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Abstract
A comprehensive calculation of proton NMR relaxation in water, acetonitrile, and methane

across a wide range of the phase diagram, is provided via ab initio and force field-based molecular
dynamics simulations. The formalism used for the spin-rotation (SR) contribution to relaxation is
developed for use with any molecular symmetry and utilizes the full molecular SR tensors, which
are calculated from first principles via Kohn-Sham (KS) DFT. In combination with calculations
of the dipolar contribution, near quantitative agreement with total measured relaxation rates is
achieved.

1 Introduction

For protons in small-molecule liquids and gasses, the most prominent NMR relaxation mechanisms
are fluctuating dipolar interactions, and spin-rotation (SR) interactions. The former are both intra-
and intermolecular in nature; driven by dipole-dipole interactions between nuclear spins in the same
molecule versus neighboring ones, and modulated by molecular translation, rotation, and vibration.
The SR mechanism is essentially purely intramolecular and results from the interactions of nuclear
spins with the fluctuating local magnetic fields generated by molecular rotation. The present work
continues our efforts1–5 to calculate NMR relaxation properties accurately by applying first principles
methods viaKohn-Shamdensity functional theory (KSDFT) to the simulation of dynamics, andwhere
applicable, to the calculation of interaction tensors such as electric field gradients and SR tensors.
This first principles approach allows for detailed insight into the microscopic dynamics that drive key
mechanisms of nuclear spin relaxation and provides a technique that is—in principle—generalizable
to systems containing elements from across the periodic table without the need for empirical param-
eters or force fields. For example, we previously applied our work on quadrupolar relaxation to an
exotic chemical system containing a sodide anion, and were able to rationalize its seemingly ‘genuine’
gas phase ion behavior in NMR experiments from a first principles perspective.6, 7
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The simple molecular systems chosen for this study have a long history in the NMR relaxation lit-
erature. Methane is the canonical example of the spherical top molecule, while acetonitrile and water
are commonly chosen representatives for symmetric and asymmetric tops, respectively. NMR relax-
ation has a vast range of applications. Among them,magnetic resonance imaging is well known. More
exotic applications include 1H NMR relaxation measurements of methane in the characterization of
crude oil.8–10

In a series of recent papers,11–14 Singer et al. used classical dynamics to study the dipolar and SR
contributions to 1H relaxation in various hydrocarbons. In 2018, the group studiedmethane at various
temperatures and pressures.12 A major result of their work was the development of an empirical
description of relaxation as a function of self-diffusion coefficients in the supercritical region. We refer
to the Singer et al. results throughout this work, to benchmark our calculations for methane as well as
validate our implementation of the theory (see the following section). 1H relaxation in acetonitrile and
its relevant dynamic properties have been studied extensively experimentally,15–17 and theoretically
by Gerig et al.,18 among others.19, 20 Acetonitrile is expected to have roughly equal contributions from
the dipolar and SR mechanisms at ambient conditions.15 In contrast, water has no appreciable SR
contribution in the liquid phase but the mechanism has recently been shown to be dominant in vapor
phase measurements by Mammoli et al., Ref. 21. In light of the results from Ref. 21, we developed a
set of force field-based gas phase water simulations, matching pressure and temperature conditions, to
reproduce from theory the experimentally measured longitudinal relaxation rates with high accuracy.

The current work is laid out as follows. In Section 2, an overview of the theoretical formalism
describing SR relaxation is provided, which summarizes the hierarchy of approximations that lead
to the theory implemented in this work. Also provided is a summary of the computational details
for MD simulations and calculation of molecular SR tensors. Details about our implementation for
dipolar relaxation were given previously in Ref. 4 and are therefore not discussed herein. In Section
4, the primary results of the SR and dipolar relaxation rate calculations are reported and discussed in
terms of their accuracywith respect to experimental and other theoretical results, as well as in terms of
the dynamical features in theMD that lead to the obtained results. Section 5 provides a brief summary
and conclusions.

2 Theory

The theory ofNMRrelaxationwas pioneered byBloembergen, Purcell, andPound,22 Redfield,23 Bloch,24

and others.25, 26 The SR mechanism is described in detail in References 27–32. References 33–36 give
special attention to the SR mechanism in the gas phase. The theoretical framework which allows for
the determination of quadrupolar and dipolar NMR relaxation rates from molecular dynamics simu-
lations is layed out in various pioneering articles37–42 and in our previous work.2–4 A cursory overview
of the SR mechanism was also provided in Ref. 4 along with an estimate of its role in 1H relaxation in
liquid acetonitrile. The approximations employed in that work were crude, in part, because they did
not require explicit calculation of molecular angular momentum correlation functions. Additionally,
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the formulae used were derived exclusively for a spherical topmolecule. Amore complete description
of SR relaxation is provided here and implemented in all subsequent calculations of total 1H relaxation
rates from MD simulations. The notation used herein follows Spiess.26

SR relaxation is driven by the interaction of a nuclear spinwith themagnetic field generated by the
rotation of electric charges in its host molecule. In the principal axis frame of the moment of inertia
of a given molecule, the spin interaction Hamiltonian for the SR mechanism is written as

