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Abstract: One can view a partial flag variety inCn as an adjoint orbitOλ inside the Lie
algebra of n × n skew-Hermitian matrices. We use the orbit context to study the totally
nonnegative part of a partial flag variety from an algebraic, geometric, and dynamical
perspective. The paper has three main parts: (1) We introduce the totally nonnegative
part ofOλ, and describe it explicitly in several cases. We define a twist map on it, which
generalizes (in type A) amap of Bloch, Flaschka, and Ratiu (DukeMath. J. 61(1): 41–65,
1990) on an isospectral manifold of Jacobi matrices. (2) We study gradient flows onOλ

which preserve positivity, working in three natural Riemannian metrics. In the Kähler
metric, positivity is preserved in many cases of interest, extending results of Galashin,
Karp, and Lam (Adv. Math. 397: Paper No. 108123, 1–23, 2022; Adv. Math. 351: 614–
620, 2019). In the normal metric, positivity is essentially never preserved on a generic
orbit. In the induced metric, whether positivity is preserved appears to depends on the
spacing of the eigenvalues defining the orbit. (3) We present two applications. First, we
discuss the topology of totally nonnegative flag varieties and amplituhedra. Galashin,
Karp, and Lam (2022, 2019) showed that the former are homeomorphic to closed balls,
and we interpret their argument in the orbit framework. We also show that a new family
of amplituhedra, which we call twisted Vandermonde amplituhedra, are homeomorphic
to closed balls. Second, we discuss the symmetric Toda flow on Oλ. We show that it
preserves positivity, and that on the totally nonnegative part, it is a gradient flow in the
Kähler metric up to applying the twist map. This extends a result of Bloch, Flaschka,
and Ratiu (1990).
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1. Introduction

Let Fln(C) denote the complete flag variety, consisting of all sequencesV1 ⊂ · · · ⊂ Vn−1
of nested subspaces ofCn such that each Vk has dimension k.Wemay view Fln(C) as the
quotient of GLn(C) by the subgroup of upper-triangular matrices Bn(C), where Vk is the
subspace spanned by the first k columns of a matrix representative in GLn(C)/Bn(C).
Lusztig [Lus94,Lus98] introduced two remarkable subsets of the real points of Fln(C),
called the totally positive and totally nonnegative flag varieties, denoted Fl>0

n and Fl≥0
n ,

and defined as follows. Let GL>0
n be the subset of GLn(C) of all totally positivematrices,

i.e., matrices whose minors are all positive. Then Fl>0
n is the image of GL>0

n inside
GLn(C)/Bn(C), and Fl≥0

n is its closure. Equivalently, Fl>0
n (respectively, Fl≥0

n ) is the
set of flags which can be represented by an element of GLn(C) whose left-justified
minors (i.e. those which use an initial subset of columns) are all positive (respectively,
nonnegative).

More generally, for any subset K of {1, . . . , n − 1}, we have the partial flag variety
FlK ;n(C), consisting of nested sequences of subspaces of dimensions k ∈ K . Its totally
nonnegative part Fl≥0

K ;n is defined to be the image of Fl≥0
n under the natural projection

which forgets the subspaces of dimensions k /∈ K . Of particular interest is the case
K = {k}, whence we obtain theGrassmannianGrk,n(C) and its totally nonnegative part
Gr≥0

k,n . The totally nonnegative parts ofGrassmannians andofmore general partial flagva-
rieties have beenwidely studied,with connections to representation theory [Lus94], com-
binatorics [Pos07], cluster algebras [FWZ], high-energy physics [ABC+16,ABL17],
mirror symmetry [RW19], topology [GKL22a], and many other topics.

It is well-known that one can view a partial flag variety as an adjoint orbit inside a
corresponding Lie algebra. The purpose of this paper is to use the orbit context to study
total positivity. We approach this analysis from an algebraic, geometric, and dynamical
perspective.

There are twomain inspirations for our work. The first is work of Galashin, Karp, and
Lam [GKL22b,GKL19], who constructed a contractive flow on any totally nonnegative
partial flag variety, in order to show that it is homeomorphic to a closed ball. One of our
goals was to situate these flows in a more general and geometric context. We will see
that these contractive flows are gradient flows in the Kähler metric on an adjoint orbit.
The second inspiration is work of Bloch, Flaschka, and Ratiu [BFR90], who studied
the tridiagonal Toda flow on an adjoint orbit. They showed that after applying a certain
involution, the flow becomes a gradient flow in the Kähler metric, and then projecting by
the moment map gives a homeomorphism from the underlying isospectral manifold onto
the moment polytope. Another of our goals was to clarify and extend this construction
using total positivity, and to relate it to the work of Galashin, Karp, and Lam above.
Here we introduce a generalization of this involution called the twist map, which plays
an important role throughout the paper. In order to accomplish these goals, we have
developed the fundamentals of total positivity for adjoint orbits.
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The paper consists of three main parts. In the first part (Sects. 2–4), we introduce the
totally nonnegative part of an adjoint orbit and the twist map. In the second part (Sect. 5),
we study gradient flows on adjoint orbits in three different Riemannian metrics: the Käh-
ler, normal, and induced metrics. We focus on characterizing which gradient flows are
compatible with positivity. In the third part (Sects. 6–8), we consider two applications of
the theory thus developed: to the topology of totally nonnegative flag varieties and am-
plituhedra, and to the symmetric Toda flow. Below we give further details and highlight
our main results.

Adjoint orbits. Let Un denote the group of n × n unitary matrices, and let un denote
the Lie algebra of n × n skew-Hermitian matrices. For a weakly decreasing sequence
λ = (λ1, . . . , λn) ∈ R

n , we let Oλ denote the adjoint orbit inside un consisting of all
matrices with eigenvalues iλ1, . . . , iλn (where i = √−1). We may identify Oλ with a
partial flag variety FlK ;n(C), where K depends on the multiplicities of the entries of
λ. Namely, K is the set of k ∈ {1, . . . , n − 1} such that λk > λk+1, and the matrix
L ∈ Oλ corresponds to the flag V ∈ FlK ;n(C), where Vk is the span of the eigenvectors
of L corresponding to the eigenvalues iλ1, . . . , iλk . In the generic case (i.e. when λ

is strictly decreasing), we have Oλ
∼= Fln(C). At another extreme we have the case

λ = ωk := (1, . . . , 1, 0, . . . , 0), with k ones followed by n − k zeros; then Oλ consists
of matrices iP such that P is a projection matrix of rank k, and Oλ

∼= Grk,n(C).
The totally nonnegative part of FlK ;n(C) defines a corresponding subset O≥0

λ , the
totally nonnegative part of an adjoint orbit. It is a distinguished subset of the purely
imaginary matrices in Oλ. Similarly, we obtain the totally positive part O>0

λ . We show
that in several cases of interest, O≥0

λ can be described using notions familiar in the
literature (see Proposition 4.6, Corollary 4.12, and Proposition 4.18):

Theorem 1.1. Let iL ∈ Oλ.

(i) If λ1 > · · · > λn > 0, then iL ∈ O>0
λ if and only if L is eventually totally positive,

i.e., Lm ∈ GL>0
n for some m > 0.

(ii) If λ = ωk , then iL ∈ O>0
λ (respectively, iL ∈ O≥0

λ ) if and only if all k × k minors
of L are real and positive (respectively, nonnegative).

(iii) If L is tridiagonal, then iL ∈ O>0
λ (respectively, iL ∈ O≥0

λ ) if and only if L is real
and its entries immediately above and below the diagonal are positive (respectively,
nonnegative).

The tridiagonal subset of O≥0
λ (known as a space of Jacobi matrices) will reappear

several times in key places throughout the paper.

The twist map. We introduce an involution ϑ on Fl≥0
n called the twist map, defined as

follows. Given V ∈ Fl≥0
n , we represent V by a (unique) orthogonal matrix g whose left-

justified minors are all nonnegative. Then ϑ(V ) is defined to be the element represented
by the matrix ((−1)i+ j g j,i )1≤i, j≤n , which is obtained by inverting (or transposing) g
and changing the sign of every other entry. Amazingly, this operation is compatible with
positivity (see Theorem 3.26):
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Theorem 1.2. The twist map ϑ defines an involution on Fl≥0
n and on Fl>0

n .

For example, the twist map ϑ sends
⎡
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3 .

We call ϑ the ‘twist map’ since it is analogous to the twist maps introduced by Beren-
stein, Fomin, and Zelevinsky, but with the key difference that our map is based on the
Iwasawa (or QR-) decomposition of GLn(C), rather than the Bruhat decomposition.

We obtain a corresponding involution for any generic adjoint orbit, given by

ϑλ : O≥0
λ → O≥0

λ , g�g−1 	→ δng
−1�gδn,

related to the dressing transformations of Poisson geometry. Above, � is the diagonal
matrix with diagonal entries iλ1, . . . , iλn , δn is the diagonal matrix with diagonal en-
tries 1,−1, 1, . . . , (−1)n−1, and g ∈ Un is chosen so that all its left-justified minors
are nonnegative. The key point is that in general, g−1�g depends on g (and not just on
the element g�g−1 of the orbit), and total nonnegativity provides a canonical way of
selecting the representative g.

Gradient flows. Inspired by [GKL22b], we study flows on Oλ which strictly preserve
positivity, which means that the flow sendsO≥0

λ insideO>0
λ after any positive time. We

focus on gradient flows for height functions of the form L 	→ tr(LN ) (coming from
the Killing form) for fixed N ∈ un , and work in three different Riemannian metrics:
the Kähler, normal, and induced metrics. In several cases we are able to classify which
flows strictly preserve positivity.

One such case is when Oλ
∼= Grk,n(C), in which case the three metrics coincide up

to dilation. In this case, we have the following classification (see Corollary 5.15, which
also contains the corresponding result for k = 1, n − 1):

Theorem 1.3. Let 2 ≤ k ≤ n−2. Then the gradient flow of L 	→ tr(LN ) onOωk strictly
preserves positivity if and only if iN is real, Ni, j = 0 for i − j 
≡ −1, 0, 1 (mod n),

iN1,2, iN2,3, . . . , iNn−1,n, (−1)k−1iNn,1 ≥ 0,

and at least n − 1 of the n inequalities above are strict.

When Oλ is not isomorphic to a Grassmannian, then the three metrics are different,
and their gradient flows exhibit markedly different behavior with respect to positivity. In
the case of the Kähler metric, the flows admit a beautiful explicit solution (see Proposi-
tion 5.9). We use it to obtain the following complete classification (see Corollary 5.19):

Theorem 1.4. Let λ ∈ R
n be weakly decreasing with at least three distinct entries. Then

the gradient flow of L 	→ tr(LN ) onOλ in the Kähler metric strictly preserves positivity
if and only if iN is a real tridiagonal matrix whose entries immediately above and below
the diagonal are positive.

By contrast, we show that in the normal metric, in the generic case there are no flows
which strictly preserve positivity (see Theorem 5.25):
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Theorem 1.5. Let λ ∈ R
n be strictly decreasing. Then for all N ∈ un, the gradient flow

of L 	→ tr(LN ) on Oλ in the normal metric does not strictly preserve positivity.

