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Pair density wave and reentrant superconducting tendencies originating from valley polarization
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We investigate superconducting pairing tendencies of a two-dimensional electron fluid with both valley and
spin degrees of freedom, both without and in the presence of an in-plane magnetic field. We present suggestive
theoretical arguments that spontaneous valley polarization can lead to exotic singlet superconducting tendencies,
including pair density wave order at zero field and reentrant superconductivity at high field. We also find a
reduced magnetic response in the polarized valley, which allows a finite violation of the Pauli limit. These
results are obtained by a mean-field approach to a generalized t-J model on a triangular lattice and in the dilute
limit. Phenomenological similarities to results of recent magic-angle twisted trilayer graphene experiments are
noted.
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Valley polarization refers to an imbalanced electron oc-
cupancy in two or more separated low-energy regions in the
Brillouin zone (BZ). It can be achieved with various dynam-
ical techniques in valleytronics [1–4] for two-dimensional
materials. In recent studies of layered and especially moiré
flatband materials, spontaneous valley polarization has been
invoked in many circumstances both theoretically [5–15] and
in experiments [16–19]. A recent study of the strong-coupling
Holstein-Hubbard model on a triangular ladder has found
spontaneous valley polarization when the effective bandwidth
is sufficiently suppressed [20] by polaronic effects. Valley po-
larization, induced by either intrinsic correlations or extrinsic
environmental couplings, thus can be generically expected to
be more significant in systems with reduced kinetic energy.
Meanwhile, various superconducting (SC) phases are found to
be present in such systems [20–26]. In this study, we investi-
gate the implication of coexisting valley and spin polarization
on SC pairing instabilities.

In the context of BCS theory, the nature of the preferred
SC state is determined by both an effective pairing interaction
vertex and a generalized (bare) pairing susceptibility of the
normal state, χ0. Both of them can be thought of as matrices,
the indices of which represent the states of the Cooper pairs,
including their relative and center-of-mass momentum, �k and
�q. Assuming the relevant interaction that may lead to SC state
is structureless attractions within energy shells of width �0

around the Fermi surfaces (FS), the main determining factor
is then χ0, which only depends on the (possibly strongly
renormalized) band structure and �q of the Cooper pairs. The
largest χ0(�q) thus corresponds to the leading SC instability in
the system, the divergence of which is usually associated with
the nesting between two Fermi surfaces (FSs), i.e., ε(k̂) =
ε(�q − k̂) for k̂ on one of the FSs. Once its value exceeds the
inverse of the effective attraction strength, the pairing strength
|�| at zero temperature will be determined by the attraction
strength, the physical cutoff �0, and the densities of states of
the paired FSs.

In this Letter, we present a mean-field analysis of a simple
t-J-V model on a triangular lattice in the dilute limit, in which
both valley and spin degrees of freedom are active. We obtain
a rich phase diagram at zero in-plane magnetic field H , where
various orders compete as a function of V and J . Particularly,
we identify a broad valley-polarized phase regime. Inside a
subregion of this phase, we analyze the response behavior of
H and discuss the implication of the renormalized band struc-
ture on different pairing susceptibilities. The main findings
are summarized as follows: (1) At zero field H = 0, we find
comparable inter- and intravalley pairing susceptibilities that
diverge in the dilute limit, with the result that the preferred
singlet SC state can be intravalley paired with a nonzero
Cooper pair momentum, �q = ±2 �K , with �K being the wave
vector of the K point in the Brillouin zone; i.e., pair density
wave (PDW) phases [27] can be favored. (2) In the presence of
weakH , due to the delicate interplay among multiple ordering
tendencies in the system, the effective Landé g factor in the
polarized valley is reduced. This results in a weaker magnetic
response of the FSs and thus an enhanced upper critical field
for intravalley paired states at low field, i.e., a violation of the
nominal Pauli limit Hc(T = 0) ∼ |�(T = 0,H = 0)|/(gμB)
[28,29]. (3) At higher field, spin polarization order competes
with the valley polarization before it completely wins. There
inevitably exists a critical field strength at which a pair of
FSs with both spin and valley indices different are rebalanced,
resulting in a divergence of the singlet intervalley, �q = 0 pair-
ing susceptibility. This opens the possibility of reentrant SC
at high field. Both observations 2 and 3 are reminiscent of
observations in an experiment of magic-angle twisted trilayer
graphene (MATTG) [24].

