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ABSTRACT

Objective: The impact of social determinants of health (SDoH) on patients’ healthcare quality and the disparity
is well known. Many SDoH items are not coded in structured forms in electronic health records. These items are
often captured in free-text clinical notes, but there are limited methods for automatically extracting them. We
explore a multi-stage pipeline involving named entity recognition (NER), relation classification (RC), and text
classification methods to automatically extract SDoH information from clinical notes.

Materials and Methods: The study uses the N2C2 Shared Task data, which were collected from 2 sources of
clinical notes: MIMIC-IIl and University of Washington Harborview Medical Centers. It contains 4480 social his-
tory sections with full annotation for 12 SDoHs. In order to handle the issue of overlapping entities, we devel-
oped a novel marker-based NER model. We used it in a multi-stage pipeline to extract SDoH information from
clinical notes.

Results: Our marker-based system outperformed the state-of-the-art span-based models at handling overlap-
ping entities based on the overall Micro-F1 score performance. It also achieved state-of-the-art performance
compared with the shared task methods. Our approach achieved an F1 of 0.9101, 0.8053, and 0.9025 for Sub-
tasks A, B, and C, respectively.

Conclusions: The major finding of this study is that the multi-stage pipeline effectively extracts SDoH informa-
tion from clinical notes. This approach can improve the understanding and tracking of SDoHs in clinical set-
tings. However, error propagation may be an issue and further research is needed to improve the extraction of
entities with complex semantic meanings and low-frequency entities. We have made the source code available
at https://github.com/Zephyr1022/SDOH-N2C2-UTSA.

Key words: information extraction, social determinants of health, neural networks, natural language processing, NLP, machine
learning

BACKGROUND AND SIGNIFICANCE

OXFORD

Social determinants of health (SDoH) are nonclinical factors influ-
encing health, functioning, and quality of life outcomes and risks.
For example, SDoH factors include where people are born, live,
learn, work, play, worship, and their age.'™ Decades of studies have
shown that medical care accounts for only 10%-20% of an individ-
ual’s health status. However, social, behavioral, and genetic factors
also significantly influence health risks, outcomes, access to health

services, and adherence to prescribed care.*> Thus, addressing
SDoH is critical for increasing healthcare quality, decreasing health
disparities, and informing clinical decision-making.®

Unfortunately, electronic health records (EHRs) do not generally
code SDoH information in structured data, for example, not in ICD-
10 codes.” Instead, healthcare organizations and professionals typi-
cally record SDoH in unstructured narrative clinical notes. Thus,
this critical patient information is not easily accessible. Healthcare

©The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association.

All rights reserved. For permissions, please email: journals.permissions@oup.com

€202 ABIN 2| U0 JosN Z#195/28 Aq G¥8001 2/L YOPEOO/EIWEN/EE0 L 01/10P/[0IE-0UBADE/EIWE/WO0Y"dNO"DIWLSPED.//:SA)lY WO PIPEOjUMOQ


https://github.com/Zephyr1022/SDOH-N2C2-UTSA
https://academic.oup.com/
https://academic.oup.com/

2 Journal of the American Medical Informatics Association, 2023, Vol. 00, No. 0

practitioners need to translate them into structured data to support
downstream secondary use applications, like disease surveillance
and clinical decision support.® Traditionally, medical practitioners
have to manually collect information from unstructured data, such
as medical records, in order to make diagnoses and treatment plans.
This process, known as medical record review, can be challenging
and time-consuming. The extensive paperwork burden can increase
fatigue, reduce job satisfaction, and contribute to medical errors and
adverse events.” Automating the extraction of SDoH from unstruc-
tured clinical notes using natural language processing (NLP) techni-
ques can help to reduce the workload for medical practitioners;
improve the accuracy and efficiency of the information collection
process; and generate a comprehensive representation of the patient
about their social, behavioral, and environmental information for
downstream tasks.!®!" This approach has been shown to be effec-
tive in previous research, as demonstrated in prior work.'*~'*
Previous studies on leveraging NLP to automate the extraction
of SDoH information have included lexicons/rule-based meth-
ods'®1%1¢ and deep learning approaches.'*'"~2! In this work, we
introduce a novel system with 3 main components (see Figure 1) to
extract event-based SDoH information from clinical notes: named
entity recognition (NER),?? relation extraction (RE),>* and text clas-
sification (TC).** We use the Social History Annotation Corpus
(SHAC) developed for the 2022 N2C2 Shared Task—which is based

on the work by Lybarger et al.'

One of the main challenges in
extracting SDoH from text is a large number of overlapping entities.
For example, Lybarger et al'* define smoking status as an SDoH. In
their corpus, the span of the text “2-3 cig per day” includes 4 enti-
ties: the StatusTime argument (“2-3 cig per day”), the Amount
argument (“2-3 cig”), the frequency (“per day”), and the type
(“cig”). Even worse, entities with the exact same spans can refer to
2 separate entities. For example, “marijuana” represents the entity
Drug and it represents the entity Type (ie, because it refers to a type
of drug) in the Lybarger et al** corpus.

