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ABSTRACT

Traditional lithium-ion (Li-ion) battery state of health (SOH) estimation methodologies that focused on estimating present
cell capacity do not provide sufficient information to determine the cell’s lifecycle stage or value in second-life use. Quantifying
the underlying degradation modes that cause capacity fade can give further insight into the electrochemical state of the cell and
provide more detailed health information such as the remaining active materials and lithium inventory. However, current
physics-based methods for degradation diagnostics require long-term cycling data and are computationally expensive to deploy
locally on a device. To improve upon current methods, we propose and extensively test two light-weight physics-informed
machine learning methods for online estimating the capacity of a battery cell and diagnosing its primary degradation modes
using only limited early-life experimental degradation data. To enable late-life prediction (e.g. > 1.5 years) without the use of
late-life experimental data, each of the methods is trained using simulation data from a physics-based half-cell model and early-
life (e.g. <3 months) degradation data obtained from cycling tests. The proposed methods are comprehensively evaluated using
data from a long-term (3.5 years) cycling experiment of 16 implantable-grade Li-ion cells cycled under two temperatures and
C-rates. Results from a four-fold cross-validation study show that the proposed physics-informed machine learning models are
capable of improving the estimation accuracy of cell capacity and the state of three primary degradation modes by over 50%
compared to a purely data-driven approach. Additionally, this work provides insights into the role of temperature and C-rate in
cell degradation.
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1 INTRODUCTION

Lithium-ion (Li-ion) batteries are an attractive mobile energy storage device due to their high energy density, long cycle
life, and continuously falling cost [1]-[3]. Despite the advantages, Li-ion battery cells degrade over time due to irreversible
internal electrochemical reactions during operation. As a cell ages, it exhibits a loss of capacity and an increase in impedance
where the cell’s operating conditions influence the rate of degradation. To ensure safe and reliable operation within a battery-
powered system, it is important to continuously monitor and track the cell’s state of health (SOH). SOH is a metric to evaluate
the aging level of batteries and is commonly defined as a cell’s present capacity or impedance relative to its initial capacity or
impedance. This definition works well because as a cell ages, its capacity decreases and its impedance increases, often
proportionally to the degradation of the cell’s internal components [4]. This definition has been the case for some time because
obtaining accurate direct measurements of the chemical processes taking place inside a Li-ion battery deployed in the field is
still largely infeasible [4]. As a result, many battery health diagnostic methods have been developed to estimate cell capacity
based on readily available measurements (i.e., cell voltage, current, and temperature) for the purpose of providing advanced
notice of cell replacement or failure.
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Capacity estimation methods can generally be classified into two categories: (1) model-based methods [S5]-[14] and (2)
data-driven methods [15]-[22]. Model-based capacity estimation methods require the use of underlying models such as
empirical models [5], [8], [10], [11], equivalent circuit models (ECM) [9], [12], [13], and electrochemical models [6], [7], [14].
Empirical models are mathematical models created to estimate future measurements based on historical measurements. In
contrast to ECM and electrochemical models, empirical models typically have no physical meaning. ECM models are higher
fidelity than empirical models because they consider a cell’s thermodynamic and kinetic effects in the circuit model. Among
the three types of model-based methods, electrochemical models that incorporate chemical/electrochemical kinetics and
transport phenomena attain the highest accuracy levels. However, the run time for electrochemical models is also the greatest
among the three model-based methods, making electrochemical models mostly infeasible for online/real-time SOH estimation.
Typically, the model-based methods are combined with advanced filtering techniques such as a Kalman filter and particle filter.
The filtering methods are first used to estimate the battery model parameters by tracking the voltage (V) vs. capacity (Q) curve
(VQ curve). Then, the battery model is used to estimate the present capacity. Filtering methods achieve acceptable accuracy
but are limited in their ability to share information between cells. The lack of shared information between cells limits filtering
methods’ applicability to large datasets, and as a result, these methods may become less favorable as modern datasets grow
larger. Furthermore, the ECM and electrochemical require domain knowledge to construct the models and/or experimental data
under carefully designed and well-controlled conditions, which is often not available or costly to acquire.

Recently, data-driven methods have begun to emerge as an appealing alternative to model-based methods due to advances
in data generation and the increasing number of large publicly available battery degradation datasets [23]. Data-driven methods
are often much quicker to construct and deploy on larger datasets compared to model-based methods. As a result, a growing
number of studies in the literature have employed data-driven machine learning techniques to estimate cell capacity by
leveraging correlations in features extracted from cell voltage and current measurements. In particular, popular machine
learning methods such as linear regressors [18], support vector machines [18], relevance vector machines [19], Gaussian
processes [20], [22], and neural networks [16], [17], [21] have been successfully applied to estimate the capacity of Li-ion
batteries. These methods train a machine learning model to learn the correlation between features extracted from cell
measurements (voltage, current, temperature) and the cell’s SOH. The main advantage of data-driven methods is that they can
be used on battery cycling data, which do not require special equipment for additional tests, e.g., electrochemical impedance
spectroscopy (EIS) tests, and they are chemistry/physics agnostic, which means the method can apply to battery cells with
different chemistry. These methods perform their best with access to data from many cells operating under similar conditions.

While there have been many successes using both model-based and data-driven methods to estimate cell capacity, these
methods fall short in providing insight on the underlying degradation modes which cause capacity fade. Limiting the definition
of cell SOH to be the available cell capacity or internal impedance does not fully reflect battery health because capacity and
resistance are high-level measurements driven by low-level internal degradation mechanisms. Diagnosing the underlying
degradation modes can provide more insight into battery health, which can facilitate more accurate prediction of future battery
health [24], [25] and further optimization of the usage of battery cells [26]. To meet these needs, researchers have attempted to
extend the traditional definition of SOH estimation to include the internal cell degradation modes that drive capacity fade.

Three degradation modes in a Li-ion battery cell are commonly reported in the literature: loss of lithium inventory (LLI)
and loss of active materials in the positive and negative electrodes (LAMpg and LAMNng), respectively [26]-[29]. These three
modes have been extensively studied as popular ways to further quantify the SOH of Li-ion cells. Estimating the state of the
degradation modes provide more insight into a cell’s SOH and may shed light on the future rate of degradation, e.g. a cell
which has a faster rate of negative active material loss due to lithium plating or other mechanisms may soon begin more rapid
capacity fade.

Several degradation diagnostics methods to estimate the state of these modes have been proposed in the past. Han et al.
proposed using membership functions to quantify the areas under the peak locations of the differential capacity (dQ/dV) curve
and correlated these capacities to LLI and LAMng degradation modes [26]. However, the authors noted that this method was
too computationally intensive to be deployed on a battery management system (BMS) because of the intensive genetic
algorithm used to analyze cell degradation. Birkl et al. proposed a diagnostic algorithm for estimating the degradation modes
(LLI, LAMpg, and LAMNg) of a battery cell [27]. The proposed algorithm was experimentally validated by reconstructing the
pseudo-OCV curve of coin-cells with known amounts of LLI, LAMpg, and LAMg. Dubarry et al. proposed an SOH estimation
method by comparing features extracted from the differential voltage (dV/dQ) and dQ/dV curves of an online cell to features
in a simulated offline degradation database [28]. However, generation of the offline path degradation database is extremely
computationally intensive. Tian et al. trained a convolutional neural network (CNN) to learn the relationship between a partial
1C charge curve and the electrode aging parameters (obtained from a pseudo-OCV curve) [29]. In [29], the predicted electrode
aging parameters could be used to quantify the degradation modes of the battery cell.

Despite the promising results, many of the methods proposed for advanced degradation diagnostics have a few drawbacks.
First, a handful of the methods used long-term degradation data when constructing their estimators, thereby greatly increasing
the time and resources required to collect enough data to train the estimator before deployment. Second, a few of the methods



demonstrated required the use of computationally intensive algorithms. In these cases, the authors recognized that more work
needs to be done to reduce computational costs and enable on-board BMS deployment. Third, some methods exhibited high
errors when estimating heavily aged cells. It is of great significance to develop methods that can not only enable accurate
degradation diagnostics at a late aging stage but also do so using only early aging data. Such methods can alleviate the time
and costs of collecting long-term aging data.

To address the aforementioned drawbacks and needs, we propose two different methodologies (dataset augmentation and
delta learning) that use light-weight physics-informed machine learning models to online estimate the state of a battery cell’s
capacity and the three primary degradation modes (LLI, LAMpg, and LAMng). Each of the proposed methods exploits the well-
known correlations between cell dQ/dV curves and cell aging modes to accurately estimate the state of each degradation mode.
Drawing inspiration from [28], both methodologies leverage early-life experimental aging data (<14 months test time) and
abundant simulation data from a physics-based model to enable late-life estimation (2-4 years) of cell capacity and degradation
modes. The two estimation methodologies differ in how they leverage the cheap and readily available physics-based simulation
data:

1. Methodology 1, a data augmentation method, combines both the early-life experimental aging data and the simulation
data into an augmented dataset which is used to train a machine learning model to estimate the capacity and the state
of the three degradation modes.

2. Methodology 2, a delta learning method, first trains an estimator model using the simulation data to estimate the
capacity and state of the three degradation modes. Then, the predictions from the estimator model are corrected for
bias by the corrector model which is trained using the early-life experimental aging data.

The data augmentation methodology was first shown in our earlier work [30]. This paper expands on our previous work
by investigating the delta learning methodology and considering an additional year of newly collected aging data from the long-
term cycling tests. We perform extensive parametric studies to quantify whether the use of physics-based simulation data
improves SOH estimation model accuracy over simply using the available experimental data alone.

This work advances knowledge in the area of online battery degradation diagnostics by showing how data augmentation
and delta learning are effective methods to utilize data from a physics-based simulation model. Additionally, we investigate
the long-term evolution of both the full- and half-cell VQ curves for each of the 16 cells for all 3.5 years of data. A high
precision charger is used to accurately measure cell voltage and current, and half-cell curve analysis is used to compare the
observed degradation behavior across the different cycling conditions [31].

