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Abstract

Hate speech and offensive language are rampant on social
media. Machine learning has provided a way to moderate foul
language at scale. However, much of the current research fo-
cuses on overall performance. Models may perform poorly
on text written in a minority dialectal language. For instance,
a hate speech classifier may produce more false positives
on tweets written in African-American Vernacular English
(AAVE). To measure these problems, we need text written in
both AAVE and Standard American English (SAE). Unfortu-
nately, it is challenging to curate data for all linguistic styles
in a timely manner—especially when we are constrained to
specific problems, social media platforms, or by limited re-
sources. In this paper, we answer the question, “How can
we evaluate the performance of classifiers across minority di-
alectal languages when they are not present within a particu-
lar dataset?” Specifically, we propose an automated fairness
fuzzing tool called FuzzE to quantify the fairness of text clas-
sifiers applied to AAVE text using a dataset that only contains
text written in SAE. Overall, we find that the fairness esti-
mates returned by our technique moderately correlates with
the use of real ground-truth AAVE text. Warning: Offensive
language is displayed in this manuscript.

1 Introduction

Offensive language and hate speech pose a significant
problem on social media. The use of human moderators
does not scale to large online communities (e.g., Twitter).
Furthermore, human moderators may write offensive lan-
guage themselves, thereby corrupting the system. Recent re-
search efforts have focused on annotation theory for offen-
sive language and on developing better classification meth-
ods (Davidson et al. 2017; Zampieri et al. 2019). Unfortu-
nately, as companies put offensive language classifiers into
production, they may be biased against certain minority
groups or linguistic styles (Sap et al. 2019). Yet, fairness is
rarely evaluated before putting systems into production for
a multitude of reasons. For example, a company or research
group may not have the resources to collect data from all
demographics of interest, or worse, data for certain groups
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may simply be unavailable or limited for particular topics or
social platforms.

Many metrics and strategies have been proposed to eval-
uate fairness in recent years (Zliobaite 2015; Hardt et al.
2016; Dixon et al. 2018; Mitchell et al. 2019). Most method-
ologies require ground-truth demographic or linguistic style,
annotations (Park, Shin, and Fung 2018; Badjatiya, Gupta,
and Varma 2019). In the absence of annotated demographic
data, Dixon et al. (2018) propose fuzzing methods to esti-
mate fairness. Fuzzing has traditionally been used in soft-
ware testing to find bugs or security vulnerabilities (Bird and
Munoz 1983). To apply fuzzing to fairness testing, simulated
data is used to analyze how predictions change if the topic
of the tweet stays the same, but the text is slightly altered.
For example, fuzzing techniques will randomly change de-
mographic words (e.g., “He”, “She”, “husband”, or “wife”)
in a tweet without changing its meaning. If the model’s pre-
diction changes by these modifications, then we assume the
model is biased.

Typically, fuzzing techniques for software testing use
blackbox methodologies (Zalewski 2015; Liu et al. 2019).
Yet, the recent fuzzing approaches for fairness relies on
manually created templates. Furthermore, current lexicon-
based fuzzing methods are limited to single lexical items
(e.g., “he” and “she”); complex syntactic constructions are
ignored (e.g., “O-be-V”). Likewise, the manual curation pro-
cess may not capture differences in vocabulary across all
minority dialects. For example, “en” in Spanish translates
to both “in” and “on” in English. Therefore, Hispanic users
may say “Put the soup on the bowl”, rather than saying ‘“Put
the soup in the bowl”. If changing the word “on” to “in”
changes the prediction of an advanced classifier, then the
model is biased. Without expert domain knowledge, creating
fuzzing test cases that capture subtle differences in the use of
prepositions may not be obvious compared to words directly
related to a specific demographic factor (e.g., “him”, “her”,
“hispanic”). Similarly, differences in the use of language be-
tween groups may change over time, further increasing the
difficulty of manual curation.

In this work, we investigate the use of style transfer

to rank classification models with regard to standardized
fairness metrics when minority linguistic styles are miss-



ing from the dataset. Intuitively, if a tweet is written in
Standard American English (SAE), we want to answer the
counterfactual-like question, “What would our model pre-
dict if this tweet was written in AAVE?” This task is im-
portant because depending on the application, sampling pro-
cess, and data source, the text generated by specific minor-
ity linguistic styles may not be adequately represented in a
dataset. Yet, it is important to understand how the model will
perform for these groups. Therefore, this line of research can
help practitioners ethically adopt machine learning method-
ologies without dramatically increasing data annotation and
collection costs. Essentially, we hope to reduce the burden
of evaluating fairness.
Our contributions are summarized below:

1. We present a fairness evaluation framework using fuzzing
called FuzzE. Our framework uses style transfer for
text. Intuitively, by using style transfer, we can generate
AAVE-like text using only SAE data. Our framework can
generate a large number of test cases to evaluate how of-
fensive language classifiers will perform on different lin-
guistic dialects. Moreover, we evaluate the use of multi-
ple style transfer methods to estimate fairness as part of
our framework. Finally, we provide a simple, yet effec-
tive, approach to ensembling multiple style transfer meth-
ods to estimate fairness.

