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Abstract—Short-wave fadeout (SWF) is one of the first space
weather effects to occur in the ionosphere following a solar flare
and leads to severe disruption of ionospheric HF systems. The
disruption is produced by flare-enhanced energetic radiations
that penetrate to the D-layer where they enhance ionization
that leads to heavy absorption of high-frequency (HF, 3-30
MHz) radio signal over much of the dayside for an hour or
more. In this paper, we describe two probabilistic anomaly
detection schemes that have been used to detect SWF events
produced by M and X class flares in Super Dual Auroral
Radar Network (SuperDARN) observations. The two schemes
are based on statistical Z-score and nonlinear energy operators.
Performance of the detection schemes varies with flare intensity
and parameters of the detection schemes. We find a correlation
coefficient ∼0.73 between flare counts per month and SWF counts
per month detected using the Z-score scheme.

Index Terms—probabilistic anomaly detection, shortwave fade-
out, solar flares, HF absorption, HF propagation, ionosphere

I. INTRODUCTION

A solar flare is a sudden intensification of the Sun’s
electromagnetic radiation, specifically in the EUV and X-
ray wavebands of the solar spectrum, that lasts for a few
tens of minutes to several hours [1]–[3]. Solar flares can
be classified into five different classes in the X-ray range
following the GOES classification, namely, A, B, C, M, and X
with each successive class being an order of magnitude more
intense than the previous class. The intensification of solar
radiation during a solar flare enhances the electron density via
photoionization in the dayside of the Earth’s lower ionosphere
(D and lower E region, ∼60-105 km) [4]. This produces
an increase in ionospheric high-frequency (HF, 3-30 MHz)
radio wave absorption that disrupts over-the-horizon (OTH)
communication, commonly known as the Dellinger effect or
Short-wave Fadeout (SWF) [5]. Previous statistical studies
have shown there is almost a one-to-one correspondence
between an earthward-directed solar flare and the occurrence
of SWF [6]. SWF events can have serious impacts on sensitive
HF systems including ground-to-ground radio communica-
tions, amateur radio links, satellite communication systems,
and Global Navigation Satellite Systems [7], [8]. A recent
study found solar flare-driven SWF impacts seriously degraded
emergency HF communications supporting humanitarian aid
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services and relief efforts in the Caribbean after Hurricane
Irma [9].

More recent studies have found a functional dependence
of HF absorption on solar flare intensity, location of the
transmitter and receiver, and frequency of the radio wave [10]–
[13]. A study by Stonehocker [14] laid a foundation for now-
casting solar flare-driven HF absorption and culminated in the
development of the DRAP (D Region Absorption Prediction)
model currently operational at the NOAA (National Oceanic
and Atmospheric Administration) SWPC (Space Weather Pre-
diction Center) [15]. Such a predictive capability is useful but
radio operators also need to be able to monitor, in near real-
time (NRT), the occurrence, extent, and intensity of an ongoing
event. We propose to use SuperDARN (Super Dual Auroral
Radio Network) observations to develop such a monitoring
network across North America. The SuperDARN HF radar
technique possesses distinct advantages in that it operates in
the range of frequencies that is of most interest to radio
operators, is more sensitive to absorption effects due to its
relatively low frequency, and sees effects of solar flares that
precede SWF.

We have developed a SWF detection capability based on
spike detection in historical observations from SuperDARN
radars located in North America and compiled a list of
SWF events detected during 2011-2015. This SWF detection
capability is a first step toward developing a NRT monitoring
system based on SuperDARN observations. Here, we describe
two algorithmic formulations of SWF detection and report on
their accuracy.

The paper is organized as follows: Section II provides a
brief introduction to instruments and datasets used in the study;
Section III describes two spike detection schemes; Section IV
presents results demonstrating the accuracy of the schemes;
and Section V summarizes our findings.

II. DATA SOURCES

The primary datasets used in this study are solar flare
intensity measurements and HF backscatter echoes from the
GOES X-ray sensors and SuperDARN HF radars, respectively.

Solar X-ray flux information was obtained from the National
Oceanic and Atmospheric Administration (NOAA) GOES 15
satellite [16]. The solar X-ray sensors on GOES 15 satel-
lites have two channels, namely hard X-ray (0.05-0.4 nm,
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HXR) and soft X-ray (0.1-0.8 nm, SXR). The NOAA archive
supports high resolution (2 seconds) and low resolution (1
minute averaged over high resolution) X-ray data. The solar
flux information from both X-ray channels is used as a solar
flare reference.

