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ABSTRACT

A squirmer enclosed in a droplet represents a minimal model for some drug delivery systems. In the case of a spherical squirmer swimming
with a spherical cage in a Newtonian fluid [Reigh et al., “Swimming with a cage: Low-Reynolds-number locomotion inside a droplet,” Soft
Matter 13, 3161 (2017)], it was found that the squirmer and droplet always propelled in the same direction albeit at different speeds. We
expand the model to include particles’ shape and medium’s heterogeneity, two biologically relevant features. Our results reveal a novel
behavior: a configuration that consists of a spherical squirmer and a spheroidal droplet in highly heterogeneous media yields a backward
motion of the droplet.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0152711

The past few decades have seen tremendous progress in modern
medicine, especially in the ways drugs and treatments are adminis-
tered. Targeted drug delivery, a class of methods to deliver medication
to specific organs or tissues, shows a great potential for reducing
adverse drug reactions. One form of targeted drug delivery consists of
inserting the drug in a carrier, a micro- or nano-particle,1–7 that is
then absorbed by the patient orally or via an injection. Two features,
design and control, must be carefully considered for effective and effi-
cient drug delivery. Design must account for various factors, including
but not limited to biocompatibility, capacity, and shape.8,9

Experimental and numerical studies have shown that under flow con-
ditions and in the presence of red blood cells, non-spherical shapes
display better localization toward the blood vessel walls compared to
spherical particles. This enhanced localization is particularly important
for the carrier’s ability to adhere to and ultimately cross biological
barriers.10,11

On the other hand, the control of a targeted drug delivery system
relies on either detectability or predictability of the carrier’s motion,
the latter of which mimics biological microorganisms.12 The propul-
sion of microorganisms in unbounded fluids has attracted tremendous
amount of interest since the pioneering works of Taylor13 and
Lighthill.14 Studies have since extended these seminal works to investi-
gate the propulsion of microorganisms in non-Newtonian and hetero-
geneous media.15–23 However, applications including targeted drug
delivery,12,24 or the development of nanotechnologies to manipulate
cells,25 have led to increasing interest in the motion of microorganisms
in confined spaces.25–34

Theoretical studies of such systems assumed physical interfaces
with various properties.31,35,36 For instance, Reigh et al.31 considered a
squirmer inside a clean droplet (surfactant/contaminant-free and
Newtonian) and obtained analytical solutions for the squirmer and
droplet speeds in a concentric configuration (the squirmer and droplet
share the same center). With this configuration, they showed that the
squirmer always moves faster than the droplet. Later studies showed
that these results also extend to droplet covered with surfactants.35

These recent findings have provided important insight on locomotion
inside a droplet. However, the results are limited to spherical squirm-
ers enclosed in spherical droplets in homogeneous Newtonian fluids.

In reality, microorganisms often encounter heterogeneous envi-
ronments.29,37–40 The heterogeneous media can be modeled using the
Brinkman equation41 that accounts for the additional hydrodynamic
resistance due to the network of stationary obstacles. It has been
employed to probe the effects of viscous heterogeneous environments
on locomotion performance.17,42,43 In terms of shape, several microor-
ganisms can be approximated by spheroids. For example, many ciliates
have a mean length-to-width aspect ratio of approximately 2.44,45

Thus, the spheroidal squirmer46–49 provides a more biologically accu-
rate model compared to the classical spherical squirmer.14,50

Moreover, the spheroidal model serves as a first approximation to
other non-spherical swimmers (e.g., E. coli) to assess how shape affects
swimming performance.

The combined effect of fluid heterogeneity and shape is expected
to increase the complexity of the squirming motion and the droplet’s
propulsion; however, the problem has yet to be investigated. Here, we

Phys. Fluids 35, 051703 (2023); doi: 10.1063/5.0152711 35, 051703-1

Published under an exclusive license by AIP Publishing

Physics of Fluids LETTER pubs.aip.org/aip/pof

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0152711/17475562/051703_1_5.0152711.pdf



analyze the influence of these two factors on the propulsion speeds of
the squirmer and droplet using numerical simulations. We find non-
trivial propulsion speed profiles that depend not only on heterogeneity
and shape but also on the viscosity contrast between fluids. Most strik-
ingly, we observe a backward motion of the droplet that results from
vortex-like flow patterns moving the droplet in the direction of the
surrounding flow, opposite the motion of the squirmer.