2. We conduct a detailed analysis of the framework using
automatic style transfer evaluation metrics. Moreover, we
measure the increase of well-known phonetic and syntac-
tic AAVE constructions produced by different style trans-
fer techniques after being applied to SAE text. We also
perform a human evaluation study to measure semantic
change (e.g., offensive to not-offensive) encountered by
transforming the style of text.

2 Related Work

In this section, we describe three major areas of related work
relevant to this paper: style transfer, fairness, and offensive
language classification.

Style Transfer. Style transfer originates from computer
vision, where an image is transformed into a specific artis-
tic style, e.g., an image taken by a cell phone can be made
to look like a Van Gogh painting (Gatys, Ecker, and Bethge
2016; Johnson, Alahi, and Fei-Fei 2016). Recently, this idea
has been applied to text. For example, many datasets focus
on transforming text from a positive sentiment to negative
sentiment without changing the underlying topic, or trans-
forming text written from a male’s perspective to the per-
spective of a female. Lample et al. (2019) also transformed
text between different age groups, e.g., text written by some-
one in their 70’s is transformed to look as if it was written
by a teenager.

In this work, we incorporate state-of-the-art style transfer
methods (Li et al. 2018; Prabhumoye et al. 2018) into our
framework for the purpose of ranking systems with respect
to fairness. We note that as new style transfer methods are
developed, they can be applied as a drop-in replacement to
the methods discussed in this paper.
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Fairness. Fairness is an important topic among natural
language processing researchers. Bias has been found in
word embeddings (Bolukbasi et al. 2016; Zhao et al. 2018;
2019), text classification models (Dixon et al. 2018; Park,
Shin, and Fung 2018; Badjatiya, Gupta, and Varma 2019),
and in machine translation systems (Font and Costa-jussa
2019; Escudé Font 2019). In general, each paper focuses
on either testing whether bias exists in various models, or
removing bias from classification models for specific ap-
plications. However, to measure bias and test bias-removal
methods, it is necessary to either annotate or infer the demo-
graphic information for each user.

Our work is most similar to Shen et al. (2018), where the
authors matched words between two genders, races, and po-
litical orientations, then analyze how sentiment predictions
change by swapping specific words. In their work, the mean-
ing between two words must be the same. However, there
are many words that may appear in SAE tweets, but not
AAVE. For example, common proper nouns in SAE tweets
may not be discussed in AAVE text. We argue that relying on
one-to-one translations between word pairs limits our abil-
ity to test the robustness of our models. For example, as
previous stated, simple lexical fairness estimation methods
do not capture subtle differences in the use of prepositions.
Offensive language classification methods should be robust
to slight changes in preposition usage as long as offensive
tweets stay offensive and vise-versa. Moreover, in this work
we focus on fairness ranking whereas Shen et al. (2018)
studied the impact of prediction changes across small groups
of words.

Hate Speech and Offensive Language. Offensive con-
tent is a serious concern for social media companies, gov-
ernment agencies, and online communities. The leading ap-
proach to handle offensive language online is to flag such
content. Many datasets have been collected and annotated
for hate speech and offensive language detection on Twit-
ter (Zampieri et al. 2019; Davidson et al. 2017). Likewise,
offensive language and hate speech lexicons have been cu-
rated to facilitate offensive language detection (Davidson et
al. 2017; Wiegand et al. 2018).

Given the recent interest in classifying offensive lan-
guage, many methods have been proposed to detect it.
Razavi et al. (2010) combined naive Bayes with a multi-
level classification strategy to detect offensive language.
Gambéck and Sikdar (2017) applied convolution neural net-
works, showing significant improvements over logistic re-
gression with ngram-based features.

Recently, dos Santos, Melnyk, and Padhi (2018) use style
transfer to remove offensive language from the text. This is
contrary to work that flags offensive content. While similar
to our paper, our work differs in the final application. Specif-
ically, we want to generate AAVE-like language from SAE
text. The generated tweets should contain offensive words if
they were in the original tweet (i.e., the offensiveness should
remain the same).