Recently, several methods have been proposed for handling over-
lap in NER tasks.>">® Some papers have designed different tagging
schemes®”° by combining token-level classes to deal with overlap-
ping NER, which may cause data sparsity issues (eg, a word can be
labeled as B-ORG-I-PER if it is the start of an organization span and
the inner part of a person’s name). However, if 2 entity types over-
lap infrequently, this can cause a data sparsity issue. Span-based
models are another approach for handling overlapping entities.>>?
These models follow a 2-stage framework, first extracting all possi-
ble text spans from the text and then using filters to reduce the total
search space and computational complexity.>13 Rojas et al*> show
that simply training an individual model for every entity type
(assuming overlapping entities only appear across entity types) pro-
duces better performance than more complex prior methods. How-
ever, training a single model for every entity type can be wasteful
regarding memory usage. Moreover, if the number of entity types is
large, the deployment of many models can be difficult.

To address limitations in prior work for extracting SDoH infor-
mation from text using the NER approach, we propose a unified
marker-based sequence labeling model for the simultaneous extrac-
tion of triggers and arguments in a single NER model. This model is
then used as part of a larger event extraction system, which outper-
forms recent methods introduced in the 2022 N2C2 shared task.
Our method is inspired by the success of prefix-based prompt-learn-

ing®”**** and the work by Rojas et al** that shows individual mod-
els for each entity outperforming more complex overlapping NER

systems. Intuitively, our approach simulates individual models

trained for every entity type into a single system. Lybarger et al'*
recognized 2 additional limitations of current SDoH extraction
methods. First, prior methods lacked the ability to classify relation-
ships between entities that span multiple sentences. Second, the
methods were incapable of incorporating context from adjacent sen-
tences when labeling various aspects of the SDoH event. Our system
addresses the 2 limitations by working at the note level instead of
the sentence level for the relation and subtype classification compo-
nents of our pipeline.
In summary, this article makes the following contributions:

1. We propose a simple yet novel system for SDoH information
extraction. Our system achieves state-of-the-art performance
compared with other competitive systems submitted to the
National NLP Clinical Challenges (n2¢2) shared task.

2. We propose a novel marker-based sequence labeling method for
extracting all possible triggers and argument entities while han-
dling overlap. The method is shown to outperform more com-
plex methods developed for overlapping NER. Moreover, our
note-level components are able to identify relations across enti-
ties in separate sentences in the EHR note and incorporate cross-
sentence context to improve subtype classification.

3. We conduct an ablation-like analysis to understand which com-
ponents of our system have the greatest potential for improving
SDoH extraction. Moreover, we perform an error analysis to
provide future avenues of research.

METHODOLOGY

The SDoH extraction task aims to extract “triggers” and “arguments.”
Triggers are mentions of SDoH factors (eg, Alcohol, Drug, Tobacco,
Living Status, and Employment). Arguments link to the triggers to pro-
vide further context. An example is provided in Figure 2. The trigger
extracted is “smoking” which was assigned the trigger entity Tobacco.
Next, 4 argument entities are extracted: StatusTime, Amount, Fre-
quency, and Type. Note that these entities can be nested (overlapping),
as discussed in the “Background and significance™ section. Intuitively,
the argument entities provide information about the trigger entity, for
example, what they were smoking and how often they smoked. Some
arguments (eg, StatusTime) are also classified into specific subtypes to
provide a standardized format for important information. In this case,
we see that the person is a “current” smoker. Overall, while our main
methodological advances come from the NER component (which we
justify via a careful analysis), each piece works together to extract
SDoH information to overcome several of the challenges described by
Lybarger et al'* (eg, detecting cross-sentence relations). Finally, we
describe the exact entity types for triggers, arguments, and all of the
subtypes in their respective subsections below.

Named entity recognition
The first stage of our SDoH system is to extract all trigger and argu-
ment entities within the text. There are 5 unique trigger entities:
Drug, Alcohol, Tobacco, Employment, and LivingStatus. Likewise,
there are 9 unique argument entity types: StatusTime, StatusEmploy,
TypeLiving, Type, Method, History, Duration, Frequency, and
Amount. Every argument type does not match every trigger type.
For instance, TypeLiving refers to text spans that mention how a
person lives (eg, whether they are homeless), which is not directly
applicable to the other triggers such as Drug and Employment.
Formally, we frame this as a traditional NER sequential labeling
task, where a sequence S consisting of # tokens wy,ws,. .., Wy,
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Input Document

Step 1: NER

Reports drinking 2 beers daily for several
years until lay off. States since then, has
been [drinking 6 beers and [**1-30**] bottle
of whiskey (unclear size). OSH indicate
wife reports development of morning
drinking...

