

1 **Title**

- 2 • **Full title:** Deep top-down proteomics revealed significant proteoform-level differences
3 between metastatic and non-metastatic colorectal cancer cells
- 4 • **Short title:** Top-down proteomics of colorectal cancer cells

5 **Authors**

6 Elijah N. McCool,^{1,‡} Tian Xu,^{1,‡} Wenrong Chen,^{2,‡} Nicole C. Beller,³ Scott M. Nolan,¹
7 Amanda B. Hummon,^{3,4,*} Xiaowen Liu,^{5,*} Liangliang Sun^{1,*}

8 **Affiliations**

9 ¹Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing,
10 Michigan 48824, United States

11 ²Department of BioHealth Informatics, Indiana University-Purdue University
12 Indianapolis, 719 Indiana Avenue, Indianapolis, Indiana 46202, United States

13 ³Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th
14 Avenue, Columbus, Ohio, United States 43210

15 ⁴The Comprehensive Cancer Center, The Ohio State University, 500 West 12th Avenue,
16 Columbus, Ohio 43210, United States

17 ⁵Deming Department of Medicine, School of Medicine, Tulane University, 1441 Canal
18 Street, New Orleans, LA, United States 70112

19 [‡] Those authors contributed equally to this work.

20 * Corresponding authors.

21 Amanda B. Hummon

22 Email: hummon.1@osu.edu

23 Phone: 1-614-688-2580

24 Xiaowen Liu

25 xwliu@tulane.edu

26 Phone: 1-504-988-9136

27 Liangliang Sun

28 Email: lsun@chemistry.msu.edu

29 Phone: 1-517-353-0498

30

31

32

33

34

35

36

37

38

39

40 **Abstract**

41 Understanding cancer metastasis at the proteoform level is crucial for discovering new
42 protein biomarkers for cancer diagnosis and drug development. We present the first top-
43 down proteomics (TDP) study of a pair of isogenic human non-metastatic and metastatic
44 colorectal cancer (CRC) cell lines (SW480 and SW620). We identified 23,622
45 proteoforms of 2,332 proteins from the two cell lines, representing nearly 5-folds
46 improvement in the number of proteoform identifications (IDs) compared to previous TDP
47 datasets of human cancer cells. We revealed significant differences between the SW480
48 and SW620 cell lines regarding proteoform and single amino acid variants (SAAVs)
49 profiles. Quantitative TDP unveiled differentially expressed proteoforms between the two
50 cell lines and the corresponding genes had diversified functions and were closely related
51 to cancer. Our study represents a pivotal advance in TDP towards the characterization of
52 human proteome in a proteoform-specific manner, which will transform basic and
53 translational biomedical research.

54 **Teaser**

55 Top-down proteomics of colorectal cancer cells provides proteoform-level knowledge
56 about cancer metastasis.

57 **MAIN TEXT**

58 **Introduction**

59 Colorectal cancer (CRC) is the third most common cancer worldwide and has a high
60 mortality rate even with recent improvements in therapies.^{1,2} CRC metastasis is the main
61 cause of CRC-related death. New insights into the molecular mechanisms of CRC
62 metastasis will undoubtedly be beneficial for developing more effective drugs.³⁻⁵
63 Extensive studies have been completed with the goal of understanding CRC metastasis at
64 the transcriptome level, generating tremendous information about the landscape of mRNA
65 across different stages of CRC.^[6,7] However, nucleic-acid-based measurements do not
66 correlate well with protein abundance, which are the primary effectors of function in
67 biology.^[8] Quantitative bottom-up proteomics (BUP) studies of metastatic and non-
68 metastatic CRC cell lines have discovered new protein regulators involved in CRC
69 metastasis.^[4,9,10] BUP usually provides limited information on the proteoforms, which
70 represent all possible protein molecules derived from the same gene resulting from genetic
71 variations, RNA alternative splicing, and protein post-translational modifications
72 (PTMs).^[11,12] Mass spectrometry (MS)-based top-down proteomics (TDP) directly
73 measures intact proteoforms and provides opportunities to study functions of specific
74 proteoforms.^[13,14] Unfortunately, there is still no report in the literature about studying
75 CRC metastasis using TDP, and this study will help to fill that gap.

76 Here, we performed the first deep TDP study of metastatic (SW620) and non-metastatic
77 (SW480) human CRC cell lines, aiming to produce a comprehensive proteoform-level
78 view of the two isogenic CRC cell lines and discover novel proteoform biomarkers of
79 CRC metastasis. We employed four different capillary zone electrophoresis (CZE)-tandem
80 MS (MS/MS) approaches, 1-D CZE-MS/MS, 2-D size exclusion chromatography (SEC)-
81 CZE-MS/MS, 2-D reversed-phase liquid chromatography (RPLC)-CZE-MS/MS, and 3-D
82 SEC-RPLC-CZE-MS/MS analyses of the two cell lines for proteoform identification (ID)
83 and label-free quantification (LFQ), **Figure 1**. For 1-D CZE-MS/MS, each sample was
84 analyzed by CZE-MS/MS in technical triplicate. For 2-D SEC-CZE-MS/MS, each sample

89 was fractionated by SEC into 6 fractions, followed by CZE-MS/MS in technical triplicate.
90 For 2-D RPLC-CZE-MS/MS, we fractionated each sample to 6 or 13 fractions by RPLC
91 and analyzed each LC fraction by single-shot CZE-MS/MS (RPLC 13 fractions) or
92 triplicate CZE-MS/MS measurements (RPLC 6 fractions). For 3-D SEC-RPLC-CZE-
93 MS/MS, 52 LC fractions were collected for each sample, followed by CZE-MS/MS in
94 technical triplicate. From 1-D separation to 3-D separations, the required amount of
95 starting protein materials increased (from 100 μ g to 2 mg) due to the unavoidable sample
96 loss during sample collections and transfers. The TopPIC (version 1.4.0) software was
97 used for data analysis,^[15] and a 1% proteoform-level false discovery rate (FDR) was used
98 to filter the database search results.

99 Results

100 Identification of over 23,000 proteoforms from CRC cells using CZE-MS/MS

101 One long-term goal of TDP is to characterize all the millions of proteoforms in the human
102 body.^[16,17] During the last decade, because of the improvement of proteoform sample
103 preparation, LC and CZE separations, MS and MS/MS, 3,000-5,000 proteoforms
104 corresponding to roughly 1,000 genes can be identified from one human cell line using
105 LC-MS/MS-based platforms,^[18-22] and up to 6,000 proteoform IDs corresponding to 850
106 genes have been reported from an *E. coli* sample using a CZE-MS/MS-based workflow.^[23]
107 Only one TDP study of a human cell line using CZE-MS/MS was reported with the
108 identification of about 500 proteoforms.^[24] Recently, the Kelleher group reported the
109 identification of ~30,000 proteoforms of 1,690 human genes from 21 human cell types and
110 plasma using RPLC-MS/MS-based strategies, representing a milestone in large-scale
111 TDP.^[21] On average, nearly 3,000 proteoforms were identified from one of the 21 human
112 cell types.

113 In this work, we performed the first global TDP study of a pair of isogenic human non-
114 metastatic and metastatic CRC cell lines (SW480 and SW620). Four different strategies
115 were employed, **Figure 1**. We first compared the four different CZE-MS/MS strategies
116 listed in **Figure 1B** in terms of the number and efficiency of proteoform IDs from the
117 SW480 cells, **Figure 2A**. SEC-RPLC-CZE-MS/MS outperformed SEC-CZE-MS/MS,
118 RPLC-CZE-MS/MS, and CZE-MS/MS in terms of the number of proteoform IDs due to
119 better LC fractionation (2-D LC vs. 1-D or no LC) and much more CZE-MS/MS runs (52
vs. 6 and 13). In terms of the proteoform identification efficiency (the number of
120 proteoform IDs per CZE-MS/MS run), the SEC-CZE-MS/MS (6 LC fractions) produced
121 nearly 700 proteoform IDs per run, which is nearly 6-fold and 4-fold higher than those
122 from SEC-RPLC-CZE-MS/MS and CZE-MS/MS, respectively. We drew two conclusions
123 from the data. First, multi-dimensional separation is crucial for large-scale TDP analysis
124 of human cell lysates due to their extremely high complexity. Second, SEC-CZE-MS/MS
125 and RPLC-CZE-MS/MS under an optimized condition are powerful techniques for deep
126 TDP of human cell lysates with high throughput.

128 In total, we collected over 400 MS raw files using the four CZE-MS/MS-based strategies
129 and identified 23,622 proteoforms of 2,332 proteins from the SW480 and SW620 cell
130 lines with a 1% proteoform-level FDR. The number of proteoform IDs from the CRC cells
131 is about 5-8 fold higher than that reported in previous TDP studies of human cancer cells
132 (23,622 vs. 3,000-5,000 proteoforms).^[18-20] 17,316 and 14,504 proteoforms (on average
133 15,910 proteoforms) were identified from SW480 and SW620 cell lines, respectively,
134 representing about 3-fold improvement in the number of proteoform IDs per human cell

line compared to previous LC-MS/MS-based TDP datasets. The number of proteoform IDs is about 30-fold higher than previous human cell TDP datasets by CZE-MS/MS (~16,000 vs. ~500).^[24] **Figure 2B** shows the number of proteoform IDs per complex sample using TDP in previous works and this study.^[18-23] **Table S1** summarizes the details of those studies.

We need to point out that the nearly 16,000 proteoform IDs from SW480 or SW620 cells combine the results of four different CZE-MS/MS-based strategies and about 200 CZE-MS/MS runs. The previous literature studies typically employ one LC-MS/MS or CZE-MS/MS-based approach.^[18-23] We also included the data of SW480 and SW620 cells from only SEC-CZE-MS/MS in **Figure 2B**. A total of 5,855 and 6,273 proteoforms (mean±standard deviation: 6,064±296) were identified from SW480 and SW620 cells, respectively, by SEC-CZE-MS/MS, via 18 CZE-MS/MS runs (6 SEC fractions × 3 CZE-MS/MS runs/fraction). The SEC-CZE-MS/MS produced significantly higher proteoform IDs (6,000 vs. 3,000-5,000) from a single human cell line than LC-MS/MS-based approaches in the literature with a drastically lower number of MS runs (18 vs. 40-800).

The data clearly demonstrate the power of our CZE-MS/MS-based TDP strategy for comprehensive characterization of proteoforms in complex proteome samples. We attribute the drastic improvement of proteoform IDs to the high separation efficiency of CZE for proteoforms,^[25] high sensitivity of CZE-MS for proteoform detection,^[25-27] and high orthogonality of LC and CZE for biomolecule separations.^[23,28] The features of CZE-MS/MS for TDP have been systematically reviewed recently.^[29,30] The list of identified proteoforms is shown in **Supplementary Material II**.

We further compared the proteoforms and proteins identified from the SW480 and SW620 cells using the SEC-CZE-MS/MS data. **Figure 2C** shows the heat map of proteoform overlaps among technical replicates of SW480 and SW620 cells. About 60-70% of proteoforms identified in one technical replicate of SW480 or SW620 cells were also identified in another replicate of the same cell line, indicating reasonable reproducibility of proteoform ID using SEC-CZE-MS/MS and the data-dependent acquisition mode. **Figure S1** shows base peak electropherograms of triplicate CZE-MS/MS measurements of the SW620 cell lysate (one SEC fraction), indicating good reproducibility of CZE-MS/MS for complex proteome samples regarding separation profile and base peak intensity. Interestingly, only about 40-50% of proteoforms identified in one replicate of SW480 cells (e.g., SW480_1) were identified in one replicate of SW620 cells (e.g., SW620_1). The proteoform overlaps in **Figure 2C** between the two cell lines are statistically significantly lower than that within each cell line (44±4% vs. 67±4%, $p<10^{-14}$, two-tailed student's t-test). The data clearly demonstrate that the pair of isogenic human non-metastatic (SW480) and metastatic (SW620) CRC cell lines have significantly different proteoform profiles. The two cell lines are also significantly different at the protein level, as demonstrated by the protein overlaps shown in **Figure S2**. The difference in protein overlaps between the two cell lines and within each cell line is statistically significant (69±8% vs. 83±3%, $p<10^{-6}$, two-tailed student's t-test).

TDP has some technical challenges for the identification of large proteoforms (i.e., >30 kDa). In this work, we focused on the characterization of proteoforms smaller than 30 kDa using a Thermo Q-Exactive HF mass spectrometer. **Figure S3** shows the mass distribution of identified proteoforms from SW480 and SW620 cells. The majority of identified proteoforms are 10 kDa or smaller, which is one main limitation of this study. It is worth

181 noting that 1600-2200 proteoforms have masses larger than 10 kDa. **Figure 2D** shows the
182 sequences and fragmentation patterns of two example proteoforms. Those two
183 proteoforms were identified with high confidence and were also well characterized with
184 N-terminal methionine removal and N-terminal acetylation.