3 Datasets

In this section, we provide context on each dataset that we
investigate and describe how they are used for training and
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Figure 1: Workflow for the FuzzE framework.
Style OLID HSOL classes: “Offensive” and “Not Offensive”. HSOL contains
Training SAE 10209 9591 14,509 tweets, each labeled with one of three categories:
SAE 2552 2398 “Hate Speech”, “foensive Language but not Hate Speech”,
Test AAVE 479 7520 and “Not Offensive”. For the purpose of this paper, and to

Table 1: Number of examples in each split of the two offen-
sive language datasets: OLID and HSOL.

evaluating our offensive language detection models with re-
gard to the FuzzE framework.

AAVE Dataset (StyleData). Blodgett, Green, and
O’Connor (2016) originally collected and released more
than 59.2 million tweets by 2.8 million users. Each tweet is
accompanied with inferred linguistic style information. Fol-
lowing the work by Elazar and Goldberg (2018), we limit
our study to all AAVE and SAE tweets with a confidence of
at least 80%. This procedure results in 1.6 million AAVE
tweets. We also randomly sample 5 million SAE tweets.
The datasets reflect “extreme” differences between SAE and
AAVE. We hypothesize that this allows us to test unfair
“edge cases” of the offensive language classification mod-
els. Moreover, we would expect the offensive language clas-
sifier’s predictions to be similar for SAE and AAVE tweets
that do not differ substantially with regard to style and con-
tent; however, this needs to be tested.

StyleData is used to train a Convolutional Neural Network
(CNN) Kim (2014) to classify tweets as being written with
a SAE or AAVE-like style. Furthermore, this dataset is also
used to train the style transfer methods that are used as part
of our FuzzE framework.

Offensive Language Datasets. We investigate style
transfer and fairness evaluation using two datasets: The Of-
fensive Language Identification Dataset (OLID) (Zampieri
et al. 2019) and the Hate Speech and Offensive Lan-
guage (HSOL) Dataset (Davidson et al. 2017). OLID con-
tains 13,240 tweets labeled using a hierarchical annotation
scheme where the top level (task A) differentiates offensive
and not-offensive tweets. The bottom level (task C) cate-
gorizes insults/threats as targeting an individual, group, or
other. For the purposes of this paper, we only utilize the first
level, task A, of the hierarchy. The first level contains two
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standardize the outputs across both datasets, we group “Hate
Speech” and “Offensive Language but not Hate Speech” into
a single “Offensive Language” class.

All AAVE inferred tweets—based on the CNN trained
on StyleData—are removed from the OLID and HSOL
datasets. The AAVE tweets are used for testing. The SAE
tweets in both datasets are split into a training (80%) and
test set (20%). We use the data to train/test the offensive lan-
guage classifiers and rank them with respect to fairness.

4 Method

The models used in this paper fall into two groups: style
transfer and offensive language classification models. The
overall workflow of FuzzE is summarized in Figure 1. In-
tuitively, we propose a tool that takes an offensive language
dataset that only contains SAE text, then transforms the SAE
text into simulated AAVE (SAAVE) text with the help of
style transfer. Both the SAE and SAAVE text are passed to
an offensive language classifier to compare the predictions
and assess fairness. We briefly describe the style transfer and
offensive language models that are part of FuzzE in the fol-
lowing subsections.

4.1 Offensive Speech Model

For the offensive language classifier, we train a Logistic Re-
gression (LR) model. Specifically, we train an L2 regular-
ized LR model using tfidf-weighted unigrams and bigrams.
Using cross-validation, the regularization parameter is op-
timized for each dataset independently. We found the best
regularization parameters for OLID and HSOL to be 0.1 and
1.0, respectively.

4.2 Style Transfer Models

We experiment with four style transfer methods: Back-
translation, Retrieval, Template, and an Ensemble. Each
method is trained to transform SAE text to be AAVE-like
using the StyleData dataset. This section briefly describes



each method we use in our experiments. However, it is im-
portant to note that while we present a few methods, as new
style transfer techniques are developed, they can be plugged
into the FuzzE framework as-is.

Formally, given two datasets X = {x1,...,2,}and U =
{u1,...,u,} in styles s; and so, respectively, we learn a

model that transforms X into U = {i,...,1,} in style

so. The style-modified data U should preserve the semantic
meaning of the sentences in X (i.e., offensive text should
stay offensive after processing it).

