-negative bounded
solution to the backward in time problem

—m@=%A@—%@b%wm, (2.24)

with the terminal condition qﬁt" (x) = 0. A similar equation to (2.24) but with different
function v, in the right side appears in the proof of Proposition 3.2 in [Tri95]. As
Yp(x) > 0 for all x € R, the maximum principle implies existence of the solution
to (2.24) and that qb?‘ (x) > 0forall0 <s <t andx € R. The maximum principle also
implies that

1—s
Pl(x) < /\/0 /Gr(x —W¥p(Y)dydr, s <t.

Since [ G,(x — y)dx = 1 and v, is integrable by assumptions on yr, we get that qb;\ (x)
is integrable for all 0 < s < t. Next, note that the function

o
% x<b,
Gy =1{ “D
(xfaZb)z’ x > 2b,
satisfies, in the region x < b, where ¥, (x) = 0:
1 1 1 2-3x o? a(a —12)

W — AL+ -2 — Yy = —= + = >0,
A T = o i =t T b

provided that we take o > 12. As ¢;(x) = +00 at x = b, the maximum principle implies
that, for « sufficiently large, we have

Pr(x) < forallx < b,s <t, and A > 0. (2.25)

o
(b —x)*
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Similarly, again for « large enough, we get

o (x) < (21;05?)2’ forallx > 2b,s <, and A > 0. (2.26)

Now, given any b > 41!/, we may use the fundamental solution for the heat equation

on the half-lines x < b —t'/2, x > 2b+t'/? together with the upper bound in (2.25) on
c}bsA (x)atx = b — /2, and x = 2b +11/2 to conclude that there exists &1 > 0 such that

A o] (b—)c)2
#tw = e (= ).

forall b > 4t1/2,x <b— 2t1/2,s <t,and A > 0,
(2.27)

and

# = Dexp (= 20,

for all b >4t"2 x > 2b+2t"2, 5 <t, and A > 0. (2.28)

Next, by Itd’s formula, we get, for any 0 < s < ¢:

exp (= 0 ) = [ ) as') = exp (= (uf 45))

3 b oA <

+fexp<—(vs/,¢s/>—k/ <Ur,1//'b)dr)

0 0

b ]

X ((vs,, —d5¢p — §A¢> — Mp) — f(v )1 (—00,— 10)U(10b,00)» P17

1
+ E(Uf/(l — vf/), (d)é/)z)) dS/
+ Mé‘?’x"/”’ ,

A
where s +— Mg’ W ,§ <t, is a local martingale. In fact, M¢A"pb is a square integrable
martingale: this follows easily from integrability of (¢*)2. Then we get

exp (- (0F . @) 7 /0 b, Vo) ds')

:exp(_<vgi¢é))+/xexp( U/, ./ )\4/ r,Wb dr
0 0
1 b
x ((— F (I (Zo0,—100)U(106,00)» DL} + <_4_L o
+ 5vf,(l — ), (@)% ds' + MV, (2.29)

Note that (2.25) implies that for » > Ry we have a uniform bound

(v, ¢b)1 < co, (2.30)
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with a constant ¢ that does not depend on A. Now we define the stopping times
1
7y = inf {t >0:3x € [b/2,3b] s.t. v (x) > 5}, pp = inf{t = 0: (W°, ) > O}.

Note that we have

INT ?

AT
Wrry s Bian,) +x/0 (W2, Yp) ds — +00 as A — +00, (2.31)

almost surely on the event {pp < t A 1), thus

N AT
Pop <1 A = tim B[1—exp (= e #fr) =4 [ o ds)
(2.32)

On the other hand, taking the expectation in (2.29) with s =t A 13, we get
b A s b A
B1—exp (— (e, #h) =0 [l vrhds)] < B[ - exp (= (uf . 6))]
0

d 1
+E| /O (nf||oo<1(_oo,_mb>u<mb,oo>,¢?> + (0 oo DUGH00 (¢§)2>) ds|.
(2.33)

Note that for each 0 < s < r and x € R the family ¢§‘ (x) is increasing in A. Moreover,
for s < t and x > b we have ¢>§(x) — +00 as A — +o00, while for x < b, the limit
¢ (x) is finite because of (2.25). Passing to the limit A — +00 in (2.33), using the
bound in (2.32) and since vf(x) < Ilforalls >0, x € R, we get

P(pp <1 ATp) < E[1 —exp (= (v5, 6°))]
! 1
+/0 <||f||oo(1(oo,10b)u(10b,oo),¢f°) + Z(l(foo,b/Z)U(Sb,oo)a (¢§’°)2)) ds.
(2.34)
Recalling (2.27)—(2.28), we have

c [° b—x)%/(20.
P(op <t ATp) < 7[ e~ (b=0)7/ Q00 g

—00

Ifllso 7 [ —besy/c0r O b0
+ / / e~ @b=x)7/( )dx+f e~ =07/ Q200 gy ) s
t 0 106 —0

' b/2 S
+ E <f e—(b—x)z/(IOI)dx +/ e—(2b—x)2/(10t) dx) ds
t2
0 —00 3b

C b? Clflleo b? C(lfllec+ 1) b?
< Sew (g )+ e (= ) = ST D e (- 1),
(2.35)

We used the assumption that Ry = 0 in the first term in the right side above. To estimate
the integrals in (2.35), we used the standard Gaussian estimate

/ exp(—x?/2)dx <y~ exp(—y*/2)
i
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along with a few changes of variables.
Now we need to estimate

P(t, <1) =P <3x € [b/2,3b],s <1 : Gl (x)

