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Perturbative considerations account for the properties of conventionalmetals, including
the range of temperatures where the transport scattering rate is 1/τtr = 2πλT , where
λ is a dimensionless strength of the electron–phonon coupling. The fact that measured
values satisfy λ . 1 has been noted in the context of a possible “Planckian” bound on
transport. However, since the electron–phonon scattering is quasielastic in this regime,
no such Planckian considerations can be relevant. We present and analyze Monte
Carlo results on the Holstein model which show that a different sort of bound is at
play: a “stability” bound on λ consistent with metallic transport. We conjecture that
a qualitatively similar bound on the strength of residual interactions, which is often
stronger than Planckian, may apply to metals more generally.

resistivity bounds | electron–phonon problem | polaronic effects

The electrical resistivity of conventional metals varies linearly with temperature T in
the regime T & ω0, where ω0 is a characteristic phonon frequency. The corresponding
transport scattering rate extracted via Drude analysis is 1/τtr = αT (in units where
h̄ = kB = 1). Ambiguities associated with the Drude fit notwithstanding, it was observed
that across a wide range of materials, the values of the dimensionless constant α are
bounded by a number of order one (1). In conventional Migdal–Eliashberg–Bloch-
Grüneisen (MEBG) theory, α = 2πλ, where λ is a suitably defined dimensionless
electron–phonon coupling constant which is not a priori bounded. The observed bound
is therefore striking and has stimulated considerable theoretical activity, especially insofar
as it coincides with a possible bound christened “Planckian” (2) on local equilibration
rates in unconventional materials such as the cuprates (3). An attractive feature of this
idea is that it might transcend any quasiparticle-based theoretical framework and hence
give insight into a set of puzzling phenomena which have been variously identified as
“bad metals” (4, 5), “strange metals” (6, 7), “marginal Fermi liquids” (8, 9), etc.

We propose that, in the relevant temperature regime in metals with strong electron–
phonon scattering, there is in fact generically a crossover at λ ∼ 1 from metallic to
insulating transport, driven by polaron physics. This corresponds to a bound on the
slope of the T -linear resistivity—if λ were any larger, the system would no longer be
metallic. Our picture comes from Monte Carlo studies of the paradigmatic Holstein
model in the limit of zero phonon frequency, ω0 = 0, and more limited previous results
on the breakdown of MEBG theory for 0 < ω0 � T (10–14) (for a comprehensive
review, see ref. 12). The results are summarized through a phase diagram in the λ-T plane
in Fig. 1 and resistivity curves at various λ in Fig. 2. While the proposed stability bound
on λ implies a bound on 1/τtr that has the same functional form as the conjectured
Planckian bound, the physical origin is entirely different. Because scattering here is
entirely elastic, the notion of a bound on thermalization of the electron fluid is irrelevant,
whatever its meaning in less well-understood highly correlated materials.*

The Holstein model is at best a caricature of any actual metal and has no direct
relevance to more complicated problems in which electron–electron interactions play
a central role. Nonetheless, we conjecture that the inferred stability bound is broadly
relevant in real materials, with the caveat that the precise value of α at the crossover point
beyond which metallic behavior ceases depends on microscopic details. This conjecture
rationalizes the otherwise surprising observation that when measured values of λ are
tabulated in conventional metals, no values larger than λ ≈ 2 are found (15, 16).
Extending this intuition to more general (and less well-understood) problems, we further
conjecture that the coefficientα in any metallic system exhibiting aT -linear resistivity can
intuitively be associated with the strength of interactions among its low-energy degrees

∗Electron–phonon scattering is quasielastic at T � !0 and entirely elastic in the limit !0 → 0. The fact that the stability
bound on � holds even in this (unphysical) limit emphasizes that it is conceptually unrelated to any bound on thermalization.
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A B