) Reports <Alcohol> drinking <\Alcohol> 2

}

"~ "tobacco-amount™ " """ StatusTime

Step 2: Relation Classification

<Type> beers <\Type> daily for several years until...

Step 3: Argument Subtype Classification Events

...<Alcohol> drinking </Alcohol>2 beers daily for sev-
eral years <StatusTime> until lay off </StatusTime>.

Tobacco Event

; AL

N Trigger: "smoking"

StatueTime Span: "2-3 cig per day"
Subtype: current

)
Amoun]
— —

Social History : smoking: down to 2-3 cig per day. no illicits
' —

Figure 2. An example for the SDoH extraction task.

where 7 denotes the length of the sequence is classified into a
sequence of labels L defined as Iy, L, . .., I,. Specifically, we model

P(ll,...,ln\wl,...,wn),

where each label I; represents an entity type in Beginning-Inside—
Outside (BIO) format (eg, B-Drug, I-Drug, and B-Type).>* Outside,
or O, represents a token not classified into one of the SDoH trigger
or argument entities. This traditional approach does not handle
overlapping entities. In the SDoH corpus, overlapping entities
appear across entity types. Generally, an entity does not overlap
with an entity of the same type. This assumption is also used in prior
overlapping entity work.>*> However, to overcome this prior work,
Rojas et al*? train an independent classifier for every entity type. For
instance, a single model would predict all Drug entities, while
another model would be dedicated to Employment. This approach
could result in 14 unique models in our corpus (ie, a model for each
trigger and  argument  entity  type), for
PDrug(ll>~ .. 7ln‘wla cee 7wn)’ Palcohol(lh cee 7ln‘wl:~ ce
over, there may be information about one entity that can help

example,
wy), etc. More-

improve the prediction of another. However, using independent
models will overcome the issue of overlapping entities, but it will
also cause the loss of access to cross-entity information.

To overcome the limitations of training a separate model for
each entity type, we explore methods of handling overlap without
training multiple models by exploring different types of entity type
markers, which have been shown to be effective at injecting infor-
mation into the model.>>*¢%” We explore 2 unique methods of
training a joint NER model for the trigger entities, 2 models for the
arguments, and 1 joint model for triggers and arguments. The sum-
mary of each marker-based system for each variation is shown in
Figure 3. We describe each model below.

Trigger Model 1 (no overlap trigger)
First, for triggers, we explore the use of the traditional flat NER,
where we ignore overlap between trigger entities. We found that

(Frequency|
—

Amount: "2-3 cig"
Frequency: "per day"
Type: "cig"

there is not substantial overlap between trigger entities, though it
does appear within the dataset. Specifically, given the input sen-
tence, we will simultaneously predict all trigger entity types by
modeling

Pt(ll}'~'7ln‘w1:"'~,wn)7

where P?() represents the NER model for all triggers. Each token
will be assigned one, and only one, BIO formatted label /;.

Trigger Model 2 (overlap trigger)

Next, we explore a trigger model that can handle overlap. Intui-
tively, we simulate training a single model for every trigger entity
type using a marker k. Intuitively, instead of predicting all trigger
entity types in a single pass of the sentence and, thus, only assigning
a single class to each token, we make predictions by first condition-
ing on the entity type we want to predict. Formally, we model

Pt(lh---7ln|w17---7wnvk)7

which will only make predictions for each token wy, ..., w, for trig-
ger k or not k. As we change k, the predictions will change. We
implement this model by prepending a trigger type marker k to the
start of each sequence that is formatted as < TriggerName> (eg,
< Tobacco>), which transforms a sequence of tokens wy, ..., w, to
k,wi, ..., w,. An example is provided in Figure 3.

Argument Model 1 (independent overlap arguments)

For the arguments, there is substantial overlap between entities.
Hence, completely ignoring overlap is not feasible. The first argu-
ment model we explore involves training an Overlapping Argument
model for each trigger. Specifically, we train a model similar to
Overlap Trigger for arguments, but the model is trained for each
trigger’s arguments. For instance, train a model for all of the
Tobacco trigger’s arguments, StatusTime, Amount, Frequency, and
Type. Likewise, we do the same for the other triggers, resulting in 5
models. Formally, we train a model
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{ No Overlap Trigger‘: i Overlap Trigger E ! Independent Overlap\‘: / Overlap Arguments’ ¢ Joint Trigger and ;
: : I ‘ \ Arguments oo i | Arguments :
1 600 : i <Tobacco> O : : ' ! <Tobacco> O : ' ;
i pack O : 1 60 O ! ! <Amount> O ! i <Amount> O : <Argument> O !
: year O i ipack O ! 160 B-Amount ! 160 B-Amount P <£°bacci> 8 ;
U hi ' ' . 1 pack I-Amount . ' pack I-Amount ' i <amount> '
: history O ' : year O ' P ! ' P : ' 60 B-Amount '
' of O ! ! history O ' ' year I-Amount ' 1 year I-Amount ! ! pack I-Amount |
smoking B-Tobacco E i of O : i history O E history O E E year I-Amount i
i and O : : smoking B-Tobacco : 1 of O : 1 of O ; i history O '
- : 'and O : + smoking O 't smoking O : : of O ;
' drinking B-Aleohol : 1o O E : : : : ' smoking O :
: { ! drinking O P Do o 5

Figure 3. Examples of the markers used for each of our NER systems.