Model and method. The Hamiltonian we study reads

H = P̂G(H0 + Hint )P̂G, (1)

H0 = −t
∑

〈i, j〉,σ
(c†iσ c jσ + H.c.) − μ

∑
i

ni
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− h
∑
i

(ni↑ − ni↓), (2)

Hint =
∑
〈i, j〉

J
(
�Si · �S j − nin j

4

)
+Vnin j, (3)

where ciσ annihilate a spin-σ electron on site i (� represent
aligned or antialigned with �H ), �Si is the spin operator of
site i, 〈i, j〉 represent the nearest-neighbor pairs of sites, and
h ≡ gμBH/2 represents the effect of an in-plane magnetic
field. P̂G is the projection operator that enforces a no-double-
occupancy constraint. Although this t-J-V model has a direct
correspondence to a strong-coupling limit of the Holstein-
Hubbard model [21], we regard it as a phenomenological
model that can potentially be relevant to various strongly cor-
related systems. Thus, we consider a wide range of parameters
that may correspond to different scenarios. For example, V is
the sum of multiple contributions, including the Coulomb re-
pulsion and phonon-mediated attractions, so it can be positive
or negative; similarly, J can vary in a wide range due to the
possible coexistence of antiferromagnetic superexchange pro-
cesses and the ferromagnetic exchange integral of Coulomb
potential between neighboring Wannier orbits. Moreover, ei-
ther due to the polaronic effects or moiré band flattening,
we are motivated to consider the parameter regimes where
the strengths of the interactions are comparable with that of
the hopping element. Despite the presence of “infinite” on-site
repulsion and the intermediate interactions, a density matrix
renormalization group (DMRG) study has found sharp Fermi
points on ladders for this model [20]. This encourages us to
suggest that the 2D case may be similarly well described from
a mean-field perspective; at least there is no reason to expect
it to be worse than the 1D case.

To realize a simple model with valley degrees of freedom,
we consider a system on a triangular lattice with negative
nearest-neighbor hopping elements t < 0, in the dilute elec-
tron limit [35]. In this case, the electrons are expected to
be confined in the neighborhoods of two band minima, i.e.,
valley centers, located at the K and K ′ points in the Bril-
louin zone. We then propose the ansatz state for the ground
state of the system, which is specified by a set of variational
parameters �n = (nK↑, nK↓, nK ′↑, nK ′↓), i.e., the electron oc-
cupation densities with different combinations of valley and
spin indices. We will refer to those combinations as flavors.
This method renders the calculations more straightforward
and the physical insights more transparent than the standard
Hartree-Fock treatment (see Supplemental Material [36]), and
we have checked that this method produces equivalent results.
At T = 0, the mean-field variational free energy that we wish
to minimize can be expressed as an expansion in powers of
the electron density:

Evar ≡〈�n|H|�n〉 = �ξT · �n + �nT · M · �n + O(n3), (4)

�ξ ≡(μ + h, μ − h, μ + h, μ − h), (5)

M ≡ 1

2ρ0
τ 0 ⊗ σ 0 + (3|t | + 3V − 3J )τ 0 ⊗ σ 1

+ 9

2
V τ 1 ⊗ σ 0 +

(
3|t | + 3V − 3

4
J

)
τ 1 ⊗ σ 1, (6)

where we have defined the density of states per valley per spin
ρ0 ≈ 0.1/|t |, redefined the chemical potential such that it is
measured from the bare band bottom −3|t |, and adopted Pauli
matrices σ i=0,1 and τ i=0,1, acting on spin and valley index
respectively, to simplify the expression. σ 0 and τ 0 are simply
identity matrices, and σ 1 or τ 1 flips the spin or valley index.
Since we are considering the dilute electron limit, i.e., the total
electron density n → 0 limit, we can discard the cubic and
higher order terms in n, which simplifies the analysis greatly.
Note that the projection operators have introduced effective
interactions of strength ∼|t | into the system [37]. In the ex-
pression for the variational energy, it is now straightforward to
identify the τ 0 ⊗ σ 1 or τ 1 ⊗ σ 0 terms as the interactions be-
tween electrons with spin or valley index flipped, and τ 1 ⊗ σ 1