We consider the propulsion of a squirmer in a Newtonian pocket
enclosed in a drop within a heterogeneous medium, as illustrated in
Fig. 1. Following Reigh et al.,31 we assume that the droplet does not
deform, for instance as the result of sufficiently large surface tension
on its surface. The fluid phases inside and outside the droplet have
viscosities l1 and l2, respectively. We extend the axisymmetric
Stokes–Brinkman model presented in our previous study34 to account
for the motion of the droplet. Denoting dimensional variables with a (~),
the region inside the droplet (phase 1 in Fig. 1) ismodeled as a purely vis-
cous homogeneous fluid governed by the incompressible Stokes equation
~r~p1 þ l1

~r " ð ~r " ~u1Þ ¼ 0; whereas the heterogeneous medium
that describes phase 2 is governed by the incompressible Brinkman equa-
tion41 ~r~p2 þ l2

~r " ð ~r " ~u2Þ þ l2x
2~u2 ¼ 0, where x&2 is the per-

meability of the medium. The governing equations are solved together
with boundary conditions in the far-field, ~u2 ¼ 0; on the squirmer sur-
face, ~u1 ¼ ~U S þ ~usq; and on the droplet surface, ~u1 ' n ¼ ~u2 ' n
¼ ~U D ' n; ~u1 ' t ¼ ~u2 ' t;l1

~T1 ' t ¼ l2
~T2 ' t: ~U S and ~U D are the

squirmer’s and droplet’s propulsion speeds, respectively, n and t are the
normal and tangential vectors on the droplet, the stresses ~Tj ¼ &~pjI

þ½ ~r~u j þ ð ~r~u jÞT ) (j¼ 1, 2), and ~usq ¼
P1

n¼1 BnVnef; denotes the tan-
gential velocity on the surface of the squirmer with swimming modes Bn
and Vn ¼ ðs20 & f2Þ&1=2P1

nðfÞ for a spheroidal squirmer.46–49 Here, P1
n

are the associated Legendre polynomials, and the shape parameter
s0 ¼ 1=es, where es is the squirmer’s eccentricity. The limit es ! 0
(or s0 !1) corresponds to a spherical squirmer, in which case Vn

¼ &2P1
nðfÞ=½nðnþ 1Þ) and f! cos h.14,50

We nondimensionalize the problem as follows: Velocities are
scaled by the first mode B1, and lengths are scaled by the semi major
axis of the squirmer as. The dimensionless droplet size is denoted by
v ¼ ad=as > 1, where ad is the semi major axis of the droplet. Finally,
stress and pressure are scaled by l2B1=as. In the case of a spherical

squirmer in a spherical droplet, as and ad denote the radii of the
squirmer and droplet, respectively. In dimensionless form, the Stokes
equation in the inner domain becomes

rp1 þ kr" r" u1ð Þ ¼ 0; (1)

where the viscosity ratio k ¼ l1=l2. The dimensionless Brinkman
equation in the outer domain is given by

rp2 þr" r" u2ð Þ þ d2u2 ¼ 0; (2)

where the fluid resistance d ¼ asx. The dimensionless boundary
conditions:

u2 ¼ 0; (3)

u1 ¼ US þ usq; (4)

u1 ' n ¼ u2 ' n ¼ UD ' n; (5)

u1 ' t ¼ u2 ' t; (6)

kT1 ' t ¼ T2 ' t; (7)

where

usq ¼
X1

n¼1
bnVnef (8)

and the dimensionless swimming modes bn ¼ Bn=B1. While b2nþ1
modes contribute to propulsion of a spheroidal squirmer,49 the speeds
of a translating spherical micro-organism in an unbounded
Newtonian fluid14,50 and heterogeneous medium23 depend solely on
the first swimming mode. Thus, we only retain b1 in the surface veloc-
ity equation (8). The governing equations are solved numerically using
the finite element method implemented in the COMSOL Multiphysics
environment. We validate our numerical implementation against the
results from Reigh et al.,31 and the analytical solutions using a spheri-
cal squirmer and a spherical droplet in a heterogeneous medium. The
squirmer and droplet speeds are calculated after applying the force-
free condition