Fig. 1. Field-of-view (FoV) of the SuperDARN radars, located at middle (in
red) and high (in blue) latitudes, used in this study.

TABLE I
SUPERDARN RADAR LOCATION DETAILS.

Radar Radar Geographic Coordinates
Names Codes Latitudes Longitudes

Blackstone BKS 37.10 -77.95
Fort Hays East FHE 38.86 -99.39
Fort Hays West FHW 38.86 -99.39

Kapuskasing KAP 49.39 -82.32

SuperDARN is a network of HF radars, operating between
8 and 18 MHz, distributed across the middle, high, and polar
latitudes of both hemispheres. Each radar measures backscatter
from decameter-scale ionospheric plasma irregularities (iono-
spheric scatter) and the Earth’s surface (ground scatter) [17]–
[19]. The field-of-view (FoV) typically comprises 16 to 20
azimuth beams spanning a sector ∼50o in width and 75-110
range gates spaced 45 km apart starting at 180 km range.
The typical integration time of each beam sounding is 3 or 6
seconds, which results in a full radar sweep through all beams
in 1 or 2 minutes. Figure 1 shows the locations and fields-
of-view of the SuperDARN radars used in this study while
Table I lists their positions in geographic coordinates.

Figure 2 presents Blackstone (BKS) radar measurements
and GOES X-ray fluxes on 11 March 2015. Panel (a) shows
there were two prominent flares on that day: an X2.2 class
event with peak intensity at 16:22 UT followed by an M1.0
class event that peaked at 18:50 UT. The X2.2 event initiated
at 16:10 UT when the GOES X-ray sensor observed a sudden
increase in solar X-ray flux (panel a). In response, BKS
observed a decrease in the number of backscatter echoes (panel
b) leading to a total blackout of the radio link in about 10
minutes followed by a gradual recovery over ∼ 30-60 minutes.
The M1.0 event had a compound initiation with a small C-
class onset starting at ∼18:40 UT followed by a larger M-class
onset at ∼18:45 UT. There is some evidence of a decrease in
BKS backscatter echoes but the response in this case is weak.

It can be seen that the signature of an SWF commencement
following an X-class flare is an inverted spike in the number
of backscatter observations, while the effects of M-class flare
are more gradual and weaker. These facts are also reported in
our previous studies [10], [12].

Fig. 2. GOES and Blackstone (BKS) radar measurements during a solar flare
and associated SWF event on 11 March 2015: (a) GOES X-ray flux in the
0.1–0.8 nm (red) and 0.05–0.4 nm (blue) wavelength bands and (b) number
of BKS backscatter echoes. The vertical lines passing through both panels
identify the peak times of X2.2 (red) and M1.0 (orange) class events.

III. DETECTION SCHEMES

In this study we have used two different spike detec-
tion techniques to identify SWF signatures in SuperDARN
backscatter observations. First, a modified Z-score based
spike detection technique, also referred as the Whitaker-
Hayes algorithm [20], and second, a nonlinear energy operator
(NEO) [21].

A. Modified Z-score

Z-score represents how many standard deviations away a
given observation is from the mean. By contrast, the modi-
fied Z-score is estimated using the median (M) and median
absolute deviation (MAD) instead of mean and standard devi-
ation. Equation 1 presents the modified Z-score assuming the
backscatter count (en) is normally distributed. The multiplier
0.6745 in the equation is the 0.75th quartile of the standard
normal distribution, to which the MAD converges:

z(en) = 0.6745× en − eMn
eMAD
n

(1)

where: eMn , eMAD
n , and z(en) are the median, median absolute

deviations, and Z-score of backscatter count (en). For a spike
the z(en) value is high.

B. Nonlinear Energy Operator

The NEO provides a measure of change in the instantaneous
energy (i.e., squared magnitude of the considered signal) in the
signal, here SuperDARN radar backscatter count (en) [22].
Previous studies have found that NEO can discriminate be-
tween spikes and noise better than a simple thresholding
detector, specifically when the signal-to-noise ratio (SNR)
is low [22]. Another study found the NEO provided more
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accurate spike detection than detectors and had lower compu-
tational requirements [21]. The main goal of the NEO, defined
in Equation 2, is to emphasize the difference between spikes
and noise. The NEO adapts to changes in SNR level to identify
the spike in the data:

neo(en) = ė2n − ënen (2)

where: ėn, ën, and neo(en) are the first, second order time
derivative, and spike score of backscatter count (en) estimated
using the NEO. For a spike the value of neo(en) is high.