Back-Translation (Prabhumoye et al. 2018). The intu-
ition behind back-translation for style transfer is to develop a
representation of the text that (1.) retains the original mean-
ing of the text and (2.) removes, or reduces, the author’s
stylistic characteristics from the text. Thus we transform
the style from SAE to AAVE using a two step approach.
First, following the back-translation framework, we translate
each tweet from English into French. We found the trans-
lation model used in Prabhumoye et al. (2018) to perform
poorly on AAVE text. Therefore, we used Google Translate
to transform all 1.6 million AAVE tweets in the StyleData
dataset to French. French was chosen to align with the orig-
inal back-translation model (Prabhumoye et al. 2018).

Second, given the translated tweets, we train a sequence-
to-sequence model that learns to translate French into a
English text with AAVE-like characteristics. Formally, we
learn a model p(u;|z;) to map between the two styles, s;
and so, where z; represents the vector representation of i-th
french-translated example in style s;. The representation is
defined as

z; = Encoder(x{; 0.) (D

where xf is the Google Translation of the i-th tweet, 0 is
the parameters of the bi-LSTM model, Encoder() represents
a bi-direction LSTM model that takes the French Google
Translated text and generates a vector z;. It is important
to note differences between training and inference. During
training, french-translated tweets in sy (AAVE) are used as
input to the Encoder. However, at test time, french-translated
tweets in s1 (SAE) are used.

Next, given z;, the vector representation of the French
translation from Equation 1, we train a bi-directional LSTM
decoder Decoder(z; 0,), where 0,4 is the parameters of the
bi-LSTM model. Furthermore, following Prabhumoye et
al. (2018), we use global attention at each step ¢ of the gen-
eration processes

N exp(score(hy, hy))
! > icr exp(score(hy, hy))
where h; € R? is the bi-LSTM hidden state for the current
time-step ¢ of the Decoder, ¢ is the dimension of the hid-
den states, and h; € R? represents the Bi-LSTM Encoders
hidden state of the source text (i.e., French text). Likewise,
score(h;, h;) = h!'h,

represents the similarity between h; and h,. For the model
specification of the generator and encoder, we use a two-
layer Bi-LSTM with a word embedding size of 300 and hid-
den dimension size of 500. The generator will create a max
sequence of 50 tokens.
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Retrieval-based Style Transfer (Li et al. 2018). Re-
trieval is a TFIDF-based search method that returns the
most similar AAVE sentence using a SAE tweet as the
query. Specifically, given a sentence x; in style s;, we re-
turn the most similar sentence u; in style so. Following Li
et al. (2018), we only index content words—words that are
not indicative of each style. For example, attribute words
such as “sholl”, “iont”, and “sumn” (i.e., words common
in AAVE (Blodgett, Green, and O’Connor 2016)) are not
indexed. Stopwords are also removed from each query sen-
tence. The retrieved sentence is used as the new stylized ver-
sion verbatim/as-is.

Template-Based Style Transfer (Li et al. 2018). Tem-
plate is an extension of Retreival. Using only content words
from the input sentence x; of style s1, we find the most sim-
ilar sentence u; in the target style so. Next, the u; sentence’s
attribute words are used to replace the attribute words in the
x; sentence. If the number of attribute words in the retrieved
sentence is smaller than the number of attribute words in the
query sentence, we use the empty string for subsequent re-
placements. Refer to Li et al. (2018) for more details.

Ensemble (ENS). Besides the individual models de-
scribed above, we also evaluate an ensemble method that
combines the result of Back-translation, Retrieval, and Tem-
plate. Specifically, the ensemble is an average of the the fair-
ness metrics we use in Section 5.3: False Positive Equality
Difference (FPED) and False Negative Equality Difference
(FNED) (Dixon et al. 2018). Intuitively, we are performing
model averaging. However, instead of averaging probability
outputs, we average the FPED/FNED estimates using syn-
thetic data. FPED and FNED are defined as

FPED = Z |FPR — FPR,| and (2)
teT

FNED = Z |IFNR — FNR,|, (3)
teT

respectively, where T = {SAAVE, SAE} using the syn-
thetic AAVE text generated by a specific style transfer
method.! FPR and FNR represent the overall false positive
and false negative rates, respectively. F'PR; and F'N R, rep-
resent the group-specific (i.e., SAAVE or SAE) false positive
and false negative rates.

FPED and FNED are calculated independently for
each style transfer method by applying the offensive lan-
guage classifier to each of the style transfer method’s gen-
erated SAAVE text. The assumption is that the offensive
annotations of the original SAE text are still relevant after
transforming it into SAAVE (i.e., offensive tweets stay of-
fensive). The ensemble score is calculated as

1
FXEDeys = 0 >, FXED;
M
where FXED; represents FPED or FNED
for the k-th style transfer method and M =

{Back-Translation, Retrieval, Template }.