ℋSR =
1∑

𝑚=−1
(−1)𝑚𝐼𝑚𝐴−𝑚 (1)

where 𝐼𝑚 are components of the nuclear spin operator. The 𝐴𝑚 are composed of the characteristic
spin-rotation tensor (with Cartesian elements, 𝑐𝑖𝑗) and molecular angular momentum components 𝐽𝑗
according to the following definitions

𝐴𝑖 =
∑

𝑗=𝑥,𝑦,𝑧
𝑐𝑖𝑗𝐽𝑗, 𝑖 = 𝑥, 𝑦, 𝑧 (2a)

𝐴±1 = ∓ 1
√
2
(𝐴𝑥 ± 𝑖𝐴𝑦), 𝐴0 = 𝐴𝑧 (2b)

The components of the molecular angular momentum are defined in the usual way as

𝐽𝑖 =
∑

𝑗
𝐼𝑖𝑗𝜔𝑗 (3)

where 𝜔 is the vector describing the molecular angular velocity and 𝐼𝑖𝑗 is an element of the molecular
moment of inertia tensor 𝖨. 𝐴𝑚 also contain the time-dependence of the interaction as a result of
fluctuations of molecular angular momentum. A master equation for the relaxation phenomenon
takes the form of a differential equation of motion of the density operator, 𝜌, describing the quantum
state of an ensemble of spins. In the rotating frame, indicated by 𝜌∗, this master equation is written as

𝑑𝜌∗

𝑑𝑡
= −

1∑

𝑚1=−1

1∑

𝑚2=−1
(−1)𝑚1+𝑚2

1∑

𝑚′=−1
[𝐼𝑚′ , [𝐼−𝑚′ , 𝜌∗]]

⋅∫
∞

0
⟨𝒟(1)

−𝑚′,𝑚1
[−Ω(𝑡)]𝒟(1)

𝑚′,𝑚2
[−Ω(𝑡 + 𝜏)]𝐴𝑚1

(𝑡)𝐴𝑚2
(𝑡 + 𝜏)⟩ 𝑒𝑖𝑚′𝜔𝜏𝑑𝜏

(4)

The square brackets in the first line of Equation (4) indicate a nested commutator. 𝒟(1)
𝑚′,𝑚[−Ω(𝑡)] are

elements of the the rank 1 Wigner rotation matrices applied to the orientational (Euler) angles of a
molecule-fixed axis system.

Equation (4) contains half-Fourier transforms of coupled time autocorrelation functions of𝒟(1)
𝑚′,𝑚

and 𝐴𝑚, where 𝜏 is a delay time and ⟨..⟩ indicates an average over the ensemble and time origins,
𝑡. With regard to this correlation function, a common approximation is made for systems in which
molecular orientation and angular momentum are uncorrelated with one another. In this case, the
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correlation functions can be decoupled as

⟨𝒟(1)
−𝑚′,𝑚1

[−Ω(𝑡)]𝒟(1)
𝑚′,𝑚2

[−Ω(𝑡 + 𝜏)]𝐴𝑚1
(𝑡)𝐴𝑚2

(𝑡 + 𝜏)⟩

≃ ⟨𝒟(1)
−𝑚′,𝑚1

[−Ω(𝑡)]𝒟(1)
𝑚′,𝑚2

[−Ω(𝑡 + 𝜏)]⟩ ⟨𝐴𝑚1
(𝑡)𝐴𝑚2

(𝑡 + 𝜏)⟩
(5)

This simplification is known to be valid for isotropic liquids, however it is not expected to be generally
valid in the case of low-density gasses,29 as we confirm later in Section 4 by direct analysis of liquid and
gas phase water simulations. Furthermore, for liquids the molecular orientation has a much longer
correlation time than the angular momentum. Therefore, for a time 𝜏 on the order of the latter, the
orientation at 𝑡 + 𝜏 is essentially the same as at 𝑡. By applying properties of Wigner 𝒟 matrices, this
leads to the following simplification inwhich the dependence on the orientational correlation function
is eliminated

⟨𝒟(1)
𝑚′,𝑚1

[−Ω(𝑡)]𝒟(1)
−𝑚′,𝑚2

[−Ω(𝑡 + 𝜏)]⟩ ≃ 𝒟(1)
𝑚′,𝑚1

[−Ω(𝑡)]𝒟(1)
−𝑚′,𝑚2

[−Ω(𝑡)]⟩ = (−1)𝑚′+𝑚1
1
3𝛿−𝑚1,𝑚2

(6)

This approximation is considered valid for liquids and dense gasses. In low-density gasses, themolecu-
lar orientation is expected to decorrelate much faster due to long periods of free rotation during which
the orientation is constantly changing in the laboratory frame. At the same time, the angular momen-
tum is expected to decorrelate much more slowly as molecular collisions are comparatively rare. Ex-
plicit evaluation of the coupled correlation functions without the approximations of Equations (5) and
(6) can be found in the literature in Refs. 43 and 29. The resulting expansion contains two termswhich
include contributions from the molecular orientation. One such term is proportional to the square of
the ‘diagonal’ (anisotropic) SR coupling, ∆𝑐 = 𝑐𝑧𝑧 − 𝑐𝑥𝑥, and the other is a cross term proportional to
the product of the average SR coupling, 𝑐𝑎, with∆𝑐. In the unique case of water, the SR tensor is nearly
isotropic, with our calculations giving principal components 𝑐𝑥𝑥, 𝑐𝑦𝑦, 𝑐𝑧𝑧 = 36.9, 33.5, 35.5 kHz. This
results in a small coupling anisotropy, allowing the terms of the expanded correlation function con-
taining contributions from orientational correlation to be neglected in a first approximation.