C. Probabilistic Detection Schemes

Algorithm 1 outlines the steps of a pseudo code to detect
spikes observed in daytime SuperDARN backscatter observa-
tions following flare driven SWFs. The algorithm applies a
time window to the radar data obtained on each beam and
calculates a spike score using both of the operators described
in the two previous subsections. The difference between the
spike score and a spike threshold is projected onto a sigmoid
curve to estimate probability. The algorithm then estimates
median spike probability µ(x) across the beams, multiple beam
detection probability θ(x), and reliability score γ(x) for all
beams during that time window. The detection probability τ (x)

is estimated by multiplying µ(x) and θ(x). More details about
these metrics are listed in Table II. The final output is the
probability and reliability score, both of which need to be
high for a successful spike detection.

Algorithm 1: Pseudo code for SWF detection in
SuperDARN backscatter observations.
Input: data (D), window length (∆T ), threshold (sth)
Result: τs, γs
initialization →B=total radar beams, γs = [], τs = [];
while data chunk available in D do

remove data with solar zenith angle (χ) ≥ 90o;
take data chunk dc with window length = ∆T ;
initialization → β = 0, p = [];
for each beam (b) in radar do

run Z-score OR NEO on dc;
threshold score (s) based on sth;
if s ≥ sth then

increment β by one;
end
estimate probability pr = 1

1+e−(s−sth) ;
add pr to p list;

end
estimate the following parameters for ∆T window;
µ(x) = M(p), θ(x) = β

B ;
τ (x) = µ(x) × θ(x), and γ(x) = −10log[MAD(p)];
add γ(x) and τ (x) to γs and τs lists;

end

TABLE II
SIGNIFICANCE OF METRICS USED IN THE DETECTION SCHEME.

Symbol Description Range
µ(x) Median spike probability across the beams: Proba-

bility that a spike occurred.
[0-1]

θ(x) Beam detection probability: Probability that a spike
occurred across multiple beams within ∆T interval.

[0-1]

τ (x) Probability that a spike occurred: Probability that a
spike occurred across different beams within ∆T
interval, a high value is preferred for good detection.

[0-1]

γ(x) Reliability score: Quantify uncertainty in τ (x) esti-
mates. A high value is expected for a reliable τ (x)
estimate.

[0-∞)

(x) is replaced with z or n based on the spike detectors, i.e., Z-scores or
NEO, respectively.

IV. RESULTS

In this section, we present some example outputs from
application of the spike detection algorithm. First, we present
a classic example of shortwave fadeout observed in BKS
backscatter and the outputs from application of the algorithm.
Then, we presents statistical results showing how the perfor-
mance of the algorithm varies with solar flare intensity and
window length.

A. Event Analysis: 11 March 2015

Figure 3 presents example results from the SWF detection
scheme applied to BKS radar data obtained on 11 March,
2015. For this case, the algorithm used a time window (∆T )
of 2 hours and spike thresholds (sth) of -3 and 15 for the Z-
score and NEO operators, respectively. From top to bottom the
panels show the number of backscatter echoes, spike scores,
median probabilities µ(x), detection probabilities τ (x), and
reliability scores.

It can be seen that both spike operators successfully detect
the SWF signature in the BKS data created by the X-class
flare but neither identifies a SWF signature for the compound
M-class flare. Also, the probability estimated using the Z-score
is significantly higher for all three 2-hour window intervals.

Table III lists the spike detection probability and reliability
scores for the X and M-class flares using data from the BKS,
FHE, and KAP radars for the 6-hour window identified in
Figure 3. For the X-class flare, both operators have detected
spikes with high probabilities (τ (x) ≥ 0.9) and reliability
scores (γ(x) ≥ 8). For the M-class flare Z-score based
operator is able to detect the spike with moderate probabilities
(τ (x) ∼ 0.5) and high reliability scores (γ(x) ≥ 8), but the
NEO estimates no spike with low probabilities (τ (x) ∼ 0.01)
with high reliability scores. This shows, among both operators
the NEO is conservative in nature.