as the interaction between electrons with both spin and valley
indices flipped. Therefore, when those effective interactions
are strong enough compared to the inverse of the density of
states, the “normal” state, which has an equal density of each
flavor, becomes unstable by a mechanism similar to Stoner
ferromagnetism, and the system can spontaneously polarize
into a symmetry-broken state. To determine the ground state,
we diagonalize the energy matrix M as

M =
∑

α=0,S,V,SVL

λα�ηT
α �ηα (7)

with eigenvectors

�η0 = (1, 1, 1, 1)/2, �ηS = (1,−1, 1,−1)/2,

�ηV = (1, 1,−1,−1)/2, �ηSVL = (1,−1,−1, 1)/2, (8)

and eigenvalues that can be straightforwardly obtained (see
Supplemental Material for explicit expressions). Note that
since the interaction terms are traceless, the sum of all four
eigenvalues is simply 2/ρ0. Here, S, V, and SVL respectively
stands for spin, valley, and spin-valley locked polarizations.
It is natural to decompose the ansatz state �n in this basis as
�n = ∑

α mα�ηα , and interpret mα �=0 as the order parameter of
the corresponding order. The variational energy can thus be
reexpressed as

Evar = λ0

(n
2

− μ

λ0

)2
+ λS

(
mS − h

λS

)2

+ λVm
2
V + λSVLm

2
SVL. (9)

Now the problem turns into an optimization problem with
constraints that each component of �n is non-negative, and all
the components sum up to half the total density n, which
can be fixed to a small number by tuning μ. For any set of
parameters, this is an easily solvable problem.

Phase diagram at zero field. At zero field, we note that
any partially polarized state is unfavorable, since the energy
monotonically depends on the absolute values of the order
parameters |mα �=0|; the energy is minimized when all mα �=0

either vanish or take the maximally allowed value, n/2. There-
fore, we can list all the candidate symmetry-broken states
as follows. First, there can be S, V, or SVL polarized states
with only the corresponding order parameter |mα| = n/2,
whose energies relative to the unpolarized normal state are
λαn2/4. Second, all three order parameters can simultane-
ously have absolute value n/2 with sign structure such that
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FIG. 1. The phase diagram at zero temperature and zero in-plane
magnetic field. V and J are measured in units of |t |. F, S, V, N,
and PS stand for flavor polarized, spin polarized, valley polarized,
normal, and phase separated. S+PS or V+PS labels regions of
phase separation in which the higher density phase is likely S or V,
respectively. The orange dashed lines enclose the region where the
magnetic response is discussed.

mSmV = mSVLn/2. The consequence is that all the electrons
are polarized into a single combination of spin and valley; i.e.,
this is a flavor (F) polarized state with energy λFn2/4 with
λF ≡ λS + λV + λSVL. Whenever the smallest of these four
energies is negative, the system will spontaneously polarize
into the corresponding state.

In the above analysis, we have implicitly assumed that a
uniform ground state is stable at the given density n. However,
when λ0 is negative, or λ0 plus any one of the other three
eigenvalues is negative, the system is no longer stable against
spontaneously increasing total density. At fixed mean electron
density, this implies phase separation (PS) between a high-
density region and a vacuum region. The dilute limit analysis
in principle fails in such circumstances, but it is plausible to
suppose that the “high” density region remains moderately
dilute, and hence forms the same symmetry-broken state pre-
dicted by the previous analysis.

We summarize the phase diagram at zero field derived from
the above analysis in Fig. 1. All the phase transitions are first
order, although one should bear in mind that the approxima-
tion of discarding O(n3) terms fails near those transition lines.
The inclusion of higher order terms could possibly introduce
small partially polarized regions between the normal and fully
polarized phases, and make the transitions continuous.