(I) Relation Classification

MATCH

A

r

\

‘<Tobacco>Hsmoking| ‘</Tobacco> ‘ | down | | 2-3 | <Type> </Type> |:|

(1) Subtype Classification

Tabacco-StatusTime: current

A

( N
‘<Tobacco>Hsmoking H </Tobacco> H down | <StatusTime> |2-3|| cig || per ” day | </StatusTime> |:|

Figure 4. Examples for the RC and subtype classification. (I) RC is a binary classification task that determines whether a relation exists between trigger and argu-
ment. The 2 possible classes are “match” and “not match.” (ll) For subtype classification, a labeled argument is classified into one of several predefined sub-

types, where each has a specific semantic meaning (eg, “current” drug user).

PZ(llv"'alﬂ‘wlvnwwmq)»

where g represents an argument for trigger k. Similar to the Overlap
Trigger model, we implement this by prepending the marker g to the
sequence of tokens wy, ..., w, to form q,wy, ..., w,. Again, at infer-
ence time, we only predict one entity type g € Q where Q is the set
of arguments for trigger k. To generate a different argument entity,
we change ¢q (eg, we prepend < Type> to predict the Type argument

and < Frequency> to predict the frequency entity).

Argument Model 2: Overlap arguments
Instead of learning a joint argument model across all 5 triggers, we
also experiment with a single argument model across all triggers.

Formally, we model

Pl Lwn, - was ks q)

which conditions on trigger k and argument g. Again, we implement
this by prepending both an argument and a trigger marker, trans-

forming the tokens wy, ..., w, to k,q, w1, ..., w,.

Joint triggers and arguments

The final model we explore is a single joint model for Triggers and
Arguments. Note that there is a substantial overlap between trigger
and argument entities. Hence, this joint model tests the complete
ability to handle the overlap of our marker-based system. This

model is an extension of the Overlap Trigger and Overlap Argu-
ments models. Specifically, we change what is prepended depending
on what should be predicted. Formally, we model

P(117~~~7ln|w1~,-~~7wn:kaqu)’

where k is a trigger marker (eg, <Drug>), g is an argument marker
(eg, < Type>), and z is a marker that indicates whether we should pre-
dict a trigger or an argument (eg, < Trigger> or < Argument>). If we
are predicting a trigger, then g is set to the empty string. Specifically,
we transform the input sequence wy, ..., w, into k,z,wy, ..., w,. As
an example, if we want to predict trigger Drug entities, we would mod-
ify the input sequence to start with “ < Trigger> < Drug>.” To predict

different entities, we modify the inputs to the system as appropriate.

Combinations

In our experiments, we explore 5 combinations of the models above:
“No Overlap Trigger + Ind. Overlap Arguments,” “No Overlap
Trigger + Overlap Arguments,” “Overlap Trigger + No Overlap
Arguments,” “Overlap Trigger + Overlap Arguments,” and “Joint
Trigger and Arguments.”

Relation classification

In our models for NER, we can map an extracted argument to a trig-
ger of the correct type. However, there may be multiple triggers of
the same type (eg, multiple Alcohol types in Figure 1). Therefore,
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matching arguments to an associated trigger instance is not possible
with the NER models alone. Hence, we propose a relation classifica-
tion (RC) framework to match arguments to their respective trig-
gers. To follow a similar framework as our marker-based NER
system, we applied the traditional RC (Matching the Blanks)
approach.?”?8*! Specifically, we model the probability that an
argument should map to a trigger as

P(y = match|wn, ..., wy, e1,e2),

where e; represents the trigger entity and e, represents the argument
entity. We model this classification task by wrapping the entities
with markers. For example, given the sentence “smoking down to
2-3 cig per day,” if we want to check if the type argument “cig”
maps to the trigger “smoking,” then the text is modified as
“ < Tobacco> smoking < /Tobacco> down to 2-3 < Type> cig
< /Type> per day.” See another example in Figure 4. Our
approach is able to detect relationships between entities that span
different sentences by passing the entire clinical note to the RC
model with the 2 entities e; and e, marked.