"For evaluation, we also calculate FPED/FNED scores using
the ground-truth AAVE text where T = {AAVE, SAE}.



Style Post-Processing. In many cases, after style transfer,
the generated text (SAAVE) loses the offensiveness from the
original tweet. Thus, we use a lexicon of offensive words
and search for them in the SAE tweet before transform-
ing it.? For example, using the lexicon, and given the tweet
“You are a bitch,” we know that the word “bitch” is offen-
sive. The tweet may be transformed into “Y’all be a female”
using style transfer. If the offensive tweet becomes “not-
offensive”, then it is impossible to estimate fairness with-
out human annotation. To ensure that the tweet is still of-
fensive after processing it, we append the offensive words
found in the original SAE tweet to the generated synthetic
AAVE text. Thus, “Y’all be a female” becomes “Y’all be a
female bitch.” Post-processing is applied to all of the style
transfer methods.

5 Results

The evaluation strategy focuses on answering three ques-
tions: Can state-of-the-art style transfer methods transform
SAE tweets into AAVE-like text? If we use style trans-
formed text in place of real AAVE data for evaluation, can
we correctly rank the fairest classifiers? Does a better style
transform method guarantee better fairness rankings of dif-
ferent models? To answer these questions, we ground our
evaluation strategy in the fuzzying evaluation methodology.

Specifically, we use three metrics to evaluate the effec-
tiveness of our framework:

e Coverage is generally used to measure how well test
cases cover all aspects of a program. For natural lan-
guage, we quantify how many well-known AAVE char-
acteristics are generated. Moreover, we measure how
many AAVE-like tweets are produced. We quantify these
coverage quantities in two ways. First, we measure the
increase of well-known AAVE phonological variants
and syntactic constructions from Blodgett, Green, and
O’Connor (2016). Second, we use the CNN trained on
StyleData to classify whether a given style transferred
string is AAVE-like or not.Via the use of the classifier, we
are not constrained to measuring manually curated AAVE
linguistic characteristics.

e Pass Rate, in Liu et al. (2019), measures how many gen-
erated C programs are valid. For natural language, it is a
measurement to see how well meaning is preserved after
style transfer. For our experiment, we are not interested
in the exact semantics of the original tweet being pre-
served. For example, if a tweet was originally about Back-
street Boys, but after style transfer it mentions Britney
Spears instead, this does necessarily hinder our frame-
work. What does matter is that offensive tweets stay of-
fensive and non-offensive tweets stay not-offensive. Un-
fortunately, this is not possible to measure automatically.
Therefore, we use human annotators to measure whether
tweets change between offensive and non-offensive.

e Fairness estimation is the ultimate goal of FuzzE. For this
measure, we analyze how well we can estimate fairness

“http://www.cs.cmu.edu/~biglou/resources/bad- words.txt
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OLID HSOL
O-be-V  gon-V done-V O-be-V gon-V done-V
Template 3.50 2.98 2.00 1.35 1.95 1.87
Retrieval 3.88 5.20 3.56 1.20 2.76 3.47
Back-Trans. 3.00 10.61 9.00 0.78 0.62 0.93

Table 2: OLID/HSOL. Ratio of syntactic constructions
compared to the original SAE data after style transfer.

OLID HSOL
% AAVE Perp. % AAVE Perp.
Original 3.75 346.30 21.02 416.32
Template 68.15 863.82 70.65 890.39
Retrieval 66.36 567.62 69.43 551.00
Back-Translation 61.35 642.80 63.37 510.78

Table 3: Automatic OLID/HSOL style transfer evaluation.
“% AAVE” measures the number of tweets classified as be-
ing AAVE-like and “Perp.” represents perplexity.

using synthetic data compared to real AAVE text. We dis-
cuss the evaluation methodology for this metric in Sec-
tion 5.3.

5.1 Coverage

9. 66

In this section, we explore the style transfer method’s “cov-
erage” of AAVE characteristics. Three coverage-based met-
rics are analyzed. First, we measure the increase of well-
known phonetic and syntactic AAVE stylistic characteris-
tics. Next, we apply a classifier that distinguishes between
AAVE and SAE text. The classifier is used to automatically
measure the increase in AAVE-like characteristics without
relying on well-known constructions. Finally, we define a
fluency metric, to ensure our models generate realistic text.
The results discussed in this subsection (i.e., the numbers in
Tables 2 and 3) are calculated using the entire HSOL and
OLID datasets (training+test).

