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Abstract

As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented
attention because of its promise to further optimize process design, quality control, health mon-
itoring, decision and policy making, and more, by comprehensively modeling the physical world
as a group of interconnected digital models. In a two-part series of papers, we examine the
fundamental role of different modeling techniques, twinning enabling technologies, and uncer-
tainty quantification and optimization methods commonly used in digital twins. This first paper
presents a thorough literature review of digital twin trends across many disciplines currently pur-
suing this area of research. Then, digital twin modeling and twinning enabling technologies are
further analyzed by classifying them into two main categories: physical-to-virtual, and virtual-to-
physical, based on the direction in which data flows. Finally, this paper provides perspectives on
the trajectory of digital twin technology over the next decade, and introduces a few emerging
areas of research which will likely be of great use in future digital twin research. In part two
of this review, the role of uncertainty quantification and optimization are discussed, a battery
digital twin is demonstrated, and more perspectives on the future of digital twin are shared.

Keywords: Digital tviin; Optimization; Machine learning; Enabling technology; Perspective; Industry 4.0,
Review
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1 Introduction

This paper is the first in a series of two that ana-
lyze the roles of modeling and twinning enabling
technologies, uncertainty quantification (UQ), and
optimization in digital twins. Modeling and twin-
ning enabling technologies are fundamental meth-
ods used to bridge the information gap between
a physical system and its digital counterpart. In
this paper, we review and analyze many methods
and modeling techniques currently used in digital
twins, and classify them into groups based on the
direction in which data flows.

We begin by reviewing an existing definition of
digital twin. A digital twin, as originally proposed
by Grieves (2014), is a virtual representation of a
complex physical asset in the digital space for the
purpose of closely characterizing the operations
of the original physical process or system. The
precise representation of the physical system in
cyberspace is enabled by continuous data synchro-
nization and information exchange between the
digital twin and the physical counterpart. Having
a digital replica of the physical entity of inter-
est leads to enormous benefits spanning its entire
life cycle, including the development phase (e.g.,
product design, resource planning, manufactur-
ing process design), manufacturing phase (e.g.,
production process planning, manufacturing pro-
cess control, maintenance of manufacturing equip-
ment), service phase (e.g., performance and health
monitoring, maintenance and control of fielded
products, path planning), and disposal phase (e.g.,
end-of-life reuse, remanufacturing, and recycling).
With the ability to conduct what-if analyses in the
digital space, the benefits of digital twin technol-
ogy are already materializing in a wide range of
applications ranging from high-value manufactur-
ing industry (Ayerbe et al., 2021) to personalized
medicine (Corral-Acero et al., 2020), oil refinery
management (Min et al., 2019), risk identification,
and city planning (Lu et al., 2020a).

The digital twin concept centers around “indi-
vidualized” digital models that capture the unique
characteristics of individual products or process
units. These models allow decision making to be
optimized for each product or process unit, rather
than based on the average characteristics of the
entire population. This emerging technology poses
new and challenging optimization problems at

the forefront of model-based design, smart man-
ufacturing, Industrial Internet of Things (IIoT),
machine learning (ML), and predictive mainte-
nance. The industry-scale adoption of the digital
twin concept entails creating novel optimization
solutions that use data collected from sensors
and inspections (physical to digital) to provide
decision makers with actionable information (dig-
ital to physical), thereby closing the digitalization
loop. Major benefits include the ability to opti-
mize control/maintenance actions to individual
units and the potential to optimize the design of
next-generation products.

The promise of digital twin concept and the
need to guide the effective development of digi-
tal twin technology have motivated researchers to
put together many review papers on digital twin.
For example, motivated by the need to consolidate
the many definitions and characteristics of digital
twin, several review papers have been reported in
recent years, such as Barricelli et al. (2019); Jones
et al. (2020); VanDerHorn and Mahadevan (2021);
Liu et al. (2021b). These papers summarized vari-
ous definitions of digital twin and suggested gener-
alized definitions and characteristics to distinguish
digital twin from other models. Lim et al. (2020a)
presented a comprehensive review of digital twin
by considering its benefits to engineering product
life cycle management and business innovation.
Qi et al. (2021) surveyed enabling technologies
and tools for digital twins and proposed a five-
dimensional digital twin model. Fuller et al. (2020)
analyzed enabling technologies for artificial intelli-
gence, Internet of Things (IoT), and digital twins.
Rasheed et al. (2020) reviewed the latest method-
ologies and techniques related to the construction
of digital twins from the modeling perspective.

There are also numerous application-specific
literature review papers. For instance, Jiang et al.
(2021) reviewed the implementation of digital
twins in civil engineering and discussed several
problems that need to be addressed. Xie et al.
(2021) discussed applications of digital twins at
different states of a cutting tool’s life cycle. Erran-
donea et al. (2020) reviewed the applications of
digital twins for maintenance. Kritzinger et al.
(2018) provided a categorical review of digital
twins in manufacturing and grouped applications
of digital twins into different categories accord-
ing to the level of integration. Focusing on a
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similar topic, Cimino et al. (2019) reviewed the
applications of digital twins in manufacturing.
Along the same line, Ayerbe et al. (2021) dis-
cussed recent advances in the digitalization of
lithium-ion battery cell manufacturing processes
and proposed a three-layer structure of a digital
twin of large-scale battery manufacturing. Ozturk
(2021) conducted a literature survey over the
applications of digital twins in the architectural,
engineering, construction, operation, and facility
management industries. Wagg et al. (2020) sum-
marized the state-of-the-art and discussed future
research directions of digital twin, focusing on
applications in engineering dynamics. A survey
of digital twins for verification and validation
of industrial automation systems is available in
Locklin et al. (2020). Tao et al. (2018) presented
a comprehensive review of digital twins in indus-
try. He and Bai (2021) reviewed applications of
digital twins for intelligent and sustainable man-
ufacturing. Boje et al. (2020) discussed the future
research directions of digital twin in construc-
tion engineering. Uhlemann et al. (2017) discussed
the importance of digital twins in realizing cyber-
physical production systems for Industry 4.0.
While current review papers cover a good
amount of literature on different aspects of dig-
ital twin, such as definitions, enabling technolo-
gies, and applications in different domains, not
all important aspects of digital twin have been
covered in the current literature. Digital twin tech-
nology is an emerging technology that exploits the
synergy between several key enabling technologies,
including multiphysics simulations, sensing, ML,
UQ, data analytics, to name a few. Modeling and
twinning methods are key to integrating different
technologies in a digital twin. However, a com-
prehensive review of the modeling and twinning
methods and the associated UQ and optimiza-
tion methods enabling digital twins is still missing.
Such a review is essential because it may guide
effective, industry-scale implementations of digital
twins for different types of physical systems. Based
on a literature review of over 230 research papers
on digital twins, this paper aims to fill this void by
(1) categorizing the modeling and twinning meth-
ods according to their roles in digital twins, and
(2) providing a detailed discussion on the impor-
tance of UQ and optimization in the modeling and
twinning methods of digital twins. The challenges
and future research directions on digital twin will

also be discussed based on the literature survey
and lessons learned from case studies.

Sec. 2: Definitions and [ 2.1: What is a digital twin?
literature overview 2.2: Literature overview

4 [ 3.1: Geometric modeling )
Sec. 3: Modeling 3.2: Physncsjbased mod.elmg
bli hnologi 3.3: Data-driven modeling
enabling technologies 3.4: Physics-informed ML
L L 3.5: System modeling )

4 [ 4.1: Physical measurements as input

. s 4.2: Probabilistic model updating
Sec. 4: P2V twinning 4.3: ML model updating

enabling technologies 4.4: Fault diagnostics and failure prognostics
\_ L 4.5: Ontology-based reasoning )

e o 2

Sec. 5: V2P twinning 5.1: Modfel predlctllve control
bli hnologi 5.2: Predictive maintenance
L enabling technologies 5.3: Real-time perception

e N

. . [ 6.1: Federated learning
Sec. 6: Perspectives on 6.2: Domain adaptation

modeling and twinning 6.3: Deep reinforcement learning
A el J

[ Sec. 7: Conclusion ]

Fig. 1: Overview of topics covered in Part 1

In consideration of the large number of sub-
jects covered, we split the review paper into two
parts to make it easier to read. The first paper
is an introduction to various definitions of digital
twin in the literature and our proposed five-
dimensional definition of digital twin. In addition,
the first paper also covers commonly used model-
ing and twinning technologies to map a physical
system to its digital counterpart (P2V) and the
actions/decisions sent back by the digital twin
that can be taken in the physical system (V2P).
Figure 1 depicts the overall structure of Part 1 of
the review paper.

Part 2 of the review paper (Thelen et al.,
2022b) centers around describing the roles of UQ
and optimization in digital twins so as to sup-
port a better characterization of physical systems
in the digital space. This second part of the
review also presents a case study on battery health
management to showcase the specific implemen-
tation of a battery digital twin and the power of
UQ and optimization in the digital twin in an
end-to-end fashion. Additionally, Part 2 reviews
the applications of digital twins at an industrial
scale and available open-source tools and datasets
related to digital twins, followed by a discussion
on challenges and future research directions.
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The remainder of this paper is organized as
follows. Sec. 2 first discusses a variety of digital
twin definitions reported in the literature and then
conducts a comprehensive analysis on the trend
of digital twin research. Sec. 3 categorizes the
modeling enabling technologies in digital twins.
Sec. 4 summarizes commonly used approaches for
physical-to-virtual twinning. Sec. 5 elaborates the
actions informed by virtual-to-physical connection
that can be carried out at various stages of a
physical system. Sec. 6 presents perspectives on
modeling and twinning in digital twins. Sec. 7
concludes the first part of the two-part review

paper.

2 Definitions of digital twin
and literature overview

2.1 What is a digital twin?

According to the literature and other documents,
the concept of “digital twin” was first imple-
mented in the NASA Apollo 13 program in the
1960s. A digital twin model of Apollo 13 was cre-
ated on earth to allow engineers on the ground
to test possible solutions for a rescue mission in
space (Barricelli et al., 2019; Nguyen et al., 2021).
Michael Grieves made the first documented def-
inition of digital twin in his presentation in the
context of product life cycle management in 2003
and later in a white paper (Grieves, 2014). Since
Grieves’s presentation on digital twin in 2003, var-
ious digital twin concepts have been proposed. In
a 2012 conference paper, Edward H. Glaessgen at
NASA’s Langley Research Center and David S.
Stargel at the U.S. Air Force Office of Scientific
Research gave the first specific definition of digital
twin in the aerospace domain as:

“A Digital Twin is an integrated multiphysics,
multiscale, probabilistic simulation of an as-built
vehicle or system that uses the best available phys-
ical models, sensor updates, fleet history, etc., to
mirror the life of its corresponding flying twin
(Glaessgen and Stargel, 2012).”

Since the first definition in the aerospace
domain, digital twin has received increasing atten-
tion in the past decade in various application
domains, such as manufacturing, automobile,
energy, and civil engineering. Due to the broad
applications of digital twin in different domains,

numerous application-specific digital twin defini-
tions have been proposed to capture the nature of
digital twin in these domains. Aiming to reduce
the risk of diluting the digital twin concept by a
large number of definitions, efforts have been made
in recent years to consolidate digital twin defini-
tions and terminologies in several review papers
(Barricelli et al., 2019; Jones et al., 2020; VanDer-
Horn and Mahadevan, 2021; Liu et al., 2021b).
In particular, VanDerHorn and Mahadevan (2021)
proposed a consolidated and generalized defini-
tion of digital twin as “a wvirtual representation
of a physical system (and its associated environ-
ment and processes) that is updated through the
exchange of information between the physical and
virtual systems”. Amongst the many definitions
of digital twin, the one specified in Glaessgen
and Stargel (2012) is considered one of the most
broadly accepted definitions, even though the def-
inition may vary from application to application.

The distinction between a digital model, a
digital shadow, and a digital twin is unclear in
many cases. Further, having a large number of
vague and inconsistent definitions of digital twin
circulating in the literature may adversely affect
industry interest in the adoption of this technol-
ogy, creating a barrier to unleashing the maximum
potential of the digital twin technology (Wright
and Davidson, 2020). In what follows, we attempt
to distinguish these three terms. It is argued that,
for a digital model, data flow between the physical
space and virtual space is optional, or at the very
most, achieved manually as shown in Fig. 2. For
a digital shadow, data flow is unidirectional from
physical to digital. But for digital twin, the data
flow has to be bidirectional (see Fig. 2) (Kritzinger
et al., 2018). When digital twin is used in control-
related applications, the bidirectional data flow
needs to be automatic, often enabled by monitor-
ing and control software. For the application of
digital twin to support decision making, such as
predictive maintenance, which will be reviewed in
Sec. 5.2, however, the data flow from virtual to
physical involves humans in the loop who carry
out maintenance actions and, therefore, is not
fully automatic but should be handled on time
to avoid unexpected breakdown. Moreover, Zhang
et al. (2021a) pointed out that since a physical
entity usually has many different aspects that can
be modeled, it is always necessary to clarify for
what aspect the digital twin is constructed. Take
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a simple mechanical shaft as an example. The
shaft may fail due to fatigue, extreme torque, etc.
Since it is difficult for the digital space to mirror
all aspects of the physical space, a digital twin is
always constructed for specific aspect(s) relevant
to the engineering problem the digital twin is used
to solve, and these aspect(s) need to be specified
before the construction of the digital twin.
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Fig. 2: Digital model, digital shadow, and digital
twin concept for a lithium-ion battery cell within
a larger pack

In addition, various digital twin models have
been proposed in the past few decades. Two highly
cited digital twin models in the literature are
the three-dimensional digital twin model proposed
by Grieves (2014) and the five-dimensional dig-
ital twin model suggested by Tao et al. (2018).
As shown in Fig. 3, the three-dimensional digital
twin model consists of a physical space, a virtual
space, and connections between them. Tao et al.
(2018) expands the three-dimensional digital twin
model into a five-dimensional digital twin model
for manufacturing, which includes a real machine,
a virtual machine, a services component, digital

twin data, and the connections as depicted in Fig.
3.

Based on the definition of digital twin given
in (Glaessgen and Stargel, 2012) as mentioned
above, we suggest a new five-dimensional digital
twin model as illustrated in Fig. 3. The proposed
five-dimensional digital twin model can be consid-
ered an extended version of the three-dimensional
model and is defined as follows

DT = F(PS, DS, P2V, V2P, OPT) (1)

As indicated in the equation above, the pro-
posed five-dimensional digital twin model consists
of a physical system (PS), a digital system (DS),
an updating engine (P2V), a prediction engine
(V2P), and an optimization dimension (OPT),
and FF(-) integrates all five dimensions together
to be an effective digital twin. The physical sys-
tem (PS) with sensing capability gathers data
from multiple sources using various sensing and
data acquisition techniques. The updating engine
(P2V) updates the state of the digital model based
on the sensor data. The updated digital mod-
els (DS) are then employed to predict the future
state of the physical system using the prediction
engine (V2P), thereby enabling predictive deci-
sion making feeding back to the physical system
through actuators (control, maintenance, path
planning, etc.). Finally, an optimization dimen-
sion (OPT, i.e., the fifth dimension) supports the
functionalities of the other four dimensions in
the digital twin by optimizing the data collec-
tion, modeling, state estimation, decision making,
etc. The optimization dimension consists of two
elements, namely offline optimization and online
optimization. These two optimization elements
will be explained in detail in Part 2 of the review
paper (Thelen et al., 2022b). The seamless inte-
gration of the five dimensions (PS, DS, P2V, V2P,
and OPT) enables digital twins to fulfill the need
for a real-time mirror of the life cycle of a phys-
ical system, thereby supporting optimal decision
making.

To highlight how a five-dimensional digital
twin might operate in practice, we can look at the
example of a digital twin for a lithium-ion bat-
tery cell within a battery pack, shown in Fig. 2.
When designing a lithium-ion battery pack, engi-
neers are most concerned with managing the rate
and amount of degradation of each cell in the
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Fig. 3: Comparison of different digital twin (DT) models and the proposed model

pack driven by the cell’s usage (e.g., charging and
discharging rates, depth of discharge, and tem-
perature). In this scenario, a digital twin model
of each cell within a pack can be constructed to
track and forecast the capacity degradation tra-
jectory of the cell and ultimately drive decision
making around when the pack needs to be retired
from service. Sensor measurements of the cell’s
state of health (PS) can be used to update (P2V,
OPT) the digital model (DS) of the cell. Then,
the digital model (DS) can be used to predict the
cell’s future state of health and degradation trajec-
tory (V2P). Engineers can then use the predicted
future degradation trajectory to inform decision
making about the optimal time when the pack
may need to be retired from service (V2P, OPT).
The complete flow of data through all five digital
twin dimensions outlined in Fig. 3 is what ulti-
mately characterizes this type of workflow as a
true digital twin. This digital twin application for
forecasting the future health of a lithium-ion cell
and using the forecast health for predictive main-
tenance is extensively investigated as a case study
in Part 2 of this review.

With a focus on the modeling and twinning
technologies (i.e., the updating and prediction
engines in Fig. 3), in the subsequent sections,
we first perform an extensive literature review of
the state-of-the-art and then classify the enabling
technologies into distinct categories. The role of
the optimization dimension in digital twin and
future research directions will also be discussed.

2.2 Literature overview

Our literature review starts with a Google scholar
search using the keyword “digital twin”. In addi-
tion to the review papers summarized in Sec. 1,
230 research papers, excluding papers from preda-
tory journals, were reviewed. The majority of
these 230 research papers were published between
2017 and 2022, with some published between
2011 and 2012. They are classified into different
groups by application domain as shown in Fig. 4.
This figure indicates that manufacturing, followed
by mechanical, civil, and structures, accounts for
most of the digital twin papers. 107 out of 230
papers come from the manufacturing domain,
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Distribution of the reviewed papers by application domains

‘ Manufacturing (107) |—\

Aerospace (17)

7
e -

/— Others (9)
—| Mechanical (29)

[ 6]
\ L Healthcare (6)
Structures (22)

Fig. 4: Distribution of reviewed papers by domain (“Civil” includes civil engineering, building engineer-
ing, smart city, and transportation; “Mechanical” includes mechanical engineering, automotive, robotics,
and marine; “Others” includes supply chain, optical communication system, and agricultural engineering.

which implies a leading role of manufacturing in
the digital twin field.

The following information is then extracted
from the literature survey:

e Top-cited papers, which are papers with an
average number of citations per year greater
than 25 (the average number of citations per
year to a paper is its total number of citations
divided by the number of years elapsed since the
publication of the paper).

® Major journals, which are the journals where
research papers on digital twin are frequently
published based on the 230 research papers
reviewed.

¢ Publicly available tools/datasets: tools and
datasets related to digital twin from the 230
papers and associated websites.

¢ Modeling methods: methods used in the
papers to create the virtual space.

¢ Twinning methods: methods used to estab-
lish physical-to-virtual and virtual-to-physical
connections.

¢ Optimization: roles of optimization in the
digital twin models presented in the papers.

Next, we will summarize the major findings
related to the first two items listed above. The
methods of modeling, twinning (i.e., physical-to-
virtual and virtual-to-physical), and optimization
will be summarized and classified into different

categories in Sec. 3. The publicly available tools/-
datasets will be provided in Sec. 4.2 of Part 2 of
the review paper.

2.2.1 Top-cited papers and trends in
different domains

From the 230 research papers, we first identify
papers whose average number of citations per year
is greater than 25. It is found that many papers
in the manufacturing domain satisfy this crite-
rion. It is not entirely surprising since digital twin
has been a hot topic in smart manufacturing. We,
therefore, list the top-cited papers in the manufac-
turing domain separately from those in the other
domains.

Table 1 summarizes the top ten most-cited
papers in the manufacturing domain from the 230
reviewed papers, based on the average number of
citations per year. Qi and Tao are the the most
highly-cited researchers in this field at this time
(Tao et al., 2018; Qi and Tao, 2018; Tao and
Zhang, 2017; Qi et al., 2018). Most of the top-
cited papers in the manufacturing domain focus
on digital twins of manufacturing shop-floors,
such as assembly, production management and
control, and configuration optimization. There is
one paper that focuses on geometry assurance in
individualized production. Table 2 lists the top-
cited papers from the civil, aerospace, energy, and
healthcare domains, which reflect the trends of
digital twin outside the manufacturing sector. As
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Table 1: Top ten top-cited papers in manufacturing domain (Based on yearly average number of Google

scholar citations as of April 2022)

Title Author and Pub- | Citations| Application
lication year

Digital twin-driven product design, manufac- | Tao et al. (2018) 1435 Design and

turing and service with big data Manufacturing

Shaping the digital twin for design and pro- | Schleich et al. | 719 Production

duction engineering (2017)

Digital twin and big data towards smart man- | Qi and Tao (2018) | 789 Smart manufac-

ufacturing and industry 4.0: 360 degree com- turing

parison

Digital twin shop-floor: a new shop-floor | Tao and Zhang | 585 Shop floor

paradigm towards smart manufacturing (2017)

Digital twin-based smart production manage- | Zhuang et  al. | 313 Shop floor

ment and control framework for the complex | (2018)

product assembly shop-floor

Toward a Digital Twin for real-time geometry | Soderberg et al. | 372 Geometry assur-

assurance in individualized production (2017) ance

Digital twin-driven manufacturing cyber- | Leng et al. (2019) 235 Shop floor

physical system for parallel controlling of

smart workshop

Defining a digital twin-based cyber-physical | Ding et al. (2019) 225 Shop floor

production system for autonomous manufac-

turing in smart shop floors

Digital twin-based designing of the configura- | Liu et al. (2021c) 100 Configuration

tion, motion, control, and optimization model optimization

of a flow-type smart manufacturing system

Digital twin service towards smart manufac- | Qi et al. (2018) 231 Service in Man-

turing ufacturing

shown in this table, aerospace, civil, and mechan-
ical are leading the trend of digital twin outside
the manufacturing domain. Five out of the 12 top-
cited papers concentrate on fault diagnostics and
prognostics of physical assets using digital twin
(Xu et al., 2019; Li et al., 2017; Glaessgen and
Stargel, 2012; Jain et al., 2019; Tuegel et al., 2011).
The others focus on optimization, management,
and service.