Argument subtype classification
The final piece of our SDoH extraction framework involves subtype
classification. There are arguments (eg, Employment Status) that
provide important information. However, it is generally stated in a
wide array of formats. For instance, “John was just laid off work”
and “John is not working” both mention that a person is unem-
ployed. There are 6 arguments that are categorized into subtypes:
Alcohol StatusTime, Drug StatusTime, Tobacco StatusTime,
Employment Status, LivingStatus StatusTime, and LivingStatus
TypeLiving. Each StatusTime subtype can take 1 of 3 categories:
current, past, and future. Employment Status can be employed,
unemployed, retired, on disability, student, or homemaker. Living-
Status TypeLiving can be alone, current, and past.

To detect subtypes, we use a similar framework as our RC com-
ponent. Specifically, we model

P(slwi,...,wn,e1,€2),

where e, represents the status argument we are subtyping and e; is
its respective trigger entity matched via the RC model. s represents
the subtype. Again, we model this via markers within the text, just
like the RC task. For instance, given the sentence, “smoking down
to 2-3 cig per day,” the StatusTime argument and Tobacco trigger
are marked as “<Tobacco> smoking < /Tobacco> down to
< StatusTime> 2-3 cig per day < /StatusTime>,” where the cor-
rect subtype would be “current.” We train a single model to capture
all subtypes across the 6 arguments. See another example in Figure 4.
Moreover, the entire clinical note is passed to the subtype model
with markers such that contextual information from document can
be used to improve performance. By using the entire note, we are
able to overcome prior limitations of lacking contextual information
mentioned by Lybarger et al.'*

Implementation details

For the NER models, we train a Bi-directional Long Short-Term
Memory (BiLSTM) network with conditional random fields.** We
explore 2 types of input embeddings for the model: Flair,** Bio-
Bert,** and T5-3B.*° For the Flair embedding model, we trained a
marker-based NER model using a sample dropout of 0.4, a hidden
layer size of 128, a learning rate of 0.1, and 25 epochs with a mini-
batch size of 16. We save the model after each epoch and use the

best version based on the validation dataset. The BioBert and T5-3B
embedding models were trained in a similar fashion, with the excep-
tion of a sample dropout of 0.3, a hidden layer size of 1024, a maxi-
mum of 15 epochs, and a learning rate of 0.025. Both models fine-
tuned the embedding layers. All NER models were implemented
using the Flair software framework developed by Akbik et al*?
(https://github.com/flairNLP/flair). For the RC and subtype classifi-

cation models, we use a RoOBER Ta-base model*®

with an Adam opti-
mizer*” and the CosineAnnealingLR scheduler,*® a learning rate of
le—35, and train for a maximum of 20 epochs. Again, the best epoch
is chosen using the validation data. Finally, all experiments were
performed on 4 NVidia GeForce GTX 1080 Ti GPUs and one NVi-

dia A6000.

EXPERIMENTAL RESULTS

In this section, we describe the data, evaluation metrics, and report
results, and an error analysis.

Datasets

We conducted our experiments on the 2022 N2C2 shared task ver-
sion of the SHAC'* corpora. The dataset consists of 4480 annotated
social history sections (70% train, 10% development, and 20% test)
from MIMIC-III and the University of Washington Harborview
Medical Centers data (UW). The systems are evaluated for 3 scenar-
ios. First, Task A involves training and evaluating on the MIMIC-III
data (ie, MIMIC-III — MIMIC-III). Task B measures generalizabil-
ity which involves training on the MIMIC-III and evaluating on UW
data (ie, MIMIC-III — UW). Finally, Task C involves training on
MIMIC-III and UW data and evaluating on UW data (ie, MIMIC-III
+ UW — UW). Table 1 presents basic information about the
datasets.

Evaluation metrics

Performance is evaluated using the following metrics: overall preci-
sion (P), recall (R), and F1-score (F1), which is a microaverage of all
trigger types, argument types, and argument subtypes (ie, true posi-
tives, false positives, and false negatives are summed across all cate-
gories). In all of our analysis, we use the evaluation tools provided
by the N2C2 shared task organizers (https://github.com/Lybarger/
brat_scoring).

Overall results

Table 2 shows the overall performance of our systems compared
with the best models in the 2022 N2C2 shared task among the 15
participating teams. Although our model is simple, the marker-

Table 1. Dataset statistics for the MIMIC-Ill and UW datasets

Dataset Subset Number of Max AVG
documents words words

Train 1316 229 65.34

MIMIC-III Dev 188 82 44 .34
Test 373 192 44.50

Train 1751 437 54.22

Uw Dev 259 99 37.47
Test 518 288 37.16

Note: Statistics include the number of examples/documents in each subset,
max words in a document, and the average words per document.
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Table 2. Overall performance across the 3 tasks: Task A (MIMIC — MIMIC), Task B (MIMIC — UW), and Task C (MIMIC+UW — UW)