185 ***Proteoforms of important genes in well-known CRC-related pathways***

186 We further performed QIAGEN Ingenuity Pathway Analysis (IPA) analysis of the genes
187 identified in this work by the four CZE-MS/MS-based strategies and determined several
188 significantly enriched and well-known CRC-related pathways, including WNT/β-catenin
189 Signaling (p-value: 10^{-3}), PI3K/AKT Signaling (p-value: 10^{-4}), mTOR Signaling (p-value:
190 10^{-14}), and ERK/MAPK Signaling pathways (p-value: 10^{-4}).^[31,32] Those pathways play
191 critical roles in CRC progression via regulating cell proliferation, apoptosis, survival and
192 etc. We identified hundreds of proteoforms from dozens of genes for each pathway,
193 **Figure 3A**. The lists of proteoforms are shown in **Supplementary Material II**.

194 Comparable numbers of proteoforms were identified from SW480 and SW620 cells for
195 PI3K/AKT Signaling, mTOR Signaling, and ERK/MAPK Signaling pathways. An
196 obviously higher number of proteoforms was obtained from SW480 cells compared to
197 SW620 cells for the WNT/β-catenin Signaling pathway (511 vs. 340). Combination of the
198 data from SW480 and SW620 cells produced about 40% more proteoforms related to the
199 four CRC pathways compared to one cell line alone, indicating the potential differences in
200 proteoform profiles for the well-known CRC-related pathways between the non-metastatic
201 and metastatic CRC cell lines. As shown in **Figure 3B**, the shared proteoforms between
202 SW480 and SW620 cells for each pathway is only about 21%-38% of the total
203 proteoforms identified from the two cell lines. The data suggest that proteoforms in those
204 pathways could potentially play important roles in driving CRC progression and
205 metastasis.

206 We highlighted some proteoforms of important genes (MARK2, SOX9, EIF4B, and
207 EIF4EBP1) related to the WNT/β-catenin Signaling, mTOR Signaling, and PI3K/AKT
208 Signaling pathways in **Table 1**. MARK2 plays vital roles in modulating directional cancer
209 cell migration, which is crucial for cancer metastasis.^[33] SOX9 is a high mobility group
210 (HMG) box transcription factor and plays essential roles in regulating CRC
211 progression.^[34] Expression of SOX9 is closely associated with the 5-year overall survival
212 rate of CRC patients.^[34] EIF4B regulates cancer cell proliferation and has been reported as
213 a potential target for developing anti-cancer therapies.^[35] Phosphorylation of EIF4EBP1
214 has been reported as an important regulator of cancer progression.^[36]

215 We identified some phosphorylated proteoforms of those genes, which are unique to either
216 SW480 or SW620 cells, **Table 1**. For example, two phosphorylated proteoforms of
217 MARK2 and Sox9 in the WNT/β-catenin Signaling were exclusively identified in the
218 SW480 cells; two phosphorylated proteoforms of EIF4B in the mTOR Signaling pathway
219 were identified solely in the SW620 cells. SW480 and SW620 cells have different
220 phosphorylated proteoforms of EIF4EBP1 in the PI3K/AKT Signaling pathway. We
221 further manually checked the intensities of those proteoforms in the SW480 and SW620
222 raw files by matching the m/z, charge state, and migration time information from the
223 database search. The proteoform intensity data agree well with the database search results,
224 **Table 1**. For example, the three phosphorylated proteoforms identified solely in SW620
225 cells have roughly 6-60-fold higher intensity in SW620 cells compared to SW480 cells.
226 The extracted ion electropherograms (EIEs) of the two EIF4B phosphorylated proteoforms

227 from triplicate CZE-MS/MS analyses are shown in **Figures S4 and S5**. The data further
228 suggests good reproducibility of proteoform measurements in terms of base peak
229 proteoform intensity from technical triplicates (relative standard deviations (RSDs)
230 $\leq 25\%$). Protein phosphorylation is well known for modulating cancer progression,
231 including CRC. Although the roles of those four genes in regulating cancer progression
232 have been well studied, the specific functions of those phosphorylated proteoforms of the
233 genes have not been investigated. Here, for the first time, we documented the significant
234 differences in protein phosphorylation of those genes between a non-metastatic and a
235 metastatic CRC cell lines in a proteoform-specific manner. Those phosphorylated
236 proteoforms could be central to the progression of CRC metastasis.

237 **Proteoforms with PTMs and single amino acid variants**

238 Protein PTMs modulate their biological function. For example, protein N-terminal
239 acetylation influences the stability, folding, binding, and subcellular targeting of
240 proteins.^[37] Protein phosphorylation is well known for regulating cell signaling, gene
241 expression, and differentiation.^[38] Protein methylation plays important roles in modulating
242 transcription.^[39] All the data analyses in the following parts of the manuscript are based on
243 the combined data from SEC-CZE-MS/MS, RPLC-CZE-MS/MS, and SEC-RPLC-CZE-
244 MS/MS corresponding to 23,319 proteoforms (**Supplementary Material II**) unless
245 specified otherwise.

246 This large-scale TDP study identified 4,872 proteoforms with N-terminal acetylation (+42
247 Da mass shift), 319 proteoforms with phosphorylation [+80 Da (single phosphorylation)
248 or +160 Da (double phosphorylation) mass shift], 321 proteoforms with methylation (+14
249 Da mass shift), and 241 proteoforms with oxidation (+16 Da mass shift), **Figure 4A**. TDP
250 is powerful for the characterization of combinations of various PTMs on proteoforms.
251 Here we identified 54 proteoforms with two phosphorylation sites and 90 proteoforms
252 with both acetylation and phosphorylation PTMs. **Figure 4B** shows the sequences and
253 fragmentation patterns of 28 kDa heat- and acid-stable phosphoprotein (PDAP1) and
254 Calmodulin-1 (CALM1) proteoforms with either two phosphorylation sites or the
255 combination of N-terminal acetylation and one lysine trimethylation. Those PTMs of the
256 two proteins agree with the literature data.^[40, 41] Those two proteoforms were identified
257 with high confidence and were well characterized in terms of PTMs. PDAP1 and CALM1
258 are both prognostic markers of cancer according to the Human Protein Atlas
259 (<https://www.proteinatlas.org/>). However, the potential roles of those specific proteoforms
260 of PDAP1 and CALM1 in cancer are still not clear. The capability of TDP for delineating
261 those proteoforms opens the door of further investigating their potential functions in CRC.

262 One important value of TDP is its capability for delineation of various proteoforms from
263 the same gene (proteoform family).^[42] **Figure 4C** shows one example of *CALM1*
264 proteoform family. CALM1 modulates many enzymes (kinases and phosphatases), ion
265 channels, and many other proteins by calcium-binding. We identified 75 proteoforms of
266 *CALM1*. Nearly 70% of those proteoforms start at the position 2 with the N-terminal
267 methionine removal. Various truncated proteoforms, for example, with the starting
268 positions around 40, 60, 80 and 120, were identified in a much lower frequency. The
269 number of proteoform spectrum matches (PrSMs) can be used to roughly estimate the
270 relative abundance of proteoforms.^[21] For the *CALM1* proteoforms starting from position
271 2, about 90% of the corresponding PrSMs match to proteoforms covering the whole
272 protein sequence (2-149), called intact proteoforms. The PrSMs corresponding to other C-

273 terminally truncated proteoforms only account for 3% or lower. The intact proteoforms
274 have various PTMs, including acetylation/trimethylation, oxidation, and phosphorylation.
275 The intact proteoforms of *CALM1* with a 42-Da mass shift (acetylation/trimethylation) are
276 the most abundant forms; intact proteoforms with additional oxidation (a 58-Da mass
277 shift) or phosphorylation (a 122-Da mass shift) have much lower abundance according to
278 the number of PrSMs of those proteoforms.

279 Cancers result from gene mutations, which produce proteoforms containing amino acid
280 variants (AAVs). Although transcriptomic analysis can provide ample information about
281 gene mutations and possible AAVs on proteins, it is valuable to detect proteoforms
282 containing AAVs directly because gene expression can be regulated post-transcriptionally.
283 BUP has been used for the identification of peptides containing single AAVs (SAAVs)
284 from cancer cells.^[43] The Kelleher group reported the identification of 10 proteoforms
285 containing SAAVs from breast tumor xenografts in one TDP study.^[44] Here we identified
286 111 proteoforms containing SAAVs of 82 genes from the SW480 and SW620 cell lines
287 with a proteogenomic approach with a 5% proteoform-level FDR, representing one order
288 of magnitude improvement in the number of identified proteoforms containing SAAVs
289 compared to previous studies of cancer cells, **Figure 4D**. The SEC-CZE-MS/MS and
290 RPLC-CZE-MS/MS (RPLC 6 fractions) data were used for the analysis. The
291 transcriptomic variants based on the available RNA-Seq data were incorporated into the
292 protein database for the identification of proteoforms containing SAAVs using TopPG, a
293 recently developed bioinformatics tool.^[45] We also manually inspected the MS/MS spectra
294 of proteoforms containing the SAAV sites to ensure high-confidence IDs. Only 20% of
295 the 111 proteoforms were identified from both cell lines, indicating potentially different
296 SAAV profiles between the two cell lines, **Figure 4D**. To confirm the conclusion about
297 SAAV proteoform profile differences, we further analyzed the SAAV containing
298 proteoforms from 1-D CZE-MS/MS, **Figure S6**. Although the number of SAAV
299 proteoforms from SW620 cells is about twice as many as that from SW480 cells, only half
300 of the SW480 SAAV proteoforms are covered by the SW620 ones. Manual evaluation of
301 some SAAV proteoforms exclusively identified from SW480 and SW620 cells in raw MS
302 data supported the conclusion. **Figure S7** shows the EIEs of one TP53 proteoform
303 containing SAAV from triplicate measurements of SW480 and SW620 cells. The TP53
304 proteoform was only identified in SW620 cells via MS/MS and its base peak intensity in
305 SW620 cells was about 8-fold higher than that in SW480 cells (5.6 ± 0.6 E4 vs. 0.7 ± 0.3 E4).

306 **Figure 4E** shows the sequences and fragmentation patterns of two examples of
307 proteoforms containing SAAVs. TP53 is an important tumor suppressor closely related to
308 CRC development, and it is an essential member in WNT/β-catenin Signaling and
309 PI3K/AKT Signaling pathways. We identified one TP53 proteoform containing an AAV
310 at position 72 (P \rightarrow R) due to the codon 72 polymorphism. Studies have shown the
311 functional differences of the P72 and R72 proteoforms of TP53.^[46,47] For example, the
312 R72 proteoform does a markedly better job of inducing apoptosis compared to the P72
313 proteoform.^[46] Another study indicated that the expression of P72 proteoform increased
314 CRC metastasis, and that the R72 proteoform does not exist in the non-metastatic CRC
315 cell line (SW480) based on the nucleic-acid data.^[47] Interestingly, we only identified the
316 R72 proteoform of TP53 in the SW620 cell line, not in the SW480 cell line, from the top-
317 down MS data. *MSH6* is one of the DNA mismatch repair genes and its mutations play a
318 crucial role in Lynch syndrome, which is an inherited form of CRC. We identified one
319 *MSH6* proteoform containing a SAAV due to polymorphism at position 39 (G \rightarrow E). The
320 G39E SAAV has been associated with an increased risk of CRC according to the nucleic-

321 acid data.^[48] We identified G39 proteoforms of MSH6 in both SW480 and SW620 cells,
322 but identified the E39 proteoform only in the SW480 cells, not in the SW620 cells.

323 For the proteoforms containing SAAVs, we further performed QIAGEN Ingenuity
324 Pathway Analysis (IPA) of the corresponding 82 genes. We revealed that 75 of those
325 genes are associated with tumorigenesis of tissue (p-value: 0.0001), and three genes
326 (MSH6, PITX1 and TP53) relate to the development of colon tumor (p-value: 0.002). Five
327 of the genes related to tumorigenesis of tissue (AURKA, EIF5A, PFKFB3, POLE4, and
328 TP53) are targets of cancer drugs. We further performed IPA network analysis and
329 revealed that 17 out of the 82 genes are involved in a cancer-related network (network
330 score 36), **Figure 4F**, suggesting their crucial roles in cancer and development. The 17
331 genes are highlighted in purple and those proteins belong to several different families,
332 including enzyme (diamond shape, *LARS1*, *PARS1*, *ALDOA*, *MSH6*, and *PPIF*),
333 phosphatase/kinase (triangle shape, *PGAM1*, *SET*, and *PFKFB3*), transcription regulator
334 (oval shape, *TP53* and *PITX1*), and others (circle shape, *PSG1*, *SRP14*, *MAGEB2*, *MT1G*,
335 *MT1H*, *MT1M*, and *ISG15*). Nine of those highlighted proteins have direct (solid line) or
336 indirect (dotted line) interactions with TP53.