Following that, Fig. 5 shows the cumulative
number of papers over the past five years in each
different application domain. It is clear that the
number of papers in the manufacturing domain
is much higher than the other domains. This
agrees with the earlier analysis of the most highly
cited papers which found that a majority of them
were in the manufacturing domain. Note that the
trends abruptly flatten from 2021 to 2022 because
this review paper was written in early 2022 and

did not account for papers published later in
the year. It is expected that the increasing trend
continue into 2022.

Mechanical

1004~
—#—  Others
—®— Manufacturing
80 7| —%— Aerospace
Civil
60 1 Structures

—#— Healthcare
40 |~®— Energy

201 // //.’—.

Cumulative number of papers

2017 2018 2019 2020 2021 2022
Year

Fig. 5: Cumulative number of papers of different
application domains
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To better analyze the trends in the other
domains, we remove the manufacturing data, and
re-scale the plot. Fig. 6 shows the cumulative num-
bers of papers in the past five years, excluding
manufacturing. In recent years, the cumulative
number of papers in the other domains, especially
civil, mechanical, and energy, have been growing
rapidly.

—&— Mechanical
| |—*— Others
—¥— Aerospace
Civil
Structures
—— Healthcare
—&— Energy

151

7

Cumulative number of papers

20'] 7 ZOII 8 ZOII 9 2()'20 2()'2] 2(][22
Year
Fig. 6: Cumulative number of papers of different
application domains excluding manufacturing

2.2.2 Major journals

Table 3 presents major journals where the 230
reviewed papers were published. Only journals
with more than three published papers are listed.
Shown in the table, manufacturing-related jour-
nals, namely Journal of Manufacturing Systems,
International Journal of Advanced Manufacturing
Technology, and Robotics and Computer Inte-
grated Manufacturing, are leading journals. Other
leading journals include Journal of Ambient Intel-
ligence and Humanized Computing, IEEE Access,
Engineering Fracture Mechanics, and Interna-
tional Journal of Production Research.

3 Modeling enabling
technologies

Modeling plays an essential role in digital twins by
creating a digital replica of the physical entity of
interest. According to the purpose and complexity
of different modeling methods, we classify them
into the following five categories.

3.1 Geometric modeling

(a) Solid modeling

Computer-aided design (CAD) is a virtual solid
modeling technique where 3D objects are created
from a number of 2D drawings using computer
software. Many individual components can be
combined in an assembly to create a 3D solid
model of a larger system. Solid models help design-
ers and engineers see how a product will look and
function in the real world. There are a number
of free and paid-for 3D solid modeling software
on the market. Each software package differs in
its intended audience and scope of available fea-
tures. For engineering, popular software includes
Autodesk Inventor and AutoCAD, PTC Creo,
SolidWorks, and Catia (Cai et al., 2020). Free soft-
ware packages include Unity3D, Unreal Engine,
and Blender (Leng et al.,, 2020; Matulis and
Harvey, 2021; Liu et al., 2021e).

A simple but useful application of solid mod-
eling for digital twin is to create models of all the
equipment for a production line. Then, the mod-
eled equipment can be moved around, checked for
timing, or simulated consistent with a range of
different goals. For example, Liu et al. (2021f) cre-
ated a virtual workshop with various machining
tools so that the order in which different parts
were machined could be optimized. Similar work
by Yi et al. (2021) investigated ideas for using
3D models of the equipment in an assembly line
to optimize the layout for reduced travel distance
between steps. Vathoopan et al. (2018) proposed
creating a solid model of a robotic arm to detect
and alarm when the robot’s joints may have moved
further than physically possible as predicted by
the solid model. Ayani et al. (2018) created a
complete solid model of an old analog-controlled
production machine so that its movements, tim-
ings, and controls could be uploaded to the cloud
and further studied. Huang et al. (2022a) mod-
eled a CNC tool changing system and all the
tools inside of it for the purpose of improving tool
change speeds. Creating solid models for optimiza-
tion problems which focus on the physical size and
location of manufacturing equipment and tools is
relatively easy because minor details like mate-
rial properties and movable joints can be ignored.
If, however, the solid model will be used for sim-
ulation of stresses, movements, or interference
using physics-based simulations (see Sec. 3.2), the
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Table 2: Top-cited papers in each application domain excluding manufacturing (based on yearly average

number of Google Scholar citations as of April 2022)

Title Publication year | Citations| Application
domain

A digital-twin-assisted fault diagnosis using | Xu et al. (2019) 154 Mechanical

deep transfer learning (Automotive)

The digital twin paradigm for future NASA | Glaessgen and | 1226 Aerospace

and U.S. Air Force vehicles Stargel (2012)

Reengineering aircraft structural life predic- | Tuegel et al. (2011) | 639 Aerospace

tion using a digital twin

Dynamic Bayesian network for aircraft wing | Li et al. (2017) 171 Aerospace

health monitoring digital twin

Machine learning based digital twin frame- | Min et al. (2019) 141 Energy (Oil

work for production optimization in petro- industry)

chemical industry

A digital twin approach for fault diagnosis in | Jain et al. (2019) 106 Energy

distributed photovoltaic systems

A BIM-data mining integrated digital twin | Pan and Zhang | 60 Civil (Construc-

framework for advanced project management | (2021) tion)

Developing a digital twin at building and city | Lu et al. (2020a) 82 Civil (Smart

levels: Case study of West Cambridge campus city)

Digital twin—Proof of concept Haag and Anderl | 288 Mechanical

(2018) (Structural

Health Monitor-
ing)

An application framework of digital twin and | Zheng et al. (2019) | 206 Others (Service)

its case study

How to tell the difference between a model and | Wright and David- | 104 Others (Service)

a digital twin son (2020)

A novel cloud-based framework for the elderly | Liu et al. (2019) 171 Healthcare

healthcare services using digital twin

modeling process requires all details about the
equipment be defined, increasing the modeling
time substantially.

Another application of solid modeling in dig-
ital twin is simulating and studying human-
environment interaction. Solid modeling enables
researchers to investigate how humans fit into
the digital twin environment. Vatankhah Barenji
et al. (2021) investigated concepts of human-robot
interaction and ways to improve energy savings.
Pairet et al. (2019) proposed modeling an entire
offshore oil drilling platform to study human-
robot interaction in the dense 3D space. Similarly,
Lohtander et al. (2018) created a 3D model of
a human assembly area to study ergonomics and
optimize the placement of part bins. This area
of research is of great importance, especially in a

manufacturing setting, where humans and robots
coexist in a constrained environment. It is envi-
sioned that solid modeling of environments will
play a large role in designing smarter robots which
can better interact safely in proximity to humans.

Other applications of solid modeling to digi-
tal twins include tolerancing, geometry variance
control, and defect control in manufacturing set-
tings. Digital twin models of a production process
can be used to improve quality control in vari-
ous ways. Liu et al. (2022) investigated integrating
solid modeling and surface roughness prediction
for adaptive manufacturing control. Schleich et al.
(2017) proposed computer aided tolerancing and
geometry variation control via a solid modeling
approach. Zambal et al. (2018) discussed how
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Table 3: Major journals on digital twin based on
the reviewed papers

Journal Name No of Papers

Journal of Manufacturing Systems 25
IEEE Access 10
International Journal of Advanced | 9
Manufacturing Technology
Robotics and Computer Integrated | 6
Manufacturing
International Journal of Computer | 6
Integrated Manufacturing

Procedia CIRP 6
CIRP Annuals - Manufacturing Tech- | 5
nology

IFAC Papers Online 5
Journal of Intelligent Manufacturing 4

Journal of Ambient Intelligence and | 4
Humanized Computing
Engineering Fracture Mechanics 4
International Journal of Production | 3
Research

Advanced Engineering Informatics 3
Automation in Construction 3
Computer and Structures 3

one might make a solid model system of a car-
bon fiber production process so that deviations
in the equipment or manufacturing process could
be simulated. Through simulation, the effects of
equipment deviations on the final finished carbon
fiber product can be quantified and understood.
Solid modeling has many promising uses in dig-
ital twin applications. With the ability to model
the geometry of any object, solid modeling enables
additional optimization dimensions not captured
through sensor measurements and other tech-
niques. One of the key problems using solid models
in digital twins is the excessive amount of time
required to create models which can be used in
accurate physics-based simulations, such as finite
element analysis (FEA) or motion simulations in
Sec. 3.2. In many cases, the solid models of the
parts and machines researchers aim to use in dig-
ital twin simulations have already been created
by the original equipment manufacturers (OEMs).
Similar to ideas discussed in Grieves (2014) white
paper, it is entirely conceivable that future high
value assets (e.g., aircraft, spacecraft, industrial
equipment, and even entire production factories)
could be delivered to the customer accompanied
by a complete digital solid model for use in a
digital twin framework. In turn, the extensive
time commitment the OEM has sunk into cre-
ating the initial 3D solid model of the product

could now be recouped by supporting the end
user with a long-term reliability and predictive
maintenance contract. With lasting communica-
tion between the OEM and the end user through
the online solid model, safety issues can be man-
aged quicker, replacement parts can be identified
more easily, and future upgrades can be tested and
checked virtually for compatibility with a given
customer’s asset before committing to manufac-
turing the parts. Ultimately, the sharing of solid
models between OEMs and end users is neces-
sary to accelerate the adoption of digital twin
technology.

(b) Laser scanning

Laser scanning, also commonly referred to as
LiDAR (light detection and ranging), is a geom-
etry modeling technique which uses laser light to
repeatedly sample the distance to different points
on an object’s surface. The recorded measure-
ments are virtually assembled into a 3D point
cloud of (X, Y, Z) coordinate data to describe the
surface morphology of the scanned object in great
detail. Unlike solid modeling techniques which can
model internal components, material changes, and
geometries, laser scanning can only model surface-
level features. However, laser scanning makes up
for its inability to model internal geometries by
generally being much faster at modeling objects.
When it is paired with the appropriate software,
laser scanning can create a point cloud of data
points on a computer in near real-time.

Laser scanning has been used in many appli-
cations for digital twin. In the manufacturing
domain, laser scanning has been proposed for
quickly checking the geometry of traditionally
manufactured or 3D printed parts (Almalki et al.,
2022; Warmefjord et al., 2017; White et al.,
2021). Also in manufacturing, Droder et al. (2018)
showed a proof of concept for a digital twin con-
sidering human-robot interaction. The researchers
used a Microsoft Kinect 2.0 LiDAR sensor to
detect humans in a robotic arm cell. Based on the
proximity of the human to the robotic arm, the
robotic arm’s path and speed were automatically
optimized in real-time to create a safe environ-
ment for the human while not ceasing operation
entirely. In contrast to other systems which use
laser trip-wires that completely stop the robot
when a human enters the area, the LIDAR-based
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digital twin system significantly improved man-
ufacturing performance while maintaining a safe
working environment. In a different application of
laser scanning and robots, Wang et al. (2020a) lat-
erally mounted an industrial camera on a robotic
welder to take images of the process for improved
real-time quality control via augmented reality
data streaming. LIDAR and other laser scanning
techniques will be extremely useful for the devel-
opment of more complex manufacturing sensor
networks connected to a digital twin. Real-time
data streaming to and from the physical and
virtual dimensions will enable more productive
manufacturing lines without compromising worker
safety.

The ability of laser scanning to quickly map
and model large structures, landscapes, and build-
ings makes it particularly useful for digital twin
modeling in the civil engineering domain (Lu
et al., 2020b; Pan and Zhang, 2021). One of the
most common uses of LIDAR and laser scanning
for digital twin is for scanning the surface of large
buildings (Deng et al., 2021), bridges (Shim et al.,
2019), or other structures (Lim et al., 2020b).
Specifically in Shim et al. (2019), the authors dis-
cussed how LiDAR laser scanning could be used to
periodically model the surface features of different
bridge components for preventative maintenance.
In this system, the raw scanned point cloud data
is fed in batches to the cloud where structure
recognition deep learning (DL) algorithms sort the
scanned images according to the type of struc-
ture it is. Then, within the digital twin network,
the images are mapped into their respective onto-
logical structure file (see Section 3.5 (b)) where
they are further analyzed for cracks, pitting, shift-
ing, or other undesirable degradation indicators.
Any positively identified defects would then be
loaded into a global solid model simulation for
physics-based stress analysis. In the next section,
we discuss such physics-based simulations, and
their role in digital twins. Altogether, applica-
tions of LiDAR and laser scanning for digital twin
modeling will become extremely important in the
coming years as cities struggle to maintain the ever
increasing number of bridges and other critical
infrastructure.

(¢c) VR, AR, and MR technologies

In addition to solid modeling and laser scanning,
other techniques, such as virtual reality (VR), aug-
mented reality (AR), mixed reality (MR), have
also been explored as viable methods of construct-
ing digital replicas of various physical entities.
These visualization and interaction techniques dif-
fer in how they display relevant information. The
most simple method, AR, overlays relevant con-
textual data to the user by projecting over assets
in the physical world. Typically, the projections
are done using light projection onto surfaces,
or in some cases, through a wearable headset
with transparent lenses. MR technologies further
extend the capabilities of AR by allowing interac-
tions between the digital objects and the physical
world. This technology is closely followed by VR,
which is a completely immersive digital environ-
ment where interactions happen exclusively in
the virtual world. These data visualization and
interaction technologies are promising enablers of
digital twin modeling because of their ability to
connect users, assets, and data streaming in real-
time. VR, AR, and MR technology research is
an active field. For example, Tadeja et al. (2020)
developed an immersive aerospace design environ-
ment built upon VR to aid the design process of
aerodynamic components by interactively visual-
izing performance and geometry. Other work by
Cai et al. (2020) leveraged AR to link the lay-
out information between a physical and digital
asset in a reconfigurable additive manufacturing
system made of robotic arms for tool path plan-
ning and simulation. Choi et al. (2022) integrated
MR in a digital twin to achieve safety-aware
human-robot collaboration, where MR was com-
bined with safety-related monitoring to track the
shared workplace and real-time safety distance
calculation. Research into VR, AR, and MR tech-
nology remains a hot and active topic, as the role
of these powerful data visualization and interac-
tion techniques is not yet fully understood. In the
future, it is expected that these technologies will
enable high-fidelity interactive digital twin models
that can be used to visualize, control, and optimize
various processes and designs in real-time.

3.2 Physics-based modeling

Scientists observe the basic principles of how our
world works and translate them into physical laws.
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These laws define the rules for the motion of mat-
ter and other physical phenomena through space
and time. It is well-known that partial differential
equations (PDEs) can mathematically describe
certain physical laws. Two well-known examples
of PDEs are the Navier—Stokes equations describ-
ing fluid motion Chorin et al. (1990) and the
heat equation describing heat diffusion Widder
(1976). Combining PDEs into a mathematical
model and solving this model allows engineers
and scientists to simulate and observe the phys-
ical phenomena governing a system or process.
In computer-aided engineering (CAE), engineers
and researchers use software packages to formu-
late mathematical models consisting of PDEs that
describe the underlying physics, initial conditions,
and boundary conditions. After defining the mod-
els, the software solves the PDEs to simulate the
physical effects so that engineers and researchers
can better understand the physical interactions.
Simulating the solution approximates the input-
output relationship of the physical system, where
the input consists of the physical system prop-
erties, parameterized in the mathematical model,
as well as the operating and environmental condi-
tions, and the output is the performance of inter-
est. Physics-based modeling software is diverse
and complex in the range of applications it can be
used for. Below we outline some of the most com-
mon types of physics engineers and researchers
aim to simulate.

¢ Types of physics: Physics-based modeling and
simulation for use in digital twins covers a
wide scope. Below, we highlight and summarize
some of the most common types of physics and
physical modeling techniques used for digital
twin.

1. Solid body structural analysis of stress and
strain is typically conducted using finite ele-
ment analysis (FEA) software where the
objects are modeled as a tessellation mesh
of triangles, and the forces are calculated at
each node in the mesh. FEA is flexible in
that the resolution of the mesh can be tuned
to balance the trade-off between simulation
accuracy and computational costs. FEA has
so far been an important modeling technique
for digital twin (Li et al., 2017; Angjeliu
et al., 2020; Millwater et al., 2019; Moi et al.,
2020; Karve et al., 2020; Ye et al., 2020; Liu

et al., 2021c; Bellalouna, 2021; Wang et al.,
2022a). Specific examples of FEA for digi-
tal twin include stress analysis of a ground
vehicle suspension (Hu and Youn, 2011),
wear analysis of cutting tool in manufac-
turing (Zhang et al., 2021b), strain analysis
(Revetria et al., 2019), and dynamic struc-
tural analysis of an aircraft wing (Seshadri
and Krishnamurthy, 2017). As an initial dig-
ital twin proof of concept, Haag and Anderl
(2018) demonstrated simultaneous simula-
tion and measurement of forces in a beam
bending test bench.

. Thermal and fluid flow analyses are typically

conducted using computational fluid dynam-
ics (CFD) software (Zhou et al., 2021). Fluid
physics are especially relevant in aircraft
and spacecraft simulation, where digital twin
was first conceived (Grieves, 2014). In many
cases, fluids are closely tied to heat transfer,
as flowing fluids are exceptionally effective
at exchanging heat. Fan et al. (2013) per-
formed thermal analysis for a battery cooling
system of an electric vehicle. In the future,
thermal and fluid flow analyses will prove
exceptionally useful in digital twins.

. Kinematic and dynamic analyses of mech-

anisms using multi-body dynamics (MBD)
models are another type of physics com-
monly modeled. Ha et al. (2018) analyzed
the motion of robots using MBD; Xia et al.
(2021a) used MBD to simulate and test the
interference and collisions of the components
in their digital twin model.

. Multiphysics simulations simultaneously

simulate multiple coupled physical phe-
nomena by sharing information between
individual physics-based simulations
(DeLaurentis and Mavris, 2000; Hu and
Mahadevan, 2018a). Examples include
coupled FEA and CFD simulations in
fluid-structure interaction for aircraft wings
(Tezduyar and Osawa, 2001) and wind tur-
bines (Hsu and Bazilevs, 2012), and coupled
electrochemical-mechanical simulations for
modeling Li-ion battery cells (Allu et al.,
2014; Wang et al., 2022b). Another example
of coupled multiphysics interaction is the
hypersonic vehicle shown in Fig. 7. This
multiphysics simulation features coupled
aerodynamic and aeroelastic analyses to
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predict the complex vehicle response under
hypersonic airflow conditions (Culler and
McNamara, 2010).

Aerodynamic [
Heating —

t !

Aerodynamic —*  Structural
Pressure «—— Deformation

Heat Transfer

Fig. 7: Coupled multiphysics simulation of a
hypersonic vehicle panel (Hu and Mahadevan,
2018a)

e Levels of fidelity: When building a physics-
based model, it is important to consider the
minimum level of detail (fidelity) required to
approximate the physical input-output relation-
ship in order to optimize the balance between
computational costs and model accuracy. Take
for example a fluid dynamics problem which
can be solved using different CFD models. With
the highest fidelity, direct numerical simulation
can provide an accurate high-fidelity solution
to model turbulence flow. With slightly lower
fidelity, large eddy simulation and the Reynolds-
averaged Navier—Stokes equations can also be
used to solve the same problems more quickly,
albeit with a slightly lower accuracy. Another
example of multi-fidelity modeling arises in
the battery modeling community. There is a
well-established hierarchy of electrochemical-
thermal models that consists of (from high-
to low-fidelity) the 3D Doyle—Fuller-Newman
(DFN) model, 241D DFN model, the DFN
model (or pseudo-two-dimensional), and the
single particle model Marquis et al. (2020). The
field of multi-fidelity modeling is rich with liter-
ature, and interested readers should read several
of the dedicated review papers (Fernandez-
Godino et al., 2016; Peherstorfer et al., 2018;
Giselle Ferndndez-Godino et al., 2019). One
final note regarding model fidelity is that the
data-driven models presented in Sec. 3.3 fall
into the broad category of low-fidelity models,
and great effort is being done to find ways to
combine physics-based and data-driven models
for improved fidelity (see Sec. 3.4)

When defining a relevant physics-based mod-
eling problem, the engineering problem at hand
determines which types of physics should be
modeled. Many commercial CAE software tools
streamline the execution of three basic steps: (1)
loading in 3D geometry data from a geometric
model created in CAD software or via laser scan-
ning as reviewed in Sec. 3.1, (2) defining the
initial conditions and determining the geomet-
ric and physical bounds of the simulation, and
(3) solving the model to approximate the perfor-
mance of interest. Examples of software tools used
to solve physics-based simulations are ANSYS
Mechanical, Abaqus FEA, and Altair HyperMesh
for FEA, ANSYS Fluent, Autodesk CFD, and
SimScale for CFD, MATLAB & Simulink (Sim-
scape Multibody), MSC ADAMS, and RecurDyn
for MBD, and COMSOL Multiphysics and MSC
Nastran for coupled multiphysics simulation. A
few noteworthy open-source packages relevant to
digital twin are OpenFOAM and Stanford Uni-
versity’s Unstructured (SU2) package for CFD,
MBDyn for MBD, and for multiphysics simu-
lation, Advanced Simulation Library (ASL) and
Chrono open-source options.

It is important to strike a balance between
accuracy and computational cost when choosing
the level of fidelity for a physics-based simulation.
No matter how high the fidelity of a physics-based
model might be, it is still only an approxima-
tion of reality because of missing physics, flawed
assumptions, finite mesh discretization, etc. If the
resulting model bias is large (likely for a low-
fidelity model), it is important to quantify the bias
offline and compensate for it online (see Sec. 2.1.2
in Part 2 of the review paper for a detailed discus-
sion on the offline calibration of dynamic system
models). Furthermore, it may be counter-intuitive
to say that high-fidelity models are not always
preferred even when computational costs incurred
in DS, P2V, and V2P are not a concern. Prac-
titioners need to keep in mind that high-fidelity
models contain larger numbers of parameters that
need to be calibrated offline, and during online
deployment, a subset of the parameters need to
be further tuned. Offline validation and online
fine tuning requires the use of previously collected
data and measurements. However, most of the
time, very limited data is available for both offline
model parameter estimation and online fine tun-
ing. Practioners who deploy a high-fidelity model
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but have inadequate data to properly tune the
parameters may find that model underperforms,
and exhibits poor accuracy. As a result, practi-
cal implementations of physics-based models are
(1) a lower-fidelity model that offers the desired
accuracy at a lower cost and with a smaller num-
ber of parameters for offline calibration and (2)
a small and critical subset of the model param-
eters are identified for online updating, reducing
the amount of data required (see also a discussion
in Sec. 4.2 (a)).