The approximations embodied by Equations (5) and (6) lead to the rate equations used by Singer
et al.12 for calculations of SR relaxation rates for methane. There, two unique rate equations were
employed. An equation from Hubbard43 makes the approximation of Equation (5) referred to as the
“diffusionmodel”, and an equation derived for spherical tops by Bloomet al.29 without the assumption
of Equation (5), dubbed the “kineticmodel”. Ultimately, Singer et al. showed that even across thewide
span of methane phases and densities explored, the relaxation rates are quite accurately predicted
by both models; implying that Equation (5) largely holds for even the lowest density system studied
previously. The final SR rate equation used in this work is identical to the diffusion model equation
of Singer et al. when applied to a spherical top molecule. The derivation continues as follows.

As with other mechanisms of NMR relaxation, the longitudinal rate is proportional to the spectral
density (SD) of the corresponding interaction at the Larmor frequency. The SDs are formally half-
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Fourier transforms of the auto-correlation functions

𝑎𝑚 = (−1)𝑚∫
∞

0
⟨𝐴𝑚(𝑡)𝐴−𝑚(𝑡 + 𝜏)⟩𝑒𝑖𝑚𝜔𝜏𝑑𝜏 (7)

However, in the fastmotion (extreme narrowing) limit they are independent of frequency and simplify
to definite time integrals.

𝑎𝑚 = (−1)𝑚∫
∞

0
⟨𝐴𝑚(𝑡)𝐴−𝑚(𝑡 + 𝜏)⟩ 𝑑𝜏 (8)

The fast motion limit holds for small molecules in non-viscous liquids and high density gasses. As
suggested by Mammoli et al.21 and shown later in our analysis of water vapor, slow decorrelation of
angular momentum in dilute gasses is outside of this fast motion regime.

If rotations about different molecular axes are not correlated with one another, the SDs can be
reformulated in terms of the Cartesian axes defined by the molecular moment of inertia which is also
the frame in which the spin rotation tensor 𝑐𝑖𝑗 is commonly considered. Combining Equations (2) and
(8) gives

𝑎0 = 𝑎𝑧 =
∑

𝑗
𝑐2𝑧𝑗∫

∞

0
⟨𝐽𝑧(𝑡)𝐽𝑧(𝑡 + 𝜏)⟩ 𝑑𝜏 (9a)

𝑎±1 =
1
2(𝑎𝑥 + 𝑎𝑦) =

1
2
∑

𝑗
𝑐2𝑥𝑗∫

∞

0
⟨𝐽𝑥(𝑡)𝐽𝑥(𝑡 + 𝜏)⟩𝑑𝜏 + 𝑐2𝑦𝑗∫

∞

0
⟨𝐽𝑦(𝑡)𝐽𝑦(𝑡 + 𝜏)⟩ 𝑑𝜏 (9b)

This assumption is strongest when the principal moments of inertia are significantly different in mag-
nitude. Also inherent here is the assumption that the spin rotation tensor is essentially constant on the
order of the angular momentum correlation time, allowing it to be factored out of the time integral.
If this approximation is avoided, the SR tensor remains part of the time-dependent spin operators,
𝐴𝑚(𝑡), and must be explicitly included in the correlation functions as in Equations (7) and (8). In the
context of computing rates fromMD trajectories, one could consider performing ab initio calculations
of the SR tensor for molecules in all sampled MD snapshots to account for its time dependence. This
was ultimately decided to be outside the scope of the current work, and the molecule-fixed SR tensor
is assumed to be virtually constant for a given molecule type throughout an MD simulation.

The relaxation rates in the fast motion limit can then be formulated as

1
𝑇1

= 1
𝑇2

= 2
3

∑

𝑖,𝑗=𝑥,𝑦,𝑧

∑
𝑐2𝑖𝑗∫

∞

0
⟨𝐽𝑗(𝑡)𝐽𝑗(𝑡 + 𝜏)⟩𝑑𝜏 (10)

with 𝑐𝑖𝑗 and 𝐽𝑖 once again being Cartesian components of the spin-rotation tensor and molecular an-
gularmomentum respectively in the principal axis system of the 𝖨 tensor. For gasses with lags between
molecular collisions such that 𝜏𝑐𝜔0 is notmuch smaller than 1, the SD is frequency-dependent in the
region of the Larmor frequency. Therefore, to compute the relaxation rate, the SDs must be computed
explicitly via (half-) Fourier transform of the ACFs, and evaluated at the Larmor frequency (or in this
case the difference of the nuclear Larmor frequency, 𝜔0, and the rotational Larmor frequency, 𝜔𝐽).
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Figure 1: Molecule-fixed axis definitions used for tracking angular momentum of methane, acetoni-
trile, and water.