Fig. 1. Transport phase diagram of the 2D (A) and 3D (B) Holstein model with static phonons as a function of bare (renormalized) electron–phonon coupling
�0 (�) and temperature T . The color scale indicates the T dependence of the resistivity �, represented as an effective thermal exponent. CDW denotes a (�,�)
or (�,�,�) charge density wave insulator. The T∗ line is a crossover at which a pseudogap in the single-particle density of states first appears, which also
approximately coincides with the crossover from a “metallic” to “insulating” T dependence of the resistivity. The value of the renormalized coupling � (shown
on the upper scale of the figure), which is temperature dependent, is computed at T = 0.25t in 2D and T = 0.4t in 3D. Note that in the deep blue region, the
dependence on T is stronger than T−3. In (A) the chemical potential for each �0 is such that n(T = 0.25t) = 0.8, while in (B) the density is n = 1 throughout the
phase diagram. The calculations were done with nonzero next-nearest-neighbor hopping t′, with t′ = −0.3t in 2D and t′ = −0.2t in 3D.

of freedom, and so, a bound on α reflects a bound on this
interaction strength consistent with the existence of the metallic
state.

Results for the Holstein Model

We consider the Holstein Hamiltonian describing one band of
noninteracting electrons coupled to an Einstein phonon,

H =
∑
ijσ

tijc†
iσ cjσ +

∑
i

(
p2
i

2M
+

1
2
Kx2

i

)
+ γ

∑
iσ

xiniσ , [1]

where c†
iσ creates an electron on site i with spin σ , tij is the

hopping matrix element between sites i and j, xi/pi are the phonon
displacement/momentum on site i, ω0 =

√
K /M is the phonon

frequency, and γ is the electron–phonon coupling constant,
which couples the oscillator displacement to the total electron
density on site i. The important dimensionless parameters are the
coupling strength, conventionally defined as λ0 = γ 2N0/K , and
the retardation parameter ω0/EF , where N0 is the bare density
of states at the Fermi energy, EF . It is important to distinguish
between the bare coupling, λ0, and the renormalized coupling,
λ. The latter is the more physically relevant quantity and is
defined in terms of an appropriate average of the inverse of the
renormalized stiffness, K̃ (q), at wavevector q. There are in fact
different definitions of λ, corresponding to different averages
over q. In our studies, we find that the different commonly used
averages give essentially the same value. Common definitions of
λ are summarized in SI Appendix, section 2.

With some important exceptions, the regime of the Holstein
model relevant to conventional metals is ω0/EF � 1. A
representative phase diagram of the model in this limit as a
function of λ and T is shown in Fig. 1. At low temperatures,
there is generically a superconducting phase for weak to moderate
coupling when T < TSC ∼ ω0e−1/λ. (The superconductor does
not appear in our phase diagram because we will consider the limit
ω0 → 0.) There is an insulating charge density wave (CDW)

phase for stronger coupling when T < TCDW,† where for large
λ (not shown in the figure) TCDW ∼ t/λ (11). Qualitatively
similar phase diagrams have been derived previously, for instance
in refs. 18–20. Here, our principal interest will be in the transport
properties in the disordered “high-temperature” regime, where
T > ω0 (and hence T > TSC) and T > TCDW, but still
T � EF .

When T > ω0, the phonons are effectively classical, and
so, we will consider a simpler version of Eq. 1 in which we
take M → ∞, implying ω0 → 0, and study the model via
Monte Carlo simulation. Calculations with classical phonons
are significantly simpler computationally and also allow for
evaluation of dynamical observables without the need for analytic
continuation. Moreover, we have previously (10, 11) verified that
results for various thermodynamic observables in the temperature
range of interest are unchanged if calculations are carried out with
finiteω0. Dividing the Hamiltonian into phonon-only and other
terms, H = Hph + He, the thermal average of any electronic
observable O is given, in the M →∞ limit, by

〈O〉 ∝
∫

DX e−βHph[X ]+lnZe[X ] O[X ], [2]

where Ze[X ] = Tr e−βHe[X ] is the electronic partition function
and O[X ] = Tr(O e−βHe[X ])/Ze[X ] the thermal average of the
observable for a given static phonon configuration X = {xi}.
The integral over X is performed by Monte Carlo sampling.
Further details of the algorithm are summarized in ref. 11 and in
SI Appendix, section 1.‡

The data presented here were computed using a 2D square
lattice with periodic boundary conditions and linear sizes L ≤ 20
and a 3D cubic lattice with L ≤ 14. We present results for