$ o0 —10b
+f </ +/ > Gomrlx = Z)f(vrb(z)) dzdr
0o \Jiow J-oo

+NP () > 1 /2) . (2.36)

It is easy to check that since b > 4/1(t| flloo V 1)

0 0 0
GSUS(X)S/ Gs(x_Z)dZS/ G[(x_Z)dZS/ G;(b/Z—z)dZ

—0o0 —00

0
< / G1(2—-2)dz <1/10, Vs <t,x € [b/2,3b]. (2.37)

—00
Similarly, we have

o]

r/ Gyoy(z — X)WL (2) dz Slllflloo/ Gy(z — 3b) dz
106 10b
5t||f||oo/7h G1(2)dz,
NG

o
< tllflloo/ Gi1(2)dz <0.05, Vr <s <t,x €[b/2,3b].  (2.38)
28(t11 fllooV 1)

and

—10b
‘ f Gyr(z — ) fL (D) dz

—0o0
—10b o0
< t||f||oo/ Gz — bj2)dz < t||f||oo/ G1(2) dz,
s 10
Ji
o0
=< tllflloo/ Gi1(2)dz <0.05, ¥r <s <t,x € [b/2,3b]. (2.39)
40(t| flloo V1)

Altogether substituting the last inequalities into (2.36) we get
P(tp, <t) < IP’(EIx e[b/2,3b],s <t: Nsb(x) > 0.3)

sc-(rvrzz)f/Gt<x—z)(v3(z>
R JR

+ t] fllool{ze(—00,~ 106)U(105,00)}) 21 {xeb/2,9p))) dX
bZ
= Clfle)exp (= o5o). Ve = 0.x € (/2,30 (240)
where the second inequality follows by Lemma 2.5 and in the last one we used simple
Gaussian bounds. By combining (2.40) with (2.35) we are done. O
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2.3.3. The proof of Lemma 2.2 Now we are ready to prove Lemma 2.2. Note that
Lemma 2.6 implies a similar result for u; (x).

Lemma 2.7. Let u;(x) be a solution to (1.9) taking values in g[ forallt > 0 such that
the initial condition uy(x) satisfies (1.12) with R(ug) < 0. Then, for all T > 0 there
exists Ct > 0 so that for all b > 4\/T(T||f||oo Vv 1) we have

2

100T

P( sup sup w(0)>0) = C(T || fllow)exp -
0<t<T x€[b,2b]

). (2.41)
Proof. By Girsanov’s theorem we have

Zb
IP’M< sup sup  u;(x) > 0) <Ep[e Tl{S“DOstsTsque[b,Zb] vf’(x)>0}]

0<t<T x€[b,2b]
S7b 1\ /2
§<Evb[e T]) (]P’vb( sup  sup v, (x)>0)> ,
0<t<T x€[b,2b]

(2.42)
where Z? was defined in (2.12). By (2.10) the quadratic variation of
bt
f f / S g N xe(—106,100)) Wdx. ds)
VP o) =2 (x)
is
t b 21
/ JOTCON e 100100 g < 205K 34, Ve > 0, Pyeas.
0o Jr v ()1 —v2(x))
Thus from (2.12) we can easily get
E,[e221] < KT, (2.43)

and combining this with (2.42) and Lemma 2.6 we obtain (2.41). O

Now, the conclusions of Lemma 2.2 follow essentially immediately. The bound (2.13)
on

]P’( sup (R(uy) — Ry) > b)
0<t<T

in Lemma 2.2 is a simple consequence of Lemma 2.7, by adding up the Gaussian estimate
(2.41) over the intervals [b, 2b], 2b, 4b], etc. The finiteness of sup, .y R(u,) follows
from (2.13). The corresponding bounds on L(u;) follow by repeating the arguments
used in the proof of Lemmas 2.4-2.7 for 1 — u(—x) instead of u(x).

2.3.4. Uniqueness of the solution So far, we have shown that both R(u,) and L(u,) are
P, -a.s. finite for any solution to (1.9) taking values in B, 1 forall + > 0 such that the initial
condition ug(x) satisfies (1.12). As a consequence, (2.6) holds for any such solution to
(1.9). As we have discussed in Sect. 2.2, it follows that we may apply Girsanov’s theorem
to immediately deduce uniqueness in law of the solution to (1.9) that satisfies the above
conditions.
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2.4. Existence of the speed. The last ingredient in the proof of Theorem 1.1 is the
existence of the speed.

Lemma 2.8. There exists a deterministic constant V(o) € (—00, +00) so that the limit

Vo) = tim R0

t—+00 t

(2.44)

exists almost surely.

Proof. The proof goes along the lines of the proof of the corresponding result in [CDO0S5].
First, we show that the limit V (o) in (2.44) exists and V(o) < oo. Let us set b(m) =
R(up), form =0, 1, 2, ..., and note that by Corollary 2.3 we have

E[(b(1) — b(0)).] < oo. (2.45)

Then, as in the proof of Lemma 5.1 in [CD05] we can use the subadditive ergodic
theorem to deduce that there exists a constant c¢(o) € [—00, 00), such that

b
im 27 _ o). (2.46)
m—+00 m
Using Lemma 2.2, we get (see Lemma 5.3 in [CDO05] for the same argument) that for
allm=1,2,...

