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Abstract: We study the asymptotic speed of a random front for solutions ut (x) to
stochastic reaction–diffusion equations of the form

∂t u = 1

2
∂2x u + f (u) + σ

√
u(1 − u)Ẇ (t, x), t ≥ 0, x ∈ R,

arising in population genetics. Here, f is a continuous function with f (0) = f (1) = 0,
and such that | f (u)| ≤ K |u(1−u)|γ with γ ≥ 1/2, and Ẇ (t, x) is a space-timeGaussian
white noise. We assume that the initial condition u0(x) satisfies 0 ≤ u0(x) ≤ 1 for all
x ∈ R, u0(x) = 1 for x < L0 and u0(x) = 0 for x > R0. We show that when σ > 0,
for each t > 0 there exist R(ut ) < +∞ and L(ut ) < −∞ such that ut (x) = 0 for
x > R(ut ) and ut (x) = 1 for x < L(ut ) even if f is not Lipschitz. We also show that
for all σ > 0 there exists a finite deterministic speed V (σ ) ∈ R so that R(ut )/t → V (σ )

as t → +∞, almost surely. This is in dramatic contrast with the deterministic case σ = 0
for nonlinearities of the type f (u) = um(1−u)with 0 < m < 1when solutions converge
to 1 uniformly on R as t → +∞. Finally, we prove that when γ > 1/2 there exists
c f ∈ R, so that σ 2V (σ ) → c f as σ → +∞ and give a characterization of c f . The last
result complements a lower bound obtained by Conlon and Doering (J Stat Phys 120(3–
4):421–477, 2005) for the special case of f (u) = u(1− u) where a duality argument is
available.

1. Introduction

Reaction–diffusion equations of the form

∂t u = 1

2
∂2x u + f (u), (1.1)

with f (0) = f (1) = 0, are often used to model biological invasions and other spreading
phenomena, with one steady state, say, u ≡ 1 invading another, u ≡ 0, or vice versa.
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Under very mild assumptions on f (u), such as, for instance, that f (u) is Lipschitz on
[0, 1] and either f (u) > 0 for u ∈ (0, 1), or there exists θ ∈ (0, 1) so that f (u) ≤ 0 for
u ∈ (0, θ) and f (u) > 0 for u ∈ (θ, 1), such equations admit traveling wave solutions
of the form ut (x) = U (x − ct) such that

− cU ′ = 1

2
U ′′ + f (U ), U (−∞) = 1, U (+∞) = 0. (1.2)

Note that, in the probabilistic spirit of the present paper, the subscript t denotes the time
dependence of the function ut (x) rather than a time derivative, common to the PDE
literature. It is easy to see that

c
∫

R

|U ′(x)|2dx =
∫ 1

0
f (z)dz, (1.3)

thus c has the same sign as

I [ f ] :=
∫ 1

0
f (u)du, (1.4)

so that if I [ f ] > 0 then the steady state u ≡ 1 ismore stable, and invades the “less stable”
steady state u ≡ 0, and if I [ f ] < 0 then the opposite happens, while if I [ f ] = 0 then
(1.1) has a time-independent solution. It is also well-known that traveling wave solutions
to (1.1) determine the spreading speed for the solutions of the Cauchy problem. More
precisely, let ut (x) be the solution to (1.1) with an initial condition u0(x) such that
0 ≤ u0(x) ≤ 1 for all x ∈ R, and there exist L0 ≤ R0 so that u0(x) = 1 for x < L0
and u0(x) = 0 for x > R0. There exists a function m(t) such that

|m(t) − c∗t | = o(t) as t → +∞, (1.5)

so that

|ut (x + m(t)) − Uc∗(x)| = o(1) as t → +∞. (1.6)

Here, depending on the nature of the nonlinearity f (u), the spreading speed c∗ may be
either the speed of the unique traveling wave, or the minimal speed of a traveling wave
if traveling waves are not unique. The latter happens for the class of the Fisher-KPP
nonlinearities, such that f is Lipschitz, f (0) = f (1) = 0, f (u) > 0 for all u ∈ (0, 1),
and f (u) ≤ f ′(0)u for all u ∈ [0, 1]. In that case, we have

c∗ = √
2 f ′(0). (1.7)

Much more precise results than (1.5)–(1.6) on the convergence of the solutions to the
Cauchy problem to traveling waves are available, and we refer to the classical pa-
pers [AW78,Bra78,Bra83] for the basic results, and to [NRR18,Rob13] and references
therein for more recent developments. We also point out the relation

c∗ = lim
t→+∞

∫

R

f (ut (x))dx =
∫

R

f (Uc∗(x))dx, (1.8)

that can be obtained simply by integrating (1.1) and (1.2) in space.
Note that if f ′(0) blows up, then the speed of propagation may also tend to infinity, as

can be seen from (1.7). For Hölder nonlinearities such that f (u) ∼ u p with p ∈ (0, 1), it
was shown in [AE86] that solutions become instantaneously strictly positive everywhere:
u(t, x) ≥ ct1/(1−p) for t � 1. In particular, if we approximate such nonlinearity by a
sequence of Lipschitz nonlinearities fn , then the corresponding spreading speeds c(n)∗
blow up as n → +∞.
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1.1. Reaction–diffusion equations with noise. Thephysical and biological systemsmod-
eled by reaction–diffusion equations are often subject to noise. In this paper, we study
solutions ut (x), to the stochastic reaction–diffusion equations of the form

∂t u = 1

2
∂2x u + f (u) + σ

√
u(1 − u)Ẇ (t, x) (1.9)

where Ẇ (t, x) is a space-time Gaussian white noise, and σ > 0 measures its strength.
Our interest is in the effect of the noise term on the spreading speed. Since traveling
waves will no longer maintain a fixed shape due to the noise, we will refer instead to the
speed of the random front, which is defined below.

Let us give an motivation for the noise term in (1.9) similar to that given by Fisher
in his pioneering work [Fis37]. See also [Shi88]. Imagine that two populations, type A
and type B, move in a Brownian way along R, and let ut (x) is the proportion of the
population of type A at time t at position x . When an individual of type A meets an
individual of type B, it can be converted into type B, and vice versa, and the outcome
is partially random. The function f (u) in (1.9) describes the deterministic evolution
of the population of type A, due to these interactions, and it is natural to assume that
f (0) = f (1) = 0 since there are no interactions when one type is absent. The random
term in (1.9) accounts for the stochastic aspect of the interactions. We assume that for
each such meeting we have a mean-zero random variable affecting the outcome, and
these random variables are i.i.d. By the central limit theorem, the sum of such variables
would be approximately Gaussian. The independence of the variables means that the
random input should be independent for different values of t and x , giving rise to the
space-time noise Ẇ (t, x). The rate of such meetings at a given site x and time t would
be proportional to ut (x)(1−ut (x)), which is the variance of the noise at (t, x). Thus we
should multiply the white noise Ẇ (t, x) by the standard deviation

√
ut (1 − ut ). This

leads to the noise term in (1.9).
As we have mentioned, we are interested in the long time speed of a random front for

the solutions to (1.9). To this end, we define the left and the right edge of the solution as
follows. Given a function h(x) such that 0 ≤ h(x) ≤ 1 for all x ∈ R, with h(x) → 1 as
x → −∞ and h(x) → 0 as x → +∞, we set

L(h) = inf {x ∈ R : h(x) < 1}
R(h) = sup {x ∈ R : h(x) > 0} . (1.10)

In the absence of the noise, when σ = 0, and for Lipschitz nonlinearities f (u), we have
L(ut ) = −∞ and R(ut ) = +∞ for all t > 0. This, however, is not necessarily the case
in the presence of the noise. In order to make this claim precise, we assume that

f is continuous on [0, 1] and there exists

K f > 0 such that | f (u)| ≤ K f

√|u(1 − u)|. (1.11)

As for the initial condition u0(x), we will assume that

0 ≤ u0(x) ≤ 1 for all x ∈ R,

and both L(u0) and R(u0) are finite. (1.12)

We will denote by CI the set of continuous functions satisfying (1.12). In addition B̂I
will denote the space of functions on R taking values in [0, 1] and ĈI will denote the
space of continuous functions on R taking values in [0, 1].
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We say that ut has a speed V (σ ) if the following limit exists:

V (σ ) = lim
t→∞

R(ut )

t
.

We prove the following theorem in Sect. 2.

Theorem 1.1. Let f (u) satisfy (1.11) and u0(x) be as in (1.12), then (1.9) with an initial
condition u0(x) has a solution ut (x) taking values in ĈI for t > 0. The solution is unique
in law. Moreover, L(ut ) and R(ut ) are almost surely finite for all t ≥ 0 and the solution
has a speed V (σ ) ∈ R.

We see that the noise has a very strong slowdown effect: V (σ ) is finite for all σ > 0
even if f (u) is Hölder with an exponentm ≥ 1/2, and not Lipschitz, such as, for instance
f (u) = um(1 − u), for which, as we have mentioned, the speed of the front is infinite
when σ = 0.

Most of the papers dealing with (1.9), such as Mueller and Sowers [MS95] have
treated the Fisher-KPP nonlinearity f (u) = u(1− u), and small noise, where σ is close
to 0. Mueller, Mytnik, and Quastel [MMQ11] studied the behavior of V (σ ) as σ ↓ 0
and verified some conjectures of Brunet and Derrida [BD97] and [BD00]. Less attention
has been devoted to V (σ ) for large or intermediate values of σ , but Conlon and Doering
[CD05] proved that for f (u) = u(1 − u) there exists an asymptotic velocity V (σ ) > 0
for solutions u to (1.9) for all σ > 0, and that

lim inf
σ→∞ σ 2V (σ ) ≥ 1. (1.13)

Note that (1.13) differs from (1.7) in [CD05] because the diffusivity in that paper is
taken to be 1 rather than 1/2 as chosen here. To formulate our main result, we note that
a rescaling of (1.9), discussed in detail in Sect. 4.1 below allows us to move the noise
coefficient into the nonlinearity, and obtain the rescaled equation

∂tv = 1

2
∂2x v + σ−4 f (v) +

√
v(1 − v)Ẇ (t, x). (1.14)

Here v is a rescaling of u which we specify later. Later we will use the results of Tribe
[Tri95], and Mueller and Tribe [MT97] for (1.14) with f = 0, a version of a continuous
voter model, or a stepping stone model in population genetics:

∂tw = 1

2
∂2x w +

√
w(1 − w)Ẇ (t, x). (1.15)

By Theorem 1 of [MT97], we know that the law of wt (L(wt ) + x) converges weakly
to a stationary distribution as t → ∞. We denote the expectation with respect to the
stationary distribution of w by Ew,st , where “st” is an abbreviation for “stationary”. For
the next theorem we need an assumption on f which is slightly stronger than (1.11): we
assume that

f is continuous on [0, 1] and there exists K̃ f > 0

s.t. | f (u)| ≤ K̃ f |u(1 − u)|γ for some γ ∈ (1/2, 1]. (1.16)
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Theorem 1.2. Suppose that u0 satisfies (1.12) and f satisfies (1.16). Then we have

lim
σ→∞ σ 2V (σ ) = c f , (1.17)

where

c f ≡ Ew,st

[∫

R

f (w(x)) dx

]
(1.18)

and

|c f | < ∞. (1.19)

Note that Lemma 2.1 of [Tri95] shows that

lim
t→∞Ew

[∫

R

wt (x)(1 − wt (x)) dx

]
= 1. (1.20)

Let us explain why c f is finite, at least for Lipschitz f that satisfy (1.16) with γ = 1.
Using Theorem 1 of [MT97] and the Skorokhod representation theorem to switch to the
probability space where wt converges to w almost surely, we get

|c f | =
∣∣∣∣Ew,st

[ ∫
f (w(x))dx

]∣∣∣∣ =
∣∣∣∣Ew

[ ∫
lim

t→∞ f (wt (x))dx
]∣∣∣∣ .