Pairing susceptibilities and magnetic response of valley-
polarized states. At each point of the phase diagram, the
renormalized band structure can be obtained, so the SC in-
stability that would arise from additional weak attractive
interactions can be explored. Since we are considering the
dilute limit in which all the FSs are nearly circular, the
most divergent SC susceptibilities correspond to the nesting
between FSs. Generally, the leading pairing susceptibility be-
tween two flavors, a and b, would have the BCS logarithmic

divergence were their FSs identical upon inversion. So if they
are of similar size, the diverging part of their contribution to
the susceptibility can be approximated as

χ0(�qab) ≈ ρ0 ln
�0|εF |

δ2ab
. (10)

Here �qab is the averaged momentum displacements of the
pockets of flavors a and b, �0 is an appropriate UV cutoff
determined by the physical nature of the attractive interac-
tions, |εF | is an average of absolute values of the Fermi
energies, which are defined by the energy difference between
the renormalized band bottom and the chemical potential, and
δab is the energy mismatch of the two FSs, which is defined
by an average of |εa(�qab − k̂b)| with k̂b on the FS of b (or vice
versa). When any of the Fermi energies turn negative so that
the corresponding FS is absent, χ0 simplifies to ρ0 ln�0/δab.
Within the approach we are adopting, these quantities for a
state specified by density distribution �n can be calculated as

εFa = na/ρ0 − ∂Evar

∂na

∣∣∣∣
�n
, (11)

δab = ∣∣εFa − εFb

∣∣. (12)

Whenever δ vanishes in this estimation, higher order effects
in n, e.g., trigonal warping, should in principle be considered.

For the following discussion, we will consider the case
of a valley-polarized phase and an additional interaction that
favors singlet pairing. Without loss of generality, we assume
the electrons occupy the K valley hereinafter.

At zero field, the energy mismatch between K ↑ and K ↓
vanishes to the leading order, while the trigonal warping
of the FSs yields δintra = cn3/2/ρ0 with c an O(1) constant.
The resulting intravalley susceptibility then can be calculated
as χ0(�q = 2 �K ) ≈ 2ρ0 ln(

√
ρ0�0/cn). Meanwhile, despite the

fact that the states in valley K ′ lie slightly above the chemi-
cal potential, the pair fluctuations into and out of it are still
allowed. The intervalley pairing susceptibility corresponding
to uniform SC is χ0(�q = 0) ≈ 2ρ0 ln(�0/δinter ) with δinter =
(|λV| + 1/2ρ0)n (the factor of 2 in χ0 comes from two pairs
of FSs for this �q). Therefore, both susceptibilities diverge with
roughly the same asymptotic behavior as n → 0, in contrast
with the unpolarized case where the intervalley nesting is
always exact regardless of n. Which SC state is preferred thus
depends on the detailed structure of the added attractions.

We now consider the effect of an in-plane magnetic field,
h �= 0, and analyze the resulting partially polarized states.
Although the magnetic response at every point in the phase
diagram can be analyzed straightforwardly, for the sake of
simplicity and relevance to our topic, we will focus on a sub-
region of the V phase, corresponding to the region enclosed by
the orange dashed line in Fig. 1, in which λ̃ ≡ λSλSVL

λS+λSVL
> |λV|.

Some qualitative discussions of the magnetic response in other
subregions can be found in the Supplemental Material. In
Fig. 2, we summarize the three-stage magnetic response of
the order parameters as a function of increasing h, as well
as representative illustrations of the FSs in different ranges
of h. In the first stage h < n

2
|λV|λS

λ̃
, the system is partially

spin polarized, but remains fully valley polarized, until the
magnetic field is large enough to start populating the spin-↑
electrons in the K ′ valley. In this stage, the mismatch between
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FIG. 2. Upper panel: The magnetic response of the order pa-
rameters in a subregion of the valley-polarized phase, in which
λ̃ ≡ λSλSVL