Task A Task B Task C
Representations NER Method R F1 P R F1 P R F1
Best Competition Models 0.9093 0.8925 0.9008 0.8108 0.7400 0.7738 0.8906 0.8867 0.8886
Joint Trigger and Argument 0.9073 0.8597 0.8828 0.8016 0.7088 0.7523 0.8926 0.8642 0.8781
Overlap Trigger + Overlap Argument 0.9010 0.8655 0.8829 0.7967 0.7036 0.7473 0.8837 0.8741 0.8788

Flair + RoBERTa

Overlap Trigger + Ind. Overlap Argument 0.9001 0.8643 0.8818 0.7856 0.7040 0.7425 0.8870 0.8650 0.8759

No Overlap Trigger + Overlap Argument 0.8915 0.8594 0.8752 0.7835 0.6714 0.7231 0.8707 0.8677 0.8692
No Overlap Trigger + Ind. Overlap Argument 0.8890 0.8580 0.8732 0.7733 0.6717 0.7189 0.8739 0.8581 0.8659

Joint Trigger and Argument

0.8914 0.8983 0.8948 0.7827 0.7359 0.7586 0.8943 0.8835 0.8889

Overlap Trigger + Overlap Argument 0.8879 0.8897 0.8888 0.7775 0.7354 0.7559 0.8894 0.8904 0.8899

BioBERT + RoBERTa Overlap Trigger + Ind. Overlap Argument

0.8855 0.8865 0.8860 0.7757 0.7174 0.7454 0.8881 0.8849 0.8865

No Overlap Trigger + Overlap Argument 0.8645 0.8784 0.8714 0.7464 0.7434 0.7449 0.8819 0.8770 0.8795
No Overlap Trigger + Ind. Overlap Argument 0.8617 0.8744 0.8680 0.7479 0.7241 0.7358 0.8794 0.8705 0.8749

Joint Trigger and Argument 0.9035 0.9167 0.9101 0.8144 0.7964 0.8053 0.9002 0.9049 0.9025
Overlap Trigger + Overlap Argument 0.9132 0.9092 0.9112 0.8194 0.7992 0.8092 0.9036 0.9049 0.9042

T5-3B + RoBERTa

Overlap Trigger + Ind. Overlap Argument 0.9036 0.9020 0.9028 0.8029 0.7800 0.7913 0.8982 0.9005 0.8994

No Overlap Trigger + Overlap Argument 0.9009 0.8980 0.8994 0.8165 0.7780 0.7968 0.8969 0.9049 0.9009
No Overlap Trigger + Ind. Overlap Argument 0.8924 0.8914 0.8919 0.8014 0.7575 0.7788 0.8916 0.9009 0.8962

Note: Best scores are bolded for the best model(s) for each set of embedding types (Flair + Roberta and T5-3B + RoBERTa).

based system approach outperforms prior work. Specifically, our
system with flair word embeddings and joint NER model achieves
similar performance to the best-performing systems without using
an ensemble or manually curated rules (0.8829 vs 0.9008 for Task
A, 0.7523 vs 0.7738 for Task B, and 0.8788 vs 0.8886 for Task C).
Additionally, we evaluated the BioBert model that was trained in
the healthcare domain, PubMed. This improved our Flair model
slightly and the results were close to the best-performing systems in
the competition (0.8948 vs 0.9008 for Task A, 0.7586 vs 0.7738 for
Task B, and 0.8889 vs 0.8886 for Task C). Our results are further
improved using a larger pretrained model T5-3B. The T5-3B embed-
dings and Joint Trigger + Argument NER model achieve an absolute
F1 score improvement compared with best competition results of
0.0104, 0.0354, and 0.0156 for Task A, Task B, and Task C, respec-
tively. The improvements demonstrate the effectiveness of prefixing
entity type markers in front of each sentence to handle overlapping
NER. We also find that using joint models generally outperforms
using more models. For example, Flair + RoBERTa Joint Trigger
and Argument has an F1 of 0.7523 for Task B, while Flair + RoB-
ERTa No Overlap Trigger + Ind. Overlap Argument has an F1 of
0.7189. One possible reason for the excellent performance is that
when we train joint models, more cross-entity information is shared,
similar to what happens with multi-task learning.

Analysis of system component importance

There are 3 major components to our SDoH extraction system:
NER, RC, and subtype classification. For future work, which piece
can provide the most benefit if improved? To understand each com-
ponent better, we run an ablation-like experiment where we replace
each component with the ground-truth predictions. Intuitively, we
are trying to understand if we improved a single component, which
has the most potential impact on the entire system. Table 3 shows
the results of the study for Task A and Task C. By comparing, we
find that using ground truth for argument-level NER yields the larg-
est potential improvement (0.0433 for Task A and 0.0403 for Task

C). The next largest potential improvement comes from the RC
model. The component with the lowest potential impact on the
overall performance is subtype classification, with an improvement
of 0.0193 for Task A and 0.0162 for Task C.