Then by (1.16) and the Fatou lemma we have

|c f | ≤ K̃ f Ew

[ ∫
lim

t→∞ wt (x)(1 − wt (x))dx
]

≤ K̃ f lim
t→∞Ew

[ ∫
wt (x)(1 − wt (x))dx

]
< +∞.

For general f satisfying (1.16), we show that (1.19) holds in Lemma 3.4.
In particular, as a consequence of Theorem 1.2 and (1.20), we get that for the Fisher-

KPP nonlinearity f (u) = u(1 − u), we have

lim
σ→∞ σ 2V (σ ) = 1,

giving a matching upper bound to the lower bound (1.13) of Conlon and Doering in
[CD05], after adjusting for the different diffusivities adopted in the present paper and in
[CD05].

We also see the slowdown due to strong noise in Theorem 1.2 even for Lipschitz
nonlinearities. As discussed in Sect. 4.1 below, the large noise asymptotics in (1.17)
corresponds to the speed of the front for solutions of (1.14) that is V (v)(σ ) ∼ c f /σ

4.
However, solutions of the corresponding equation without the noise

∂tv = 1

2
∂2x v + σ−4 f (v) (1.21)

spread with the speed V̄ (σ ) = c∗/σ 2, where c∗ is the speed of the traveling wave for
(1.21) with σ = 1, so that V (v)(σ ) � V̄ (σ ) for σ � 1, and the noise slows down the
propagation.



704 C. Mueller, L. Mytnik, L. Ryzhik

Let us also point out that expression (1.17)–(1.18) for the front speed V (σ ) is a
direct analog of (1.8) except now the role of the traveling wave is played by the invariant
measure ofwt (x). Onemay conjecture that instead of the convergence to a travelingwave
in shape, as in (1.6) that happens in the deterministic case, here, in the limit σ → +∞,
the law of ut (x) after rescaling converges, as t → +∞, in the frame moving with the
speed V (σ ), to the invariant distribution of wt (x).

Another interesting observation is that the noise, despite its symmetry with respect
to u = 0 and u = 1 can change the direction of the invasion. One may construct a
nonlinearity f such that I ( f ) given by (1.4) has a different sign than c f , meaning that
that the speed of propagation for σ = 0, in the absence of the noise, may have a different
sign than V (σ ) for large σ � 1, changing the direction of the invasion, because of the
noise.

The paper is organized as follows. The proof of Theorem 1.1 is in Sect. 2. Section 3
contains some auxiliary results on solutions to (1.15). They are used later in the proof of
Theorem 1.2, presented in Sect. 4 for the upper bound, and in Sect. 5 for the matching
lower bound on the speed V (σ ) for σ � 1.

2. The Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Existence of a solution to (1.9) follows by a
rather standard argument. To prove the uniqueness, we use Girsanov’s theorem. In order
to be able to apply this theorem, we need to have an a priori bound showing that for any
solutions to (1.9) taking values in B̂I for all t ≥ 0 with R(u0) < +∞, L(u0) > −∞,
we have −∞ < L(ut ) < R(ut ) < +∞ for all t ≥ 0, almost surely.

2.1. Existence of a solution. We first show that (1.9) has a mild solution. The notion of
a mild solution to (1.9) follows the standard definition, see Walsh [Wal86]. We interpret
(1.9) as a shorthand for the mild form,

ut (x) =
∫

R

Gt (x − y)u0(y)dy +
∫ t

0

∫

R

Gt−s(x − y) f (us(y))dyds

+
∫ t

0

∫

R

Gt−s(x − y)
√

us(y)(1 − us(y))W (dyds), (2.1)

where u0(x) is the given initial condition. Here,

Gt (x) = (2π t)−1/2 exp
(
−x2/(2t)

)
,

is the fundamental solution of the heat equation

∂t G = 1

2
∂2x G.

In what follows, with some abuse of notation {Gt , t ≥ 0} will also denote the corre-
sponding semigroup, that is,

Gtφ(x) =
∫

R

Gt (x − y)φ(y) , dy, t > 0, (2.2)

for any function φ for which the above integral is well-defined.
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Almost sure existence and uniqueness of mild solutions to SPDEs of the form

∂t u = 1

2
∂2x u + f (u) + a(u)Ẇ (t, x) (2.3)

is standard [Wal86] when the coefficients are Lipschitz continuous functions of u. Be-
cause in our case f (u) may be not Lipschitz, and a(u) = √

u(1 − u) is not Lipschitz,
one needs to be slightly more careful. Solutions to (1.9) are constructed as follows.
Let the initial condition u0 satisfy (1.12). We approximate f (u) and a(u) by Lipschitz
functions fn(u) and an(u) such that

fn(0) = fn(1) = an(0) = an(1) = 0,

and construct the corresponding solutions un
t (x) using the standard theory. The com-

parison principle implies that un
t (x) take values in [0, 1], see [Shi94] and [Mue91]. The

proof of Theorem 2.6 of [Shi94], on pp. 436–437 of that paper, shows that the sequence
un

t (x) is tight. Note that in [Shi94] the tightness (and therefore existence of a solution)
is proved for the processes taking values in a space of unbounded functions. We can
follow the proof of Theorem 2.6 of [Shi94] line by line to show that in our situation
the tightness holds for the sequence of function-valued processes with functions taking
values in [0, 1]. Passing to the limit n → +∞ we obtain a mild solution ut (x) to (1.9)
taking values in [0, 1]. This proves existence of a solution.
Remark 2.1. (Comparison principle) Using the above existence proof it is easy to show
existence of two solutions u(1)

t (x), u(2)
t (x) to (1.9) with initial values g1 ≤ g2, re-

spectively, defined on the same probability space, and such that that with probability
1, we have u(1)

t (x) ≤ u(2)
t (x) for all t, x . To show this, we approximate f (u) and

a(u) = √
u(1 − u) by Lipschitz functions fn(u) and an(u) such that

fn(0) = fn(1) = an(0) = an(1) = 0,

and construct the corresponding solutions u1,n
t (x), u2,n with initial values g1 ≤ g2,

respectively. The comparison principle implies that u1,n
t (x) ≤ u2,n

t (x) for all t, x (see
[Shi94]) and all n. Using again the proof of Theorem 2.6 of [Shi94], we see that the
sequence of pairs of processes (u(1,n), u(2,n)) is tight. Any limit point will preserve the
inequality u(1) ≤ u(2). So we can always construct a pair of solutions u(1), u(2) to (1.9)
on the same probability space with initial data g1 ≤ g2, respectively, coupled in a way
so that u(1) ≤ u(2). After the proof of the weak uniqueness for (1.9) in Theorem 1.1 is
finished, we get that both u(1) and u(2) are unique in law (but not necessarily as a pair!).

2.2. Uniqueness via the Girsanov theorem. In order to prove uniqueness in law of the
solution to (1.9), we will use a version of the Girsanov theorem that will allow us to
compare the laws of the solution ut (x) to (1.9) and wt (x), the solution to (1.15), which
corresponds to f = 0 in (1.9), with the same initial condition w0(x) = u0(x). Recall
that we have set σ = 1, including in (1.15). Let Pt,u be the measure induced on the
canonical path space up to time t by u, and Pt,w be the measure induced by w, also up
to time t . We also define the corresponding expectations Et,u and Et,w, and write Pu for
P∞,u , and likewise Pw for P∞,w. We will not use the subscripts in the situations when
it is clear which probability measure is used.

In [Daw78], Dawson gives a version of Girsanov’s theoremwhich applies to Pt,u and
Pt,w. We will use its variant, Theorem IV.1.6 in [Per02]. In such theorems, the change
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of measure always involves an exponential term which must be a martingale. In our
situation, let

Zt =
∫ t

0

∫

R

f (ws(x))√
ws(x)(1 − ws(x))

W (dx, ds) − 1

2

∫ t

0

∫

R

f (ws(x))2

ws((x)1 − ws(x))
dxds.

(2.4)

Here, and elsewhere we adopt the convention in the integrands that

f (u)√
u(1 − u)

= 0 if u = 0 or u = 1.

Then Girsanov’s theorem for stochastic PDE [Daw78,Per02] says that

dPt,u

dPt,w
= eZt , (2.5)

as long as
∫ t

0

∫

R

f (us(x))2

us(x)(1 − us(x))
dxds < +∞, Pu-almost surely. (2.6)

In particular, if (2.6) holds then (2.5) and uniqueness in law for solutions of (1.15) (see
[Shi88]) imply immediately that the solution to (1.9) is unique in law. For the moment,
as we do not have any information on the support of f (us(x)), we can not conclude that
(2.6) holds. The bulk of the rest of this section is to show that (2.6) holds for any solution
to (1.9) taking values in B̂I for all t ≥ 0 and such that R(u0) < +∞ and L(u0) > −∞.