Ð
STj ' n dS ¼ 0 and are given by

US ¼
1
3B

"
v& 1ð Þ2 3þ 6vþ 4v2 þ 2v3

# $

" 18þ 18vdþ 3v2d2 þ v3d3
# $

þ 6 &9& 9vdþ 15v2 þ 9v5
%

þ ð15v3 þ 9v6Þdþ ðv7 & v2Þd2)k
&
; (9)

and

UD ¼
30v2 1þ vdð Þk

B
; (10)

where B¼ ðv5& 1Þð18þ 18vdþ 3v2d2þ v3d3Þþ ð2þ 3v5Þð9þ 9vd
þv2d2Þk: The results in Reigh et al.31 are recovered by taking the limit
d! 0. The squirmer and droplet speeds become US ¼ 2½3þ 5v2ðk
&1Þ&3kþv5ð2þ3kÞ)=½6ðk&1Þþv5ð6þ9kÞ) and UD¼10v2k=
½6ðk&1Þþv5ð6þ9kÞ). These equations are identical to those in Reigh
et al.31 after letting k¼1=~k, where ~k is the viscosity ratio in their work.
Figures 2(a) and 2(b) show the propulsion speeds of the squirmer and
droplet, while Fig. 2(c) shows the ratio of the droplet to squirmer
speeds as a function of the domain size v with d¼10&3. The solid
curves denote the results using the purely viscous system in Reigh

FIG. 1. Schematic of the three squirmer/droplet shape configurations: a spheroidal
squirmer in a spherical droplet (left), a spheroidal squirmer in a spheroidal droplet
(center), and a spherical squirmer in a spheroidal droplet (right). The squirmer is in
a Newtonian fluid pocket with viscosity l1 that is enclosed in a droplet in a hetero-
geneous medium with viscosity l2. The squirmer and droplet propel with speeds
US and UD, respectively.
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et al.,31 the dashed curves are obtained from Eqs. (9) and (10), and the
symbols denote numerical simulations.

We now analyze the squirmer and droplet speeds for the three
configurations shown in Fig. 1: a spheroidal squirmer in a spherical
droplet (C1), a spheroidal squirmer in a spheroidal droplet (C2), and a
spherical squirmer in a spheroidal droplet (C3). Shapes are character-
ized by varying the eccentricities of the squirmer es and the droplet ed.
In our analyses, the squirmer speed is scaled by the speed UN of its
counterpart in an unbounded Newtonian fluid, where UN ¼ 2=3 for a
spherical squirmer or UN ¼ s0½s0 & ðs20 & 1Þcoth&1s0) for a spheroi-
dal squirmer. To analyze the droplet speed, we scale it by the squirmer
speed. The resulting ratio provides a measure of the relative magni-
tudes of the squirmer and droplet speeds. In all analyses, the droplet
size v varies based on the configuration, whereas we consider squirm-
er’s eccentricities es ¼ 0; 0:3; 0:9, droplet’s eccentricities ed ¼ 0; 0:3;
0:9, and the viscosity ratios k ¼ 0:1; 1; 10. Finally, while the terms
“initial” and “terminal” are often reserved for transient variables, we
employed them to denote the speeds in the limits d! 0 and d!1,
respectively.

Figure 3 illustrates the propulsion speed of the squirmer US nor-
malized by the propulsion speed of a spheroidal (configurations C1

and C2) or spherical (configuration C3) squirmer in an unbounded
Newtonian fluid, as a function of the fluid resistance d. Generally, the
dynamics can be split based on the viscosity ratio k. When k * 1, the
enclosed squirmer always propels slower compared to an unbounded
squirmer. Moreover, US is non-monotonic as a function of v: the speed
first decreases from v near 1, reaches a minimum, and then increases to
US ! UN as v!1. For k * 1 and fixed v [Figs. 3(a), 3(b), 3(d), 3(e),
3(g), and 3(h)], higher eccentricity yields larger initial speed while the
terminal speed depends on the configuration. For C1; C2 and fixed v
[Figs. 3(b) and 3(e)], higher eccentricity still yields larger terminal
speeds, whereas increasing the eccentricity of the drop ed in C3 [Fig.
3(h)] may lead to lower terminal speeds. Note that unlike smaller viscos-
ity ratios, for k¼ 1, the initial speed varies little fromUN when d < 1.

Propulsion speeds US > UN can be achieved for k > 1 and
1 * d < 10, as illustrated in Figs. 3(c), 3(f), and 3(i). Compared to the

cases k * 1, the v-dependent non-monotonic behavior now reaches a
maximum speed before converging to UN as v!1. Considering the
full range of fluid resistance d, the terminal speed still settles into a
steady value as d!1. However, this time, the initial and terminal
speeds depend on a non-trivial combination of the squirmer and/or
droplet eccentricities and v. For C1 and v ¼ 1:05 (v ¼ 1:5), the
squirmer’s initial speed increases (decreases) with increasing es, as
illustrated in Fig. 3(c). The absolute difference between speeds at both
values of the eccentricity decreases with increasing v. This dynamic is
also observed in C2 [Fig. 3(f)], where the combination of eccentricities
es ¼ 0:3 and ed ¼ 0:9 yields larger (smaller) initial speeds compared
to es ¼ 0:9 and ed ¼ 0:3 for v ¼ 1:5 (v¼ 2). The last configuration
C3 shows insignificant variations between the speeds for a fixed v and
increasing ed. The terminal speeds on the other end [Figs. 3(c), 3(f),
and 3(i)] follow the same behavior as described for k * 1.