We leave the consideration of positivity-preserving flows in the normal metric for
other choices of λ to future work. For the induced metric, our results are much less com-
plete. However, our preliminary investigations indicate that in this case, the existence
of gradient flows on Oλ which strictly preserve positivity may depend on the spacing
between the entries of λ; see Example 5.35 and Proposition 5.36.

We establish analogues of the results stated above for gradient flows onOλ in theKäh-
ler, normal, and induced metrics which weakly preserve positivity, i.e., which sendO≥0

λ
inside itself after any positive time (see Corollary 5.15, Corollary 5.19, Example 5.35
and Proposition 5.36).

Topology. Galashin,Karp, andLam [GKL22b,GKL19] used certain flowswhich strictly
preserve positivity to show that the totally nonnegative part of a partial flag variety (in
arbitrary Lie type) is homeomorphic to a closed ball. We rephrase their argument in the
orbit language for any gradient flow onOλ in the Kähler metric, and show that the height
function provides a strict Lyapunov function for such a flow. This leads to the following
result (see Theorem 6.12):

Theorem 1.6. Suppose that λ,μ ∈ R
k such that μk > μk+1 for all 1 ≤ k ≤ n − 1 such

that λk > λk+1. Consider the gradient flow of L 	→ tr(LN ) onOλ in the Kähler metric,
where −N ∈ Oμ. Let S be a nonempty compact subset of the stable manifold of the
global attractor, such that any flow beginning in S remains in the interior of S for all
positive time. Then S is homeomorphic to a closed ball, its interior is homeomorphic to
an open ball, and its boundary is homeomorphic to a sphere.

In particular, by applying Theorem 1.6 in the setting of the gradient flows in The-
orem 1.3 and Theorem 1.4, we obtain that O≥0

λ is homeomorphic to a closed ball, as
shown in [GKL22b,GKL19].

We also apply Theorem 1.6 to study the topology of amplituhedraAn,k,m(Z). These
are generalizations of the totally nonnegativeGrassmannianGr≥0

k,n , introducedbyArkani-
Hamed and Trnka [AT14] in order to give a geometric basis for calculating scattering
amplitudes in planar N = 4 supersymmetric Yang–Mills theory. The amplituhedron
An,k,m(Z) depends on a certain auxiliary (k +m)×n matrix Z , wherem is an additional
parameter satisfying k+m ≤ n. Much recent work has focused on the combinatorics and
topology of amplituhedra. It is believed that every amplituhedron An,k,m(Z) is home-
omorphic to a closed ball. This is known when k + m = n [GKL22b, Theorem 1.1]
(in which case An,k,m(Z) is Gr≥0

k,n), when k = 1 (in which case An,k,m(Z) is a cyclic
polytope [Stu88]), when m = 1 [KW19, Corollary 6.18], for the family of cyclically
symmetric amplituhedra [GKL22b, Theorem 1.2], and when n − k − m = 1 with m
even [BGPZ19, Theorem 1.8].

We extend the methods of [GKL22b] to show that a new family of amplituhedra,
which we call twisted Vandermonde amplituhedra, are homeomorphic to closed balls.
These are amplituhedra for which the matrix Z arises by applying the twist map ϑ to
a Vandermonde flag (see Definition 7.15). This family of amplituhedra includes all am-
plituhedra An,k,m(Z) satisfying n − k − m ≤ 2. We obtain the following result (see
Corollary 7.17 and Corollary 7.22):
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Theorem 1.7. Every twisted Vandermonde amplituhedron (in particular, every ampli-
tuhedronAn,k,m(Z) with n − k −m ≤ 2) is homeomorphic to a closed ball, its interior
is homeomorphic to an open ball, and its boundary is homeomorphic to a sphere.

The symmetric Toda flow. The Toda lattice [Tod67] is an integrable Hamiltonian system
which has been widely studied since it was introduced in 1967. It may be viewed as the
flow L̇ = [L , πu(−iL)] evolving on an adjoint orbit Oλ, where πu(−iL) is the skew-
Hermitian part of −iL . Classically, L is assumed to be a purely imaginary tridiagonal
matrix, but more generally, we can take L to be any element of Oλ.

We observe that the Toda flow provides an example of a gradient flow which weakly
preserves positivity (in both time directions), in two different ways. First, in the tridiag-
onal case, the Toda flow is a gradient flow in the normal metric; this follows from work
of Bloch [Blo90]. Second, in the general case, the Toda flow starting at a point in Oλ is
a twisted gradient flow (see Theorem 8.6):

Theorem 1.8. Let λ ∈ R
n be strictly decreasing, and let L(t) denote the Toda flow

on Oλ beginning at a point in O≥0
λ . Then ϑλ(L(t)) is a gradient flow of the function

M 	→ tr(MN ) in the Kähler metric, where iN is the diagonal matrix with diagonal
entries λ1, . . . , λn.

Theorem 1.8 generalizes a result of Bloch, Flaschka, and Ratiu [BFR90] on the sub-
set of tridiagonal matrices in O≥0

λ (i.e. Jacobi matrices). Their construction of the twist
map ϑλ in this case involves an intricate analysis involving the Bruhat decomposition.
The perspective of positivity gives a natural way to define ϑλ on Jacobi matrices, and to
generalize it to all of O≥0

λ .

Outline. In Sect. 2 we recall some background material. In Sect. 3 we introduce the
totally nonnegative part of the unitary group Un and define the twist map ϑ . In Sect. 4 we
introduce the adjoint orbitOλ and its totally nonnegative part. In Sect. 5we study gradient
flows onOλ in the Kähler, normal, and induced metrics. In Sect. 6 we show that certain
subsets of Oλ, including O≥0

λ , are homeomorphic to closed balls. In Sect. 7 we study
gradient flows on amplituhedra and show that certain amplituhedra are homeomorphic to
closedballs. InSect. 8we study the symmetricTodaflowand its relation to total positivity.

We expect thatmany of the results and techniques in this paper extend to the case of an
arbitrary complex semisimple Lie group g and its compact real form k; the case we con-
sider corresponds to g = sln(C) and k = sun (i.e. type A). We have decided to focus on
this case, and to work instead with gln(C) and un , both for the sake of simplicity and con-
creteness, and to emphasize the connections with the classical theory of total positivity.

2. Background

In this section, we collect notation and background on matrix Lie groups and Lie alge-
bras, and on total positivity, which we will use throughout the paper. For further details
on Lie groups andLie algebras, we refer to [Kna02]. For further details on total positivity,
we refer to [GK50,Kar68,Lus94,FZ00,Pin10,FJ11], as well as the original references.
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2.1. Notation. Let N := {0, 1, 2, . . . }. For n ∈ N, we let [n] denote {1, 2, . . . , n}, and
for i, j ∈ Z, we let [i, j] denote the interval of integers {i, i + 1, . . . , j}. Given a set S
and k ∈ N, we let

(S
k

)
denote the set of k-element subsets of S.

Given an m × n matrix L , we let LT denote its transpose, and let L∗ := LT denote
its conjugate transpose. For subsets I ⊆ [m] and J ⊆ [n], we let L I,J denote the sub-
matrix of L using rows I and columns J . If |I | = |J |, we let �I,J (L) denote det(L I,J ),
called a minor of L . If J = [k], where k = |I |, we call �I,J (L) a left-justified minor
of L , which we denote by �I (L). We also let

∑
I denote the sum of the elements in

I , and let inv(I, J ) denote the number of pairs (i, j) ∈ I × J such that i > j . We let
Diag(λ1, . . . , λn) denote the n × n diagonal matrix with diagonal entries λ1, . . . , λn ,
and let δn := Diag(1,−1, 1, . . . , (−1)n−1) .

Given a field F and n ∈ N, we let e1, . . . , en denote the unit vectors of Fn . We define
the following spaces:

• P
n(F) := (Fn+1 \ {0})/F× = projective n-space over F;

• GLn(F) := {invertible n × n matrices with entries in F};
• Bn(F) := {g ∈ GLn(F) : g is upper-triangular};
• Nn(F) := {g ∈ Bn(F) : gi,i = 1 for 1 ≤ i ≤ n};
• B−

n (F) := {g ∈ GLn(F) : g is lower-triangular} = Bn(F)T;
• Tn(F) := {g ∈ GLn(F) : g is diagonal};
• Un := {g ∈ GLn(C) : g∗g = In};
• TU

n := Tn(C) ∩ Un ;
• On := Un ∩GLn(R);
• gln(F) := {n × n matrices with entries in F};
• nn(F) := {L ∈ gln(F) : L is strictly upper-triangular};
• tn(F) := {L ∈ gln(F) : L is diagonal};
• un := {L ∈ gln(C) : L∗ + L = 0};
• on := un ∩ gln(R).

The Lie bracket [·, ·] on gln(F) is given by

[L , M] := LM − ML for all L , M ∈ gln(F).

We define the adjoint operator adL for L ∈ gln(F) by

adL(M) := [L , M] for all M ∈ gln(F).

When F = C, we define the exponential map exp : gln(C) → GLn(C) by

exp(L) :=
∞∑

m=0

1

m! L
m = lim

m→∞
(
In +

1

m
L
)m

.

We recall some properties of the determinant:

Proposition 2.1 ([Gan59, Chapter I]).

(i) (Laplace expansion) Let M be an n×n matrix, let 0 ≤ k ≤ n, and let I ∈ ([n]
k

)
. Then

det(M) =
∑

J∈([n]
k )

(−1)
∑

I+
∑

J�I,J (M)�[n]\I,[n]\J (M). (2.1)
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(ii) (Cauchy–Binet identity) Let L be an m × n matrix, and let M be an n × p matrix.
Then for 1 ≤ k ≤ m, p, we have

�I,J (LM) =
∑

K∈([n]
k )

�I,K (L)�K ,J (M) for all I ∈ ([m]
k

)
and J ∈ ([p]

k

)
. (2.2)

(iii) (Jacobi’s formula) Let g ∈ GLn(F), and let I, J ⊆ [n] have the same size. Then

�I,J (g
−1) = (−1)

∑
I+
∑

J

det(g)
�[n]\J,[n]\I (g). (2.3)

(iv) (Vandermonde’s determinantal identity) We have

det((λ j−1
i )1≤i, j≤n) =

∏
1≤i< j≤n

(λ j − λi ). (2.4)

We have the Trotter product formula for the exponential map:

Proposition 2.2 ([AMR88, p. 256]). Let L , M ∈ gln(C). Then

exp(L + M) = lim
m→∞

(
exp( 1

m L) exp( 1
m M)

)m
.

We also recall a classical result of Perron [Per07]:

Theorem 2.3 (Perron–Frobenius [Gan59, Theorem XIII.2.1]). Let A be an n×n matrix
with positive real entries, and let r be the spectral radius of A.

(i) The value r is the unique eigenvalue of A with modulus r , and it has algebraic
multiplicity 1.

(ii) There exists x ∈ R
n
>0 such that Ax = r x.