First, we make a much simpler observation that allows us to use Girsanov’s theorem
to eliminate the drift on a finite interval. Fix and arbitrary b > 0 and let vb denote a
solution to a modified version of (1.9), with the nonlinearity set to zero on the interval
[−10b, 10b]:

∂tv
b
t (x) = 1

2
∂2x vb

t (x) + f (vb
t (x))1{x∈(−∞,−10b)∪(10b,∞)}

+
√

vb
t (x)(1 − vb

t (x))Ẇ (t, x). (2.7)

We again write this equation in the mild form:

vb
t (x) = Gtv

b
0(x)

+
∫ t

0

∫

R

Gt−s(x − z) f (vb
s (z))1{z∈(−∞,−10b)∪(10b,∞)} dz + N b

t (x), (2.8)

where

N b
t (x) =

∫ t

0

∫

R

Gt−s(x − z)
√

vb
s (z)(1 − vb

s (z))W (ds, dz). (2.9)

Let Pt,vb be the measure induced on the canonical path space up to time t by vb, with
the corresponding expectation Et,vb , and P∞,vb be Pvb . Note that by (1.11) we have

∫ t

0

∫

R

f (us(x))21{x∈(−10b,10b)}
us(x)(1 − us(x))

dxds ≤ 20bK 2
f t < +∞, Pu-almost surely.(2.10)
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Thus we can use Girsanov’s theorem for stochastic PDE [Daw78,Per02] to get

dPt,u

dPt,vb
= eZb

t , (2.11)

where

Zb
t =

∫ t

0

∫

R

f (vb
s (x))1{x∈(−10b,10b)}√
vb

s (x)(1 − vb
s (x))

W (dx, ds)

− 1

2

∫ t

0

∫

R

f (vb
s (x))21{x∈(−10b,10b)}
vb

s ((x)1 − vb
s (x))

dxds. (2.12)

2.3. A bound on the front speed. The next step is to get the following bound on the speed
of the front of u.

Lemma 2.2. Let ut (x) be a solution to (1.9) taking values in B̂I for all t ≥ 0 such that
the initial condition u0(x) satisfies (1.12). Then, for all T > 0, both supt≤T R(ut ) and
inf t≤T L(ut ) are almost surely finite. Moreover, for all T ≥ 0 there exists CT > 0 so
that for all b ≥ 4

√
T (T ‖ f ‖∞ ∨ 1) we have, with R0 := R(u0), L0 = L(u0):

P
(

sup
0≤t≤T

(R(ut ) − R0) > b
)

+P
(

sup
0≤t≤T

(L0 − L(ut )) > b
) ≤ CT exp

(
− b2

100T

)
. (2.13)

Since

|R(u(t) − L(u(t)| ≤ (R(ut ) − R0)+ + (L0 − L(ut ))+ + |R0 − L0|,

an immediate consequence is

Corollary 2.3. Under conditions of Lemma 2.2, we have, for each T ≥ 0:

E
[

sup
0≤t≤T

(R(ut ) − R0)+
]

< +∞,

E
[

sup
0≤t≤T

(L0 − L(ut ))+
]

< +∞,

E
[

sup
0≤t≤T

|R(ut ) − L(ut )|
]

< +∞.

(2.14)

In other words, the length of the interface of any solution to (1.9) has a finite expectation.
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2.3.1. Bounds on the martingale with the cut-off The proof of Lemma 2.2 relies on a
priori bounds on the propagation of vb, solution to (2.7). First, we need to control the
modulus of continuity of the martingale N b

t (·) defined in (2.9).

Lemma 2.4. Let vb
t (x) be a solution to (2.7) taking values in B̂I for all t ≥ 0, such that

the initial condition vb
0(x) satisfies (1.12). Then, for all p ≥ 1, there exists C(p) > 0 so

that for all t ≥ s ≥0, and x, y ∈ [b/2, 9b] we have

E
[|N b

t (x) − N b
t (y)|2p]

≤ C(p)(|x − y| ∧ t1/2)p−1t1/2
∫

R

(Gt (x − z) + Gt (y − z))

× (vb
0(z) + t‖ f ‖∞1{z∈(−∞,−10b)∪(10b,∞)}) dz, (2.15)

E
[|N b

t (x) − N b
s (x)|2p]

≤ C(p)|t − s|(p−1)/2t1/2
∫

R

(Gt (x − z) + Gs(x − z)) (2.16)

× (vb
0(z) + t‖ f ‖∞1{z∈(−∞,−10b)∪(10b,∞)}) dz.

Proof. The proof follows the lines of the proof of Lemma 3.1 in [Tri95]. We only
verify (2.15). Note that

∫ t

0

∫

R

(Gt−s(x − z) − Gt−s(y − z))2 dz ds

≤ C(|x − y| ∧ t1/2) ∀t > 0, x, y ∈ R. (2.17)

Burkholder’s and Hölder’s inequalities give

E
[|N b

t (x) − N b
t (y)|2p]

≤ C(p)E

[(∫ t

0

∫

R

(Gt−s(x − z) − Gt−s(y − z))2vb
s (z)(1 − vb

s (z)) dz ds

)p]

≤ C(p)(|x − y| ∧ t1/2)p−1

×E

[∫ t

0

∫

R

(Gt−s(x − z) − Gt−s(y − z))2
(
vb

s (z)(1 − vb
s (z))

)p
dz ds

]

≤ C(p)(|x − y| ∧ t1/2)p−1

×E

[∫ t

0

∫

R

(Gt−s(x − z) − Gt−s(y − z))2vb
s (z) dz ds

]

≤ C(p)(|x − y| ∧ t1/2)p−1 (2.18)

×E

[∫ t

0
(t − s)−1/2

∫

R

(Gt−s(x − z) + Gt−s(y − z))vb
s (z) dz ds

]
.

We used the fact that 0 ≤ vb ≤ 1 in the third inequality above. Note that

E[vb
s (x)] = Gsv

b
0 (x)+E

[ ∫ s
0

∫
R

Gs−r (x−z) f (vb
r (z))1{z∈(−∞,−10b)∪(10b,∞)} dz dr

]
(2.19)

≤ Gsv
b
0 (x) + ‖ f ‖∞

∫ s
0

∫
R

Gs−r (x − z)1{z∈(−∞,−10b)∪(10b,∞)} dz dr.
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We substitute this bound into the right side of (2.18) and use the semi-group property
of Gt to get

E
[|N b

t (x) − N b
t (y)|2p]≤ C(p)(|x − y| ∧ t1/2)p−1

×
{ ∫ t

0
(t − s)−1/2

( ∫

R

(Gt (x − z) + Gt (y − z))vb
0(z) dz

+
∫ s

0
‖ f ‖∞

∫

R

(Gt−r (x − z) + Gt−r (y − z))

×1{z∈(−∞,−10b)∪(10b,∞)}) dz dr
)

ds
}

≤ C(p)(|x − y| ∧ t1/2)p−1t1/2
(∫

R

(Gt (x − z) + Gt (y − z))vb
0(z) dz

+‖ f ‖∞
∫ t

0

∫

R

(Gt−r (x − z) + Gt−r (y − z))1{z∈(−∞,−10b)∪(10b,∞)} dz dr

)
.

Since x, y ∈ (b/2, 9b) and z ≥ 10b we have

∫

z≥10b
Gr (x − z) dz ≤

∫

z≥10b
Gt (x − z) dz, ∀x ∈ (b/2, 9b), 0 ≤ r ≤ t,

(2.20)

and thus we get

E
[|N b

t (x) − N b
t (y)|2p] ≤ C(p)(|x − y| ∧ |t − s|1/2)p−1 (2.21)

×t1/2
∫

R

(Gt (x − z) + Gt (y − z))

×
(
vb
0(z) + t‖ f ‖∞1{z∈(−∞,−10b)∪(10b,∞)}

)
dz,

which is (2.15). The proof of (2.16) goes along similar lines. ��
A corollary of Lemma 2.4 is a bound on the size of N b

s (x).

Lemma 2.5. Let vb
t (x) be a solution to (2.7), taking values in B̂I for all t ≥ 0, and the

initial condition vb
0(x) satisfies (1.12). Then, for all t > 0, there exists C such that

P
(|N b

s (x)| ≥ ε for some x ∈ (b/2, 9b), s ∈ [0, t])

≤ Cε−20(t ∨ t22)
∫

R

∫

R

Gt (x − z)

×
(
vb
0(z) + t‖ f ‖∞1{z∈(−∞,−10b)∪(10b,∞)}

)
dz1{x∈(b/2,9b)} dx . (2.22)

Proof. The proof goes exactly as the second part of the proof of Lemma 3.1 in [Tri95]
(on p. 295)while taking vb

0(z)+t‖ f ‖∞1{z∈(−∞,−10b)∪(10b,∞)} instead of f and (b/2, 9b)

instead of (A,∞) there. ��
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2.3.2. The support of the solution with a cut-off Now, we prove the following lemma.

Lemma 2.6. Let vb
t (x) be a solution to (2.7) taking values in B̂I for all t ≥ 0 such that

the initial condition vb
0(x) satisfies (1.12) with R(vb

0) ≤ 0. Then, for all t > 0 there
exists C(t, ‖ f ‖∞) > 0 so that for all b ≥ 4

√
t(t‖ f ‖∞ ∨ 1) we have

P
(
sup

0≤s≤t
sup

x∈[b,2b]
vb

s (x) > 0
) ≤ C(t, ‖ f ‖∞) exp

(
− b2

50t

)
. (2.23)

Proof. We will follow the proof of Proposition 3.2 in [Tri95]. Let us take a function

ψ ∈ L1(R) ∩ C(R)

such that 0 ≤ ψ(x) ≤ 1 for all x ∈ R and {x : ψ(x) > 0} = (0, b), and set ψb(x) =
ψ(x − b). For simplicity of notation, we define

〈h, g〉 =
∫

R

h(x)g(x) dx

for any functions h, g such that the integral above exists.
Fix t > 0 and let φλ

s (x), 0 ≤ s ≤ t , x ∈ R be the unique non-negative bounded
solution to the backward in time problem

− ∂sφ
λ
s = 1

2
�φλ

s − 1

4
(φλ

s )2 + λψb, (2.24)

with the terminal condition φλ
t (x) ≡ 0. A similar equation to (2.24) but with different

function ψb in the right side appears in the proof of Proposition 3.2 in [Tri95]. As
ψb(x) ≥ 0 for all x ∈ R, the maximum principle implies existence of the solution
to (2.24) and that φλ

s (x) ≥ 0 for all 0 ≤ s ≤ t and x ∈ R. The maximum principle also
implies that

φλ
s (x) ≤ λ

∫ t−s

0

∫
Gr (x − y)ψb(y)dy dr, s ≤ t.

Since
∫

Gr (x − y)dx = 1 and ψb is integrable by assumptions on ψ , we get that φλ
s (x)

is integrable for all 0 ≤ s ≤ t . Next, note that the function

ζt (x) =
{

α
(x−b)2

, x < b,
α

(x−2b)2
, x > 2b,

satisfies, in the region x < b, where ψb(x) ≡ 0:

∂tζ − 1

2
�ζ +

1

4
ζ 2 − λψb = −1

2

2 · 3α
(x − b)4

+
α2

4(x − b)4
= α(α − 12)

(x − b)4
≥ 0,

provided that we take α ≥ 12. As ζt (x) = +∞ at x = b, the maximum principle implies
that, for α sufficiently large, we have

φλ
s (x) ≤ α

(b − x)2
, for all x < b, s ≤ t, and λ > 0. (2.25)
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Similarly, again for α large enough, we get

φλ
s (x) ≤ α

(2b − x)2
, for all x > 2b, s ≤ t, and λ > 0. (2.26)

Now, given any b ≥ 4t1/2, we may use the fundamental solution for the heat equation
on the half-lines x < b − t1/2, x > 2b + t1/2 together with the upper bound in (2.25) on
φλ

s (x) at x = b − t1/2, and x = 2b + t1/2 to conclude that there exists α1 > 0 such that

φλ
s (x) ≤ α1

t
exp

(
− (b − x)2

20t

)
,

for all b ≥ 4t1/2, x < b − 2t1/2, s ≤ t, and λ > 0,

(2.27)

and

φλ
s (x) ≤ α1

t
exp

(
− (2b − x)2

20t

)
,

for all b ≥ 4t1/2, x > 2b + 2t1/2, s ≤ t, and λ > 0. (2.28)