3.3 Data-driven modeling

Data-driven models are needed for modeling
physics in a digital twin under either of two main
scenarios:

1. the underlying physics is too complicated or is
not fully understood, and as a result, building
an accurate physics-based model is impossible;
or

2. the physics is well understood and can be
modeled using available software, but the simu-
lation is too computationally expensive or time
consuming to be useful in a digital twin, espe-
cially when many model runs are required (such
as with UQ tasks).

In either scenario, data-driven models must be
constructed to represent the underlying physical
input/output behavior, enabling efficient predic-
tion of digital states for real-time control and
optimization in a digital twin. Shown in Fig. 8,
data-driven models can be grouped into three
classes according to their application domain,
namely (1) data-driven models for degradation
modeling, (2) data-driven surrogate models which
can entirely replace the physics-based models dis-
cussed in Sec. 3.2, and (3) data-driven models for
dynamic system identification using sensor mea-
surements from a physical system (PS in Eq.
(1)). Moreover, it is worth mentioning that sys-
tem identification is fundamentally very similar
to surrogate modeling. System identification is
generally the determination of a model’s char-
acteristic parameters (regardless of model class)
that minimize some predictive error metric, and
one may note that essentially a surrogate model
is trying to mimic a system’s behavior also with
a goal towards some minimized prediction error
metric. The main difference between the two is

that surrogate modeling is typically constructed
and optimized using computer simulation data for
any type of physical simulation at any time scale,
while system identification mainly uses online sen-
sor monitoring data and/or offline experimental
data collected to tune the specific model’s param-
eter(s). The close similarity is why many of the
surrogate modeling methods and system identifi-
cation methods can be used interchangeably. This
relationship is further explained in Fig. 8.

Data-driven models for use in digital twins
can be classified into two categories according
to the fundamental theory and construction (e.g.
numerical or analytical), namely statistical mod-
els and ML models. Statistical models and ML
models have been used for both prediction and
inference (Danilo et al., 2018). “Statistical meth-
ods have a long-standing focus on inference, which
is achieved through the creation and fitting of a
project-specific probability model, while ML con-
centrates on prediction by using general-purpose
learning algorithms to find patterns in often rich
and unwieldy data” (Danilo et al., 2018; Bzdok
et al., 2017). In what follows, we discuss the latest
data-driven modeling trends and provide insights
on how each method can or has been used in a
digital twin framework.

3.3.1 Statistical models

Statistical models play a vital role in establish-
ing both P2V and V2P connections in digital
twins. For P2V connection, statistical models have
been used in the context of dynamic system iden-
tification to build state-space models based on
measurement data. For V2P connection, statisti-
cal models have been extensively used to build
degradation models for failure prognostics and
predictive maintenance of physical systems.

o Statistical models for dynamic system identifica-
tion (P2V). System identification is the process
of learning a mathematical representation of a
dynamic system based on pairs of measured
input/output data (Ljung, 1998). System iden-
tification has been extensively studied using sta-
tistical methods in the past decade, especially
for linear dynamic systems.

Many approaches have been developed
for linear system identification in both the
time domain and frequency domain (Ljung
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and Glover, 1981). In the time domain, sim-
ple models, like auto-regressive moving aver-
age models (ARMA), have been studied for
the identification of dynamic systems with sta-
tionary responses (Rojo—Alvarez et al., 2004;
Martinez-Ramén et al., 2006). To overcome
the stationary limitation of ARMA, auto-
regressive integrated moving average (ARIMA)
models have been developed for non-stationary
dynamic systems (Xuemei et al., 2010). We
highlight the I in ARIMA as it denotes the
model’s ability to model trending data as a
series of differences, making it a much more
versatile statistical model. Other widely used
approaches for time-domain system identifica-
tion include stochastic subspace identification
(SSI) methods (Peeters and De Roeck, 1999)
and eigensystem realization algorithms (Juang
and Pappa, 1985). In the frequency domain,
commonly used modeling methods include fre-
quency domain decomposition (FDD) (Brincker
et al., 2001) and the least squares complex
frequency domain method (Guillaume et al.,
2003). Among the mentioned linear system
time-domain and frequency-domain methods,
SSI, a parametric identification method based

Conventional ML models

¢ Artificial neural network

*  Support vector machine

* Gaussian process regression
¢ Random forest, etc.

+ CNN
Surrogate + LSTM, BLSTM
modeling + GRU

Degradation
modeling
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CNN-LSTM, CNN-
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Dynamic
system
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e NARX, NARMAX
e SSI, FDD

Fig. 8: Overview of data-driven models, where italic font represents statistical-modeling methods; and
non-italic font indicates ML methods.

on stochastic state-space models, is one of the
most widely used approaches. Many variants of
the SSI method have been proposed in the past
decade, such as reference-based SSI (Peeters
and De Roeck, 1999) and covariance-driven SSI
(Déhler et al., 2011). A detailed explanation of
SSI is available in (Peeters and De Roeck, 1999;
Brincker and Andersen, 2006).

Numerous efforts have also been made
to develop statistical methods for nonlinear
system identification (Billings, 2013; Piroddi
and Spinelli, 2003; Worden et al., 2018). The
most widely used methods include the nonlin-
ear autoregressive exogenous (NARX) model
(Piroddi and Spinelli, 2003), and the nonlin-
ear autoregressive moving average model with
exogenous inputs (NARMAX) model (Billings,
2013). In a NARX model, the value of the
current output i is represented as a non-
linear function of past values of the out-
put (i.e., yr—1, Yr—2,, -, Yk—p) and cur-
rent and past values of exogenous inputs (i.e.,
Uk, Uk—1, - , Uk—q) as follows

Y = g(yk—17 Yk—2,5 * " Yk—p,
B U;k_q) +5k7

(2)

Uk, Uk—1, """
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where ¢(-) is a nonlinear function, such as a non-
linear polynomial function, p and ¢ are respec-
tively the number of lags of the output and the
exogenous inputs included in g(-), and ¢, is a
Gaussian random variable with zero mean and
unknown standard deviation estimated based
on observations along with parameters of g(-).
In a NARMAX model, the noise sequences (i.e.,
€kyEk—1," " ,Ek—e) are also included in g(-) in
addition to past values of exogenous inputs
and the response (Billings, 2013). When an ML
method is employed to construct the nonlinear
function g(-), the nonlinear system identifica-
tion methods fall into the intersection of statis-
tical methods and ML methods (Worden et al.,
2018).

There are also several review papers summa-
rizing various system identification approaches.
Namely, Astrém and Eykhoff (1971) conducted
a detailed review of various system identifica-
tion methods of dynamic systems, Ljung (2010)
shared his perspectives on system identification,
Sirca Jr and Adeli (2012) reviewed approaches
for system identification in structural engineer-
ing, and Kerschen et al. (2006) conducted a
comprehensive review on developments in sys-
tem identification of nonlinear dynamical struc-
tures and illustrated them using numerical and
experimental examples.

The dynamic system models identified using
the system identification methods reviewed
above can enable real-time state estimation and
control, a highly desirable ability of a digital
twin. For instance, He et al. (2019) used a
discrete-time state-space model identified from
data to model various component-level dynam-
ics in constructing a virtual system in their
digital twin model. Similarly, Xia et al. (2021b)
used the MATLAB system identification tool-
box (see Table 1 in Part 2 of the review paper)
to build digital models for their digital twin.
Statistical methods for degradation modeling in
predictive maintenance (V2P). One of the most
important elements in digital twins is degrada-
tion modeling. Degradation modeling is vital for
predicting the end of life of a physical system
to enable predictive maintenance (i.e., V2P).
In some cases, degradation mechanisms of the
physical system involve complicated physics
which may not be fully understood. In these
scenarios, a physics-based degradation model

cannot be constructed, and an empirical sta-
tistical model must be used instead. Empiri-
cal modeling leverages historical data collected
from failed units to construct a degradation
model. Shown in Fig. 8, many statistical models
have been proposed for degradation modeling
of both single and multiple failure mechanisms.
For example, numerous stochastic process mod-
els, including Markov models (Giorgio et al.,
2011; Lee et al., 2010; Vega et al., 2021), semi-
Markov models (Kharoufeh et al., 2010; Liu
et al., 2018a; Compare et al., 2016), Wiener pro-
cess, Poisson process, inverse Gaussian process,
Gamma process, and accelerated life testing
(ALT) models (Hu and Mourelatos, 2018), have
been developed for degradation modeling of sin-
gle degradation mechanisms (Ye and Xie, 2015;
Gorjian et al., 2010). For degradation modeling
with multiple degradation mechanisms, multi-
phase stochastic process models (Liao et al.,
2021), piece-wise Markov process models (Vega
et al., 2020), copula functions (Peng et al.,
2016), and system-level ALT models (Moustafa
et al., 2021), have been proposed.

While statistical degradation models allow
for effective prediction of the end of life of phys-
ical systems, there are several challenges that
need to be addressed in order for some of the
models to be used in a digital twin. For example,
a Markov degradation model usually describes
the degradation as a set of highly abstract dis-
crete states, such as ratings given in letters (e.g.,
A, B, C, D). It is often difficult to directly use
online sensor data, collected from the physical
system continuously and in real-time, to update
the highly abstract discrete states. This poses
a real challenge in seamlessly establishing the
P2V connection in a digital twin system (see
Fig. 3). To tackle this challenge, researchers
have proposed approaches integrating Bayesian
model updating methods reviewed in Sec. 4.2
with Markov chain model for model updating
and failure prognostics in Chiachio et al. (2020);
Vega et al. (2021). In addition, the uncertainty
of a degradation model needs to be properly
quantified in order for such models to be fully
integrated into a maintenance decision making
framework. Accurately quantifying the uncer-
tainty of prognostic models is essential to the
effective integration of these models into digital
twins for predictive maintenance, especially for
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high-value physical assets and in safety-critical
applications, as will be discussed in Sec. 5.2. A
detailed discussion on the role of UQ in digital
twins will be discussed in Section 2.1 of Part 2
of the review paper.

3.3.2 ML models

With the increase in IIoT connected devices,
big datasets have become commonplace, and
advanced data analysis methods have been devel-
oped to take advantage of the collected knowledge.
ML models, which can learn from a dataset and
be used to predict on new, unseen data, have
become a popular method for modeling physical
systems in a digital twin (Min et al., 2019; Ibrahim
et al., 2020; Liu et al., 2020a; Priyanka et al., 2022;
Flayan et al., 2021; Ladj et al., 2021; Hu et al.,
2021a). As shown in Fig. 8, ML methods can be
further categorized into conventional ML methods
and newer, emerging DL methods.

Conventional ML methods, as indicated in Fig.
8, include feed-forward neural networks (Chen and
Billings, 1992), support vector machines (Zhang
et al., 2006), random forests (Chai and Zhao,
2019), and Gaussian process regression (Worden
et al., 2018). All of these methods have been
used in digital twins for (1) degradation modeling,
(2) surrogate modeling to replace first-principles
models, and (3) dynamic system identification
from data. For example, for surrogate modeling,
Chakraborty and Adhikari (2021); Molinaro et al.
(2021) used Gaussian process regression models to
replace computational simulations in digital twins,
and thereby enable real-time prediction; Zhu et al.
(2021) trained ML models to build a digital work-
piece model for a manufacturing system digital
twin; Zhou et al. (2022b) investigated using multi-
ple ML approaches to characterize the relationship
between crack size/shape and crack-front stress
intensity factors in a helicopter. For the identifi-
cation of dynamic systems, particularly nonlinear
systems, various ML-based approaches have been
proposed by following the NARX format given
in Eq. (2). When a Gaussian process regression
model is used as ¢g(-) in Eq. (2), it is called a
GP-NARX model (Doerr et al., 2018). When feed-
forward neural networks are used, it is called a
NARX-net (Lin et al., 1996).

As a subarea of ML, DL is a relatively
new modeling technique which uses large multi-
connected networks with many parameters to
approximate physical process or functions (LeCun
et al.,, 2015). Deep learning models are easily
reconfigured to have any number of parameters
or architecture, and for this reason, they have a
significant advantage over traditional ML models
when dealing with massive high-dimensional het-
erogeneous datasets (Tang et al., 2020; Rassolkin
et al., 2019; Hu et al., 2022a). As shown in Fig.
8 and similar to conventional ML models, DL
models have been applied in various digital twin
applications for degradation modeling, surrogate
modeling, and system identification. In particu-
lar, the application of DL models for degradation
modeling to establish a V2P connection in a
digital twin has gained much attention recently.
Applications of ML and DL models for degrada-
tion modeling in failure prognostics and predictive
maintenance will be reviewed and discussed in
detail in Secs. 4.4.4 and 5.2. Here, we briefly sum-
marize the application of DL models for surrogate
modeling and dynamic system identification.

® In recent years, a large number of DL meth-
ods have been proposed for surrogate modeling.
DL models can replace many expensive physics-
based simulations by approximating the under-
lying physics using the highly-interconnected
model parameters. For example, Guo et al.
(2022) developed a surrogate model for thermal
signature prediction in laser metal deposition
using DL models. Tang et al. (2020) pro-
posed a DL-based surrogate modeling method
to predict dynamic subsurface flow in channel-
ized geological models. Similarly, Weber et al.
(2020) developed a DL surrogate model for
earth system simulation models. In deep neural
network-based surrogate modeling methods, it
is worth highlighting a particular type of neu-
ral network — long short-term memory (LSTM)
networks, which are a type of recurrent neu-
ral network. Unlike regular feed-forward neural
networks, LSTM has a feedback loop inside
each cell which allows information to persist in
time throughout the network (Hochreiter and
Schmidhuber, 1997). As a result, it can cap-
ture long-term dependencies in time series data.
Because of this appealing feature, LSTM net-
works have been extensively leveraged to build
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surrogate models for sequence-to-sequence pre-
diction with different number of inputs and
outputs (e.g., one to many, many to one, and
many to many ), such as in aerodynamics (Zhang
et al., 2021c), elasto-plastic finite element sim-
ulation (Im et al., 2021), and microstructure
evolution applications (Montes de Oca Zapiain
et al., 2021), among others. Moreover, numerous
hybrid DL architectures, such as convolutional
neural network (CNN)-LSTM (Zhao et al.,
2022) and CNN-Bidirectional LSTM (Zhang
and Yin, 2021), have been proposed in recent
years for surrogate modeling of various physical
systems.

For system identification, DL models are becom-
ing more popular due to their advantage over
conventional ML and statistics-based models in
handling high-dimensional and heterogeneous
data sources, such as videos and images. As
mentioned above, the main difference between
system identification and surrogate modeling is
that system identification is mainly done using
sensor data collected during online operation,
whereas surrogate modeling may be done with
either physics-based simulation data or sensor
measurement data.

There are two main approaches for system
identification using DL. In the first approach,
DL models are used to learn the input-output
relationship directly in a nonlinear autoregres-
sive exogenous scheme. In this way, the DL
model learns from data to act as a black-
box state-space model of the system. The
learned states and state transition functions
are encoded in the DL model’s parameters and
are typically not easy to visualize because the
model’s contain many thousands of parameters.
Zhang and Mahadevan (2020) used an LSTM
DL model to learn the relationship between the
measured aircraft velocity and flight trajectory
to facilitate the safety assessment of en-route
flight. Ma et al. (2021) used a probabilistic
LSTM to learn the relationship between geo-
metric sensor data and thermal elongation. Hu
et al. (2022b) developed a grasps generation-
and-selection CNN to facilitate performance
assessment of robotic grasps in the context of
digital twin, where grasping state (i.e., position,
rotation angle, and gripper width) was captured

and characterized in the form of red—green-
blue-depth images. Wu and Jahanshahi (2019)
presented a deep convolution neural network-
based method for system identification of struc-
tural dynamic systems. They showed that CNN-
based system identification methods are more
robust than conventional multilayer perception
neural networks-based methods when the sig-
nals are contaminated by large noise.

In the second approach to system identi-
fication using DL, the state-space model of a
system is learned in a more easily interpreted,
low-dimensional form. The most popular DL
model for this is the autoencoder (Masti and
Bemporad, 2021; Li and Yang, 2021; Otto and
Rowley, 2019). Shown in Fig. 9, an autoen-
coder is given the name encoder because it takes
high dimensional inputs I;_; and encodes them
as a low-dimensional state vector xj. The low-
dimensional state vector can easily be viewed
and visualized since it is of much lower dimen-
sionality than the system inputs and outputs.
To estimate the system outputs Oy, the state
vector xy, is decoded in the decoder. In a recur-
rent fashion, the encoded state vector xzj is
combined with control system inputs uj using
another small neural network which learns the
state transition function xgy; = f(zk,ug) to
update the state estimate, xx4+1, at the next
time step. The specifically designed high- and
low-dimensional parts of recurrent autoencoder
networks offer practitoners the ability to work
with high-dimensional inputs and outputs while
still maintaining a better level of clarity and
visualization by observing the low-dimensional
states x. Autoencoders and similar DL models
will play a vital role in understanding the many
complex input/output relationships in future
digital twin frameworks.

We conclude our discussion on data-driven
modeling by listing a few topics that are crucial for
the successful deployment of data-driven models
in a digital twin.

1. Model selection: Even though both statisti-
cal models and ML models are getting unprece-
dented attention in recent years, they have
their own advantages and disadvantages. For
example, statistical models are highly explain-
able while complex DL models are difficult to
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Fig. 9: A recurrent autoencoder-based DL model
for system identification of a nonlinear dynamic
system (Masti and Bemporad, 2021).

interpret and are often thus used in a black-
box way. There are so many data-driven models
available, however, selection of an appropri-
ate data-driven model should always follow
the “Occam’s Razor” principle. For example,
if a conventional ML model, such as a Gaus-
sian process regression model, can be employed
to build an accurate data-driven model, there
is no need to construct a very complicated
DL model for the same task. The selection of
an appropriate data-driven model for a spe-
cific application of digital twin is an important
optimization problem.

2. UQ of ML models: George E.P. Box
famously said “All models are wrong, but some
are useful,” as recorded in Box (1976). This
is also true for all data-driven models includ-
ing statistical models, conventional ML models,
and DL models. It is therefore important to
quantify the uncertainty in data-driven mod-
els, especially ML models. UQ of ML models
allows us to quantify the confidence level of ML
predictions. It plays a vital role in determin-
ing when the model prediction will go wrong
and how bad the prediction is if it is wrong. A
detailed discussion of such an important topic
is given in Section 2.1.1 in Part 2 of the review
paper.

3. Data collection: Data is essential for the
learning of data-driven ML models. The quan-
tity and quality of available data significantly
affect the performance of data-driven models,

and eventually the effectiveness of digital twins.
In engineering practice, high-fidelity physics-
based simulations may be computationally very
expensive and physical experiments may be
very time- and resource-consuming. In those
situations, it is difficult to collect large volumes
of high quality training data to build data-
driven models. Ways to tackle this challenge
include (1) physics-informed ML, reviewed in
Sec. 3.4; (2) active learning where data are
collected adaptively to refine data-driven mod-
els in a data-efficient manner (Cohn et al.,
1996), with Bichon et al. (2008) being the
first application of active learning to reliabil-
ity analysis under uncertainty; and (3) online
model updating, as will be reviewed in Sec.
4.3, where an ML model is first trained using
a small amount of data offline and then is
updated using data collected online to improve
the prediction accuracy.

3.4 Physics-informed ML

For some aspects of the physics in digital twins,
both data from first-principle (or physics-based)
simulations and data collected from a physical
system may be available. When both physics
and data are present, methods presented in Sec.
3.2 and Sec. 3.3 can be integrated, resulting in
hybrid physics-ML approaches for modeling phys-
ical systems. For instance, Luo et al. (2020) fused
a first-principle model with operational data to
build a multi-domain model in a digital twin. Sim-
ilar approaches have been attempted, sometimes
labeled as physics-informed ML, for physical sys-
tem modeling in digital twins (Liu et al., 2018b;
Yu et al., 2020; Ritto and Rochinha, 2021; Broo
et al., 2022). Incorporating physical knowledge
into data-driven ML models can offer several
attractive benefits, including better generalization
of ML models to unseen “out-of-distribution” test
data, as will be discussed in detail in 4.3, the
ability to explain the underlying physics of the
predictions from the ML models, and speeding up
the training process because some physical laws
can restrict the feasible region of solutions and
limit the values the model parameters can take.
According to the way that a first-principle model
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is integrated with a data-driven ML model, exist-
ing hybrid approaches for physical system model-
ing can be broadly classified into six approaches,
shown in Fig. 10 and explained in what follows.

e Approach 1: Physics-Informed Loss Func-
tion This approach modifies the loss function
of a data~-driven ML model by adding a physics-
informed loss term that penalizes model pre-
dictions not compliant with first principles (or
physics), thus constraining the training of the
ML model toward solutions that comply with
physics (Raissi et al., 2019a; Jagtap et al.,
2020a; Lu et al., 2021). This approach is the
most common way to build hybrid physics-ML
models and has found success in many dig-
ital twin applications such as solving PDEs
and surrogate modeling (Raissi et al., 2019a;
Zhu et al., 2019b; Haghighat et al., 2021; Gao
et al., 2021; Zhou et al., 2022a), inverse model-
ing (Raissi et al., 2019b; Jagtap et al., 2020b),
fault diagnostics (Shen et al., 2021), and degra-
dation modeling (Yan et al., 2022). This method
of physics-informed ML is different than the
other approaches in that it does not necessarily
require any training data from a physics-based
simulation, a significant advantage over other
methods.

e Approach 2: Data Augmentation This sec-
ond approach first runs first-principle simula-
tions to generate data at various states an oper-
ating conditions of a physical system. Examples
of states include healthy, degraded/damaged,
and failed for predictive maintenance applica-
tions. It then combines the generated data (or
synthetic data) with actual data (e.g., experi-
mental data) to create an augmented training
dataset for training data-driven ML models. An
example that falls into this category is the digi-
tal twin model presented by Ritto and Rochinha
(2021). The authors generated different dam-
age scenarios using first-principle simulations to
augment a training dataset for an ML classi-
fier used for damage detection of a bar struc-
ture. Another example is the application of
physics-informed ML to degradation diagnostics
of lithium-ion batteries, where a simple physics-
based half-cell model was used to generate
high-degradation simulated data to allow train-
ing ML models on small, early-life experimental
data (Thelen et al., 2021). Using physics-based

synthetic data to train an ML model par-
tially constrains the ML model’s output with
the physics carried by the first-principle model,
thereby improving the generalization perfor-
mance of the ML model. Additionally, this data
augmentation approach can reduce the data
size required for training large-scale DL mod-
els. A necessary condition for the success of this
approach is that the first-principle model cap-
tures physics highly relevant to the problem at
hand. However, the model does not need to be
highly accurate.