Phonetic and Syntactic Alignment. Blodgett, Green,
and O’Connor (2016) shown that AAVE language on social
media exhibits unique characteristics compared to SAE text.
For example, AAVE language contains many phonological
variants (e.g., sumn, sholl, and iont). We find that the expres-
sion of these variants increases after applying the style trans-
fer methods. On the OLID dataset, compared to the orig-
inal SAE tweets, “sumn” occurs 9 times more often with
Retrieval, 9 times more often with the Template method,
and 3 times more often with the Back-Translation method.
Similarly, in the HSOL dataset, “sumn” appears 20 times
more often after applying Retrieval and Template. Back-
Translation does not increase the number of occurrences of
“sumn” in the HSOL dataset.

We also analyze three well-known AAVE syntactic con-
structions (Blodgett, Green, and O’Connor 2016): habitual
be, future gone, and completive done. We use a Twitter-
specific part-of-speech tagger, Twokenizer (Owoputi et al.
2013) to annotate each tweet. In Table 2, for the OLID
dataset, we compare the ratio of each construction in the



OLID HSOL
Pearson r Spearman rho Pearson r Spearman rho
FPED FNED AVG FPED FNED AVG FPED FNED AVG FPED FNED AVG
Retrieval .169 .379 274 195 .359 277 .300 376 338 282 367 325
Template 400 526 463 375 501 438 221 415 333 210 427 318
Back-Translation — .221 432 .326 207 412 .309 336 445 376 318 401 .360
ENS 293 555 424 271 528 400 352 509 430 334 493 413

Table 4: Averaged correlation and ranking results comparing the FPED/FNED scores between SAE and AAVE text with
estimated scores using SAE and synthetic (style transferred) AAVE tweets.

OLID HSOL
Template .81 .82
Retrieval .70 .80
Back-Translation .84 91

Table 5: Pass Rate. Human evaluation of semantic change
after style transfer, measuring the % agreement between the
human annotators and the original classes.

generated AAVE tweets compared to the original SAE data
for the three different style transfer methods. For example,
if the O-be/b-V (habitual be) construction appears k times
in the original data and h times after processing each tweet
using the Back-Translation method, the ratio is defined as
%. All methods produce around 3 times more tweets with
the “habitual be” (O-be/b-V) construction. For the “future
gone” (gone/gne/gon-V) and “completive done” (done/dne-
V) constructions, the Back-Translation method outperforms
the other approaches, producing nine times more occur-
rences in the generated text. The increases on HSOL are not
as extreme as seen in the OLID data. Overall, we find that
the style transfer methods are able to make the data more
AAVE-like based on the in increase of the phonological and
syntactic characteristics.

Automatic Style Transfer Validation. Translation met-
rics such as BLEU (Papineni et al. 2002) have commonly
been used for style transfer. Unfortunately, we qualitatively
found that a better BLEU score does not translate to bet-
ter style transfer. In some cases, all of the words may
change, while the semantic content stays the same. To eval-
uate the style transfer methods, we train a binary Convolu-
tional Neural Network (CNN) classifier (Kim 2014) using
the StyleData dataset that learns to predict whether a tweet
is “AAVE” or “SAE”. Intuitively, instead of analyzing ev-
ery possible syntactic variation in AAVE language, we let
a classifier implicitly learn the differences between AAVE
and SAE. The CNN classifier is trained with 100 filters that
span 5 words. If the style transfer methods generate AAVE-
like tweets, then the CNN should classifier them as such.
Furthermore, we evaluate the “fluency” of each style trans-
fer method by analyzing the perplexity based on a pretrained
KenLLM language model (Heafield 2011) trained on a large
external Twitter dataset.

In Table 3, we present the results on the OLID and HSOL
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datasets. For all three style transfer methods the number
of inferred AAVE tweets increases from 3.75% to over
61%—creating 17 times more AAVE tweets than were orig-
inally available in the dataset. In terms of fluency, we find
that Back-Translation and Retrieval achieve the best per-
formance. This result is expected given Retrieval returns
real tweets. Interestingly, the original data has substantially
lower perplexity than Retrieval. We believe this is because
most of the OLID tweets are in SAE, which is the most
prominent language variation on Twitter (Blodgett, Green,
and O’Connor 2016). We find similar improvements on the
HSOL dataset, with all methods producing more than 60%
AAVE-like tweets based on the CNN predictions. Yet, only
21% of the original tweets are classified as AAVE.