While the above analysis described some of the differences
observed from each configuration, taken as a whole, Fig. 3 reveals a
number of common features. First, when d < 1, initial velocities of all
configurations remain relatively constant, suggesting that sparse net-
works of stationary objects in the outer phase have a minimal impact
on the squirmer’s propulsion speed. However, as d increases beyond 1,
speeds decrease monotonically, converging to a steady value as
d!1. Second, US is independent of the fluid resistance, and the
squirmer’s and droplet’s eccentricities as v!1. In this case, the
droplet enclosure no longer has any effects of the squirmer, which pro-
pels as if in an unbounded homogeneous domain (US¼UN). Third,
for d!1 and v > 1, the speed settles into a non-zero steady value,
indicating that the squirmer is always able to move inside its cage,
independently of the droplet’s motion. In the case v + 1, the terminal
speed US¼UB, the speed of an unbounded squirmer in a heteroge-
neous medium.23

For configurations C1 and C2, the droplet speed UD is always pos-
itive and approaches zero as the fluid resistance increases. In other
words, the droplet can no longer propel at very large values of the fluid
resistance. However, we observe a novel behavior for C3. While the
droplet ultimately comes to a standstill as d!1, there is a finite

FIG. 2. Propulsion speed for (a) the squirmer and (b) the droplet as a function of the domain size v. In both panels, the speed is scaled by UN ¼ 2=3, the propulsion speed of
a squirmer in an unbounded domain in a Newtonian fluid. (c) Ratio of the droplet to squirmer speeds as a function of the domain size v. The solid curves denote the results
using the purely viscous system [Eqs. (10) and (11) in Reigh et al.31], the dashed curves are obtained from Eqs. (9) and (10), and the symbols denote numerical simulations.
In all panels, the fluid resistance d ¼ 10&3.
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range of fluid resistance where UD < 0, indicating a backward motion
of the droplet.

Figure 4 shows the ratio UD=US for configurations C1 (a), C2 (b),
and C3 (c) with k¼ 1. Since the squirmer always propels forward
(US > 0, Fig. 3), the change in sign in Fig. 4(c) implies UD < 0. This
backward motion only appears for small values of v (in our simula-
tions, v ¼ 1:1 for ed ¼ 0:3 or v ¼ 1:5 for ed ¼ 0:9). Moreover, the
range and extent to which the droplet propels backward show a strong
dependence on the viscosity ratio. For k * 10, the range gets wider as
k! 0. This widening range is illustrated in Fig. 4(d), where the back-
ward motion dominates for d , 31:6228 at k ¼ 0:1 compared with
d , 177:8279 at k¼ 10. While jUD=USj gets smaller as k nears 10, the
backward motion actually becomes more pronounced for k- 10 (at
d ¼ 103; jUD=USj + 0:2 for k ¼ 103 compared with jUD=USj + 0:05
for k¼ 10). The droplet’s backward motion can be explained, at least
partially, by comparing the flow field and surface velocities for
UD=US > 0 vsUD=US < 0.

Figure 5(a) shows the flow field for UD=US > 0 (left half,
d + 17:8) and UD=US < 0 (right half, d + 31:6) for k ¼ 0:1; v ¼ 1:1,
and ed ¼ 0:3 In the droplet’s forward motion, the flow field resembles
that of an unbounded squirmer and the droplet is entrained along
with the squirmer. In this case, the surface velocities on the squirmer
and droplet point in the swimming direction, as illustrated in the
left half of Fig. 5(b). By contrast, the backward motion of the droplet
is characterized by vortex-like patterns that push (pull) at the front
(and back) of the droplet. The surface velocities on the right half of
Fig. 5(b) also confirm this opposite motion, with the squirmer pro-
pelling forward (red arrows) while the droplet is moving backward
(blue arrows).

In conclusion, we investigated the combined effects of heteroge-
neity and shape on squirming with a cage. In terms of designing a
drug delivery system, our results have important implications that we
now discuss. We posit that two objectives must be achieved: drug
dosage/content and speed of delivery.