337 ***Quantitative TDP of metastatic and non-metastatic human CRC cell lines***

338 We further carried out the first quantitative TDP study of a pair of metastatic (SW620) and
339 non-metastatic (SW480) human CRC cell lines. The cell lysates of SW480 and SW620
340 cells were fractionated by SEC and each fraction was analyzed by CZE-MS/MS in
341 technical triplicate. After database search with TopPIC, we identified roughly 4,000
342 proteoforms per replicate per cell line with a 1% proteoform-level FDR. The overall
343 intensity distributions of identified proteoforms across technical triplicates and the two
344 cell lines are consistent, **Figure S8**. We performed label-free quantification (LFQ)
345 analysis using TopDiff (version 1.3.4), a tool in the TopPIC suite, which reported about
346 1,500 proteoforms with measured intensities in all the six samples (three replicates per cell
347 line and two cell lines). The SEC-CZE-MS/MS system shows reasonably good
348 reproducibility regarding the intensities of shared proteoforms, as evidenced by the strong
349 linear correlations of proteoform intensities between technical replicates of SW480 or
350 SW620 cells (Pearson correlation coefficients: 0.86-0.93), **Figure S9**. The Pearson
351 correlation coefficients of proteoform intensity between SW480 and SW620 cells are
352 statistically significantly lower than that between technical replicates of one cell line
353 (0.71 ± 0.01 vs. 0.90 ± 0.03 , $p < 10^{-10}$, two-tailed student's t-test), indicating significant
354 differences between the two cell lines in terms of proteoform intensity. We used the
355 Perseus software for further data analysis.^[49] The two cell lines can be easily distinguished
356 using the proteoform quantification profiles, **Figure 5A**. Two clusters of differentially
357 expressed proteoforms across the six samples were revealed.

358 According to the volcano plot in **Figure 5B**, 460 proteoforms of 248 proteins showed
359 statistically significant differences in abundance between the two cell lines (FDR < 0.05).
360 Specifically, 244 proteoforms of 152 proteins had higher abundance in the SW480 cell
361 line and 216 proteoforms of 132 proteins had higher expression in the SW620 cell line.
362 **Figure 5B** shows that one HMGN1 proteoform and one RBM8A proteoform have the
363 most significant abundance changes between SW480 and SW620 cells. HMGN1 regulates
364 gene expression and PTMs of core histones, affecting DNA repair and tumor
365 progression.^[50] It has been reported that RBM8A promotes tumor cell migration and
366 invasion in the most common type of primary liver cancer.^[51]

Comparing the overexpressed and underexpressed proteoforms in the two cell lines revealed that 36 genes (e.g., *DAP*, *CALM1*, *HDGF*, *JPT1*, and *NPM1*) have both overexpressed and underexpressed proteoforms in one cell line, suggesting that different proteoforms of the same gene had completely different expression patterns in the two cell lines. **Figure 5C** shows two differentially expressed proteoforms of *DAP* (Death-associated protein 1), one of those 36 genes. It has been reported that *DAP* modulates cell death and correlates with the clinical outcome of CRC patients.^[52] Interestingly, we revealed that one phosphorylated proteoform of *DAP* (~7,607 Da, phosphorylation site S51 or T56) had a higher abundance in SW480 cells and another phosphorylated proteoform (~4,605 Da, phosphorylation site S51) showed higher expression in SW620 cells. Both the S51 and T56 are known to be phosphorylated according to PhosphoSitePlus, with S51 being the most common phosphorylation site of *DAP*. We noted that the differentially expressed proteoforms in this study include phosphorylated proteoforms of several important genes related to CRC, i.e., *RALY*,^[53] *NPM1*,^[54] *DAP*,^[52] and *HDGF*,^[55] **Table S2**. The functions of phosphorylated forms of those four proteins in modulating CRC development are still unclear. However, the differential expressions of those phosphorylated proteoforms in the metastatic and non-metastatic CRC cells suggest their potential roles in regulating CRC metastasis. We also manually checked the MS raw data of three of the phosphorylated proteoforms in **Table S2** (*NPM1*, *RALY*, and *HNRNPK*), and their EIEs are shown in **Figures S10**, **S11**, and **S12**. The results clearly indicate their significantly higher abundance in SW620 cells compared to SW480 cells, agreeing well with the data in **Table S2**.

We highlight several differentially expressed proteoforms of *CALM1*, *JPT1* (HN1), and *EPCAM*. *CALM*-dependent systems play important roles in cancer metastasis.^[56] *JPT1* (HN1) promotes cancer metastasis via activating the NF- κ B signaling pathway.^[57] *EPCAM* is a human cell surface glycoprotein and plays crucial roles in tumor biology, especially CRC.^[58] *EPCAM* has been recognized as an important therapeutic target for cancer. We discovered two *CALM1* proteoforms having significantly higher abundance in SW620 cells compared to SW480 cells; one of them contains K116 trimethylation. We revealed one *CALM1* proteoform showing higher abundance in SW480 cells and the proteoform carries N-terminal acetylation and a 58-Da mass shift between amino acid residues 73 and 89. The 58-Da mass shift can be explained as a trimethylation/acetylation plus oxidation. Three of *JPT1* proteoforms have higher abundance in SW480 cells and one of them contains a 167-Da mass shift between the amino acid residues 66 and 89, where seven serine residues can be phosphorylated according to the PhosphoSitePlus database (<https://www.phosphosite.org/>). The 167-Da mass shift most likely represents a combination of phosphorylation and other PTMs. Interestingly, one *JPT1* proteoform shows higher abundance in SW620 cells. We also observed two *EPCAM* proteoforms having higher abundance in SW480 cells.

We then performed IPA analyses of the genes of those differentially expressed proteoforms between SW480 and SW620 cells. Those genes are heavily involved in cancer-related diseases, for example, tumorigenesis of tissue and metastasis, **Figure 5D**. Five of those proteins (EIF4E, *EPCAM*, *FKBP1A*, *GAA*, and *HSP90AB1*) are drug targets. IPA network analyses revealed that 26 proteins (highlighted in purple) whose proteoforms showed higher abundance in SW480 compared to SW620 were involved in a cancer-related network (score 51), **Figure 5E**. Those proteins belong to several families, including enzyme (diamond shape, e.g., *PARK7* and *FKBP4*), transcription regulator (oval shape, e.g., *FUBP1*), translation regulator (hexagon shape, e.g., *CIRBP* and *EEF1A1*),

415 transporter (trapezium shape, e.g., SLC12A2 and LASP1), and others (circle shape, e.g.,
416 EPCAM and JPT1). Most of those proteins have direct (solid line) and indirect (dotted
417 line) interactions with one another. We also carried out network analysis for the proteins
418 whose proteoforms had higher expression in SW620 cells, and observed high-scores for
419 cancer-related networks. **Figure 5F** shows one cancer-related network (score 54), and 26
420 of those proteins are involved in the network (highlighted in purple). Those proteins
421 include several CRC-related important proteins, NPM1 (oval shape, transcription
422 regulator, located in nucleus), DAP (transcription regulator, located in cytoplasm), and
423 HDGF (square shape, growth factor, located in extracellular space). NPM1 is a crucial
424 protein in the network and many of the highlighted proteins have direct interactions (solid
425 line) with NPM1, for example, PARK7, VIM, and PPIA. NPM1 also has indirect
426 interaction (dotted line) with the NFkB complex, which plays crucial roles in modulating
427 DNA transcription and cell survival. Human NPM1 boosts the activation of NFkB
428 according to Ingenuity relationships from the IPA analysis. Besides NPM1, several other
429 highlighted proteins (e.g., HDGF and DAP) also have indirect interactions with the NFkB
430 complex. For example, NFkB regulates the transcription of *HDGF*, and DAP deactivates
431 the NFkB according to the IPA network analysis results. The IPA analysis also revealed
432 that 13 proteoforms of three genes (EIF4B, EIF4E, EIF4EBP1) in the mTOR Signaling
433 pathway had statistically significant differences in abundance between the SW480 and
434 SW620 cells (**Supplementary Material II**).

435 Discussion

436 TDP is facing technical challenges for deep proteoform profiling of human cells. Although
437 significant technical progresses have been achieved in LC-MS/MS-based TDP during the
438 last two decades, the number of proteoform IDs per human cell line has been stabilized on
439 the level of 3,000 for a decade.^[18-22] Alternative strategies for deep TDP of human cells
440 are needed. CZE-MS/MS has been recognized as one alternative strategy for
441 TDP,^[23,29,30,59] most likely due to the high separation efficiency of CZE and high
442 sensitivity of CZE-MS for proteoform separation and detection. However, the
443 performance of CZE-MS/MS for TDP profiling of human cell proteoforms is limited due
444 to the extremely high sample complexity and limited sample loading capacity of CZE,
445 which is evidenced by the 1D-CZE-MS/MS data of CRC cells in this work and our
446 previous work with the identification of only hundreds of human proteoforms in one
447 run.^[24] In this study, we advanced TDP of human cells drastically in terms of the number
448 of proteoform IDs per human cell line compared to previous LC-MS/MS-based studies
449 (~16,000 vs. ~3,000) via coupling LC fractionations to CZE-MS/MS. This work
450 represents an important progress in TDP, which aims to characterize the human proteome
451 in a proteoform-specific manner (Human Proteoform Project).^[16] We need to highlight
452 that SEC-CZE-MS/MS and RPLC-CZE-MS/MS under optimized conditions will be
453 powerful analytical techniques for deep TDP of human cells with high throughput, **Figure**
454 **2A**. CZE-MS/MS analyses of only six SEC fractions of a SW480 cell lysate produced
455 about 4,000 proteoform IDs and roughly 700 proteoform IDs per CZE-MS/MS run. The
456 data indicate that it is feasible now using LC-CZE-MS/MS (i.e., SEC-CZE-MS/MS) for
457 deep TDP profiling of a large number of human cell types, which will potentially
458 transform basic and translational biomedical research. The MS raw data have been
459 deposited to the ProteomeXchange Consortium via the PRIDE^[60] partner repository with
460 the dataset identifier PXD029703.

461 TDP of metastatic and non-metastatic cells is crucial for discovering new protein
462 biomarkers and providing a more accurate understanding of molecular mechanisms of

cancer metastasis. According to the results from our qualitative and quantitative TDP of SW480 and SW620 cells, we had several conclusions about CRC metastasis. First, CRC cells have a significant transformation in proteoforms and SAAVs after metastasis, evidenced by obvious differences of proteoform and SAAV profiles between SW480 and SW620 cells. Second, different proteoforms from the same cancer-related gene (e.g., DAP, CALM1, HDGF, JPT1, RALY, and NPM1) may have potentially varied biological functions in modulating CRC metastasis, because they show opposite expression profiles between the SW480 and SW620 cells, **Figure 5B**. Some proteoforms of those genes have higher abundance in SW480 cells; some of their proteoforms show higher expression in SW620 cells. Third, PTMs (i.e., phosphorylation) of important cancer-related genes (i.e., DAP, HDGF, JPT1, RALY, NPM1, MARK2, SOX9, EIF4B, and EIF4EBP1) could play important roles in regulating CRC metastasis, evidenced by the significant abundance differences of phosphorylated proteoforms from those genes between the SW480 and SW620 cells. The differentially expressed proteoforms, especially those with PTMs, of important cancer-related genes could be novel proteoform biomarkers of CRC metastasis. Fourth, proteoforms of genes in well-known CRC-related pathways (WNT/β-catenin Signaling, PI3K/AKT Signaling, mTOR Signaling, and ERK/MAPK Signaling) are different between SW480 and SW620 cells, and those proteoforms could play vital roles in modulating CRC metastasis.

Our TDP strategies still have some technical limitations. One relates to the identification of large proteoforms. In this work, we focused on the characterization of proteoforms smaller than 30 kDa. CZE-MS/MS has much lower sample loading capacity compared to RPLC-MS/MS (nL vs. μL), resulting in a limited mass of protein materials that can be injected for measurements with CZE-MS/MS. This issue is particularly severe for the characterization of large proteoforms in a complex proteome sample because large proteoforms tend to have drastically lower signal-to-noise ratios than small proteoforms due to the much wider charge state distributions. Highly efficient size-based fractionation techniques must be employed to enrich large proteoforms before CZE-MS/MS. Additionally, more effort needs to be made to improve the sample loading capacity of CZE-MS/MS via investigating online sample stacking techniques or solid phase microextraction (SPME) methods. Another limitation relates to the extensive fragmentation of proteoforms for accurate localization of PTMs. The backbone cleavage coverage of proteoforms from commonly used collision-based fragmentation techniques (i.e., collision-induced dissociation (CID) and higher energy collision dissociation (HCD)) is limited. We expect that coupling our LC-CZE-MS/MS technique to a mass spectrometer with electron- or photon-based gas-phase fragmentation techniques (i.e., electron-capture dissociation (ECD),^[61] electron-transfer dissociation (ETD),^[62] and ultraviolet photodissociation (UVPD)^[63]) will revolutionize TDP for the Human Proteoform Project.^[16]

Materials and Methods

Materials and Reagents

MS-grade water, acetonitrile (ACN), methanol (MeOH), formic acid (FA) and HPLC-grade acetic acid (AA) were purchased from Fisher Scientific (Pittsburgh, PA). Ammonium bicarbonate (NH₄HCO₃), urea, dithiothreitol (DTT), iodoacetamide (IAA) and 3-(trimethoxysilyl)propyl methacrylate were from Sigma-Aldrich (St. Louis, MO). Hydrofluoric acid (HF, 48-51% solution in water) and acrylamide were purchased from Acros Organics (NJ, USA). Fused silica capillaries (50 μm i.d./360 μm o.d.) were purchased from Polymicro Technologies (Phoenix, AZ). Complete, mini protease inhibitor cocktail (EASYpacks) was from Roche (Indianapolis, IN).