The rest of the paper is arranged in the following manner. Section 2 presents the experimental setup for aging data
acquisition. Section 3 covers the physics-based half-cell model and degradation mode quantification. Section 4 outlines the
different machine learning models used, their configurations, training datasets, and the evaluation criteria used to evaluate
model performance. Section 5 shows and discusses the results in estimating the health parameters (i.e., degradation parameters
and cell capacity). Section 6 summarizes the key ideas of this study and offers concluding remarks.

2 EXPERIMENTAL SETUP

We conducted a long-term cycle aging test on 16 fresh implantable-grade Li-ion battery cells. The high-quality prismatic
cells with a hermetic encasement are of lithium cobalt oxide/graphite (LCO) chemistry. The implantable-grade cells are used
in implantable neuromodulation devices with 10 or more years of targeted longevity. For confidentiality of the technology, the
capacity values were normalized throughout this study. The cells were cycled at two ambient temperatures and two discharge
rates, a total of four test configurations (see Table 1). A temperature of 37 °C was chosen to simulate the normal working
temperature of the implantable-grade battery cells, and 55 °C was chosen to accelerate the capacity fade while maintaining the
stability of the battery materials [32]. For each temperature, a charge C-rate of C/3 was used, and two discharge C-rates were
considered, i.e., C/24 and C/3. Charging was carried out via a constant-current (CC), constant voltage (CV) step, where the
cells were charged at C/3 to an upper cutoff voltage of 4.075 V, at which point charging continued at a constant voltage of
4.075 V until either the charge current was C/50 or the charge time reached 30 min. Following the CC-CV charging step, the
cells were CC discharged at C/3 or C/24 until the voltage reached a lower cutoff of 3.4 V. Compared to the nominal operating
temperature and discharge rate in an implantable application, 55 °C and C/3 conditions highly accelerated the aging of the cells
[11].

During cycling, a characterization test was conducted at an ambient temperature of 40 °C every 2 weeks during the first 3
months and every 4 weeks thereafter. To mitigate the effect of kinetics on the voltage curve, we characterize a battery cell at
an extremely low C-rate (i.e., C/50). At such a low C-rate, the voltage curves are approaching the thermodynamic voltage of
the battery cell. The main advantage of performing a low-rate characterization test in a lab setting is that the obtained voltage
curves better capture the degradation present in the cell with minimal noise or interference from other effects. In turn, this
treatment makes differential capacity and differential voltage analysis easier, as there is less noise in the signals. As a result of



lower signal noise, we can expect the proposed physics-informed machine learning models to have an easier time learning to
estimate the SOH of the cells.

The characterization test included four sequential steps: 1) CC and CV charge to 4.075 V at C/3 with a cutoff current of
C/50, 2) CC discharge to 3.4 V at C/50 and rest for 30 min, 3) CC charge to 4.075 V at C/50 and rest for 30 min, and 4) repeated
CC discharge to a voltage corresponding to 10% of the state of charge reduction at C/10 followed by a 1-hour rest period until
the cell voltage reached 3.4 V. The temperature (40 °C) and charge rate (C/50) were selected to be consistent with the test
condition of the half-cell data used for half-cell analysis [25].

The capacity evolution of the 16 battery cells is shown in Fig. 1. Cell C1 and C2 from group G1 and G3, and cell C3 and
C4 from group G2 and G4 were removed roughly halfway through the test for destructive analysis. The destructive analysis
was used to confirm that the fitted half-cell model degradation parameters matched the experimental results. Briefly, the group
G1 cells (C/24, 37 °C) exhibited the least capacity fade because of the mild ambient temperature and lower C-rate cycling
conditions. In contrast, the high ambient temperature used on the group G2 and G4 cells rapidly accelerated the capacity fade.
A more detailed discussion on the capacity fade plot and the corresponding degradation modes is presented in section 5.1.

The CC charge curve at step 3 of the characterization test was used to quantify the degradation parameters with half-cell
curve analysis. Both the cycling and characterization tests were carried out using a high precision battery cycler from
NOVONIX company [33]. The high precision cycler has both a lower noise floor and a higher measurement resolution than
most other cyclers. As a result, the recorded voltage curves at low C-rates (during characterization) have very little noise,
improving the accuracy of our differential voltage and differential capacity analysis described in the following sections.
However, the work in this study could likely be carried out using high precision cyclers offered by other companies or even
more standard testing equipment.

Table 1 Test matrix of the experimental data.

] Number

Group Charge rate Discharge rate Temperature of cells
Gl C/3 Cl24 37°C 4
G2 C/3 Cl24 55°C 4
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Fig.1 Capacity fade plots of cells tested at (a) 37°C and (b) 55°C. Each cell has anywhere between 17 and 40 data points,
depending on whether or not the cell has been removed for destructive analysis [25].



3 DEGRADATION MODES ANALYSIS AND SIMULATION MODEL

3.1 Degradation Modes

SOH is directly related to the aging of a Li-ion battery cell and can be interpreted on multiple levels (see Fig. 2). On the
first level, a cell’s aging can be observed as a reduction of cyclable capacity and power capability. Traditional SOH estimation
methods mainly focus on estimating SOH at Level 1. Changes in both capacity and power can be measured directly, making
quantification of battery SOH using Level 1 metrics straightforward. Level 2 comprises of the three main degradation modes
that contribute to capacity and power degradation. The three modes, LAMpg, LAMng, and LLI, cannot be quantified based on
direct measurement from a cell. To quantify the degradation modes, further analysis is required, e.g., half-cell curve analysis
and post-mortem analysis. The SOH estimation methods proposed in this study are able to estimate both the cell capacity (Level
1) and the state of the three degradation modes (Level 2). The third level includes different undesirable chemical and physical
processes that lead to the degradation modes. These chemical processes are caused/accelerated by different stress factors (Level
4), such as operational duration, temperature, charge and discharge current, and cutoff voltage.

A Li-ion cell’s degradation trajectory is highly dependent on its usage and environment. For example, a cell operating at
high temperatures may experience more rapid electrolyte decomposition than it would at room temperature. Combine high
temperature with long operating times, and a substantial loss of the cell’s available lithium inventory is likely. Consequently,
the loss of lithium inventory will cause a decrease in the cell’s available capacity. The LLI degradation mode includes
mechanisms which lead to the consumption of lithium ions, like lithium plating and SEI growth. These mechanisms consume
lithium ions, making them no longer available for cycling between the electrodes, ultimately leading to capacity fade.

Shown in Fig. 2, the LAMpg and LAMNng degradation modes describe electrode degradation mechanisms such as particle
cracking and loss of electric contact. These mechanisms create small areas of dead active material on the electrodes which are
no longer available for lithium insertion. The loss of active materials, both on the positive and negative electrodes, drive cell
capacity and power fade. Altogether, quantifying the state of each of the three degradation mechanisms over the life of a cell
can provides much more rich information about cell health, which can further improve technology for cell development, second
life use, and preventative maintenance.

Effect

Level 2 Loss of lithium Loss of active anode Loss of active cathode
Degradation Mode inventory (LLI) material (LAMyg) material (LAMgg)
SEIl growth and . -
grow " Graphite exfoliation Loss of electric contact
Level 3 decomposition
Degradation Mechanism Electrolyte Lithium plating/dendrite Electrode particle
decomposition formation cracking
Time High V_/SOC.q Low V .;/SOCq
Level 4
Cause High temperature Current load Mechanical stress

Fig.2 Simplified tree diagram from [27] showing the relationship between cell use/environment (Level 4), the
corresponding degradation mechanisms (Level 3), their connections to the degradation modes (Level 2), and the resulting
capacity/power fade (Level 1).

3.2 Half-Cell Model

To quantify the state of the three degradation modes over the life of a cell, we use a physics-based half-cell model like the
one reported in [34]-[36]. The half-cell model is a non-destructive degradation analysis method that estimates the state of the
three commonly reported degradation modes (i.e., LAMpg, LAMng, and LLI) in a Li-ion battery cell by reconstructing the
measured full-cell V (dV/dQ) vs. Q curve using positive and negative half-cell V (dV/dQ) vs. Q curves. The half-cell model is
based on the assumption that at low C-rates, where kinetic effects in the battery cell are negligible, the full-cell curve can be



estimated as the difference between the positive and negative half-cell curves. Figure Fig. 3 (a and c) illustrates the half-cell
model where the full-cell curve (black solid line) is calculated by taking the difference between the positive (blue dash line)
and negative (red dash-dot line) half-cell curves. It has been reported in the literature that changes in the shape and length of
the positive and negative half-cell V (dV/dQ) vs. Q curves relative to their initial measured curves are highly correlated with
the three main degradation modes [34], [37], [38]. To quantitatively measure and track the changes in the full- and half-cell
curves over the life of a cell, we define three “degradation parameters” used to describe the relative changes in shape and length
of the VQ and dV/dQ curves. We discuss the new degradation parameters after briefly introducing VQ and dV/dQ curve
analysis. The equations to reconstruct the full-cell VQ and dV/dQ curves from the half-cell curves are shown in equations (1)
and (2), respectively:

VC(Q)'Q:QC ~ Vp(qp)| _Qc=6p — Vn(qn)l _Qc=%n (1)
Qp—m—p Adn Tmn
v _ 1 dVp(dp) _ 1 ava@n) o
aQ lg—g, mp dap |, _Q=% mn dgn |, _Qc=n

mp Mn
where V. (Q.) is the full-cell VQ curve with Q. denoting the cell capacity, V(q) is the half-cell curve, q is the specific capacity
(mAh/g), m is the active mass (g), and & is the half-cell curve slippage (mAh). The subscripts p and n correspond to the
positive and negative electrodes (PE and NE), respectively. Slippage 8,/8,, quantifies the horizontal distance the left endpoint
of the positive/negative half-cell curve with respect to Q. = 0 mAh [24], [39].

To effectively use equations (1) and (2) for VQ and dV/dQ analysis, a solid understanding of the effect each model
parameter has on the full- and half-cell curves is important. Increasing (decreasing) &, will shift the half-cell curve to the left
(right). The active masses in the PE and NE (m, and m,) control the capacity (Q, = m,q, and @, = myq,) of the
corresponding half-cell curves, which shrink when the active masses decrease. To ensure the upper and lower cutoff voltages
of the simulated curves match those of the measured curves, we primarily look at the VQ curve and adjust the parameters so
the endpoints of the simulated curve are close to those of the measured curve. Likewise, to ensure the shape of the fitted full-
cell curve matches that of the measured curve, we adjust my, and m, while primarily looking at the dV/dQ curve because the
phase transition peaks in the dV/dQ curve are sensitive to the values of m, and m,. The higher sensitivity of the dV/dQ curve
to the values of m, and m,, makes fitting the shape of the measured curve easier. Figure Fig. 3 shows an example of the half-
cell VQ and dV/dQ curve analysis where each parameter has been annotated.