FIG. 3. Propulsion speed of the squirmer (vertical axes) as a function of the fluid resistance [horizontal axe: (a)–(c)]: spheroidal squirmer in a spherical droplet (ed¼ 0); (d)–(f):
spheroidal squirmer in a spheroidal droplet; and (g)–(i): spherical squirmer (es¼ 0) in a spheroidal droplet. The viscosity ratio varies from k ¼ 0:1 [first column: (a), (d), (g)] to
k¼ 1 [second column: (b), (e), (h)] and k¼ 10 [third column: (c), (f), (i)]. The speed is scaled by UN ¼ s0½s0 & ðs20 & 1Þcoth&1s0) (a)–(f) or UN ¼ 2=3 (g)–(i), the propulsion
speed of a spheroidal/spherical squirmer in an unbounded Newtonian fluid. For each configuration, the curves are color-coded as indicated in the legend in panels [(c), (f), (i)].
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In any of the three geometries considered, the highest value of v
shows almost a complete resistance to any change in velocity as hydro-
dynamic resistance d increases. These results suggest that a distribu-
tion pathway that experiences significant variations in d, or
alternatively is densely populated throughout, is best suited for config-
urations with high v values. Additionally, the volume of drug con-
tained in each droplet is directly proportional to v, and subsequently
must also be considered to ensure an ideal drug dosage. In cases where
the distribution pathway is identified as being relatively sparse
(d < 1), it may be possible to adjust the viscosity of the inner phase to
increase the value of k. In this hypothetical situation, a decreased v
value could result in enhanced propulsion speeds of the delivery sys-
tem to the target site, thereby enabling timely treatment. Therefore,
fully understanding both the distribution pathway and the required
therapeutic dosage is critical for determining parameter values that
maximize the effectiveness of a squirmer/droplet targeted therapy.

For its part, the backward motion of the droplet provides a decel-
erating mechanism, whereas the carrier’s motion is reversed as

opposed to suppressed by large fluid resistance. Note that this behavior
is not a purely theoretical possibility, considering that the fluid resis-
tance d for a micro-sized squirmer23 is estimated to be between 0.6
and 25. The upper limit falls well within the range where the backward
droplet motion would begin occuring (17:8 < d < 31:6 for k ¼ 0:1).
In experiments, the distinct flow patterns can be observed using
Particle Image Velocimetry (PIV), which would help differentiate and/
or identify carriers dynamics. The experimental data, coupled with
theoretical analysis, would in turn aid to predict the interaction
between the squirmer-droplet system and highly heterogeneous bio-
logical barriers.6

Knowledge from our results is useful in guiding the choice of
design parameters for effective drug carriers. It provides several con-
siderations that may be tailored to specific objectives. However, we
note that other considerations exist that have not been discussed. For
example, the efficiency of the squirmer could be leveraged in deter-
mining the optimal combination of droplet size and squirming speed.
Higher modes of swimming gait, critical for propulsion in complex
fluids,20,51 could also be considered. Moreover, determining how opti-
mal propulsion strategies in unbounded domains52–55 may change
when the squirmers are encapsulated inside the droplets presents yet
another line of inquiry. Future work in these directions is under way.

J.D.-G. and H.N. gratefully acknowledge funding support from
the National Science Foundation Grant No. 2211633. H.N. also
acknowledges support from a Jess and Mildred Fisher Endowed
Professor of Mathematics from the Fisher College of Science and
Mathematics at Towson University.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions
James Della-Giustina: Formal analysis (equal); Validation (equal);
Visualization (equal); Writing – review & editing (equal). Herve
Nganguia: Conceptualization (lead); Formal analysis (equal); Funding
acquisition (lead); Methodology (equal); Project administration

FIG. 5. (a) Flow field for the spherical squirmer (es¼ 0) in spheroidal droplet
(ed ¼ 0:3) with k ¼ 0:1; v ¼ 1:1, and d + 17:8 (left half; the squirmer and drop-
let propel forward along the positive z direction) or d + 31:6 (right half; the
squirmer propels forward while the droplet moves backward). (b) Zooming into
panel (a) to magnify the flow field near the squirmer-droplet system. The corre-
sponding surface velocities or the squirmer (red arrows) and droplet (blue arrows)
are shown on the graphic at the center of the squirmer. The color bar shows the
magnitude of the velocity field.