513
514 **Sample Preparation**
515

516 SW480 (catalogue number CCL-228) and SW620 (catalogue number CCL-227) original
517 cell lines were both purchased from ATCC (Manassas, VA) and were cultured in RPMI
518 1640 cell culture medium (Life Technologies Corporation, Grand Island, NY)
519 supplemented with 10% fetal bovine serum (Thermo Scientific, Gaithersburg, MD) and
520 2mM L-glutamine (Invitrogen, San Diego, CA). The cells were incubated at 37°C with
521 5% CO₂ and were passaged every 3-4 days. Both cell lines were last verified by Short
522 Tandem Repeat (STR) sequencing in 2016 and were used within two months after
523 resuscitation from frozen aliquots at -80°C.

524 Upon growing to confluence, cells were harvested and cleansed of remaining cell culture
525 medium via subsequent washing with HPLC grade water (Fisher Scientific, Pittsburgh,
526 PA) and centrifugation for 5-minute intervals at 15000 × g until supernatant was clear.
527 Proteins were then extracted using mammalian cell lysis buffer. Cell lysis buffer consisted
528 of 8 M urea, 50 mM Tris (pH 8.2), 1 mM β-glycerophosphate, 1 mM
529 phenylmethylsulfonyl fluoride, 75 mM sodium chloride, 1 mM sodium fluoride, 1 mM
530 sodium orthovanadate, 10 mM sodium pyrophosphate, and one protease inhibitor cocktail.
531 The reagents for cell lysis buffer were purchased from Sigma-Aldrich and complete
532 EDTA-free protease inhibitor cocktail tablet was purchased from Roche. Lysis buffer was
533 added to the harvested cells which then underwent sonication on ice three times for 1-
534 minute intervals at 15% amplitude. The resulting extracted proteins were then clarified of
535 cellular debris by centrifugation at 15,000 rpm for 10 minutes. Proteins were quantified
536 using a bicinchoninic acid (BCA) protein assay (Thermo Scientific Pierce, Rockford, IL)
537 and then stored at -80°C until preparation for MS analysis.

538 SW480 and SW620 proteins were denatured at 37 °C for 30 minutes, reduced at 37 °C for
539 30 minutes using DTT, and then alkylated at room temperature in the dark for 20 minutes
540 using IAA. The excess IAA were quenched by adding DTT and reacting for 5 min at room
541 temperature.

542 **For the experiment 1** (RPLC-CZE-MS/MS), 200 µg of proteins from SW480 and SW620
543 cells were reduced, alkylated, and acidified, followed by RPLC fractionation into 13
544 fractions and CZE-MS/MS. **For the experiment 2** (SEC-RPLC-CZE-MS/MS), 2 mg of
545 proteins from SW480 and SW620 cells were reduced and alkylated before fractionated by
546 SEC-RPLC and analyzed by CZE-MS/MS. **For the experiment 3** (RPLC-CZE-MS/MS),
547 420 µg of proteins from SW480 and SW620 cells were reduced and alkylated prior to
548 fractionation by RPLC into 6 fractions and analyses by CZE-MS/MS. **For the experiment**
549 **4** (SEC-CZE-MS/MS), the samples were desalted after reduction and alkylation using a
550 C4 trap column (4×10 mm, 3 µm particles, 300 Å pore size). Specifically, 500 µg of
551 proteins from SW480 and SW620 cells was loaded onto the column and flushed with
552 mobile phase A (2% (v/v) ACN, 0.1% FA) for 10 minutes at a flow rate of 1 mL/min. The
553 proteins were eluted with mobile phase B (80% ACN, 0.1% FA) for 3 minutes at flow rate
554 of 1 mL/min. The eluates were lyophilized with a speed vacuum and redissolved in 150
555 µL 0.1% formic acid (FA). Then proteins from SW480 and SW620 cells were fractionated
556 by SEC into 6 fractions, followed by CZE-MS/MS analyses. **For the experiment 5** (1D-
557 CZE-MS/MS), 100 µg of proteins from SW480 and SW620 cells were desalted using two
558 methods. In one case, both samples were desalted by a C4 trap column as described in the
559 experiment 4. In the other case, both samples were desalted by Amicon Ultra centrifugal
560 filters with a molecular weight cutoff of 10 kDa. Desalting with centrifugal filter was
561 performed by loading 100 µg of proteins onto the filter and washing the sample four times
562 with 50 mM NH₄Ac at 14,000 × g. Finally, the sample was recovered in 30 µL of 50 mM
563 NH₄Ac. The samples desalted with the C4 trap column and centrifugal filters were
564 analyzed by 1D-CZE-MS/MS in technical triplicate.

563 **Fractionation of the SW480 and SW620 proteome**

564 All separations were performed on a 1260 Infinity II HPLC system from Agilent (Santa
565 Clara, CA). Detection was performed using a UV-visible detector at a wavelength of 254
566 nm. Data was collected and analyzed using OpenLAB software. RPLC (C4, 2.1 × 250
567 mm, Sepax Technologies) and SEC (4.6 × 300 mm, 500 Å pores, Agilent) were performed
568 offline (Agilent HPLC) for prefractionation. Fractions from SW620 and SW480 from
569 experiment 1 (13 fractions × 2 samples), experiment 2 (84 fractions × 2 samples),
570 experiment 3 (6 fractions × 2 samples), and experiment 4 (6 fractions × 2 samples) were
571 analyzed by CZE-MS/MS, respectively.

572 In experiment 1, RPLC was used for sample fractionation with a 0.25 mL/min flow rate
573 and gradient of 0-80% mobile phase (MP) B over 90 minutes (MPA: 2% ACN, 0.1% FA
574 in water; MPB: 80% ACN, 0.1% FA in water). Fractions were collected from 15 to 22
575 minutes (fraction 1) and 22 to 70 minutes (12 fractions, 4 minutes per fraction). For
576 experiment 2, both SEC and RPLC were used for fractionation prior to CZE-MS/MS. For
577 SEC, the flow rate was 0.35 mL/min with a 0.05% TFA mobile phase. 2 mg of proteins in
578 800 μL solution was fractionated by SEC. Fractions were collected from 5-8 minutes
579 (fraction 1) and 8-12.5 minutes (3 fractions, 1.5 minutes per fraction). One RPLC run was
580 performed for each SEC fraction with a flow rate of 0.25 mL/min and gradient of 0-80%
581 MPB (MPA: 2% ACN, 0.1% TFA in water; MPB: 10% IPA, 0.1% TFA in ACN) over 90
582 minutes with a 10-minutes equilibration with 100% MPA at the beginning of the
583 separation. Fractions were collected from 20 to 25 minutes (fraction 1) and 25 to 65
584 minutes (20 fractions, 2 minutes per fraction). In experiment 3, RPLC fractionation was
585 carried out using the same mobile phases as in experiment 1, and a 90-minute gradient
586 was used with a 10-minute equilibration with 100% MPA at the beginning of the
587 separation. Fractions were collected from 25 to 55 minutes (fraction 1), 50 to 70 minutes
588 (4 fractions, 5 minutes per fraction), and 70 to 95 minutes (fraction 6). In experiment 4,
589 SEC fractionation was performed with an Agilent Bio SEC-5 column (4.6 × 300 mm, 5
590 μm particles, 500 Å pore size). 220 μg of SW480 and SW620 proteins (1.5 mg/mL, 75
591 μL×2 injections) were loaded into the SEC column and separated isocratically at the flow
592 rate of 0.3 mL/min with 0.1% FA as mobile phase. The first fraction is collected from 5.6
593 to 8.6 minutes. The second to the fifth fraction was from 8.6 to 14.6 minutes with 1.5
594 minutes per fraction. The final fraction was collected from 14.6 to 19.0 min. In the
595 experiments 1-4, samples were dried down and redissolved in 50 mM NH₄HCO₃ (pH 8.0,
596 ~2 mg/mL) for CZE-ESI-MS/MS.

597 **CZE-MS/MS analysis**

598 CZE separation was performed using a CESI 8000 Plus CE system (Beckman Coulter). A
599 commercialized electrokinetically pumped sheath-flow CE-MS nanospray interface (CMP
600 Scientific Corp) was applied for online coupling the CE system and mass
601 spectrometer.^[64,65] A glass emitter (orifice size: 20~30 μm) installed on the interface was
602 filled with sheath buffer (0.2% FA, 10% methanol) to generate electrospray at voltage of
603 2-2.3 kV.

604 A 100 cm LPA coated fused silica capillary (50 μm i.d., 360 μm o.d.) was used for CZE
605 separation in experiments 1, 2, 4 and 5, while a 70 cm LPA coated capillary (50 μm i.d.,
606 360 μm o.d.) was employed for separation in experiment 3. The inner wall of the
607 capillary was coated with LPA based on the procedure described in reference [66]. One
608 end of the capillary was etched with HF to reduce the outer diameter of the capillary to
609 about 70-80 μm based on the procedure described in reference [67]. (Caution: use
610 appropriate safety procedures while handling hydrofluoric acid solutions)

611 In experiments 1, 2, 4 and 5, the capillary (100 cm) was loaded with 500 nL of sample. In
612 experiment 3, the capillary (70 cm) was loaded with ~350 nL of sample. After sample

613 loading, the capillaries were inserted into background electrolyte, containing 5% acetic
614 acid (pH 2.4), and 30 kV voltage was applied at the sample injection end to carry out
615 separations.

616 MS1 and MS2 data were collected on a Q-Exactive HF mass spectrometer (Thermo Fisher
617 Scientific) under data-dependent acquisition (DDA) mode. The temperature of ion transfer
618 tube was set to 320 °C and s-lens RF was 55. MS1 spectra were collected with following
619 parameters: m/z range of 600-2000, mass resolution of 120,000 (at m/z 200), a microscan
620 number of 3, AGC target value of 1E6, and maximum injection time of 100 ms. The top 5
621 most abundant precursor ions (charge state higher than 5, or charge state unassigned and
622 intensity threshold 2E4) in the MS1 spectra were isolated with a window of 4 m/z and
623 fragmented via HCD with NCE of 20%. The settings for MS2 spectra were resolution of
624 120,000 (at m/z 200), a microscan number of 3, AGC target value of 1E5, and maximum
625 injection time of 200 ms. The dynamic exclusion was set to a duration of 30s and the
626 isotopic peaks were excluded.

627 In experiments 2, 3, 4 and 5, each LC fraction was analyzed by CZE-MS/MS in triplicate.
628 In experiment 1, each LC fraction was analyzed by a single CZE-MS/MS run. In total, 410
629 MS raw files with good protein signals were produced from experiments 1, 2, 3, and 4 for
630 database search, including 26 MS raw files from experiment 1 (13 fractions × 2 samples),
631 312 MS raw files from experiment 2 (52 fractions × 2 samples × 3 replicates), 36 MS raw
632 files from experiment 3 (6 fractions × 2 samples × 3 replicates), and 36 MS raw files from
633 experiment 4 (6 fractions × 2 samples × 3 replicates). We need to note that we collected
634 84 fractions × 2 samples in the experiment 2. However, we only observed good protein
635 signals from 52 LC fractions per sample. 12 MS RAW files were collected from the
636 experiment 5 using CZE-MS/MS.

637 ***Data analysis for proteoform identification***

638 All RAW files were analyzed with the TopPIC Suite (version 1.4.0) pipeline.^[15,68] The
639 RAW files were converted into mzML files with msconvert.^[69] Then spectral
640 deconvolution was performed with TopFD (version 1.4.0), which converts precursor and
641 fragment isotope clusters into neutral monoisotopic masses and finds proteoform features
642 by combining precursor isotope clusters with similar monoisotopic masses and close
643 migration times in MS1 scans. The resulting mass spectra with monoisotopic neutral
644 masses were stored in msalign files and the proteoform feature information was stored in
645 text files. The human proteome database was downloaded from UniProt (UP000005640,
646 20350 entries, version October 23, 2019, only reviewed protein sequences were included)
647 and concatenated with a random decoy database of the same size. Each msalign file was
648 searched against the concatenated target-decoy database using TopPIC (version 1.4.0).
649 Cysteine carbamidomethylation was set as a fixed modification, and the maximum
650 number of unexpected modifications was 1. The precursor and fragment mass error
651 tolerances were 15 ppm. The maximum mass shift of unknown modifications was 500 Da.
652 TopPIC reported a list of target and decoy proteoform-spectrum-matches (PrSMs) for each
653 msalign file.

654 The proteoforms identified from all msalign files were merged and filtered with a
655 proteoform-level FDR. First, the target and decoy PrSMs reported from all the msalign
656 files were combined and filtered with a 5% spectrum-level FDR. The PrSMs were then
657 clustered by grouping PrSMs into the same cluster if they were from the same protein and
658 their precursor mass differences were not large than 2.2 Da. The PrSM with the best E-
659 value was selected for each cluster and its proteoform was reported as the representative
660 one for the cluster. The representative target and decoy proteoforms were finally filtered
661 with a 1% proteoform-level FDR.

662 ***Proteoform quantification***

663 There were 18 MS raw files from triplicate CZE-MS/MS analyses of the 6 SEC fractions
664 for the SW480 or SW620 sample in experiment 4. The TopPIC suite pipeline reported a
665 list of target and decoy PrSM identifications for each raw file. Using the methods in the
666 previous section, the PrSM identifications of the 36 MS raw files were merged and a list
667 of proteoform identifications with a 1% proteoform-level FDR were reported. The
668 abundance of a proteoform was computed as the sum of the proteoform abundances in the
669 six SEC fractions, which were reported by TopFD. Proteoform identifications and their
670 abundances were reported for each replicate using this method. Finally, TopDiff (version
671 1.4.0), a tool in TopPIC Suite, was used to match proteoform identifications across the
672 three SW480 replicates and three SW620 replicates.