2.2. Partial flag varieties. We now introduce partial flag varieties inside Fn .

Definition 2.4. Let F be a field and n ∈ N. Given a subset K = {k1 < · · · < kl} ⊆ [n −
1], let PK ;n(F)denote the subgroupofGLn(F)of blockupper-triangularmatriceswith di-
agonal blocks of sizes k1, k2−k1, . . . , kl−kl−1, n−kl .We define the partial flag variety

FlK ;n(F) := GLn(F)/PK ;n(F).

We have the embedding

FlK ;n(F) ↪→ P

(
( n
k1
)−1

)
(F) × · · · × P

(
( n
kl
)−1

)
(F),

g 	→
(
(�I (g))I∈([n]

k1
), . . . , (�I (g))I∈([n]

kl
)

)
.

(2.5)

(We can check that the right-hand side of the second line only depends on g modulo the
right action of PK ;n(F).) We call the left-justified minors �I (g) appearing above the
Plücker coordinates of g ∈ FlK ;n(F) (also known as flag minors).

We may identify FlK ;n(F) with the variety of partial flags of subspaces in Fn

{V = (Vk1 , . . . , Vkl ) : 0 ⊂ Vk1 ⊂ · · · ⊂ Vkl ⊂ F
n and dim(Vki ) = ki for 1 ≤ i ≤ l}.
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The identification sends g ∈ GLn(F)/PK ;n(F) to the tuple (Vk)k∈K , where Vk is the
span of the first k columns of g.

Note that for any K ′ ⊆ K , we have PK ;n(F) ⊆ PK ′;n(F). This gives a projectionmap

FlK ;n(F) � FlK ′;n(F). (2.6)

In terms of partial flags of subspaces, the map (2.6) retains only the subspaces whose
dimensions lie in K ′.

There are two instances of FlK ;n(F) which will be of particular interest to us. If
K = [n − 1], then FlK ;n(F) is the complete flag variety of Fn , which we denote by
Fln(F). If K is the singleton {k}, then FlK ;n(F) is the Grassmannian of k-dimensional
subspaces of Fn , which we denote by Grk,n(F). We represent an element of Grk,n(F) by
an n × k matrix of rank k modulo column operations. We also extend the definition of
Grk,n(F) to k = 0 and k = n.

Example 2.5. Let n := 4 and K := {1, 3}. Then

P{1,3};4(F) =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

⎤
⎥⎦

⎫⎪⎬
⎪⎭

⊆ GL4(F) and Fl{1,3};4(F) = GL4(F)/P{1,3};4(F).

We can write a generic element of Fl{1,3};4(F) as

g =
⎡
⎢⎣
1 0 0 0
a 1 0 0
b 0 1 0
c d e 1

⎤
⎥⎦ , where a, b, c, d, e ∈ F.

(Note that not all elements g of Fl{1,3};4(F) are of this form, such as those with g1,1 = 0.)
Then the embedding (2.5) takes g to

(
(�1(g) : �2(g) : �3(g) : �4(g)), (�123(g) : �124(g) : �134(g) : �234(g))

)

= (
(1 : a : b : c), (1 : e : −d : c − ad − be)

) ∈ P
3(F) × P

3(F).

Furthermore, we can identify g ∈ Fl{1,3};4(F) with the partial flag (V1, V3), where
V1 ⊆ F

4 is the span of the first column of g, and V3 ⊆ F
4 is the span of the first three

columns of g. ♦

2.3. Total positivity and total nonnegativity. We now introduce the totally positive and
totally nonnegative parts of several of the spaces defined above.

Definition 2.6. Let n ∈ N. We define the totally positive parts of the following spaces:

• P
n
>0 := {(x0 : · · · : xn) ∈ P

n(R) : x0, . . . , xn > 0};
• GL>0

n := {g ∈ GLn(R) : �I,J (g) > 0 for all I, J ⊆ [n] with |I | = |J |};
• T>0

n := {g ∈ Tn(R) : gi,i > 0 for 1 ≤ i ≤ n};
• gl>0

n := {L ∈ gln(R) : exp(t L) ∈ GL>0
n for all t > 0}

= {L ∈ gln(R) : L is tridiagonal and Li,i+1, Li+1,i > 0 for 1 ≤ i ≤ n − 1}.
We also define the totally nonnegative parts by taking closures in the Euclidean topology:
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• P
n≥0 := P

n
>0 = {(x0 : · · · : xn) ∈ P

n(R) : x0, . . . , xn ≥ 0};
• GL≥0

n := GL>0
n = {g ∈ GLn(R) : �I,J (g) ≥ 0 for all I, J ⊆ [n] with |I | = |J |};

• gl≥0
n := gl>0

n = {L ∈ gln(R) : exp(t L) ∈ GL≥0
n for all t ≥ 0}

= {L ∈ gln(R) : L is tridiagonal and Li,i+1, Li+1,i ≥ 0 for 1 ≤ i ≤ n − 1}.
(We do not consider T≥0

n , since T>0
n is already closed.)

The alternative descriptions of gl>0
n , GL≥0

n , and gl≥0
n above are due, respectively,

to Karlin [Kar68, Theorem 3.3.4], Gantmakher and Krein [GK37, Lemma p. 18], and
Loewner [Loe55] (cf. [Rie97]).

We note that GL>0
n andGL≥0

n are semigroups by (2.2). Also, gl>0
n and gl≥0

n are convex
cones.

Example 2.7. We have GL>0
2 =

{[
a b
c d + bc

a

]
: a, b, c, d > 0

}
. ♦

Definition 2.8 ([Lus94,Lus98]). Let n ∈ N and K ⊆ [n − 1]. We define the totally
positive part of FlK ;n(C), denoted by Fl>0

K ;n , as the image of GL>0
n inside FlK ;n(C) =

GLn(C)/PK ;n(C). We define the totally nonnegative part of FlK ;n(C) by taking the
closure in the Euclidean topology:

Fl≥0
K ;n := Fl>0

K ;n .

Note that for any K ′ ⊆ K , the projectionmap FlK ;n(C) � FlK ′;n(C) from (2.6) restricts
to surjections

Fl>0
K ;n � Fl>0

K ′;n and Fl≥0
K ;n � Fl≥0

K ′;n . (2.7)

We remark that we could instead have defined Fl>0
K ;n and Fl≥0

K ;n by replacing C with
R. It will turn out to be more convenient for us to work over C.

Example 2.9. We have

Fl>0
3 =

⎧⎨
⎩

⎡
⎣

1 0 0
a + c 1 0
bc b 1

⎤
⎦ : a, b, c > 0

⎫⎬
⎭ and Gr>0

2,4 =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1 0
a b
0 1

−c d

⎤
⎥⎦ : a, b, c, d > 0

⎫⎪⎬
⎪⎭

.

♦

Remark 2.10. It follows from Definition 2.8 that the image of GL≥0
n inside FlK ;n(C) is

contained in Fl≥0
K ;n . However, this containment is strict unless K = ∅. For example, the

element
[
0 −1
1 0

]
∈ Fl≥0

2 cannot be represented by an element of GL≥0
2 .

One can show that the Plücker embedding (2.5) is compatible with total positiv-

ity (see Lemma 2.13), in that it takes Fl>0
K ;n inside P

(
( n
k1
)−1

)

>0 × · · · × P

(
( n
kl
)−1

)

>0 , and
similarly with “> 0” replaced with “≥ 0”. It is natural to ask whether the preimage of

P

(
( n
k1
)−1

)

>0 ×· · ·×P

(
( n
kl
)−1

)

>0 equals Fl>0
K ;n , and similarly with “> 0” replaced with “≥ 0”.

This motivates the following definition.
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Definition 2.11. Let n ∈ N and K ⊆ [n − 1]. We define the Plücker-positive part of

FlK ;n(C), denoted by Fl�>0
K ;n , as the preimage of P

(
( n
k1
)−1

)

>0 × · · · × P

(
( n
kl
)−1

)

>0 under the

Plücker embedding (2.5). That is, Fl�>0
K ;n consists of all V ∈ FlK ;n(C) such that for every

k ∈ K , we have

�I (V ) > 0 for all I ∈ ([n]
k

)
.

We similarly define the Plücker-nonnegative part Fl�≥0
K ;n by replacing “> 0” with “≥ 0”

everywhere above.

Example 2.12. We consider an example when K := {1, 3} and n := 4. Let V =
(V1, V3) ∈ Fl{1,3};4(C) be represented by the matrix

g :=
⎡
⎢⎣
1 0 0 0
1 1 0 0
1 1 2 0
1 0 1 1

⎤
⎥⎦ .

Then V ∈ Fl�>0
{1,3};4, since all its Plücker coordinates are positive:

�1(V ) = �2(V ) = �3(V ) = �4(V ) = 1,

�123(V ) = �234(V ) = 2, �124(V ) = �134(V ) = 1.

However, we can verify that V /∈ Fl>0
{1,3};4, for example, by showing that gh /∈ GL>0

4 for
all h ∈ B4(C) (cf. [Che11, Example 10.1]). ♦

As we observed above, Lusztig’s notion of total positivity is stronger than Plücker
positivity:

Lemma 2.13. Let n ∈ N and K ⊆ [n − 1].
(i) We have Fl>0

K ;n ⊆ Fl�>0
K ;n . That is, if V ∈ Fl>0

K ;n, then for every k ∈ K we have

�I (V ) > 0 for all I ∈ ([n]
k

)
.

(ii) We have Fl≥0
K ;n ⊆ Fl�≥0

K ;n . That is, if V ∈ Fl≥0
K ;n, then for every k ∈ K we have

�I (V ) ≥ 0 for all I ∈ ([n]
k

)
.

In other words, the Plücker embedding (2.5) preserves total positivity and total nonneg-
ativity.

The following result of Bloch and Karp [BK] characterizes when Lusztig’s notion of
total positivity coincides with Plücker positivity. We refer to [BK, Section 1] for further
background and previous related work.

Theorem 2.14 (Bloch and Karp [BK, Theorem 1.1]). Let K ⊆ [n − 1]. Then the fol-
lowing are equivalent:

(i) Fl>0
K ;n = Fl�>0

K ;n ;
(ii) Fl≥0

K ;n = Fl�≥0
K ;n ; and

(iii) the set K consists of consecutive integers.
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We now make several comments about the notion of Plücker positivity.

Remark 2.15. The space Fl�≥0
K ;n was explicitly introduced by Arkani-Hamed, Bai, and

Lam [ABL17, Section 6.3], who called it the naive nonnegative part. Indeed, this space
arises naturally in the physics of scattering amplitudes, in particular, for loop amplituhe-
dra [AT14]. For example, the space Fl�≥0

{k,k+2};n is a special case of a 1-loop amplituhedron;
the case k = 1 was studied in detail by Bai, He, and Lam [BHL16].