λS+λSVL
> |λV|. At h = h0,mS = mV implies nK↑ = nK ′↓. Lower

panel: Illustration of the FSs in the three stages of magnetization. The
black hexagons represent the boundary of the first Brillouin zone.

the two FSs in the K valley can be calculated as

δintra = gμBH

ρ0(λS + λSVL)
≡ g̃μBH. (13)

Comparing this with the case of noninteracting electrons, the
Landé g factor is effectively renormalized by a factor that is
less than 1 in the entire region we are considering as long as
2ρ0|λV| < 1 (which is true for the model studied), and reaches
its minimum value, g/2, near the transition line between
V and V+PS phases specified by the condition λ0 + λV =
2/ρ0 − (λS + λSVL) = 0. The FSs are thus less sensitive to
the in-plane magnetic field, allowing an O(1) violation of the
Pauli limit if the zero-field state were an intravalley paired SC.

Upon further increasing the magnetic field in the range
(n/2)(|λV|λS/λ̃) � h � (n/2)λS, nK ′↑ rapidly increases from
zero, and nK↓ gets depleted. Part way through this inter-
val, there must occur a critical magnetic field h0 at which
nK ′↑ = nK↓, so that the energy mismatch between the two FSs
of those flavors vanishes as ∼n2 and the intervalley pairing
susceptibility strongly diverges. This opens the possibility of
SC pairing at a high field that is completely independent
of the zero-field pairing strength |�(H = 0)|. Actually, as h
increases from 0 to h0, the intervalley susceptibility grows, so
if this pairing developed at zero field, this allows an arbitrarily
large violation of the Pauli limit. On the other hand, assuming
intravalley pairing was preferred at zero field and it has been
eliminated at h0, this implies reentrant SC with a different

pair momentum. Finally, for h > (n/2)λS , the spins are fully
polarized and all singlet SC tendencies are suppressed.

Discussion and outlook. In this Letter we have presented
a concrete model that exhibits spontaneous valley polar-
ization and a rich variety of SC tendencies. However, the
method adopted and the qualitative results obtained in our
Letter can be readily generalized to other systems with valley
degree of freedom, even for multivalley systems on any two-
dimensional lattice. Specifically, in an appropriate dilute limit,
one can explore the effect of the interactions and identify
the varieties of possible generalized ferromagnetic orders in
the system using the method employed in the first part of
this Letter. For bivalley systems, if there is a valley-polarized
phase, most of the results obtained in the second part can
be directly applied, since there we made little reference to
the detailed structure of the band and interactions for the
specific model and lattice. This suggests a relatively robust
route to PDW order [38], and may be relevant to some re-
cent suggestive evidence of PDW order in vanadium-based
kagome metals [30]. We emphasize that all the basic ideas
we discussed from a weak-coupling perspective can be cor-
roborated, at least on ladders, by DMRG results on a similar
model [20], which do not rely on approximations. More gen-
erally, while the Hartree-Fock approximation is surely not
justified when the interactions are strong, it is well recog-
nized as a sensible first step in identifying possible phases
and behaviors.

Noticing that the valley polarization order and SVL order
are rather similar in that they both do not respond directly to
the magnetic field, another direct generalization of our results
would be for the SVL phase. Although our current model turns
out not to have a SVL phase region, it is easy to modify it to
stabilize such a phase. In a SVL phase, the discussion would
be totally the same as long as we interchange λV and λSVL as
well as “inter” and “intra.” The only differences would be that
the intervalley nesting becomes exact at zero field, making
intravalley pairing unlikely in this case.

We would like to point out the phenomenological similar-
ities between our findings and a recent MATTG experiment
[24], where a large but finite violation of the Pauli limit of
the zero-field SC state and a reentrant SC order at high field
were observed at a relatively low filling. The phase transition
between them, if there is a direct one, seems to be first order.
All of these observations are consistent with the qualitative
results obtained in this Letter.

Note added. While we conducted this research, we became
aware of some recent work [31,32] that explains the MATTG
experiment from different perspectives by invoking triplet
pairing. We were partially motivated by Ref. [32] to add the
discussion about the SVL phase.
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