673 The quantitative results were further analyzed using Perseus software.^[49] The intensities of
674 each proteoform in triplicate CZE-MS/MS runs of SW480 and SW620 were normalized to
675 the intensity of corresponding proteoform from the first run of SW480, converting
676 proteoform intensity to proteoform ratio. Then, proteoform ratios of each run were divided
677 by the corresponding median to make sure the ratios center at 1. After log2 transformation
678 of all the data, the significantly differentially expressed proteoforms were determined by
679 performing t-test analysis (FDR threshold: 0.05, S0: 1) using the Perseus software. The
680 volcano plot [-log(p-value) vs. log2(fold change)] was generated.

681 **Proteogenomic analysis**

682 To generate sample-specific protein sequence databases with genetic variations for
683 SW480 and SW620 cells, two RNA-Seq data sets (SRR8616059 for SW480 and
684 SRR8615459 for SW620)^[70] were downloaded from the Sequence Read Archive (SRA).
685 The GATK pipeline^[71] was employed to align short reads in the RNA-Seq data with the
686 hg38 human genome to call single nucleotide variants (SNVs) and indels, which were
687 further annotated using the gene-based annotation of ANNOVAR^[72] (April 16, 2018).
688 The annotated nonsynonymous SNVs and indels in exons were chosen for generating
689 sample-specific protein sequence databases based on the basic annotation of the hg38
690 human genome in GENCODE^[73]. Two sample-specific protein sequence databases were
691 generated using TopPG^[45] (version 1.0): one for SW480 cells and the other for SW620
692 cells. Each protein sequence database contained both reference protein sequences in the
693 basic annotation of GENCODE and protein sequences with sample-specific variants.
694 There were 74887 entries with 51485 reference sequences and 23402 sequences with
695 variants in the database for SW480 cells and 75665 entries with 51432 reference
696 sequences and 24233 sequences with sample-specific variants in the database for SW620
697 cells. The SW480 and SW620 mass spectra in experiments 3 and 4 were searched against
698 their corresponding sample-specific database using TopPIC (version 1.4.0) with the same
699 parameter setting in Section “Data analysis for proteoform identification”. Using the
700 methods in Section “Data analysis for proteoform identification”, PrSMs identified in each
701 cell line were combined and clustered, and proteoform identifications were filtered by a
702 5% proteoform-level FDR. Identifications with single amino acid variant (SAAV) sites
703 were manually inspected. If a proteoform with SAAV sites contained no unexpected mass
704 shifts or had at least three matched fragment ions between each SAAV site and the
705 unexpected mass shift, it was reported as a confident proteoform identification with
706 SAAV sites.

707 **QIAGEN Ingenuity Pathway Analysis (IPA)**

708 The cancer-related network analysis results shown in Figures 4F, 5E, and 5F were
709 generated through the use of QIAGEN IPA (QIAGEN Inc.,
710 <https://digitalinsights.qiagen.com/IPA>).^[74] Permissions have been granted by QIAGEN to
711 use those copyrighted figures in this publication.

713 **Statistical analysis**

714 Data are presented as mean \pm standard deviations when available. For the statistical
715 analysis of LFQ data of SW480 and SW620 cell lines, we performed both side t-test using
716 the Perseus software [49] to determine the proteoforms with statistically significant
717 abundance difference between the two cell lines with the following settings, S0=1 and
718 FDR = 0.05.

719

720 **References**

1. M. Schmitt, F. R. Greten, The inflammatory pathogenesis of colorectal cancer. *Nat. Rev. Immunol.* **21**, 653-667 (2021).
2. S. K. Rehman, J. Haynes, E. Collignon, K. R. Brown, Y. Wang, A. M. L. Nixon, J. P. Bruce, J. A. Wintersinger, A. Singh Mer, E. B. L. Lo, C. Leung, E. Lima-Fernandes, N. M. Pedley, F. Soares, S. McGibbon, H. H. He, A. Pollet, T. J. Pugh, B. Haibe-Kains, Q. Morris, M. Ramalho-Santos, S. Goyal, J. Moffat, C. A. O'Brien, Colorectal Cancer Cells Enter a Diapause-like DTP State to Survive Chemotherapy. *Cell* **184**, 226-242 (2021).
3. S. D. Markowitz, M. M. Bertagnolli, Molecular Basis of Colorectal Cancer. *N. Engl. J. Med.* **361**, 2449-2460 (2009).
4. A. J. Schunter, X. Yue, A. B. Hummon, Phosphoproteomics of colon cancer metastasis: comparative mass spectrometric analysis of the isogenic primary and metastatic cell lines SW480 and SW620. *Anal. Bioanal. Chem.* **409**, 1749-1763 (2017).
5. B. Zhang, Clinical potential of mass spectrometry-based proteogenomics. *Nat. Rev. Clin. Oncol.* **16**, 256-268 (2019).
6. L. Xu, R. Wang, J. Ziegelbauer, W. W. Wu, R. F. Shen, H. Juhl, Y. Zhang, L. Pelosof, A. S. Rosenberg, Transcriptome analysis of human colorectal cancer biopsies reveals extensive expression correlations among genes related to cell proliferation, lipid metabolism, immune response and collagen catabolism. *Oncotarget* **8**, 74703-74719 (2017).
7. T. Huo, R. Canepa, A. Sura, F. Modave, Y. Gong, Colorectal cancer stages transcriptome analysis. *PLoS One* **12**, e0188697 (2017).
8. B. Zhang, J. Wang, X. Wang, J. Zhu, Q. Liu, Z. Shi, M. C. Chambers, L. J. Zimmerman, K. F. Shaddox, S. Kim, S. R. Davies, S. Wang, P. Wang, C. R. Kinsinger, R. C. Rivers, H. Rodriguez, R. R. Townsend, M. J. Ellis, S. A. Carr, D. L. Tabb, R. J. Coffey, R. J. Slezak, D. C. Liebler, NCI CPTAC, Proteogenomic characterization of human colon and rectal cancer. *Nature* **513**, 382-387 (2014).
9. D. Besson, A. H. Pavageau, I. Valo, A. Bourreau, A. Bélanger, C. Eymerit-Morin, A. Moulière, A. Chassevent, M. Boisdron-Celle, A. Morel, J. Solassol, M. Campone, E. Gamelin, B. Barré, O. Coqueret, C. Guette, A quantitative proteomic approach of the different stages of colorectal cancer establishes OLFM4 as a new nonmetastatic tumor marker. *Mol. Cell. Proteomics* **10**, M111.009712 (2011).
10. D. Ghosh, H. Yu, X. F. Tan, T. K. Lim, R. M. Zubaidah, H. T. Tan, M. C. M. Chung, Q. Lin, Identification of Key Players for Colorectal Cancer Metastasis by iTRAQ Quantitative Proteomics Profiling of Isogenic SW480 and SW620 Cell Lines. *J. Proteome Res.* **10**, 4373-4387 (2011).
11. L. M. Smith, N. L. Kelleher, Consortium for Top Down Proteomics, Proteoform: a single term describing protein complexity. *Nat Methods* **10**, 186-187 (2013).

757 12. L. M. Smith, N. L. Kelleher, Proteoforms as the next proteomics currency. *Science* **359**, 1106-
758 1107 (2018).

759 13. T. K. Toby, L. Fornelli, N. L. Kelleher, Progress in Top-Down Proteomics and the Analysis of
760 Proteoforms. *Annu. Rev. Anal. Chem.* **9**, 499-519 (2016).

761 14. I. Ntai, L. Fornelli, C. J. DeHart, J. E. Hutton, P. F. Doubleday, R. D. LeDuc, A. J. van Nispen,
762 R. T. Fellers, G. Whiteley, E. S. Boja, H. Rodriguez, N. L. Kelleher, Precise characterization
763 of KRAS4b proteoforms in human colorectal cells and tumors reveals mutation/modification
764 cross-talk. *Proc. Natl. Acad. Sci. U.S.A.* **115**, 4140-4145 (2018).

765 15. Q. Kou, L. Xun, X. Liu, TopPIC: a software tool for top-down mass spectrometry-based
766 proteoform identification and characterization. *Bioinformatics* **32**, 3495-3497 (2016).

767 16. L. Smith, J. N. Agar, J. Chamot-Rooke, P. O. Danis, Y. Ge, J. A. Loo, L. Paša-Tolić, Y. O.
768 Tsybin, N. L. Kelleher, Consortium for Top-Down Proteomics, The Human Proteoform
769 Project: Defining the human proteome. *Sci. Adv.* **7**, eabk0734 (2021).

770 17. R. Aebersold, J. N. Agar, I. J. Amster, M. S. Baker, C. R. Bertozzi, E. S. Boja, C. E. Costello,
771 B. F. Cravatt, C. Fenselau, B. A. Garcia, Y. Ge, J. Gunawardena, R. C. Hendrickson, P. J.
772 Hergenrother, C. G. Huber, A. R. Ivanov, O. N. Jensen, M. C. Jewett, N. L. Kelleher, L. L.
773 Kiessling, N. J. Krogan, M. R. Larsen, J. A. Loo, R. R. Ogorzalek Loo, E. Lundberg, M. J.
774 MacCoss, P. Mallick, V. K. Mootha, M. Mrksich, T. W. Muir, S. M. Patrie, J. J. Pesavento, S.
775 J. Pitteri, H. Rodriguez, A. Saghatelian, W. Sandoval, H. Schlüter, S. Sechi, S. A. Slavoff, L.
776 M. Smith, M. P. Snyder, P. M. Thomas, M. Uhlén, J. E. Van Eyk, M. Vidal, D. R. Walt, F. M.
777 White, E. R. Williams, T. Wohlschlager, V. H. Wysocki, N. A. Yates, N. L. Young, B. Zhang,
778 How many human proteoforms are there? *Nat. Chem. Biol.* **14**, 206-214 (2018).

779 18. J. C. Tran, L. Zamdborg, D. R. Ahlf, J. E. Lee, A. D. Catherman, K. R. Durbin, J. D. Tipton, A.
780 Vellaichamy, J. F. Kellie, M. Li, C. Wu, S. M. M. Sweet, B. P. Early, N. Siuti, R. D. LeDuc,
781 P. D. Compton, P. M. Thomas, N. L. Kelleher, Mapping intact protein isoforms in discovery
782 mode using top-down proteomics. *Nature* **480**, 254-258 (2011).

783 19. A. C. Catherman, K. R. Durbin, D. R. Ahlf, B. P. Early, R. T. Fellers, J. C. Tran, P. M. Thomas,
784 N. L. Kelleher, Large-scale top-down proteomics of the human proteome: membrane proteins,
785 mitochondria, and senescence. *Mol. Cell. Proteomics* **12**, 3465-3473 (2013).

786 20. L. C. Anderson, C. J. DeHart, N. K. Kaiser, R. T. Fellers, D. F. Smith, J. B. Greer, R. D. LeDuc,
787 G. T. Blakney, P. M. Thomas, N. L. Kelleher, C. L. Hendrickson, Identification and
788 Characterization of Human Proteoforms by Top-Down LC-21 Tesla FT-ICR Mass
789 Spectrometry. *J. Proteome Res.* **16**, 1087-1096 (2017).

790 21. R. D. Melani, V. R. Gerbasi, L. C. Anderson, J. W. Sikora, T. K. Toby, J. E. Hutton, D. S.
791 Butcher, F. Negrão, H. S. Seckler, K. Srzentić, L. Fornelli, J. M. Camarillo, R. D. LeDuc, A.
792 J. Cesnik, E. Lundberg, J. B. Greer, R. T. Fellers, M. T. Robey, C. J. DeHart, E. Forte, C. L.
793 Hendrickson, S. E. Abbatiello, P. M. Thomas, A. I. Kokaji, J. Levitsky, N. L. Kelleher, The
794 Blood Proteoform Atlas: A reference map of proteoforms in human hematopoietic cells.
795 *Science* **375**, 411-418 (2022).

796 22. W. Cai, T. Tucholski, B. Chen, A. J. Alpert, S. McIlwain, T. Kohmoto, S. Jin, Y. Ge, Top-
797 Down Proteomics of Large Proteins up to 223 kDa Enabled by Serial Size Exclusion
798 Chromatography Strategy. *Anal. Chem.* **89**, 5467-5475 (2017).

799 23. E. N. McCool, R. A. Lubeckyj, X. Shen, D. Chen, Q. Kou, X. Liu, L. Sun, Deep Top-Down
800 Proteomics Using Capillary Zone Electrophoresis-Tandem Mass Spectrometry: Identification
801 of 5700 Proteoforms from the Escherichia coli Proteome. *Anal. Chem.* **90**, 5529-5533 (2018).

802 24. Z. Yang, X. Shen, D. Chen, L. Sun, Toward a Universal Sample Preparation Method for
803 Denaturing Top-Down Proteomics of Complex Proteomes. *J. Proteome Res.* **19**, 3315-3325
804 (2020).