†Our CDW transition temperatures are in agreement with those reported for the 2D and
3D Holstein model with finite !0 (17).
‡There is an extensive body of work on the problem of itinerant electrons coupled
to classical spin degrees of freedom, related to the problem of magnetoresistance in
manganites (21). While the numerical techniques are similar to those used here, the
physics is distinct. For instance, the fixed-length constraint on the spins implies drastically
different transport at elevated temperatures.
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A B

Fig. 2. Resistivity of the 2D (A) and 3D (B) model versus temperature T for values of the electron–phonon coupling �0 = 0.075–0.6 in steps of 0.075 in 2D, and
�0 = 0.087–0.348 in steps of 0.029 in 3D. In the normal metallic (small �0) regime, the resistivity is approximately T -linear with zero intercept and a slope that
increases (faster than linearly) with �0. The high-temperature behavior in the strongly coupled (�0 & 0.4 in 2D, �0 & 0.3 in 3D) “bad-metallic” regime involves a
resistivity that is comparable to or larger than the quantum of resistivity, and although it grows approximately linearly with T , it extrapolates to an increasingly
large T → 0 intercept, despite the absence of quenched disorder. Solid lines are the Bloch–Grüneisen (BG) formula using the renormalized �, which is obtained
from the phonon Green’s function measured in Monte Carlo. Dashed curves are guides to the eye in those regimes where the BG formula is not a good fit to
the data. In (A), solid triangles indicate the resistivity at the pseudogap temperature, T∗. In (B), solid diamonds indicate the same just above the CDW transition
temperature.

the case in which tij contains nearest-neighbor hopping t and
next-nearest-neighbor hopping t ′ = −0.3t (2D) or t ′ = −0.2t
(3D). In 2D, we have fixed the chemical potential such that the
average density is n(T = 0.25t) = 0.8.§ In 3D, we have fixed
the average density to one electron per site, n = 1, at all T .
In the noninteracting limit, EF ≈ 1.8t (2D) and EF ≈ 3.1t
(3D). We have verified that none of the results are qualitatively
sensitive to the particular choice of parameters or model details. In
SI Appendix, section 6, we report additional data demonstrating
the insensitivity of our results to varying electron density or
including explicit phonon anharmonicity.

The main observable of interest is the conductivity, σ (ω),
which refers here just to its real part. For a given static phonon
configuration X , this is computed as (here h̄ = 1):

σ (ω;X ) =
1
Ld

2π
ω

∑
νν′

[f (Eν)− f (Eν′)]

× |〈ν|Ĵ |ν′〉|2δ(ω − Eν + Eν′), [3]

where Eν and |ν〉 denote single particle eigenvalues and eigen-
vectors of He[X ], Ĵ is the single-particle current operator, and
f (E) = [1 + exp(βE)]−1 is the Fermi function. The factor
of two accounts for spin. This quantity is then averaged over
equilibrium phonon configurations as in Eq. 2. We denote the
average simply as σ (ω), and the resistivity is ρ = 1/σ (0). There
are subtleties concerning the way the dc and thermodynamic
limits are taken, which we discuss in detail in SI Appendix,
section 3. Our principal findings are summarized in Fig. 1, which
shows d ln ρ/d lnT through the phase diagram in the (λ0, T )
plane, and in Fig. 2, which plots ρ(T ) versus T for various λ0.
The corresponding values of the renormalized coupling λ are also
reported in the figures.

Clearly, for λ0 & 0.5, the low-temperature CDW (a true
broken-symmetry insulator) melts to a state with finite but

§Above the CDW transition, the density varies weakly with temperature. In the CDW phase,
the density approaches n = 1; see figure 3 of ref. 11.

insulating resistivity, to wit dρ/dT < 0. Above a temperature
T ∗ρ which, for large λ0, is roughly the bipolaron binding energy,
T ∗ρ ≈ γ 2/K , we find that dρ/dT > 0 again, but with
a substantial nonzero extrapolated T → 0 intercept despite
the absence of disorder. T ∗ρ approximately coincides with the
appearance of a pseudogap in the single-particle density of states,
indicated by T ∗ in our phase diagram (10, 11). The essential
observation is that for the range of temperatures we are interested
in (ω0 � T � EF ), there is a sharp metal-to-insulator crossover
in the resistivity at λ ∼ 1 driven by pseudogap formation and
hence a bound on the metallic T -linear resistivity.