Combined with the notation introduced in Equations (9a) and (9b), Equation (10) is then written as

1
𝑇1

= 2
3

∑

𝑖,𝑗=𝑥,𝑦,𝑧

∑
𝑐2𝑖𝑗𝑎𝑗(𝜔0 − 𝜔𝐽) (11)

with some form of the SD functions, 𝑎𝑗(𝜔). This is the theoretical formulation employed in the current
work for computing SR relaxation rates of low density water vapor. If the total angular momentum
correlation function is assumed to be mono-exponential, which is not assumed in this work, the SD
can be evaluated analytically as a Lorentzian. This, along with an average magnitude of angular mo-
mentumdetermined by Boltzmann statistics, leads to the following rate equation utilized byMammoli
et al.21

1
𝑇1

=
8𝜋2𝐼0𝑘𝑇

ℏ2
𝐶2ef f

𝜏1
1 + (𝜔0 − 𝜔𝐽)2𝜏21

(12)

where a singular correlation time representing the total angular momentum and a corresponding ef-
fective SR constant are employed. Note here, 𝐶ef f is in cycles/s, while elsewhere, components of the
SR tensor are in radians/s. See Supporting information (SI) for an example definition of 𝐶ef f .

In this work, the Cartesian components of the molecular angular velocities are obtained from an
atomistic MD trajectory following Singer et al.,12 via solution of the matrix equation

∑

𝑄

⎛
⎜
⎜
⎝

𝑦2𝑄 + 𝑧2𝑄 𝑥𝑄𝑦𝑄 𝑥𝑄𝑧𝑄
𝑦𝑄𝑥𝑄 𝑥2𝑄 + 𝑧2𝑄 𝑦𝑄𝑧𝑄
𝑧𝑄𝑥𝑄 𝑧𝑄𝑦𝑄 𝑥2𝑄 + 𝑦2𝑄

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝜔𝑥
𝜔𝑦
𝜔𝑧

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

∑
𝑄(𝒓𝑄 × 𝒗𝑄)𝑥∑
𝑄(𝒓𝑄 × 𝒗𝑄)𝑦∑
𝑄(𝒓𝑄 × 𝒗𝑄)𝑧

⎞
⎟
⎟
⎠

(13)

where the sums are over all atoms, 𝑄, in a given molecule, and 𝑥𝑄, 𝑦𝑄, 𝑧𝑄 are positions relative to the
molecular center of mass (CoM). This equation is solved for each molecule at each sampled frame
of the dynamics to obtain the angular velocity components, 𝜔𝑘. Furthermore, 𝒓𝑄 and 𝒗𝑄 are atomic
position and linear velocity vectors, respectively, relative to the molecular CoM.

For the purpose of consistently tracking the correlation of rotation about chosen molecular axes,
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the formalism may be equivalently represented in a molecule-fixed coordinate system for which the
ordering of the principal axes is tied to unique atoms and remains constant for eachmolecule through-
out the trajectory. The coordinate systems chosen are defined as shown in Figure 1. Since the SR
tensor and angular momentummust share the same principal axis system, the SR tensor, 𝖢, must also
be rotated from the moment of inertia frame in which it is calculated to the selected molecule-fixed
frame. We took the described approach in our implementation and it is summarized as follows.

First, the SR tensor for a given molecule, in the moment of inertia frame, 𝖢I, as computed with
Dalton44 (see Section 3) must be redefined in the lab frame via a transformation matrix , 𝖳, made up
of column eigenvectors of the moment of inertia tensor, 𝖨.

𝖢lab = 𝖳 𝖢I 𝖳−1 (14)

The molecular moment of inertia tensor is defined as

𝖨 =
⎛
⎜
⎜
⎝

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

⎞
⎟
⎟
⎠

=
∑

𝑄

⎛
⎜
⎜
⎝

𝑚𝑄(𝑦2𝑄 + 𝑧2𝑄) 𝑚𝑄(𝑥𝑄𝑦𝑄) 𝑚𝑄(𝑥𝑄𝑧𝑄)
𝑚𝑄(𝑦𝑄𝑥𝑄) 𝑚𝑄(𝑥2𝑄 + 𝑧2𝑄) 𝑚𝑄(𝑦𝑄𝑧𝑄)
𝑚𝑄(𝑧𝑄𝑥𝑄) 𝑚𝑄(𝑧𝑄𝑦𝑄) 𝑚𝑄(𝑥2𝑄 + 𝑦2𝑄)

⎞
⎟
⎟
⎠

(15)

where 𝑚𝑄 are atomic masses. Then, a rotation operator, 𝖱, is defined which transforms the chosen
molecule-fixed frame,𝖬, into the moment of inertia frame,

𝖬𝖱 = 𝖳 (16)

And finally, the inverse rotation matrix is applied to the Cartesian SR tensor to obtain the SR tensor
in the molecule-fixed frame:

𝖢mol = 𝖱 𝖢lab𝖱−1 (17)

In the ab initio calculations, an individual SR tensor is obtained for each proton in the molecule.
The relaxation rate calculations are carried out with either Equation (10) or (11) using the transformed
SR tensor at each proton and averaged to obtain the total relaxation rate.