]P’( sup {b(s +m) — b(m), b(m +1) — b(s +m)} > \/ﬁ)

0<s<l

< C(o) exp(—m/50). (2.47)
Then by the Borel-Cantelli lemma we get that in fact,

. b@)
lim —= =c(0). (2.48)
t—>+00 t
and thus V(o) = ¢(0) < oo.
To show that V(o) > —o00, one needs to consider equation for 1 —u,(—x) and repeat
the above argument. O

3. The Interface in the Voter Model

Girsanov’s theorem connecting solutions to the rescaled equation (1.14) and to the voter
model (1.15) not only allows us to deduce uniqueness in the law for the solutions to the
former problem but also obtain the asymptotics on their front speed in Theorem 1.2.
As a preliminary step, in this section, we make some observations about the latter. To
begin, we rephrase Lemma 4.2(a) of [Tri95], putting it into a form more directly useful
for our purposes. Let w;(x) be the solution to (1.15) with an initial condition wq(x)
satisfying (1.12). Recall that we denote by P, the measure induced on the canonical
path space C ([0, +00); C(R)) by w, and by E,, we denote the corresponding expectation.
Recall that two random processes X; and Y; are said to be coupled if they can be defined
on the same probability space. We assume throughout the rest of the paper that f satisfies
assumption (1.16).
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Lemma 3.1. Given ¢ > 0, there exists T > 0 such that for all T > T, there is a
coupling of processes (w;, B; : t > 0) where B a standard Brownian motion started at
0, such that

IP’w< sup |R(w,) — B,V |L(w) — B/ > T1/28> <e
0 T

=r=

The following lemma shows that another good measure of the location of the interface
is

t
M; ;:/ /\/ws(x)(l—ws(x))W(dx,dSl (3.1
o Jr

Lemma 3.2. Let B be the Brownian motion from Lemma 3.1. Given ¢ > 0, there exists
T: > 0 such that for all T > T, we have

Pw( sup |M, — Bt| > 4T1/28) <e.
0<t<T
Proof. Let us define
0 00
E(wy) ::/ [w,(x) — l]dx +/ wy(x)dx. (3.2)
—00 0
Clearly, we have
|E(w)| < R(wy)+ + L(wy)—,

and thus E (w;) is almost surely a finite functional of w; by Theorem 1.1. As w;(x) =1
for x < L(w;) and w;(x) = 0 for x > R(w;), we have

0 R(w;)VO
E(wy) =/ [w;(x) — l]dX+/ wy(x)dx,

L(w)A0 0
thus

0 L(w;)VO0
L(wy) =/ [—1]dx +/ dx
L 0

(wr)AO

0 R(w;)VvO
< / [w,(x) — 1]dx +/ w,(x)dx = B(wy),
L(w;)A0 0

and likewise

0 R(w;)VO
R(w;) =/ [—1]dx +/0 dx

R(w)A0

0 R(w;)VO
> / [w;(x) — 1]dx +/ wy(x)dx = E(wy).
L(w)AO 0

‘We conclude that

L(w;)) = E(wy) = R(wy). (3.3)
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Next, let 8 (x) be a smooth monotonically decreasing function such that 6 (x) = 1 for
x < —2and #(x) =0 for x > —1, and set 6,,(x) = 6(nx). Then for

Cn(x) = we(x) — G, (x)

we have
o0
E(wy) = lim E,(1), En(r) = / Sn(x)dx.
n— 00 S
The function ¢, (¢, x) satisfies

1 1 .
&lp = Eafg,, + 5339,, +ywd —w)W(, x). (3.4)

Integrating in ¢ and x gives

t
En(wr) = Sn(wo) + fo /R Vs = ws ) W (dyds). (3.5)

Passing to the limit n — +00, we arrive at

t
E(w;) = E(wo) +/ / Vws() (1 —ws () W(dyds) = E(wo) + M. (3.6)
0 JR

As E(wg) < +oo and is not random, the conclusion of the present lemma follows

from (3.3) and Lemma 3.1 by taking 7, sufficiently large. O
For any metric space E, we denote by Dg the space of cadlag functions [0, c0) — E

equipped with the Skorohod topology. Define the rescaled functionals
a 1 a 1 a 1
L[ = ;L(wazt), Rt = ;R(wuZt), Mt = EMLIZI .

As a consequence of Lemmas 3.1 and 3.2, we conclude that
(LY, R*, M%) = (B, B, B) in D3, asa — oo,

where B is a standard Brownian motion starting at 0 and = denotes convergence in law.
As in the application of the Girsanov theorem in the proof of Theorem 1.1, we will
make use of the functionals

2
Al = /l/ ACIC) NN 3.7)
0 JrR ws(xX)(1 — ws(x))
! (ws (x))
Mf:// f W (dx, ds), 3.8
Bl N ST o M 69

and their rescaled versions

M =

- 5 at’

1 1
My, A= a—zAf a>0.

The difference in the scaling of these two functionals comes from the fact that M, is,
roughly, a Brownian motion on large time scales, and A; is deterministic to the leading
order on large time scales. Note that both A; and M; are almost surely finite if f satisfies
assumption (1.11), since the interface of w; has a finite length almost surely. However,
we will need the stronger assumption (1.16) in Lemma 3.5 below.

Let us now recall Theorem 1 of [MT97].
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Theorem 3.3. ((IMT97]) There exists a unique stationary measure p on Cy for (1.15).
Furthermore, for each ug € Cj, the law of w,(x + L;) converges in total variation to |
ast — oo. In addition, the moment of the width of the interface E,, s, [(R(w) — L(w))P]
is finite if 0 < p < 1, and infinite for p > 1.

The following estimate is a consequence of the second part of Theorem 3.3.

Lemma 3.4. For any n € (0, 1], we have

Ey st [/ (w) (1 —wx)))" dx:| < 00. 3.9
R

Note that this result fails at = 0: according to Theorem 3.3, the length of the
interface has an infinite expectation under the stationary distribution of w.