We stress that this metal-to-insulator crossover is a reflection
of local polaron physics and is conceptually unrelated to a low-
temperature CDW transition. WhereT ∗ is well aboveTCDW, the
CDW correlation length is small at the crossover. We have also
carried out simulations at lower densities where charge ordering
is suppressed, yet we find that T ∗ remains essentially unchanged
(SI Appendix, section 6). In addition, we can accurately describe
the crossover using an approximation that completely neglects
correlations between phonon displacements on different sites, as
discussed below.

Relation to Theory

On the metallic side of the phase diagram, we find that
the conventional MEBG theory captures remarkably well the
behavior of thermodynamic observables (11) as well as the dc
resistivity. Comparisons of the resistivity between the MEBG
theory and Monte Carlo are shown in Fig. 2. (The agreement
with MEBG theory in the metallic regime further validates
the use of M → ∞ in the Monte Carlo simulations.) A
different approach is required for the insulator and crossover
region. We have found that modeling the phonons in a “local”
approximation as disorder with vanishing correlation length—
i.e., ignoring correlations between phonon displacements on
different sites—produces reasonable quantitative agreement with
the Monte Carlo data.
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A

D E F

B C

Fig. 3. Distribution of on-site potentials (A–C) and electronic density of states (D and E) in 3D, for values of �0 on the metallic side of the phase diagram (A
and D), near the pseudogap crossover (B and E), and in the insulating regime (C and F ). The temperature is T = 0.5t. In A–C , we show the on-site distributions
from Monte Carlo (MC), a fit to the MC using the local approximation (LA), and the single site approximation (SSA) (SI Appendix for more details). The measured
distributions are accurately captured by the LA, while the SSA is only qualitatively accurate. D–F show the density of states as measured in MC and that obtained
from a quenched disorder average using the LA. Data are for L = 10; the wiggles in the density of states (especially in D) are finite size effects that become less
pronounced with increasing L.

Formally, the Holstein model with ω0 = 0 constitutes an
annealed disorder problem; see Eq. 2. The joint probability
distribution for the site potentials vi = γ xi is P[V ] ∝
e−βHph[V ]+lnZe[V ], where Ze[V ] = Tr e−βHe[V ] is the electronic
partition function computed for the given potential realization
V = {vi}. In general, P[V ] is a complicated nonlocal T -
dependent object. We would like to approximately replace it
with a local disorder distribution Ploc[V ] =

∏
i p(vi). The on-

site distributions p(vi), in turn, can be extracted from the Monte
Carlo data, with representative results shown in Fig. 3.

We can obtain a crude representation of p(v) by considering
the statistical properties of a single isolated site (no hopping), for
which we can compute the phonon distribution pss(v) exactly as
a function of the chemical potential µ and temperature T :

pss(v) = p0

[
e−

(v−U0)2
2UT + 2ye−

v2
2UT −

U1
2T + y2e−

(v+U0)2
2UT

]
, [4]

where U0 = U1 = U ≡ γ 2/K is the characteristic bipolaron
binding energy, y = eµ/T is the electron fugacity (y = 1 when
there is on average one electron per site), and p0 is the requisite
normalization factor. This approximation becomes better the
deeper we are in the insulating phase, i.e., the more localized
the electronic states in a typical realization of V are. In the
intermediate range of λ of primary interest here, p(v) deviates
substantially from pss(v), but it can be well parameterized by
the same functional form with U0 and U1 treated as T and
λ dependent parameters; we therefore do this when making
direct comparisons with the numerical data. One can then
calculate electronic observables in realizations of V and perform
a quenched average using Ploc[V ].