Next, by Itô’s formula, we get, for any 0 ≤ s ≤ t :

exp
(

− 〈vb
s , φλ

s 〉 − λ

∫ s

0
〈vb

s′ , ψb〉 ds′) = exp
( − 〈vb

0 , φλ
0 〉)

+
∫ s

0
exp

(
− 〈vb

s′ , φλ
s′ 〉 − λ

∫ s′

0
〈vb

r , ψb〉 dr
)

×
(
〈vb

s′ ,−∂sφ
λ
s′ − 1

2
�φλ

s′ − λψb〉 − 〈 f (vb
s′)1(−∞,−10b)∪(10b,∞), φ

λ
s′ 〉

+
1

2
〈vb

s′(1 − vb
s′), (φλ

s′)2〉
)

ds′

+ Mφλ,ψb
s ,

where s �→ Mφλ,ψb
s , s ≤ t, is a local martingale. In fact, Mφλ,ψb is a square integrable

martingale: this follows easily from integrability of (φλ)2. Then we get

exp
(

− 〈vb
s , φλ

s 〉 − λ

∫ s

0
〈vb

s′ , ψb〉 ds′)

= exp(−〈vb
0 , φλ

0 〉) +
∫ s

0
exp

(
− 〈vb

s′ , φλ
s′ 〉 − λ

∫ s′

0
〈vb

r , ψb〉 dr
)

× (〈− f (vb
s′)1(−∞,−10b)∪(10b,∞), φ

λ
s′ 〉 + 〈−1

4
vb

s′

+
1

2
vb

s′(1 − vb
s′), (φλ

s′)2〉) ds′ + Mφλ,ψb
s . (2.29)

Note that (2.25) implies that for b > R0 we have a uniform bound

|〈vb
0 , φλ

0 〉| ≤ c0, (2.30)
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with a constant c0 that does not depend on λ. Now we define the stopping times

τb = inf
{

t ≥ 0 : ∃x ∈ [b/2, 3b] s.t. vb
t (x) ≥ 1

2

}
, ρb = inf{t ≥ 0 : 〈vb

t , ψb〉 > 0}.
Note that we have

〈vb
t∧τb

, φλ
t∧τb

〉 + λ

∫ t∧τb

0
〈vb

s , ψb〉 ds → +∞ as λ → +∞, (2.31)

almost surely on the event {ρb < t ∧ τb), thus

P(ρb < t ∧ τb) ≤ lim
λ→+∞E

[
1 − exp

(
− 〈vt∧τb , φλ

t∧τb
〉 − λ

∫ t∧τb

0
〈vs , ψb〉 ds

)]

(2.32)

On the other hand, taking the expectation in (2.29) with s = t ∧ τb, we get

E

[
1 − exp

(
− 〈vb

t∧τb
, φλ

t∧τb
〉 − λ

∫ t∧τb

0
〈us , ψb〉 ds

)]
≤ E

[
1 − exp

( − 〈vb
0 , φλ

0 〉)]

+ E

[ ∫ t

0

(
‖ f ‖∞〈1(−∞,−10b)∪(10b,∞), φ

λ
s 〉 + 〈1

4
vb

s 1(−∞,b/2)∪(3b,∞), (φ
λ
s )2〉

)
ds

]
.

(2.33)

Note that for each 0 ≤ s ≤ t and x ∈ R the family φλ
s (x) is increasing in λ. Moreover,

for s < t and x > b we have φλ
s (x) → +∞ as λ → +∞, while for x < b, the limit

φ∞
s (x) is finite because of (2.25). Passing to the limit λ → +∞ in (2.33), using the

bound in (2.32) and since vb
s (x) ≤ 1 for all s ≥ 0, x ∈ R, we get

P(ρb < t ∧ τb) ≤ E
[
1 − exp

( − 〈vb
0 , φ∞

0 〉)]

+
∫ t

0

(
‖ f ‖∞〈1(−∞,−10b)∪(10b,∞), φ

∞
s 〉 + 1

4
〈1(−∞,b/2)∪(3b,∞), (φ

∞
s )2〉

)
ds.

(2.34)

Recalling (2.27)–(2.28), we have

P(ρb < t ∧ τb) ≤ C

t

∫ 0

−∞
e−(b−x)2/(20t)dx

+
‖ f ‖∞

t

∫ t

0

(∫ ∞

10b
e−(2b−x)2/(20t) dx +

∫ −10b

−∞
e−(b−x)2/(20t) dx

)
ds

+
C

t2

∫ t

0

(∫ b/2

−∞
e−(b−x)2/(10t)dx +

∫ ∞

3b
e−(2b−x)2/(10t) dx

)
ds

≤ C

b
exp

(
− b2

40t

)
+

C‖ f ‖∞
b

exp
(

− b2

t

)
≤ C(‖ f ‖∞ + 1)

t1/2
exp

(
− b2

40t

)
.

(2.35)

We used the assumption that R0 = 0 in the first term in the right side above. To estimate
the integrals in (2.35), we used the standard Gaussian estimate

∫ ∞

y
exp(−x2/2)dx ≤ y−1 exp(−y2/2)
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along with a few changes of variables.
Now we need to estimate

P(τb ≤ t) = P

(
∃x ∈ [b/2, 3b], s ≤ t : Gsv

b
0(x)

+
∫ s

0

(∫ ∞

10b
+

∫ −10b

−∞

)
Gs−r (x − z) f (vb

r (z)) dz dr

+ N b
s (x) ≥ 1/2

)
. (2.36)

It is easy to check that since b ≥ 4
√

t(t‖ f ‖∞ ∨ 1)

Gsv
b
0(x) ≤

∫ 0

−∞
Gs(x − z) dz ≤

∫ 0

−∞
Gt (x − z) dz ≤

∫ 0

−∞
Gt (b/2 − z) dz

≤
∫ 0

−∞
G1(2 − z) dz ≤ 1/10, ∀s ≤ t, x ∈ [b/2, 3b]. (2.37)

Similarly, we have

t
∫ ∞

10b
Gs−r (z − x) f (vb

r (z) dz ≤ t‖ f ‖∞
∫ ∞

10b
Gt (z − 3b) dz

≤ t‖ f ‖∞
∫ ∞

7b√
t

G1(z) dz,

≤ t‖ f ‖∞
∫ ∞

28(t‖ f ‖∞∨1)
G1(z) dz ≤ 0.05, ∀r ≤ s ≤ t, x ∈ [b/2, 3b]. (2.38)

and

t
∫ −10b

−∞
Gs−r (z − x) f (vb

r (z) dz

≤ t‖ f ‖∞
∫ −10b

−∞
Gt (z − b/2) dz ≤ t‖ f ‖∞

∫ ∞
10b√

t

G1(z) dz,

≤ t‖ f ‖∞
∫ ∞

40(t | f ‖∞∨1)
G1(z) dz ≤ 0.05, ∀r ≤ s ≤ t, x ∈ [b/2, 3b]. (2.39)

Altogether substituting the last inequalities into (2.36) we get

P(τb ≤ t) ≤ P

(
∃x ∈ [b/2, 3b], s ≤ t : N b

s (x) ≥ 0.3
)

≤ C · (t ∨ t22)
∫

R

∫

R

Gt (x − z)(vb
0(z)

+ t‖ f ‖∞1{z∈(−∞,−10b)∪(10b,∞)}) dz1{x∈(b/2,9b)}) dx

≤ C(t, ‖ f ‖∞) exp
(

− b2

50t

)
, ∀t > 0, x ∈ [b/2, 3b], (2.40)

where the second inequality follows by Lemma 2.5 and in the last one we used simple
Gaussian bounds. By combining (2.40) with (2.35) we are done. ��
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2.3.3. The proof of Lemma 2.2 Now we are ready to prove Lemma 2.2. Note that
Lemma 2.6 implies a similar result for ut (x).

Lemma 2.7. Let ut (x) be a solution to (1.9) taking values in B̂I for all t ≥ 0 such that
the initial condition u0(x) satisfies (1.12) with R(u0) ≤ 0. Then, for all T > 0 there
exists CT > 0 so that for all b ≥ 4

√
T (T ‖ f ‖∞ ∨ 1) we have

P

(
sup

0≤t≤T
sup

x∈[b,2b]
ut (x) > 0

)
≤ C(T, ‖ f ‖∞) exp

(
− b2

100T

)
. (2.41)

Proof. By Girsanov’s theorem we have

Pu

(
sup

0≤t≤T
sup

x∈[b,2b]
ut (x) > 0

)
≤ Evb

[
eZb

T 1{sup0≤t≤T supx∈[b,2b] vb
t (x)>0}

]

≤
(
Evb

[
e2Zb

T
])1/2(

Pvb

(
sup

0≤t≤T
sup

x∈[b,2b]
vb

t (x) > 0
))1/2

,

(2.42)

where Zb was defined in (2.12). By (2.10) the quadratic variation of

t �→
∫ t

0

∫

R

f (vb
s (x))1{x∈(−10b,10b)}√
vb

s (x)(1 − vb
s (x))

W (dx, ds)

is
∫ t

0

∫

R

f (vb
s (x))21{x∈(−10b,10b)}
vb

s ((x)1 − vb
s (x))

dxds ≤ 20bK 2
f t, ∀t ≥ 0, Pvb -a.s.

Thus from (2.12) we can easily get

Evb

[
e2Zb

T
] ≤ e40bK 2

f T
, (2.43)

and combining this with (2.42) and Lemma 2.6 we obtain (2.41). ��
Now, the conclusions of Lemma2.2 follow essentially immediately. The bound (2.13)

on

P
(

sup
0≤t≤T

(R(ut ) − R0) > b
)

in Lemma2.2 is a simple consequence of Lemma2.7, by adding up theGaussian estimate
(2.41) over the intervals [b, 2b], 2b, 4b], etc. The finiteness of supt≤T R(ut ) follows
from (2.13). The corresponding bounds on L(ut ) follow by repeating the arguments
used in the proof of Lemmas 2.4–2.7 for 1 − u(−x) instead of u(x).

2.3.4. Uniqueness of the solution So far, we have shown that both R(ut ) and L(ut ) are
Pu-a.s. finite for any solution to (1.9) taking values in B̂I for all t ≥ 0 such that the initial
condition u0(x) satisfies (1.12). As a consequence, (2.6) holds for any such solution to
(1.9). Aswe have discussed in Sect. 2.2, it follows that wemay applyGirsanov’s theorem
to immediately deduce uniqueness in law of the solution to (1.9) that satisfies the above
conditions.
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2.4. Existence of the speed. The last ingredient in the proof of Theorem 1.1 is the
existence of the speed.

Lemma 2.8. There exists a deterministic constant V (σ ) ∈ (−∞,+∞) so that the limit

V (σ ) = lim
t→+∞

R(ut )

t
(2.44)

exists almost surely.