Proof. For n = 1 the result is known (see Lemma 2.1(a) in [Tri95]), so we assume that
n € (0, 1). Let £ be the length of the interface of w under the stationary distribution. By
applying Holder’s and Young’s inequalities we get

Ew,s,[fR(w(x)a — w(x))" dx] < Ew,s,[</R(w(x)(1 - w(x)))dx)"zl—”]

<o ( oo v )]

+ CoBy g [0,
for any o > 1. We take « = 2/n and get
B [ w001 = w0y dx]
R
2
<GB ( [ o0t = wom ax) |+ CuBu [,
R

with y = (1 —n)/(1 —n/2). Since y < 1, by Theorem 3.3 we get E,, ;[£7] < oo. In
addition, Lemma 2.1(d) in [Tri95] implies that

2
Euse| ( fR (@ (1 = w)dx) ] < oo,
and we are done. 0O
Lemma 3.5. Let f satisfy assumption (1.16), then we have convergence in law
(M7, AT = (B], Dr), 1> 0}, (3.10)

in Dg2, as a — oo. Here {Bf ,t > 0} is a Brownian motion with variance D

2
D =E, |:/ de} < 00. (3.11)
T LR w1 —w(x))

Note that D < +oo because of Lemma 3.4 and assumption (1.16) on f.
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Proof. Since w has a unique stationary distribution on the space C; of continuous func-
tions & such that —oco < L(h) < R(h) < +00, by the ergodic theorem we have

fw(x))?
R w(l —w(x))

uniformly on compact sets in ¢. Recall that [E,, ;; denotes the expectation with respect
to the stationary measure of w on C;. Since

lim a 2A7, = tEy.q [

a—00 a’t

dx:| = Dz, (3.12)

M =B, ra, 120, (3.13)

for some standard Brownian motion B, it follows from (3.12) that
M54 = (Bt = 0} := {Bpr, 1 = 0}, (3.14)

where Bp; is a Brownian motion with variance D. 0O

Define

t
Ay :=/ f ws(x)(1 — ws(x))dxds, (3.15)
0 JR
and its rescaled version

Al = S Ap, a>0.
a

Corollary 3.6. We have convergence in law
(L%, R*, M“, A®, M7, AT%) = (B, B;. B;,1, B} . D1), t =0},  (3.16)

in Dgs, as a — oo. Here, B; is a standard Brownian motion, B,f is a Brownian motion
with variance D and their correlation is given by

(B, B/} =cst,1>0, (3.17)
with cy as in (1.18).

Proof. It only remains to check the correlation:

a?t
ety =a? [ [ pneonasds = o] [ foeoar)=e o
0 R R

asa — 0o, exactly asin (3.12). O

4. The Proof of Theorem 1.2: The Upper Bound on the Speed for ¢y > 0

In this section, we prove the upper bound on the front speed in Theorem 1.2 for non-
negative c .

Proposition 4.1. Suppose that ug satisfies (1.12) and f satisfies (1.16), and that ¢y > 0,
then

limsupon(U) <cy.
o—>00
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4.1. Rescaling. First, we show via a rescaling how to pass from (1.9) to (1.14). Consider
the rescaled function

(X)) = s, (0 2x).
To get an equation for v, (x), we use the mild form (2.1) and the relations
G2 (bx) = b7 G (2 2y (x)

Wb (dyds) .= a6~ V2W (bdy, a*ds) 24 W(dyds)
ab'?w*b(dyds) = W(bdy, a’ds), 4.1)

that hold for any a, b > 0. Here, D means equality in distribution. From (2.1), for any
a,b >0, we get

a’t
U2y (bx) = /RGazz(bx — Yuo(y)dy +/0 /H%Gaz,_s(bx = ) fus(y)dyds

a*t
+0/ / G g (bx = )Vus(y)(A —us()W(dyds) =1 +11+111.
0 R

We make the change of variables s = a’s’, y = by’ and use (4.1). For the term I we
have

I=b / G2, (bx — by yuo(by"dy" = / G 2y p2 (x = y)uo(by"dy'. (4.2)
R R
The second term can be rewritten as
a’t
1= /(; /];%Gczzt—s(bx — ) fus(y))dyds
t
= / / Gazt—azs’(bx - by/)f(uazs’(by/))bazdy/ds/
0 JR
t
= a2/0 A‘QGaz(,,s/)/bz (x = Y flugag(by))dy'ds’', 4.3)

and changing variables, the last term is

a’t
=0 / / Gozgs (bx — s (1 — s (7)) W (dyds)
0 R

‘
=0 / / G2y gry (bx — bY)\Jugoy (by )Y (1 — ugoy (by))W(bdy', a*ds’)
0 JR

t
=0 / / b7'G 2y 2 (=Y )tz (YN (1 — 12 (bY))ab' WP (dy'ds").
0 JR

t
=ab™'%0 fo A; G2 2 (6 = YIWitg2g by (1 = 2 (by ) W (dy'ds').
4.4)
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We take

so that ab~'/?¢ = 1 and a?/b* = 1. Defining v, (x) := U424 (bx) and putting together
the above terms, we see that v, (x) satisfies

t
vi(x) = /%Gz(x —y)uo(y)dy+0_4/0 fRGz_s(x — v fus(y))dyds
t
. /0 /R Gy (x = Vs O — s ) W (dyds). @.5)

Since the solution v to (4.5) is unique in law, and since W and W% are equal in law,
we see that v is the unique weak solution to (1.14) with the initial condition vo(x) =
uo(o~2x). Thus in general our scaling changes the initial data. However, if ug(x) =
1(x < 0), then clearly vo(x) = ugp(x).