FIG. 4. Ratios of (a) the spherical droplet (ed¼ 0) speed to the spheroidal squirmer speed, (b) the spheroidal droplet speed to the spheroidal squirmer speed, and (c) the sphe-
roidal droplet speed to the spherical squirmer (es¼ 0) speed as a function of the fluid resistance with k¼ 1. Panels in (a)–(c) are color-coded to correspond to the squirmer’s
speeds in Figs. 3(b), 3(e), and 3(h). In (d), the ratio is plotted for the spherical squirmer (es¼ 0) in a spheroidal droplet (ed ¼ 0:3). The panel shows changes in the range of
fluid resistance and magnitude of the ratio that correspond to the backward propelling droplet (UD=US < 0). Each curve represents different values of the viscosity ratio k.

Physics of Fluids LETTER pubs.aip.org/aip/pof

Phys. Fluids 35, 051703 (2023); doi: 10.1063/5.0152711 35, 051703-5

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0152711/17475562/051703_1_5.0152711.pdf



(equal); Supervision (lead); Validation (equal); Visualization (equal);
Writing – original draft (lead); Writing – review & editing (equal).
Ebru Demir: Data curation (lead); Formal analysis (equal);
Methodology (equal); Project administration (equal); Software (lead);
Validation (equal); Visualization (equal); Writing – review & editing
(equal).

DATA AVAILABILITY
The data that support the findings of this study are available

from the corresponding authors upon reasonable request.

REFERENCES
1D. Samanta, N. Hosseini-Nassab, and R. N. Zare, “Electroresponsive nanopar-
ticles for drug delivery on demand,” Nanoscale 8, 9310 (2016).

2J. Kolosnjaj-Tabi, L. Gibot, I. Fourquaux, M. Golzio, and M.-P. Rols, “Electric field-
responsive nanoparticles and electric fields: Physical, chemical, biological mecha-
nisms and therapeutic prospects,” Adv. Drug Delivery Rev. 138, 56–67 (2019).

3W. Wei, J. Sung, X.-Y. Guo, X. Chen, R. Wang, C. Qiu, H.-T. Zhang, W.-H.
Pang, J.-C. Wang, and Q. Zhang, “Microfluidic-based holonomic constraints of
siRNA in the kernel of lipid/polymer hybrid nanoassemblies for improving sta-
ble and safe in vivo delivery,” ACS Appl. Mater. Interfaces 12, 14839–14854
(2020).

4D. Chang, Y. Ma, X. Xu, J. Xie, and S. Ju, “Stimuli-responsive polymeric nano-
platforms for cancer therapy,” Front. Bioeng. Biotechnol. 9, 707319 (2021).

5J. A. Kemp and Y. J. Kwon, “Cancer nanotechnology: Current status and
perspectives,” Nano Convergence 8, 34 (2021).

6H. Zhang, Z. Li, C. Gao, X. Fan, Y. Pang, T. Li, Z. Wu, H. Xie, and Q. He,
“Dual-responsive bio hybrid neutrobots for active target delivery,” Sci. Rob. 6,
eaaz9519 (2021).

7A. Fabozzi, F. Della Sala, M. di Gennaro, M. Barretta, G. Longobardo, N.
Solimando, M. Pagliuca, and A. Borzacchiello, “Design of functional nanopar-
ticles by microfluidic platforms as advanced drug delivery systems for cancer
therapy,” Lab Chip 23, 1389 (2023).

8Y. Liu, J. Tan, A. Thomas, D. Ou-Yang, and V. R. Muzykantov, “The shape of
things to come: Importance of design in nanotechnology for drug delivery,”
Ther. Delivery 3, 181–194 (2012).

9S. Nejati, E. M. Vadeghani, S. Khorshidi, and A. Karkhaneh, “Role of particle
shape on efficient and organ-based drug delivery,” Eur. Polym. J. 122, 109353
(2020).

10M. Cooley, A. Strode, M. Hoore, D. A. Fedosov, S. Mitragotri, and A. S. Gupta,
“Influence of particle size and shape on their margination and wall-adhesion:
Implications in drug delivery vehicle design across nano-to-micro scale,”
Nanoscale 10, 15350–15364 (2018).

11M. J. Mitchell, M. M. Billingsley, R. M. Haley, M. E. Wechsler, N. A. Peppas,
and R. Langer, “Engineering precision nanoparticles for drug delivery,” Nat.
Rev. Drug Discovery 20, 101–124 (2021).

12Z. Wu, Y. Chen, D. Mukasa, O. S. Pak, and W. Gao, “Medical micro/nanoro-
bots in complex media,” Chem. Soc. Rev. 49, 8088–8112 (2020).

13G. I. Taylor, “Analysis of the swimming of microscopic organisms,” Proc. R.
Soc. London, Ser. A 209, 447–461 (1951).