Approach 3: Transfer Learning This
physics-informed ML approach is inspired by
the concept of transfer learning, which has
been explored in various digital twin applica-
tions, including multi-fidelity modeling, such as
Huang et al. (2022b) for melt pool modeling
in additive manufacturing, process quality mon-
itoring, such as Kapusuzoglu and Mahadevan
(2020) (the third type of strategy) for in-line
quality monitoring of additive manufacturing
processes, and data-driven prognostics such as
Zhang et al. (2018) for turbofan engine prog-
nostics, Shen et al. (2020) for battery capacity
estimation, and Wang et al. (2021b) for bear-
ing fault diagnosis. It first pre-trains an ML
model using a large quantity of data from
first-principle simulations. It then fine-tunes the
model using a small quantity of real data (e.g.,
data from physical system experiments). Sim-
ilar to the data augmentation approach, this
transfer learning approach can improve the gen-
eralization of ML models and alleviate the data
size requirement. Its success also highly depends
on how relevant the physics captured by the
first-principle model is to the classification/re-
gression problem that needs to be solved.
Approach 4: Delta Learning (Missing
Physics) The basic idea of this delta learn-
ing approach is to add a data-driven ML
model, co-existing with a first-principle simula-
tion model, that learns to recover the unmod-
eled physics. This hybrid modeling approach
is commonly used in multi-fidelity modeling
and quantification of simulation model discrep-
ancy. For example, Jiang et al. (2022) added
a polynomial chaos expansion model on top of
a simplified physics-based degradation model
for failure prognostics of a structural system



A Comprehensive Review of Digital Twin - Part 1: Modeling and Twinning Enabling Technologies

called miter gates. The role of the polyno-
mial chaos expansion model was to represent
the discrepancy of the simplified physics-based
degradation model due to unmodeled dynam-
ics. Yucesan and Viana (2020) built a data-
driven LSTM model to augment a physics-based
fatigue model, which created a hybrid model for
fatigue prognostics of wind turbines.
Approach 5: Delta Learning (ML Predic-
tion) In this approach, an ML model learns
residuals on top of initial predictions by another
ML model, trained using data generated by a
physics-based model. The final predictions are
the sum of the initial predictions and residu-
als. The initial predictions can also be made
directly by a physics-based model (Zeng et al.,
2020). The logic behind this hybrid physics-
ML approach is two-fold: (1) the first-principle
model use baseline physics to produce initial,
population-based predictions that may not be
accurate for individual system units but can
generalize well to different operating conditions;
and (2) adding the data-driven residuals to com-
pensate for missing physics and unit-to-unit
variability. The resulting performance gains are
improved generalization over pure data-driven
ML and improved prediction accuracy over
purely physics-based modeling. Just like the
above physics-informed ML approaches, this
delta learning approach may not work well if the
first-principle model does not capture relevant
physics. Issues may also arise when the first-
principle model cannot capture the effects of
testing or operating conditions on experimental
data.

Approach 6: ML-Assisted Prediction This
sixth approach to physics-informed ML uses
a data-driven ML model to predict the input
x or parameters O of a first-principle model.
When implementing this approach in practice,
the first step is identifying the input or a
subset of the parameters as variables, Xgpu
or Oppym, to be predicted by the ML model.
Then, the ML model estimates or, in some
cases, forecasts xppy or Oppy. Finally, the
first-principle model uses the ML estimates or
forecasts to predict the response of interest y
at current (estimation) or future (forecasting)
time steps. A clear benefit of this approach is
the physical interpretability, coming from (1)

using physically meaningful variables as inter-
mediate y, predicted by an ML model, and (2)
using a first-principle model to predict the final
y. Another advantage is the improved gener-
alization performance, attributable to the use
of the first-principle model. A typical challenge
with this approach is the low identifiability of
the first-principle model’s input or parameters
from observational data. In extreme cases, large
errors in the ML model’s estimates or forecasts
propagate through the first-principle model,
causing the final prediction performance to be
worse than pure ML. Examples of Approach 6
can be found in grease degradation forecasting
(ML) for bearing fatigue life prediction (first-
principle modeling) (Yucesan and Viana, 2022)
and degradation parameter forecasting (ML) for
battery capacity fade prediction (first-principle
modeling) Ramadesigan et al. (2011); Downey
et al. (2019); Lui et al. (2021).

We note that the above list is not exhaus-
tive but rather an incomplete collection of rep-
resentative approaches to physics-informed ML.
For example, an approach that could, in gen-
eral, be categorized as Approach 6 is that the
output and parameters of a first-principle model
are used to augment the input of an ML model,
as demonstrated for in-line quality monitoring of
additive manufacturing processes in (Kapusuzoglu
and Mahadevan, 2020) (the second type of strat-
egy), and turbofan engine diagnostics in Chao
et al. (2019) and prognostics in Chao et al. (2022).
The only difference is that the information flow
is in the opposite direction (i.e., the first-principle
model now feeds an additional input to the ML
model). A seventh approach could be defining
physics-based kernel functions for ML models,
such as the FEA-Net (Yao et al., 2020) and
physics-informed kernel functions for Gaussian
process regression (Yang et al., 2018). Interested
readers can find more comprehensive and detailed
reviews in review papers more dedicated to the
topic of physics-informed ML, such as Karniadakis
et al. (2021) for computational physics, Aykol
et al. (2021) for battery lifetime prediction, and
Willard et al. (2020) for a comprehensive collec-
tion of engineering applications. Despite tremen-
dous advances in combining physics and data for
physical system modeling, much more research
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Fig. 10: Six approaches to construct a hybrid of a physics-based and data-driven ML model: (1) Modifying
the loss function of an ML model by adding a physics-informed penalty term (Karniadakis et al., 2021); (2)
Generating synthetic data using first-principle simulations (Ritto and Rochinha, 2021); (3) Pre-training
an ML model on physics-based synthetic data and then fine-tuning it on experimental data (Shen et al.,
2020; Kapusuzoglu and Mahadevan, 2020; Huang et al., 2022b); (4) Correcting a first-principle model by
learning unmodeled physics from data (Jiang et al., 2022); (5) Correcting an ML model, trained with
physics-based synthetic data, by learning its prediction residual from experimental data (Thelen et al.,
2022a); and (6) Learning to predict the input of a first-principle model (Yucesan and Viana, 2022). The
icon with “G” inside a black circle indicates improvement in generalization over pure ML; the icon with

“I” inside indicates improvement in interpretability.
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is needed to address practical challenges imped-
ing industry-scale adoption of hybrid physics-ML
modeling approaches. Among those challenges are
(1) a lack of large, realistic datasets relevant
to different digital twin applications for train-
ing, validating, and testing hybrid models and
benchmarking their generalization and interpre-
tation performance (see also the discussion in
Section 4.2 of Part 2 of the review paper), (2) a
shortage of digital twin benchmark problems that
allow researchers and practitioners to compare
prediction accuracy and computational efficiency
of different hybrid approaches and determine their
suitability for real-time physical system modeling,
and (3) a lack of academia-industry collaborative
effort in building open-access, well-maintained
platforms that can streamline data sharing, model
building, and benchmarking, such as many exist-
ing efforts to streamline ML workflows.

3.5 System modeling

A physical system usually consists of many sub-
systems and components that interact with each
other in a variety of means. It is, therefore, impor-
tant to model the high-level interactions and the
overall interconnection structure among different
components in the physical system. This section
briefly reviews two widely used techniques for
modeling interactions in physical systems.

(a) Unified Modeling Language (UML)
and Systems Modeling Language (SysML)

Towards systems modeling, the Unified Modeling
Language (UML) is a general-purpose language
that is commonly used for software develop-
ment in model-based systems engineering (MBSE)
(Ramos et al., 2011). In brief, UML is a graphical
modeling language that provides a standardized
way to specify the structure of a software system
and visualize the interactions of different models
in the system (Glatt et al., 2021; Weilkiens, 2011).
In engineered systems, UML has been increasingly
utilized to characterize the design of a system
with regard to its high-level structure, behavior,
and interactions. To this end, different diagrams
are created to reflect the model in line with the
intended purpose from a certain perspective, and
these diagrams can be grouped into two categories:

1. Structure diagram: It describes the static
structure of elements in a system, which is often
adopted to document the architecture of soft-
ware systems. Structure diagram includes class
diagram, component diagram, object diagram,
deployment diagram, etc. Take the class dia-
gram as an example, it is often used to describe
a set of classes, interfaces, and collaborations
and their relationships in object-oriented soft-
ware systems. For example, both classes stu-
dents and professors belong to a super class
person, and the relationship between profes-
sors and students is that professors supervise
students.

2. Behavior diagram: Differing from the struc-
ture diagram, behavior diagram emphasizes
on characterizing and visualizing the dynamic
aspects of the system. It is composed of activity
diagram, use case diagram, sequence diagram,
state chart. Take the same students versus pro-
fessors as an example, in the case of course tak-
ing, the sequence diagram illustrates the very
basic steps in this task ordered by the timeline,
starting from the very beginning course reg-
istration to homework assignment/submission
and homework grading and report. In short,
the sequence diagram summarizes the dynamic
interactions between different users (i.e., stu-
dents, professors, administrators) and applica-
tions (i.e., course registration, homework sub-
mission, homework grading and report) over
time.

The promise of UML in modeling complex
system interactions has been demonstrated in
multiple studies. For example, Luo et al. (2019)
leveraged UML to characterize the connections
among multiple physical subsystems (i.e., mechan-
ical, electrical, hydraulic) in the digital twin of a
CNC machine tool. Note that UML is intensively
used for interaction modeling, focusing heavily on
the software side.

Differing from UML, the Systems Modeling
Language (SysML) is independent of the specific
discipline (e.g., software, hardware, personnel, or
facilities), and it is a general-purpose architecture
modeling language in MBSE through extending
and omitting certain UML elements (Weilkiens,
2011). As driven by user requirements, SysML
consists of four key pillars: structure (e.g., sys-
tem hierarchies), behavior (e.g., state machine),
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properties (e.g., attributes of time variables), and
requirements (e.g., requirements’ hierarchies and
traceability). Using SysML facilitates the design,
specification, analysis, verification, and validation
of engineering products and processes across a
wide range of systems and systems-of-systems.
Thanks to SysML’s rich features in cross-system
extensibility and traceability, there is an increas-
ing number of studies investigating how SysML
is adopted in digital twins (Sun et al., 2020b).
For example, Bachelor et al. (2019) leveraged the
traceability of the allocation of requirements to
system function definitions in SysML, and used
a digital twin model of an ice protection system
to deal with changes in system design through
data traceability across the abstracted lifecycle.
Zhang et al. (2022a) used SysML as a model fusion
tool to establish the relationship among various
domain models in a shop-floor digital twin. A simi-
lar approach is also developed by Liu et al. (2021a)
to model the interaction of different models in
Unity3D for their shop-floor digital twin model.
In digital twins, as software elements (i.e.,
simulation models, database, machine learning
models, decision support modules) play increas-
ingly important roles, UML and SysML have been
frequently used to manage the growing software
complexity, where a unified interface is provided to
describe the structure, behavior, and interactions
among software modules. Such architecture-level
view of all elements and their interdependen-
cies in the overall system brings multiple bene-
fits, such as ensuring the planned functionality
and the envisioned benefits, preventing delays
of the actual implementation due to planning
errors, easing project transfer due to employee
leave. The state-of-the-art literature has witnessed
prominent adoptions of UML/SysML in the man-
ufacturing industry. A representative usage of
UML is showcased by Glatt et al. (2021), where
they considered the digital twin of cyber-physical
production systems. As the digital system con-
tained a significant number of elements and com-
plex relationships between those elements, Glatt
et al. (2021) adopted a UML-based approach to
model system structure and component interac-
tions associated with different system functions
(i.e., monitoring, diagnostics, prediction). The
unified representation of class relationships and

system workflow substantially eases the under-
standing of the object-oriented software systems
in digital twins.

(b) Ontology

In computer science and information science,
ontology is a prevailing knowledge engineering and
representation paradigm to describe the properties
of a subject area and define how they are related
to each other with explicit descriptions and speci-
fications. Towards this end, ontology encompasses
a set of domain-specific concepts, entities, and cat-
egories as well as their definitions, attributes, and
interrelationships to represent the subject matter
of concern. Suppose we are interested in build-
ing an ontology map for an IoT system, and we
have the basic information related to each device
and its digital counterpart. Then a tentative ontol-
ogy map can be constructed like Fig. 11. In this
figure, rectangles denote the distinct types of enti-
ties (i.e., device, sensor, and attribute), and arrows
represent the relationships between entities (e.g.,
each sensor has a sensing device).

Note that ontology maps are generalized data
models in the sense that they only account for gen-
eral types of entities and their abstractions with
certain properties in common. But they do not
include any specific information about an entity
in the domain. For example, rather than focus on
the characteristics of a specific device, an ontol-
ogy map concentrates on the general concept of
devices by capturing common characteristics that
most devices have. The construction of such a uni-
fying conceptual framework significantly fosters
the communication and sharing of the structure of
information specific to each domain that is under-
standable by both humans and machines (Castells
et al., 2006; Compton et al., 2012). The advan-
tage of ontology in enabling the sharing and reuse
of domain knowledge has been one of the key
drivers in the recent surge in ontology applica-
tions, which has been broadly used in machine
learning and information science as a popular
means of knowledge representation (Ji et al.,
2021). For example, Akroyd et al. (2021) demon-
strated a digital twin built with a general-purpose
dynamic knowledge graph in the World Avatar
project, where ontology-based knowledge repre-
sentation was repeatedly exploited to facilitate a
unifiable interface for data queries.
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Fig. 11: A simple ontology model for digital twins. Adopted from Steinmetz et al. (2018).

Knowledge graphs, being a popular way
to instantiate ontology, are commonly used to
connect concepts in ontologies with specific
data for knowledge engineering and information
retrieval (Wang et al., 2017; Lin et al., 2015).
In a knowledge graph, nodes and edges repre-
sent the instances of concepts and the relation-
ships between instantiated entities, respectively.
Attributable to knowledge graphs’ power in query-
ing, inferring, and generating knowledge in the
semantic space, they have been adopted as a key
enabling technology to achieve semantic interop-
erability of heterogeneous data and information
in engineered systems (Noy et al., 2019; Psarom-
matis, 2021). For example, Banerjee et al. (2017)
exploited the reasoning power in a knowledge
graph and developed a query language to extract
and infer knowledge from large-scale production
line data to support manufacturing process man-
agement in digital twins.

In the context of digital twin, ontology and
knowledge graphs offer a common language to
uniquely refer to each possible object (i.e., com-
ponent or sensor) in the physical asset. Doing
this greatly enhances our flexibility in describing
the evolution of digital twin when it is subject
to systems/subsystems/components changes (e.g.,
retrofitting) or modifications in the asset man-
agement process (e.g., monitoring) over the entire
life-cycle. For example, Erkoyuncu et al. (2020)

demonstrated the benefits of an ontology-based
framework explicitly, where ontology was used to
enable the co-evolution of the digital twin with its
physical asset.

4 Physical-to-virtual (P2V)
twinning enabling
technologies

In this section, we summarize five categories
of widely employed physical-to-virtual twinning
methods. The P2V twinning methods vary
depending on the modeling approach used. Fig.
12 presents the relationship between the differ-
ent modeling methods reviewed in Sec. 3, the
P2V methods reviewed in this section, and the
V2P methods that will be discussed in Sec. 5.
Shown in the Fig. 12, some of the P2V twin-
ning methods (e.g., probabilistic model updating)
are widely used across many different modeling
methods, while some other P2V methods (e.g.,
ontology-based reasoning) are designed for specific
modeling techniques. Next, we will explain the five
P2V twinning techniques in detail.
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Modeling (Sec. 3) P2V (Sec. 4) V2P (Sec. 5)
3.1 Geometric modeling 4.1 Measurements as input 5.1 Model predictive control
3.2 Physics-based modeling 4.2 Probabilistic model 5.2 Predictive maintenance
updating

3.3 Data-driven modeling

4.3 ML model updating

3.4 Physics-informed ML

4.4 Fault diagnostics and
failure prognostics

3.5 System models

4.5 Ontology-based reasoning

Fig. 12: Relationship between modeling methods, P2V methods, and V2P methods.

4.1 Physical measurements as input
to the virtual space

A straightforward way of connecting the physical
space with the virtual space (P2V) is to use phys-
ical measurements as inputs (Lydon et al., 2019).
Doing so enables the digital model in the virtual
space to predict the response of physical system
in real-time, thus supporting timely risk assess-
ment and decision making (V2P). The current
approaches for this type of P2V connection can be
categorized into two main groups as follows:

1. Using physical measurements to wupdate the
movements or position of digital models. This
group of P2V updating strategy is mainly for
the modeling methods described in Sec. 3.1. For
instance, in the manufacturing domain, real-
time position data of various components in
a manufacturing system collected by the IoT
system have been used to generate behavior
models in a digital twin (Ricondo et al., 2021),
detect disturbances by comparing the position
measurements with prediction (Glatt et al.,
2021), drive the movement of digital models
on the virtual shop floor and thereby opti-
mize manufacturing system configurations or
shop scheduling (Leng et al., 2020; Liu et al.,
2021a; Fang et al., 2019; Guo et al., 2021;

Zhang et al., 2020a, 2021b). In the smart city
domain, data on mobility (i.e., movement data
of human, vehicles, and other objects), infras-
tructure, and building conditions are collected
in real-time, and are used as inputs for simula-
tions in the virtual space for digital twin-based
city development and planning (White et al.,
2021; Schrotter and Hiirzeler, 2020).

Using physical system monitoring data as input
for physics-based analysis or design. This group
of updating strategy is mainly for the modeling
methods summarized in Sec. 3.2. For exam-
ple, in the aerospace domain, Millwater et al.
(2019) and Guivarch et al. (2019) employed
the physical flight condition data collected from
sensors as inputs of a digital model for risk
assessment of aircraft structures. In the design
domain, Bellalouna (2021) utilized operational
data collected from sensors and transmitted the
data to a digital environment in the PTC Creo
platform for physics-based topology optimiza-
tion, demonstrating a digital twin concept. In
the manufacturing domain, Liu et al. (2021c)
performed physics-based hardware-in-the-loop
simulation using real-time data from a phys-
ical system to replace physical tests, thereby
reducing the verification time and cost.
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When discussing P2V connections using sen-
sor measurements, it is imperative to also consider
the available methods of data transfer, as they
should be carefully selected for the application at
hand. Digital twin simulations can require sub-
stantial speeds and rates of data transfer in order
to enable real-time optimization and control (see
Section 5.3). In general, data transfer methods can
be categorized into two classes: wired and wire-
less. Wired connections include Ethernet cables
(twisted pair cables), coaxial cables, and optical
fiber cables, where each cable is rated for dif-
ferent data transfer distances and rates. Wired
data transfer is generally preferred, as it is eas-
ier to prevent data loss and is generally quicker
as the connections are direct from source to
receiver. Wireless communication methods include
Bluetooth, Wi-Fi, ultra-wide band, and near-field
communication (NFC) (Hu et al., 2021b). More
recently, the 5G wireless communication standard
has come to market offering higher data through-
put with lower latency. It is envisioned that 5G
technology will enable deployment of more com-
plex and expansive sensor networks to collect and
transmit data in real-time for use in digital twins
(Cheng et al., 2018). These connected sensor and
machinery networks, known more commonly as
the industrial internet of things (IIoT), will be
responsible for the data collection and transmis-
sion that will enable digital twins. Ultimately, each
of the aforementioned data transmission tech-
niques will play a critical role in enabling real-time
simulation, process control, and optimization for
digital twins.

This straightforward P2V connection is only
applicable to cases where digital states (e.g., posi-
tion, mobility, traffic flow) can be directly updated
using monitoring data. However, for many engi-
neering problems, digital states cannot be directly
updated and are affected by various uncertainty
sources. In those cases, more advanced P2V twin-
ning methods are required and will be discussed
in the subsequent sections.

4.2 Probabilistic model updating
4.2.1 Introduction to digital state

As shown in Fig. 3, updating a digital system with
a time-varying state is an essential characteristic

of a digital twin. This state can be called a digi-
tal state, defined as a set of digital state variables
that characterize the digital model(s) in a digital
twin. Examples of digital states enabling predic-
tive maintenance include the health of rotating
equipment (e.g., motors, pumps, and compres-
sors) (Wang et al., 2019) and machine tools (Luo
et al., 2020) on a production floor, the material
properties and structural health parameters of an
unmanned aerial vehicle (UAV) (Kapteyn et al.,
2020), and the state of charge (SOC) and state
of health parameters (e.g., capacity and internal
resistance) of a lithium-ion battery cell (Plett,
2004; Hu et al., 2012; Li et al., 2020b). A dig-
ital state often cannot be directly measured (or
observed) but can be estimated through noisy
measurements that depend on the digital state.
The digital state of a physical system in operation
changes over time and can be estimated as new
information about the physical system becomes
available. The time evolution of the digital state
can be modeled as a dynamic system perturbed
by a certain process noise.