Roughly speaking, pss(v) contains peaks at v = ±U , each
of width

√
TU . At strong coupling (λ0 > 0.5), when U is

larger than both the unperturbed bandwidth and T , the disorder
distribution is bimodal, and the density of states itself splits into
two peaks, such that the integrated density of states per spin

in the low-energy peak is n/2.¶ The chemical potential thus
automatically lies in the pseudogap between them—this contrasts
with the case of a corresponding problem with quenched disorder
where the chemical potential is an independent quantity that is
not generically tied to the pseudogap. This band splitting captures
the binding of electrons into bipolarons. The states deep in the
pseudogap are strongly localized.

However, even at strong coupling, increasing T beyond U
makes the disorder distribution single-peaked, and there is no
pseudogap. Although the effective disorder is relatively strong
here, one can crudely understand the observed T dependence
of the resistivity with perturbative reasoning—assuming that the
scattering rate (and hence the resistivity itself) is proportional to
the mean-square disorder potential, (vi − v̄)2 ∼ U 2 +UT . This
accounts both for the observed linear-in-T growth and the large
extrapolated T → 0 intercept of ρ in Fig. 2 in this range of
T and λ0.

Ultimately, the observed metal-insulator crossover apparent
in the Monte Carlo data occurs for two closely intertwined
reasons: the band splitting causes a depression in the density
of states (pseudogap) at the Fermi level, and these states
become more and more localized. The single-site approximation
captures qualitatively the essential physics of the crossover and
is quantitatively accurate at sufficiently strong coupling. Over
a much broader range of couplings, we are still able to fit the
distribution of site energies measured in the Monte Carlo data by
treatingU0 andU1 in Eq. 4 as adjustable parameters. Observables
computed using the resulting Ploc[V ] agree reasonably well with
their Monte Carlo values throughout the phase diagram (except,
of course, in or very near the CDW phase). Representative results
are shown in Fig. 3.

¶In strong coupling and ignoring thermal broadening, the effective disorder distribution
is that of a binary alloy—with energy −U on the “bipolaron sites” and energy +U on the
remaining sites. Manifestly, the concentration of bipolaron sites is n/2. When 2U is larger
than the bandwidth, by the spectral localization theorem (22), this would give rise to a
hard gap and an integrated density of states per spin in the lower band precisely equal to
n/2. Thermal broadening turns this gap into a pseudogap, which survives even when 2U
is somewhat less than the bandwidth.

4 of 6 https://doi.org/10.1073/pnas.2216241120 pnas.org
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Note that for large λ, the local approximation is equivalent
to previous results obtained using dynamical mean field theory
(DMFT) for the same problem (18, 19, 23). Indeed, the
DMFT results appear to agree—at least qualitatively—with our
Monte Carlo results, even at small λ where the naive single-site
approximation (with U0 = U1 = U ) fails.

Stability Bounds

While the results obtained concern a simplified model, we
expect the qualitative and even the rough quantitative aspects
of the results to apply in realistic circumstances in which
electron–phonon coupling is strong. There are a number of
material systems which, as a function of pressure, strain, doping
concentration, or even photoexcitation, can be tuned from a
metallic or superconducting to an insulating CDW ground
state. To the extent that these low-temperature phase transitions
reflect changes in the strength of the electron–phonon coupling
λ, a corresponding crossover should be expected at elevated
temperature in the “normal state” from metallic T dependence
on the small λ side of the crossover to increasingly insulating T
dependence on the large λ side. Moreover, at the crossover, the
scattering rate should be 1/τ ∼ 2πT (corresponding to λ ∼ 1).
A systematic comparative study of such crossovers in a variety of
materials would be an interesting way to test the relevance of the
present studies. Examples of systems which at least superficially
exhibit some aspects of this expected behavior include certain
organics (24, 25) and BPBO (26).

More generally, the appeal of invoking a Planckian bound
1/τeq ≤ 2πT in relation to transport is the hope that it gives a
way to understand the origin of T -linear resistivity in a variety of
unconventional metallic systems. A priori, the above discussion
is applicable only to conventional metals, where the physics of
the T -linear resistivity has been well understood for decades and
the main insight we have to offer concerns why larger values
of α are never observed. However, one can speculate that there
is a broader sense in which the present results may inform the
discussion of less well-understood metallic systems as well (27).