Remark 2.16. An important aspect of the applications to physics mentioned in Re-
mark 2.15 is the cyclic symmetry of Fl�≥0

K ;n , in the case that all elements of K have
the same parity. An important special case is when K = {k} is a singleton, so that
Fl≥0

K ;n = Fl�≥0
K ;n = Gr≥0

k,n ; see [Kar19, Section 4] for a survey of various applications of

the cyclic symmetry for Gr≥0
k,n . The cyclic action is defined as follows. Let σ ∈ GLn(C)

be the signed permutation matrix

σ :=

⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
±1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎦

,

where the bottom-left entry is 1 is all elements of K are odd, and−1 if all elements of K
are even. Then σ acts on FlK ;n(C); it has order n, since σ n = ±In . In terms of Plücker
coordinates, σ acts by rotating the set [n]. In particular, σ preserves Fl�≥0

K ;n . However,
unless K = {k} is a singleton, then σ does not preserve Fl>0

K ;n ; see [BK, Theorem 1.3].

Remark 2.17. While wewill use Lusztig’s notion of total positivity throughout the paper,
most of our proofs only use the weaker notion of Plücker positivity (via Lemma 2.13),
and therefore the corresponding results hold for both notions of positivity. An important
exception is our classification of gradient flows on an adjoint orbit which preserve pos-
itivity in the Kähler metric (Corollary 5.19), where for certain orbits the classification
differs depending on which notion of positivity one uses; see Remark 5.20.

Remark 2.18. Note that for V ∈ FlK ;n(C), we have V ∈ Fl�>0
K ;n (respectively, V ∈

Fl�≥0
K ;n ) if and only if Vk ∈ Gr>0

k,n (respectively, Vk ∈ Gr≥0
k,n) for all k ∈ K . This follows

from Definition 2.11 along with Theorem 2.14 applied to Grk,n(C).

We will also need the following result from [BK]:

Lemma 2.19 (Bloch and Karp [BK, Lemma 3.5]). Let V ∈ Gr≥0
k,n and W ∈ Gr≥0

k+1,n
such that V ⊆ W. If e1 + cen ∈ V for some c ∈ R, then e1 ∈ W.

We have the following refinement of Theorem 2.14 in the case of Fl>0
n , which follows

from a classical result of Fekete [FP12].

Lemma 2.20 (Fekete [GK50, Theorem V.8]). Let V ∈ Fln(C). Then V ∈ Fl>0
n if and

only if

�[i, j](V ) > 0 for all 1 ≤ i ≤ j ≤ n.

The group GLn(C) acts on FlK ;n(C) by left multiplication. This action is compatible
with total positivity:
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Lemma 2.21. Let n ∈ N and K ⊆ [n − 1].
(i) We have g · Fl≥0

K ;n ⊆ Fl>0
K ;n for all g ∈ GL>0

n .

(ii) We have g · Fl>0
K ;n ⊆ Fl>0

K ;n for all g ∈ GL≥0
n .

Proof. By (2.7), it suffices to prove the result for the complete flag variety (i.e. when K =
[n−1]). This case follows fromTheorem2.14 and theCauchy–Binet identity (2.2).

Remark 2.22. The torusTn(C) acts onFlK ;n(C)by leftmultiplication.ThenLemma2.21
implies that the totally positive part of the torus T>0

n acts on Fl>0
K ;n and Fl

≥0
K ;n . This torus

action will arise repeatedly throughout the paper.

A classical result of Gantmakher and Krein [GK37] (cf. [GK50, Chapter V]) gives
an explicit connection between GL>0

n and Fl>0
n . We will need the following refinement

for matrices whose minors of a fixed order are positive. Our proof follows [GK37], and
is based on the Perron–Frobenius theorem.

Theorem 2.23. Let 1 ≤ k ≤ n, and let g be a complex n× n matrix whose k × k minors
are all positive.

(i) The eigenvalues of g over C may be enumerated as λ1, . . . , λn, such that

|λ1| ≥ · · · ≥ |λk | > |λk+1| ≥ · · · ≥ |λn| and λ1 · · · λk > 0.

(ii) Let V be the linear span of all generalized eigenvectors of g corresponding to the
eigenvalues λ1, . . . , λk . That is, V is the unique g-invariant subspace such that g
restricted to V has eigenvalues λ1, . . . , λk . Then V ∈ Gr>0

k,n.

Proof. Consider g acting on the exterior power
∧k

(Cn), which we regard as an (
(n
k

)×(n
k

)
)-matrix with entries �I,J (g) for I, J ∈ ([n]

k

)
, and eigenvalues

∏
i∈I λi for I ∈ ([n]

k

)
.

By assumption, this matrix has positive entries, and so the result follows from Theorem
2.3.

Corollary 2.24 (Gantmakher and Krein [GK37, Theorems 10 and 13]). Let g ∈ GL>0
n .

(i) The matrix g has n distinct positive real eigenvalues λ1 > · · · > λn.
(ii) If we diagonalize g as

h−1gh = Diag(λ1, . . . , λn), where h ∈ GLn(C),

then the projection of h to Fln(C) lies in Fl>0
n . That is, the complete flag generated

by the eigenvectors of g, ordered by decreasing eigenvalue, is totally positive.

Wewill later state a converse to part (ii); see Proposition 4.6. It implies that for every
V ∈ Fl>0

n , there exists g ∈ GL>0
n such that g · V = V .

Example 2.25. We illustrate Corollary 2.24 for the matrix

g :=
⎡
⎣
1 2 1
1 3 2
1 4 4

⎤
⎦ ∈ GL>0

3 .

We diagonalize g as follows:

h−1gh =
⎡
⎢⎣

7+3
√
5

2 0 0
0 1 0

0 0 7−3
√
5

2

⎤
⎥⎦ , where h :=

⎡
⎢⎣
3 +

√
5 − 2 3 − √

5

4 + 2
√
5 − 1 4 − 2

√
5

7 + 3
√
5 2 7 − 3

√
5

⎤
⎥⎦ ∈ GL 3(C).

We can verify (e.g. from Lemma 2.20) that the projection of h to Fl3(C) lies in Fl>0
3 . ♦
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We have the following analogue of Corollary 2.24 for GL≥0
n . Its statement is more

subtle, because not all elements of GL≥0
n are diagonalizable (such as

[
1 1
0 1

]
).

Corollary 2.26. Let g ∈ GL≥0
n .

(i) The matrix g has n nonnegative real eigenvalues λ1 ≥ · · · ≥ λn (including multi-
plicities).

(ii) Let K := {i ∈ [n−1] : λi > λi+1}, and take h ∈ GLn(C) such that h−1gh is the Jor-
dan formof g, with Jordan blocks ordered by decreasing eigenvalue. Then the projec-
tion of h to FlK ;n(C) lies in Fl≥0

K ;n. That is, the flag in FlK ;n(C) generated by the gen-
eralized eigenvectors of g, ordered by decreasing eigenvalue, is totally nonnegative.

Proof. This follows from Corollary 2.24, using the fact that GL≥0
n = GL>0

n .

2.4. The cell decomposition of Fl≥0
n . We recall a decomposition of Fl≥0

n introduced by
Lusztig [Lus94].

Definition 2.27 ([BB05, Chapter 2]). For 0 ≤ k ≤ n, we define the partial order ≤ on([n]
k

)
, called the Gale order, as follows:

{i1 < · · · < ik} ≤ { j1 < · · · < jk} ⇐⇒ i1 ≤ j1, . . . , ik ≤ jk .

Given n ∈ N, let Sn denote the symmetric group of all permutations of [n]. We define
the partial order ≤ on Sn , called the (strong) Bruhat order, as follows:

v ≤ w ⇐⇒ v([k]) ≤ w([k]) for 1 ≤ k ≤ n − 1.

The Bruhat order onSn has the minimum id := (i 	→ i) and the maximumw0 := (i 	→
n + 1 − i), and is graded by the function � : S → N. For example, the Hasse diagram
of S3 is shown in Fig. 1.

For w ∈ Sn , we define the (signed) permutation matrix ẘ ∈ GLn(C) by

ẘi, j :=
{

±1, if i = w( j);
0, otherwise,

for 1 ≤ i, j ≤ n,

where the signs are chosen so that all left-justifiedminors of ẘ are nonnegative. Note that

˚(w−1) = δn(ẘ)−1δn .

We will also regard ẘ as an element of Fln(C).

Example 2.28. Let w := 312 ∈ S3. Then �(w) = 2 and ẘ =
⎡
⎣
0 −1 0
0 0 −1
1 0 0

⎤
⎦. ♦

Definition 2.29 ([Lus94, Section 8]). Given v,w ∈ Sn with v ≤ w, we define

Cv,w := (B−
n (C) · v̊) ∩ (Bn(C) · ẘ) ∩ Fl≥0

n ,
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Fig. 1. The Hasse diagram of Bruhat order on S3.

which is the intersection inside Fl≥0
n of the opposite Schubert cell indexed by v and the

Schubert cell indexed by w. Then we have the disjoint union

Fl≥0
n =

⊔
v,w∈Sn , v≤w

Cv,w, (2.8)

and Cid,w0 = Fl>0
n . We observe that each cell Cv,w is preserved by the action of the

totally positive part of the torus T>0
n from Remark 2.22.

Rietsch [Rie99] proved that (2.8) is a cell decomposition:

Theorem 2.30 (Rietsch [Rie99, Theorem 2.8]). Let v,w ∈ Sn with v ≤ w. Then Cv,w

is homeomorphic to an open ball of dimension �(w) − �(v).

Example 2.31. We haveC132,312 =
{⎡
⎣
a −1 0
0 0 −1
1 0 0

⎤
⎦ : a > 0

}
⊆ Fl≥0

3 , which is homeomor-

phic to a 1-dimensional open ball. ♦

3. The Totally Nonnegative Part of Un and the Twist Map

We define the totally positive part and totally nonnegative part of Un , which we will be
able to identify with Fl>0

n and Fl≥0
n , respectively. We use this identification to introduce

an involution ϑ on Fl≥0
n which we call the twist map, motivated by similar maps of

Berenstein, Fomin, and Zelevinsky (see Remark 3.23).
We will use the following consequence of the Gram–Schmidt orthonormalization

process, or equivalently, the QR-decomposition. It is an instance of the Iwasawa de-
composition for semisimple Lie groups. We remark that this decomposition has been
studied in the context of totally positive matrices by Gasca and Peña [GP93, Section 4].

Proposition 3.1 ([Kna02, Section VI.4]). Let n ∈ N.

(i) The multiplication map

Un ×T>0
n ×Nn(C) → GLn(C), (g1, g2, g3) 	→ g1g2g3 (3.1)

is a diffeomorphism.
(ii) We have Un /TU

n = GLn(C)/Bn(C) = Fln(C).
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Definition 3.2. Given n ∈ N, we let πU : GLn(C) → Un denote the projection onto the
first component of the inverse of (3.1). That is, for (g1, g2, g3) ∈ Un ×T>0

n ×Nn(C),
we have πU(g1g2g3) = g1.

Similarly, we let πu : gln(C) → un denote the projection onto the first summand
in the direct sum gln(C) = un ⊕ tn(R) ⊕ nn(C), which is linear over R. That is, for
L ∈ gln(C), the element πu(L) is skew-Hermitian and L − πu(L) is upper-triangular
with real diagonal entries.