Before we talk about the specifics of probabilis-
tic model updating, let us look at a few examples
of digital states. A recent paper demonstrated a
structural digital twin of a UAV and provided a
distinction between a physical state and a digi-
tal state (Kapteyn et al., 2021). A key argument
in this distinction is that the physical state space
should allow capturing variation in the physical
system’s state (e.g., the structural state of the
UAV) and, therefore, could have high complex-
ity and dimensions, while the digital state space
should be designed to be simple enough to make
the online estimation of the digital state feasible
and tractable. As a result, digital models com-
posing a digital twin should provide a digital
state space that strikes a balance between com-
plexity (variation in the physical asset captured
by the digital state space is sufficient for per-
forming meaningful diagnostics, prognostics, and
decision making) and tractability (the number
of digital state variables is sufficiently small to
allow for good observability for a fixed number
of sensor types and quantity of sensors). Fig. 13
illustrates the physical and digital states of the
structure in a self-aware UAV application. The
digital state encompasses geometric parameters,
structural parameters (e.g., material properties
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and structural health parameters), and boundary
conditions. Most of these digital state parameters
are calibrated offline, and only a small subset of
the structural parameters is dynamically updated
online with sensor data, likely to ensure good
model identifiability (Arendt et al., 2012). It is
worth mentioning that the observational data
(control inputs) flow from the physical (digital)
to digital (physical) space, which shares similar-
ities with the data and control elements in our
proposed digital twin model in Fig. 3.

Another example of a digital state is in an
industrial application of digital twin for smart
manufacturing (Wang et al., 2019). Although not
clearly defined, the digital state of a rotor sys-
tem seems to refer to parameters of a geometric
model, parameters of a rotor dynamics model,
and material properties. In the online phase, two
parameters of rotor dynamics, namely the critical
speed and vibration amplitude under unbalance,
are dynamically estimated based on vibration
data collected from the rotor system. Similar to
Kapteyn et al. (2021), a very small number of
digital state parameters are updated online, sug-
gesting the importance of identifying a small yet
critical set of parameters for online updating.

The third and last example comes from a
review paper on battery digital twin (Li et al.,
2020b). Similar to the digital state definitions in
Wang et al. (2019) and Kapteyn et al. (2021),
the digital state of a lithium-ion battery cell/-
module/pack can be defined as parameters fully
characterizing a digital model of the cell/mod-
ule/pack. Of particular interest to battery state
estimation is the real-time SOC and state of
health, the estimation of which are essential func-
tions of a battery management system. Since each
battery system in the field is equipped with a bat-
tery management system actively estimating and
controlling battery SOC and state of health, one
could thus argue that the digital twin concept is
implemented on every battery system.

4.2.2 State estimation and Bayesian
filters

Let us consider a sequence of unknown digital
state vectors, xo.x = {Xo, X1, ‘-, Xk} , and
a sequence of noisy measurement vectors, yi.x =
{y1, -+, yr}. We can formulate a discrete-time

state-space model that takes the following form at
time step k (i.e., time )

State transition : xj = f(x5_1, ug_1) + Wy,

Measurement :  yr = g(xx) + Vi,

(3)

where x;, is the vector of state variables at the k™
time step, uy, is the vector of measured exogenous
inputs and often control inputs, wy is the vector of
process noise variables for the state, yj is the vec-
tor of system observations (or measurements), v
is the vector of measurement noise variables, and
f(-) and g(-) are the state transition and measure-
ment functions, respectively. The state transition
equation in Eq. (3) models the time evolution of
the state as a dynamic system, perfectly defined
by f(-), perturbed by a process noise wy; it can
be rewritten as the transition probability density
p(Xk|xk—1). The measurement equation depicts
the dependence of the current measurement y on
the current state xx; it can be rewritten as the con-
ditional density of the measurement y; given the
state xx, p(yk|xk). At this point, the state-space
model in Eq. (3) can be graphically represented as
a hidden Markov model shown in Fig. 14.

The objective of the state estimation task in
Eq. (3) and Fig. 14 is to estimate, in a recur-
sive way, the hidden state at the current time
step, X, from the current and past noisy measure-
ments (Sarkka, 2013). Mathematically, we want to
compute the marginal conditional distribution of
X, given on all available measurements up to the
current step (k), y1.x. This marginal conditional
of the digital state can be denoted as p(xk|y1.k)
and be computed using Bayes’ theorem as follows
(Leser et al., 2020; Vega et al., 2022)

 p(yelxe)p(xkly1:e—1)
Pxk[y1x) = fP(Yk|Xk)P(Xk\Y1:k—1)ka’ (4)
o p(Yr|Xk)P(Xk [y 1:0-1)5

(1]

where y1., are observations from t; to tp, “o
stands for “proportional to”, and as described
earlier, p(+|-) is a conditional probability density
function.

The above equation is analytically intractable.
Recursive Bayesian filtering approximates the
marginal conditional by recursively executing two
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Control inputs:
In-flight maneuvers,
maintenance or inspection

decisions, sensor installation Physical state:

Skin intact, fatigue
cracking, delamination

Digital state:
Geometry, structural
parameters,
boundary parameters

\

Observational data:
Strain or acceleration
data, inspection data,
flight logs

Quantities of interest:
Displacement fields, max.
stress, remaining useful life

Fig. 13: An abstraction of a digital twin enabling a self-aware UAV, shown as a physical asset-digital
twin system. In this example, the digital state could be a small subset of the physical state, allowing for
tractable digital-state estimation. Reproduced with permission (Kapteyn et al., 2021). Copyright 2021,
Springer Nature.

State transition:
p(xy | X))

Hidden state p(xg)

Observation

»
»

Time step L L L
1 2 K

Fig. 14: An illustrative schematic of a hidden Markov model. This model consists of: (1) the hidden state
x}, that evolves according to the state transition equation in Eq. (3), and (2) the measurement yy, directly
related to the hidden state by the measurement equation in Eq. (3). A prior probability density p(xo),
usually obtained from an offline calibration of the digital model (see Sec. 2.2.2 of Part 2 of the review
paper), specifies the initial probability distribution of the hidden state at the 0** time step (i.e., k = 0)

steps: a transition step and an update step. Alter-
native, non-filtering approaches such as Markov
chain Monte Carlo and importance sampling
approximate the full conditional, p(x1.k|y1.k)-
These alternative approaches are not as attrac-
tive in the context of digital twin because (1)
they could be computationally much more costly
than recursive Bayesian filtering, especially when

k becomes large, and (2) approximating the full
conditional is unnecessary for most digital twin
applications.

Table 4 compares four (recursive) Bayesian
filters regarding system nonlinearity, state distri-
bution constraints, and computational efficiency
(Sarkka, 2013). If the state-space model in Eq. (3)
is perfectly linear and Gaussian (i.e., f(-) and g(-)
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are linear functions and wy, and v, follow Gaus-
sian distributions), the Kalman filter, one of the
simplest and most efficient Bayesian filters, finds
the exact solution to the recursive filtering prob-
lem, i.e., the solution to the conditional marginal
is exact. Suppose f(-) or g(-) is nonlinear and or
vy is non-Gaussian. In that case, the extended
Kalman filter provides a first-order approxima-
tion to the marginal posterior by (1) linearizing
the state-space model, and (2) assuming Gaus-
sian noise (Gustafsson, 2010). This approximation
may be accurate for state-space models whose
f(-) or g(-) has mild nonlinearity and where true
marginal posteriors are unimodal and symmetric.
For state-space models with higher function non-
linearity, the unscented Kalman filter propagates
a small set of points (called sigma points), sam-
pled based on the prior mean and covariance of x,
through the nonlinear f(-) and g(-) functions, from
which a posterior mean and covariance of x;, are
estimated while assuming Gaussian. It can accom-
modate quadratic (second-order) terms in general
and even cubic (third-order) terms in some cases
when w; and v, are Gaussian.

Particle filters differ drastically from the fam-
ily of Kalman filters in that it does not assume
state and noise are Gaussian and characterize
uncertainties using Gaussian mean and variance.
Instead, particle filters draw a large set of weighted
samples (or particles) from the marginal poste-
rior (or a distribution proportional to the marginal
posterior) at each time step and use these parti-
cles as an approximation to the posterior (Sarkka,
2013; Gustafsson, 2010). An example of pseu-
docode for a generic particle filter algorithm
is given in Sec. 7 (see Figure 28). As shown
in the pseudocode, particle filtering consists of
three key steps: state transition, weight evaluation
and normalization, and resampling. An easy-to-
understand explanation of a particle filter can be
found in an animated video on YouTube (Svens-
son, 2022b). This video gives a toy example of
positioning an aircraft based on measurements of
the distance to the ground and flight elevation.
The MATLAB source code for this illustration can
be accessed openly on GitHub (Svensson, 2022a).
As a result of using the particle approximation,
particle filters work well on any non-Gaussian
state (xx) and noise (wy and vy) distributions
and highly nonlinear transition and measurement

functions (f(-) and g(-)). These attractive advan-
tages come with a price: higher computational
costs. For example, the unscented Kalman filter,
the most computationally complex member in the
Kalman family, needs to propagate a set of 7 sigma
points to estimate the SOC, capacity, and inter-
nal resistance position velocity of a lithium-ion
battery (capacity and internal resistance are two
state-of-health parameters that affect the energy
and power capability of a battery). However, a
particle filter may propagate hundreds of weighted
particles at each step to achieve good convergence
speed and estimation accuracy. Also, particle fil-
ters do not scale easily to high-dimensional state
spaces, where we may have no particles near the
true state, also known as particle deprivation,
and the numbers of particles required to achieve
reasonable estimation become prohibitively high.
Therefore, applications of particle filters for state
estimation in the digital twin context have been
mostly limited to a small number of state dimen-
sions (typically < 5), consistent with what we
found in Li et al. (2020b); Wang et al. (2019);
Kapteyn et al. (2021).

It is worth mentioning that approaches have
been developed that use cheap-to-evaluate surro-
gate models to replace the state transition func-
tion (f(-)), measurement function (g(-)), or both
when these functions are computationally expen-
sive. These approaches alleviate, to some degree,
the computational burden imposed by particle fil-
ers by allowing a more efficient propagation of
thousands or even millions of weighted particles
with a lower computational cost. These efforts
make particle filter a popular technique for state
estimation in many digital twin applications as
reported in the literature Li et al. (2017); Kapteyn
et al. (2021); Ye et al. (2020).

Two other state estimation problems rele-
vant to digital twin are called smoothing and
prediction. These two problems aim to estimate
past (smoothing) and future (prediction) states,
respectively. Figure 15 illustrates the time require-
ments for all three state estimation methods. Each
of the three methods play a different role in dig-
ital twins because they focus on different time
frames. Smoothing methods operate on previously
collected data and generally reduce the size of
the data in the process. For example, smoothing
methods can be used to understand a physical sys-
tem’s state history over time after the data has
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Table 4: A comparison of four different recursive Bayesian filtering methods

Quantity of | Kalman filter | Extended Unscented Particle filter
interest Kalman filter Kalman filter
Ability to han- | Linear Mildly  nonlinear | Nonlinear (can han- | Nonlinear
dle  nonlinear (linearized with | dle quadratic and
functions  (f(+) first- or second- | even cubic terms)
and g(+)) order Taylor

expansion)
Process  noise | Gaussian Gaussian Gaussian Gaussian  and
and  measure- non-Gaussian
ment noise (Wy (no limitation)
and vy)
Posterior state | Gaussian Unimodal (only one | Unimodal (only one | Unimodal and
distribution peak) and symmet- | peak) multimodal (no
(p(xk|y1:k)) ric limitation)
Computational High Medium Medium-low Low
efficiency

been collected. On the contrary, prediction meth-
ods are concerned with estimating future states
using historical data. Shown in Fig. 15, the pre-
diction state estimation method is estimating the
state of the system at time k using historical data.
While smoothing was used to understand histor-
ical system state, prediction is typically used for
understanding future system state. Prediction in
digital twin is typically used for planning and
control; two use cases which require some degree
of understanding about the trajectory of system
states.

Meast\lr\ements 2 Estimate
Filtering | \ \ I |
1\
State N Y
estimation Prediction | \ | |
Smoothing | \ I |
Time step '1 11( ]u{ >

Fig. 15: A schematic distinguishing among three
different state estimation problems. The differ-
ences lie in the period of the available measure-
ments relative to the state estimation time.

In digital twin applications, state estimation
results are used to inform decision making algo-
rithms. The timeliness required for effective deci-
sion making using digital twin influences the

choice of state estimation methodology. For exam-
ple, fault diagnosis of machinery requires that
the machine’s health status be estimated at the
present time. In this case, the ideal state estima-
tion methodology to use in a fault diagnosis digital
twin would be filtering, as it provides state esti-
mates at the present time. On the other hand,
health forecasting and remaining useful life (RUL)
prediction require state estimates of system health
at future times, and are thus only enabled by pre-
diction methods which predict state at future time
steps (See Fig. 15) (Wang et al., 2019; Tian et al.,
2011; Bangalore and Patriksson, 2018). Another
example is that a structural digital twin of a UAV
with an updated damage state can be used to pre-
dict (by simulation) the probability of failure for
an upcoming flight maneuver and thus informing
flight path planning and control (Kapteyn et al.,
2021). The idea is to allow a structurally healthy
UAV to perform aggressive maneuvers to reduce
flight distance and time and constrain a struc-
turally damaged UAV to act more conservatively
to incur minimal damage in future maneuvers and
prevent unexpected structural failure. The last
example is that the state-of-charge and state-of-
health estimate of a lithium-ion battery can be
used to optimize the current profile (i.e., charging
C-rate vs. SOC) during fast charging (Li et al.,
2020b, 2021; Wei et al., 2021).



A Comprehensive Review of Digital Twin - Part 1: Modeling and Twinning Enabling Technologies 33

4.2.3 Dynamic Bayesian network

A Bayesian network (BN), which is also called a
Bayes net, is a probabilistic graphical model that
represents a set of random variables and their
probabilistic relationships as a directed acyclic
graph (Murphy, 2002; Friedman et al., 1997). A
dynamic Bayesian network (DBN) extends a stan-
dard BN by considering the time evolution of
variables and is used to model dynamic systems.
It is a generalization of the hidden Markov model
given in Fig. 14 (see Sec. 4.2 (b)). The difference
between a hidden Markov model (HMM) and a
DBN is that hidden Markov model uses a sin-
gle hidden state variable to represent the entire
state space whereas the DBN represents the hid-
den state as a set of random variables connected
in a graph (Murphy, 2002). A DBN allows for
the modeling of nonlinear dynamic systems with
arbitrary nonlinearities and distributions.

Fig. 16 presents an illustrative example of a
DBN with five nodes. At each time instant tg,
the DBN has a static BN. The static BNs at two
adjacent time instants ¢, and t;y; are connected
through a transition BN. As a directed acyclic
graph, a DBN consists of two essential elements,
namely vertices (also called nodes) and edges. In a
DBN, the vertices or nodes are random variables,
such as 1k, T2k, T3k, T4k, and yp, in Fig. 16.
The edges directed from one node to another, such
as r3 — Y1,k and 1 i, o — T3k, represent the
probabilistic causality relationship between the
nodes.

Nodes in a DBN could represent discrete ran-
dom variables or continuous random variables. For
instance, as part of the U.S. Air Force funded dig-
ital twin effort, Li et al. (2017) represented bolt
looseness and a damage state (i.e., elastic/plas-
tic zone) as discrete random variables and a crack
length as a continuous random variable in their
DBN-based digital twin that modeled the fatigue
crack growth on an aircraft wing. Moreover, the
nodes that an edge is directed from and directed
to are called the parent node and the child node,
respectively. For example, for edge zi,22r —
x3 ) in Fig. 16, x1 1, T2 1, are parent nodes and x3 i,
is a child node. Nodes without parent nodes are
called root nodes (e.g., x1 x,x2 x in Fig. 16).

FEdges connecting parent nodes with the cor-
responding child node(s) in a DBN, such as
3k — Y1,k and x4 — Y15 in Fig. 16, represent

BN at tk

BN at tk+1

Transition of state
variable from ¢, to tj 4

-—->

Fig. 16: Illustration of a DBN, which is a general-
ization of the hidden Markov model given in Fig.
14.

the causality relationship(s) between the parent
node(s) and the child node(s). The probabilistic
causal relationships between a group of parent
nodes connected to a common child node are mod-
eled as a conditional probability table (CPT) for
discrete nodes and a conditional probability den-
sity (CPD) function for continuous nodes. The
CPT contains the conditional probability mass
function of a child node covering all possible real-
izations of its parent nodes. For example, the
probability of having a bolt looseness or not for
a given realization of load condition of an air-
craft is described as a CPT in Li et al. (2017).
The CPD could be a simple, analytical probabil-
ity density function or a numerical probabilistic
predictive model, such as a Gaussian process
regression model (Karve et al., 2020), a data-
driven stochastic process model (Yu et al., 2021),
or a reduced-order model with noise (Kapteyn
et al.,, 2021). For instance, if Gaussian process
regression is employed to construct the CPD of
x3 ) given in Fig. 16, a Gaussian process regression
model x3 ) = GA(:EL;C, xoy) is first built according
to the input-output dependence depicted by the
edges x1 1, T2, — 3 k. After that, we have the
CPD of z3, as

T3k — M@($17k7$2,k)>
U@($1,k,$2,k) ’

p(x3 k|1 K, T2k) = @ (
(5)
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in which pg(z1k,22k) and opa(z1k,22%) are
respectively the mean and standard deviation of
the Gaussian process regressor-predicted x3 j for
given values of the parent nodes z;; and zy,
and ¢ (-) is the probability density function of a
standard normal random variable.

The physic-based models described in Sec. 3.2,
such as FEA models, can also be used to construct
CPDs by accounting for uncertainty sources in the
models. Since digital twins require real-time model
updating and each updating run may need to
evaluate CPTs or CPDs thousands of times, high-
fidelity physics-based models are usually replaced
with computationally cheaper data-driven surro-
gate models (see Sec. 3.3) in the practical imple-
mentation of DBNs. In addition to the nodes and
edges, as mentioned above, a transition BN is used
to connect two BNs at two adjacent time instants.
This is essential to making the BN dynamic. Tak-
ing the DBN given in Fig. 16 as an example,
the transition of each state variable between two
adjacent time instants t; and ;41 is given by

p(mi,k+1|x¢’k),Vz' = 1, 2, 3, 4, (6)

where p(z; k41| ) is the transition probability of
state variable x; from ¢; to tr4+1, which is defined
by a CPT or CPD and shown as a dashed edge in
Fig. 16 (i.e., x;x — Tig+1,0 = 1,2,3,4).

An important property of BNs and DBNs
is the conditional independence property, which
means that the nodes are independent from each
other if they are not connected by directed
edges, given the values of their parent nodes.
For instance, for given values of 1 and xg ) in
Fig. 16, z3 and x4 ) are independent from each
other. Thanks to this property and based on the
chain rule of conditional probabilities, the likeli-
hood function of a DBN can be expressed as a
product of individual CPTs and/or CPDs con-
ditioned on the parent nodes (see an example
given in Appendix B). The decomposition of the
joint probability density into a product of indi-
vidual CPTs and CPDs as illustrated in Eq. (14)
in Appendix B really facilitates model updating
and the construction of complex DBNs for digital
twins. One just needs to properly define the CPTs
and CPDs for individual nodes and connect them
using a directed acyclic graph. After that, the
inference can be performed using generic Bayesian
inference methods including the commonly used

Markov chain Monte Carlo simulation (Brooks,
1998) and sequential Monte Carlo methods such as
particle filtering as described in Sec. 4.2 (b), and
given in Appendix A. As has been pointed out by
Murphy (2002), the flexibility of DBNs in incor-
porating various CPTs and CPDs using directed
acyclic graphs makes DBNs advantageous over
various hidden Markov models including classi-
cal hidden Markov models and hierarchical hidden
Markov models. The fact that the CPDs in a DBN
could be any type of probabilistic model with
any nonlinearities and distribution types makes
DBNs a flexible tool capable of fusing hetero-
geneous data sources (e.g., images, text, audio)
for model updating (a.k.a. information fusion).
Kapteyn et al. (2021) suggested DBNs as the foun-
dation of a unifying mathematical formulation
for digital twin at scale, by integrating Bayesian
statistics, dynamical systems, and control theory.
They also demonstrated the DBN concept using
the UAV digital twin example as given in Fig. 13.

The directed acyclic graph in a BN or DBN
is usually constructed based on physical knowl-
edge of the causality relationships between dif-
ferent nodes, such as the logical relationships
defined by the ontology and SysML as been
described in Sec. 3.5. It is possible that the log-
ical or causal relationship is unknown. In that
case, the directed acyclic graph/causal relation-
ships could be learned from data using BN learn-
ing methods, such as minimal description length,
Bayesian—Dirichlet equivalence, and mutual infor-
mation test (Scutari, 2009; Murphy, 2002; Hu
and Mahadevan, 2018b). In BN learning, the
most probable topology of the graph is identified
by minimizing or maximizing a score function,
such as the aforementioned minimal description
length, Bayesian—Dirichlet equivalence, or mutual
information. A tutorial on BN learning can be
found in (Heckerman, 2008). Also, there are sev-
eral open-sources toolkits available for the infer-
ence, learning, and construction of DBNs, such as
the Graphical Models Toolkit (Bilmes) and the
Bnlearn Python package (Taskesen).