As mentioned earlier, the state of the three degradation modes cannot be determined via direct measurement. In order to
estimate the state of these modes, we first need to quantify them. To quantify the state of the three degradation modes in a Li-
ion cell, we identify three important “degradation parameters” from the half-cell model. The parameters provide a quantitative
link between a cell’s measurable VQ and dV/dQ curves, and its SOH (defined as the state of LAMpg, LAMng, LLI, and
capacity). The degradation parameters are m, and m,, which are used to quantify LAMpr and LAMNE, respectively, and the
lithium inventory indicator (LII), which is defined as LIl = Q, — (6, — &,), used to quantify LLI [25]. The active mass
parameters, m,, and my,, quantify both the loss of lithiated and delithiated active masses on the electrodes. Any lithium
contained in the lithiated LAM is included in the estimate of the total LLI. For instance, if there is a 10% loss in lithiated active
material in one of the electrodes (LAMpgnei) and 10% loss of lithium due to the solid electrolyte interface (SEI) growth (pure
LLI), the total loss of lithium inventory quantified by the LII parameter is 20%, and the total LAMpgne is 10%. The LAM
parameter used throughout this study is used to quantify delithiated LAM, whereas lithiated LAM can be quantified by a linear
combination of both LAM and LII. Practically, the increase of LLI results from the accumulation of parasitic reactions in the
cell that contribute to lithium inventory loss (e.g., SEI growth, electrolyte decomposition, and delamination of lithiated
electrode materials).
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Fig. 3 Half-cell model parameters and degradation parameters visualized and annotated on two separate half-cell VQ curve
analysis plots in (a) and (b). Plot (c¢) shows the corresponding dV/dQ curve derived from the fitted VQ curve in (a) and (b).

3.3 Degradation Mode Quantification and dQ/dV Curves

To quantify the degradation modes of the implantable-grade Li-ion cells over the entirety of the long-term aging
experiments, we fit the fresh half-cell VQ and dV/dQ curves to the curves measured from the cell characterization tests by
adjusting the four tunable parameters, m,, my, §,, and &, in the half-cell model. Manually fitting the half-cell model to these
two curves establishes the “true” values for my, my, &,, and 8, which define the three degradation parameters my, m,, and
LIl = Qp — (6, — 6,), and ultimately quantify the state of the three degradation modes. Figure Fig. 3 shows an example of
VQ and dV/dQ curve analysis with annotated half-cell model parameters. To accurately fit the half-cell model to the
experimental data, we adjust the four model parameters as follows.

1. Adjust the values of m, and §, according to the locations of selected dV/dQ features (peaks and valleys) and the
voltage reading in the VQ curve at the beginning of charging. We mainly focus on the first and the third peaks as they
are consistently visible throughout the long-term aging test. The VQ and dV/dQ curves are shown in Figs. A1-A4 and
the two peaks of interest are labeled (1) and (2), respectively.

2. Adjust the value of m, and &, according to the magnitude of the dV/dQ features (D) and (2)) and the voltage reading
in the VQ curve at the end of charging.

3. Repeat steps 1 and 2 as necessary until the fitted dV/dQ and VQ curves match as close as possible to the experimentally
measured curves.

We chose to manually adjust the parameters in the half-cell model using the VQ and dV/dQ curves because we found that
automatic fitting via least squares of the VQ curves produced results inconsistent with underlying physics interpretations of the
dV/dQ features’ evolution [25]. Furthermore, automatic fitting of the dV/dQ curves may be inaccurate because many of the
dV/dQ features (peaks and valleys) disappeared as the cells aged. We checked the quality of our parameter fit by closely
matching the voltage cutoffs on the VQ curve and refined the values of the half-cell model parameters by leveraging the larger
feature in the dV/dQ curve which did not disappear with aging, i.e., the first valley near the beginning of charging.

Using the method outlined above, we can determine the degradation parameters for each cell at every characterization test
in the last 3.5 years, with the exception of group G4 cells. The cells in group G4 were cycled with a high C-rate and high
temperature and therefore exhibited faster degradation, which caused the dV/dQ features to disappear at a certain time on test
and prevented any reasonable half-cell model fitting after that. Therefore, to keep the fitting as accurate as possible, we only
consider data from group G4 cells up to day 929.

As stated earlier, cells C1 and C2 from groups G1 and G3, and cells C3 and C4 from group G2 and G4 were removed for
destructive analysis at days 573 and 484, respectively. Destructive analysis is a common way to verify the fitted degradation
parameters from the half-cell model are consistent with open-cell results. The fitted degradation parameters are labeled as
“fitted” in Figure A10, A11, A12, and A13 in Appendix A.§ to represent that they are determined via the half-cell model. In
Section 5.1, we also present an in-depth analysis on the half-cell model fitting results to show the rationale and accuracy of the
fitting that was used to produce the fitted degradation parameters. Our earlier work [25] conducted the destructive analysis to
obtain measurements of the remaining active mass from each aged electrode. The measurements of remaining active materials
were compared to the fitted degradation parameter values of m,, and m, to check that the half-cell model was estimating values
which were close to the true measurements. In the destructive analysis, an aged cell was first disassembled to obtain the two



electrode materials. These electrode materials were then used to construct a pair of coin cells. To construct each coin cell, the
electrode material (either the positive or negative) extracted from the full battery cell was used as the working electrode, and
lithium metal was used as the counter and reference electrode. Then, we measured the capacities of these coin cells at the same
conditions as the characterization test (see Section 2), that is, by charging and discharging the coin cells with a C-rate of C/50
and a temperature of 40 °C. To derive the remaining positive/negative active mass of the aged full-cell, we divided the measured
capacity of a given coin cell by its electrode’s specific capacity. We have shown in [25] that the fitted positive active masses
were consistent with the open-cell results and thus verified our degradation modes quantification process that manually fit the
half-cell model.

Several studies have shown that changes in a cell’s dQ/dV curve are highly correlated to the capacity fade and the underlying
degradation modes LLI, LAMpg, and LAMNng [18], [28], [40]—[42]. That is, features extracted from the dQ/dV curves may be
predictive of cell degradation and can potentially be learned by a regression model. These studies proposed using manually
extracted dQ/dV features as input to a model which estimated cell capacity and the three degradation parameters. Manual
feature selection has the benefit of finding the best feature or a few better features that are highly correlated to the capacity fade
of the battery cell from the dQ/dV curves. Common extracted features are the voltage and incremental capacity value of the
maximum intensity peak in the dQ/dV charge curve, likewise, the voltage and incremental capacity value of the minimum
intensity peak from the dQ/dV discharge curve, and for many chemistries, tracking the values of the dQ/dV curves at a fixed
voltage (often 4.0 V) is of interest because it is highly correlated to loss of positive active material [18].

Despite previous literature showing strong correlations between manually extracted features from dQ/dV curves and the
degradation modes, we opt to avoid this process altogether and use the full dQ/dV curve as a vector of input features to the
machine learning models. Using the entire dQ/dV curve as an input ensures our methodology applies to other battery
chemistries without the need for advanced domain knowledge. In some cases, dQ/dV curves can evolve quite heavily at high
degradation and cause some manually selected features to fade out. Likewise, cell degradation is highly complex, and some
manually extracted features may fail to fully capture the unique changes which appear in the dQ/dV curve as a cell ages. This
is best explained with Fig. 4, where we simulate using the half-cell model the dQ/dV curves of a cell which has undergone a
20% decrease from the initial value (loss) for a single degradation parameter while the other two are held constant at a 0%
decrease. Depending on the extent to which each degradation mechanism contributes to total cell degradation, the shape of the
degraded dQ/dV curve relative to a healthy dQ/dV curve will appear differently. Altogether, using the full dQ/dV curve as
input to the machine learning models avoids many problems associated with manual feature selection and improves our
methodologies’ applicability to other battery chemistries without extensive changes to the models.

Briefly, some limitations of this work are that it requires using characterization tests under low C-rates and specific cycling
(charge/discharge) conditions. That is, the method does not account for cells which may age under different charge/discharge
profiles. Future work could extend the method to consider regular cycling data, higher C-rates, and different charge/discharge
profiles.
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Fig. 4 Simulated dQ/dV curves for a fresh cell and three aged cells, each with a 20% decrease from the initial value of a
single degradation parameter.



3.4 Half-Cell Model for Data Generation

Just as the half-cell model can infer the values of the degradation parameters by fitting the measured full-cell VQ and dV/dQ
curves, it can also be used in reverse to generate a full-cell VQ curve from a set of degradation parameter inputs. In turn, dV/dQ
and dQ/dV curves can be obtained from the generated VQ curve. To create “simulated” input/output training data pairs of
dQ/dV curves and degradation parameter tuples, we first define a design space of the three degradation parameters (mp, my,
and LII), where the upper and lower limits are selected to be slightly larger and smaller than those observed in the experimental
cells, respectively. Any sample in the three-dimensional design space represents a combination of the three degradation
parameters. Next, we use Latin hypercube sampling to create tuples of degradation parameter values sampled from the
predefined design space. Then, one by one, the tuples of degradation parameter values are input to the half-cell model, and the
corresponding VQ curve is obtained for the input. In this way, a single degradation parameter tuple only has one unique VQ
(dQ/dV) curve. These generated input/output pairs of dQ/dV curves and degradation parameter tuples are referred to as the
physics-based “simulation data” throughout this paper. In the next section, we discuss the SOH estimation problem: estimating
the values of these degradation parameter tuples given a dQ/dV curve as input.

The half-cell model equations (see Section 3.2) are implemented in a hand-crafted MATLAB script for simplicity. In the
script, the many randomly generated degradation parameter values are recursively evaluated in the set of equations to generate
the corresponding VQ, dV/dQ, and dQ/dV curves used in our machine learning pipeline.