Proof. The proof goes along the lines of the proof of the corresponding result in [CD05].
First, we show that the limit V (σ ) in (2.44) exists and V (σ ) < ∞. Let us set b(m) =
R(um), for m = 0, 1, 2, . . ., and note that by Corollary 2.3 we have

E [(b(1) − b(0))+] < ∞. (2.45)

Then, as in the proof of Lemma 5.1 in [CD05] we can use the subadditive ergodic
theorem to deduce that there exists a constant c(σ ) ∈ [−∞,∞), such that

lim
m→+∞

b(m)

m
= c(σ ). (2.46)

Using Lemma 2.2, we get (see Lemma 5.3 in [CD05] for the same argument) that for
all m = 1, 2, . . .

P

(
sup

0≤s≤1
{b(s + m) − b(m), b(m + 1) − b(s + m)} >

√
m

)

≤ C(σ ) exp(−m/50). (2.47)

Then by the Borel-Cantelli lemma we get that in fact,

lim
t→+∞

b(t)

t
= c(σ ). (2.48)

and thus V (σ ) = c(σ ) < ∞.
To show that V (σ ) > −∞, one needs to consider equation for 1−ut (−x) and repeat

the above argument. ��

3. The Interface in the Voter Model

Girsanov’s theorem connecting solutions to the rescaled equation (1.14) and to the voter
model (1.15) not only allows us to deduce uniqueness in the law for the solutions to the
former problem but also obtain the asymptotics on their front speed in Theorem 1.2.
As a preliminary step, in this section, we make some observations about the latter. To
begin, we rephrase Lemma 4.2(a) of [Tri95], putting it into a form more directly useful
for our purposes. Let wt (x) be the solution to (1.15) with an initial condition w0(x)

satisfying (1.12). Recall that we denote by Pw the measure induced on the canonical
path spaceC([0,+∞); C(R)) byw, and byEw wedenote the corresponding expectation.
Recall that two random processes Xt and Yt are said to be coupled if they can be defined
on the same probability space.We assume throughout the rest of the paper that f satisfies
assumption (1.16).
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Lemma 3.1. Given ε > 0, there exists Tε > 0 such that for all T ≥ Tε there is a
coupling of processes (wt , Bt : t ≥ 0) where B a standard Brownian motion started at
0, such that

Pw

(
sup

0≤t≤T

∣∣R(wt ) − Bt
∣∣ ∨ ∣∣L(wt ) − Bt

∣∣ ≥ T 1/2ε
)

≤ ε.

The following lemma shows that another good measure of the location of the interface
is

Mt :=
∫ t

0

∫

R

√
ws(x)(1 − ws(x))W (dx, ds). (3.1)

Lemma 3.2. Let B be the Brownian motion from Lemma 3.1. Given ε > 0, there exists
Tε > 0 such that for all T ≥ Tε we have

Pw

(
sup

0≤t≤T

∣∣Mt − Bt
∣∣ ≥ 4T 1/2ε

)
≤ ε.

Proof. Let us define

�(wt ) :=
∫ 0

−∞
[
wt (x) − 1

]
dx +

∫ ∞

0
wt (x)dx . (3.2)

Clearly, we have

|�(wt )| ≤ R(wt )+ + L(wt )−,

and thus �(wt ) is almost surely a finite functional of wt by Theorem 1.1. As wt (x) = 1
for x < L(wt ) and wt (x) = 0 for x > R(wt ), we have

�(wt ) =
∫ 0

L(wt )∧0
[wt (x) − 1]dx +

∫ R(wt )∨0

0
wt (x)dx,

thus

L(wt ) =
∫ 0

L(wt )∧0
[−1]dx +

∫ L(wt )∨0

0
dx

≤
∫ 0

L(wt )∧0
[wt (x) − 1]dx +

∫ R(wt )∨0

0
wt (x)dx = �(wt ),

and likewise

R(wt ) =
∫ 0

R(wt )∧0
[−1]dx +

∫ R(wt )∨0

0
dx

≥
∫ 0

L(wt )∧0
[wt (x) − 1]dx +

∫ R(wt )∨0

0
wt (x)dx = �(wt ).

We conclude that

L(wt )) ≤ �(wt ) ≤ R(wt ). (3.3)
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Next, let θ(x) be a smooth monotonically decreasing function such that θ(x) = 1 for
x < −2 and θ(x) = 0 for x > −1, and set θn(x) = θ(nx). Then for

ζn(x) := wt (x) − θn(x)

we have

�(wt ) = lim
n→∞ �n(t), �n(t) =

∫ ∞

−∞
ζn(x)dx .

The function ζn(t, x) satisfies

∂tζn = 1

2
∂2x ζn +

1

2
∂2x θn +

√
w(1 − w)Ẇ (t, x). (3.4)

Integrating in t and x gives

�n(wt ) = �n(w0) +
∫ t

0

∫

R

√
ws(y)(1 − ws(y))W (dyds). (3.5)

Passing to the limit n → +∞, we arrive at

�(wt ) = �(w0) +
∫ t

0

∫

R

√
ws(y)(1 − ws(y))W (dyds) = �(w0) + Mt . (3.6)

As �(w0) < +∞ and is not random, the conclusion of the present lemma follows
from (3.3) and Lemma 3.1 by taking Tε sufficiently large. ��

For any metric space E, we denote by DE the space of càdlàg functions [0,∞) → E
equipped with the Skorohod topology. Define the rescaled functionals

La
t = 1

a
L(wa2t ), Ra

t = 1

a
R(wa2t ), Ma

t = 1

a
Ma2t .

As a consequence of Lemmas 3.1 and 3.2, we conclude that

(La, Ra, Ma) ⇒ (B, B, B) in DR3 , as a → ∞,

where B is a standard Brownian motion starting at 0 and⇒ denotes convergence in law.
As in the application of the Girsanov theorem in the proof of Theorem 1.1, we will

make use of the functionals

A f
t :=

∫ t

0

∫

R

f (ws(x))2

ws(x)(1 − ws(x))
dx ds, (3.7)

M f
t :=

∫ t

0

∫

R

f (ws(x))√
ws(x)(1 − ws(x))

W (dx, ds), (3.8)

and their rescaled versions

M f,a
t = 1

a
Ma2t , A f,a

t = 1

a2 A f
a2t

, a > 0.

The difference in the scaling of these two functionals comes from the fact that Mt is,
roughly, a Brownian motion on large time scales, and At is deterministic to the leading
order on large time scales. Note that both At and Mt are almost surely finite if f satisfies
assumption (1.11), since the interface of wt has a finite length almost surely. However,
we will need the stronger assumption (1.16) in Lemma 3.5 below.

Let us now recall Theorem 1 of [MT97].
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Theorem 3.3. ([MT97]) There exists a unique stationary measure μ on CI for (1.15).
Furthermore, for each u0 ∈ CI , the law of wt (x + Lt ) converges in total variation to μ

as t → ∞. In addition, the moment of the width of the interface Ew,st [(R(w)− L(w))p]
is finite if 0 ≤ p < 1, and infinite for p ≥ 1.

The following estimate is a consequence of the second part of Theorem 3.3.

Lemma 3.4. For any η ∈ (0, 1], we have

Ew,st

[∫

R

(w(x)(1 − w(x)))η dx

]
< ∞. (3.9)

Note that this result fails at η = 0: according to Theorem 3.3, the length of the
interface has an infinite expectation under the stationary distribution of w.

Proof. For η = 1 the result is known (see Lemma 2.1(a) in [Tri95]), so we assume that
η ∈ (0, 1). Let � be the length of the interface of w under the stationary distribution. By
applying Hölder’s and Young’s inequalities we get

Ew,st

[ ∫

R

(w(x)(1 − w(x)))η dx
]

≤ Ew,st

[( ∫

R

(w(x)(1 − w(x))) dx
)η

�1−η
]

≤ CαEw,st

[( ∫

R

(w(x)(1 − w(x))) dx
)αη]

+ CαEw,st

[
�

α(1−η)
α−1

]
,

for any α > 1. We take α = 2/η and get

Ew,st

[ ∫

R

(w(x)(1 − w(x)))η dx
]

≤ CαEw,st

[( ∫

R

(w(x)(1 − w(x))) dx
)2]

+ CαEw,st
[
�γ

]
,

with γ = (1 − η)/(1 − η/2). Since γ < 1, by Theorem 3.3 we get Ew,st [�γ ] < ∞. In
addition, Lemma 2.1(d) in [Tri95] implies that

Ew,st

[( ∫

R

(w(x)(1 − w(x))) dx
)2]

< ∞,

and we are done. ��
Lemma 3.5. Let f satisfy assumption (1.16), then we have convergence in law

(M f,a, A f,a) ⇒ {B f
t , Dt), t ≥ 0}, (3.10)

in DR2 , as a → ∞. Here {B f
t , t ≥ 0} is a Brownian motion with variance D

D = Ew,st

[∫

R

f (w(x))2

w(x)(1 − w(x))
dx

]
< ∞. (3.11)

Note that D < +∞ because of Lemma 3.4 and assumption (1.16) on f .
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Proof. Since w has a unique stationary distribution on the space CI of continuous func-
tions h such that −∞ < L(h) < R(h) < +∞, by the ergodic theorem we have

lim
a→∞ a−2A f

a2t
= tEw,st

[∫

R

f (w(x))2

w(1 − w(x))
dx

]
= Dt, (3.12)

uniformly on compact sets in t . Recall that Ew,st denotes the expectation with respect
to the stationary measure of w on CI . Since

M f,a
t = B̃

A f,a
t

, t ≥ 0, (3.13)

for some standard Brownian motion B̃, it follows from (3.12) that

M f,a· ⇒ {B f
t , t ≥ 0} := {B̃Dt , t ≥ 0}, (3.14)

where B̃Dt is a Brownian motion with variance D. ��
Define

At :=
∫ t

0

∫

R

ws(x)(1 − ws(x)) dx ds, (3.15)

and its rescaled version

Aa
t = 1

a2 Aa2t , a > 0.

Corollary 3.6. We have convergence in law

(La, Ra, Ma, Aa, M f,a, A f,a) ⇒ {(Bt , Bt , Bt , t, B f
t , Dt), t ≥ 0}, (3.16)

in D
R5 , as a → ∞. Here, Bt is a standard Brownian motion, B f

t is a Brownian motion
with variance D and their correlation is given by

〈B·, B f· 〉t = c f t, t ≥ 0, (3.17)

with c f as in (1.18).

Proof. It only remains to check the correlation:

〈M f,a· , Ma· 〉t = a−2
∫ a2t

0

∫

R

f (ws(x)) dx ds ⇒ tEw,st

[ ∫

R

f (w(x)) dx
]
=c f t, t≥0,

as a → ∞, exactly as in (3.12). ��

4. The Proof of Theorem 1.2: The Upper Bound on the Speed for c f ≥ 0

In this section, we prove the upper bound on the front speed in Theorem 1.2 for non-
negative c f .

Proposition 4.1. Suppose that u0 satisfies (1.12) and f satisfies (1.16), and that c f ≥ 0,
then

lim sup
σ→∞

σ 2V (σ ) ≤ c f .
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4.1. Rescaling. First, we show via a rescaling how to pass from (1.9) to (1.14). Consider
the rescaled function

vt (x) = uσ−4t (σ
−2x).