4.2.4 State and parameter estimation

When a digital twin involves multiple types of
physics, the time scales of different digital state
variables could be quite different. For example,
the capacity of a lithium-ion battery cell typically
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fades slowly and only shows noticeable changes in
months or years. In contrast, the cell’s SOC typi-
cally changes quickly with time and may go from
0% (fully depleted) to 100% (fully charged) within
minutes in a fast charging cycle. As will be dis-
cussed in the battery case study in Sec. 3 of Part
2 of the review paper, SOC and capacity are two
key performance measures that together assist in
managing the health of lithium-ion batteries. The
state estimation literature usually refers to esti-
mating digital state variables that change very
slowly or do not change with time as parameter
estimation. Estimating digital state variables that
change rapidly with time is called state estimation.
Note that both the hidden state x and parameters
0 are digital state variables and part of the digital
state.

When the state x is known and noise-free,
then state estimation will not be needed, and only
parameter estimation is needed. A straightforward
way to estimate © is to solve a least squares
problem, formulated based on the measurement
function ¢(-) for a one-dimensional known state z
and measurable response y as follows:

K
min > (ke — glan, )% (7)
k=1

where K is the total number of measurements
available for estimating © and g(-) is the mea-
surement function that predicts y at state x,
given the vector of model parameters ©. Here,
g(-) can be a physics-based model as discussed in
Sec. 3.2 or a data-driven model as discussed in
Sec. 3.3. Three examples of least squares param-
eter estimation for a physics-based model are
reported in (1) Wang et al. (2019) for estimating
two fault-sensitive parameters of a rotor dynam-
ics model for unbalance diagnostics of a rotor
system, (2) Ramadesigan et al. (2011) for esti-
mating five degradation-sensitive parameters of an
electrochemical model for every charge/discharge
cycle for battery capacity fade prediction, and (3)
Peng et al. (2020) for estimating five degradation-
sensitive parameters of an equivalent circuit model
for condition monitoring of a buck DC-DC con-
verter. Least squares estimation can also be used
to estimate the parameters of data-driven models,
such as estimating the weights and biases of an

artificial neural network from a training dataset
{(xlayl)a LR (xKvyK)}

If g(-) is linear, Eq. (7) can be solved using
linear least squares. When measurement data
comes in a stream, the Kalman filter discussed
in Sec. 4.2 (b) and recursive least squares can
be used to ensure a fixed computational cost at
each time step Simon (2006). They produce opti-
mal estimates, and if the assumption of Gaussian
measurement noise holds, they are equivalent.

If g(-) is nonlinear, numerical optimization
algorithms, such as Gauss-Newton, gradi-
ent descent, and Levenberg—Marquardt, and
population-based  metaheuristic  optimization
algorithms, such as genetic algorithms and par-
ticle swarm optimization, can be used to solve
Eq. (7). However, a potential issue is that the
resulting estimate of © is deterministic. This esti-
mate does not capture prior knowledge on © or
uncertainty in parameter estimation (e.g., due to
low identifiability and measurement noise). This
issue can be mitigated by deriving an approx-
imate posterior using a Markov chain Monte
Carlo method combined with a prior distribution
of ©® under a Bayesian calibration framework
(Ramadesigan et al., 2011). Although sequential
Bayesian calibration (e.g., a sequential version
of a well-known Bayesian calibration framework
referred to as the Kennedy and O’Hagan (KOH)
framework (Kennedy and O’Hagan, 2001)) has
been shown to track time-varying parameters,
this approach may be computationally intensive
and require longer run times than the response
time needed to track sudden changes (Ward et al.,
2021). A detailed discussion on the applicability
of Bayesian calibration to UQ of dynamic system
models is given in Sec. 2.1.2 in Part 2 of the
review paper. Sequential, recursive filtering alter-
natives to these iterative optimizers are nonlinear
extensions of the Kalman filter (e.g., the extended
Kalman filter and unscented Kalman filter) and
particle filters, which are more attractive in com-
putational efficiency. It is not uncommon to see
these recursive filtering alternatives succeed in
training nonlinear models like neural networks
with fixed optimal parameters (Puskorius and
Feldkamp, 1994; Aitchison, 2020), with a possible
extension to time-varying parameters (Wagner
et al., 2021). A new state-space representation
can be defined for parameter estimation in the
presence of a known and clean state. This new
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state-space model takes the following form:

State transition : 0 = Op_1 + 1y,
Measurement : yj = g(xx, 0r) + Vi,

Now suppose that g is highly nonlinear, © is
high-dimensional (e.g., consisting of > 5 param-
eters), and the computational time and cost are
not a concern. In that case, population-based opti-
mization algorithms, such as genetic algorithms
and particle swarm optimization, could be better
alternatives due to the simple implementation and
applicability to a wide variety of g function forms
and nonlinearities (Wang et al., 2019; Peng et al.,
2020).

When the state is unknown or given with noise,
state estimation and parameter estimation are
needed. In these cases, state-space models have
unknown parameters © and hidden states x that
need to be estimated. As mentioned in Sec. 4.2
(a), O is part of the digital state, and these param-
eters may first be calibrated offline but must be
updated online. With both a hidden state and
unknown parameters, the state-space model in Eq.
(3) becomes

State transition : xj = f(xg—1, Og—1, Ur_1) + Wy,

Or = Op_1 + 1y,
Measurement : yj = g(Xx, Ox) + Vi,

(9)

where 0 is the vector of unknown model param-
eters which changes slowly or do not change over
time, ry is the vector of process noise variables for
the parameters at the k" time step.

Similar to when the state is known and clean,
iterative optimization algorithms can be used to
jointly estimate x and 6. Sequential approaches
such as recursive Bayesian filtering become favor-
able alternatives for online, close to real-time state
estimation with limited computational power
(e.g., in an embedded application). A straightfor-
ward sequential approach is to combine the state
and parameters into an augmented state, z =
[x; 0], and estimate z using the extended Kalman
filter or unscented Kalman filter. This approach
is referred to as joint (extended or unscented)
Kalman filtering Cox (1964), which was attempted
more than half a century ago. As a new measure-
ment from a physical system becomes available,

this joint version of the extended Kalman filter
simultaneously updates the state and parameter
estimates. A drawback reported for this approach
is divergence and bias in the parameter estimation
Ljung (1979). An alternative is the dual extended
or unscented Kalman filter that separately con-
siders state and parameter estimation (Wan and
Nelson, 2001). Instead of using fixed state tran-
sition and measurement functions such as in Eq.
(#), these approaches alternate between estimat-
ing the state given the most recent parameter
estimate and estimating the model parameters
given the most recent state estimate. Two notable
applications of the dual extended Kalman filter
are battery state (SOC) and parameter (capac-
ity) estimation Plett (2004) and vehicle state (e.g.,
longitudinal and lateral velocities) and parameter
(e.g., vehicle mass and moments of inertia) esti-
mation Wenzel et al. (2006). Compared to the
hidden state x, the parameters © tend to vary
more slowly with time. For example, the SOC
and capacity of a lithium-ion battery cell change
on two largely different time scales, as mentioned
earlier. The different time scales of these digital
state variables present unique challenges in esti-
mating these variables. More recently, a multiscale
filtering framework (see Fig. 17) was proposed to
estimate the SOC and capacity of a lithium-ion
battery cell (Hu et al., 2012). Multiscale filtering
utilizes the temporal nature of SOC (fast varying)
and capacity (slowly varying) to improve the effi-
ciency and accuracy in estimating both the state
and parameter over the joint and dual versions of
the extended Kalman filtering.

4.3 ML model updating

ML models are an increasingly critical com-
ponent of digital twins, and they are often
deployed in an environment with periodic oper-
ational changes in the physical world, such as
sensors addition/removal, manufacturing process
updates (e.g., add/remove a step in a manufactur-
ing process), changes in measurement device set-
tings/performance, etc. These significant changes
might lead to test data that is sufficiently far
from the distribution of the data on which the
ML model is trained. Such phenomenon is typi-
cally referred to as “out-of-distribution” in the ML
field (Lee et al., 2018; Zhang et al., 2022b). An ML
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Fig. 17: Illustration of multiscale extended
Kalman filtering for battery SOC and capacity
estimation (adapted from Hu et al. (2012)).

model is often trained with a closed-world assump-
tion (i.e., the training data and the test data are
assumed to follow the same distribution). As a
result, if out-of-distribution test data is not incor-
porated in model training timely and properly, ML
model performance will drift significantly.

It is crucial to detect the out-of-distribution
situation and update the ML model to account
for the operational changes associated with the
physical asset. ML model updating will prevent
severe performance degradation of a trained and
deployed ML model. Updating digital models
based on the continuous monitoring of the phys-
ical counterpart is an important characteristic of
digital twins (Chakraborty et al., 2021). Besides,
the timely update of the ML model is also the key
to ensuring a consistent and acceptable predictive
performance in characterizing the trend of quan-
tities of interest associated with physical assets.
One of the most commonly adopted paradigms is
to utilize a performance-based indicator to deter-
mine when model drift onsets and subsequently
trigger an update of the deployed ML model. ML
model updating can be implemented in the cloud
or on the edge. In the ML community, model drift
(also referred to as model decay) is developed as
an umbrella term to characterize the degradation
of a model’s predictive power due to unforeseeable
changes in the environment. In practice, model
drift often manifests itself in two principal forms:

1. Data drift (also referred to as covariate drift):
As mentioned before, the training of ML mod-
els is established upon the assumption that
the training data distribution is representa-
tive of the test data distribution. However, this
assumption can easily get violated in many
real-world applications (Sugiyama et al., 2008).
The term “ data drift” is used to describe the
situation that statistical properties of the pro-
duction data differ substantially from those of
the training data. and it can be mathematically
represented as p'rain (X) # ptest (X).

Fig. 18 showcases an instance of data
drift, where the relationship between X and
Y remains the same (see the target function
in Fig. 18). Unfortunately, X follows two dif-
ferent distributions in the training data and
test data. As a result of data drift, the func-
tion learned from the training data leads to
erroneous predictions on the test data.

2. Concept drift: This form of model drift char-
acterizes the phenomenon in which the under-
lying relationship between X and ) changes
in non-stationary environments (Lu et al.,
2018). In essence, the quantity we are trying
to predict evolves over time. Mathematically,
concept drift is represented as p'¥" (Y| X) #
ptest (le)

Fig. 19 demonstrates an example of concept
shift using the same regression problem. Obvi-
ously, the underlying functional relationship
between X and ) has substantially changed
from the training data to test data.

In either case, model drift poses significant
robustness and reliability challenges in practical
ML applications. Such drift has led to substantial
ML model performance degradation (Tsymbal,
2004). Safeguarding an ML model in digital twins
from this issue entails a close monitoring of ML
performance variation using a drift indicator and
proactive update of the ML model on an as-needed
basis. Here, a drift indicator is typically a quan-
titative application-specific metric. For example,
one approach is to monitor an ML model’s test
data for drift from the training data with a statis-
tic metric (e.g., Kullback—Leibler divergence or
Jensen-Shannon divergence). A second approach
is to monitor the variation of model predictive
quality over a time window, allowing trending
model quality. A third approach is to calculate a
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mean error between the ML predictions and actual
measurements in the recent past and tune the
last fully-connected layer or the last few layers,
in the case of a neural network. In this direc-
tion, state-of-the-art studies have developed sev-
eral drift-based approaches to determining when
to update a deployed ML model. For example,
Chakraborty and Adhikari (2021) investigated ML
model updating in the digital twin of a multi-
time scale dynamical system, where physical data
was periodically used to update the ML model
in learning the time-evolution of system parame-
ters. Davis et al. (2017) studied the deterioration
of ML model performance in predictive analyt-
ics for the development of acute kidney injury
with ten years of patient data and highlighted the
importance of routine calibration of ML models

when they were incorporated into clinical decision
support systems.

Q-learning is a reinforcement learning algo-
rithm that identifies the best action given the
current state of a physical system. Sun et al.
(2020a) took advantage of Q-learning to sensi-
tively quantify the deviation between the measur-
able response (e.g., CPU frequency of industrial
devices and computer clusters or energy consump-
tion) of a physical device (e.g., a sensor or a
monitor) and its mapped value in the digital twin
of an IloT system and updated the ML model
in the IIoT system to achieve a better trade-off
between local update and global parameter aggre-
gation. Wu et al. (2019a) developed error- and
event-triggered mechanisms to update a recur-
rent neural network model using the most recent
process data for model predictive control (MPC)
in a chemical process subject to time-varying
disturbances.

It is worth noting that ML model updating can
be formulated as a parameter estimation problem,
expressed as a discrete-time state-space model. In
this state-space model, the ML model parame-
ters to be updated (often a small subset of all
ML model parameters) become © that changes
by a vector of process noises (state transition
equation), and the ML model becomes the mea-
surement function that maps the ML model input
and parameters to the measurement y (measure-
ment equation). As new measurements from the
physical system become available, Bayesian fil-
ters (Cox, 1964; Gustafsson, 2010), such as the
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extended Kalman filter and particle filters, can
be used to solve this state-state model for online
updating the ML model parameters. See a more
detailed discussion in Sec. 4.2.4.

Accurate ML model prediction plays a corner-
stone role in digital twins. ML model updating is
just one of the mainstream ways to ensure satisfac-
tory generalization performance of ML models in
the open world. In addition to regular ML model
updating, if the physics characterizing the under-
lying physical processes are known, incorporating
these physics in the ML model can also be pursued
as another viable path to improve ML models’
generalizability. See a more detailed discussion of
physics-informed ML in Sec. 3.4.

4.4 Fault diagnostics and failure
prognostics

4.4.1 Overview of PHM

Over the past two decades, sensor data collec-
tion, fault diagnostics, failure prognostics, and
maintenance decision making have drawn signif-
icant attention, collectively forming a research
field called prognostics and health management
(PHM). This research field has been largely pro-
moted by (1) various workshop committees on
structural health monitoring (SHM), a research
field largely parallel to and synergistic with PHM,
(2) the PHM Society, and (3) the rise of journals
like Structural Health Monitoring: An Interna-
tional Journal. While fault diagnostics and fail-
ure prognostics form an essential, integral part
of PHM, the system health management goes
beyond the predictions of the RUL and provides
decision support for optimal maintenance and
logistics decisions by integrating also the consid-
erations on the available maintenance resources,
the operating requirements, and the economic,
environmental and operational impact of differ-
ent faults. In general, health management can
be considered as the process of taking optimal
maintenance decisions based on the outputs from
diagnostics and prognostics models, while taking
the relevant operational, resource and monetary
constraints into consideration. In short, the goal
of PHM can be considered as optimally managing
the health of components and systems by min-
imizing the operational and economic impact of

failures, and proactively controlling the direct and
indirect maintenance costs Lee et al. (2014).

The concept of PHM has been exploited in dif-
ferent application domains, leading to a diverse
set of terms, algorithms, and tools. For exam-
ple, machinery health monitoring is an engi-
neering discipline dedicated to monitoring the
health of machine components, including bearings,
gears, shafts, motors, and pumps, and tracking
and predicting their health evolution over time.
Vibration-based fault diagnostics is a mature sub-
discipline of machinery health monitoring that has
a much longer history than PHM, with many algo-
rithms and tools available for processing vibration
signals (Antoni and Randall, 2006) and diagnos-
ing bearing faults (Randall and Antoni, 2011)
and many applications in industrial sectors (Ran-
dall, 2021). Another example is that research
on damage diagnostics and prognostics of civil
infrastructures has, over time, formed an engineer-
ing discipline called SHM. As described earlier,
SHM and PHM are two largely parallel yet syn-
ergistic research fields, with SHM having a much
longer history than PHM. SHM primarily focuses
on monitoring and detecting structural damage
that alters the material and geometric proper-
ties of a structure (Farrar and Worden, 2007). In
SHM, “damage assessment” is a more appropri-
ate and widely used term than fault diagnostics.
It deals with detecting, localizing, and identify-
ing the types of, and quantifying the severity of,
damage as just defined. Given that structural fail-
ure is rare and difficult to introduce, prognostics
plays less of an important role than damage assess-
ment. A third example is when PHM is applied
to lithium-ion batteries, creating an active dis-
cipline of battery health management. In this
discipline, a better alternative to the term “fault
diagnostics” is “degradation diagnostics”, which
identifies and quantifies degradation modes and
mechanisms driving cell-level degradation (Birkl
et al., 2017). Metrics used to measure cell-level
degradation are called the state of health param-
eters, as discussed in 4.2 (a). Two representative
metrics in this regard are capacity and internal
resistance, which together determine the energy
and power capability of a battery cell.

A few representative review papers on failure
prognostics and SHM are (1) Heng et al. (2009);
Lee et al. (2014); Lei et al. (2018) for machinery
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health monitoring, with the first focusing on com-
paring traditional reliability engineering and prog-
nostics, the second providing a balanced review
on methodologies and industrial applications, and
the third focusing on datasets and methodologies
for health assessment and RUL prediction, and (2)
Rezvanizaniani et al. (2014); Waag et al. (2014);
Hu et al. (2020) for battery health management,
with the first focusing on SOC and state of health
monitoring as well as lifetime prognostics, the sec-
ond on SOC and state of health monitoring, and
the third on battery lifetime prognostics.

4.4.2 Diagnostics vs. prognostics

Before discussing diagnostics and prognostics in
detail, let us first look at the key differences
between fault diagnostics and failure prognostics.
Fault diagnostics is focused on identifying the
presence (fault detection), location (fault local-
ization), type (fault identification) and possibly
severity (fault severity assessment) of damage/de-
fects representative of the system’s current health
state. In contrast, failure prognostics is tasked
with tracking the time evolution of fault properties
and projecting their progression into the future to
yield an updated estimate of the physical system’s
health state or RUL, defined as how long the phys-
ical system can operate before it reaches a failure
threshold or completely breaks down. Time evolu-
tion of damage or degradation is an essential factor
that plays an almost dominant role in RUL pre-
diction. In short, diagnostics gives us the current
damage state, and prognostics projects that into
the future to explore questions about criticality
that could suggest actions such as maintenance,
repair, etc.

4.4.3 Fault diagnostics approaches

Fault diagnostics is a broad topic that has been
extensively studied in many application domains
over the past decades. We intend to provide a brief
survey of this topic in this subsection, focusing
on ML-based fault diagnostics. Interested read-
ers can gain more knowledge and insights by
looking at review papers on fault diagnostics in
respective domains, such as Samuel and Pines
(2005); Jardine et al. (2006); Li et al. (2016);
Zhao et al. (2019) for machinery fault diagnostics,
Lynch and Loh (2006); Fan and Qiao (2011) for
sensors in SHM applications, Farrar and Worden

(2007); Fan and Qiao (2011) for structural dam-
age detection and identification, and Berecibar
et al. (2016); Li et al. (2019b) for battery state of
health estimation. Furthermore, a recent special
issue of the Structural Health Monitoring journal
featured ML-based approaches (Structural Health
Monitoring 20(4), 1353-2239, 2021.)

In ML-based fault diagnostics, ML models are
either classification tools to classify the health
state of a physical system (e.g., healthy, slightly
damaged, or severely damaged of a roller bear-
ing in a hydraulic motor (Shen et al., 2021)) or
identify its fault type (e.g., unbalance, misalign-
ment, mechanical looseness, rubbing, or oil whirl
in a journal bearing rotor system (Oh et al.,
2017)) or predictive tools to quantify a fault/-
damage present in a physical system. Approaches
have been developed using conventional ML and
emerging DL methods. As indicated in Fig. 20,
running a forward pass on conventional ML mod-
els typically involves two steps: feature extraction
and classification/regression. Before training these
ML models, their input features need to be prop-
erly defined. Low-dimensional features (typically
less than 20) are first extracted from prepro-
cessed sensor data and then used with other low-
dimensional monitoring data (e.g., measurements
of operating conditions) for fault classification
or damage assessment. The commonly used fea-
ture extraction techniques include statistical fea-
ture extraction (Jegadeeshwaran and Sugumaran,
2015), principal component analysis (Misra et al.,
2002; Pei et al., 2021), wavelet transform (Peng
and Chu, 2004), and fast Fourier transform (Zhang
et al., 2013). For example, Pei et al. (2021) used
principal component analysis to extract important
features from manufacturing process monitoring
signals. Afterward, a support vector machine was
used to map the extracted features to processing
quality which is labeled as acceptable or abnormal
according to the level of tolerance deviation.

While successes using conventional ML meth-
ods for fault diagnostics can be found in some
application domains, these success stories have
been limited to cases where the domain knowledge
required to extract hand-crafted features from the
raw data and select appropriate features is avail-
able. Furthermore, extracting and selecting input
features can be tedious and time-consuming. It
is an iterative, manual process known as fea-
ture engineering, where features are added and
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Fig. 20: A graphical comparison of traditional ML and emerging DL approaches to fault diagnostics

removed, and ML models are redefined, trained,
and evaluated. Feature engineering can account
for more than 90% of the total effort in building
ML models.

Emerging DL methods provide end-to-end
fault diagnostics capability, eliminating the need
for manual feature extraction, as indicated in Fig.
20. Unlike traditional ML algorithms, DL algo-
rithms, such as those described in Sec. 3.3.2, can
automatically extract high-level, complex repre-
sentations (or features) from large volumes of
data. The DL models take preprocessed sensor
data directly as input and produce the health class
or fault/damage size as output. For instance, melt
pool images and thermal images collected by cam-
eras have been directly used as the inputs of DL
models for defect detection in both additive and
more conventional manufacturing processes (Liu
et al., 2020a; Wang et al., 2020b; Franciosa et al.,
2020).

In recent years, hundreds or even thousands of
DL-based fault diagnostics approaches have been
reported in the literature. Given large volumes of
labeled data, DL approaches show better accu-
racy in fault diagnostics than their conventional
ML counterparts in most applications. A review
of DL methods for fault diagnostics can be found
in Zhang et al. (2020b). As expected, the effec-
tiveness of ML models for fault diagnostics is

significantly affected by the quantity and quality
of the data used to train the model. In particular,
data from faulty states are much more difficult to
collect than data from the healthy state. This data
collection issue could result in data imbalance and
poor accuracy in fault diagnostics. Three strate-
gies have been investigated to address this data
challenge, and they all build on known physics.