Now it is clear that the conclusion of Proposition 4.1 would follow if we show that

lim sup oty ® (o) <cy, (4.6)
o —> 00
where
R
VO (o) = fim T

t—>+00 t

Let us also note that the rescaled Girsanov functional (2.4) takes the form

_4f / S (ws (x)) W(dx. ds) — _8/ / fws(x))? _ fsGNT
R ws (X) (1 — wy (x)) R ws((x)1 — wy(x))

ot - ! Ly=8af. 4.7)

4.2. Time steps for the upper bound. Note that for the upper bound on V (o) and V) (),
we may assume without loss of generality that the initial condition ug(x) = vo(x) =
1(x < 0), by the comparison principle (see Remark 2.1) and translation invariance in law.

We will define a sequence of stopping times 0 = 79 < 71 < - - -, and a sequence vt )(x)
of solutions to (1.14) for t > 1,,,, with the initial conditions v(m)(x) > vg, (x) att = Tp.
The comparison principle (see again Remark 2.1) will imply that vtm)(x) v (x)

fort > t,,. Moreover, we will choose v(m)

conditions hold almost surely:

so that foreachm = 0, 1, 2, . . . the following

v(x) <v™(x), fort >t xeR (4.8)
R(vg':)) =mho?, (4.9)
v D) < v (x), forx eR, (4.10)
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with the constant A1 to be specified later. It follows from (4.8), thatforallm =0, 1, 2, ...
and for all ¢ > t,,,, we have

R(v) < R(v™), @.11)

almost surely. Thus, to bound R(v;) from above, it suffices to bound R(v,(m)).

Let us inductively construct 7z and v,(k) (x) for k = 0,1, ..., with the convention
vt(_l)(x) = 0.Fix Tp > O and N € N, to be specified later, and start with 7p = 0 and
vt(o) (x) = v;(x), so that (4.8), (4.9), and (4.10) hold for m = 0 automatically. Suppose
that we have defined 7, and vt(m) fort > 7,, and 0 < m < k, and assume that (4.8),

(4.9) and (4.10) hold for 0 < m < k. Given v*(x), defined for t > 7 and x € R, we
set

. NG
M = / / S ) W(dx, ds), (4.12)
R o1 - o)
and
1
Tk41 = inf {l € [t o + Too®] - R(U,(k)) = (k+Darjo? or _4Mtf’v’k = N},
o

(4.13)

with 754] = 1 + Tpo8 if the above set is empty. Then, we define vl(k+1)(x) fort > ti41,
and x € R as the solution to (1.14) with the initial condition
v D () =1(x < (k+ Dijo™).

Tk+1

Note that for m = k + 1, (4.8) and (4.10) hold by the comparison principle (see Re-
mark 2.1). (4.9) holds by construction.
For convenience, we write

ATy = Tyt — Ty

and note that {At,} are i.i.d. random variables for m > 0.

4.3. A good event and its consequences (for the upper bound). To get an upper bound
on V;v) (o), it suffices to get an appropriate lower bound on t,,, as m — oo. Let us define
the event

G = {Aty = Too®}, m > 0. (4.14)
Proposition 4.1 is a consequence of the following lemma.

Lemma 4.2. Let ¢ € (0, min(10~1, c;z)) be arbitrary and set 5, = ¢/10. There exist
T., N, and o, such that for Ty = T., N = N, and any o > o, m > 0, and

M o= (cf +8)Ts, (4.15)
we have

=Py (Gp) = 1= 6. (4.16)
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Note that A> does not depend on m since Aty, are i.i.d for m > 1. We will prove
Lemma 4.2 in the next section. Now we are ready to give

Proof of Proposition 4.1. Given ¢ € (0, 1/10), let T;, N and o, be as in Lemma 4.2,
and take an arbitrary o > o,. Then by Lemma 4.2, we have

A >1—96, (4.17)
and by (4.16) and the definition of G with Ty = T,, we get
Ey[ATy] > Tohpo®.

The strong law of large numbers implies that we have, [P, almost surely,

lim 2 > .08 (4.18)

m—o0 m

Since R(vtm)) = mhi10?, we have that, also P, almost surely,

m) 4 4
A A A
lim sup 2V ) i) — limsup 210 o MO A 4 (4.19)
m— o0 Tm m— 00 Tm T.ho08 TeAo
Furthermore, since by definition, for 7,, <t < 7,41 we have
R(v,(m)) < (m+ 1)A104.
Hence, we get that, P, almost surely, we have, using (4.17) and (4.18),
(m) 4
R(v A +1
VW (o) <limsup sup (") < lim sup Arlm + Do
M—>00 Ty <t<Tpsl m—o00 Tm
Aot cr+8
107 _(er¥d) 4 (cr+ve)o . (4.20)

= = =
)MZTeUS (1 —38)

Note that (4.20) holds for any o > o, and, since ¢ is arbitrary small, we are done. This
finishes the proof of Proposition 4.1. O

4.4. Proof of Lemma4.2. As G, arei.i.d.,itsuffices tosetm = 0. We fixe € (0, 1/10),
let §. = ¢/10, take T, sufficiently large, so that

83]_"8) Z .t

2 — L 421
exP( 2 /=100 “.21)

set A1 = (cr + 8:)T., and let N, > (2+68.)T.D be sufficiently large (its value will be
determined later in the proof). We define the stopping time

£ =inf(t > 0: M/ = N, (4.22)
—inf{r > 0: M/ = N,). .