14M. J. Lighthill, “On the squirming motion of nearly spherical deformable bodies
through liquids at very small Reynolds numbers,” Commun. Pure Appl. Math.
5, 109–118 (1952).

15T. S. Yu, E. Lauga, and A. E. Hosoi, “Experimental investigations of elastic tail
propulsion at low Reynolds number,” Phys. Fluids 18, 091701 (2006).

16E. Lauga, “Propulsion in a viscoelastic fluid,” Phys. Fluids 19, 083104
(2007).

17A. M. Leshansky, “Enhanced low-Reynolds number propulsion in heteroge-
neous viscous environments,” Phys. Rev. E 80, 051911 (2009).

18L. Zhu, M. Do-Quang, E. Lauga, and L. Brandt, “Locomotion by tangential
deformation in a polymeric fluid,” Phys. Rev. E 83, 011901 (2011).

19O. S. Pak, L. Zhu, L. Brandt, and E. Lauga, “Micropropulsion and microrheol-
ogy in complex fluids via symmetry breaking,” Phys. Fluids 24, 103102 (2012).

20C. Datt, L. Zhu, G. J. Elfring, and O. S. Pak, “Squirming through shear-
thinning fluids,” J. Fluid Mech. 784, R1 (2015).

21E. Lauga, “Bacterial hydrodynamics,” Annu. Rev. Fluid Mech. 48, 105–130
(2016).

22S. G!omez, F. A. God!ınez, E. Lauga, and R. Zenit, “Helical propulsion in shear-
thinning fluids,” J. Fluid Mech. 812, R3 (2017).

23H. Nganguia and O. S. Pak, “Squirming motion in a brinkman medium,”
J. Fluid Mech. 855, 554–573 (2018).

24J. H. Lee and Y. Yeo, “Controlled drug release from pharmaceutical nano-
carriers,” Chem. Eng. Sci. 125, 75–84 (2015).

25M. R. Raveshi, M. S. A. Halim, S. N. Agnihotri, M. K. O’Bryan, A. Neild, and
R. Nosrati, “Curvature in the reproductive tract alters sperm-surface inter-
actions,” Nat. Commun. 12, 3446 (2021).

26J. Clausal-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J.
Blouwolff, K. J. Humphry, S. K€oster, H. Duan, C. Holtze, D. A. Weitz, A. D.
Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the
encapsulation and screening of mammalian cells and multicellular organisms,”
Chem. Biol. 15, 427–437 (2008).

27H. Wen, Y. Yu, G. Zhu, L. Jang, and J. Qin, “A droplet microchip with sub-
stance exchange capability for the developmental study of C. elegans,” Lab
Chip 15, 1905–1911 (2015).

28Y. Ding, F. Qiu, X. C. Solvas, F. W. Y. Chiu, B. J. Nelson, and A. DeMello,
“Microfluidic-based droplet and cell manipulations using artificial bacterial
flagella,” Micromachines 7, 25 (2016).

29S. A. Mirbagheri and H. C. Fu, “Helicobacter pylori couples motility and diffu-
sion to actively create a heterogeneous complex medium in gastric mucus,”
Phys. Rev. Lett. 116, 198101 (2016).

30S. Y. Reigh and E. Lauga, “Two-fluid model for locomotion under self-con-
finement,” Phys. Rev. Fluids 2, 093101 (2017).

31S. Y. Reigh, L. Zhu, F. Gallaire, and E. Lauga, “Swimming with a cage: Low-
Reynolds-number locomotion inside a droplet,” Soft Matter 13, 3161 (2017).

32A. Daddi-Moussa-Ider, H. Lowen, and S. Gekle, “Creeping motion of a solid
particle inside a spherical elastic cavity,” Eur. Phys. J. E 41, 104 (2018).

33C. Hoell, H. Lowen, A. M. Menzel, and A. Daddi-Moussa-Ider, “Creeping
motion of a solid particle inside a spherical elastic cavity: II. Asymmetric
motion,” Eur. Phys. J. E 42, 89 (2019).

34H. Nganguia, L. Zhu, D. Palaniappan, and O. S. Pak, “Squirming in a viscous
fluid enclosed by a Brinkman medium,” Phys. Rev. E 101, 063105 (2020).

35V. A. Shaik, V. Vasani, and A. M. Ardekani, “Locomotion inside a
surfactant-laden drop at low surface P!eclet numbers,” J. Fluid Mech. 851,
187–230 (2018).