3 Methods

Car Parinello aiMD (CPMD) simulations of water and acetonitrile used in this work are the same
as those developed and sampled in our previous work.4 They were performed using the Quantum
Espresso45 (QE) package (Version 6.0). Water simulations contained 64 molecules in a cubic cell, and
acetonitrile simulations contained 32 molecules. Ten independent trajectories for each system were
run starting with 5 ps of equilibration in NVT at 300K followed by 1 ps further equilibration in NVE.
Simulations were continued in NVE, to give production run times of 20 ps for water simulations and
16 ps for acetonitrile. For full computational details on QE simulations, see Ref. 4. Additional aiMD
simulations of the Born-Oppenheimer (BO) type using the CP2K46 package (Version 8.2) have since
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been developed for water and acetonitrile; taking advantage of better performance and longer simu-
lation time steps in order to explore longer simulation times and various exchange-correlation (XC)
functionals. CP2K simulations use a mixed atom-centered (DZVP) and plane-wave basis. All aiMD
simulations contain 64 molecules (doubling that of the QE acetonitrile simulation, resulting in a cor-
responding cell dimension of 17.71Å). The time step was 1 fs in the acetonitrile simulations and 0.5 fs
in the water simulations. Dispersion corrections were included using Grimme’s D3 correction.47 Pro-
tocol for setup and equilibration of the MD trajectories followed those established in previous work,
including random packing, partial optimization, and pre-equilibration with force-field (FF) MD in
Tinker.48 The BOMD was initialized with 50 steps of Langevin dynamics at 300K (temperature tol-
erance of ± 10K). This was followed by 5 ps of simulation in the NVT ensemble at 300K using the
canonical sampling through velocity rescaling (CSVR) thermostat49 with a time constant of 10 fs. Fi-
nally, the production phase was simulated in the NVE ensemble in which the first 1 ps was taken to be
further equilibration time. Total production times for BOMD water simulations across independent
trajectories and investigated XC functionals are in the range of 15-20 ps. Production times for acetoni-
trile are 20 ps. Simulations of methane in variable phases and pressures as well as gas-phase water
simulations were run entirely with FFMD in Tinker. Simulations contained 200 molecules each and
cell dimensions were chosen such that pressures equaled the target experimental pressure assuming
ideal behavior. Average pressures calculated on the fly in Tinker were consistent with these target
pressures within a few kPa (see SI). Sampled production times were in the NVE ensemble and totaled
between 20-50 ps across the methane simulations. Water vapor simulations had production runs of
20 ns. Single-point KS DFT calculations were performed with Dalton44 to determine SR tensors for
gas phase optimized structures for methane, acetonitrile, and water. The 3 parameter hybrid XC func-
tional of Becke, Lee, Yang, and Parr (B3LYP)50 and the IGLO III basis set51 were employed for these
calculations.
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4 Results and Discussion

Figure 2 summarizes the relaxation results for the sampled methane systems (classical MD), broken
down by dipolar and SR mechanisms, and compared to the total measured rates. The overall agree-
ment with experiments is good, with the largest overestimations for the coldest liquid phase system
and lowest-pressure gas system. The greatest underestimation is for the lower pressure supercritical
(SC) system. To our knowledge, an experimental breakdown of the contributing mechanisms, at least
for these specific temperatures and pressures, is not available in the literature, therefore a quantitative
comparison of the mechanistic breakdown is not possible at present. However, the theory clearly al-
lows for qualitative and quantitative analysis. In the low-temperature liquid, the dipolar contribution
dominates, in particular the intermolecular portion, because of retarded rotational motion and longer,
more frequent contacts between protons on neighboring molecules. In the middle range of tempera-
ture and pressure (i.e. liquid at 143K and high pressure SC phase), dipolar and SR contributions are
roughly equal. In the two lowest pressure systems, the SRmechanism dominates because of relatively
large average distances between molecules and fast molecular rotation modulated by comparatively
infrequent molecular collisions.

Figure 3a shows the computed angular momentum correlation functions which determine the SR
contribution to the methane relaxation. The relatively small error bars here and in all following plots
of correlation functions are determined by the standard error in themean across ten independent sim-
ulations. Therefore, it should be noted that this procedure only serves to estimate the statitistical error
in the sampling of the dynamics and not systematic errors inherent in the computational methods or
approximations in the theory. Figure 3b shows the corresponding SDs given by half-Fourier transform
of the ACFs, and plotted on a log scale on the frequency axis. In all but the gas-phase simulation, the
available sampling allows for a clear resolution of the full dispersion region of the SD, and at least some
extension into the low, frequency-independent region. In any case, since typical proton Larmor fre-
quenies are on the order of 102MHz or 10−4 ps−1, relaxation in all of these simulatedmethane systems
is well described within the extreme narrowing limit. Therefore the SR rates are proportional to the
correlation times as determined from these correlation functions. The correlation times represent the
average time between molecular collisions that transfer angular momentum between colliding part-
ners. The correlation functions for methane can reasonably be approximated as mono-exponential, as
confirmed by the linear fits in the semi-log plot of Figure 4. Angular momentum correlation functions
and SDs are plotted for aiMD liquid acetonitrile and water in Figures 5 and 6 respectively. Here, non-
shperical molecular symmetries require separation of the angular momentum components according
to the molecule-fixed coordinates defined in Figure 1. Both systems have more complex oscillatory
features in their correlation functions which are also reflected as peaks in the high-frequency region
of the SDs. In acetonitrile, the angular momentum ACF associated with rotation of the C–C–N (𝑧)
axis exhibits a sub-picosecond oscillation, indicating some hindered transfer of angular momentum
at this time scale. The relative noisiness of the orthogonal axes and resultant sharp peaks in the SD
are caused by C-H vibrations and the method used to define the dynamic molecular axis system from
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Figure 3: Average isotropic angularmomentumcorrelation functions (left) and corresponding spectral
densities (right) for methane for sets of classical simulations corresponding to Figure 2.