Then by Girsanov’s theorem, we have, with Z; as in (4.7):

]PU(GB) = IEw [exp (ZUX(T_'SAS;'S)) leL)]
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B a4, f L ayr
—]Eu)[exl’<a (Max(ms€> 2¢ A“8<TM5“)))

x 1(R(w;) > »o? for some ¢ < 087, or 0_4M,f > N, for some t < O’STS):I

=E mlet Ly L(RY = (e +00)T: t=Toorg <T,)
=Eu |exp (M7, — A7, ) X 7" > (cy +8¢)T; forsome t < T, or§° < T,

4 1 4 -
< Ew[exp (Mé’iée - EAé‘iée) 1(6 < Tg)]

4 1 4
+ ]Ew [CXP (M%Aan - EA;:;{;\EN,U)
x 1 (R;74 > (cf +8:)T, for some t < 7_"5) 1(¢° > Tg)]

=I{+1I.

We first bound /7

4 1 4 _ 4
If =E, |:exp <Mg€"/7\f£ — EAQ;?) 1 (58 < 6)] < eNs[pr(O:lfT M[f»‘7 > Ng).

(4.23)

Let PB and P2’ be the measures induced on the canonical path space by the standard
Brownian motion B and by the Brownian motion with variance D, respectively, and EB

and EB” be the corresponding expectations. Then by Lemma 3.5 we have

o
timsup 1f < eV PP (sup B/ = Ne) < eM2PP (VDBy, = N ) < 2N NE/CTD),
0—00 0<t<T. e

(4.24)

where the second inequality follows by the reflection principle and the last inequality
follows by a simple bound on Gaussian tail probabilities. By choosing N, sufficiently
large, we get

limsup I{ < ¢/100.

o —> 00

Thus, there exists o, such that for all o > o, we have

I{ <¢/50. (4.25)

Next, we bound /5. Let PB”.B be the measure induced on the canonical path space by
the zero-mean Brownian motions B , B, such that_Bf has variance D, B has variance 1,
and the covariance of B/ and B is ¢ r»and let EB'B be the corresponding expectation.
We use again Corollary 3.6, properties of weak convergence, the dominated convergence
theorem (we can switch to the Skorohod space if needed) to get

lim sup 1§ (4.26)
o —>00
4 1 4
= limsupE [ex ML — —ale
U—>oop v p( T 2 T, )
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ot T f,04
x1( sup R} > (cy+6.)Te)1( sup M; < Ng)
0<t<T, 0<t<T,

/ _1pf -
SEBf’B[erS 2DTE)I( sup B,z(c;-+8s)Ts)1< sup Btffo)]

0<t<T, 0<t<T;

or 8 _1p7 _
< BF B[P sup Bz (ep + 80T
0<t<T,

=PP( sup (Bi+epn) = (cp +80T). 4.27)

0<t<T;

In the last equality we used the Girsanov theorem, since under the exp(B%' — %DY_})
change of measure, B is a Brownian motion with the drift 2¢ y (recall that the covariance
of B/ and B is cr). Now it is easy to get

]PB( sup (B, +cst) > (cy +68)T5) < IP’B< sup B, > ajs) <2e7%T:/2 < ¢ /100,
0<t<T, 0<t<T;

(4.28)
where in the second inequality we again used reflection principle and a bound on Gaus-
sian tail, and the last inequality follows from (4.21). Hence, there is o, such that for
all o > o,, we have

I; <¢&/50.
Combining the above estimates, we get that for ¢ > o, we have
P, (Gp) <2¢/50 < /10, (4.29)
so that

P,(Go) > 1 — ¢/10. (4.30)

This finishes the proof of Lemma 4.2. O

5. Proof of Theorem 1.2: The Lower Bound on the Speed for ¢y > 0

We now prove the lower bound on V (o) for positive c .

Proposition 5.1. Suppose that ug satisfies (1.12), f satisfies (1.16), and cy > 0, then
liminf 02V (o) > ¢y .
o—>00

The proof of Proposition 5.1 follows a similar strategy to that of Proposition 4.1. As
in the proof of the upper bound, using the comparison principle (see Remark 2.1) and
shift invariance in law, we may assume without loss of generality that ug(x) = vo(x) =
1(x <0).
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5.1. Time steps for the lower bound. We start with the definition of the time steps. The
main difference with the proof of the upper bound is that we will sometimes update
“backwards”, and that the “good events” will be when the stopping time happens before
a fixed time length rather than when the stopping times happen at a deterministic time
steps, as in (4.14) in the proof of the upper bound. We will define stopping times 0 =
790 < 11 <---, and a sequence vt( )(x) of random processes, which will be solutions
to (1.14), for t z Ty, such that for each m = 0, 1, 2, ... the following conditions will

hold almost surely:
vr(x) > vlm)(x) fort > 1,, xeR (5.1)
v D) = v (x),  forx e R. (5.2)
Given (5.1) and (5.2), it would follow almost surely for all m = 0, 1, 2, ... and for all
t > 1, that
L) = LE™). (5.3)
Thus, to bound L (v;) from below, it would suffice to bound L(v,m))
We now describe the induction, startlng with 7p = 0, and v, )(x) = v;(x), so that
(5.1) holds for m = 0. Also define vt )(x) = 1, so that (5.2) holds. Let us fix some
constants )q, To, N > 0, to be specified later. Suppose that we have defined t,, for

0 <m < kand v,m) fort > 1, and 0 < m < k, and that (5.1) and (5.2) hold for
0 < m < k. To define 141, we consider, as in (4.12),

' (k)
it [ LD waras, (5.4)
Vo - )

and set

~ ~ 1 .
Tp4] = inf {t € [, e + Toog] : |L(vl(k)) — L(vif))| > A104 or ;M,f’v’k > N}
(5.5)

with the convention 7341 = T + ?008 if the above set is empty.