3.1. The totally nonnegative part of Un. We use the Iwasawa decomposition to define
the totally positive and totally nonnegative parts of Un .

Definition 3.3. Given n ∈ N, we define the totally positive part of Un , denoted U>0
n , as

the image of GL>0
n under πU. That is, an element g1 ∈ Un is totally positive if and only

if there exist g2 ∈ T>0
n and g3 ∈ Nn(C) such that g1g2g3 ∈ GL>0

n . We define the totally
nonnegative part of Un , denoted U≥0

n , as the closure of U>0
n inside Un .

We make several remarks about Definition 3.3.

Remark 3.4. We emphasize that although Un is a subset of GLn(C), the same does not
hold for the respective totally positive or totally nonnegative parts unless n = 1. For
example, if n ≥ 2 we have GL>0

n ∩Un = ∅, since every element in Un has a matrix
entry which is not a positive real number.

Remark 3.5. It would make sense to denote U≥0
n instead by any of O≥0

n , SU≥0
n , or SO≥0

n ,
since every element of U≥0

n has realmatrix entries and determinant 1.We use the notation
U≥0
n since we wish to view this space as a subset of the real Lie group Un .

Remark 3.6. We note that the projection of GL≥0
n to Un under πU is contained in U≥0

n ,
but is not equal to U≥0

n unless n = 1 (cf. Remark 2.10).

Example 3.7. Let us determine U>0
2 and U≥0

2 , using the description of GL>0
2 from Ex-

ample 2.7. For a, b, c, d > 0, we have the decomposition

[
a b
c d + bc

a

]
=
[

a√
a2+c2

−c√
a2+c2

c√
a2+c2

a√
a2+c2

][√
a2 + c2 0
0 ad√

a2+c2

][
1 a2b+acd+bc2

a
0 1

]

as in (3.1). Setting α := arccos
( a√

a2+c2

)
, we obtain

U>0
2 =

{[
cos(α) −sin(α)

sin(α) cos(α)

]
: α ∈ (0, π

2 )

}
.

It follows that

U≥0
2 =

{[
cos(α) − sin(α)

sin(α) cos(α)

]
: α ∈ [0, π

2 ]
}

. ♦

Proposition 3.8. Let n ∈ N.
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(i) Let S be the open subset of On defined by the equations
∑

I∈([n]
k )

�I > 0 for 1 ≤ k ≤ n. (3.2)

Then S contains U≥0
n . The projection map S → Fln(R) is a diffeomorphism from S

onto its image, and further restricts to bijections

U>0
n

∼=−→ Fl>0
n and U≥0

n

∼=−→ Fl≥0
n .

(ii) An element of Un lies in U>0
n if and only if all its left-justified minors are positive

real numbers.
(iii) An element ofUn lies inU≥0

n if and only if all its left-justified minors are nonnegative
real numbers.

Proof. First we prove the forward direction of part (ii), which implies the forward di-
rection of part (iii). Let g1 ∈ U>0

n , so that there exist g2 ∈ T>0
n and g3 ∈ Nn(C) such

that the element g := g1g2g3 lies in GL>0
n . Write g2 = Diag(λ1, . . . , λn) . Then for

every 1 ≤ k ≤ n and I ∈ ([n]
k

)
, we have

�I (g1) = (λ1 · · · λk)−1�I (g) > 0.

Now we prove part (i), whence the reverse directions of parts (ii) and (iii) follow
from Theorem 2.14. Note that S contains U≥0

n by the forward direction of part (iii). Let
TU
n (R) := TU

n ∩On , which is a discrete group of size 2n . Since the 2n orbits S · g for
g ∈ TU

n (R) are disjoint, the projection S → On /TU
n (R) = Fln(R) is a diffeomorphism

onto its image. This completes the proof.

Remark 3.9. We observe that by Proposition 3.8(i) and Lemma 2.20, an element of Un
lies in U>0

n if and only if all its left-justified minors indexed by consecutive rows are
positive real numbers.

Remark 3.10. Recall from Definition 2.27 that to each permutation w ∈ Sn , we asso-
ciate a signed permutation matrix ẘ ∈ GLn(R). The signs are determined by the fact
that ẘ ∈ U≥0

n .

3.2. The reversal and duality maps. In this subsection, we introduce two involutions on
Un : the reversal map rev and the duality map ρ. They correspond to reversing the order
of either the rows or the columns of a matrix in Un , as well as changing the signs of
certain entries so as to be compatible with total positivity.We recall fromDefinition 2.27
that we have the matrices

ẘ0 =
⎡
⎢⎢⎣

0 0 · · · (−1)n−1

...
...

...
...

0 −1 · · · 0
1 0 · · · 0

⎤
⎥⎥⎦ ∈ U≥0

n and δn = Diag(1,−1, 1, . . . , (−1)n−1) ∈ Un,

satisfying

(ẘ0)
−1 = δnẘ0δn and δ−1

n = δn .
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Definition 3.11. Given n ∈ N, define the involution rev : Un → Un by

rev(g) := ẘ0δngδn .

For K ⊆ [n − 1], we obtain an involution rev : FlK ;n(C) → FlK ;n(C), given by

rev(V ) = ẘ0δn · V for all V ∈ FlK ;n(C).

That is, rev(V ) is obtained from V by reversing the order of the ground set [n]. Note
that by Proposition 3.8 and (2.7), rev preserves U>0

n , U≥0
n , Fl>0

K ;n , and Fl≥0
K ;n .

Example 3.12. The reversal map rev sends

⎡
⎢⎢⎣

√
3
2 − 1

2
√
2

1
2
√
2√

3
4

1
4
√
2

− 5
4
√
2

1
4

3
√
3

4
√
2

√
3

4
√
2

⎤
⎥⎥⎦ to

⎡
⎢⎢⎣

1
4 − 3

√
3

4
√
2

√
3

4
√
2√

3
4 − 1

4
√
2

− 5
4
√
2√

3
2

1
2
√
2

1
2
√
2

⎤
⎥⎥⎦ in U>0

3 . ♦

Definition 3.13. Given n ∈ N, let 〈·, ·〉 denote the inner product 〈v,w〉 := v1w1 + · · · +
vn wn onCn . For a subspace V ofCn , we let V⊥ denote the orthogonal complement of V .

Given K = {k1 < · · · < kl} ⊆ [n − 1], define K⊥ := {n − kl < · · · < n − k1} ⊆
[n − 1]. For a flag V = (Vk1 , . . . , Vkl ) ∈ FlK ;n(C), we define the orthogonally comple-
mentary flag V⊥ ∈ FlK⊥;n(C) by

V⊥ := (Wn−kl , . . . ,Wn−k1), where Wn−ki := (Vki )
⊥ for 1 ≤ i ≤ l.

Definition 3.14. Given n ∈ N, define the involution ρ : Un → Un by

ρ(g) := δngδnẘ0.

In other words, ρ(g)i, j = (−1)n−i gi,n+1− j for 1 ≤ i, j ≤ n.
Now let K ⊆ [n−1]. Note that ρ(g)−1ρ(gh) ∈ PK⊥;n(C)∩Un for all h ∈ PK ;n(C)∩

Un , so by Proposition 3.1(ii) we obtain an involution ρ : FlK ;n(C) → FlK⊥;n(C). In
fact, we have

ρ(V ) = δn · V⊥ for all V ∈ FlK ;n(C).

We call ρ(V ) the dual flag of V . Note that the maps rev and ρ on both Un and FlK ;n(C)

commute.

Lemma 3.15. Let n ∈ N, and let K ⊆ [n − 1].
(i) Let g ∈ Un. For 0 ≤ k ≤ n, we have

�I,J (ρ(g)) = (−1)
∑

J−(k+12 ) det(g)�[n]\I,[n]\J⊥(g) for all I, J ∈ ([n]
k

)
.

(ii) Let V ∈ FlK ;n(C). We have

�I (ρ(V )) = �[n]\I (V ) for all k ∈ K⊥ and I ∈ ([n]
k

)
.

(iii) The involution ρ preservesU>0
n andU≥0

n . It takes Fl>0
K ;n onto Fl

>0
K⊥;n and Fl

≥0
K ;n onto

Fl≥0
K⊥;n.



Gradient Flows and Adjoint Orbits 1231

Proof. (i) For 0 ≤ k ≤ n and I, J ∈ ([n]
k

)
, we have

�I,J (ρ(g)) = (−1)
∑

I+
∑

J+
∑

J⊥−(k+12 )�I,J⊥(g)

= (−1)
∑

I+
∑

J+
∑

J⊥−(k+12 )�J⊥,I (g−1) (since g−1 = g∗)

= (−1)
∑

J−(k+12 ) 1
det(g)�[n]\I,[n]\J⊥(g) (by (2.3)).

(ii) This follows from part (i), by representing any element of FlK ;n(C) by an element
of Un and taking J = [k].

(iii) By part (i) and Proposition 3.8(ii), we see that ρ preserves U>0
n . The result then

follows by Proposition 3.8(i), (2.7), and taking closures.

Example 3.16. We illustrate Lemma 3.15(iii) in the case of U>0
2 . By Example 3.7, we

can write any element g ∈ U>0
2 as g =

[
cos(α) −sin(α)

sin(α) cos(α)

]
, where α ∈ (0, π

2 ). Then

ρ(g) = δ2gδ2ẘ0 =
[
sin(α) −cos(α)

cos(α) sin(α)

]
∈ U>0

2 . ♦

3.3. The twist map. We now introduce the twist map ϑ .

Definition 3.17. Given n ∈ N, define the involution ι : GLn(C) → GLn(C) by

ι(g) := δng
−1δn .

In other words, ι(g)i, j = (−1)i+ j (g−1)i, j for 1 ≤ i, j ≤ n.

Example 3.18. Let g :=
[
a b
c d

]
∈ GL2(C). Then ι(g) = 1

ad−bc

[
d b
c a

]
. ♦

Fomin and Zelevinsky [FZ99, Section 2.1] call ι the “totally nonnegative version” of
the matrix inverse, since it preserves GL>0

n and GL≥0
n ; this follows from (2.3). We will

focus on the more subtle analogue for Un :

Proposition 3.19. Let n ∈ N.

(i) Let g ∈ Un. We have

�[i, j](ι(g)) =
∑

I∈([ j−i+2,n]
i−1 )

�I (g)�[ j−i+1]∪ I (g) for all 1 ≤ i ≤ j ≤ n.

(ii) The involution ι preserves U>0
n and U≥0

n .

Proof. (i) For 1 ≤ i ≤ j ≤ n, we have

�[i, j](ι(g))

= 1

det(g)
�[ j−i+2,n],[i−1]∪[ j+1,n](g) (by (2.3))

= 1

det(g)

∑

I∈([ j−i+2,n]
i−1 )

(−1)
∑[ j−i+2, j]+∑ I�I,[i−1](g)�[ j−i+2,n]\I,[ j+1,n](g) (by (2.1))
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=
∑

I∈([ j−i+2,n]
i−1 )

�I (g)�[ j−i+1]∪ I (g) (by (2.3), since g−1 = g∗).