the bond vectors. The ACF components for liquid water have unique oscillatory features which agree
qualitatively with angular velocity ACFs reported in the literature.52

The overall relaxation results for acetonitrile and water, determined at different levels of theory
andwith two different QM codes, are provided in Figure 7. Once again, the results are broken down by
mechanism and compared to experimental values for which themechanistic breakdowns are available
in this case. For acetonitrile, the computed SR contribution obtained from MD in QE and in CP2K
are nearly equivalent, while a somewhat greater dipolar contribution is obtained with CP2K and the
revPBE functional. The computed SR contribution is larger than the experimentally determined esti-
mate by about a factor of 2 in both sets of calculations, while the dipolar contributions aremore closely
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Figure 5: Angular momentum correlation functions (left) and corresponding spectral densities (right)
for acetonitrilemolecules in sets of liquid phase CPMD simulations at 300K. Total angularmomentum
is broken down to components corresponding to the molecular axis system defined in Figure 1. The
𝑧 component correlation function is plotted on a different scale (right).

predicted by CP2K/revPBE. However, the total calculated relaxation rates agree well with the exper-
imental value, which raises the question whether the experimental breakdown into SR and dipolar
contributions is worth re-examining. The SR contribution is known to be negligible in liquid water,
and this is reflected in our calculations. Again, CP2K/revPBE gives the closest agreement with the
experimental dipolar contributions.
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Perhaps the most interesting result of this work is from our calculation of SR relaxation in water
vapor systems, for which the SRmechanism is dominant, and whose experimental values (of 𝑇1) were
measured apparently for the first time relatively recently by Mammoli et al.21 As discussed in Section
2, low-density systems have slow decorrelation of molecular angular momentum due to relatively rare
molecular collisions. Therefore the extreme narrowing condition does not necessarily hold and the
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formulation of the relaxation rate must be adjusted accordingly. Since in this motional regime, the SD
at the Larmor frequency is not equal to that at zero frequency, the SDs must be computed explicitly
as half-Fourier transforms of the ACFs. Longitudinal relaxation is then computed by the value of
the SD at the relevant Larmor frequency, which in this case is the difference between the nuclear
Larmor frequency, 𝜔0, and the molecular rotational Larmor frequency, i.e. 𝜔0 − 𝜔𝐽 = 7 × 10−4 ps−1,
as reported in Ref. 21 for the corresponding experimental measurements. In order to obtain sufficient
sampling of the SD at this low frequency, long simulation times (here 20 ns) are required. Figure
8 shows the calculated ACFs for the 2 kPa simulation as well as the corresponding SDs, plotted as
discrete points in order to indicate the limited sampling in the low-frequency region. A vertical dashed
line is added at the value of the experimental Larmor frequency atwhich the value of the SD is sampled
for use in Equations (11) and (18). The time scale on which the ACFs are plotted (and therefore the
correlation times) is four orders of magnitude greater than for any of the liquid systems. On this
scale, the 𝑧-component, representing the principal rotation axis and intermediate moment of inertia
axis of the water molecule, decays nearly instantly. The remaining two components decay over a few
nanoseconds.

Applying Equation (11) for classical gaseous water simulations at various temperatures and pres-
sures yields the results plotted in Figure 10. Experimental values are those of Ref. 21 and the fitted
curves are of the form of Equation (12) combined with the relationship 𝜏1 = 𝑝max∕[𝑝 (𝜔0 − 𝜔𝐽)]
as defined in Ref 21, where 𝑝max is a fit parameter corresponding to the pressure which results in
the maximum value of 𝑅1. The agreement with experiment is remarkable, despite the calculations
containing no explicit consideration of the orientational correlation functions. Our calculations also
confirm relaxation in the gas phase is completely dominated by the SR mechanism, with calculated
dipolar contributions at 47 kPa for example, totaling only about 0.6 s−1. An additional simulationwith
a pressure of 2 kPa (well below 𝑝max) was considered and found to lie reasonably well on the curve
from theory, which was fitted excluding this low-pressure data point for which there is no available ex-
perimental result. This our predicted magnitude of the longitudinal relaxation rate at 2 kPa. It should
be noted that in both these calculated results and the Mammoli et al. measurements, no statistically
significant temperature dependence is observed for the relaxation rate in water vapor at the densities
and the temperature range considered.