805 25. R. A. Lubeckyj, A. R. Basharat, X. Shen, X. Liu, L. Sun, Large-Scale Qualitative and
806 Quantitative Top-Down Proteomics Using Capillary Zone Electrophoresis-Electrospray
807 Ionization-Tandem Mass Spectrometry with Nanograms of Proteome Samples. *J. Am. Soc.*
808 *Mass Spectrom.* **30**, 1435-1445 (2019).

809 26. E. N. McCool, L. Sun, Comparing nanoflow reversed-phase liquid chromatography-tandem
810 mass spectrometry and capillary zone electrophoresis-tandem mass spectrometry for top-down
811 proteomics. *Se Pu* **37**, 878-886 (2019).

812 27. X. Han, Y. Wang, A. Aslanian, B. Fonslow, B. Graczyk, T. N. Davis, J. R. Yates 3rd, In-line
813 separation by capillary electrophoresis prior to analysis by top-down mass spectrometry
814 enables sensitive characterization of protein complexes. *J. Proteome Res.* **13**, 6078-6086
815 (2014).

816 28. Z. Yang, X. Shen, D. Chen, L. Sun, Improved Nanoflow RPLC-CZE-MS/MS System with High
817 Peak Capacity and Sensitivity for Nanogram Bottom-up Proteomics. *J. Proteome Res.* **18**,
818 4046-4054 (2019).

819 29. D. Chen, E. N. McCool, Z. Yang, X. Shen, R. A. Lubeckyj, T. Xu, Q. Wang, L. Sun, Recent
820 advances (2019-2021) of capillary electrophoresis-mass spectrometry for multilevel
821 proteomics. *Mass Spectrom. Rev.* doi: 10.1002/mas.21714 (2021).

822 30. F. P. Gomes, J. R. Yates 3rd, Recent trends of capillary electrophoresis-mass spectrometry in
823 proteomics research. *Mass Spectrom. Rev.* **38**, 445-460 (2019).

824 31. Z. Koveitypour, F. Panahi, M. Vakilian, M. Peymani, F. S. Forootan, M. H. N. Esfahani, K.
825 Ghaedi, Signaling pathways involved in colorectal cancer progression. *Cell Biosci.* **9**, 97
826 (2019).

827 32. M. G. Francipane, E. Lagasse, mTOR pathway in colorectal cancer: an update. *Oncotarget*
828 **5**, 49-66 (2014).

829 33. A. M. Pasapera, S. M. Heissler, M. Eto, Y. Nishimura, R. S. Fischer, H. R. Thiam, C. M.
830 Waterman, MARK2 regulates directed cell migration through modulation of myosin II
831 contractility and focal adhesion organization. *Curr Biol.* **32**, 2704-2718 (2022).

832 34. B. Lü, Y. Fang, J. Xu, L. Wang, F. Xu, E. Xu, Q. Huang, M. Lai, Analysis of SOX9 expression
833 in colorectal cancer. *Am. J. Clin. Pathol.* **130**, 897-904 (2008).

834 35. D. Shahbazian, A. Parsyan, E. Petroulakis, J. Hershey, N. Sonenberg, eIF4B controls survival
835 and proliferation and is regulated by proto-oncogenic signaling pathways. *Cell Cycle* **9**, 4106-
836 9 (2010).

837 36. Y. Chen, J. Wang, H. Fan, J. Xie, L. Xu, B. Zhou, Phosphorylated 4E-BP1 is associated with
838 tumor progression and adverse prognosis in colorectal cancer. *Neoplasma* **64**, 787-794
839 (2017).

840 37. R. Ree, S. Varland, T. Arnesen, Spotlight on protein N-terminal acetylation. *Exp. Mol. Med.* **50**,
841 1-13 (2018).

842 38. D. E. Kalume, H. Molina, A. Pandey, Tackling the phosphoproteome: tools and strategies. *Curr.*
843 *Opin. Chem. Biol.* **7**, 64-69 (2003).

844 39. D. Y. Lee, C. Teyssier, B. D. Strahl, M. R. Stallcup, Role of protein methylation in regulation of
845 transcription. *Endocr. Rev.* **26**, 147-170 (2005).

846 40. H. Zhou, S. Di Palma, C. Preisinger, M. Peng, A. N. Polat, A. J. Heck, S. Mohammed, Toward
847 a comprehensive characterization of a human cancer cell phosphoproteome. *J. Proteome Res.*
848 **12**, 260-271(2013).

849 41. T. Sasagawa, L. H. Ericsson, K. A. Walsh, W. E. Schreiber, E. H. Fischer, K. Titani, Complete
850 amino acid sequence of human brain calmodulin. *Biochemistry* **21**, 2565-2569(1982).

851 42. Y. Dai, K. E. Buxton, L. V. Schaffer, R. M. Miller, R. J. Millikin, M. Scalf, B. L. Frey, M. R.
852 Shortreed, L. M. Smith, Constructing Human Proteoform Families Using Intact-Mass and
853 Top-Down Proteomics with a Multi-Protease Global Post-Translational Modification
854 Discovery Database. *J. Proteome Res.* **18**, 3671-3680 (2019).

855 43. Z. Tan, J. Zhu, P. M. Stemmer, L. Sun, Z. Yang, K. Schultz, M. J. Gaffrey, A. J. Cesnik, X. Yi,
856 X. Hao, M. R. Shortreed, T. Shi, D. M. Lubman, Comprehensive Detection of Single Amino
857 Acid Variants and Evaluation of Their Deleterious Potential in a PANC-1 Cell Line. *J.*
858 *Proteome Res.* **19**, 1635-1646 (2020).

859 44. I. Ntai, R. D. LeDuc, R. T. Fellers, P. Erdmann-Gilmore, S. R. Davies, J. Rumsey, B. P. Early,
860 P. M. Thomas, S. Li, P. D. Compton, M. J. C. Ellis, K. V. Ruggles, D. Fenyö, E. S. Boja, H.
861 Rodriguez, R. R. Townsend, N. L. Kelleher, Integrated Bottom-Up and Top-Down
862 Proteomics of Patient-Derived Breast Tumor Xenografts. *Mol. Cell. Proteomics* **15**, 45-46
863 (2016).

864 45. W. Chen, X. Liu, Proteoform Identification by Combining RNA-Seq and Top-Down Mass
865 Spectrometry. *J. Proteome Res.* **20**, 261-269 (2021).

866 46. B. Jeong, W. Hu, V. Belyi, R. Rabadan, A. J. Levine, Differential levels of transcription of p53-
867 regulated genes by the arginine/proline polymorphism: p53 with arginine at codon 72 favors
868 apoptosis. *FASEB J.* **24**, 1347-1353 (2010).

869 47. V. R. Katkoori, U. Manne, L. S. Chaturvedi, M. D. Basson, P. Haan, D. Coffey, H. L. Bumpers,
870 Functional consequence of the p53 codon 72 polymorphism in colorectal cancer. *Oncotarget.*
871 **8**, 76574-76586 (2017).

872 48. P. Zelga, K. Przybyłowska-Sygut, M. Zelga, A. Dziki, I. Majsterek, Polymorphism of Gly39Glu
873 (c.116G>A) hMSH6 is associated with sporadic colorectal cancer development in the Polish
874 population: Preliminary results. *Adv. Clin. Exp. Med.* **26**, 1425-1429 (2017).

875 49. S. Tyanova, T. Temu, P. Sinitcyn, A. Carlson, M. Y. Hein, T. Geiger, M. Mann, J. Cox, The
876 Perseus computational platform for comprehensive analysis of (prote)omics data. *Nat.*
877 *Methods* **13**, 731-740 (2016).

878 50. Y. Postnikov, M. Bustin, Regulation of chromatin structure and function by HMGN proteins.
879 *Biochim. Biophys. Acta* **1799**, 62-8 (2010).

880 51. R. Liang, Y. Lin, J. Ye, X. Yan, Z. Liu, Y. Li, X. Luo, H. Ye, High expression of RBM8A
881 predicts poor patient prognosis and promotes tumor progression in hepatocellular carcinoma.
882 *Oncol. Rep.* **37**, 2167-2176 (2017).

883 52. Y. Jia, L. Ye, K. Ji, A. Toms, M. L. Davies, F. Ruge, J. Ji, R. Hargest, W. G. Jiang, Death
884 associated protein 1 is correlated with the clinical outcome of patients with colorectal cancer
885 and has a role in the regulation of cell death. *Oncol. Rep.* **31**, 175-182 (2014).

886 53. L. Sun, A. Wan, Z. Zhou, D. Chen, H. Liang, C. Liu, S. Yan, Y. Niu, Z. Lin, S. Zhan, S. Wang,
887 X. Bu, W. He, X. Lu, A. Xu, G. Wan, RNA-binding protein RALY reprogrammes

888 mitochondrial metabolism via mediating miRNA processing in colorectal cancer. *Gut* **70**,
889 1698-1712 (2021).

890 54. S. Grisendi, C. Mecucci, B. Falini, P. P. Pandolfi, Nucleophosmin and cancer. *Nat. Rev. Cancer*
891 **6**, 493-505 (2006).

892 55. B. Sun, X. Gu, Z. Chen, J. Xiang, MiR-610 inhibits cell proliferation and invasion in colorectal
893 cancer by repressing hepatoma-derived growth factor. *Am. J. Cancer Res.* **5**, 3635-3644
894 (2015).

895 56. A. Villalobo, M. W. Berchtold, The Role of Calmodulin in Tumor Cell Migration, Invasiveness,
896 and Metastasis. *Int. J. Mol. Sci.* **21**, 765 (2020).

897 57. J. Chen, J. Qiu, F. Li, X. Jiang, X. Sun, L. Zheng, W. Zhang, H. Li, H. Wu, Y. Ouyang, X.
898 Chen, C. Lin, L. Song, Y. Zhang. HN1 promotes tumor associated lymphangiogenesis and
899 lymph node metastasis via NF- κ B signaling activation in cervical carcinoma. *Biochem.
900 Biophys. Res. Commun.* **530**, 87-94 (2020).

901 58. A. Armstrong, S. L. Eck, EpCAM: A new therapeutic target for an old cancer antigen. *Cancer
902 Biol. Ther.* **2**, 320-6 (2003).

903 59. A. M. Belov, R. Viner, M. R. Santos, D. M. Horn, M. Bern, B. L. Karger, A. R. Ivanov,
904 Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless
905 Capillary Zone Electrophoresis - Native Mass Spectrometry. *J. Am. Soc. Mass Spectrom.* **28**,
906 2614-2634 (2017).

907 60. Y. Perez-Riverol, A. Csordas, J. Bai, M. Bernal-Llinares, S. Hewapathirana, D. J. Kundu, A.
908 Inuganti, J. Griss, G. Mayer, M. Eisenacher, E. Pérez, J. Uszkoreit, J. Pfeuffer, T.
909 Sachsenberg, S. Yilmaz, S. Tiwary, J. Cox, E. Audain, M. Walzer, A. F. Jarnuczak, T.
910 Ternent, A. Brazma, J. A. Vizcaíno, The PRIDE database and related tools and resources in
911 2019: improving support for quantification data. *Nucleic Acids Res.* **47**(D1), D442-D450
912 (2019).

913 61. Y. Ge, B. G. Lawhorn, M. ElNaggar, E. Strauss, J.-H. Park, T. P. Begley, F. W. McLafferty,
914 Top Down Characterization of Larger Proteins (45 kDa) by Electron Capture Dissociation
915 Mass Spectrometry. *J. Am. Chem. Soc.* **124**, 672-678 (2002).

916 62. N. M. Riley, M. S. Westphall, J. J. Coon, Activated Ion Electron Transfer Dissociation for
917 Improved Fragmentation of Intact Proteins. *Anal. Chem.* **87**, 7109-16 (2015).

918 63. J. B. Shaw, W. Li, D. D. Holden, Y. Zhang, J. Griep-Raming, R. T. Fellers, B. P. Early, P. M.
919 Thomas, N. L. Kelleher, J. S. Brodbelt, Complete protein characterization using top-down
920 mass spectrometry and ultraviolet photodissociation, *J. Am. Chem. Soc.* **135**, 12646-12651
921 (2013).

922 64. R. Wojcik, O. O. Dada, M. Sadilek, N. J. Dovichi, Simplified capillary electrophoresis
923 nanospray sheath-flow interface for high efficiency and sensitive peptide analysis. *Rapid
924 Commun. Mass Spectrom.* **24**, 2554-2560 (2010).

925 65. L. Sun, G. Zhu, Z. Zhang, S. Mou, N. J. Dovichi, Third-Generation Electrokinetically Pumped
926 Sheath-Flow Nanospray Interface with Improved Stability and Sensitivity for Automated
927 Capillary Zone Electrophoresis-Mass Spectrometry Analysis of Complex Proteome Digests. *J.
928 Proteome Res.* **14**, 2312-2321 (2015).

929 66. G. Zhu, L. Sun, N. J. Dovichi, Thermally-initiated free radical polymerization for reproducible
930 production of stable linear polyacrylamide coated capillaries, and their application to
931 proteomic analysis using capillary zone electrophoresis-mass spectrometry. *Talanta* **146**, 839-
932 843(2016).

933 67. L. Sun, G. Zhu, Y. Zhao, X. Yan, S. Mou, N. J. Dovichi, Ultrasensitive and Fast Bottom-up
934 Analysis of Femtogram Amounts of Complex Proteome Digests. *Angew. Chem. Int. Ed.* **52**,
935 13661-13664 (2013).