4 SOH ESTIMATION PROBLEM FORMULATION

4.1 Machine Learning Models for SOH Estimation

Consider the SOH estimation problem is to learn the relationship between the inputs and outputs of N distinct training
samples {x;,y;}\, , where x; € Rl and y; € R”. Here, L is the number of input features, where each feature is a dQ/dV value
sampled at an evenly spaced voltage interval across the entire dQ/dV curve. Likewise, T is the number of tasks, equal to four
in this study, as we aim to estimate cell capacity @ and the values of the three degradation parameters my, my, and LII,
corresponding to the dQ/dV curve input. Then, the tth output can be represented by an output function y, = f;(X), where t =
1,..,T.

In this work, we consider four different machine learning models, two parametric and two non-parametric. To keep the
algorithms lightweight and easily embeddable on a BMS, we opt to use traditional machine learning models instead of more
complex deep learning ones. More complex deep learning models can sometimes have better predictive accuracy, but they
require far more training data than we have available (only 16 cells, roughly 450 datapoints altogether). The two parametric
models employed for the SOH estimation task are multi-task versions of the popular lasso and elastic net regression models.
These two models were selected because they are easy to implement, have built-in variable selection and regularization, and
have a small number of parameters, making them computationally efficient and easily embeddable on a BMS. By
simultaneously considering the fitting of 7 tasks, these models may learn a more general representation of the data, which may,
in some cases, help improve the model’s performance on new, unseen test data. Likewise, the linear nature of these models
allows them to extrapolate beyond the training data distribution more easily, making them excellent candidates to accurately
predict late-life cell degradation. Detailed mathematical explanations of the lasso and elastic net models can be found in
Appendix A.l. In each model, there exists a parameter which controls the extent that weight regularization is applied during
training. Since elastic net has two regularization terms, there is an additional parameter which balances the ratio of the two
applied weight regularization terms. The weight regularization hyperparameters help prevent overfitting of the training data,
which can lead to poor performance on training data but better performance on unseen test data. In both cases, these
hyperparameters need to be optimized prior to testing. For each of the methods outlined in Sections 4.3 and 4.4, a unique cross-
validation study was run 50 times using a dataset which was carefully selected to be a fair combination of all the data and
methods we aim to test in this study. After determining the hyperparameters for the two methodologies, they remain fixed for
all the tests.

The first of the non-parametric models employed for the SOH estimation task is a multi-output Gaussian process (MOGP)
regression model. Analogous to the multi-task lasso and elastic net models, the MOGP was chosen because it considers the
covariance between tasks, potentially leading to a more generalizable model. In this study, the commonly used radial basis
function (RBF) kernel is used for all MOGP models. During training of the MOGP models, the kernel parameters are learned
from the data, and as a result, no manual hyperparameter optimization is needed. To enable the multi-output structure of the
Gaussian process, a symmetric intrinsic model of coregionalization (ICM) is used to learn the relationships between tasks. The
ICM method uses another GP model to learn the covariance between tasks, enabling multiple outputs. For a brief introduction
to this concept, and related Gaussian process mathematics, see Appendix A.2. For a more detailed description of the intrinsic
model of coregionalization, see [43].



The second of the non-parametric models employed is an extreme learning machine (ELM). An ELM is a single hidden
layer feedforward neural network with random input weights and biases that do not change throughout the training process.
The ELM was selected because its underlying neural network structure allows it to approximate any complex non-linear
mapping directly from input samples without having to perform the traditional lengthy backpropagation training process of
typical neural networks. Neural networks like ELM are not known for their extrapolation, so it will be useful to examine them
for use as SOH estimation models, especially in a scenario with limited training data. A detailed description of the mathematical
formulation for an ELM can be found in Appendix A.3. For an ELM model, the main tunable hyperparameter is the number of
hidden neurons in the model. To select the optimum number of hidden neurons, a cross-validation study was run 50 times using
a selected training and validation dataset similar to lasso and elastic net. The optimization was done independently for each of
the two different methods proposed in Sections 4.3 and 4.4. Once the optimum number of neurons is found, it is fixed for all
training configurations and tests.

4.2 Input and Output Variables

This study aims to estimate the three degradation parameters and capacity of a cell based on its dQ/dV curve by using
machine learning models to learn the correlation between the two. The input features of the machine learning models are the
dQ/dV readings, calculated by differentiating the capacity over the voltage. A sampling interval, AV, is defined to calculate the
dQ/dV value at the specified voltage, [Vic, Vic + AV, Vic + 2AV, ..., Vic + (L — 1)AV], within the lower and upper cutoff

voltages (V¢ and Vyyc, respectively), where (L — 1) = l%] Here, dQ/dV analysis possesses several benefits compared

to VQ analysis and dV/dQ analysis. Compared to VQ analysis, dQ/dV analysis transforms the phase equilibrium of active
electrode materials to identifiable peaks in the dQ/dV curve which are sensitive to small changes in the materials. Machine
learning models can learn these small changes to improve diagnostic accuracy. Unlike dV/dQ and VQ curves, the dQ/dV curve
is dependent on a fixed, directly measurable voltage range (e.g., 3.4 V —4.075 V considered in this study) instead of a capacity
range. Using a voltage basis instead of a capacity basis is ideal because the capacity could vary over the course of cell aging
and be unmeasurable due to an unknown initial capacity in a partial charge cycle. The dQ/dV values are sampled at fixed evenly
spaced voltages between 3.4 V —4.075 V, and the L sampled points are considered the input features to be fed into a machine
learning model. The larger the value L, the higher resolution the dQ/dV curve possesses.

Two datasets are considered in this study: 1) a simulation dataset generated using the half-cell model and 2) an
experimental dataset collected from the 16-cell aging test described earlier in Section 2. Table 2 shows the overall size and
origin of each dataset. Use of the datasets is described in the following sections.

Table 2 Summary of the two datasets used in this study.

Dataset Simulation data Experimental data
Number of cells NA 16
Data size 10,000 434 (up to 3.5 years of aging test)
Source Half-cell model Implantable-grade Li-ion cells (see Table 1)

4.3 SOH Estimation Methodology 1 — Augmentation

Data augmentation refers to a number of methods which aim to improve machine learning model accuracy by increasing
the number of training data available [44]-[46]. One popular method of performing data augmentation is to perturb the existing
dataset with noise, quickly doubling the number of samples. Another method, and the one used in this work, is to use a simple
and computationally efficient physics-based simulation model to generate many new input/output samples that are similar to
the original dataset.

In the context of this study, if we train a machine learning model with only the early-life battery degradation data from the
cycling experiment (roughly 60 data points), we do not expect the model to provide an accurate estimation of the battery cell’s
SOH at late life because the degradation trends change over time. The limited data combined with the complex and non-linear
degradation trends observed in Li-ion cells makes this SOH estimation task challenging. With this in mind, we augment the
training dataset by including simulation data from the physics-based half-cell model. The simulation data, sampled from the
design space described in Section 3.4, will expand both the observed range of degradation and the number of samples seen by
the machine learning model. The augmented dataset will contain more information about the future degradation path of the
experimental cells than was learnable from only the early-life experimental data. The simulation data from the half-cell model
can indirectly incorporate degradation physics into the data-driven models, thus facilitating more accurate estimation of the
late-life health parameters. In this way, the augmented machine learning model directly leverages the experimental data and
simulation data to learn the observed degradation trend. A high-level overview of this methodology is shown in Fig. 5.

To extensively evaluate the data augmentation methodology, we create and test a number of training dataset configurations
to study the effect of dataset composition on model performance. We label each configuration as EXPNgyp SimNg;,,,, where
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Ngxp is the number of experimental data points (early-life data) from each cell included in the training dataset and Ng;y, is the
number of randomly selected simulation data included in the training dataset. To thoroughly understand the performance of the
model with different combinations of simulated and experimental training data, we implemented the datasets described below.

In the first few dataset configurations, we explore baseline models trained using simulation data only (Ngxp = 0). These
configurations explore the accuracy of the half-cell model in its ability to mirror the true degradation observed in the
experimental cells. Next, we investigate a second set of baseline models trained using only early-life experimental data (Ng;,, =
0). These tests help expose the models’ extrapolation limits in estimating late-life degradation. To form a standard across the
baseline models and the two proposed methodologies, we fix the early-life experimental data to be the first five data points
from each cell (Ngxp = 5). For the experimental data used in this study, five data points are equivalent to approximately three
months of lab testing. Using only five experimental data points from each cell mimics a scenario where resources are scarce
and testing time is limited.

In some cases, simulation data from a physics-based model may not accurately describe all phenomenon observed in the
experimental data. In this case, combining dissimilar simulation data with accurate experimental data only serves to dilute the
concentration of information from the experimental data. Consequently, a machine learning model trained on the combined
dataset will not learn the correct trend of the experimental data because of the “noise” introduced by the simulation data. To
understand the extent of this effect on the SOH estimation problem, in the next few dataset combinations, we limit the amount
and type of simulation data augmented to the training dataset. The large 10,000 datapoint simulation dataset is filtered to only
contain data points corresponding to the highest 20% degradation in my,, my,, and LII. This new subset of high-degradation
data is labeled as HiDeg (short for High Degradation). It is believed that by combining the early-life experimental data with
simulated HiDeg data, we may be able to coerce the machine learning models into learning a more accurate degradation trend,
further increasing their ability to extrapolate and accurately estimate late-life SOH. By choosing to add a limited number of
HiDeg simulation data to form an augmented dataset, the information in the experimental dataset may not be diluted as severely
as some of the other dataset combinations mentioned earlier. In turn, this may improve model prediction accuracy.

4.4 SOH Estimation Methodology 2 — Delta Learning

Delta learning is a bias-correction method that is often used with physics-based models. In delta learning, the inaccuracies
and bias of a physics-based model are learned by a secondary machine learning model, so that they can be corrected, and the
overall delta learning model is then more accurate [47], [48]. In a more general sense, delta learning involves an estimation
model and a corrector model, where the two models are used in series to yield more accurate predictions.