We predict from the same data set the transverse relaxation rate 𝑅2 for the water vapor systems.
𝑅2 is calculated as a sum of terms proportional to the SD at the Larmor frequency, and the SD at zero
frequency respectively.53, 54 The expression is as follows:

𝑅2 =
1
𝑇2

= 1
3

∑

𝑖,𝑗=𝑥,𝑦,𝑧

∑
𝑐2𝑖𝑗𝑗𝑗(𝜔0 − 𝜔𝐽) +

1
3

∑

𝑖,𝑗=𝑥,𝑦,𝑧

∑
𝑐2𝑖𝑗𝑗𝑗(0) (18)

In the simplified formalism analogous to Ref. 21 and Equation (12), the previous result can be written
as

𝑅2 =
1
𝑇2

=
4𝜋2𝐼0𝑘𝑇

ℏ2
𝐶2ef f

[ 𝜏1
1 + (𝜔0 − 𝜔𝐽)2𝜏21

+ 𝜏1
]

(19)
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Figure 8: Angular momentum correlation functions (left) and corresponding spectral densities (right)
for watermolecules in FFMDwater vapor simulations at 2 kPa. The gas-phase SD is plotted as discrete
points to indicate the lack of sampling in the low-frequency region, resulting from the finite time scale
of the simulation. The dotted vertical line indicates the experimental Larmor frequency reported in
Ref. 21 and used in our relaxation rate calculations.

The results are plotted in green along with the calculated 𝑅1 results in Figure 11. As expected from
simple relaxation theory, 𝑅1 and 𝑅2 converge on the right side of 𝑝max , as the fast motion limit is
approached. On the left of 𝑝max , 𝑅2 continues to increase with decreasing pressure while 𝑅1 sharply
decreases.

Asmentioned in Section 2, SR relaxation in gas phase systemswith angularmomentumautocorre-
lation in the slow-motion regime are expected to have an important contribution from reorientational
correlation functions. However, these were not considered for the calculated results in Figures 10 and
11. Indeed, we confirm that the coupled correlation function contained in Equation (4) can not be de-
coupled according to Equation (5), in the case of gas phase simulations, while the approximation does
hold as expected for the liquid. This result is summarized in Figure 9 in which the decoupled product
of angular momentum and orientational correlation functions is plotted alongside the corresponding
cross-correlation function for both the aiMD liquid (left) and classical gas phase simulations (right).
Here, the quantity 𝐽 is shorthand for the 𝐽−1 component of the angular momentum in the irreducible
representation. 𝐷 is shorthand for of the 𝒟0,1 component of the rank 1 Wigner 𝒟 matrix; the auto-
correlation of which is effectively the first-order rotational ACF. It is clear from these plots that the
condition of Equation (5) holds within statistical error in our liquid simulations, while a significant
deviation in the two curves is observed in the gas phase.

The accurate results in Figure 10 with respect to experiment are attributed to the fact that the
molecular SR tensor for water is nearly isotropic, i.e. 𝑐𝑥𝑥 ≈ 𝑐𝑦𝑦 ≈ 𝑐𝑧𝑧 in the molecule-fixed reference
frame. As discussed in Section 2 and shown in the literature by Hubbard27 and others, when the SR
tensor has a weak orientational dependence, only the angular momentum correlation functions con-
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Figure 9: Calculated product and cross-correlation functions between molecular angular momentum
and orientation for simulated liquid water (left) and water vapor (2 kPa) (right). Correlation functions
are computed for the 𝐽−1 component in the irreducible representation of the angularmomentum com-
ponents and the𝒟0,1 component of the rank 1 Wigner𝒟matrix.

tribute to the relaxationmechanism. Therefore, our results for gas-phase water are in good agreement
with the experiments not by accident, but because the reorientational correlation functions hardly
contribute to the relaxation rate for a system with a nearly isotropic SR tensor. The same analysis
was performed for simulations of low-density methane, for which the SR tensor is highly anisotropic,
despite the higher geometric symmetry of the tetrahedral molecule. Resulting rates in the region of
the characteristic maximum and below were significantly underestimated. These results are provided
in the SI.

Mammoli et al. used their relaxation results for predictions of the collisional cross-section, 𝜎𝐽 , of
molecules in water vapor. Such collisions drive the SR relaxation process and therefore we found
it appropriate to investigate the nature of these collisions in our MD. An analysis was performed to
probe collisions in the first nanosecond of the 353K, 47 kPa water vapor simulation. First, the angular
momentum time series data were analyzed to identify, for each molecule, times at which a significant
change of root-mean-square angular momentum occurs about any one of the molecule-fixed axes. A
value of 10 rad amu bohr2/ps = 0.89 amuÅ2/ps was chosen to be the threshold for a ‘reactive’ collision,
i.e., a collision that contributes to the SR relaxation mechanism by changing the angular momentum
and thus contributing to the decorrelation. The chosen value is roughly 10% of the maximum jump
of angular momentum found within the trajectory. Next, time windows defined as 5 ps before and
after each identified event were searched, and the closest intermolecular distance in the time window
tallied. The results are plotted as a histogram in Figure 12, with stacked colored bars corresponding
to the type of atom-to-atom contact found to be closest. Intermolecular distances up to a cutoff of 50Å
were searched. Somewhat surprisingly, a long tail is seen in the histogram out to distances reaching
this cutoff distance (see inset of Figure 12). As a result, the mean distance for the full population
of counted events is 12.6Å, while the median is 6.8Å, and the most probable interaction distance for
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Figure 10: Calculated and experimental 𝑅1 of 1H in water vapor versus pressure and at three different
temperatures. Calculations are from sets of 20 ns classical simulations. The dashed curve is a fit based
on Equation (12) with the substitution 𝜏1 = 𝑝max∕[𝑝(𝜔0 −𝜔𝐽)]. Experimental values are from Ref. 21