936 68. X. Liu, Y. Inbar, P. C. Dorrestein, C. Wynne, N. Edwards, P. Souda, J. P. Whitelegge, V.
937 Bafna, P. A. Pevzner, Deconvolution and Database Search of Complex Tandem Mass Spectra
938 of Intact Proteins. *Mol. Cell. Proteomics* **9**, 2772– 2782 (2010).

939 69. D. Kessner, M. Chambers, R. Burke, D. Agus, P. Mallick, ProteoWizard: open source software
940 for rapid proteomics tools development. *Bioinformatics* **24**, 2534– 2536 (2008).

941 70. M. Ghandi, F. W. Huang, J. Jané-Valbuena, G. V. Kryukov, C. C. Lo, E. R. McDonald 3rd, J.
942 Barretina, E. T. Gelfand, C. M. Bielski, H. Li, K. Hu, A. Y. Andreev-Drakhlin, J. Kim, J. M.
943 Hess, B. J. Haas, F. Aguet, B. A. Weir, M. V. Rothberg, B. R. Paolella, M. S. Lawrence, R.
944 Akbani, Y. Lu, H. L. Tiv, P. C. Gokhale, A. de Weck, A. A. Mansour, C. Oh, J. Shih, K.
945 Hadi, Y. Rosen, J. Bistline, K. Venkatesan, A. Reddy, D. Sonkin, M. Liu, J. Lehar, J. M.
946 Korn, D. A. Porter, M. D. Jones, J. Golji, G. Caponigro, J. E. Taylor, C. M. Dunning, A. L.
947 Creech, A. C. Warren, J. M. McFarland, M. Zamanighomi, A. Kauffmann, N. Stransky, M.
948 Imielinski, Y. E. Maruvka, A. D. Cherniack, A. Tsherniak, F. Vazquez, J. D. Jaffe, A. A.
949 Lane, D. M. Weinstock, C. M. Johannessen, M. P. Morrissey, F. Stegmeier, R. Schlegel, W.
950 C. Hahn, G. Getz, G. B. Mills, J. S. Boehm, T. R. Golub, L. A. Garraway, W. R. Sellers,
951 Next-generation characterization of the cancer cell line encyclopedia. *Nature* **569**, 503-508
952 (2019).

953 71. A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella,
954 D. Altshuler, S. Gabriel, M. Daly, M. A. DePristo, The Genome Analysis Toolkit: a
955 MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.*
956 **20**, 1297-1303 (2010).

957 72. K. Wang, M. Li, H. Hakonarson, ANNOVAR: functional annotation of genetic variants from
958 high-throughput sequencing data. *Nucleic acids Res.* **38**, e164-e164 (2010).

959 73. J. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans, F. Kokocinski, B. L. Aken,
960 D. Barrell, A. Zadissa, S. Searle, GENCODE: the reference human genome annotation for
961 The ENCODE Project. *Genome Res.* **22**, 1760-1774 (2012).

962 74. A. Krämer, J. Green, Jr. J. Pollard, S. Tugendreich, Causal analysis approaches in Ingenuity
963 Pathway Analysis. *Bioinformatics* **30**, 523–30 (2014).

964
965 **Acknowledgments**

966 **Funding:** The work was funded by National Cancer Institute (NCI) through the grant
967 R01CA247863 (Sun, Hummon, and Liu). We also thank the support from National
968 Institute of General Medical Sciences (NIGMS) through grants R01GM125991 (Sun and
969 Liu) and R01GM118470 (Liu and Sun). Sun also thanks the support from the National
970 Science Foundation (CAREER Award, Grant DBI1846913). We thank MSU
971 AgBioResearch and Michigan State University for the access to QIAGEN Ingenuity
972 Pathway Analysis (IPA) platform.

973 **Author contributions:** E.N.M. performed the experiments for proteoform identifications
974 using RPLC-CZE-MS/MS and SEC-RPLC-CZE-MS/MS. T.X. performed the experiment
975 for proteoform identification and/or quantification using SEC-CZE-MS/MS and 1D-CZE-
976 MS/MS. W.C. carried out all the database search using TopPIC for proteoform ID and
977 quantification. E.N.M., T.X., and W.C. worked together for data analysis and made the
978 first draft of the manuscript. N.C.B. did all the cell culture and initial sample preparation
979 of SW480 and SW620 cells. S.M.N. performed the LC fractionations. A.B.H., X.L., and

980 L.S. conceived the original idea. X.L. supervised the database search part of the project.
981 L.S. supervised the project. All authors provided comments and contributed to the final
982 manuscript.

983 **Competing interests:** Authors declare that they have no competing interests.

984 **Data and materials availability:** All data needed to evaluate the conclusions in the paper
985 are present in the paper and/or the Supplementary Materials. The MS raw data have been
986 deposited to the ProteomeXchange Consortium via the PRIDE [60] partner repository with
987 the dataset identifier PXD029703.

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

1030

1031

1032

Table 1. Selected proteoforms of important genes related to WNT/β-catenin Signaling, mTOR Signaling, and PI3K/AKT Signaling pathways.

Gene	Pathway	Proteoform	SW480	SW620	Proteoform intensities (SW480/SW620)*
MARK2	WNT/β-catenin Signaling	M.(S)[Acetyl]SARTPLPTLNERDTEQPTLGH LDSK(PSSKSNNMIRGRNSAT)[mass shift: 96 Da, phospho and oxidation]SADEQP HIGNY.R	×	ND	4.8E5/2.8E4
SOX9	WNT/β-catenin Signaling	R.SQYDYTDHQNSSYYSHAAGQGTGLYS TFTYMNPAQRPMYTPPIADTSGV(PSIPQT HS)[mass shift: 78 Da, phospho] PQHWEQPVYTQLTRP.	×	ND	3.0E5/4.6E4
EIF4B	mTOR Signaling	M.AASAKKKNK(KGKTISLTDFL)[mass shift: 122 Da, phospho and acetylation/trimethylation] AEDGGTGGGSTYVSKPVSWADETDD LEGDVSTTWHSNDDDVYRAPPIDRSIL PTAPR.A	ND	×	7.5E4/4.4E5
EIF4B	mTOR Signaling	M.(A)[Acetyl]ASAKKKNKKGKTISLD FLAEDGG(T)[mass shift: 80 Da, phospho]GGGSTYVSKPVSWADET DLEGDVSTTWHSNDDDVYRAPPIDRSIL	ND	×	5.0E4/3.1E5
EIF4EBP1	PI3K/AKT Signaling	.MSGGSS(C)[Carbamidomethylation] SQTPSRAIPAT(RRVVLGDPVQLPPGDY STT)[mass shift: 81 Da, phospho]PGGTLFSTTPGGTRIIYDRKFL ME(C)[Carbamidomethylation]RNSP VTKTPRDLPTIPGVTSPPSDEPPMEAS QSHLRNSPEDKRAGGEESQFEMDI.	ND	×	6.0E4/3.5E6
EIF4EBP1	PI3K/AKT Signaling	K.TPPRDLPTIPGVTS(PSSDEPPMEASQ SHLRNS)[mass shift: 81Da, phospho]PEDKRAGGEESQFEMDI.	×	ND	1.5E5/5.0E4

1033

1034

1035

1036

1037

1038

“x” suggests that the proteoform is identified in the sample. “ND” indicates that the proteoform is not identified in the sample. * The proteoform intensities were observed by manually checking the raw data based on the migration time, charge, and m/z of proteoforms in the database search results. The average intensity of the identified charge state of each proteoform across the proteoform peak is shown in the table.

1039

1040

1041

1042

1043

1044

1045

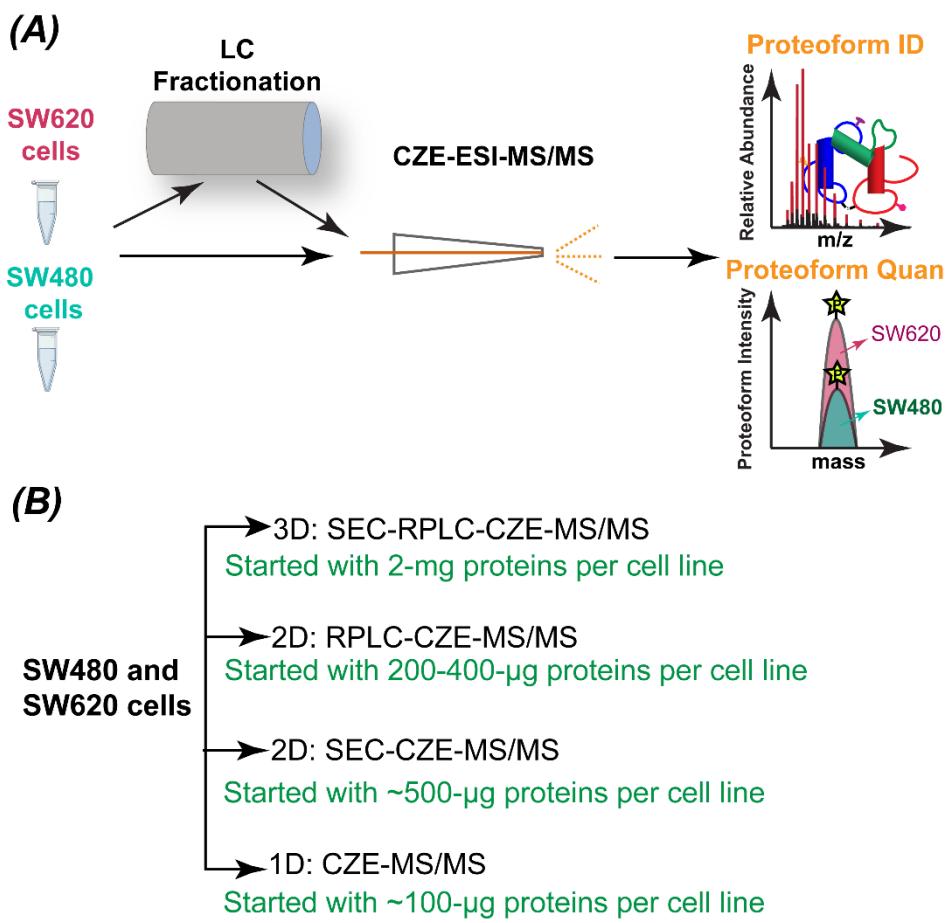
1046

1047

1048
1049
1050
1051
1052
1053 **Figure 1.** Schematic of the experimental design. (A) Schematic design of the TDP study of
metastatic (SW620) and non-metastatic (SW480) CRC cells using CZE-ESI-MS/MS and LC-
CZE-ESI-MS/MS for proteoform identification and label-free quantification. (B) Four CZE-
MS/MS-based strategies in this work with the amounts of protein starting materials.

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069 **Figure 2.** Summary of proteoform identification results of this study. (A) Proteoform IDs from
SW480 cells using different CZE-MS/MS-based strategies. The error bars represent the standard
deviations of the number of proteoform IDs from technical triplicates. (B) The number of
proteoform and protein IDs per complex proteome sample using RPLC- or CZE-MS/MS-based
TDP strategies. The data of studies 5, 6 and 7 are shown as mean \pm standard deviations from
various proteome samples. For example, the mean and standard deviations of proteoform and
protein counts from SW480 and SW620 cells are shown in the studies 6 and 7. (C) Heat map of
proteoform overlaps from technical triplicates of SW480 and SW620 cells using SEC-CZE-
MS/MS. Each number in the figure represents a ratio between the number of shared proteoforms
in two conditions (e.g., SW480_1 (x-axis) and SW620_1 (y-axis)) and the total number of
identified proteoforms in one of the two conditions listed on the y-axis (e.g., SW620_1). For
example, the proteoform overlap between SW480_1 (x-axis) and SW620_1 (y-axis) is 0.4, which
indicates the ratio between the number of shared proteoforms in those two conditions and the total
number of identified proteoforms in SW620_1. (D) Sequences and fragmentation patterns of
identified example proteoforms in the study.

1070
1071
1072
1073
1074 **Figure 3.** Summary of proteoforms from genes involved in well-known CRC-related pathways.
(A) The number of proteoforms and genes in four CRC-related pathways identified from SW480
and SW620 cells. (B) Overlaps of identified and pathway-related proteoforms between SW480
and SW620 cells.


1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097 **Figure 4.** Analyses of the identified proteoforms from CRC cells with PTMs and single amino
acid variants (SAAVs). (A) Proteoforms with various PTMs, including N-terminal acetylation,
phosphorylation, methylation, and oxidation. (B) Sequences and fragmentation patterns of two
proteoforms, one proteoform of PDAP1 with two phosphorylation sites and one proteoform of
CALM1 with N-terminal acetylation and one lysine trimethylation. (C) Summary of all the
identified proteoforms of calmodulin-1 (CALM1) regarding starting positions, relative abundance
based on the number of PrSMs, and PTMs. (D) The number of proteoforms containing SAAVs
identified from the SW480 and SW620 cells and the overlap of those proteoforms. The SEC-
CZE-MS/MS and RPLC-CZE-MS/MS (RPLC 6 fractions) data were used for the analysis. The
error bars in the figure represent the standard deviations of proteoforms from triplicate
measurements. (E) Sequences and fragmentation patterns of two proteoforms containing SAAVs.
(F) SAAVs containing proteoforms correspond to many genes (highlighted in purple) that are
involved in a cancer related network according to the IPA analysis. The diamond, triangle, oval,
and circle shapes represent proteins belonging to enzyme, phosphatase/kinase, transcription
regulator and others, respectively. The solid and dotted lines represent direct and indirect
interactions. Copyright permission has been granted by QIAGEN for using the network data.