In our specific implementation of delta learning, the estimation model will be a machine learning model trained using
simulation data to predict the late-life capacity and degradation parameters of the experimental cells. However, the simulation
is largely imperfect and does not accurately represent the heavily aged dQ/dV curves of the experimental cells, so the estimation
model alone cannot accurately estimate the experimental data. To account for this, a corrector machine learning model is trained
using light-degradation data to learn the “delta” or prediction error of the estimation model on the light-degradation data. The
corrector model will take advantage of the available early-life experimental data and will use it to learn the estimation model’s
prediction bias. In testing, the two models predict in tandem, where the final prediction is the addition of the estimation and
corrector models. This methodology is illustrated in Fig. 5. In the delta learning methodology, the early-life experimental data
is leveraged to train the corrector model to learn the difference between the estimator predictions and the observed experimental
data. This method of using the available experimental data is different from data augmentation in that the two datasets remain
separate. This difference will make for an interesting comparison.

In this implementation, the input to both the estimation and corrector machine learning models is solely a dQ/dV curve. In
some instances of delta learning, it may be beneficial to include the estimation model’s prediction as input to the corrector
model. However, in our preliminary testing, it was found that the many dQ/dV values provided more than enough information,
and introducing the estimation model’s output as an additional input feature had little effect on accuracy or generalization
performance.
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Fig. 5 Block diagram describing the proposed baseline, augmentation, and delta learning methodologies for SOH
estimation.

S RESULTS AND DISCUSSION

5.1 Half-Cell Model Fitting and Degradation Analysis

Here, we discuss the half-cell model fitting results at three characterization tests of interest: the first characterization test
(EXP1), the fifth characterization test (EXPS5), and the characterization test just before a few of the battery cells underwent the
destructive analysis. In Appendix A.4, we show plots of both the VQ and dV/dQ curves from the half-cell fitting process for
cell C1 from each of the four groups. We do not show the dQ/dV curves here as they were not used in the half-cell fitting
process. For brevity, and because the implantable-grade Li-ion cells are extremely consistent cell-to-cell in the observed
capacity fade plot in Fig. 1, we only plot cell C1 from each group, and our analysis hold for all the cells.

Figure Al in Appendix A.4 shows the VQ and dV/dQ fittings of battery cell G1C1. The first characterization test shows
the fitting results when the battery cell is fresh and healthy (see Fig. Al (a) and (d)). Next, we show the fifth characterization
test which is representative of roughly 3 months of cycling (see Fig. Al (b) and (e)). Third, the final set of plots shows the
fitting of the half-cell curves to the experimental data just before the destructive analysis of a few cells (Fig. Al (¢) and (f)).
For each plot, we included the experimental data, the simulated curve from the half-cell model, and both the positive and
negative half-cell curves used in the half-cell model. The plotting structure is consistent across every group.

For group G1 cells, the experimental and fitted curves agree with each other very well. This cell group has the least
degradation among all the four test configurations shown in Section 2 because these cells were cycled at the lower temperature
(37 °C) and lower discharge C-rate (C/24). As shown in Figs. Al (d—f), the dV/dQ curves of the experimental cells at test 19
(day 573) look very similar to those at test 1. Likewise, the fitted VQ curves (labeled as “simulation” in the legend) almost
completely overlap with the experimental curves. This observation indicates the half-cell curve has an excellent fit.
Furthermore, the two peaks used to gauge the fitting accuracy in the dV/dQ curve (labeled (1) and (2)) match excellently
between the simulated and experimental curves. Turning attention to the capacity fade, we observe a roughly six percent
decrease in available capacity of group G1 cells at day 573. Most of the observed capacity-fade is attributed to an increase in
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LLI because we observe minimal shift between the positive and negative half-cell curves. Looking at the capacity-fade plot in
Fig. 1 (a), the capacity-fade trend of group G1 cells first exhibit a high rate of degradation which quickly slows down at a
continuously decreasing fade-rate. This consistently decreasing fade-rate is best described as following a square-root of time
model which is known to describe SEI growth [49].

The cells in group G2 were tested at the same discharge C-rate as group G1 (C/24) but were subjected to a higher ambient
temperature of 55 °C. Overall, the fitted curves look like the experimental ones with the exception of the VQ curves at higher
degradation (Figure A2 (b) and (c)). Specifically, we can see in Fig. A2 (b) and (c), the middle of the fitted VQ curve has more
curvature downwards compared to the experimental one. This larger curvature was likely caused by faster positive active
material loss, which caused the positive half-cell curve to shrink and thereby changed the shape of the simulated full-cell VQ
curve in this region. The disagreement between the experimental VQ curves and the half-cell model’s VQ curves is due to
electrode aging. The positive half-cell curve is measured from a fresh electrode which is unlike the aged electrodes of the
experimental cells. Our previous study showed that using an aged positive half-cell curve in the half-cell model significantly
reduced the disagreement between the experimentally measured VQ curve and the half-cell model’s VQ curve [25]. Looking
at the capacity-fade of group G2 cells, we observe a roughly 11% decrease in available capacity at day 484 (see Fig. 1 (b)).
Like the group G1 cells, the capacity-fade of group G2 cells was also found to follow the square-root of time model. This
indicates that the main contributor to the observed capacity-fade was once again LLI. However, in contrast to group G1 cells,
the capacity-fade of group G2 cells is faster due to the higher ambient temperature.

For the cells in group G3, the simulated VQ curves look similar to the experimental VQ curves. However, the simulated
dV/dQ curves deviate significantly from the experimental dV/dQ curves. This disagreement in the evolution of the dV/dQ
curves is likely a result of the cells undergoing faster positive active material loss, which caused the left endpoint of the positive
half-cell curve to shift to the right, and the left endpoint of the negative half-cell curve to shift to the left. The first valley of the
dV/dQ curve has a higher dV/dQ value than cells in other groups, even at the first characterization test. Therefore, the rising of
the first valley’s value was in part caused by the shifting of both the positive and negative half-cell curves, and some other
internal modes that the half-cell model cannot explain. For the battery cells in group G4, neither the fitted VQ curves nor the
fitted dV/dQ curves match the experimental data well. Group G4 cells exhibit similar behavior to group G3 cells in that there
is significant positive active material loss. Our analysis attributes the large differences in the fitted and experimental curves to
the disappearance of characteristic features caused by the relatively heavy aging of the cells in these two groups. The rising
and disappearance of the first valley (before peak (1)) of the dV/dQ curve is largely due to the leftward shift of the negative
half-cell curve and the rightward shift of the positive half-cell curve. Note that the shifting of the positive half-cell curve is
more obvious in group G4 cells, indicating a faster positive active mass loss than group G3 cells. Looking at the capacity-fade
trends of group G3 and G4 at days 573 and 484 in Fig. 1, respectively, we observe there are two distinct fade trends. In group
G3 cells, the initial fade-rate is higher, and then proceeds to decrease with time. This capacity-fade trend is similar to groups
G1 and G2 where the capacity-fade rate is largely found to follow the square-root of time SEI growth model. However, group
G4 cells were found to have a fast initial fade-rate which did not decrease much over time. This sustained faster fade-rate is
likely caused by the combination effect of LLI and LAM [25].

We further analyze the long-term degradation data collected in this study by plotting the evolution of the fitted full- and
half-cell VQ curves over time. Once again, due to the very small cell-to-cell variation observed in the cycling tests, we only
plot cell C1 from each group, and our analysis holds for all cells. Figure A5 shows complete voltage curve results from our
fitting of cell C1 from groups G1 and G3 (C/24 @ 37 °C and C/3 @ 37 °C respectively). At the top, the fitted voltage curves
are shown from test 1 to test 19 where a lighter color indicates the voltage curves of later characterization tests. Both the full-
cell and the positive half-cell voltage curves from each group are similar in structure and evolution. However, we observe a
larger negative active mass loss when the battery is cycled at a higher C-rate (see figure A5 (b)). The faster negative active
mass loss at higher C-rates could be attributed to more material degradation (e.g., graphite particle cracking) caused by a larger
number of charge-discharge cycles. During the battery charge-discharge process, the electrode materials undergo intercalation
and deintercalation processes, which cause slight expansion and contraction of the material. The continuous expansion and
contraction may induce cracks in the material and could, in some cases, cause local delamination [27], [50].

Figure A6 shows the VQ curve evolution for cell C1 from groups G2 and G4 (C/24 @ 55 °C and C/3 @ 55 °C respectively).
The voltage curves of group G2 look similar to those of group G1, albeit with group G2 experiencing more capacity fade driven
by the higher ambient temperature. The higher aging factors (both higher temperature and C-rate) caused group G4 cells to
exhibit a higher degree of degradation, manifested through the obvious positive half-cell curve shrinkage and shift throughout
the aging test. However, the increase in temperature did not necessarily increase the rate of negative active mass loss. This is
evident when comparing the shrinkage of the negative half-cell curves of group G4 and group G3. The negative half-cell curves
of both groups look similar. These results may indicate that cycle number, instead of temperature, is the key driver to negative
active mass loss.

Altogether, we find that during normal working conditions (37 °C with a discharge C-rate less than C/24), the implantable-
grade Li-ion cells tested in this study could last for a very long time with negligible capacity fade (see Fig. A5 (a) and Fig. 1).

13



5.2 Error Metrics

To evaluate the performance of the machine learning models, we perform a four-fold cross-validation study. In particular,
the complete experimental dataset consisting of 16 cells is divided into four mutually exclusive folds. The test data in a single
fold consists of one battery cell (see Table 3) from each group in the test matrix (Table 1). The overall test errors EQIQMSE% of

the machine learning models are calculated by taking the average of the individual health parameter test errors across the four
folds:

All — 1 4 Ng [(Pti=Yei o l?
€L RMSE% = \/Zﬁlek D=1 e [( ”» ) x 100 A)] (3)
where the subscript t denotes the tth health parameter, y,; and y;; denote the predicted value and true value for the tth

degradation parameter at the ith test point, respectively, and N, denotes the number of test samples. Using a normalized error
metric is important when the outputs have different magnitudes and comparison among them is desired.

Table 3 Summary of online cells (test data) in each cross-validation fold.