To get an equation for vt (x), we use the mild form (2.1) and the relations

Ga2t (bx) = b−1G(a2t/b2)(x)

W a,b(dyds) := a−1b−1/2W (bdy, a2ds)
D= W (dyds)

ab1/2W a,b(dyds) = W (bdy, a2ds), (4.1)

that hold for any a, b > 0. Here,
D= means equality in distribution. From (2.1), for any

a, b > 0, we get

u(a2t)(bx) =
∫

R

Ga2t (bx − y)u0(y)dy +
∫ a2t

0

∫

R

Ga2t−s(bx − y) f (us(y))dyds

+ σ

∫ a2t

0

∫

R

Ga2t−s(bx − y)
√

us(y)(1 − us(y))W (dyds) =: I + I I + I I I.

We make the change of variables s = a2s′, y = by′ and use (4.1). For the term I we
have

I = b
∫

R

Ga2t (bx − by′)u0(by′)dy′ =
∫

R

Ga2t/b2(x − y′)u0(by′)dy′. (4.2)

The second term can be rewritten as

I I =
∫ a2t

0

∫

R

Ga2t−s(bx − y) f (us(y))dyds

=
∫ t

0

∫

R

Ga2t−a2s′(bx − by′) f (ua2s′(by′))ba2dy′ds′

= a2
∫ t

0

∫

R

Ga2(t−s′)/b2(x − y′) f (ua2s′(by′))dy′ds′, (4.3)

and changing variables, the last term is

I I I = σ

∫ a2t

0

∫

R

Ga2t−s(bx − y)
√

us(y)(1 − us(y))W (dyds)

= σ

∫ t

0

∫

R

Ga2t−a2s′(bx − by′)
√

ua2s′(by′)(1 − ua2s′(by′))W (bdy′, a2ds′)

= σ

∫ t

0

∫

R

b−1Ga2(t−s′)/b2(x−y′)
√

ua2s′(by′)(1 − ua2s′(by′))ab1/2W a,b(dy′ds′).

= ab−1/2σ

∫ t

0

∫

R

Ga2(t−s′)/b2(x − y′)
√

ua2s′(by′)(1 − ua2s′(by′))W a,b(dy′ds′).

(4.4)
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We take

a = σ−2, b = σ−2,

so that ab−1/2σ = 1 and a2/b2 = 1. Defining vt (x) := u(a2t)(bx) and putting together
the above terms, we see that vt (x) satisfies

vt (x) =
∫

R

Gt (x − y)u0(y)dy + σ−4
∫ t

0

∫

R

Gt−s(x − y) f (vs(y))dyds

+
∫ t

0

∫

R

Gt−s(x − y)
√

vs(y)(1 − vs(y))W a,b(dyds). (4.5)

Since the solution v to (4.5) is unique in law, and since W and W a,b are equal in law,
we see that v is the unique weak solution to (1.14) with the initial condition v0(x) =
u0(σ

−2x). Thus in general our scaling changes the initial data. However, if u0(x) =
1(x ≤ 0), then clearly v0(x) = u0(x).

Now it is clear that the conclusion of Proposition 4.1 would follow if we show that

lim sup
σ→∞

σ 4V (v)(σ ) ≤ c f , (4.6)

where

V (v)(σ ) = lim
t→+∞

R(vt )

t
.

Let us also note that the rescaled Girsanov functional (2.4) takes the form

Zt = σ−4
∫ t

0

∫

R

f (ws(x))√
ws(x)(1 − ws(x))

W (dx, ds) − 1

2
σ−8

∫ t

0

∫

R

f (ws(x))2

ws((x)1 − ws(x))
dxds

= σ−4M f
t − 1

2
σ−8A f

t . (4.7)

4.2. Time steps for the upper bound. Note that for the upper bound onV (σ ) andV (v)(σ ),
we may assume without loss of generality that the initial condition u0(x) = v0(x) =
1(x ≤ 0), by the comparison principle (seeRemark 2.1) and translation invariance in law.
We will define a sequence of stopping times 0 = τ0 ≤ τ1 ≤ · · · , and a sequence v

(m)
t (x)

of solutions to (1.14) for t ≥ τm , with the initial conditions v
(m)
τm (x) ≥ vτm (x) at t = τm .

The comparison principle (see again Remark 2.1) will imply that v
(m)
t (x) ≥ vt (x)

for t ≥ τm . Moreover, we will choose v
(m)
t so that for eachm = 0, 1, 2, . . . the following

conditions hold almost surely:

vt (x) ≤ v
(m)
t (x), for t ≥ τm, x ∈ R (4.8)

R
(
v(m)
τm

) = mλ1σ
4, (4.9)

v(m−1)
τm

(x) ≤ v(m)
τm

(x), for x ∈ R, (4.10)
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with the constant λ1 to be specified later. It follows from (4.8), that for allm = 0, 1, 2, . . .
and for all t ≥ τm , we have

R(vt ) ≤ R
(
v

(m)
t

)
, (4.11)

almost surely. Thus, to bound R(vt ) from above, it suffices to bound R(v
(m)
t ).

Let us inductively construct τk and v
(k)
t (x) for k = 0, 1, . . . , with the convention

v
(−1)
t (x) = 0. Fix T0 > 0 and N ∈ N, to be specified later, and start with τ0 = 0 and

v
(0)
t (x) = vt (x), so that (4.8), (4.9), and (4.10) hold for m = 0 automatically. Suppose
that we have defined τm and v

(m)
t for t ≥ τm and 0 ≤ m ≤ k, and assume that (4.8),

(4.9) and (4.10) hold for 0 ≤ m ≤ k. Given v
(k)
t (x), defined for t ≥ τk and x ∈ R, we

set

M f,v,k
t : =

∫ t

τk

∫

R

f
(
v

(k)
s (x)

)

√
v

(k)
s (x)(1 − v

(k)
s (x))

W (dx, ds), (4.12)

and

τk+1 = inf
{

t ∈ [τk, τk + T0σ
8] : R

(
v

(k)
t

) = (k + 1)λ1σ
4 or

1

σ 4 M f,v,k
t ≥ N

}
,

(4.13)

with τk+1 = τk + T0σ 8 if the above set is empty. Then, we define v
(k+1)
t (x) for t ≥ τk+1,

and x ∈ R as the solution to (1.14) with the initial condition

v(k+1)
τk+1

(x) = 1(x ≤ (k + 1)λ1σ
4).

Note that for m = k + 1, (4.8) and (4.10) hold by the comparison principle (see Re-
mark 2.1). (4.9) holds by construction.

For convenience, we write

�τm = τm+1 − τm

and note that {�τm} are i.i.d. random variables for m ≥ 0.

4.3. A good event and its consequences (for the upper bound). To get an upper bound
on V (v)

f (σ ), it suffices to get an appropriate lower bound on τm as m → ∞. Let us define
the event

Gm = {�τm = T0σ
8}, m ≥ 0. (4.14)

Proposition 4.1 is a consequence of the following lemma.

Lemma 4.2. Let ε ∈ (0,min(10−1, c−2
f )) be arbitrary and set δε = ε/10. There exist

T̄ε, Nε, and σε such that for T0 = T̄ε, N = Nε and any σ ≥ σε, m ≥ 0, and

λ1 = (c f + δε)T̄ε, (4.15)

we have

λ2 := Pv

(
Gm

) ≥ 1 − δε. (4.16)
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Note that λ2 does not depend on m since �τm are i.i.d for m ≥ 1. We will prove
Lemma 4.2 in the next section. Now we are ready to give

Proof of Proposition 4.1. Given ε ∈ (0, 1/10), let T̄ε, Nε and σε be as in Lemma 4.2,
and take an arbitrary σ ≥ σε. Then by Lemma 4.2, we have

λ2 ≥ 1 − δε, (4.17)

and by (4.16) and the definition of G(m) with T0 = T̄ε, we get

Ev[�τm] ≥ T̄ελ2σ
8.

The strong law of large numbers implies that we have, Pv almost surely,

lim
m→∞

τm

m
≥ T̄ελ2σ

8. (4.18)

Since R(v
(m)
τm ) = mλ1σ

4, we have that, also Pv almost surely,

lim sup
m→∞

R(v
(m)
τm )

τm
= lim sup

m→∞
mλ1σ

4

τm
≤ λ1σ

4

T̄ελ2σ 8
= λ1

T̄ελ2
σ−4. (4.19)

Furthermore, since by definition, for τm ≤ t ≤ τm+1 we have

R
(
v

(m)
t

) ≤ (m + 1)λ1σ
4.

Hence, we get that, Pv almost surely, we have, using (4.17) and (4.18),

V (v)(σ ) ≤ lim sup
m→∞

sup
τm≤t≤τm+1

R
(
v

(m)
t

)

t
≤ lim sup

m→∞
λ1(m + 1)σ 4

τm

≤ λ1σ
4

λ2T̄εσ 8
≤ (c f + δε)

(1 − δε)
σ−4 ≤ (c f +

√
ε)σ−4. (4.20)

Note that (4.20) holds for any σ ≥ σε, and, since ε is arbitrary small, we are done. This
finishes the proof of Proposition 4.1. ��

4.4. Proof of Lemma 4.2. As Gm are i.i.d., it suffices to set m = 0.We fix ε ∈ (0, 1/10),
let δε = ε/10, take T̄ε sufficiently large, so that

2 exp
(

− δ2ε T̄ε

2

)
≤ ε

100
, (4.21)

set λ1 = (c f + δε)T̄ε, and let Nε > (2 + δε)T̄ε D be sufficiently large (its value will be
determined later in the proof). We define the stopping time

ξε = inf{t ≥ 0 : M f,σ 4

t ≥ Nε}. (4.22)

Then by Girsanov’s theorem, we have, with Zt as in (4.7):

Pv(G
c
0) = Ew

[
exp

(
Zσ 8(T̄ε∧ξε)

)
1Gc

0

]
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= Ew

[
exp

(
σ−4

(
M f

σ 8(T̄ε∧ξε)
− 1

2
σ−4 A f

σ 8(T̄ε∧ξε)

))

× 1
(
R(wt ) ≥ λ1σ

4 for some t ≤ σ 8T̄ε or σ−4M f
t ≥ Nε for some t ≤ σ 8T̄ε

)]

= Ew

[
exp

(
M f,σ 4

T̄ε∧ξε − 1

2
A f,σ 4

T̄ε∧ξε

)
× 1

(
Rσ 4

t ≥ (c f + δε)T̄ε for some t ≤ T̄ε or ξε ≤ T̄ε

)]

≤ Ew

[
exp

(
M f,σ 4

T̄ε∧ξε − 1

2
A f,σ 4

T̄ε∧ξε

)
1

(
ξε ≤ T̄ε

) ]

+ Ew

[
exp

(
Mσ 4

T̄ε∧ξ N ,σ − 1

2
A f,σ 4

T̄ε∧ξ N ,σ

)

× 1
(

Rσ 4

t ≥ (c f + δε)T̄ε for some t ≤ T̄ε

)
1

(
ξε > Tε

) ]

=: I ε
1 + I ε

2 .