1098
1099 **Figure 5.** Summary of the LFQ data of SW480 and SW620 cells from SEC-CZE-MS/MS in
technical triplicate. (A) Heat map and cluster analysis of the quantified proteoforms (~1500
proteoforms) regarding LFQ intensities. A Z-score normalization was employed. The red color
represents high intensity and the blue color indicates low intensity. (B) Volcano plot showing
differentially expressed proteoforms between the two cell lines. The quantified proteoforms
(~1500) were used for the analysis. Red dots and blue dots represent proteoforms having
statistically significantly higher abundance in SW480 and in SW620, respectively. Gene names of

1098 some differentially expressed proteoforms are labeled. The Perseus software was used for
1099 generating the heat map in (A) and Volcano plot in (B) with the following settings (S0=1 and
1100 FDR = 0.05).^[49] (C) Sequences and fragmentation patterns of two phosphorylated proteoforms of
1101 the gene DAP. One has higher abundance in SW480 cells and the other has higher expression in
1102 SW620 cells. (D) An IPA analysis reported some cancer related diseases that are related to the
1103 differentially expressed genes in the two cell lines. Proteoforms with higher abundance in SW480
1104 cells (E) or higher abundance in SW620 cells (F) correspond to genes that are involved in cancer-
1105 related networks with high scores. Those genes are highlighted in purple. The diamond, oval,
1106 hexagon, trapezium, square, and circle shapes represent enzyme, transcription regulator,
1107 translation regulator, transporter, growth factor, and others. The solid and dotted lines represent
1108 direct and indirect interactions. Copyright permission has been granted by QIAGEN for using the
1109 network data.

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

1148
1149
1150

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Figure 1

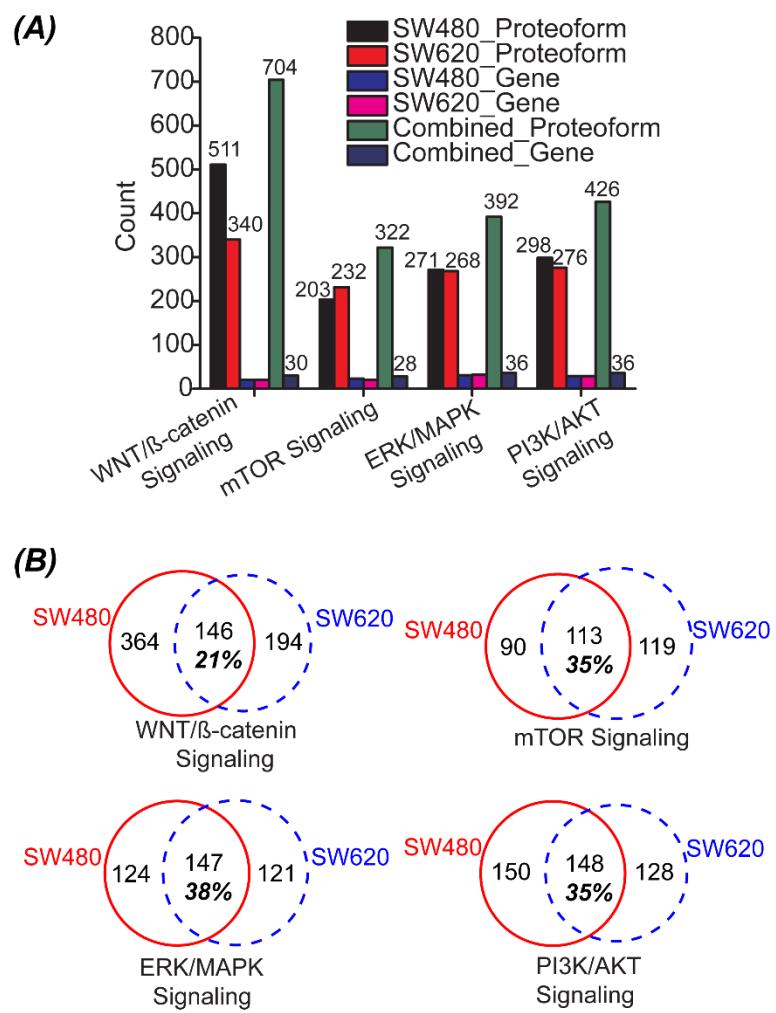
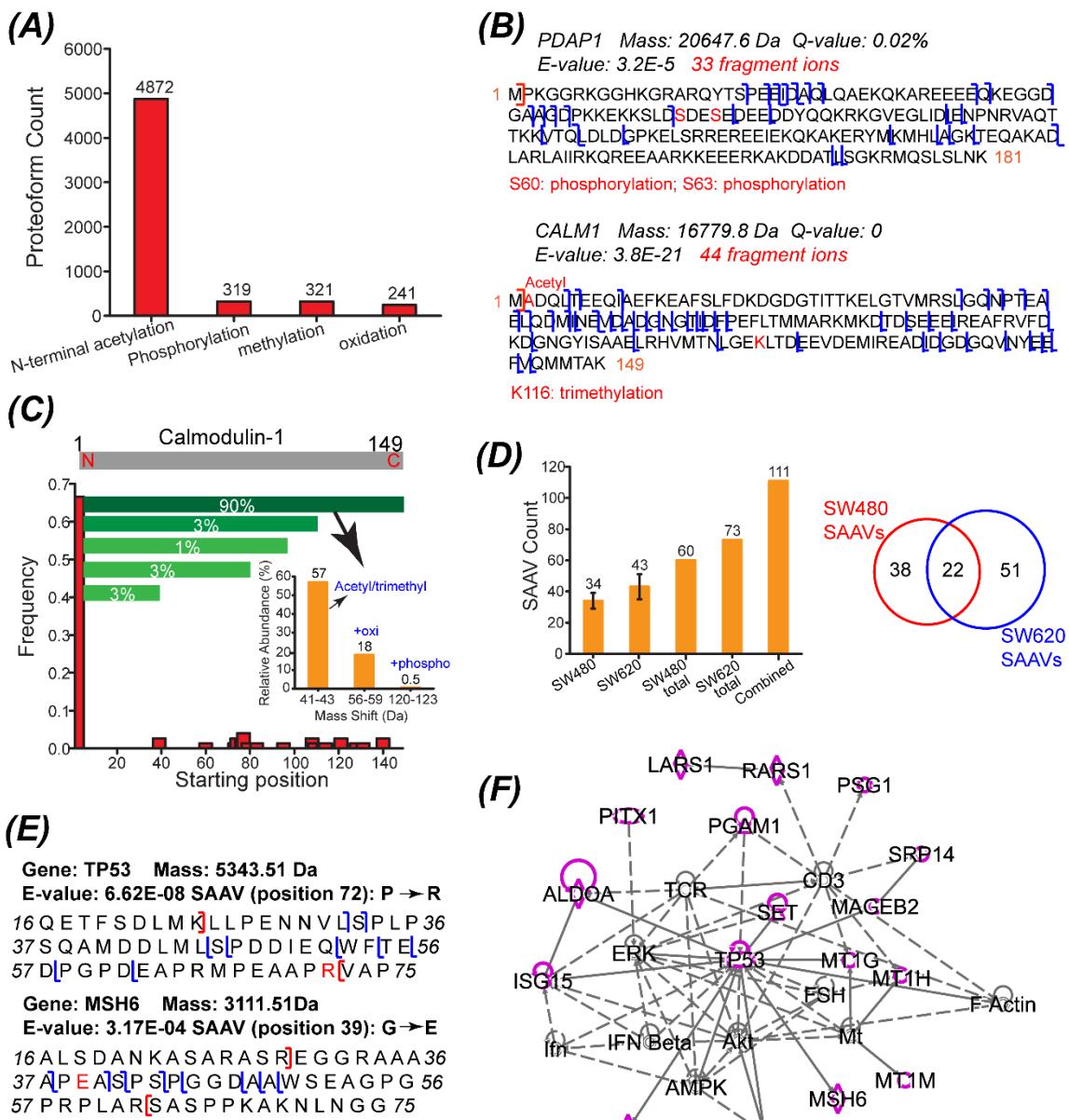
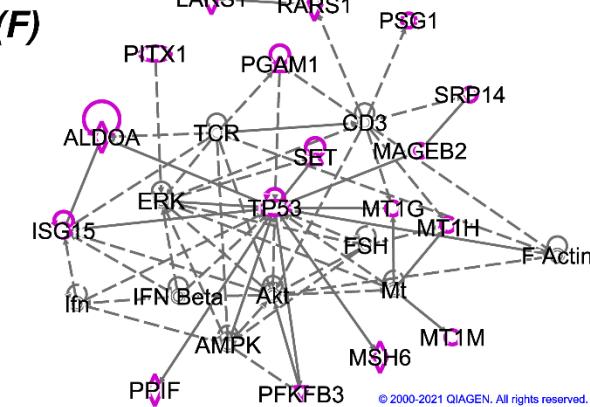


1175
1176

Figure 2

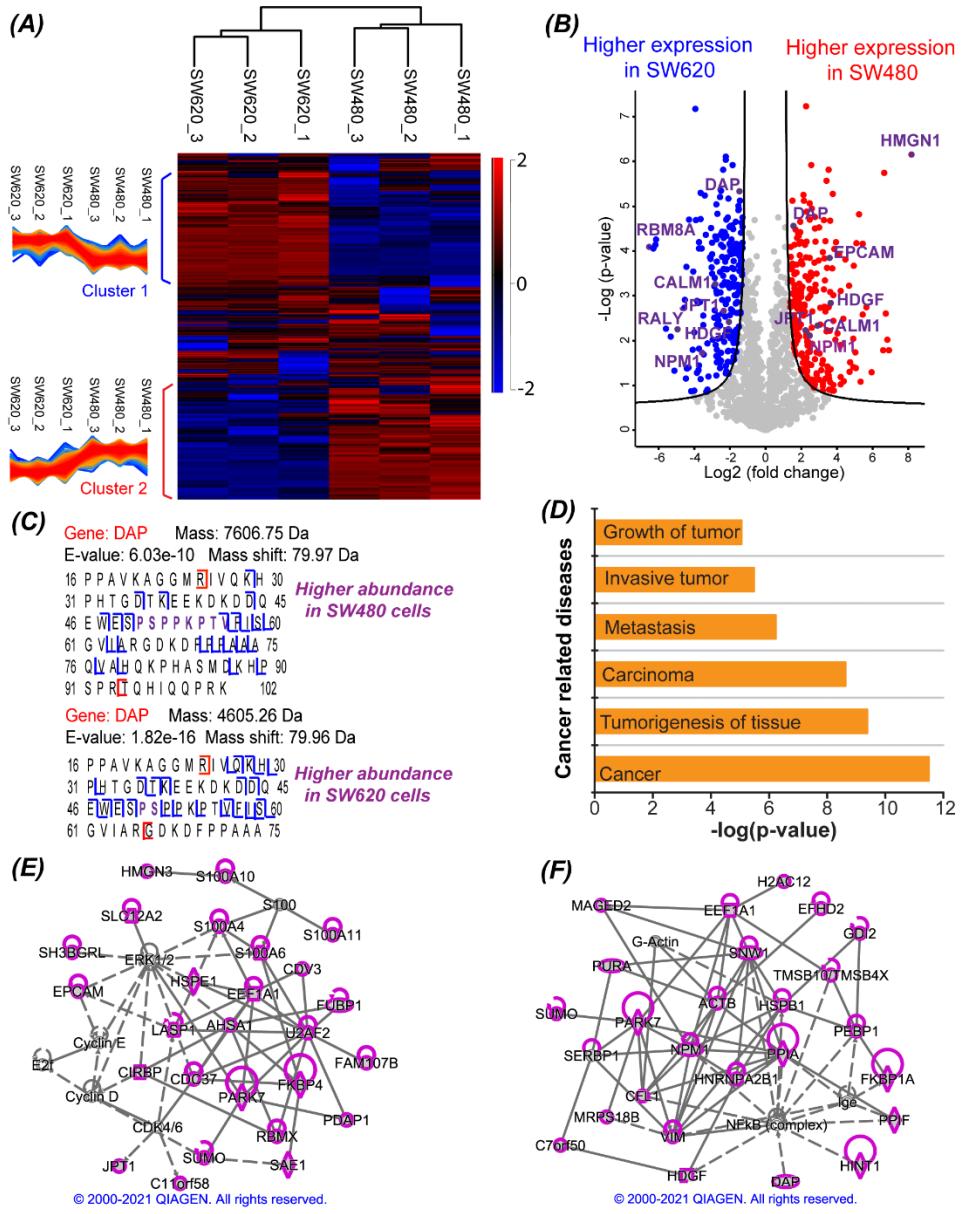

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

1197
1198
1199
1200



1201
1202 **Figure 3**
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219

1220
1221
1222


1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237

© 2000-2021 QIAGEN. All rights reserved.

Figure 4

1238
1239
1240

1241
1242
1243
1244
1245
1246
1247
1248
1249

Figure 5