UTSA NLP at SemEval-2022 Task 4: An Exploration of Simple Ensembles
of Transformers, Convolutional, and Recurrent Neural Networks

Xingmeng Zhao and Anthony Rios
Department of Information Systems and Cyber Security
University of Texas at San Antonio
San Antonio, TX

{xingmeng. zhao,

Abstract

The act of appearing kind or helpful via the
use of but having a feeling of superiority con-
descending and patronizing language can have
have serious mental health implications to those
that experience it. Thus, detecting this conde-
scending and patronizing language online can
be useful for online moderation systems. Thus,
in this manuscript, we describe the system de-
veloped by Team UTSA SemEval-2022 Task
4, Detecting Patronizing and Condescending
Language. Our approach explores the use of
several deep learning architectures including
RoBERTa, convolutions neural networks, and
Bidirectional Long Short-Term Memory Net-
works. Furthermore, we explore simple and
effective methods to create ensembles of neu-
ral network models. Overall, we experimented
with several ensemble models and found that
the a simple combination of five RoBERTa
models achieved an F-score of .6441 on the
development dataset and .5745 on the final test
dataset. Finally, we also performed a compre-
hensive error analysis to better understand the
limitations of the model and provide ideas for
further research.

1 Introduction

Patronizing and condescending language (PCL)
generally appears as an act to hold a superior at-
titude, resulting in language that “talks down” to
others. For instance, PCL may describe someone in
a power position as the potential “savior” of a vul-
nerable community (e.g., "A donation of one dollar
can save a life”’), masquerading a sense of superior-
ity as compassion. There has been recent research
suggesting that PCL can have adverse effects on
the mental health of individuals (Giles et al., 1993;
Shaw and Gordon, 2021), particularly in the con-
text of ageism. While there has been substantial
research on PCL in various contexts (Huckin, 2002;
Komrad, 1983; Giles et al., 1993; Shaw and Gor-
don, 2021), unfortunately, there have been few ef-
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forts to develop PCL detectors in the field of Natu-
ral Language Processing (NLP). Hence, this paper
describes our team’s (UTSA NLP) contributions on
the SemEval-2022 Task 4 (Pérez-Almendros et al.,
2022) that introduced a new dataset for detecting
PCL language.

NLP has investigated a broad spectrum of prob-
lematic language usages, such as hate speech (Vid-
gen et al., 2021), sarcasm language (Bamman and
Smith, 2015), fake news (Hu et al., 2021), and the
spread of rumors and disinformation. However,
PCL has only recently been explored in the NLP
community (?). To alleviate this issue, SemEval-
2022 Task 4 expanded on the work by ?, releasing
a large PCL dataset for two PCL subtasks. Sub-
task 1 focuses on detecting the presence of PCL in
news stories. PCL detection consists of a variety
of sub-problems, for instance, identifying the exact
PCL type expressed post (if any). There are multi-
ple technical challenges for identifying PCL. For
instance, accurate models must handle imbalanced
data (most news stories do not contain PCL) and
complex semantic understanding to relate shallow
solutions for helping vulnerable populations. For
instance, ? describe “Shallow Solutions™ as a type
of PCL, e.g., “Raise money to combat homeless-
ness by curling up in sleeping bags for one night”.
Nevertheless, for a model to understand this is an
example of PCL, it would need to understand that
“curling up in sleeping bags for one night” is un-
likely to help the general problem of homelessness.
Hence, we hypothesize that different models will
learn to detect different types of PCL with varying
accuracy; thus, combining multiple methods can
result in better performance than a single method.

Overall, this paper describes our system for
Task 1. Specifically, we evaluate multiple com-
bined methods to handle PCL’s complex nature bet-
ter than a single method. Hence, for our methodol-
ogy, we trained a RoBERTa model and two tra-
ditional deep learning models (a Convolutional
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Neural Network and a Long Short-Term Memory
Network) for comparison. In addition, we experi-
mented with different model hyperparameters, ran-
dom seeds, thresholds, and pre-trained word em-
beddings using the performance on the validation
set to assess model variants. Finally, we evaluate
multiple simple, yet effective, methods of combin-
ing the neural network models in an ensemble.