We first bound I ε
1 :

I ε
1 = Ew

[
exp

(
M f,σ 4

ξε∧T̄ε
− 1

2
A f,σ 4

ξε∧T̄ε

)
1
(
ξε ≤ T̄ε

)] ≤ eNεPw

(
sup

0≤t≤T̄ε

M f,σ 4

t ≥ Nε

)
.

(4.23)

Let PB and P
B f

be the measures induced on the canonical path space by the standard
Brownian motion B and by the Brownian motion with variance D, respectively, and EB

and E
B f

be the corresponding expectations. Then by Lemma 3.5 we have

lim sup
σ→∞

I ε
1 ≤ eNεP

B f
(

sup
0≤t≤T̄ε

B f
t ≥ Nε

)
≤ eNε2PB

(√
DBT̄ε

≥ Nε

)
≤ 2eNε e−N2

ε /(2T̄ε D),

(4.24)

where the second inequality follows by the reflection principle and the last inequality
follows by a simple bound on Gaussian tail probabilities. By choosing Nε sufficiently
large, we get

lim sup
σ→∞

I ε
1 ≤ ε/100.

Thus, there exists σε, such that for all σ ≥ σε we have

I ε
1 ≤ ε/50. (4.25)

Next, we bound I ε
2 . Let P

B f ,B be the measure induced on the canonical path space by
the zero-mean Brownian motions B f , B, such that B f has variance D, B has variance 1,
and the covariance of B f and B is c f , and let EB f ,B be the corresponding expectation.
We use again Corollary 3.6, properties of weak convergence, the dominated convergence
theorem (we can switch to the Skorohod space if needed) to get

lim sup
σ→∞

I ε
2 (4.26)

= lim sup
σ→∞

Ew

[
exp

(
M f,σ 4

T̄ε
− 1

2
A f,σ 4

T̄ε

)
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× 1( sup
0≤t≤T̄ε

Rσ 4

t ≥ (c f + δε)T̄ε)1( sup
0≤t≤T̄ε

M f,σ 4

t < Nε)
]

≤ E
B f ,B

[
e

B f
T̄ε

− 1
2 DT̄ε)1

(
sup

0≤t≤T̄ε

Bt ≥ (c f + δε)T̄ε

)
1
(

sup
0≤t≤T̄ε

B f
t ≤ Nε

)]

≤ E
B f ,B

[
e

B f
T̄ε

− 1
2 DT̄ε1( sup

0≤t≤T̄ε

Bt ≥ (c f + δε)T̄ε)
]

= P
B
(

sup
0≤t≤T̄ε

(Bt + c f t) ≥ (c f + δε)T̄ε

)
. (4.27)

In the last equality we used the Girsanov theorem, since under the exp(B f
T̄ε

− 1
2 DT̄ε)

change of measure, B is a Brownian motion with the drift 2c f (recall that the covariance
of B f and B is c f ). Now it is easy to get

P
B
(

sup
0≤t≤T̄ε

(Bt + c f t) ≥ (c f + δε)T̄ε

)
≤ P

B
(

sup
0≤t≤T̄ε

Bt ≥ δε T̄ε

)
≤ 2e−δ2ε T̄ε/2 ≤ ε/100,

(4.28)

where in the second inequality we again used reflection principle and a bound on Gaus-
sian tail, and the last inequality follows from (4.21). Hence, there is σε such that for
all σ ≥ σε, we have

I ε
2 ≤ ε/50.

Combining the above estimates, we get that for σ ≥ σε we have

Pv(G
c
0) ≤ 2ε/50 ≤ ε/10, (4.29)

so that

Pv(G0) ≥ 1 − ε/10. (4.30)

This finishes the proof of Lemma 4.2. ��

5. Proof of Theorem 1.2: The Lower Bound on the Speed for c f > 0

We now prove the lower bound on V (σ ) for positive c f .

Proposition 5.1. Suppose that u0 satisfies (1.12), f satisfies (1.16), and c f > 0, then

lim inf
σ→∞ σ 2V (σ ) ≥ c f .

The proof of Proposition 5.1 follows a similar strategy to that of Proposition 4.1. As
in the proof of the upper bound, using the comparison principle (see Remark 2.1) and
shift invariance in law, we may assume without loss of generality that u0(x) = v0(x) =
1(x ≤ 0).
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5.1. Time steps for the lower bound. We start with the definition of the time steps. The
main difference with the proof of the upper bound is that we will sometimes update
“backwards”, and that the “good events” will be when the stopping time happens before
a fixed time length rather than when the stopping times happen at a deterministic time
steps, as in (4.14) in the proof of the upper bound. We will define stopping times 0 =
τ0 ≤ τ1 ≤ · · · , and a sequence v

(m)
t (x) of random processes, which will be solutions

to (1.14), for t ≥ τm , such that for each m = 0, 1, 2, . . . the following conditions will
hold almost surely:

vt (x) ≥ v
(m)
t (x), for t ≥ τm, x ∈ R (5.1)

v(m−1)
τm

(x) ≥ v(m)
τm

(x), for x ∈ R. (5.2)

Given (5.1) and (5.2), it would follow almost surely for all m = 0, 1, 2, . . . and for all
t ≥ τm , that

L(vt ) ≥ L(v
(m)
t ). (5.3)

Thus, to bound L(vt ) from below, it would suffice to bound L(v
(m)
t ).

We now describe the induction, starting with τ0 = 0, and v
(0)
t (x) = vt (x), so that

(5.1) holds for m = 0. Also define v
(−1)
t (x) = 1, so that (5.2) holds. Let us fix some

constants λ̃1, T̃0, N > 0, to be specified later. Suppose that we have defined τm for
0 ≤ m ≤ k and v

(m)
t for t ≥ τm and 0 ≤ m ≤ k, and that (5.1) and (5.2) hold for

0 ≤ m ≤ k. To define τk+1, we consider, as in (4.12),

M f,v,k
t : =

∫ t

τk

∫

R

f (v
(k)
s (x))

√
v

(k)
s (x)(1 − v

(k)
s (x))

W (dx, ds), (5.4)

and set

τk+1 = inf
{

t ∈ [τk, τk + T̃0σ
8] : |L(

v
(k)
t

) − L
(
v(k)
τk

)| ≥ λ̃1σ
4 or

1

σ 4 M f,v,k
t ≥ N

}

(5.5)

with the convention τk+1 = τk + T̃0σ 8 if the above set is empty.
We then let v

(k+1)
t (x) for t ≥ τk+1, x ∈ R be the solution to (1.14) with the initial

condition

v(k+1)
τk+1

(x) =
{
1(x ≤ L(v

(k)
τk+1)), if τk+1 < τk + T̃0σ 8,

1(x ≤ L(v
(k)
τk ) − λ̃1σ

4), if τk+1 = τk + T̃0σ 8.

Then for m = k + 1, the comparison principle (see Remark 2.1) gives (5.1), and (5.2) is
true by definition.

As before, we write

�τk = τk+1 − τk

and

�Lk = L
(
v(k)
τk+1

) − L
(
v(k)
τk

)
(5.6)

Note that
{(�τk,�Lk)}

are i.i.d. random variables.
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5.2. A good event and its consequences for lower bound. We define the “good” events

G̃(m)
0 = {�τm < T̃0σ

8}.
and

G̃(1,m)
0 =

{
�τm < T̃0σ

8, �Lm = λ̃1σ
4, sup

τm≤t≤τm+1

1

σ 4 M f,v,m
t < N

}
,

G̃(2,m)
0 =

{
�τm < T̃0σ

8, �Lm = −λ̃1σ
4, sup

τm≤t≤τm+1

1

σ 4 M f,v,m
t < N

}
,

G̃(3,m)
0 =

{
�τm < T̃0σ

8, sup
τm≤t≤τm+1

1

σ 4 M f,v,m
t = N

}
.

To get a lower bound on V (v)(σ ) we need a lower bound on �Lm as m → ∞. To this
end the following lemma will be helpful.

Lemma 5.2. Let ε ∈ (0,min(1/10, c−2
f , c f /2)) be arbitrary and δε = ε/10. There exist

T ∗
ε , Nε and σε so that for all σ ≥ σε, m ≥ 0, T̃0 = T ∗

ε , N = Nε and

λ̃1 = (c f − δε)T
∗
ε , (5.7)

we have

Pv

(
G̃(1,m)

0

) ≥ 1 − ε/50, (5.8)

Pv

(
G̃(2,m)

0

) ≤ ε/20, (5.9)

Pv

(
G̃(3,m)

0

) ≤ ε/50. (5.10)

We postpone the proof of this lemma and first give

Proof of Proposition 5.1. Let us take ε ∈ (0,min(10−1, c−2
f , c f /2)), and choose T ∗

ε ,
Nε and σε as in Lemma 5.2, and consider an arbitrary σ ≥ σε. Lemma 5.2 implies that

Pv(G̃
(1,m)
0 ) − Pv(G̃

(2,m)
0 ) − Pv(G̃

(3,m)
0 ) − (

1 − Pv(G̃
(m)
0 )

) ≥ 1 − ε/5, (5.11)

for all σ ≥ σε, so that for all m ≥ 0 we have

Ev[�Lm] ≥ λ̃1σ
4
(
Pv(G̃

(1,m)
0 ) − Pv(G̃

(2,m)
0 ) − Pv(G̃

(3,m)
0 ) − (

1 − Pv(G̃
(m)
0 )

))

≥ λ̃1σ
4(1 − ε/5). (5.12)

Then using the strong law of large numbers, we have that Pv almost surely,

lim
m→∞

L(v
(m)
τm )

m
≥ λ̃1(1 − ε/5)σ 4,

for all σ ≥ σε. Since τm ≤ mT ∗
ε σ 8, we have that Pv almost surely,

lim inf
m→∞

L(v
(m)
τm )

τm
= lim inf

m→∞
L(v

(m)
τm )

m

m

τm
≥ λ̃1(1 − ε/5)σ 4

T ∗
ε σ 8 = λ̃1(1 − ε/5)

T ∗
ε

σ−4.

(5.13)
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Furthermore, since for τm ≤ t ≤ τm+1 we have

L
(
v

(m)
t

) ≥ L
(
v(m)
τm

) − λ̃1σ
4,

and �τm ≤ T ∗
ε σ 8, it follows that, Pv almost surely and since ε < 10−1,

V (v)(σ ) ≥ lim inf
m→∞ inf

τm≤t≤τm+1

L
(
v

(m)
t

)

t
≥ lim inf

m→∞
L
(
v

(m)
τm

) − λ̃1σ
4

τm + T ∗
ε σ 8 ≥ λ̃1(1 − ε/5)

T ∗
ε

σ−4

= (c f − ε/10)T ∗
ε (1 − ε/5)

T ∗
ε

σ−4 ≥ (
c f − ε

5
(c f + 1)

)
σ−4

≥ (c f − √
ε)σ−4.