B. Statistical Analysis

Figure 4 compares the monthly count of M and X-class
flares observed by GOES spacecraft with the mean number of
SWF spikes detected by the algorithm in data collected by the
four radars over half a decade. The algorithm was run using
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Fig. 3. Results from the SWF detection scheme applied to BKS radar data
obtained on 11 March, 2015: (a) number of BKS backscatter echoes, (b)
spike scores, (c) median probabilities, (d) detection probabilities within 2-
hour window, and (e) reliability scores. Red and blue colors represent outputs
from the Z-score and NEO operators, respectively. Red and blue horizontal
lines in panel (b) represent threshold scores sth for the Z-score and NEO,
respectively. Horizontal black lines passing through panels (c-d) represent
threshold of detection probability 0.5, while the same for panel (e) represents
threshold of detection certainty 5.

TABLE III
SPIKE DETECTION PARAMETERS FOR THE FLARES ON 11 MARCH 2015.

Radar Flare X2.2 Flare M1

BKS τn = 0.9, γn = 8 τn = 0, γn = 52
τz = .96, γz = 14.2 τz = 0.4, γz = 7

FHE τn = 1, γn =∞ τn = 0, γn = 44
τz = 0.96, γz = 12.2 τz = 0.5, γz = 7

KAP τn = 1, γn = 75 τn = 0.01, γz = 41.3
τz = 0.81, γz = 10 τz = 0.6, γz = 71.3

the modified Z-score operator, a 2-hour time window, and a
threshold Z-score of -4.5. The mean SWF count is rounded
off to the nearest whole number. The correlation coefficient
between these two time series data is 0.73, which indicates
that the algorithm performs reasonably well extracting flare-
driven SWF spikes from the historical SuperDARN archive.

Figure 5 shows how the solar flare - SWF spike correlation
coefficient varies with (a) minimum threshold of solar flare ir-
radiance and (b) the length of the time window. The correlation
coefficients in (a) were calculated using a fixed 2-hour time
window while those in (b) used a fixed lower flare intensity
threshold corresponding to M2 class. All other algorithmic
parameters correspond to the same values used to generate
Figure 3. Panel (a) shows the correlation coefficient maximizes
near a minimum flare intensity threshold corresponding to X1
class (red vertical line). Below this threshold, the correlation

Fig. 4. Monthly count of M and X-class flares observed by GOES spacecraft
(blue) and SWF signatures (red) detected in data collected by the BKS, FHE,
FHW and KAP radars for five years (2011-2015). The algorithm was run
using the modified Z-score operator with a time window ∆T = 120 minutes
and a threshold Z-score Zth=-4.5. The correlation coefficient between the
two time series is ρ = 0.73.

Fig. 5. Variation of the solar flare - SWF spike correlation coefficient versus
(a) solar flare irradiance, and (b) length of time window. Blue and red dots
in panel (a) represent the number of flares and the correlation coefficient,
respectively. The vertical red line in panel (a) corresponds to an X1-class flare.
Correlation coefficients in panel (a) were calculated using a fixed time window
∆T= 120 minutes while those in panel (b) include all flares of intensity M2
class and higher. All other algorithmic parameters are the same as described
in Figure 3.

is lower because of the weaker SWF response to M-class
flares seen in Figure 2, while above the X1 threshold the
correlation becomes increasingly degraded by poor statistics.
Panel (b) shows the correlation coefficient steadily decreases
as the length of the time window is increased, with a much
sharper rate of decrease beyond an hour or so. When the time
window is too long, it is difficult to identify the SWF spikes
against the background of hour-to-hour diurnal variations.

V. CONCLUSIONS & APPLICATIONS

This paper presents a probabilistic method for solar flare-
driven SWF spike detection in SuperDARN HF backscatter
observations. The scheme utilizes statistical Z-score and non-
linear energy operator (NEO) based spike detection techniques
to identify sudden reductions in the number of SuperDARN
backscatter echoes produced by SWF. We found the Z-score
method outperforms the NEO method, particularly for weaker
M-class flares. A correlation analysis of monthly solar flare
count versus SWF spike detection demonstrates the algorithm
performs reasonably well identifying SWF signatures in the
historical SuperDARN archive, particularly for X1-class flares
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and higher. The correlation was also found to decrease sub-
stantially when the time window for spike detection is longer
than an hour or so. Future work includes: (1) creating a list
of SWF events in the SuperDARN historical archive for wider
scientific community use, and (2) developing a near real-time
monitoring system for tracking the occurrence, extent, and
intensity of ongoing SWF events for radio system operators.
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