We then let vt(k“)(x) for t > 1441, x € R be the solution to (1.14) with the initial
condition

k . T
oDy — 16 S L), if et < 7+ oo,
Vel 1(x < L(v ) — )»10'4) if T = e + T00'8.

Then for m = k + 1, the comparison principle (see Remark 2.1) gives (5.1), and (5.2) is
true by definition.
As before, we write

ATp = Tgy1 — Tk
and

AL = L(),) - L) 56
Note that
{(Ate, ALg)}

are 1.i.d. random variables.
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5.2. A good event and its consequences for lower bound. We define the “good” events
56”') ={At, < Toag}.
and

1
Gt {Arm <Too®, ALy =Tao?, sup  — M/ < N}

T <I=Tm+1 G

|
G&m = {Arm<T00 ALy = —Jio*, sup  — M/ < N},

T <I=Tm+1 U

1
G(3m) {Arm<Too sup —vam_N}

T <U=Tm+1 G

To get a lower bound on V® (o) we need a lower bound on AL,, as m — oo. To this
end the following lemma will be helpful.

Lemma 5.2. Lete € (0, min(1/10, 6;2, cr/2)) be arbitrary and §; = ¢/10. There exist
T}, N and o so that for all o > o5, m > 0, ﬁ) =T}, N = N; and

= (cy = 8T, (5.7)
we have
P,(GS"™) = 1 — /50, (5.8)
P, (GS™) < /20, (5.9)
P,(GS™) < &/50. (5.10)

We postpone the proof of this lemma and first give

Proof of Proposition 5.1. Let us take ¢ € (0, min(10~!, f , Cf/2)) and choose T},
N; and o, as in Lemma 5.2, and consider an arbitrary o > o,. Lemma 5.2 implies that

PGy ™) = Py(Ge™) = Py (GE™) — (1 = Py(Gg™)) = 1 — /5, (5.11)
for all o > oy, so that for all m > 0 we have
EALy] = Jio* (PG ™) = PuGE™) = PUGE™) = (1= PUGY™))
aot(1—g/5). (5.12)

Then using the strong law of large numbers, we have that [P, almost surely,

lim

m— 00

> 21 —¢/5)0",

L(v(m))
m

for all 0 > o,. Since 7, < mTE*GS, we have that P, almost surely,

m) (m) by 4 by
L Al — i —
liminf(—r’”) liminf 20w ) M M —e/507 M —e/5) 4

m— 00 T m— 00 m Ty, Tro 8 TF

(5.13)
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Furthermore, since for 7, <t < 1,41 We have

L(vl(m)) > L(v(m)) — hot,

Tm

and AT, < Tg*cfs, it follows that, P, almost surely and since ¢ < 1071,

(m) (m) ~ 4 ~
L(v L(ve) = xo* (1 —¢/5
V(o) > liminf  inf ( > lim inf (v, ) = > 1(I—¢/ )0,4
m—00 Ty <t =<Tp41 t m— 00 T + TS*GS Ts*
—¢&/10)T*(1 —¢&/5
== )Tg*e U (cr - g(cf + D)o~
> (cr —/&)o

In the second inequality above we used (5.13) and the fact that t,, — oo, P,-a.s. since
A1, > 0, notidentically zero and i.i.d. Since ¢ was chosen to be arbitrary small we are
done. 0O

5.3. Proof of Lemma 5.2. As (A.,, AL,,) arei.i.d., the events G(()m) are also 1.i.d., hence
we only need to prove (5.8)—(5.10) for m = 0 and write

o= 8O G9 =300 i —1,2,3.
Fix ¢ € (0, 10_1), let 5, = £/10, and let 7 be sufficiently large so that

IP’B(BI > —5.VT, inf B> —(cs —ag)ﬁ) >1-¢/100, VT > TF. (5.14)

We consider N, > (2 + 8.) T D sufficiently large, with a precise value to be specified
later, and define the stopping time

4
£ =inf{t > 0: M/° > N,}.

Then by Girsanov’s theorem, and since

1 1
{ sup —4M,f < Ng] ») { sup —M,f < NS} ={&° > T},

4
0<t<At) O 0<t<Tro?®

we have
P, (6(()1)) =E, [exp (ZO.S(TE*/\SS)) 15(()1)]

4 f L 4,7
z Ew [CXP <" M5 rspee) = 3 Aax(T;‘Asg)))

1 (L(w(») = iyo* for some 0 < 1 < o3(T* A 58))

1 .
x1 —4M,f < N, forall0 <t < og(Ts* A SS))}

o

x 1 (L(w(t)) > —Jiotforall 0 <t < o3(T* A 58))
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4 1 4 ~
>E, |:exp <M£’f — EAJTC; ) 1 (L‘,’4 > Ap forsome 0 <t < TS*)

x 1 (L;’4 > —j forall 0 <t < T:) X 1( sup Ml < Ng)] =:J;.