(ii) Recall the descriptions of U>0
n from Proposition 3.8(ii) and Remark 3.9. By part

(i), if g ∈ U>0
n , then �[i, j](ι(g)) > 0 for all 1 ≤ i ≤ j ≤ n, whence ι(g) ∈ U>0

n .
Therefore ι preserves U>0

n , and also preserves the closure U≥0
n .

Remark 3.20. Proposition 3.19(ii) implies that if g ∈ U>0
n , then the entries of the first

row of g are nonzero and alternate in sign, i.e.,

(−1) j−1g1, j > 0 for 1 ≤ j ≤ n. (3.3)

Conversely, if V ∈ Fl>0
n and g ∈ Un represents V , then g ∈ U>0

n if and only if g satis-
fies (3.3) (if and only if g satisfies (3.2)). However, note that (3.3) (even after replacing
‘>’ with ‘≥’) does not similarly characterize the closure U≥0

n , in contrast to (3.2). For
example, (3.3) does not determine the signs in the signed permutation matrix ẘ ∈ U≥0

n .
We will return to this distinction in Remark 8.8.

Definition 3.21. Let n ∈ N. By Proposition 3.19(ii), ι preserves U≥0
n . Hence the identi-

fication U≥0
n

∼=−→ Fl≥0
n of Proposition 3.8(i) induces an involution

ϑ : Fl≥0
n → Fl≥0

n , g ∈ U≥0
n 	→ ι(g),

which is a diffeomorphism on some open neighborhood of Fl≥0
n inside Fln(R). (Explic-

itly, we can take this open neighborhood to be the image in Fln(R) of S ∩ ι(S) ⊆ On ,
where S is defined by (3.2).) We call this involution the (Iwasawa) twist map.

Remark 3.22. It is not clear how to extend ϑ to all of Fln(R) or Fln(C), since there is
no canonical way to represent a complete flag by an element of Un . Similarly, it is not
clear how to define a twist map on the totally nonnegative part of an arbitrary partial flag
variety Fl≥0

K ;n , since there is no canonical way to represent a totally nonnegative partial

flag by an element of U≥0
n .

Remark 3.23. The name twist map is motivated by the twist maps defined by Berenstein,
Fomin, and Zelevinsky on Nn(C) [BFZ96, Lemma 1.3] and by Fomin and Zelevinsky
on GLn(C) [FZ99, (4.10)]. The key difference between these maps and our map ϑ is
that the former are based on the Bruhat decomposition of GLn(C), whereas ϑ is based
on the Iwasawa decomposition.

Indeed, the map ϑ on Fl≥0
n takes a complete flag represented as a matrix g ∈ U≥0

n ,
and acts as the map

g 	→ δng
Tδn .

The map of [BFZ96, Lemma 1.3] induces a rational map on Fln(C) defined in a similar
way (up to an application of the map rev from Definition 3.11), but where we instead
represent a complete flag by a matrix of the form

g =

⎡
⎢⎢⎢⎢⎣

∗ ∗ ∗ · · · (−1)n−1

...
...

...
...

...

∗ ∗ 1 · · · 0
∗ −1 0 · · · 0
1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎦
.
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For example, when n = 3 we obtain the map on Fl>0
3

⎡
⎣

bc −b 1
a + c −1 0
1 0 0

⎤
⎦ 	→

⎡
⎣
bc −(a + c) 1
b −1 0
1 0 0

⎤
⎦ (a, b, c > 0).

Note that the latter map above is not defined on all of Fl≥0
n . Following [FZ99, (4.10)],

one could attempt to extend the definition to all of Fl≥0
n , butwewould expect the definition

to be different for each cellCv,w in (2.8), and that the resultingmapwould not necessarily
be continuous when passing between cells. One encounters a similar issuewhen attempt-
ing to extend ϑ to all of Fln(R) or Fln(C) (cf. Remark 3.22), but the issue occurs away
from the totally nonnegative part. The fact that ϑ is a diffeomorphism defined on a neigh-
borhood of Fl≥0

n (and not merely on Fl>0
n ) will be essential for us, for example in Sect. 8.

Remark 3.24. The twist map ϑ generalizes (in type A) a map of Bloch, Flaschka, and
Ratiu [BFR90, Section 3] defined on the subset of tridiagonal matrices of O≥0

λ , known
as an isospectral manifold of Jacobi matrices. We discuss this in more detail in Re-
mark 8.8, after introducing Jacobi matrices in Sect. 4.4. It is also closely related to a
map on Fln(R) introduced byMartínez Torres and Tomei [MT, Proposition 1]. The main
difference between the two maps is in the domain of definition. Indeed, our twist map
is a diffeomorphism on Fl≥0

n , and is designed to be compatible with total positivity. On
the other hand, the map of [MT] is defined piecewise on each Bruhat cell of Fln(R),
and is designed to be compatible with the asymptotic behavior of the symmetric Toda
flow (see Remark 8.12); however, it is not compatible with total positivity, for the same
reasons as discussed in Remark 3.23. We also mention that the twist map is also related
to the dressing transformations of Poisson geometry [STS85,LW90].

Example 3.25. We explicitly describe the twist map ϑ on Fl≥0
n for n = 1, 2, 3. When

n = 1, Fl≥0
1 is a point, so ϑ is necessarily the identity. When n = 2, we can verify from

Example 3.7 that ϑ is again the identity.
We now consider the case n = 3. Let g ∈ Fl≥0

3 , and let�I and�ϑ
I denote the Plücker

coordinates of g and ϑ(g), respectively, where the former are normalized so that
∑

I∈([3]
k )

�2
I = 1 for k = 1, 2, 3. (3.4)

Note that the Plücker coordinates satisfy the Plücker relation (cf. [Ful97, Section 9.1])

�2�13 = �1�23 + �3�12.

By Proposition 3.19(i), we find

�ϑ
1 = �1, �ϑ

2 = �2�12 + �3�13, �ϑ
3 = �23, �ϑ

12 = �12, �ϑ
23 = �3.

The remaining Plücker coordinate �ϑ
13 can be obtained from the Plücker relation:

�ϑ
13 = �ϑ

1 �ϑ
23 + �ϑ

3 �ϑ
12

�ϑ
2

= �1�3 + �23�12

�2�12 + �3�13
.

One can verify that the �ϑ ’s satisfy the same normalization condition (3.4) and that
� 	→ �ϑ defines an involution, though this is not obvious. ♦
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The twist map acts on the cell decomposition (2.8) of Fl≥0
n :

Theorem 3.26. The twist mapϑ preservesFl>0
n andFl≥0

n . For all v,w ∈ Sn with v ≤ w,

it restricts to a diffeomorphism ϑ : Cv,w

∼=−→ Cv−1,w−1 .

Proof. The map ϑ preserves Fl>0
n and Fl≥0

n by Proposition 3.19(ii). Since ϑ is an invo-
lution, it remains to prove the containment ϑ(Cv,w) ⊆ Cv−1,w−1 . We show that given

g ∈ (B−
n (C) v̊ Bn(C)) ∩ (Bn(C)ẘBn(C)) ∩ Un,

we have

ι(g) ∈ (B−
n (C) ˚(v−1)Bn(C)) ∩ (Bn(C) ˚(w−1)Bn(C)).

Indeed, we have

ι(g) = δng
Tδn ∈ (δnBn(C)Tδn)(δn v̊

Tδn)(δnB
−
n (C)Tδn) = B−

n (C) ˚(v−1)Bn(C)

and

ι(g) = δng
−1δn ∈ (δn Bn(C)−1δn)(δn(ẘ)−1δn)(δn Bn(C)−1δn) = Bn(C) ˚(w−1)Bn(C).

Example 3.27. We illustrate Theorem 3.26 in the case n := 3, v := 132, and w := 312:

C132,312 �
⎡
⎣
cos(α) −sin(α) 0

0 0 −1
sin(α) cos(α) 0

⎤
⎦ ϑ	→

⎡
⎣
cos(α) 0 sin(α)

sin(α) 0 −cos(α)

0 1 0

⎤
⎦ ∈ C132,231

(
α ∈ (0, π

2 )
)
. ♦

We conclude this section by relating the three maps rev, ρ, and ϑ .

Lemma 3.28. Let n ∈ N.

(i) We have ι ◦ rev ◦ ι = ρ on Un.
(ii) We have ϑ ◦ rev ◦ ϑ = ρ on Fl≥0

n .

Proof. We can verify part (i) from the definitions, whence part (ii) follows.

Like the twist map ϑ , the maps rev and ρ act on the cell decomposition (2.8) of Fl≥0
n :

Lemma 3.29. Let n ∈ N, and let v,w ∈ Sn with v ≤ w.

(i) The map rev : Fl≥0
n → Fl≥0

n restricts to a diffeomorphism Cv,w

∼=−→ Cw0w,w0v .

(ii) The map ρ : Fl≥0
n → Fl≥0

n restricts to a diffeomorphism Cv,w

∼=−→ Cww0,vw0 .

Proof. We prove part (i), whence part (ii) follows from Lemma 3.28(ii) and Theo-
rem 3.26. Since rev is an involution, it suffices to prove the containment rev(Cv,w) ⊆
Cw0w,w0v . We show that given

g ∈ (B−
n (C) v̊ Bn(C)) ∩ (Bn(C)ẘBn(C)) ∩ Un,

we have

rev(g) ∈ (B−
n (C) ˚(w0w)Bn(C)) ∩ (Bn(C) ˚(w0v)Bn(C)).

Indeed, we have

rev(g) = ẘ0δngδn ∈ (ẘ0 B
−
n (C) v̊ Bn(C)) ∩ (ẘ0 Bn(C)ẘBn(C))

= (Bn(C) ˚(w0v)Bn(C)) ∩ (B−
n (C) ˚(w0w)Bn(C)).
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4. The Totally Nonnegative Part of an Adjoint Orbit

In this section we introduce the totally positive and totally nonnegative parts of any
adjoint orbitOλ of un . We can identifyOλ with some partial flag variety FlK ;n(C), and
its totally positive and totally nonnegative parts are defined so as to agree with those for
FlK ;n(C). We then study this notion in more detail in three cases of particular interest:
when the corresponding flag variety is the complete flag variety, when the corresponding
flag variety is a Grassmannian, and for tridiagonal matrices.

4.1. Adjoint orbits of un. We introduce adjoint orbits of the Lie algebra un of Un .

Definition 4.1. Let λ = (λ1, . . . , λn) ∈ R
n be weakly decreasing, i.e., λ1 ≥ · · · ≥ λn .

We define the adjoint orbit

Oλ := {g(iDiag(λ))g−1 : g ∈ Un} ⊆ un .

We define the totally positive and totally nonnegative parts of Oλ by

O>0
λ := {g(iDiag(λ))g−1 : g ∈ U>0

n }, O≥0
λ := O>0

λ = {g(iDiag(λ))g−1 : g ∈ U≥0
n },

where the latter description of O≥0
λ will follow from Lemma 4.5.