Discharge rate C/24 C/3

Temperature 37°C 55°C 37°C 55°C
Fold 1 G1C1 G2C1 G3C1 G4C1
Fold 2 Gl1C2 G2C2 G3C2 G4C2
Fold 3 G1C3 G2C3 G3C3 G4C3
Fold 4 Gl1c4 G2C4 G3C4 G4C4

For every model configuration shown in the next sections, the machine learning models are run 50 times, and the errors are
averaged over the 50 runs. Computing an average RMSE% over 50 runs ensures we examine more stable behavior of the
models. This method will better account for the random selection of simulation data points that are included in the model’s
training procedure.

5.3 Baseline SOH Estimation Models

For both the data augmentation and delta learning methodologies, we are most interested in determining whether the
inclusion of simulation data from the physics-based half-cell model improves machine learning model accuracy at the SOH
estimation task. Therefore, we first establish a set of baseline models and benchmark their performance for later comparison.
Figure Fig. 6 shows the health parameters estimation accuracy for models trained on either simulation data only or experimental
data only. These training data configurations represent naive approaches to the SOH estimation task. The models trained with
simulation data only (SimX EXPO0) roughly represent the maximum accuracy of the half-cell model in its ability to accurately
estimate the degradation trends observed in the experimental cells.

Briefly, the simulation dataset is generated using a hand-crafted MATLAB script where the 10,000 degradation parameter
values are drawn randomly using Latin hypercube sampling (see Section 3.4) and are input into the half-cell model equations
to generate the corresponding dQ/dV curves used for training the machine learning models. The simulation is extremely quick,
as the half-cell model is not overly complicated and can be considered a simple and computationally efficient physics-based
model.

As described in Section 4.2, the simulation dataset encompasses a much wider range of degradation scenarios than the
early-life experimental dataset. However, the models trained only with simulation data performed worse when compared to
those trained only with early-life experimental data. This lower accuracy can be attributed to the fact that the half-cell model,
being a simplified, largely imperfect physics-based model, cannot accurately reconstruct the dQ/dV curves of the experimental
cells, especially when the cells have aged heavily (see Fig. 7). In Fig. 7, the locations of features in the simulated dQ/dV curves
roughly match those in the experimental dQ/dV curves; however, the magnitudes are vastly different. With inaccurate dQ/dV
curves as input, the machine learning models have difficulty accurately estimating the degradation parameters. We have
discussed such observation in our previous paper [25]. Due to the disagreement between the simulation and the experimental
data, the health parameters estimation errors in Fig. 6 (a-d) do not possess clear decreasing trends as the amount of simulation
data increases.

In contrast, the estimation errors of the models trained with only early-life experimental data (EXPX Sim0) show obvious
decreasing trends as more experimental data are used for training. However, using 12 or more experimental data points (an
approximately 14-month or longer test time) is often not feasible because of the extensive time, money, and labor required to
perform the tests. In response to this issue, and as previously mentioned, we select EXPS5 as the standard amount of experimental
data used for both data augmentation and delta learning. As noted before, the first five data points from each cell account for
approximately three months of test time.
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Fig. 6 RMSE % of models when trained exclusively on half-cell model simulation data for (a) Lasso, (b) MOGP, (c)
ELM, and (d) Elastic net. RMSE % of models when trained exclusively on experimental data for (e) Lasso, (f) MOGP, (g)
ELM, and (h) Elastic net.
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Fig. 7 Comparison of experimental and simulated dQ/dV curves where the simulated curves are randomly selected from
either (a) the entire simulation dataset or (b) the high-degradation dataset. For clarity, the early-life EXP data are plotted in
a different color so that the evolution between early- and late-life experimental dQ/dV curves is clearer.

5.4 Physics-Informed SOH Estimation Models
Table 4 summarizes results from extensive parametric studies on the data augmentation and delta learning methodologies.
The parametric studies investigate using different amounts of simulation and experimental data to train the machine learning
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models. Detailed plots and explanations of the studies performed can be found in Appendices A.5—A.7. In Table 4, we
summarize the best performing dataset combinations for each machine learning model and methodology. From Table 4, it is
evident that both data augmentation and delta learning are successful methods for improving SOH estimation accuracy. Every
machine learning model tested (except ELM delta learning) benefits from including the physics-based simulation data into the
training procedure, evident by the lower RMSE% values compared to the baseline models.

The minor change in RMSE% of ELM and MOGP with the delta learning methodology is due to the limited extrapolation
ability of the individual models. The MOGP and the ELM models are known to not extrapolate well because of their
mathematical formulation. Furthermore, in the delta learning method, the two datasets are split up, and the estimation and
correction models can only train on either the simulation data or the early-life experimental data. This treatment creates a
separation of information, where each model in the delta learning method is limited in what data it sees, making extrapolation
difficult. The MOGP and ELM estimation models trained using simulation data only struggle to accurately and consistently
predict the late-life degradation parameters. As a result, the MOGP and ELM corrector models have difficulty improving the
estimator models’ predictions. Altogether, the two-step process with unshared information between datasets made this method
far less effective for the MOGP and ELM.

In contrast, the lasso and elastic net methods perform better with the delta learning method because they already extrapolate
well using the simulation data. In addition to this, they can also take advantage of the early-life experimental data with the
corrector model. Both lasso and elastic net can extrapolate the estimation model error learned from the early-life data to late-
life, yielding lower prediction errors.

Table 4 Estimation accuracy of best performing machine learning models.

Model Methodology Training Data my my LIl 0 Mean
Lasso Baseline EXP5 Sim0 8.55 2.75 3.68 4.74 4.93
Lasso Augmentation EXP5 Sim60 8.49 5.30 1.39 1.68 4.21
Lasso Augmentation EXP5 HiDeg Sim20 5.43 4.05 1.63 2.12 3.31
Lasso Delta Learning EXPS Sim500 7.50 3.88 1.26 0.76 3.35
MOGP Baseline EXP5 Sim0 10.3 5.05 4.18 4.58 6.03
MOGP Augmentation EXPS Sim80 5.51 4.59 1.37 0.49 2.99
MOGP Augmentation EXPS HiDeg Sim60 5.06 4.72 1.43 0.68 2.97
MOGP Delta Learning EXP5 Sim300 8.15 7.14 1.98 0.82 4.52
ELM Baseline EXP5 Sim0 7.41 5.71 2.33 1.71 4.29
ELM Augmentation EXP5 Sim80 5.39 4.73 1.40 0.53 3.01
ELM Augmentation EXP5 HiDeg Sim60 4.44 491 1.58 0.59 2.88
ELM Delta Learning EXP5 Sim100 6.10 6.88 2.28 2.35 4.40
Elastic net Baseline EXP5 Sim0 8.05 2.44 2.73 3.76 4.25
Elastic net ~ Augmentation EXP5 Sim20 8.55 3.99 1.15 1.19 3.72
Elasticnet ~ Augmentation EXPS HiDeg Sim10 4.98 3.40 0.74 1.05 2.54
Elasticnet  Delta Learning EXPS Sim500 3.66 5.73 1.17 0.40 2.74

Data augmentation with high-degradation simulation data proves to be the most effective method to improve SOH
estimation accuracy for every machine learning model tested. The most significant improvement is observed in MOGP, with
over a 50% reduction in RMSE% compared to the baseline. For lasso, elastic net, and ELM, the addition of high-degradation
simulation data generally helps decrease estimation error, but the performance gains are not as large as MOGP. The large
improvement in performance for MOGP is attributed to the increased size and concentration of the dataset the model is trained
on, namely HiDeg simulation data. This phenomenon is best described with Fig. 8. In Fig. 8 (a), we see a visualization of the
simulation data included in the training dataset of any given data augmentation model. The data are scattered throughout the
degradation parameter space and act more like noise instead of helping the machine learning models learn the correct
degradation trends. In contrast, the HiDeg simulation data pictured in Fig. 8 (b) are all clustered in the same region. As a result,
the machine learning models are able to interpolate between the early-life experimental data and the high-degradation
simulation data. Compared to normal simulation data, the HiDeg models learn a degradation trend that more closely resembles
the experimental data, making their predictions more accurate. Augmenting each model’s training dataset with HiDeg
simulation data incorporates physical knowledge of cell degradation, enabling more accurate estimation of the late-life health
parameters.
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Fig. 8 (a) A single realization of the randomly selected simulation training data, and (b) a single realization of the
randomly selected high-degradation (HiDeg) simulation data, both plotted in the degradation parameter space alongside the
experimental data.

In selecting the best model, we chose to prioritize all the four SOH estimation tasks equally and selected the best model
based on average RMSE% across the four estimation tasks. With these criteria, the best model between the two proposed
methodologies is an augmented dataset elastic net model trained with five early-life experimental data and ten high-degradation
simulation data. This model achieves an average prediction error of 2.54 RMSE% over the four estimation tasks. The estimation
error on late-life LIl and Q is excellent, with RMSE% of 0.74 and 1.05, respectively. Below in Fig. 9, we visualize a single
instance of the model’s parameter predictions. The normalized degradation parameter and capacity predictions vs. time are
plotted for every cell and group in Appendix A.8. We can see that the capacity and LIl estimation tasks are rather trivial when
the model is given even very limited experimental data. This excellent performance may be due to the increased degradation
trend information given to the model by including the high-degradation simulation data. Furthermore, there may be a stronger,
more easily learned correlation between the high-degradation simulation dQ/dV curves and the cell capacity, which leads to an
increase in model performance. More importantly, the best elastic net model did well in estimating the loss of active material
on the positive and negative electrodes. These two estimation tasks are not trivial, as the two degradation parameters (m, and

m,) are not directly correlated to the cell’s capacity and exhibit much more complex degradation trends.
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Fig. 9 Normalized estimated vs fitted (true) health parameters predictions for: (a) my, (b) my, (¢) LII, and (d) Q, from the
best performing model (elastic net Delta Learning when trained with only the first five experimental data points and ten high-
degradation simulation data, EXP5 HiDeg Sim10). In each plot, the predicted health parameters are divided into the four
battery groups as shown in Table 1 and Fig. 1.