2 Background

Based on the work of ?, the SemEval Task 4 dataset
contains 10,637 news stories about vulnerable peo-
ple published in 20 English-speaking countries,
with a novel PCL taxonomy consisting of three top-
level categories (The savior, The expert, and The
poet) and seven low-level PCL categories describ-
ing the different types of condescension (Perez Al-
mendros et al., 2020). Thet task contains two sub-
tasks: binary classification (subtask 1) and multi-
label classification (subtask 2). The binary classifi-
cation for subtask 1 annotated the data with one of
two categories: PCL and Not PCL. Subtask 2, the
multi-label classification task, categorizes the news
stories into a subset of of seven different PCL cate-
gories: unbalanced power relations, authoritative
voice, shallow solution, presumption, compassion,
metaphor, and the pooer, the merrier. A complete
description of each category can be found in ?.
PCL has been studied in a wide array of con-
texts, from sociolinguistics to healthcare (Huckin,
2002; Komrad, 1983; Giles et al., 1993; Shaw and
Gordon, 2021). However, much of the prior work
has focused on interviews and general qualitative
methods. Thus, automated PCL detection models
can provide social scientists with tools to under-
stand the impact of PCL at scale. For instance,
PCL models would allow linguistics to understand
the implicit language actions related to condescen-
sion and aid social scientists in researching the link
between condescension and other characteristics
like gender or socioeconomic status because these
superior attitudes and discourse of pity can rou-
tinize discrimination and make it less visible(Ng,
2007). However, much of the research on harm-
ful language in NLP has concentrated on the ex-
plicit, offensive, and apparent phenomena like false
news identification, trustworthiness prediction and
fact-checking, modeling offensive language, both
generic and community-specific (Vidgen et al.,
2021; Zampieri et al., 2019; Schmidt and Wiegand,
2019); or how rumors spread (Ma et al., 2017). Re-

cently, some work on condescending language has
begun to surface. For example, based on the chal-
lenge that condescension is often undetectable from
isolated discourse because it depends on discourse
and social context, Wang and Potts (2019) intro-
duces the task of modeling the phenomenon of con-
descension in direct communication from an NLP
perspective and developing a dataset with annotated
social media messages. Likewise, ? also trained
various baseline models to examine how existing
NLP approaches perform in this task. Although
they observe that recognizing PCL is achievable, it
is still difficult. Hence, the work by ? formed the
basis of SemEval Task 4.

3 System Description

Overall, we developed an ensemble model strat-
egy for the PCL challenge. Specifically, we eval-
uated three individual methods: RoBERTa, Con-
volutional Neural Networks, and Long Short-Term
Memory Networks. Furthermore, we experimented
with various ensemble combinations. Approach-
ing the task we conduct multiple experiments
with a variety neural network architectures us-
ing Convolutional Neural Networks (CNN) (Kim,
2014), Bi-directional long short term memory (BiL-
STM) (Huang et al., 2015), and the pre-trained
transformer-based model, RoBERTa (Liu et al.,
2020). Each model and ensemble method is de-
scribed in the section below.

CNN. We use the CNN model introduced by Kim
(2014). Intuitively, the CNN model learns to extract
predictive n-grams from the text. For the CNN ar-
chitecture, we used filter sizes that span two, three,
and four words. For the activation functions, we
used ReLLU (Glorot et al., 2011). Furthermore, we
only needed two filters for each filter size !. Be-
tween the max-pooled outputs from the convolu-
tional layer and the the full-connected output layer,
we use dropout with the probability set to 0.5 dur-
ing training. The final fully-connected output layer
uses a Softmax activation and outputs class proba-
bilities for PCL or Not PCL. The model was trained
with the Adam optimizer (Kingma and Ba, 2015).
Furthermore, we trained the CNN models with var-
ious learning rates randomly selected from le-4 to
le-3 for a maximum of 35 epochs.

"We experimented with filter normal filter sizes from 100
to 300, but two seemed to perform just as well. We hypothe-
size this is because of the small number of PCL examples in
the dataset.
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BiLSTM. While CNNs only extract informa-
tive n-grams from text, recurrent neural networks
(RNN5s) are able to capture long term dependen-
cies between words. For our RNN method, we
use a Bidirectional Long Short-Term Memory Net-
work (LSTM) (Hochreiter and Schmidhuber, 1997),
specifically we use a variant introduced by Graves
(2012). For the hyper-parameters, we did not use
dropout, trained for a maximum of 35 epochs, and
used variety hidden layer sizes (128, 256, and
512). The models were trained with the Adam op-
timizer (Kingma and Ba, 2015). Furthermore, we
trained the BILSTM models with various learning
rates randomly selected from le-4 to 1le-3.