36K. J. Marshall and J. F. Brady, “The hydrodynamics of an active squirming par-
ticle inside of a porous container,” J. Fluid Mech. 919, A31 (2021).

37J. Rutllant, M. Lopez-Bejar, and F. Lopez-Gatius, “Ultrastructural and rheologi-
cal properties of bovine vaginal fluid and its relation to sperm motility fertiliza-
tion: A Review,” Reprod. Domest. Anim. 40, 79–86 (2005).

38J. Radolf and S. Lukehart, Pathogenic Treponema: Molecular and Cellular
Biology (Caister Academic Press, Norfolk, England, 2006).

39J. P. Celli, B. S. Turner, N. H. Afdhal, S. Keates, I. Ghiran, C. P. Kelly, R. H.
Ewoldt, G. H. McKinley, P. So, S. Erramilli, and R. Bansil, “Helicobacter pylori
moves through mucus by reducing mucin viscoelasticity,” Proc. Natl. Acad.
Sci. U. S. A. 106, 14321–14326 (2009).

40C. W. Wolgemuth, “Flagellar motility of the pathogenic spirochetes,” Semin.
Cell Dev. Biol. 46, 104–112 (2015).

41H. C. Brinkman, “Calculation of the viscous force exerted by a flowing fluid on
a dense swarm of particles,” Appl. Sci. Res. 1, 27–34 (1949).

42S. Jung, “Caenorhabditis elegans swimming in a saturated particulate system,”
Phys. Fluids 22, 031903 (2010).

43K. Leiderman and S. D. Olson, “Swimming in a two-dimensional Brinkman
fluid: Computational modeling and regularized solutions,” Phys. Fluids 28,
021902 (2016).

44M. Lisicki, M. F. V. Rodrigues, R. E. Goldstein, and E. Lauga, “Swimming
eukaryotic microorganisms exhibit a universal speed distribution,” eLife 8,
e44907 (2019).

45M. F. V. Rodrigues, M. Lisicki, and E. Lauga, “The bank of swimming organ-
isms at the micron scale (BOSO-Micro),” PLoS One 16, e0252291 (2021).

Physics of Fluids LETTER pubs.aip.org/aip/pof

Phys. Fluids 35, 051703 (2023); doi: 10.1063/5.0152711 35, 051703-6

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0152711/17475562/051703_1_5.0152711.pdf



46S. R. Keller and T. Y. Wu, “A porous prolate-spheroidal model for ciliated
micro-organisms,” J. Fluid Mech. 80, 259–278 (1977).

47K. Ishimoto and E. A. Gaffney, “Swimming efficiency of
spherical squirmers: Beyond the Lighthill theory,” Phys. Rev. E 90,
012704 (2014).

48M. Theers, E. Westphal, G. Gompper, and R. G. Winkler, “Modeling a spheroi-
dal microswimmer and cooperative swimming in a narrow slit,” Soft Matter
12, 7372 (2016).

49R. Pohnl, M. N. Popescu, and W. E. Uspal, “Axisymmetric spheroidal squirm-
ers and self-diffusiophoretic particles,” J. Phys.: Condens. Matter 32, 164001
(2020).

50J. R. Blake, “A spherical envelope approach to ciliary propulsion,” J. Fluid
Mech. 46, 199–208 (1971).

51K. Pietrzyk, H. Nganguia, C. Datt, L. Zhu, G. J. Elfring, and O. S. Pak, “Flow
around a squirmer in a shear-thinning fluid,” J. Non-Newtonian Fluid Mech.
268, 101–110 (2019).

52A. Vilfan, “Optimal shapes of surface slip driven self-propelled micro-
swimmers,” Phys. Rev. Lett. 109, 128105 (2012).

53H. Guo, H. Zhu, R. Liu, M. Bonnet, and S. Veerapaneni, “Optimal slip veloci-
ties of micro-swimmers with arbitrary axisymmetric shapes,” J. Fluid Mech.
910, A26 (2021).

54A. Daddi-Moussa-Ider, B. Nasouri, A. Vilfan, and R. Golestanian, “Optimal
swimmers can be pullers, pushers or neutral depending on the shape,” J. Fluid
Mech. 922, R5 (2021).

55B. Nasouri, A. Vilfan, and R. Golestanian, “Minimum dissipation theorem for
microswimmers,” Phys. Rev. Lett. 126, 034503 (2021).

Physics of Fluids LETTER pubs.aip.org/aip/pof

Phys. Fluids 35, 051703 (2023); doi: 10.1063/5.0152711 35, 051703-7

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0152711/17475562/051703_1_5.0152711.pdf