In the second inequality above we used (5.13) and the fact that τm → ∞, Pv-a.s. since
�τm ≥ 0, not identically zero and i.i.d. Since ε was chosen to be arbitrary small we are
done. ��

5.3. Proof of Lemma 5.2. As (�τm ,�Lm) are i.i.d., the events G(m)
0 are also i.i.d., hence

we only need to prove (5.8)–(5.10) for m = 0 and write

G̃0 = G̃(0)
0 , G̃(i)

0 = G̃(i,0)
0 , i = 1, 2, 3.

Fix ε ∈ (0, 10−1), let δε = ε/10, and let T ∗
ε be sufficiently large so that

P
B
(

B1 ≥ −δε

√
T , inf

0≤t≤1
Bt > −(c f − δε)

√
T

)
≥ 1 − ε/100, ∀T ≥ T ∗

ε . (5.14)

We consider Nε > (2 + δε)T ∗
ε D sufficiently large, with a precise value to be specified

later, and define the stopping time

ξε = inf{t ≥ 0 : M f,σ 4

t ≥ Nε}.
Then by Girsanov’s theorem, and since

{
sup

0≤t≤�τ0

1

σ 4 M f
t < Nε

}
⊃

{
sup

0≤t≤T ∗
ε σ 8

1

σ 4 M f
t < Nε

}
= {ξε > T ∗

ε },

we have

Pv

(
G̃(1)

0

) = Ew

[
exp

(
Zσ 8(T ∗

ε ∧ξε)

)
1

G̃(1)
0

]

≥ Ew

[
exp

(
σ−4(M f

σ 8(T ∗
ε ∧ξε)

− 1

2
σ−4A f

σ 8(T ∗
ε ∧ξε)

)

)

× 1
(

L(w(t)) ≥ λ̃1σ
4 for some 0 ≤ t ≤ σ 8(T ∗

ε ∧ ξε)
)

× 1
(

L(w(t)) > −λ̃1σ
4 for all 0 ≤ t ≤ σ 8(T ∗

ε ∧ ξε)
)

×1
(

1

σ 4 M f
t < Nε for all 0 ≤ t ≤ σ 8(T ∗

ε ∧ ξε)

)]
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≥ Ew

[
exp

(
M f,σ 4

T ∗
ε

− 1

2
A f,σ 4

T ∗
ε

)
1
(

Lσ 4

t > λ̃1 for some 0 ≤ t ≤ T ∗
ε

)

× 1
(

Lσ 4

t > −λ̃1 for all 0 ≤ t ≤ T ∗
ε

)
× 1

(
sup

0≤t≤T ∗
ε

M f,σ 4
< Nε

)]
=: J ε

1 .

(5.15)

Next, passing to the limit σ → +∞, we obtain, using the weak convergence in Corol-
lary 3.6:

lim inf
σ→∞ J ε

1 = lim inf
σ→∞ Ew

[
exp

(
M f,σ 4

T ∗
ε

− 1

2
A f,σ 4

T ∗
ε

)

× 1
(

Lσ 4

t > (c f − δε)T
∗
ε for some 0 ≤ t ≤ T ∗

ε

)

× 1
(

Lσ 4

t > −(c f − δε)T
∗
ε for all 0 ≤ t ≤ T ∗

ε

)
× 1

(
sup

0≤t≤T ∗
ε

M f,σ 4
< Nε

)]

≥ E
B f ,B

[
e

B f
T ∗
ε

− 1
2 DT ∗

ε 1
(

sup
0≤t≤T ∗

ε

Bt > (c f − δε)T
∗
ε

)
1
(

inf
0≤t≤T ∗

ε

Bt > −(c f − δε)T
∗
ε

)

× 1
(

sup
0≤t≤T ∗

ε

B f
t < Nε

)]
. (5.16)

We rewrite this, using Girsanov’s theorem for correlated Brownian motions with a drift,
as

lim inf
σ→∞ J ε

1 ≥ E
B f ,B

[
e

B f
T ∗
ε

− 1
2 DT ∗

ε 1
(

sup
0≤t≤T ∗

ε

Bt > (c f − δε)T
∗
ε

)

× 1
(

inf
0≤t≤T ∗

ε

Bt > −(c f − δε)T
∗
ε

)]

− E
B f ,B

[
e

B f
T ∗
ε

− 1
2 DT ∗

ε 1
(

sup
0≤t≤T ∗

ε

B f
t ≥ Nε

)]

= P
B
(

sup
0≤t≤T ∗

ε

(Bt + c f t) ≥ (c f − δε)T
∗
ε , inf

0≤t≤T ∗
ε

(Bt + c f t) > −(c f − δε)T
∗
ε

)

− P
B f

(
sup

0≤t≤T ∗
ε

B f
t + Dt ≥ Nε

)
. (5.17)

The first term in the right side can be bounded as

P
B
(

sup
0≤t≤T ∗

ε

(Bt + c f t) ≥ (c f − δε)T
∗
ε , inf

0≤t≤T ∗
ε

(Bt + c f t) > −(c f − δε)T
∗
ε

)

≥ P
B
(

BT ∗
ε
+ c f T ∗

ε ≥ (c f − δε)T
∗
ε , inf

0≤t≤T ∗
ε

Bt > −(c f − δε)T
∗
ε

)

= P
B
(

BT ∗
ε

≥ −δεT ∗
ε , inf

0≤t≤T ∗
ε

Bt > −(c f − δε)T
∗
ε

)

= P
B
(

B1 ≥ −δε

√
T ∗

ε , inf
0≤t≤1

Bt > −(c f − δε)
√

T ∗
ε

)
≥ 1 − ε/100, (5.18)
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where the last inequality follows by (5.14). The second term in the right side of (5.17)
can be bounded using the reflection principle for Brownian motion, bounds on tails of
Gaussian probabilities and by choosing Nε ≥ (2 + δε)T ∗

ε D sufficiently large, so that

P
B f

(
sup

0≤t≤T ∗
ε

B f
t + Dt ≥ Nε

)
≤ P

B f
(

sup
0≤t≤T ∗

ε

B f
t ≥ Nε − DT ∗

ε

)

≤ 2PB
(√

DBT ∗
ε

≥ Nε − DT ∗
ε

)
≤ 2 exp

(
− (Nε − DT ∗

ε )2

2T ∗
ε D

)
≤ ε/100. (5.19)

Combining (5.15)–(5.19) we get that for Nε sufficiently large we have

Pv

(
G̃(1)

0

) ≥ 1 − ε/50, (5.20)

which is (5.8).
Next, we bound Pv(G̃

(2)
0 ). Again, using Girsanov’s theorem we write

Pv(G̃
(2)
0 ) = Ew

[
exp

(
Zσ 8(T ∗

ε ∧ξε)

)
1

G̃(2)
0

]

≤ Ew

[
exp

(
σ−4(M f

σ 8(T ∗
ε ∧ξε)

− 1

2
σ−4 A f

σ 8(T ∗
ε ∧ξε)

)

× 1
(

L(wt ) ≤ −λ̃1σ
4 for some 0 ≤ t ≤ σ 8(T ∗

ε ∧ ξε)
)

× 1
( 1

σ 4 M f
t < Nε for all 0 ≤ t ≤ σ 8T ∗

ε

)]

+ Ew

[
exp

(
σ−4(M f

σ 8(T ∗
ε ∧ξε)

− 1

2
σ−4 A f

σ 8(T ∗
ε ∧ξε)

)

)
× 1

(
sup

0≤t≤σ 8T ∗
ε

1

σ 4 M f
t ≥ Nε

)]

≤ Ew

[
exp

(
M f,σ 4

T ∗
ε

− 1

2
A f,σ 4

T ∗
ε

)
× 1

(
inf

0≤t≤T ∗
ε

Lσ 4

t ≤ −λ̃1

)
× 1

(
sup

0≤t≤T ∗
ε

M f,σ 4
< Nε

)]

+ Ew

[
exp

(
σ−4(M f

σ 8(T ∗
ε ∧ξε)

− 1

2
σ−4 A f

σ 8(T ∗
ε ∧ξε)

)

× 1
(

sup
0≤t≤σ 8T ∗

ε

1

σ 4 M f
t ≥ Nε

)]
=: J ε

2,1 + J ε
2,2 .

The term J ε
2,2 is exactly as I ε

1 in (4.23), thus, as in (4.25) we have, by choosing Nε

sufficiently large:

J ε
2,2 ≤ ε/50, (5.21)

for all σ sufficiently large. As for J ε
2,1, proceeding similarly to (5.16), we obtain

lim sup
σ→∞

J ε
2,1 ≤ E

B f ,B
[
e

B f
T ∗
ε

− 1
2 DT ∗

ε 1
(

inf
0≤t≤T ∗

ε

Bt ≤ −(c f − δε)T
∗
ε

)

× 1
(

sup
0≤t≤T ∗

ε

B f
t ≤ Nε

)]

≤ P
B
(

inf
0≤t≤T ∗

ε

(Bt + c f t) ≤ −(c f − δε)T
∗
ε

)

≤ P
B
(

inf
0≤t≤1

Bt ≤ −(c f − δε)
√

T ∗
ε

)
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≤ ε/100. (5.22)

Here, the last inequality follows from (5.14). Combining (5.21) and (5.22) we see that
for Nε sufficiently large we have

lim inf
σ→∞ J ε

2 ≤ 3ε/100, (5.23)

and (5.9) follows.
To bound G̃(3)

0 , once again by Girsanov’s theorem and recalling the definition of J ε
2,2,

we obtain

Pv(G̃
(3)
0 ) = Ew

[
exp

(
Zσ 8(T ∗

ε ∧ξε)

)
1

G̃(3)
0

]

≤ Ew

[
exp

(
σ−4(M f

σ 8(T ∗
ε ∧ξε)

− 1

2
σ−4A f

σ 8(T ∗
ε ∧ξε)

)

)

× 1
(

sup
0≤t≤T ∗

ε

M f,σ 4 ≥ Nε

)]
= J ε

2,2 ≤ ε/50,

where the last inequality follows from (5.21) for Nε sufficiently large and all σ suffi-
ciently large. Thus (5.10) follows, and the proof of Lemma 5.2 is complete. ��
Proof of Theorem 1.2. Now, we can complete the proof of Theorem 1.2. From Propo-
sitions 4.1 and 5.1 we obtain the conclusion of Theorem 1.2 for c f > 0. If c f < 0,
consider ũ(x) = 1− u(−x) instead of u(x). Then c f turns into −c f > 0 for ũ. Thus by
Propositions 4.1, 5.1 we get the upper and lower bounds on the speed of ũ which gives
us the lower and upper bounds respectively on the speed of u with c f < 0. This proves
Theorem 1.2 for c f < 0.

If c f = 0, the upper bound on the speed of u follows fromPropositions 4.1. Switching
again to ũ(x) = 1−u(−x), we get the upper bound on the speed of ũ by Propositions 4.1.
This, in turn, gives the lower bound on the speed of u. The proof is complete. ��
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