RoBERTa. In our study we used a variant of
BERT (Kenton and Toutanova, 2019), namely
RoBERTa (Liu et al., 2020) model, which is lighter
and faster. Specifically, we use the roberta-base
variant in the HuggingFace package (Wolf et al.,
2019). We trained the RoBERTa model for 20
epochs with a mini-batch size set to 8 with the
Adam optimizer. The learning rate was initially set
to 2e-5 (other hyper-parameters same as (Liu et al.,
2020)) and the adjusted stepwise linear decay was
used to modify the learning rate through training,
with step sizes of two and three used. Moreover, we
used the last layer’s CLS token which is passed to a
final softmax layer. The model was check-pointed
after each epoch, and the best version was chosen
using the validation data.

Pre-trained Word Embeddings. For the CNN
and BiLSTM models, we compare the following
pre-trained word embeddings: Word2Vec vectors
trained on Google News corpus (Mikolov et al.,
2013), GloVe vectors trained on Wikipedia2014
and Gigaword5 corpus (GLoVe-Word) and Twitter
(GLoVe-Twitter) corpora (Pennington et al., 2014),
and FastText vectors trained on CommonCrawl] cor-
pora (Bojanowski et al., 2017).

Ensemble Model. There has been a wide array of
research showing that ensembles of deep learning
models have are useful for boosting model perfor-
mance (Allen-Zhu and Li, 2020; Peng et al., 2018).
We built different ensemble models by taking an un-
weighted average of the probability outputs of each
of the independently trained models. This includes
models trained with different hyperparameters, e.g.,
hidden state size for the BILSTM models, differ-
ent learning rates, and different random seeds. For
the CNN and BiLSTM, each model was trained on

381

Model Embedding Seed LR HL
CNN  FastText 99 0.002 NA
LSTM Glove_Twitter 99 0.002 128

Table 1: The hyperparameters for the best CNN and
LSTM models found using random search. We report
random seed (Seed), learning rate (LR), and pretrained
embeddings (Embedding), and hidden layer size (HL)
in this table.

four different pre-trained word vectors described
above. The CNN and LSTM models were also
trained on four different random seeds, for each
combination of word embedding and learning rate.
The RoBERTa model was trained with eleven ran-
dom seeds and a number of two different step-wise
learning rate schedulers using step sizes of two and
three. Overall, we trained a total of 46 different
models for the PCL task. Next, we experimented
with two methods of model averaging (i.e., an en-
semble): Ensemble 1 and Ensemble 2.

First, for Ensemble 1, we simply average the top
five model instances—which resulted in different
RoBERTa models trained with different random
seeds and learning step settings, i.e. step sizes of
two with random seed of three; step size of three
with random seed of zero, two, four, or seven. Sec-
ond, for Ensemble 2, we experimented with taking
the top five models combined with the top two
CNN and BiLSTM models, and the hyperparame-
ters (e.g., learning rate and embedding size) of the
best performing models are shown in Table 1.

4 Dataset, Experimental Setup, and
Training Details

For subtask 1, we use the train dataset provided
by the PCL organizers. We choose the best epoch
and the best hyperparameters using performance as-
sessed in terms of F1-score on this development set
based on the random search (Bergstra and Bengio,
2012). We saved the best epoch and best hyper-
parameters for each model variant. For evaluation,
we use the provided test and validation datasets
released by the organizers. We implemented our
models on four GPUs using PyTorch (Paszke et al.,
2019) to train binary classifiers for PCL. We use
Cross-Entropy Loss in all our experiments as the
loss function. We ran the experiments on a server
using a GPU CUDA Version: 11.4. We selected the
epoch based on the F1 score on the development
set to save the best version of each model.
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Figure 1: F1 score distributions for the best CNN,
LSTM and RoBERTa models with the same hyperpa-
rameters, but different random seed values on the de-
velopment dataset. SS stands for the learning rate step
size.