® Synthetic data generation: As reviewed in
Sec. 3.4, a variety of physics-informed ML
approaches can be used in physical system mod-
eling to improve generalizability, to increase
interpretability, and to alleviate the data-
size requirement over purely data-driven ML
approaches. Similarly, physics-informed ML can
also improve fault diagnostic performance. If we
consider that data under faulty states are very
difficult to collect, * synthetic” faulty data can
be generated from high-fidelity physics-based
simulations and used to augment the original
training dataset. The synthetic data can be
generated by changing health-relevant parame-
ters of the physics-based model (e.g., reducing
material stiffness for selected regions where
structural damage is intended to be injected
(Kapteyn et al., 2021)). Combining the syn-
thetic data with available real data to train and
validate ML models is essentially a strategy for
physics-informed ML, illustrated as Approaches
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2, 3, and 5 in Fig. 10. When high-fidelity
physics-based models are not available, an alter-
native solution to synthetic data generation is to
use a DL-based generative model called a gen-
erative adversarial network (GAN). After being
trained on a real dataset, a GAN can gener-
ate synthetic healthy/faulty data, which share a
similar distribution as the real training dataset
(Shao et al., 2019).

Physics-informed architecture or loss function
design: In many cases, physical domain knowl-
edge can be leveraged to customize mathemati-
cal operations or node connections in ways that
mimic essential physics and make black-box ML
models more interpretable. The design of the
model architecture can be designed to constrain
the output of the model to better reflect the
governing physics. For instance, Sadoughi and
Hu (2019) proposed a physics-based (or bet-
ter termed as physics-informed) CNN for fault
classification of rolling element bearings. The
uniqueness of their physics-informed CNN is
that the kernel functions in its first convolu-
tion layer are designed based on known phys-
ical knowledge about bearings and their fault
characteristics. Kim et al. (2022) developed a
CNN-based classifier for gearbox fault diag-
nostics based on a health-adaptive time-scale
representation that was built using multiscale
convolutional filters. These convolutional filters
were specially designed to incorporate known
physics of faults, more specifically, the fault-
related time and frequency characteristics in the
vibration signals from a faulty gearbox. Other
physics-informed ML approaches to fault diag-
nostics utilize frequency components of interest
to customize the loss function used in ML model
training, as reported in Shen et al. (2021); Rus-
sell and Wang (2022). These physics-informed
ML approaches can help address the data chal-
lenge in ML-based fault diagnostics, as they
can improve the generalizability of ML models
to test samples unseen during model training,
including those that may outside of the train-
ing distribution, as more extensively discussed
in 3.4. A a result, compared to a purely data-
driven ML model, a physics-informed ML model
may be trained on a smaller set of faulty data
to achieve a similar generalization performance.
Fault diagnostics based on physics-based model-
ing: For physical systems in the SHM domain,

such as civil infrastructure systems and large
aircraft structures, or in safe-critical industrial
applications, it is unlikely one would be able
to collect faulty data since these physical sys-
tems are generally well-maintained, and failures
are extraordinarily rare. Thus, the amount of
available faulty data is very limited. Even if
it is possible to collect a reasonable quantity
of faulty data and build a training dataset,
this dataset may not be representative of other
structures operating under different loading and
environmental conditions. As a result, it is chal-
lenging to build ML models readily deployable
for structures or machines that these models
have not seen. One way to tackle this challenge
is model-based fault diagnostics taking advan-
tage of physics-based models. This approach
classifies the health state of a physical system or
quantifies its fault/damage by studying model
predictions under healthy and faulty conditions
(Park et al., 2016), comparing model predic-
tion with sensor data, or using sensor data to
update a physics-based model (see Bayesian
model updating in Sec. 4.2), without resort-
ing to building data-driven ML models. For
example, Park et al. (2016) proposed a model-
based fault diagnostics method to detect faults
in planetary gears. A lumped parametric model
was developed to simulate transmission error
signals that contained gear fault-related infor-
mation. The development of this physics-based
model allowed for a simulation-based investiga-
tion into how to extract fault-sensitive features
from these transmission error signals, informing
the implementation based on actual sensor data
in practice.

4.4.4 Failure prognostics approaches

Failure prognostics approaches can be broadly
divided into physics-based, data-driven, and hybrid
approaches. An ideal example of a physics-based
approach is using a physics-based model, as
described in Sec. 3.2, depicting the physical
processes, in combination with a degradation
model, depicting the time evolution of damage
or degradation parameters used in the physics-
based model. Such a physics-based approach has
been attempted in Ramadesigan et al. (2011), as
described in Sec. 4.2.4. These ideal physics-based
approaches can capture the physical processes and
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failure mechanisms, therefore offering good inter-
pretability and generalisability. However, their
applicability to prognostics is limited by difficul-
ties in calibrating large numbers of parameters
in the physics-based models due to, for exam-
ple, poor model identifiability, as mentioned in
Sec. 3.2 and 4.2 (a), an insufficient understanding
of the degradation mechanisms and their long-
term evolution, and high computational costs (not
suitable for real-time decision making). These lim-
itations motivated researchers to look for models
that are not strictly physics-based but rather semi-
empirical or empirical. Examples of semi-empirical
models include the Paris’ law equation describ-
ing fatigue crack growth widely used for fatigue
damage prognostics (Sankararaman et al., 2011)
and the square-root-of-time dependence capturing
battery capacity fade due to the solid electrolyte
interphase growth for battery lifetime prediction
(Bloom et al., 2001; Smith et al., 2011). Empiri-
cal models do not have any physical meaning but
show good agreement with data. Three represen-
tative examples of empirical models are (1) the
statistical degradation models described in Sec.
3.3 (b) for general-purpose prognostics (i.e., health
forecasting of a general physical system), (2) expo-
nential degradation models, originally developed
for general-purpose prognostics (Gebraeel et al.,
2005) and further developed and applied to bear-
ing prognostics (Li et al., 2015) and battery prog-
nostics (He et al., 2011), and (3) power-law models
for battery prognostics (Lui et al., 2021; Gasper
et al., 2021), one of which reduces to the tradi-
tional model when the temporal power exponent
equals 0.5.

Physics-based approaches, plus prognostics
approaches using semi-empirical and empirical
mathematical models, form a broader category
called model-based prognostics. Figure 21 shows
a diagram illustrating a model-based approach
using an empirical exponential model for battery
capacity forecasting and RUL prediction. This
battery prognostics problem can be formulated as
a state-space model for parameter estimation, as
discussed in Sec. 4.2.4, and solved using particle
filtering, as detailed in Sec. 4.2 (b). The model-
based approach outlined in Fig. 21 is used for
online estimate of the RUL of a battery cell. In
a digital twin, the RUL prediction could then
be used in other process and control optimiza-
tion algorithms to, for example, determine the

optimal time to remove the cell from its first-
life application. This application of a model-based
prognostics method within a digital twin frame-
work is extensively investigated as a case study in
Part 2 of this review on digital twin.

Suppose a good degradation model is unavail-
able, or degradation parameters are hard to
estimate from observational data. In that case,
data-driven approaches may be a better alterna-
tive to mode-based approaches, assuming medium
to large volumes of degradation data are avail-
able. This is usually only possible in applica-
tions where life safety issues are not a concern.
Data-driven approaches can be categorized further
into direct mapping and time series forecasting
approaches, as illustrated in Fig. 22. Direct map-
ping approaches bypass health forecasting and
directly map features (ML model input) to RUL
(ML model output) using ML models such as stan-
dard feedforward neural networks (Huang et al.,
2007; Tian, 2012), deep CNN (Li et al., 2018,
2019a), and LSTM recurrent neural networks
(Yuan et al., 2016; Huang et al., 2019). Some
variants of direct mapping approaches do not
output RUL and instead estimate a health indi-
cator (e.g., an overall measure of engine/milling
machine health (Malhotra et al., 2016) or bearing
health (Guo et al., 2017), battery capacity (Shen
et al., 2020)), or a battery degradation parame-
ter such as an electrode aging parameter (Tian
et al., 2021; Thelen et al., 2021)). ML-based fore-
casting approaches predict how a health indicator
or reliability metric (such as time to failure or
survival probability) evolves beyond the current
time as an intermediate step for RUL prediction.
ML models used for forecasting include support
vector machine (Pham et al., 2012), relevance vec-
tor machine (Wang et al., 2013), Gaussian process
regression (Richardson et al., 2017), feedforward
neural networks (Fink et al., 2014), and LSTM
recurrent neural networks (Nemani et al., 2021),
just to name a few. Applications of DL to PHM
are well-reviewed in Khan and Yairi (2018); Zhao
et al. (2019); Fink et al. (2020), with the first and
second papers focusing on machinery health mon-
itoring, the second paper providing a comparative
study on the tool wear prediction performance of
ten ML and DL algorithms, and the third paper
focusing on successes of DL in various application
domains including PHM.
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Data-driven ML approaches can discover com-
plex degradation patterns relevant to RUL pre-
diction from large volumes of data, are simpler
to implement than physics-based approaches, and
are agnostic to the physical and degradation pro-
cesses. However, large ML models can have many
more parameters than physics-based models and
require large training datasets to ensure low risks
of overfitting. In reality, collecting large and repre-
sentative run-to-failure datasets can be costly and
time-consuming. Another well-known issue with

ML models is that they have difficulties in gener-
alizing to out-of-distribution data unseen during
model training, as also discussed in Sec. 3.4 and
4.3, and may produce predictions that do not
make physical sense. In conclusion, the perfor-
mance of purely ML models is limited by the
quality and quantity of the available training data.
Without consideration of physics, the accuracy
numbers on a test dataset that falls within the
training data distribution may not hold for other
datasets outside the training distribution.
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As discussed above, purely physics-based
and data-driven approaches have complementary
advantages that can be leveraged to tackle the lim-
itations. For example, physics-based models offer
opportunities to generate synthetic data that can
help alleviate the data-size requirement of data-
driven approaches, extending the applicability of
these approaches to cases where run-to-failure tra-
jectories are scarce. Using physics-based models to
generate synthetic training data is illustrated as
Approaches 2, 3, and 5 in Fig. 10. Another exam-
ple is that data-driven ML models can learn com-
plex bias functions from data to compensate for
discrepancies in physics-based models. This strat-
egy in combining physics-based and model-based
approaches is illustrated in Fig. 10 as Approaches
4 and 5, where the bias functions respectively cap-
ture the prediction inaccuracy of a physics-based
model (Approach 4) and the prediction inaccu-
racy of an ML model trained with physics-based
synthetic data (Approach 5). All the approaches
described in Sec. 3.4 can be adapted for failure
prognostics, with some successes recently reported
in Chao et al. (2022); Kohtz et al. (2022); Yucesan
and Viana (2022).

4.5 Ontology-based reasoning

Ontology maps and knowledge graphs provide
a straightforward way to represent empirical
knowledge in a structured manner. The uni-
fied knowledge engineering and representation
through descriptive logic lays a firm foundation
for knowledge reasoning over knowledge graph
in the semantic space. In practice, they are pri-
marily implemented through ontology markup
languages (Chen, 2010), such as Web Ontology
Language, XML Schema, Resource Description
Framework Schema (RDFS).

The proper construction of an ontology map
and knowledge graph facilitates knowledge infer-
ence along the semantic dimension (Chen et al.,
2020a). In general, knowledge reasoning methods
can be categorized into three classes.

1. Logic rules-based reasoning. Rules-based
reasoning manifests in several forms: (a) first-
order predicate logic rules, such as First-
Order Inductive Learner (FOIL) (Schoenmack-
ers et al., 2010), that is to use the predicate
as the basic unit for knowledge reasoning; (b)
manually inject user-defined or simply learned

rules in knowledge graph to generate new
knowledge, such as the inference component
in the Never-Ending Language Learning sys-
tem (NELLs) (Mitchell et al., 2018). (c¢) to
incorporate frequently present patterns, con-
straints or paths to extract new knowledge.
That is to reason with the Web Ontology Lan-
guage. (d) identify path rules and inject them
into knowledge graph to facilitate reasoning.
For example, Lao and Cohen (2010) utilized a
path ranking algorithm to identify the associa-
tions between edge types and the instances of
edge types, and exploited such associations to
predict missing edges in the graph.

2. Distributed representation-based reason-
ing. This line of studies aim to project the basic
elements in knowledge graph (i.e., entities, rela-
tions, attributes) into a continuous vector space
through embedding-based approaches (Nickel
et al., 2011), including tensor decomposition,
distance-based mapping, and semantic match-
ing models. The distributed representation
allows to discover latent rules and connections
in the transformed space.

3. Neural network-based knowledge reason-
ing. In recent years, more and more studies
have explored the representation learning abil-
ity in deep neural networks for knowledge
reasoning. Specifically, the CNN-based learner
enables to account for the fine-grained multi-
source heterogeneous information encoded in
entity description (Xie et al., 2016); the recur-
rent neural network is capable of reason-
ing about multi-hop relations in knowledge
graph (Neelakantan et al., 2015). These unique
advantages have positioned neural network as
an appealing paradigm for knowledge inference
in the semantic space.

Over the past few years, there has been an
increasing investigation of ontology techniques
for data management as well as knowledge rep-
resentation and inference in digital twins. For
example, Ladj et al. (2021) combined business
rules with the knowledge deriving from industrial
data analytics to build ontology-based knowl-
edge model for incident detection in the machin-
ing process, and the knowledge base served as
an inference platform to detect detrimental inci-
dents. Lim et al. (2020b) employed knowledge
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graph-based method to accommodate heteroge-
neous data sources, such as asset ontology, envi-
ronment ontology, and system ontology. The com-
prehensive data integration in knowledge graph
drives the inference of smart solutions for asset
configuration, resource planing and component
maintenance. Liu et al. (2021d) developed multi-
scale product quality knowledge model to char-
acterize the relationship between product quality
and the product quality factors explicitly.

5 Virtual-to-physical (V2P)
twinning enabling
technologies

Figure 23 summarizes the modeling and twin-
ning methods by application in different phases
of a physical system’s life cycle. As illustrated
in this figure, there are numerous ways of estab-
lishing V2P connection, such as system recon-
figuration, process control, production planning,
maintenance scheduling, and path planning. In
this section, we mainly concentrate on two clas-
sical V2P twinning enabling technologies, namely
model predictive control and predictive mainte-
nance.

5.1 Model predictive control

Model predictive control (MPC) includes a wide
range of advanced control methods, which in com-
mon use a model to predict the future behavior
of the process and determine the optimal control
within a set of constraints. MPC is an essen-
tial component for smart manufacturing, which
enables not only the optimal use of resources for
high-quality products, and but also quick produc-
tion responses to changes in market demands and
supply chains (Lu et al., 2016). It is one of the
most widely used methods to establish the V2P
connection in a digital twin.

Figure 24 shows a general structure of MPC,
including a process model, an objective function,
process measurements, constraints and sampling
points (Nikolaou, 2001).

Assuming an arbitrary process with a state
space representation:

x(k +1) = f(x(k), u(k)),

y(k+1) = h(x(k +1)). (10)

MPC minimizes a user-defined cost function J,

k
min D J(x(t), u(t)), (11)

in which J(x(t), u(t)) : R®* x R — R is the cost
function at t.

For a trajectory following process control prob-
lem, the objective functions can be any norm of
the tracking error between the reference vector r
and the model output y, as shown in Eq. (12). The
optimization problem is defined under hard state
and input constraints:

N2
min Y (ki k) —y(k+i] B
=Ny
s.t. wp, <ulk+j| k) < uw (12)
vir <yk+j|k) <yuw
Vi€ {Nl,...,NQ} and j € {0,...,Nu},

where N1 < N, < Ns.

The iterative, finite-horizon optimization of a
process can be further illustrated in Fig. 25. At
time tp the current process measurements are
acquired and a cost minimizing control strategy
is computed to minimize the error between the
system output y and the given reference r for a
horizon N5. No must be long enough to represent
the effect of a change in the control commands
u on the control variable y. If there a pure delay
exists, the sum of the objective function starts
from Nj. Only the first value of the optimal con-
trol commands is implemented, then the process
measurements are sampled again and the opti-
mization is repeated, yielding new sets of control
commands and new predicted state path. The
prediction horizon keeps being shifted forward so
MPC is also called receding horizon control.

MPC has become the most widely imple-
mented advanced process control technology and
is offered by major automation suppliers, with
applications in process industries such as refining,
petrochemicals, paper and food processing (Indus-
try; Automation) . In the last decade, MPC is
extended and also adopted in power plant control,
build thermal management and discrete manu-
facturing (Deng et al., 2014; Farzan et al., 2014;
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Swief et al., 2019). In the era of smart manufac-
turing, the process and manufacturing industries
are embracing tremendous opportunities brought
by the Internet-of-Things (IoT) and advanced
data analytical technologies, which also enhance
the application of MPC by expanding the objec-
tive function to more some general performance

measure (Ellis, 2015), and by combining machine
learning techniques in process modeling (Essien
and Giannetti, 2021). Economic MPC employs
cost function connected to the economics of the
considered process which makes economic MPC
well suited as a tool to achieve the goals of smart
manufacturing. Machine learning-based MPC is
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reported to use recurrent neural network mod-
eling approaches for a general class of nonlinear
dynamic process systems to improve prediction
accuracy and control performance (Wong et al.,
2018). There are also efforts reported to integrate
a DL architecture with MPC for robot manip-
ulation control (Lenz et al., 2015). Rather than
developing a dynamics model from first principles,
the future MPC will more likely to learn digital
models using a novel deep architecture and learn-
ing algorithms directly from data. For example,
some of the data-driven models summarized in
Sec. 3.3 can be used as predictive models for MPC
in digital twins.

5.2 Predictive maintenance

A recent industry-wide shift called Industry 4.0
capitalizes on increased interconnectivity and
automation to make machines on a production
floor smarter. Benefits of this digital transforma-
tion to Industry 4.0 include increased productiv-
ity, improved workflow efficiency, and improved
product quality. A key enabling step of Industry
4.0 is predictive maintenance, mostly discussed
in the manufacturing domain. Predictive main-
tenance is a proactive approach to equipment
maintenance that centers on (1) identifying sig-
natures in sensor data (continuous monitoring
or periodic inspections) indicative of changes in
equipment health (see fault diagnostics discussed
in Sec. 4.4.3), (2) predicting when a machine,
component or part might fail (see failure prognos-
tics discussed in Sec. 4.4.4), and (3) scheduling
maintenance work during planned downtime just

before equipment failure, sometimes referred to as
“just-in-time maintenance” (Lee et al., 2013a,b).

Now let us answer a simple question: why is
predictive maintenance needed, for example, for
a rotating machine (e.g., motor, pump, and fan)?
The answer is quite simple. The unexpected fail-
ure of this rotating machine often incurs high
maintenance and downtime costs, reduces cus-
tomer satisfaction with a produced good, and
may even cause human injuries and fatalities.
These consequences also impact the machinery
manufacturer by tarnishing their reputation and
potentially putting them at a competitive dis-
advantage. Therefore, it will be value-added to
develop, implement, and deploy predictive main-
tenance solutions, especially justifiable for high-
value equipment whose failure cost is high. Note
that predictive maintenance differs from the more
traditional reactive maintenance, which performs
maintenance work after an equipment failure and
may lead to costly unexpected downtime, and pre-
ventive maintenance, which performs maintenance
work at a fixed time interval, typically more often
than necessary, and may cause a waster of time
and resources due to unnecessary maintenance.

A typical ML pipeline for building and deploy-
ing a predictive maintenance solution for a rotat-
ing machine is shown in Fig. 26 and consists of
four main steps.

1. Acquire sensor data (P2V): This first step
identifies critical machine assets for condition
monitoring and installs sensors on these assets
to measure signals that are sensitive to machine
health. For example, sensor signals sensitive to
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bearing health include acoustics, vibration, oil
wear particle count, and temperature, ranked
from the earliest to latest in detecting a bear-
ing fault. Note that in SHM, the placement
of a sensor network needs to be optimized to
maximize the amount of useful information for
structural damage assessment, as discussed in
detail in Sec. 2.2.1 of Part 2 of the review paper.

. Preprocess data (P2V): Field data is rarely
clean; it contains outliers and noise that need
to be removed to avoid corrupting ML model
performance. An example in bearing health
monitoring is that vibration signal processing
is almost always needed to denoise vibration
signals by, for example, designing frequency-
domain filters used to remove background noise
irrelevant to machine faults (Antoni and Ran-
dall, 2006). Another example is that outliers
in battery voltage and current measurements
must be removed before they are fed into ML
models for capacity estimation or RUL predic-
tion enabling battery health management.

. Train ML models (P2V): This step trains
ML models to classify the machine condition as
healthy/faulty (green/red) or healthy/lightly
damaged /heavily damaged (green/yellow/red)
and estimate the RUL of the machine. For both
fault classification and RUL prediction, the
predictive uncertainty of the ML models needs
to be estimated, accurately reflecting the mod-
els’ confidence in making a health class/RUL
prediction (see Sec. 2.1.1 in Part 2 of the review
paper for a detailed discussion on ML model
uncertainty). A probabilistic estimate of RUL
can be in the form of a mean RUL and an
associated confidence interval representing the
predictive uncertainty.

. Optimize maintenance decision making
(V2P): This last step optimizes maintenance
schedules based on the predictive information
from Step 3. In practice, what is preferred
is to repair or replace equipment during a
scheduled downtime just before failure occurs,
without affecting the chance of meeting pro-
duction goals. Maintenance decisions need to
be made from a risk perspective, given that
ML model predictions are associated with vary-
ing degrees of uncertainty. A dedicated review
of maintenance schedule optimization will be
given in Sec. 2.2.3 (c) in Part 2 of the review

paper.

Digital twin can be an enabler of predictive
maintenance. As discussed earlier in Sec. 4.4.3
and 4.4.4, one of the main issues with diagnostic-
s/prognostics is the lack of faulty/run-to-failure
data (i.e., data acquired from a physical system
whose health state or RUL is known). This data
challenge can be addressed by using a physics-
based model in a digital twin, calibrated offline
and updated online (Sec. 4.2), to generate syn-
thetic faulty/run-to-failure data. This strategy
for tackling the data challenge has already been
discussed in Sec. 4.4.3.