0<t<Tj

(5.15)

Next, passing to the limit 0 — +00, we obtain, using the weak convergence in Corol-
lary 3.6:

4 1 4
liminf J¢ = lim inf E,, [exp (M{;f’ — S AR )

0—00 0—00 2
x 1 (Lf4 > (cf — 8)T; forsome 0 <1 < T;‘)

<1 (L;’4 > —(c; — 8T forall 0 <1 < T:) x 1( sup Mt < NE)]

0<t<Tj

f_1 *
zIEBf’B[eBTs* 2DT81( sup B,>(Cf—55)TE*>1(Oinf B,>—(cf—3£)T;)

0<t<Tp¥ <t=<Ty

xl( sup Blf<N5)]. (5.16)

0<t<Tj

We rewrite this, using Girsanov’s theorem for correlated Brownian motions with a drift,
as

f 1 *
lim inf J£ > EBf’B[eBTs* 2 DT 1( sup By > (cf — 3,3)T;‘)

o —> 00

0<r<Ty
1( inf B, > —(c;—38 T*)]
x ogltnsT; > =(er =0T,
f_1 *
—IEBf’B[eBTs* 2DT‘gl( sup Btszg)]
0<t<TjF

B .
_p ( sup (B +cp1) > (cp — 8T, pnt (Bi+ep) > ~(ey - 8£)T£*>

0<t<Tj¥

_ ]pr( sup B/ + D1 > N€>. (5.17)

0<t<Tj

The first term in the right side can be bounded as

IPB< sup (B +cyt) = (cf = 8)TS, inf (Bi+esn) > —(c —55)T:)
<t<Ty

0<t<Tx

B .
> PH(Bry 4o T} = () = 00T, At B> (s - 5T )

pB (BT; > 8.1}, inf B> —(cs— 85)T8*)

B (B1 = =8 /T7, inf Bi> —(c; —8)y/TF) = 1-2/100,  (5.18)
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where the last inequality follows by (5.14). The second term in the right side of (5.17)
can be bounded using the reflection principle for Brownian motion, bounds on tails of
Gaussian probabilities and by choosing N, > (2 + §,)T;* D sufficiently large, so that

IPBf( sup B + D1 > NE) < IP’Bf< sup B =N, — DT;‘)

0<t<Tj 0<t<Tj¥
(N; — DT})?

< ¢/100. 5.1
D ) =e/100. (5.19)

< 2PB («/BBT; > N, — DT;) <2exp ( -

Combining (5.15)—(5.19) we get that for N, sufficiently large we have
P,(G{") = 1 —&/50, (5.20)

which is (5.8).
Next, we bound P, (G(()z)). Again, using Girsanov’s theorem we write

~2
]P’U(Gg )y =E, |:exp (ZaS(TE*Asf)> 152)2)]
—4oarf L 4, f
= E“’[e"p (" Mo gnse) = 5 A08<T:Asw)
x 1 (L(w;) < —Xio* forsome 0 <1 < as(TS* A 55))

X 1<LM"£ < N forall0 <t < UST*)]
4 t & — — &
1 1
—4 —4
+Ew|:exp (U (M({S(Tg*/\gg) - EG A{{S(TE*Ag))) X 1<0<ZS<U%T* FMtf = Ns)]
<t<oST}

4 1 4 ~
< E,,,[exp (Mé;o — 7A£f ) X 1( inf L;’4 < —Al) X 1( sup Mot < N5>]

2 0<t<T} 0=<t<Ty}
1
_4 —4
+ Ew |:€Xp (U (MZS(T;Asf) - EU AZ:S(T:AEE))

1
X 1( sup —4M,f > Ng)] = J51+J5,.

0<t<o8T> @

The term ng,z is exactly as I7 in (4.23), thus, as in (4.25) we have, by choosing N,
sufficiently large:

I, < €/50, (5.21)

for all o sufficiently large. As for st, |» proceeding similarly to (5.16), we obtain

: fo_1 *
lim sup J5 | §E3f’3[eBTs* 2DTSl( inf B < —(cf—ae)T;)

0—00 0<t<T¢

xl( sup Btfng)]

0<t<Tx

<P5 ( inf (B, +cst) < —(cp— 65)T8*)

0<t<Tjr

< PB< inf B, < —(cs— 88),/T€*>

0<t<l
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< ¢/100. (5.22)

Here, the last inequality follows from (5.14). Combining (5.21) and (5.22) we see that
for N, sufficiently large we have

liminfJ5 < 3¢/100, (5.23)
o —>00

and (5.9) follows.

To bound 683), once again by Girsanov’s theorem and recalling the definition of J5 ,,
we obtain

]P)U(a((f)) = Ew [ exp (Z(TS(TE*/\SE)) 15(()3)]

—4 2t L 47
= Ew [exp (U (MGS(TS*/\%-S) - Ea AUS(TS*/\SS))>

X 1( sup MS > N8>] =J5, <¢&/50,

0<t<Tg

where the last inequality follows from (5.21) for N, sufficiently large and all o suffi-
ciently large. Thus (5.10) follows, and the proof of Lemma 5.2 is complete. O

Proof of Theorem 1.2. Now, we can complete the proof of Theorem 1.2. From Propo-
sitions 4.1 and 5.1 we obtain the conclusion of Theorem 1.2 for ¢y > 0. If ¢y < 0,
consider i#(x) = 1 — u(—x) instead of u(x). Then c s turns into —c s > 0 for #. Thus by
Propositions 4.1, 5.1 we get the upper and lower bounds on the speed of i which gives
us the lower and upper bounds respectively on the speed of # with ¢y < 0. This proves
Theorem 1.2 for ¢y < 0.

If ¢y = 0, the upper bound on the speed of u follows from Propositions 4.1. Switching
againtou(x) = 1 —u(—x), we get the upper bound on the speed of & by Propositions 4.1.
This, in turn, gives the lower bound on the speed of u. The proof is complete. O
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