Comparison to a state-of-the-art span-based model

As mentioned in the “Background and significance” section, there
has been significant progress in developing models that can handle
overlapping spans. While some research has shown that training
independent models outperform many of the recent methods,>® it is
important to compare them as a baseline. Hence, we applied a
recent span-based method Triaffine®® to using publicly available
source code on the N2C2 shared task data (https://github.com/Gan-
jinZero/Triaffine-nested-ner). This approach allows the model to
capture complex dependencies and interactions between different
elements in the input text, potentially improving its performance on
tasks such as overlapped NER. Triaffine is currently a state-of-the-
art method in this area.”® We compare 2 versions of the model, one
that trains triggers and arguments jointly (Joint Trigger + Argu-
ment) and one that trains a model for the triggers separately from
the arguments (Independent Trigger + Argument). We report the
results in Table 4. Overall, we find that the independent model sub-
stantially outperforms the joint model across all 3 tasks (eg, 0.8594
vs 0.5942 for Task A). The Joint model potentially suffers because it
cannot handle cases where the triggers overlap exactly with the span
of an argument. Our method is capable of handling this by predict-
ing each entity one at a time using markers. We also compare with
assuming a perfect RC because the span-based model does not have
information about matches between arguments and trigger types.
Our models contain this information by including a marker for the
trigger and the argument for argument prediction. Yet, even with a
perfect RC model, it still underperforms our best approach without
a perfect model.
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Table 3. Analysis of system component importance for Tasks A and C using their respective development sets
Task A Task C
Model P R F1 Diff F1 P R F1 Diff F1
Joint Trigger and Argument 0.8994 0.9074 0.9034 — 0.9064 0.9189 0.9126 —
+ Perfect NER-Trigger 0.9410 0.9207 0.9308 0.0274 0.9391 0.9363 0.9377 0.0251
+ Perfect NER-Argument 0.9482 0.9451 0.9467 0.0433 0.9579 0.9480 0.9529 0.0403
+ Perfect Subtype Classification 0.9186 0.9268 0.9227 0.0193 0.9225 0.9352 0.9288 0.0162
+ Perfect RC 0.9639 0.9046 0.9333 0.0300 0.9671 0.9152 0.9404 0.0278
Note: The biggest differences are bolded.
Table 4. Comparison to the Triaffine?® span-based model for overlapping entities
Task A Task B Task C

Model P R F1 P R F1 P R F1
Triaffine: Independent Trigger + Argument 0.9050 0.8182 0.8594 0.7889 0.6641 0.7211 0.8876  0.8462  0.8664

+ Perfect RC 0.9561 0.8222  0.8841 0.8108 0.7400 0.7738 0.8906 0.8867 0.8886
Triaffine: Joint Trigger + Argument 0.8585 0.4543 0.5942 0.8326 0.4377 0.5738 0.9101 0.5555 0.6899
TS5-3B + RoBERTa Joint Trigger + Argument (ours)  0.9035  0.9167 0.9101 0.8144 0.7964 0.8053  0.9002  0.9049  0.9025

Notes: Results are on the test data. The largest numbers are bolded.

Table 5. Overall performance for the 3 tasks based on event type and argument type—Task A (MIMIC — MIMIC), Task B (MIMIC — UW), and

Task C (MIMIC+UW — UW)

Task A Task B Task C

Event type  Argument #Train #Test F1  #Test F1  #Train #Test F1
Alcohol - 1295 308 0.9776 1828 0.9540 2917 403 0.9865
Drug - 987 189 0.9583 2263 0.9151 3004 473 0.9623
Trigger Tobacco - 1232 321 0.9721 1824 0.9394 1767 434 0.9655
Employment - 982 168 0.9388 872 0.8477 2390 153 0.9325
Living Status — 959 242 0.9636 1613 0.7925 2845 354 0.9294
Alcohol Status 1295 308 0.9064 1828 0.8465 2917 403 0.9499
Drug Status 987 189 0.9418 2263 0.8111 3004 473 0.8946
Labeled argument Tobacco Status 1232 321 0.9216 1824 0.8694 1767 434 0.9292
Employment Status 982 168 0.9059 872 0.7707 2390 153 0.8903
Living Status Status 959 242 0.9553 1611 0.7358 2845 354 0.9073
Type 959 242 0.9309 1613 0.6497 2845 354 0.8759
Alcohol Amount, duration, frequency, history, type, method 1078 162 0.7262 1180 0.6928 2169 178 0.7865
Drug 1037 165 0.7915 2389 0.6699 3233 418 0.7910
Span-only argument Tobacco 1548 300 0.8508 1926 0.7918 3293 375 0.8194
Employment Duration, history, type 806 140 0.7518 591 0.6209 1347 96 0.7389
Living Status Duration, history 56 6 0.5714 80 0.4364 133 11 0.4545

Note: Task B uses the training data from Task A.