Remark 4.2. We note that every adjoint orbit of un is of the form Oλ for some λ. The
assumption that λ is weakly decreasing is not an arbitrary convention; it is essential for
defining O>0

λ and O≥0
λ .

Remark 4.3. We have definedO>0
λ andO≥0

λ using the left action of Un on un . If instead
we use the right action, we obtain the same spaces conjugated by δn :

{g−1(iDiag(λ))g : g ∈ U>0
n } = δnO>0

λ δn, {g−1(iDiag(λ))g : g ∈ U≥0
n } = δnO≥0

λ δn .

This follows from Proposition 3.19(ii).

Example 4.4. Let λ := (λ1, λ2) ∈ R
2 with λ1 ≥ λ2. Then by Example 3.7, we have

O>0
λ =

{
i

[
λ1 cos2(α) + λ2 sin2(α) (λ1 − λ2) sin(α) cos(α)

(λ1 − λ2) sin(α) cos(α) λ1 sin2(α) + λ2 cos2(α)

]
: α ∈ (0, π

2 )

}
. ♦

Lemma 4.5. Let λ ∈ R
n be weakly decreasing, and set K := {i ∈ [n − 1] : λi > λi+1}.

Then the map

FlK ;n(C) → Oλ,

g ∈ Un 	→ g(iDiag(λ))g−1 (4.1)

is a diffeomorphism which takes Fl>0
K ;n onto O>0

λ and Fl≥0
K ;n onto O≥0

λ .

Proof. ByProposition 3.1, we have FlK ;n(C) = Un /(PK ;n(C)∩Un), and PK ;n(C)∩Un
is the centralizer of iDiag(λ) . Therefore (4.1) is well-defined and a diffeomorphism,
and the remaining assertions follow from Proposition 3.8(i).
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4.2. The complete flag variety and eventually totally positive matrices. We consider the
case whenOλ

∼= Fln(C), i.e., when λ is strictly decreasing (or generic). After translating
λ by a multiple of (1, . . . , 1), we may additionally assume that all its components are
positive. Then results of Gantmakher and Krein [GK37] and Kushel [Kus15] charac-
terize −iO>0

λ as a space of eventually totally positive matrices. For completeness, we
provide a proof.

Proposition 4.6 (Gantmakher and Krein [GK37, Theorem 16]; Kushel [Kus15, Theo-
rem 7]). Let λ = (λ1, . . . , λn), where λ1 > · · · > λn > 0, and let iL ∈ Oλ. Then the
following are equivalent:

(i) iL ∈ O>0
λ ;

(ii) Lm ∈ GL>0
n for some m ∈ Z>0; and

(iii) Lm ∈ GL>0
n for all sufficiently large m ∈ Z>0.

Proof. Note that (iii) ⇒ (ii) holds, and (ii) ⇒ (i) follows from Corollary 2.24(ii). We
now prove (i) ⇒ (iii). Suppose that iL ∈ O>0

λ , so that L = gDiag(λ)g−1 for some
g ∈ U>0

n . Let I, J ∈ ([n]
k

)
, where 1 ≤ k ≤ n. By (2.2), we have

�I,J (L
m) =

∑

K∈([n]
k )

(∏
i∈K λi

)m
�I,K (g)�J,K (g) = (λ1 · · · λk)m(�I (g)�J (g) + o(1))

as m → ∞. Since �I (g),�J (g) > 0 by Proposition 3.8(ii), we see that �I,J (Lm) > 0
for all m sufficiently large.

Remark 4.7. A matrix g ∈ GLn(R) is called oscillatory [GK37, Section 2] if g ∈ GL≥0
n

and gm ∈ GL>0
n for some m > 0 (equivalently, for all m ≥ n − 1). Every eventually to-

tally positivematrix is oscillatory, but the converse does not hold. For example, thematrix

g =
⎡
⎣

11 3
√
2 −1

3
√
2 10 3

√
2

−1 3
√
2 11

⎤
⎦

is eventually totally positive, but it is not totally nonnegative.

Remark 4.8. We observe that in Proposition 4.6(ii), the required powerm ∈ Z>0 may be
arbitrarily large, even when λ is fixed. (This is in contrast to the situation for oscillatory
matrices, where the required power m is at most n − 1.) To see this, take α ∈ (0, π

2 ),
and define

iL := g(iDiag(λ1, λ2, λ3))g
−1 ∈ O>0

λ , where g :=
⎡
⎢⎣

1√
2
sin(α) − 1√

2
1√
2
cos(α)

cos(α) 0 −sin(α)
1√
2
sin(α) 1√

2
1√
2
cos(α)

⎤
⎥⎦ ∈ U>0

3 .

Then

(Lm)1,3 = 1
2

(
sin2(α)(λm1 − λm2 ) − cos2(α)(λm2 − λm3 )

)
.

If Lm ∈ GL>0
3 , then (Lm)1,3 > 0, which implies

λm1 − λm2

λm2 − λm3
>

1

tan2(α)
.
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As α → 0, this requires m → ∞.
We also observe that the analogue of Proposition 4.6 for O≥0

λ fails to hold. To see
this, take α := 0 above, so that iL ∈ O≥0

λ . Then

(Lm)1,3 = − 1
2 (λ

m
2 − λm3 ) < 0,

so Lm /∈ GL≥0
3 for all m ∈ Z>0.

4.3. The Grassmannian and projection matrices. We consider the case when Oλ
∼=

Grk,n(C), i.e., when λ1 = · · · = λk > λk+1 = · · · = λn . After translating λ by a
scalar multiple of (1, . . . , 1) and rescaling it by a positive constant, we may assume that
λ = (1, . . . , 1, 0, . . . , 0).

Definition 4.9. Given 0 ≤ k ≤ n, we let ωk := (1, . . . , 1, 0, . . . , 0) denote the vector
of k ones followed by n − k zeros. Then −iOωk is a space of projection matrices:

Oωk = {iP : P ∈ gln(C) with P2 = P = P∗ and tr(P) = k}.
(We may replace the condition tr(P) = k with rank(P) = k.)

Given V ∈ Grk,n(C), let PV ∈ gln(C) denote the orthogonal projection from C
n

onto the subspace V . If we regard V as an n× k matrix modulo column operations, then
PV = V (V ∗V )−1V ∗.

Lemma 4.10. Let 0 ≤ k ≤ n. Then the map

Grk,n(C) → Oωk , V 	→ iPV

is a diffeomorphism which takes Gr>0
k,n onto O>0

ωk
and Gr≥0

k,n onto O≥0
ωk

.

Proof. This follows from Lemma 4.5, since the map V 	→ iPV is precisely (4.1).

We explain how to recover the Plücker coordinates of V from PV . This will lead to
explicit descriptions of O>0

ωk
and O≥0

ωk
. We recall that inv(I, J ) denotes the number of

pairs (i, j) ∈ I × J such that i > j .

Lemma 4.11. Let V ∈ Grk,n(C). Then for 1 ≤ l ≤ n, we have

�I,J (PV )=
∑

K∈([n]\(I∪J )
k−l )

(−1)inv(I,K )+inv(J,K )�I∪K (V )�J∪K (V )

∑
K∈([n]

k )
|�K (V )|2

for all I, J ∈([n]
l

)
.

(4.2)

In particular, we have

�I,J (PV ) = �I (V )�J (V )∑
K∈([n]

k )
|�K (V )|2

for all I, J ∈ ([n]
k

)
. (4.3)
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Proof. We regard V as an n×k matrix, so thatPV = V (V ∗V )−1V ∗. Then for 1 ≤ l ≤ n
and I, J ∈ ([n]

l

)
, we have

�I,J (PV ) =
∑

I ′,J ′∈([k]
l )

�I,I ′ (V )�I ′,J ′ ((V ∗V )−1)�J ′,J (V
∗) (by (2.2))

=
∑

I ′,J ′∈([k]
l )

�I,I ′ (V )

(
(−1)

∑
I ′+

∑
J ′

det(V ∗V )
�[k]\J ′,[k]\I ′ (V ∗V )

)
�J,J ′(V ) (by (2.3))

=
∑

I ′,J ′∈([k]
l )

�I,I ′ (V )

(
(−1)

∑
I ′+

∑
J ′

det(V ∗V )

∑

K∈( [n]
k−l)

�K ,[k]\J ′ (V )�K ,[k]\I ′ (V )

)
�J,J ′(V ) (by (2.2))

= 1

det(V ∗V )

∑

K∈( [n]
k−l)

( ∑

I ′∈([k]
l )

(−1)
∑

I ′
�I,I ′ (V )�K ,[k]\I ′ (V )

)( ∑

J ′∈([k]
l )

(−1)
∑

J ′
�J,J ′ (V )�K ,[k]\J ′ (V )

)
,

which simplifies to (4.2) by (2.2) and (2.1).

Corollary 4.12. Let 0 ≤ k ≤ n.

(i) We have O>0
ωk

= {iP ∈ Oωk : all k × k minors of P are real and positive}.
(ii) We have O≥0

ωk
= {iP ∈ Oωk : all k × k minors of P are real and nonnegative}.

Proof. This follows from (4.3), Lemma 4.10, and Theorem 2.14.

Corollary 4.13. Let n ∈ N, and let iP ∈ O>0
ωk

. Let 1 ≤ l ≤ k, and suppose that

I, J ∈ ([n]
l

)
satisfy the evenness condition: between any two elements of Z \ (I ∪ J ),

there are an even number of elements in the multiset union I ∪ J .

(i) If |I ∩ J | ≥ k + l − n, then �I,J (P) > 0.
(ii) If |I ∩ J | < k + l − n, then �I,J (P) = 0.

Proof. The evenness condition implies that inv(I, K ) + inv(J, K ) is even for all K ⊆
Z \ (I ∪ J ). Therefore the numerator of the right-hand side of (4.2) is a sum of positive
terms, by Lemma 4.10 and Lemma 2.13(i). The two cases correspond to whether the
sum has at least one term or not.

Remark 4.14. Corollary 4.13 implies that certainminors�I,J (P) are positive or zero for
all iP ∈ O>0

ωk
. We can similarly argue that every other minor is either zero, negative, or

can take any sign (we omit the details). For example, let (k, n) := (2, 4), and consider the
1 × 1 minors (i.e. the entries) of P . We have P1,1, P2,2, P3,3, P4,4, P1,2, P2,3, P3,4 > 0
and P1,4 < 0. The remaining entries P1,3 and P2,4 can take any sign, as demonstrated
by the matrices

17P =
⎡
⎢⎣

6 7 1 −4
7 11 4 1
1 4 3 5

−4 1 5 14

⎤
⎥⎦,

⎡
⎢⎣

3 4 1 −5
4 11 7 −1
1 7 6 4

−5 −1 4 14

⎤
⎥⎦,

⎡
⎢⎣

6 4 −1 −7
4 14 5 1

−1 5 3 4
−7 1 4 11

⎤
⎥⎦,

⎡
⎢⎣

3 5 −1 −4
5 14 4 −1

−1 4 6 7
−4 −1 7 11

⎤
⎥⎦.