To build a basis for comparison, all models were
trained using the training data provided by the
task organizers and evaluated against the provided
validation dataset. The best-performing models
were then submitted for evaluation against the test
dataset during the task evaluation period. The train-
ing method was repeated three times for CNN and
LSTM and eleven times for Roberta, each with
a new random seed. This is because changing
the random seed used in fine-tuning RoBERTa
models can provide significantly different out-
comes, even if the models are similar in terms
of hyper-parameters (Dodge et al., 2020). The
best-performing hyperparameters in each model
were saved for the remainder of the ensemble study.
We examined three random seeds (17, 42, and 99)
for the best CNN and LSTM models, with stan-
dard deviations .0283 and .0082, respectively. We
also evaluated ten random seeds for the ROBERTa
model with step sizes of 2 and 3, yielding stan-
dard deviations for variance of .0116 and .0197,
respectively. The distribution of each model’s per-
formance for different random seeds is shown in
Figure 1.

We attempted to build a robust ensemble clas-
sifier with softmax output aggregation. For the
ensemble model, the default threshold for interpret-
ing probabilities as class labels is 0.5, but due to
the imbalanced classification problem, we adjust
the optimal threshold range from 0.1 to 0.9 when
converting probabilities to class labels. We found
the optimal probability threshold of CNN, LSTM,
and RoBERTa that resulted in the best F1 score on
the validation dataset were .1, .35, and .35, respec-
tively.An optimal threshold was also chosen for the
ensemble model, which was found to be .35.

AVGP. AVGR. AVGF1

step_size =2 .5948 5738 .5826

RoBERTa o size=3 6006 5916  .5952
GoogleNews 2542 .7085 3733

CNN FastText 2738 5729 3653
Glove_Word 2253 4640 .3031
Glove_Twitter .2070 .6549 3132

GoogleNews .3250 4087 .3609

. FastText 3659 4020 3810
BiLSTM Glove_Word 3525 4271 .3831
Glove_Twitter 3745 .3953 .3821

Table 2: Average precision (AVG P.), average recall
(AVG R.), and average F1 (AVG F1) for each model.

step_size seed Prec. Rec. F1

Development Results

0 6103  .6533 6311

3 4 6263 5980 6118

RoBERTa 2 6029 6181 .6104
7 6277  .5930  .6098

2 0 5980 .6131 .6055

Ensemble 1 — —  .6215 6683 .6441
Ensemble 2 — —  .6093 .6583 .6328

Test Results

Ensemble 1 — —  .5412 5804 5601
Ensemble 2 — — 5599 .5899 .5745

Table 3: Individual models in the best ensemble, and
overall ensemble performance on the development and
test datasets.

5 Results

Table 2 shows the average recall, precision, and F1
score. The scores are averaged across the different
random seeds and hyperparameters used to train
the models. Overall, we notice that the RoOBERTa
model outperforms both the CNN and BiLSTM
models by more than 20%. For the CNN model,
we find that the GoogleNews word embeddings
perform best. However, for the BiLSTM model,
we find that the model performs similarly across
all pretrained embeddings, with the Glove Word
embeddings slightly outperforming others.

In Table 3 we report the results of the two ensem-
ble models: Ensemble 1 (only RoOBERTa Models)
and Ensemble 2 (Combining RoOBERTa with the
CNN and RNN models). On the development set,
we find that that a single RoOBERTa model achieves
an F1 of .6311, with the next best four models
achieving an F1 of around .61. The F1 of Ensem-
ble 1 improves on the best RoOBERTa models result
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Figure 2: F1 score for different sized ensembles on the
development dataset.

by more than 1%. Ensemble 2 only improves on the
Best F1 by .1%. However on the final test set, we
find that the differences is not meaningful, with En-
semble 2 slightly outperforming Ensemble 1 (.56
vs. .57).