Detailed results for trigger and argument types

Table 5 provides a detailed analysis of performance based on event
type and argument type using our best model, which is calculated
using microaveraged F1 scores. The performance for Substance use
(Alcohol, Drug, and Tobacco) and Employment triggers is consis-
tent between Task A and Task C, with scores greater than 0.93,
despite Task C having more training data. However, the Living Sta-
tus trigger performance in Task C is lower compared with Task A

due to the more complex living status descriptions in the UW data-
set, such as “living in a specific Shelter” (0.9294 vs 0.9636). The
labeled argument performance is similar in Task A and Task C for
Tobacco and Employment. However, there are differences in Alco-
hol, Drug, and Living Status labeled arguments. Interestingly, the
Drug Status argument’s performance decreases when more training
data are available (0.9418 on Task A vs 0.8946 on Task C). This
may be because more drug events are in the test dataset, providing a
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better performance estimate (189 on Task A vs 473 on Task C). For
span-only arguments, the performance is comparable for Alcohol,
Drug, Tobacco, and Status. However, there is a significant decrease
in the performance for the Living Status, which is potentially due to
the complex living history descriptions in the UW data or the small
test dataset (6 on Task A vs 11 on Task C).

In Task B, which was trained on MIMIC and tested on the UW
dataset, there is a slight decrease in the performance of Substance
use triggers due to the difference between the training and test
domains. Additionally, the performance of Employment and Living
Status triggers and arguments decreases substantially, especially for
the Living Status Type argument (0.6497 on Task B vs 0.9309 on
Task A and 0.8759 on Task C). These may be due to the more intri-
cate employment and living histories of patients in the UW dataset
compared with those in MIMIC. Specifically, the UW dataset has a
unique format of templated information, including details on sub-
stance use, which differs from the format present in the MIMIC
data. Additionally, the writing style in the UW dataset is distinct
from that in MIMIC.

Error analysis

We analyze common errors made by our Joint Trigger and Argu-
ment model. First, when there are direct mentions of different
(unique) types of drugs that have different StatusTime (eg, current
vs past), annotators will label each as separate triggers. For instance,

“Illicit drugs: current marijuana use, cocaine quit 5 years
ago.”

has 2 Drug triggers: “marijuana use” and “cocaine.” Yet, our model
only predicts the more general “Illicit drugs” as the trigger entity.
We hypothesize that our model does not differentiate general con-
cepts (eg, “Illicit drugs”) from more specific instances of the concept
(eg, “marijuana” and “cocaine.” This is because it is not modeled
explicitly in the architecture; moreover, the data generally contain
more instances of generic mentions than more specific mentions.
Another example of this is found in the example

“She drinks 2-3 alcoholic beverages per week.”

where our model predicts “drinks” as trigger, while the ground truth
is “alcoholic.” Based on the criteria of Lybarger et al,'* the phrase
describing a general substance (ie, alcohol, tobacco, or drug) or
substance-related verb, such as drink can be a trigger. When both
appear, a more specific concept should be used. Yet, again, our
model fails to understand this underlying semantic meaning and
does not differentiate instances from generic types. This error is very
common for other trigger types. For example, our model incorrectly
predicts “smokes” as a trigger instead of the ground-truth
“cigarettes” often. Likewise, for the employment trigger, our model
will predict “worked” as a trigger instead of “retired” in some
examples. Another common error type happens for uncommon
noun phrases. For instance, in the example,

“Currently at a rehab facility, but previously living with
his wife at home.”

the ground truth for the LivingStatus trigger is “a rehab facility,” but
our model fails to detect it. Another example of this error type includes-

“Works in finance at Mass Eye & Ear.”

where our model predicts the Type argument for the Employment trig-

2]

ger as “finance,” while the ground-truth is “finance at Mass Eye &
Ear.” Again, this indicates our models struggle with novel noun
phrases, particularly when they include prepositional phrases. A future
interesting research avenue would explore methods for incorporating
external knowledge bases into transformer models. This could poten-
tially help the model make more accurate predictions and avoid errors.
One way to incorporate external knowledge into transformer models is
through the use of external memory networks, which have been shown

to be effective at incorporating common sense into language models.*’

CONCLUSION

This article presents our approach for extracting SDoH events from
clinical notes using the N2C2-2022 Task 2 shared task dataset. We
introduce a novel NER system to extract overlapped entities and
propose a multiple pipeline system to extract SDoH events, includ-
ing NER, RC, and Subtype Classification models, which results in a
new state-of-the-art performance for the N2C2 data. In future
efforts, we aim to enhance our NER model by utilizing structured
knowledge bases through demonstration-based learning,’® such as
providing the sentence of task demonstrations or entity type descrip-
tions instead of just using simple entity type markers for in-context
learning. This can easily be integrated into our framework and we

hypothesize that it would help low-resource entities.
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