An example where a digital twin can help with
the online phase of predictive maintenance is that
a physics-based model in a digital twin, consid-
ering both physical and degradation processes,
takes sensor data as input, estimates digital state
variables that significantly affect lifetime, and pre-
dicts RUL. Sometimes, ML models can assist
physics-based models in estimating the digital
state variables. This strategy is similar to the ML-
assisted approach (Approach 6) shown in Fig. 10,
except that ML models may not always be used in
the digital twin. A lot of success stories have been
reported in the manufacturing industry on this
strategy, for example, Ansys Twin Builder and
PTC thingworx collaboratively working on esti-
mating the maximum temperature of the rotor,
stator, and case of an electric motor based on
sensor measurements to predict the motor’s RUL
(ANSYS).

Another industrial success story is the pre-
dictive maintenance alarm system in MATLAB
developed by Baker Hughes for the positive dis-
placement pumps on their trucks. The core of
this system is the pump health monitoring soft-
ware that analyzes real-time pressure, vibration,
and timing signals and uses a trained neural net-
work to predict pump failures. It is shown that
the software can classify pump health into one of
three health classes, namely “normal operation”,
“monitor closely”, and “maintenance needed”,
enabling better maintenance planning. However,
it is unclear whether the software has predic-
tive capabilities (i.e., whether it can predict the
RUL of a pump). As the emergence of IIoT plat-
forms facilitates the industry-scale adoption of
digital twins, we can expect the number of indus-
trial success stories of predictive maintenance to
continue increasing rapidly. Figure 27 illustrates
an industry-grade IIoT platform for proactively
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predicting and preventing the failure of rotat-
ing machinery on a manufacturing floor. In this
IIoT platform, a network of smart devices perform
vibration analysis, fault detection, and failure pre-
diction on the edge, and then send detection and
prediction results to a web-based user interface
that provides real-time analytics, dashboards, and
alert capabilities to the maintenance and relia-
bility engineers responsible for keeping rotating
equipment in service. Maybe talk about the pos-
sibility of building centralized digital twins and
distributed digital twins on the edge and shar-
ing ML model information among clients without
sharing data using federated learning in Sec. 6.1.

5.3 Real-time perception and
decision making

After sensor measurements characterizing the
state of a physical system are transmitted to the
digital counterpart, simulation and optimization
models enable the P2V and V2P connections
within the digital twin. Specifically, simulation
enables precisely modeling of the behavior of
the physical system under uncertainty (P2V),
and optimization drives control, maintenance, and
decision making on the physical asset (V2P) given
its current state. Ideally, the simulation and opti-
mization algorithms in the digital model will be
performed in real-time and will not have sig-
nificant latency. However, this is not the case,
as simulation and optimization are known to be
time-consuming and computationally expensive,
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which substantially hampers their ability to pro-
vide timely results in digital twins which operate
on physical systems with short time scales. To
this end, the power of ML can be fully exploited
to alleviate many of the inherent issues incurred
by using classical simulation and optimization
models. Various ML techniques can be used to
facilitate real-time or near real-time (sometimes
termed just-in-time) perception and decision mak-
ing. Specifically, ML can be leveraged to infer the
parameters of or replace the simulation model for
accurately modeling the physical system (Good-
win et al., 2022). For example, Zohdi (2020)
used ML to ascertain the parameters of a multi-
submodel system for fast and accurate simulation
of fire propagation in order to support contin-
uous update of the digital twin of the physical
counterpart in near real-time. In each case, the
simulations are expedited by using pre-trained ML
models which are very computationally inexpen-
sive to evaluate. These examples are a few of many
where ML can be used to speed up simulation
operations in digital twins.

Regarding optimization, the expensive itera-
tions in classical optimization algorithms can be
replaced by an end-to-end ML-based optimiza-
tion model proxy. In this method, the ML-based
optimizer typically adopts a predict-then-repair
paradigm. The basic idea is to first reformulate the
optimization problem as a learning problem and
then incorporate fast feasibility-restoration proce-
dures to guarantee the feasibility of the produced
solution (Bengio et al., 2021; Barry et al., 2022).
ML-based optimization proxies have been shown
to surpass conventional optimization algorithms
by a large margin in computational speed. For
example, Van Hentenryck (2021) showcased the
role of ML in approximating the optimal solutions
of power flow problems and the great potential
of ML-based optimization proxy in speeding up
existing algorithms. Chen et al. (2022) proposed
an end-to-end DL model that can predict an opti-
mal solution for Security-Constrained Economic
Dispatch (SCED) in milliseconds to meet the need
of power gird in real-time operations. Creating this
end-to-end DL model overcomes the fundamental
limitation of classical optimization techniques in
computational efficiency.

Ultimately, machine learning will play a large
role in enabling real-time simulation, optimiza-
tion, and control of physical systems. Researchers

are actively investigating methods to increase the
speed of physics-based simulations and traditional
optimization algorithms. These techniques will
pave the way for digital twins which operate on
the millisecond and sub-millisecond timescales.

6 Perspectives on modeling
and twinning in digital twins

6.1 Federated learning in digital
twins

For data-driven digital twins, a single system or
component may not have sufficient condition mon-
itoring data to train a representative model. This
is particularly due to the fact that industrial and
infrastructure systems are operated under vary-
ing conditions. Thus, monitoring a system for a
limited period of time may not cover all possi-
ble expected operating conditions. Moreover, since
faults or critical system states are rare, one sin-
gle system may not observe a sufficient number
and type of faults to train the model. Therefore,
data from similar systems can be leveraged to
improve the performance and generalization of the
developed model.

Accumulating data from multiple similar sys-
tems can eventually result in large-scale datasets
that enable representative data-driven digital
twins to perform well under all relevant operating
conditions. Generally, compiling such representa-
tive datasets could be achieved through sharing
the data between different stakeholders, for exam-
ple between different operators of similar systems.
However, even without direct competition, compa-
nies are often reluctant to share data mainly due
to the concern of disclosing proprietary company
information. Federated learning could potentially
overcome that concern enabling to take advantage
of the benefits of a shared model without the need
of data disclosure. Federated learning is a privacy
preserving learning concept. It enables to benefit
from the local data subsets (e.g., of several power
plant operators) without the need of sharing the
data (McMahan et al., 2017; Li et al., 2020a). It
is a decentralized machine learning technique that
enables to train a neural network across multi-
ple local datasets without exchanging or sharing
data samples across the decentralized nodes. A
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global model is constructed by aggregating (typi-
cally averaging) the parameters (either gradients
or weights) of the locally trained models. Hence,
it can make predictions based on the experience of
the entire fleet but without the stakeholders hav-
ing access to each other’s data. Each individual
system retains its own collected condition moni-
toring data on the edge, without sharing it with
other systems. It gets a current version of the
model, improves it based on its collected data and
sends the updates to the model. Two different
concepts of federated learning are typically dis-
tinguished: cross-device federated learning (also
referred to as sample-based or horizontal federated
learning) (Yang et al., 2019) and cross-silo feder-
ated learning (also referred to as feature-based or
vertical federated learning) (Yang et al., 2019). In
the context of digital twins, in fact, particularly
the horizontal federated learning concept is the
most relevant. However, there are also contexts
where vertical federated learning could be applied.

Privacy preservation is an essential character-
istic of federated learning. However, even though
data is not directly shared, only sharing model
updates during the training process can still
potentially reveal sensitive information (Zhu et al.,
2019a). Different privacy preserving approaches
have been proposed that provide privacy guaran-
tees and prevent potential indirect data leakage
(Truex et al., 2019; Chen et al., 2020b; Yin et al.,
2021). Federated learning has not yet been broadly
applied for digital twins. Federated learning will
then face similar challenges as other data-driven
approaches, such as the lack of representative
datasets, differences in operating conditions and
system configurations between different entities of
the digital twins. One of the potential directions
to tackle these challenges is combining federated
learning and transfer learning.

6.2 Domain adaptation in digital
twins

Data-driven digital twins can show a significant
performance drop if they are applied under oper-
ating or environmental conditions that they have
not been trained on. However, evolving operating
conditions are very common in practical appli-
cations. Moreover, if a data-driven digital twin
is applied across different units of a fleet, the
performance may also drop significantly due to

discrepancies either in system configurations or
operating regimes of different units of a fleet. It is,
however, unrealistic to assume that sufficient data
can be collected for all units and for all operating
conditions. Different operating and environmen-
tal conditions and different system configurations
result in the so-called domain shift or distribu-
tional shift, a change in the data distribution
between the source (training) and the target (test-
ing) dataset (Fink et al., 2020; Li et al., 2022),
which is also described in Sec. 4.3 in the con-
text of machine learning. Typically, no labels are
available in the target dataset, so that fine-tuning
of the trained model cannot be performed. Fur-
ther to the two scenarios of domain shifts caused
by differences in operating conditions or by dif-
ferences between different units of a fleet, a third
scenario, particularly relevant to digital twins is
the synthetic to real gap existing between synthet-
ically generated data stemming potentially from
model-based simulators and the actual observa-
tion (Bousmalis et al., 2018; Wang et al., 2021a;
Li and Lee, 2021).

Domain adaptation, a subfield of transfer
learning, aims at overcoming the differences
between the domains so that the algorithms
are able to generalize across domains and learn
domain-invariant features. Domain adaptation
solves the domain shift problem by finding a
mapping from the source data distribution to
the target distribution. Different approaches for
domain adaptation have been proposed. One of
the most obvious approaches to overcome the
domain gap is distribution alignment approaches
by statistics matching, including Adaptive Batch
Normalization (AdaBN) and Automatic Domaln
Alignment Layers (AutoDIAL), using the statis-
tics of source and target mini-batches at different
layers to align the two distributions (Long et al.,
2015; Yang et al., 2016; Carlucci et al., 2017).
Some of the other commonly applied approaches
have been relying on the principle of minimizing a
divergence-based criterion between source and tar-
get distributions, including such criteria as Max-
imum Mean Discrepancy (MMD) or Wasserstein
Discrepancy (Yan et al., 2017; Lee et al., 2019).
Due to the superior performance on many different
tasks, adversarial domain adaptation has recently
emerged as one of the most frequently applied
approaches to confront domain shift (Ganin and
Lempitsky, 2015; Tzeng et al., 2017; Ganin et al.,
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2016). A domain discriminator is then applied to
ensure that the extracted features become indis-
tinguishable between the two domains, while the
performance on the main classification task is
maximized.

Domain adaptation has been recently broadly
applied to many different tasks in prognostics and
health management, partly also for digital twins
(Li et al., 2022; Liu et al., 2020b). One of the
additional challenges that is typically encountered
in real applications is that the label space of the
source (training) is often not identical with that
of the target (testing) dataset. This is particu-
larly relevant in the context of fault diagnostics,
where different systems may have experienced dif-
ferent fault types within the (short) observation
time period. Possible setups in real applications
are that some classes are missing in the tar-
get dataset (Partial Domain Adaptation), some
classes may also be missing the source datasets
(OpenSet Domain Adaptation). Or we may be
even facing only a partial overlap of the label
space between source and target datasets, result-
ing in a combination of the two types (Partial &
OpenSet Domain Adaption) (Boris et al., 2021).
Some approaches have been recently proposed to
tackle such challenges (Li et al., 2020c; Wang
et al., 2020c; Li and Zhang, 2020; Rombach et al.,
2022), on the one hand by overcoming misalign-
ment in case of different label spaces and on the
other hand by developing generative models for a
controlled generation of the missing fault types.
While domain adaptation has been flourishing for
classification tasks, its application to regression
has been rather limited (Boris et al., 2021). This
has been also reflected in the tasks tackled in
the field of prognostics and health management,
where the main application field has been fault
diagnostics, with only few research works address-
ing prognostics tasks as well (Wu et al., 2019b;
da Costa et al., 2020). Similar to classification
tasks, domain adaptation for regression is also fac-
ing the challenge of label discrepancy between the
source and the target label spaces (Boris et al.,
2021).

6.3 Deep reinforcement learning in
digital twins

Reinforcement learning is concerned with learning
an optimal policy for sequential decision making

problems through an agent’s interactions with the
environment over time by trial and error (Mnih
et al., 2015). Towards policy learning, reinforce-
ment learning not only considers the immediate
reward of an action, but also takes into account
the accumulative reward resulting from the action
in a discounted manner. In general, reinforcement
learning is composed of several key components:
state space, action space, policy to map from state
space to action space, state transition probability,
and reward function. The advantage of reinforce-
ment learning in long-term cumulative reward
modeling has put it in a good position to tackle
complex sequential decision making problems.

Deep neural networks have recently been used
to approximate such functions as value functions
(value function is used to predict the expected
cumulative reward indicting how good a state-
action pair is), policies (policy describes which
action to take given a specific state), reward func-
tions, and state transition function. For example,
the well-known deep Q-network (DQN) developed
by Mnih et al. (2015) approximates the state-value
function in a Q-Learning framework with a neural
network. Similarly, deep deterministic policy gra-
dient (Silver et al., 2014) concurrently learned the
action-value function and the policy.

For digital twins, deep reinforcement learning
has only recently started to be applied. There are
two main directions that have been pursued: 1)
Establishing the P2V connection for model updat-
ing; 2) Building upon the operational digital twin,
deep reinforcement learning has been used for con-
trol tasks and decision support, in particular due
to its learning capabilities. As one example for
the P2V connection, Tian et al. (2022a) trained
an agent with Lyapunov-based maximum entropy
deep reinforcement learning to perform model
calibration and infer the uncertain model param-
eters of the physics-based model, such that the
response of physical model matched the observed
data. The proposed framework provides a sim-
ilar performance for the model calibration as
model-based approaches, such as UKF, but pro-
vides real-time update capability. As an example
for the the P2V connection, Xia et al. (2021a)
investigated the application of deep reinforcement
learning in industrial process control for smart
manufacturing, where deep reinforcement learn-
ing was trained to learn an intelligent operations
scheduler. Some other examples include a deep
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reinforcement learning algorithm trained to find
the optimal off-loading policy in an IoT digital
twin framework with a goal of reducing energy
consumption while enhancing data processing effi-
ciency Dai et al. (2020). Moreover, Khan et al.
(2020) provided an interesting perspective postu-
lating that the digital twin as a technology for
decision automation could be treated as a deep
reinforcement learning model, where the physical
system provides states and rewards information to
the digital system via the P2V connection and dig-
ital system recommends actions to physical system
to maximize the long-term reward.

Future research directions could make progress
both directions: on the one hand integrating deep
reinforcement learning more in the learning pro-
cess of data-driven (and hybrid) digital twin, such
for example for meta-learning tasks; on the other
hand deep reinforcement learning is essential for
interweaving more the digital twin and decision
support, respectively control tasks enabling to
harness more benefits from digital twin technol-
ogy. One of such directions could be fore example,
prescriptive operations, where deep reinforcement
learning is used to prescribe an optimal course of
actions with a potential objective to prolong the
remaining useful lifetime Tian et al. (2022b).

7 Conclusion

In this paper, we propose a five-dimensional def-
inition for digital twin based on how data flows
between the physical and virtual systems. The
five dimensions are the: physical system, digital
system, an updating engine (P2V), a prediction
engine (V2P), and an optimization dimension
(OPT). The five-dimensional digital twin provides
a clear and complete picture on the different
level of interactions between the physical system
and its digital counterpart (i.e., data exchange,
modeling, actions). Following the five-dimensional
digital twin definition, we comprehensively review
the underlying techniques that are commonly used
in the state-of-the-art literature to enable each
dimension of the digital twin and present our find-
ings in a series of two papers. This paper covers
the enabling techniques for three specific dimen-
sions of digital twin: physical system modeling,
P2V, and V2P. In the following paper, we will con-
centrate on articulating how to fully incorporate

UQ and optimization in the three dimensions of
digital twin described in this paper.

Specific to this paper, we provide a comprehen-
sive and rigorous examination on various means
of modeling different aspects of a physical system
(e.g., geometry, structure, system dynamics, rela-
tionship), the key P2V enabling techniques, and
the actions and benefits (e.g., model predictive
control, predictive maintenance) enabled by V2P
twinning techniques across different phases of a
physical system’s life cycle. The accurate repre-
sentation of a physical system together with the
constant interactions enabled by P2V and V2P
techniques form a closed loop to drive the imple-
mentation of digital twin in practice. In Part 2
of the review paper, we investigate how to ensure
robust performance of a digital twin model by
incorporating UQ and optimization techniques
into the underlying enabling technologies.

Appendix A: A generic
particle filter algorithm

Particle filtering is a widely used Bayesian filtering
technique for state estimation in generic state-
space models and DBNs. It is a key enabler in
many digital twin applications where probabilis-
tic model updating with state estimation plays an
essential role. Let us briefly look at how particle
filtering works. Particle filters represent a family
of algorithms that recursively execute Bayesian fil-
tering through sequential Monte Carlo simulation
(Arulampalam et al., 2002). In a particle filter,
the marginal posterior of a state at the current
time step k is approximated using a large set of
weighted particles. This approximation takes the
following form

Np
pXilyrn) & Y wid(xy—x3),  (13)
j=1

where xi is the jth particle of the state x at the kth
time step, wi is its associated weight, NP is the
total number of particles, and § is the Dirac delta
function. Algorithm 1 depicted in Fig. 28 gives
the pseudo-code of a generic particle filter (Hu
et al., 2018; Cappé et al., 2007). Three key steps
of the particle filtering procedure are described as
follows:
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e State Transition: Each particle of the state tran-
sitions forward in time by one step (from the
previous, (k1) step to the current, k' step
according to the state transition equation in
Eq. (13) (Line 5). These particles are equally
weighed (1/Np), and they form the prior of xj
before the current measurement is used.

o Weight Evaluation and Normalization: The
weight of each particle is updated using the
likelihood of the current measurement given
the state values of the particle, i.e., W}'€ o
w!_p(yk|x:) (Line 6). The likelihood is cal-
culated by comparing the measurement distri-
bution predicted by the measurement equation
g in Eq. (13) to the actual measurement yy.
After that, the updated weights are normalized,
and the normalized weights sum up to 1 (Lines
8-12).

® Resampling: Particles with negligible weights
are replaced by new particles that are copies
of particles with higher weights (Line 13). This
step mitigates the issue of particle degener-
acy, where the weights become overly concen-
trated on a very small subset of particles (in
an extreme case, only all by one particle have
close-to-zero weights).

Appendix B: Decomposition
of likelihood and Bayesian
inference in a DBN

Using the DBN given in Fig. 16 as an example, the
posterior distribution p(x1 k, T2k, T3k, Ta.k|Y1,k)
of state variables x1 1, 2 1, 3%, and x4, for given
observation y; j at time ¢, is given by

P(T1 ks T2,k T3 k> Tak|Y1,k)
X p(y1 kT35, Tak)D(T3 kT2 K, T1,k) (14)

X P(£C4,k\$2,k, 5E1,k)p/(961,k, T2k, L3,k $4,k)7

where p(y1k|23,k, Ta k), P(T3k|T2k, x1k), and
p(T4.k|T2,k,x1,) are the conditional probabil-
ity tables or conditional probability distributions
describing the probabilistic causality relationship
between the parent nodes (e.g., z2 , and z; ;) and
a child node (e.g., z3), ' (21,5, T2k, T3k) is the
prior distribution of state variables x1 ., z2 k., T3 k,
and x4} at ty, which is obtained at each time
step by recursively performing Bayesian inference

and uncertainty propagation based on observa-
tions and state transition probabilities given in
Eq. (6).

Theoretically, all the Bayesian inference meth-
ods discussed in Sec. 4.2.2 can be employed to
update the posterior of state variables based on
the formulation given in Eq. (14). In the con-
text of digital twins, particle filters such as the
one presented in Appendix A are usually used in
conjunction with DBNs to update digital states
for two main reasons: (1) particle filters have
fewer assumptions on the nonlinearity of the state
transition and measurement functions and noise
distributions than Kalman filters (see Table 4);
and (2) using surrogate models to approximate
conditional probability distributions (see Eq. (5))
allows for an efficient evaluation of likelihood func-
tions, such that a large number of particles can be
used for the inference. Using Eq. (14) as an exam-
ple, in a particle filter implementation, we first
generate equally weighted particles of state vari-
ables z1 k, T2k, T3k, and x4 ) as their prior at ¢
according to the transition probabilities of state
variables defined by the transition BN (i.e., Step
5 in Fig. 28). After that, the likelihood of each
particle is computed using the decomposed likeli-
hood function p(y1 kT3 k, Ta.k)P(T3,k|T2 K, 1K) X
p(Ta,k|r2k, x1,k) given in Eq. (14). This corre-
sponds to the computation of particle weights in
Step 6 of Fig. 28. The likelihood values of the
particles are then normalized and the particles
are subsequently re-sampled based on the normal-
ized weights to obtain the posterior samples of the
state variables at t;. This process is implemented
repeatedly over time to dynamically update the
state variables.
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Algorithm 1: Generic Particle Filter

Inputs: K — Number of measurement steps;
U5, ¥;.x — Measurements;
p(x,) — Initial probability distribution of state x;
Np — Number of particles.

Outputs: {x{:,{}j - and {w{:K}
=1:Np

1. Draw initial particles {xé}‘

Jj=1:Np

equal weights to initial particles: wy = 1/Np, forj=1: Np.

from initial distribution p(x,) and assign
Np

— Updated particles and their weights.

Particle
initialization

State transition

Weight evaluation

Weight normalization

with respect to Resam p li ng

2. k=1,
3. whilek<=Kdo
4. forj=1:Npdo
5. Evolve particle: x/ = f(x;_/, u;_/) + @7 > State transition
6. Evaluate importance weight of particle: wy o w;_J/ p(y, | x¢)
7. end for
8. Calculate total weight: W), = 2?’;1 w)
9. forj=1:N,do
10. Normalize importance weight: W,i = w,i/ Wy,
11. Assign normalized weight to particle: w,i = W)
12.  end for
13.  Resample by multiplying/suppressing samples {xi}j o
=1:Np
high/low importance weights {le: K}' c
Jj=1:Np
14.  Assign equal weights to resampled particles: wy = 1/N, forj=1: N,.
15. k=k+1;
16. end while

Fig. 28: Pseudocode of a generic particle filter algorithm
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