We also highlight the high accuracy at which all the models and methods were able to estimate capacity. Looking back at
Fig. 6(e,f,g,h), the models trained using only simulation data were still able to estimate experimental cell capacity with
remarkable accuracy. The highest recorded RMSE% of 7.1 from the lasso model EXPO Sim50 is reasonable considering the
model trained on limited simulation data. The overall accuracy of the capacity estimation task for models trained only on
simulation data highlights the usefulness of the half-cell model simulation data. While not perfect, the half-cell model was still
able to accurately simulate many VQ and dV/dQ curves under many specific combinations of degradation parameter values
which correspond to specific capacity fade trajectories. The machine learning models easily learned the relationship between
the simulated curves and the state of cell capacity. Perhaps even more useful is the ability of the GP model to predict the mean
and standard deviation of a Gaussian distribution for a given capacity measurement. Below in Fig. 10, we visualize the GP-
predicted Gaussian distributions (probability density functions) of capacity for Cell 1 from each group. We plot every fourth
capacity measurement and prediction for clarity. The GP model is the best performing, trained using data augmentation with
dataset formulation EXP5 HiDeg Sim60. Since the GP model was trained on the early life data, we observe that the first few
predictions have very narrow Gaussian probability density functions, indicating little uncertainty about the capacity values.
The further away in time we go from the training data, the wider the Gaussian probability density functions become, indicating
higher uncertainty in the predicted capacity measurements.
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Fig. 10 Every fourth capacity measurement (for distribution clarity) and predicted capacity distribution from the GP model
for CV Fold 1. The GP model outputs a mean and standard deviation for every prediction, which are visualized as a Gaussian
probability distribution, indicating the uncertainty in the capacity prediction.

Last, we briefly mention that in testing, using the multi-output version of each machine learning model (as opposed to
training four individual models) did not provide a substantial improvement in SOH estimation accuracy. This is likely because
the information relating two tasks is uninformative [43]. For example, cell capacity decreases almost one-to-one with the LII
degradation parameter, but the relationship is mostly uninformative, because both are accurately predicted regardless of training
style. The machine learning models were unable to extract any meaningful information to improve accuracy by training the
multiple tasks simultaneously. On the other hand, a multi-output model is more computationally efficient to train as it can be
done a single time, instead of four separate times for each individual model. In general, multi-task learning is expected to
produce a more global model with better generalization capability to new, unseen test data.

6 CONCLUSION

This study has demonstrated the possibility of accurately estimating Li-ion battery capacity and the state of three primary
degradation modes by training a machine learning model to leverage both limited early-life experimental data obtained through
cycling tests and simulation data from a half-cell model. The resulting light-weight physics-informed machine learning models
exhibit improved accuracy compared to models trained strictly on early-life experimental data. Both data augmentation and
delta learning were explored as methods to combine the early-life experimental data and simulation data in an intelligent
machine learning framework. Each methodology was implemented using four different machine learning models to assess the
sensitivity of the methods to the chosen model type and were compared based on their ability to accurately predict the late-life
cell degradation parameters and capacity. The first method, data augmentation using high-degradation simulation data, showed
to be the most effective method to improve SOH estimation accuracy for every machine learning model tested. The second
method, delta learning, successfully improved the SOH estimation accuracy of the Lasso and elastic net linear models because
they already extrapolated accurately and benefitted more from having an additional correction model. However, delta learning
was less effective for MOGP and ELM because of their inability to extrapolate well. Altogether, both proposed methods were
effective at improving SOH estimation accuracy over baseline models without requiring the use of more experimental data.

Overall, our work highlights the value of leveraging inexpensive simulation data from a physics-based model to improve
machine learning models’ SOH estimation accuracy. The proposed methods successfully increase the SOH estimation models’
accuracy at a late aging stage by leveraging available early-life experimental data and physics-based simulation data from a
half-cell model. The results in this study suggest that integrating physics-based modeling and data-driven machine learning
may enable quick, accurate, and automated online degradation diagnostics of Li-ion batteries when implemented in a BMS.
Furthermore, the proposed methodology can significantly reduce the amount of experimental degradation data required for
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accurate late-life degradation estimation. In turn, this can reduce the expenses, labor, and time required to characterize cell
degradation in a laboratory setting for the purpose of online degradation diagnostics over a cell’s lifetime.
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APPENDIX

A.1 Multi-Task Lasso and Elastic Net

Lasso and elastic net are two regression methods with built-in variable selection and regularization. Let x;; denote the jth
reading (or discretized measurement) in the ith dQ/dV charge curve where i = 1: N and j = 1: L. In a multi-task model with T
tasks, y;; with t = 1, ..., T represents an instance of a single task output. With the prior knowledge that the T tasks are related
to one another, we define a multi-task regression problem to map from a dQ/dV curve to the four tasks. The multi-task
regression model consists of a single design matrix X and multiple task-specific weights ;:

Ve =XB: + & (AT)

where ¢&; is normalized random noise. To improve the model performance and reduce overfitting, the x;'s are first standardized
to have zero mean and unit variance. To find the optimal weights §; for the T tasks, multi-task lasso solves the following:

min  J; (B) = ~ST_llye — XBelI3 + a Zh ||l (A2)
where the term Z§=1” B¢ j||2 is a mixed ¢i/€>-norm which encourages sparsity across related tasks and « is a hyperparameter
which controls the extent to which the mixed ¢i/f>-norm is enforced in the loss function. After iterative testing, it was found
that 0.1 is an acceptable value for @. By including another quadratic penalty Zl]=1” B: J”z in the loss function along with an

additional hyperparameter y for adjusting the ratio of the two loss penalties, we arrive at the objective function for a multi-task
elastic net model with the following formulation:

min J,(B) = XLallye = XBol3 + ay BfuillB I, + a0 = ) ShaillBy (A3)

Through iterative testing, it was determined that optimal values for a and y are 0.05 and 0.05, respectively.

A.2 Multi-Output Gaussian Process
Multi-output Gaussian process (MOGP) extends the Gaussian process (GP) to jointly model a vector of outputs [43]. Let
us first consider a single-output GP defined by its zero mean trend function m(x) and covariance function k(x,x"). We are
interested in the target output f;(x) which can be expressed as
£:(0~GP (m(x), k(x,x")) (A4)
For simplicity, we only consider the squared exponential covariance function in this study. This kernel function takes the
following form

k(x,x') = of exp (— % x-x)TP(x— x’)) (AS)
where the input variance is afz and the length scales are encoded in P € R*L,

Now we consider an MOGP with T outputs. We aim to model the isotopic training set which is now X,; = X; and X; =
-+ = X; = X. Just like the single-output GP, the T outputs denoted as f = [fi, ..., f]" also follow a GP model

f(x) ~ GP(m(x), ky (x,X")) (A6)
where the new multi-output covariance function ky (x,x") € R7*T is defined to be
ki (%,x") o kyp(x,x")
ky(x,x") = [ : : l (A7)
kry(x,x") - kpp(%,x)

Each element k., (X, x") represents the covariance between outputs, or in other words, the similarity between the tasks. Just
like a single-output GP, we define the MOGP relationship to be
y:(X) = fi(x) + € (A8)

where the term €, is iid Gaussian noise for each of the T outputs such that €,.~N (0, 2). The corresponding multi-output
likelihood function is written as

p(yIf.x, %) = NV (£(x), Z5) (A9)
where Z; is a diagonal matrix which contains the noise information for each output, i.e., £, = diag(a?, ..., 7). Given the
original multi-output training dataset, the posterior distribution at a new point X, can be written

fx) %y, x.~N(f(x.),2.) (A10)

The corresponding prediction mean and covariance are, respectively, given as
f(x.) = K. [Ky (X, X) + 3]ty (A1)
Z* = KM(X*’X*) _KI;/II—*[KM(XJX) +ZM]_1KM* (Alz)

where Ky, = Ky (X, x,) and has blocks K,/ (X,x,) = [k, (x;,x,)] fort,t' =1,..,Tandi =1, ..,n.
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A.3 Extreme Learning Machine
ELM is a single hidden layer feedforward neural network (SLFN) with random input weights and biases that do not change
throughout the training process. Mathematically, the SLEN with N distinct training samples {x;, y;}\-, , where x; € R and
y; € RT, can be formulated as
0, =Y Bjg(w -x;+b)=yi+¢€, i=1:N (A13)
where 0; is the output of the network, w; = [le, Wiz, ") WjL]T is the hidden layer weight vector connecting the input neurons
and the jth hidden neuron, b; is the bias for jth hidden neuron, D is the total number of hidden neurons, g(-) is the activation

function that is used to introduce nonlinearity to the SLFN, B; = [ﬁl jsBzjs ey Br j]T is the output bias vector that connects the
jth hidden neuron to output neurons, and € is noise that includes both random noise and noise that depends on variables other
than the inputs [51].

The above N equations can be written in the following matrix form for compact representation,

HB=0 (A14)
g(wy-xq +b) -+ g(Wp Xy +bp)
H= : ; (A15)
gwy "Xy +by) - g(wp-xy+bp)l,
Bi o]
B=[El and O = ] (A16)
B-lD— DXT 01—5 NXT

where H is called the hidden layer output matrix.

During the training process, ELM uses the Moore-Penrose inverse (pseudoinverse) to find a solution to the linear system
shown in equation (4). For many machine learning problems, the number of training instances (i.e., N) is much larger than the
number of hidden neurons (i.e., D). Therefore, the linear system is an overdetermined system, and a unique solution is obtained
by minimizing the £> norm of the vector of training errors:

B=H'Y (A17)

Ht = (HTH)"'H” (A18)

where HT is the pseudoinverse of matrix H, and P is the solution of the overdetermined system of linear equations HB =Y.

Compared to the model training with back propagation which requires the iterative updating of input weights and biases, the
model training with ELM is much faster as it requires only a single process, pseudoinverse, to find the optimum solution.