5.2 Pass Rate

To measure the pass rate, we perform a human study where
a single human annotator sampled 100 tweets from each
dataset-model combination, for a total of 600 annotations.
We sample the same tweets across each model for a given
dataset. Moreover, from the 100 tweets we sample, 50 tweets
were originally “Offensive” and the other 50 are were orig-
inally “Not-Offensive”. The human annotator reviewed the
tweets after being processed by the style transfer methods.
The annotator then relabels each tweet as either “Offensive’
or “Not-Offensive” without looking at the original annota-
tions. Intuitively, we want to make sure that the offensive-
ness of a tweet does not change after applying style transfer.
If the offensiveness changes, then the pass rate drops. In Ta-
ble 5, we show the results of the human evaluation. We find
that all methods generally preserve the “offensiveness” of
the original tweets. Back-translation performed the best by
having an agreement of 0.84 on OLID and 0.91 on HSOL.
Here, agreement measures the proportion of relabeled tweets
that match the class of the original text before style transfer.

5.3 Fairness Estimation

Experimental Setup. It is infeasible to develop hundreds
of offensive language detection methods to test on each
dataset. Instead, using the training split, we create 100 ran-
dom samples with replacement (i.e., bootstrap sampling)
such that each sample contains 60% of the training dataset.
We then train the LR offensive language classifier from Sec-
tion 4.1 on the bootstrap sampled training splits. Using the
SAE test data and the real AAVE tweets, we record the
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Figure 2: Correlation plots comparing 100 LR models optimized on different subsets of the training data. “True FPED/FNED”
represents the real fairness scores, while “ENS FPED/FNED” are the averaged FPED/FNED scores using synthetic AAVE text

(SAAVE) from each style transfer method.

FPED and FNED (See Equation 2 and 3) scores for each
model. Furthermore, using the real SAE test data and the
SAAVE data—the SAE test data transformed into synthetic
AAVE data using style transfer—we also record FPED and
FNED scores. Next, we create two ranked lists for each met-
ric, FPED and FNED. One list of ranked scores using the
real AAVE data, and the other with SAAVE. We compare
the two rankings using two correlation metrics: Pearson r
and the Spearman rho correlation. Pearson r is a measure of
the linear correlation between two variables. Spearman rho
measures the strength and direction of the monotonic rela-
tionship between two lists.

Results. We repeat the evaluation process 100 times and
report the average of each correlation metric in Table 4.
Overall, based on the Spearman rho metric, the fairness met-
ric results are positively correlated with real AAVE data.
We also visualize the correlations in Figure 2 by analyz-
ing 100 models trained on different subsets of the training
data. For both datasets, the ranked FPED/FNED scores are
moderately correlated with the ground-truth results.® More-
over, on average, Template outperforms both Retrieval and
Back-Translation on the OLID dataset. Template also per-
forms comparably to Back-Translation on the HSOL dataset.
Overall, we find that averaging the fairness estimates across
each method results in the most robust estimate of fairness,
at least based on the results in Table 4.

5.4 Discussion

In this section, we summarize the results by answering a
few questions. First, can state-of-the-art style transfer
methods transform SAE tweets into AAVE-like text? In
Section 5.1, we show that all three style transfer methods
produce a substantial increase in well-known phonological
(e.g., sumn) and syntactic characteristics (e.g., O-be/b-V).
Moreover, in Table 3, we show an increase in AAVE-like
text. Yet, given the best method only classified 70% of the
SAAVE text as being AAVE-like, there is room for improve-
ment

3While not directly related, translation metrics such as BLEU
generally have correlations in the range of 0.2 to 0.4 (Reiter 2018).
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Spearman rho Spearman rho
w/ post-processing  w/o post-processing

FPED FNED FPED FNED
Retrieval 282 .367 =312 269
Template 210 427 -.430 332
Back-Translation 318 401 -.531 214
ENS 334 493 -.578 323

Table 6: Results on HSOL with (w/) and without (w/0) using
a lexicon to constrain each method’s outputs.

If we use style transformed text in place of real
AAVE data for evaluation, can we correctly rank the
fairest classifiers? In Table 4, we show that the rank of the
FPED/FNED scores using SAE and SAAVE text has mod-
erate correlation with the use of SAE and real AAVE text.
With only moderate correlation, there is still room for im-
provement.