events of angularmomentum transfer is also the closest at about 2Å. Another peak occurs in a broader
range over 4–8Å. There is a trough between 3–4Å implying that two-body interactions which transfer
angular momentum will likely fall into one of the two peak regions on either side when only the
single closest distance of approach is considered. In the region below 3Å, the mean distance is 2.1Å
for both O–H and H–H contacts and the ratio of O–H to H–H frequency is 1.13. In the region above
4Å, the mean distance is 11.3Å for O–H contacts and 17.6Å for H–H contacts. The ratio of O–H to
H–H frequency in this region is about nine times smaller at 0.12. Two-body events that occur farther
than 4Å are dominated by Van der Waals interactions, and should not be considered steric collisions.
At these distances, it is sensible that an H–H distance is the shortest in the course of two mutually
rotating water molecules passing one another and interacting weakly. Events captured in the tail
region of Figure 12 are extremely long-distance as to unlikely be two-body events at all. A possibility
that requires further study is that, in a uni-molecular process, angular momentummay be transferred
to vibrational energy via rovibrationalmodes. This type of transferwould in principle contribute to the
SR relaxation. Events that occur shorter than 3Å are driven by Coulomb and overlap interactions, for
which O–H contacts are expected to dominate. O–O contacts as the shortest intermolecular distance
during an angular momentum transfer is apparently exceedingly rare.

If the overall average intermolecular distance is considered as the mean interaction radius, a 𝜎𝐽
of 503Å2 is obtained for interactions which contribute to SR relaxation. To supplement this result, 𝜎𝐽
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Figure 13: Magnitude of angular momentum, 𝐽, of a particular molecule in a water vapor simulation
plotted with the H–H distance to another molecule at the point of a collision event around 25-30 ps
during which angular momentum is transferred.

Figure 14: Sketch of the event in water vapor described by Figure 13 in which the top molecule expe-
riences a discontinuous change in angular momentum due to proximity of another molecule.

was computed from the dynamics in the traditional way following the formula

𝜎𝐽 =
1

𝜌 𝜈̄ 𝜏𝐽
(20)

Here, 𝜌 and 𝜈̄ are the number density and mean thermal velocity of the system respectively, and 𝜏𝐽
is the correlation time associated with changes in molecular angular momentum. For the system in
question, integration of the vector ACF of the angular momentum gives 𝜏𝐽 = 34.7 ps. Equation (20)
then gives 𝜎𝐽 = 435Å2, corresponding to an average interaction radius of 11.8Å. The cross-section re-
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sults obtained from bothmethods described above are 3–4 times larger than the estimate in Reference
21. Mammoli et al. possibly underestimated 𝜎𝐽 due to a simplified relaxation model based on equa-
tion 12 which assumes a mono-exponential ACF, resulting in a reported 𝜏𝐽 of 82 ps; over two times
our simulated result.

Figure 13 shows the magnitude of angular momentum, 𝐽, of a representative water molecule in
a segment of the water vapor simulation. Additionally, the distance from a hydrogen in the analyte
molecule to a hydrogen of a colliding neighbor is plotted. A clear jump in the angular momentum
can be seen during the close-contact period. The distance of this contact is decidedly larger than typ-
ical steric interactions and consistent with the second region of interaction events seen in Figure 12.
When this ‘collision’ in the dynamics is isolated and visualized, it is seen that the transfer of angular
momentum occurs as two water molecules pass each other at this distance of roughly 6 Å. Figure 14
is a representation of this particular event taken from the MD trajectory. As the two molecules pass,
the one depicted above spins up and leaves the interaction with markedly faster rotational motion.
Whether or not these kinds of interactions are physical or artifacts from the parameterized force field
used in the MD is not easy to prove. However, the strong agreement achieved with the experimen-
tal relaxation rates suggests that, on the whole, the interactions driving the SR mechanism are well
modeled in the MD.

5 Summary, Conclusions, and Outlook

A robust method for computing SR NMR relaxation rates from molecular dynamics simulations was
developed and applied to 1H NMR relaxation in canonical molecular systems in a wide range of tem-
peratures and pressures. Combined with similar methods for the dipolar mechanism, a unified set of
results were obtained for water, methane, and acetonitrile in the liquid and dense gas phases which ac-
curately reproduce the experimental results. Low density water vapor systems were also investigated
and while the angular momentum autocorrelation was found to be in the slow-motion regime, accu-
rate results with respect to experiments by Mammoli et al. were obtained without consideration of
orientational correlation functions. It is expected that gas phase systems such as methane or acetoni-
trile at equivalent pressures would indeed require a contribution frommolecular reorientation due to
the fact that their SR tensors are anisotropic. Based on our results, the collisional cross-section rele-
vant for the interactions driving SR relaxation in water vapor at 353K was predicted to be larger than
previous experimental estimates. We plan to continue to augment ourmethodswithmore generalized
theory. Future work will include implementation of a fully generalized SR theory which considers the
coupled molecular angular momentum and orientational correlation functions.
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