Next, in Figure 2 we report the results of aver-
aging different number of models in our ensemble.
More specifically, we evaluate averaging the best
two models, best three models, and best N mod-
els, for N up to an ensemble of 30 different models.
The model is chosen based on the top N performing
models across all model types and random seeds.
Overall, we see that initially the result of an ensem-
ble of size 1 (i.e., only using the best RoOBERTa
model) has an F1 of around .63. However, that
slowly increases beyond .64 at around the top five
models. After that, the results slow decrease. Over-
all, we find that while a few models with varying
performance improves the results. The more inac-
curate models slowly outweigh the best performing
model, thus decreasing the overall results. How-
ever, we find that the results stabilize around 0.61.
Finally, in Table 4 we measure the number of False
Positives and False Negatives for each of the main
keywords identified in the PCL dataset (e.g., they
keywords are provided by the organizers indicat-
ing a vulnerable group). The model produced 66
false negative predictions and 81 false positives pre-
dictions in total, but most of false positive errors
are come from homeless,in-need, poor families,
and hopeless. And the false negative error occur
more frequently among the homeless, woman, im-
migrant, migrant and disabled topic.

5.1 False Positives and False Negatives

In addition to an exploration of the observation re-
sults, we perform an error analysis by manually

FPs FNs Total PCL Total
homeless 15 9 29 212
poor-families 13 17 38 190
women 3 8 14 233
in-need 15 2 33 226
immigrant 0 4 7 218
hopeless 15 9 26 217
vulnerable 6 4 20 209
migrant 2 3 5 207
disabled 4 7 14 194
refugee 8 3 13 188

Table 4: Summary of the false positives and false nega-
tives found in each of the then PCL types.

comparing the true labels and predictions of En-
semble 1. First, for False Positives, we analyze an
example related to “hopelessness/homelessness™:

FP Example:“The City Without Drugs organi-
sation is still active , as is their YouTube channel
. It features hundreds of videos of drug addicts
being dragged half-conscious through the street
, their faces not blurred , or confessing their al-
leged worthlessness , their hopelessness , their
shame.”

This paragraphs is predicted as PCL, but the
ground-truth is Not PCL. This example indicates
that the Ensemble incorrectly identifies sentences
as PCL when they contain many PCL-related words
that may be related to PCL-like text (e.g., related
to hopelessness), even when the text is not directly
indicating a feeling of superiority. Another false
positive example is from the “homeless” topics:

FP Example:*“Viral photo helping fund home-
less kid , his dog.”

We can see that the entity of this sentence is a single
individual. This paragraph is recognized as PCL
by the system, maybe because the PCL system be-
lieves it contains the shallow solution (i.e., viral
photo). However, it neglected the fact that financ-
ing a specific homeless child may be realistic, i.e.
it may not be a shallow solution for a single per-
son. Perez Almendros et al. (2020) also mention
that shallow solutions are also often overlooked
by RoBERTa, where recognizing shallow solutions
in the text requires external knowledge of the sit-
uation and the needs of those affected. Thus, a
large number of false positive results are generated
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by misidentifying the entities and the relationship
between patronizing and condescending language.
Next, we look at a False Negative:

FN Example: “Charity plans to forgo parking
so homeless can have gym and medical centre.”

Here we find another issue with shallow solutions.
Specifically, the model is not able to associate the
proposed procedure as not being a method of really
addressing homelessness. Specifically, the PCL
system unaware that “forgoing parking” is not a
complete solution to help homeless people, which
is a simple and superficial philanthropic effort that
is unlikely to make a significant difference on vul-
nerable communities. The second example of a
false negative concerns presuppositions. People
need to decide whether the assumption made is
reasonable or not for this type of PCL. We found
for the political topic, like immigrant and migrant
topics, there are many preconceived assumptions
in this kind of news. For example, in the following
situation, the author assumes Filipino families are
poor and need assistance based on stereotypes.

FN Example:“But if the Supreme Court gives a
favorable decision for the president , his immi-
gration program would immediately take effect
, changing the lives of eligible Filipino families
and other immigrants.”

This error suggests that the model is incapable of
understanding complex relationships between vul-
nerable communities and ideas. A future interest-
ing research avenue would explore methods for
incorporating relevant knowledge bases, similar to
recent work on common sense generation (Xing
et al., 2021), into transformer models to address
these errors.

6 Conclusion

In this paper, we have presented our submission
for the PCL detection system submitted to the
SemEval-2022 Task 4. Our team are focus on the
subtask1 to identify whether the paragraphs con-
tain the PCL or not. We proposed several ensemble
models that leverages pre-trained word vectors and
three different deep learning architectures. In fu-
ture efforts, we plan to further improve our model
by incorporating structured knowledge bases.
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