Does a better style transform method guarantee better
fairness rankings of different models? Not necessarily. In
Table 4, we find that ENS perform best overall, followed by
Template, then Back-Translation. Retrieval performs worse
than the other techniques. Overall, we found that the num-
ber of syntactic constructions (Table 2) generated by each of
the three major techniques was a toss-up, i.e., different mod-
els performed better depending on the construction. How-
ever, based on the % AAVE results in Table 3, the Template
method outperformed both Retrieval and Back-Translation.
With regard to pass rate in Table 5, Back-Translation per-
formed best and Retrieval was the worst. Intuitively, to es-
timate fairness, we find that it is important for successful
style transfer methods to generate a large number of AAVE-
like text based on a classifier as well as keeping the origi-
nal offensiveness of the original tweet. While Retrieval per-
formed well in Table 3 (i.e., the text as AAVE-like), it per-
forms poorly with regard to pass rate which suggests that
a balance of AAVE-likeness and pass rate is important. We
hypothesize that better controlled generation that can vary
the lexical overlap with the original tweet can help improve



Original to AAVE

SOURCE No you’re a nigger .

Template No nigger

Retrieval according to nigger jim #CENSOREDHASHTAG

Back-Translation | No y’all be a nigger

SOURCE Bobby Flay in this bitch

Template Ugly bitches favorite line in this I be nawh bitch

Retrieval Ugly bitches favorite line : I’'m far from ugly; I be like nawh bitch , you closer than you think .
Back-Translation | Lil niggas in this bitch

SOURCE My fucking cousin cracks me up

Template My her b-day cousin. fucking

Retrieval On my way! to south street with my cousin to celebrate her b-day!! fucking
Back-Translation | My damn cousin make me crack. fucking

Table 7: Example system outputs using different SOURCE sentences. The outputs include the lexicon-based post-processing
trick where we append offensive words that appeared in the source text but were not in the generated text.

the fairness rankings. In the meantime, we suggest the use
of an ensemble of style transfer techniques which we find to
be the most robust across both datasets.

What is the impact of the lexicon-based post-
processing applied to style transferred text? It is impor-
tant that domain knowledge is incorporated into the style
transfer models. In this work, we use an offensive language
lexicon. We perform a small ablation study by not adding of-
fensive language words missing in the generated output. The
results of the study are presented in Table 6. We find that if
we do not add missing offensive words, the overall correla-
tion drops substantially for both FPED and FNED. Further-
more, the FPED scores become negatively correlated with
the real rankings. Meaning, based on the fairness measures,
that best models are ranked in reverse order. Hate speech and
offensive language are generally rare in everyday tweets, at
least compared to other topics (e.g., sports). Therefore, style
transfer methods are prone to remove offensive words from
text. This issue is the motivation behind dos Santos, Melnyk,
and Padhi (2018), where the authors show that style transfer
is a powerful method of fighting abusive speech, because of
their property of removing offensive words. Therefore, for
the current state-of-the-art style transfer methods, lexicon-
based information should be included for accurate fair-
ness rankings.

Finally, we look at examples generated by the three style
transfer methods explored in this work in Table 7. We show
cases where style transfer worked (e.g., Back-Translation
translates “Bobby Flay” to “Lil niggas” and “you’re” to
“y’all be”) as well as failures (e.g., Template translates “My
fucking cousin” to “My her b-day cousin”). Overall, from
a qualitative analysis, Back-Translation does a better job of
capturing the original semantic meaning of the tweet. Most
of the time, the Template and Retrieval methods only cap-
ture the same semantic meaning when the retrieved text dis-
cusses the same topic. We also have many cases where the
offensive word from the original text is removed by the style
transfer technique. Therefore, it needs to be added using
the post-processing trick. For example, Back-Translation re-
places “fucking” with “damn”.
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6 Conclusion

Analyzing model behavior across different demographics is
important if machine learning is to be used in production
systems. This concept is also argued by Mitchell et al. (2019)
when creating “model cards”. However, if certain demo-
graphics are not represented in a dataset, how can we mea-
sure fairness? In this paper, we show that style transfer can
be used to generate synthetic AAVE text when it is not avail-
able in a specific labeled dataset. Overall, while successful
to some extent, our main message remains cautionary: if the
application can adversely impact minorities, it is vital to
manually annotate real-world minority data to measure
fairness. The goal of this work is to provide model builders
the ability to test a large number of models on a new dataset
before investing in human annotation for fine-tuning. Be-
cause of resources constraints, many developers may never
test the fairness of their models.

There are two major avenues for future work. First, more
sophisticated methods should be explored to ensure the gen-
erated sentences contain specific offensive words. For ex-
ample, in this work, any missing offensive word that was
available in the original tweet, but removed by a style trans-
fer method, is simply added to the end of the generated
text. We could incorporate a finite state acceptor which has
been used to constrain neural models for poetry genera-
tion (Ghazvininejad et al. 2016). Second, we are interested
in analyzing fairness in biomedical areas such as public
health surveillance where biased systems can adversely ef-
fect policy decisions and people’s well-being.
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