A.4 Fitted VQ and dV/dQ Curves

Here, we show the experimental VQ and dV/dQ curves, the positive and negative half-cell curves, and the fitted VQ and
dV/dQ curves, for three datapoints of significance for cell C1 from each group. The plots show the evolution of the VQ and
dV/dQ curves over the course of approximately half the data. The last datapoint collected for any given cell corresponds to the
point in time at which two of the cells from each group were removed for destructive evaluation.
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Fig. A1 Group G1 cell C1 (C/24, 37° C) V/Q and dV/dQ experimental and fitted curves (shown in legend as
simulation) at (a) EXP1 Day 0, (b) EXPS Day 83, and (c) EXP19 Day 573. The dashed lines indicate the two peaks
used for fitting the dV/dQ curve.
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simulation) at (a) EXP1 Day 0, (b) EXP5 Day 86, and (c) EXP17 Day 484. The dashed lines indicate the two peaks
used for fitting the dV/dQ curve.
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arrow in the full-cell VQ curves shows the direction of the curve evolution at the end of charge point.
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A.5 Data Augmentation Parametric Study

In the data augmentation methodology, we are most interested in determining whether including simulation data from the
physics-based half-cell model improves machine learning model accuracy at the SOH estimation task. Therefore, a suitable
baseline to compare the data augmentation methodology to is a model without simulation data. We have previously discussed
that collecting five data points from our long-term cell aging experiment is reasonable because it took only three months of test
time. Therefore, we establish the baseline model to be the results obtained from EXP5 Sim0. The data augmentation
methodology results are displayed in Fig. A7. Here, Fig. A7 (a) shows the SOH estimation errors of different machine learning
models trained with different numbers of augmented simulation data included in the training dataset. The error values displayed
are the average over the four estimation tasks (my, m,, LII, and Q). When we report dataset compositions as EXP Ngxp
SimNg;y, it is important to keep in mind that the first five data points from each cell will be 60 total data points. This is because,
in each CV fold, twelve cells are used for training while the remaining four are used for testing. From Fig. A7 (c), we observe
that the inclusion of simulation data in the training dataset has significantly improved the MOGP and ELM accuracies.
However, lasso and elastic net do not benefit nearly as much from this data augmentation strategy. This reduced benefit is
because both lasso and elastic net are linear models, and by nature, can easily extrapolate beyond the range of the training
dataset. The early-life experimental data (EXP5) proved to be enough data for both lasso and elastic net to learn the degradation
trend and provide acceptable accuracy at later aging stages. Conversely, MOGP does not extrapolate well because it is a kernel-
based learning algorithm where the chosen kernel, RBF, decays to its mean value, zero, the further we move from the mean of
the training data distribution. Likewise, ELM is a simple neural network which is known for only being intelligent within the
training data distribution and provides inconsistent results when asked to generalize beyond. We also observe that the
deterioration of elastic net accuracy when more simulation data are included is caused by the inclusion of too many non-
representative training data points. This result is best explained by the degradation parameter space visualization in Fig. 8. The
randomly chosen simulation data covers a very large degradation parameter space. So, there is no guarantee the chosen points
will reflect the degradation trends observed in the experimental cells. In effect, the random simulation data prove to corrupt the
experimental data, making it more difficult for the elastic net model to learn the correct mapping from dQ/dV features to late-
life degradation parameters. Likewise, the experimental dQ/dV curves do not exactly match the dQ/dV curves (see Fig. 7)
simulated by the half-cell model and introduce uncertainty into the models through the input feature values.

Inspired by the way simulation data caused the lasso and elastic net to learn an incorrect degradation trend, we investigate
whether the models can be coerced into learning a trend more like that observed in the experimental data. We filter the large
simulation dataset to only data points corresponding to the highest 20% degradation in my,, my, and LII. Then, this new subset
of simulation data, labeled as HiDeg (short for high degradation), is added in small amounts to the early-life experimental data.
The results are shown in Fig. A7 (b) and (d). The inclusion of HiDeg simulation data into the models’ training dataset produces
consistent accuracy improvements across all models. However, the magnitudes of the improvements are not the same. Once
again, this can be attributed to a model’s ability to extrapolate beyond its training data distribution. For lasso, elastic net, and
ELM, the addition of high-degradation simulation data generally helps decrease estimation error, but the performance gains
are not as large as MOGP. The large improvement in performance for MOGP can be attributed to the increased size of the
degradation parameter space the model is trained on. Likewise, all models benefitted more from the HiDeg simulation data
than they did from the regular simulation data. This observation further confirms the notion that regular simulation data is often
not representative of the observed experimental degradation trends, and by selectively choosing HiDeg simulation data, the
models are not overrun with noise but instead learn a degradation trend that more closely resembles the experimental data,
making their predictions more accurate. Altogether, the data augmentation methodology for improving the SOH estimation
accuracy of a machine learning model proves effective.
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Fig. A7 (a) SOH estimation RMSE % averaged over four tasks of models trained with a combination of early-life
experimental data and a different number of simulation data. (b) SOH estimation RMSE % averaged over four tasks of
models trained with a combination of early-life experimental data and a different number of high-degradation simulation
data. (c) Change in SOH estimation RMSE% with respect to the baseline single-model EXP5 Sim0. (d) Change in SOH
estimation RMSE% with respect to the baseline single-model EXP5 Sim0.

A.6 Delta Learning Parametric Study

With the delta learning methodology, the goal is to improve the accuracy of the estimation model trained with only
simulation data by training a second model (corrector model) to learn its estimation error. The results for the delta learning
model parametric studies are displayed in Fig. A8. First, we investigate the role of the estimation model in the delta learning
method by fixing the data for the corrector (the first five experimental data points) and varying the amount of simulation data
used to train the estimation model. As shown in Fig. A8 (a), delta learning model error did not decrease with an increase in the
number of simulation data used to train the estimation model. This indicates that as few as 50 simulation data points are
sufficient for training a machine learning model to learn the mapping between the simulated dQ/dV curves and the health
parameters. Knowing this, we then fix the estimation model to use 100 simulation data points and vary the number of early-
life experimental data used to train the corrector model (see Figs. A8 (b) and (d)). With this test, the reference models are a
single model trained with only the experimental data (from Fig. 6 (e-h)). Traditionally, a proper comparison would be to
compare only the estimation model to the two-step delta learning model; however, we have already shown that models trained
with only simulation data (the estimation model) are largely inaccurate at the SOH estimation task. Considering this, a more
challenging baseline comparison is a model trained with the early-life experimental data because the data is readily available,
and the models are more accurate than the simulation-data-only models.

From the tests in Figs. A8 (b) and (d), we find that all delta learning models are consistently more accurate than their
baseline counterparts, especially with limited early-life experimental data (three to seven experimental data points).
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Furthermore, we can also compare the results from the delta learning method (see Fig. A8 (a)) to those of the augmentation
method (see Figs. A7 (a) and (b)). With the same number of available early-life experimental data (first five data points), the
MOGP and ELM perform better with the data augmentation method than the delta learning method. The data augmented MOGP
and ELM achieved best results of 2.97 and 2.88 average RMSE % across the four estimation tasks compared to 4.52 and 4.40
RMSE % with delta learning method, respectively. This happened because the individual estimation models in the
augmentation approach can learn from both the early-life experimental data and the simulation data at the same time. In contrast,
the two datasets in the delta learning method are split up, and each model can only train on either the simulation data or the
early-life experimental data. The MOGP and ELM, known to not extrapolate well, benefit more from seeing the augmented
dataset because they can learn from a larger degradation space and do not need to extrapolate beyond their training dataset.
This explains the better performance of MOGP and ELM with the data augmentation method.

Similarly, the lasso and elastic net methods performed better with the delta learning method because they already
extrapolated well using the simulation data, and in addition to this, they were also able to take advantage of the early-life
experimental data with the corrector model. Both lasso and elastic net were able to extrapolate the estimation model error
learned from the early-life data to late-life, yielding lower errors prediction errors.
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Fig. A8 (a) SOH estimation RMSE % averaged over four tasks of delta learning models where the estimator is trained
with a different number of simulation data while the corrector is fixed to EXP5. (b) SOH estimation RMSE % averaged
over four tasks of delta learning models where the estimator is trained with 100 simulation data and corrector is trained
with different amount of EXP early-life data. (c) Change in SOH estimation RMSE% with respect to the baseline single-
model EXP5 Sim0 in (d) Change in SOH estimation RMSE% with respect to each of the baseline models EXP(X) Sim0.

34



A.7 Feature Reduction Study

A key parameter in the generation of half-cell data is the voltage increment between successive dQ/dV samples. In the
previous tests, we had selected an input feature size of 100. To determine whether 100 dQ/dV samples are sufficient for optimal
model performance, we varied the input feature size of each machine learning model and recorded the average error across the
four outputs. The tests are run using an augmented dataset selected from the middle of all the combinations we tested. In this
way, the model will be a good representation of the other models and methods tested in this study. Each model was four-fold
cross-validated 50 times with a mixed dataset, namely EXP5 Sim20 HiDeg (33% of the training dataset consisted of simulation
data). The results are shown in Fig. A9 (a), and the dQ/dV feature vectors of different lengths are visualized in Fig. A9 (b).
Relative to a feature vector length of 100, there is minimal effect on model performance until the number of features is reduced
to 25 or less. This indicates that 100 dQ/dV samples are enough to represent the curve’s major features (peaks and valleys) and
those that are useful for degradation diagnostics. Likewise, using too many dQ/dV samples proves to be counterproductive,
and the models have difficulty determining the most important features.
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Fig. A9 (a) Effect of dQ/dV discretization length on model accuracy. (b) Visualizations of dQ/dV curves sampled to
different lengths.

A.8 Predicted Health Parameter Values

Here, we show the fitted (true) health parameter values compared to the predictions for the baseline model (Elastic Net
EXP5 Sim0) and the best model (Elastic Net w/ Data Augmentation EXP5 HiDeg Sim10) for every cell in the dataset. Error
bars are plotted for the best performing model to show how its predicted health parameter values vary from run to run. Most of
the variation is due to the random selection of the few HiDeg simulation data from the larger pool of HiDeg simulation data.
The error bars represent three standard deviations where the standard deviation is determined from the 50 cross-validation runs.
As stated in section 3.3, we only consider data from group G4 cells up to day 929 as the dV/dQ features disappeared on the test
later and prevented any reasonable half-cell model fitting after that.
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Fig. A10  Normalized group G1 health parameter predictions. Error bars represent three standard deviations where
the standard deviation is determined from 50 cross-validation runs.
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Normalized group G2 health parameter predictions. Error bars represent three standard deviations where

the standard deviation is determined from 50 cross-validation runs.
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Fig. A12 Normalized group G3 health parameter predictions. Error bars represent three standard deviations where
the standard deviation is determined from 50 cross-validation runs.
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Fig. A13 Normalized group G4 health parameter predictions. Error bars represent three standard deviations where
the standard deviation is determined from 50 cross-validation runs.
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