It is certainly conceivable that a T -linear resistivity can arise
in a semiclassical regime in which electrons scatter from another
form of collective soft mode of a system, other than a phonon.
Here, the same considerations we have explored above apply
more or less directly.

More generally, it is a common (not necessarily universal)
feature of quantum systems that strong interactions among
propagating particles reduce itineracy. Thus, it is reasonable
to suppose—in the absence of disorder—that the resistivity (or
more directly 1/τtr) is a measure of the strength of the residual
interactions between low-energy degrees of freedom. At the same
time, there is general sense in which strong interactions lead to
a reorganization of the effective low energy degrees of freedom.
This can be made precise in some systems in which there is an
explicit transformation relating a set of interacting “microscopic”
variables to a set of dual degrees of freedom, such that when the
former is strongly interacting, the latter is weakly interacting, and
vice versa. But the underlying physical intuition is likely more
broadly valid—that there is a rough maximum strength of an
appropriate dimensionless measure of the effective interactions
consistent with a metallic state.

Thus, we conclude with the conjecture that there is a general
stability bound on the magnitude of the resistivity of any metallic
state—one that often is much more restrictive (and hence more
significant) than the putative Planckian bound, as we explain
in SI Appendix, section 4. Where 1/τtr ≈ αT , even when
this is not directly attributable to electron–phonon scattering,
it is reasonable to suppose that α is the correct dimensionless
measure of the interaction strength and so is bounded by
these considerations.# Where 1/τtr has a more complicated T
dependence, it requires further analysis to relate its magnitude
to a dimensionless interaction strength. However, in some cases,
such a relationship can be established on other grounds. For
example, at low T , electron scattering from long-wavelength
acoustic phonons dominates the resistivity of many metals, such
that 1/τtr ∼ λDT 5/ω4

D where ωD is the Debye frequency,
which can be independently determined. Thus, a bound on λD
implies a corresponding bound on the resistivity. One can also
consider extracting an estimate of the strength of the residual
interactions from dimensional analysis, as λeff ∼ 1/�τtr, where
� is a characteristic energy scale in the problem. In most metals,
a lower bound on λeff can be obtained by taking � = EF since
typically EF is the largest characteristic scale. This leads to a
somewhat different perspective on the familiar Ioffe-Regel limit,
usually stated as EF τtr ∼ kF` & 1.

In summary, we propose that, while the precise way in which it
plays out can vary depending on specifics, there is an approximate
stability bound on the maximum magnitude of an appropriate
dimensionless measure of the transport scattering rate in all clean
metallic systems.‖

Data, Materials, and Software Availability. There are no data underlying
this work.
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#For example, in ref. 28, the transport properties of the Hubbard model with intermediate
U were analyzed using the dynamical mean field theory (DMFT), with particular focus
on an intermediate temperature regime TFL < T < TMIR , where TFL is a temperature
below which Fermi liquid theory applies and TMIR is the temperature above which the
resistivity exceeds the quantum of resistance. In this regime, the resistivity is found to
be approximately linear in T with a slightly negative extrapolated value at T → 0. An
interpretation of the results in terms of highly dressed “resilient quasiparticles” is shown
to account for the behavior qualitatively, where a suitably defined transport scattering rate
depends on hole-doping and T (and, presumably, U/t) but is “at most comparable to T .”
This model is conceptually unrelated to the electron–phonon problem we have analyzed,
but it is plausible that a related stability bound is the explanation for the apparent bound
on 1/τtr .
‖To avoid misunderstanding, we review the fine print on this proposal: The proposed
bound is approximate in the sense that it involves a dimensionless number of order
one that can depend on microscopic details. However, it appears to be difficult to find
physically reasonable circumstances in which this number is substantially larger than 1. It
is only indirectly related to a resistivity bound, in the sense that ρ is proportional to 1/τtr .
As already discussed, determining the appropriate energy scale to relate the dimensional
1/τtr to a dimensionless coupling constant generally involves additional analysis, but in
circumstances in which the scattering rate is T-linear, the correct dimensionless quantity
is 1/τtrT .
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