4.4. Tridiagonal matrices. Tridiagonal matrices are often of particular interest in ap-
plications, and will play an important role throughout the paper. We give an explicit
description of the tridiagonal parts of O>0

λ and O≥0
λ .
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Definition 4.15. Let λ ∈ R
n be weakly decreasing. We define the spaces of Jacobi

matrices

J >0
λ := (igl>0

n ) ∩ Oλ and J ≥0
λ := (igl≥0

n ) ∩ Oλ.

That is, J >0
λ (respectively, J ≥0

λ ) is the set of elements iL ∈ Oλ such that L is a real
tridiagonal matrix with positive (respectively, nonnegative) entries immediately above
and below the diagonal.

We will show that J >0
λ (respectively, J ≥0

λ ) is precisely the subset of tridiagonal
elements of O>0

λ (respectively, O≥0
λ ). We then give an explicit description of J >0

λ in
terms of Vandermonde flags.

Lemma 4.16. Let λ ∈ R
n be weakly decreasing, and set K := {i ∈ [n−1] : λi > λi+1}.

Given iL ∈ Oλ, let V = (Vk)k∈K ∈ FlK ;n(C) be the corresponding flag under the in-
verse map of (4.1). Then

L =
(∑
k∈K

(λk − λk+1)Pk
)
+ λn In, where Pk := PVk for k ∈ K . (4.4)

Proof. This follows from Lemma 4.10, by writing λ = (∑
k∈K (λk − λk+1)ωk

)
+

λnωn .

Lemma 4.17. Suppose that λ ∈ R
n is weakly decreasing and nonconstant.

(i) If iL ∈ O>0
λ , then Li,i+1 = Li+1,i > 0 for 1 ≤ i ≤ n − 1.

(ii) If iL ∈ O≥0
λ , then Li,i+1 = Li+1,i ≥ 0 for 1 ≤ i ≤ n − 1.

We note that if λ is constant, then O>0
λ = O≥0

λ = Oλ = {iDiag(λ)}.
Proof. Weprove part (i), whence part (ii) follows sinceO≥0

λ = O>0
λ . Set K := {i ∈ [n−

1] : λi > λi+1}, which is nonempty by assumption. Let iL ∈ Oλ, and let V = (Vk)k∈K ∈
Fl>0

K ;n be the corresponding flag under the inverse map of (4.1). Then by (4.4), we have

Li,i+1 =
∑
k∈K

(λk − λk+1)(PVk )i,i+1 for 1 ≤ i ≤ n − 1.

By Lemma 4.10 and Corollary 4.13(i), we have (PVk )i,i+1 > 0 for all k ∈ K . Therefore
Li,i+1 > 0.

Proposition 4.18. Let λ ∈ R
n be weakly decreasing and nonconstant. Then

J >0
λ = {L ∈ O>0

λ : L is tridiagonal} and J ≥0
λ = {L ∈ O≥0

λ : L is tridiagonal}.
Moreover, if λ is not strictly decreasing, then J >0

λ is empty.

Proof. The containments⊇ follow from Lemma 4.17. To prove the first⊆ containment,
let iL ∈ J >0

λ . Then L ∈ gl>0
n , so exp(L) ∈ GL>0

n . Applying Corollary 2.24(ii) to
exp(L) implies iL ∈ O>0

λ , as desired. Moreover, Corollary 2.24(i) implies that if such
an iL exists, then λ is strictly decreasing. The second ⊆ containment follows from a
similar argument, using Corollary 2.26(ii).
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When λ is strictly decreasing, the space J >0
λ is known as an isospectral manifold

of Jacobi matrices. It was first considered by Moser [Mos75] in connection with the
Toda lattice, based on work of Flaschka [Fla74]. We will discuss the Toda lattice further
in Sect. 8. The topology of J >0

λ was studied by Tomei [Tom84], who showed in par-
ticular that its closure is J ≥0

λ . Bloch, Flaschka, and Ratiu [BFR90] gave the following
descriptions of J >0

λ and J ≥0
λ , which hold for any compact Lie algebra.

Theorem 4.19 (Bloch, Flaschka, and Ratiu [BFR90, Theorem p. 60]). Let λ ∈ R
n be

strictly decreasing, and let C ⊆ R
n denote the convex hull of all permutations of λ,

which is the moment polytope of Oλ. Then there is a diffeomorphism from J >0
λ to the

interior of C which extends to a homeomorphism J ≥0
λ

∼=−→ C.

SeeRemark 8.8 for further discussion.We plan to study the homeomorphismJ ≥0
λ →

C in more detail in future work.
We now describe J >0

λ as a subset of Fl>0
n under the identification (4.1). Remarkably,

it is a twisted T>0
n -orbit. This is based on a well-known correspondence in numeri-

cal analysis between orthogonal tridiagonalization of a symmetric matrix (which we
uncharacteristically take to be a diagonal matrix) and Krylov subspaces; we refer to
[Par98,GVL13] for further details. This description is also related to Moser’s spectral
variables [Mos75, Section 3] for the manifold J >0

λ ; see Remark 4.27.

Definition 4.20. Let λ = (λ1, . . . , λn) ∈ C
n have distinct entries, and let x ∈ P

n−1(C)

have no zero entries. Define theVandermonde flagVand(λ, x) ∈ Fln(C) as the complete
flag (V1, . . . , Vn−1), where

Vk := span(x, Diag(λ)x, . . . , Diag(λ)k−1x) for 1 ≤ k ≤ n − 1.

That is,Vand(λ, x) is represented by the rescaledVandermondematrix (λ
j−1
i xi )1≤i, j≤n .

The fact that Vand(λ, x) lies in Fln(C) follows from (2.4). Moreover, if λ1, . . . , λn are
strictly decreasing real numbers and x ∈ P

n−1
>0 , then Vand(λ, x) ∈ Fl>0

n , by (2.4) and
Theorem 2.14. We also observe that λ and x are uniquely determined by Vand(λ, x),
modulo translating λ by a scalar multiple of (1, . . . , 1) and rescaling it by a nonzero
constant.

Example 4.21. When n = 3, the flag Vand(λ, x) is represented by

⎡
⎣
x1 λ1x1 λ21x1
x2 λ2x2 λ22x2
x3 λ3x3 λ23x3

⎤
⎦. ♦

Remark 4.22. Let λ ∈ C
n have distinct entries. Recall the torus action on Fln(C) from

Remark 2.22. For x ∈ P
n−1(C) with no zero entries and h ∈ Tn(C), we have

hVand(λ, x) = Vand(λ, hx).

In particular, the subset

{Vand(λ, x) : x ∈ P
n−1(C) has no zero entries} ⊆ Fln(C)

is a Tn(C)-orbit. Similarly, if the entries of λ are strictly decreasing real numbers, then

{Vand(λ, x) : x ∈ P
n−1
>0 } ⊆ Fl>0

n

is a T>0
n -orbit.
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Lemma 4.23 (cf. [GVL13,Theorem8.3.1]).Letλ ∈ C
n havedistinct entries, let g ∈ Un,

let L := gDiag(λ)g−1 ∈ gln(C), and let x be the first column of ι(g). Then the following
are equivalent:

(i) L is tridiagonal and Li,i+1 
= 0 for 1 ≤ i ≤ n − 1; and
(ii) all entries of x are nonzero, and the projection of ι(g) to Fln(C) equals Vand(λ, x).

Proof. Our argument follows [GVL13, Theorem 8.3.1], which proves the implication (i)
⇒ (ii) over the real numbers. LetM denote thematrix (λ

j−1
i xi )1≤i, j≤n , which represents

the flag Vand(λ, x). Then part (ii) is equivalent to the statement ι(g)−1M ∈ Bn(C). On
the other hand, column j of ι(g)−1M (for 1 ≤ j ≤ n) is

ι(g)−1Diag(λ) j−1x = (δngδn)Diag(λ) j−1(δng
−1δne1) = δnL

j−1e1.

Therefore part (i) is also equivalent to the statement ι(g)−1M ∈ Bn(C).

Corollary 4.24. Let λ ∈ R
n be strictly decreasing. Then the inverse map of (4.1)

identifies J >0
λ with a twisted totally positive torus orbit of Vandermonde flags inside

Fl>0
n :

J >0
λ

∼=−→ ϑ
({Vand(λ, x) : x ∈ P

n−1
>0 }) ⊆ Fl>0

n .

Proof. Let iL denote an arbitrary element ofO>0
λ , so that L = gDiag(λ)g−1 for some

g ∈ U>0
n . Then the inverse map of (4.1) sends iL to g ∈ Fl>0

n . By Proposition 4.18, it
suffices to prove that the following two statements are equivalent:
(i) L is tridiagonal and Li,i+1 
= 0 for 1 ≤ i ≤ n − 1; and
(ii) ϑ(g) = Vand(λ, x) for some x ∈ P

n−1
>0 .

Note that the first column of ι(g) has positive entries, by Proposition 3.19(ii) and Propo-
sition 3.8(ii). Therefore the result follows from Lemma 4.23.

Example 4.25. We illustrate Corollary 4.24 in the case n := 3. Let λ := (1, 0,−1), and
let x ∈ P

2
>0. Then Vand(λ, x) ∈ Fl>0

3 is represented by the matrix
⎡
⎣
x1 x1 x1
x2 0 0
x3 −x3 x3

⎤
⎦ .

We act on the right by B3(C) to turn this matrix into an element of U>0
3 :

⎡
⎢⎢⎢⎢⎢⎢⎣

x1√
x21+x

2
2+x

2
3

−x1(x22+2x
2
3 )√

(x21+x
2
2+x

2
3 )(x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3 )

x2x3√
x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3

x2√
x21+x

2
2+x

2
3

x2(x21−x23 )√
(x21+x

2
2+x

2
3 )(x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3 )

−2x1x3√
x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3

x3√
x21+x

2
2+x

2
3

x3(2x21+x
2
2 )√

(x21+x
2
2+x

2
3 )(x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3 )

x1x2√
x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3

⎤
⎥⎥⎥⎥⎥⎥⎦

=: ι(g).

Setting iL := g(iDiag(λ))g−1 ∈ Oλ, we find that

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

x21−x23
x21+x

2
2+x

2
3

√
x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3

x21+x
2
2+x

2
3

0
√
x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3

x21+x
2
2+x

2
3

(x21−x23 )(x42−4x21 x
2
3 )

(x21+x
2
2+x

2
3 )(x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3 )

2x1x2x3
√
x21+x

2
2+x

2
3

x21 x
2
2+4x

2
1 x

2
3+x

2
2 x

2
3

0
2x1x2x3

√
x21+x

2
2+x

2
3

x21 x
2
2+4x

2
1 x

2
3+x

2
2 x

2
3

x22 (x23−x21 )

x21 x
2
2+4x

2
1 x

2
3+x

2
2 x

2
3

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Note that L indeed lies in J >0
λ , i.e., it is tridiagonal and L1,2, L2,3 > 0. ♦

Remark 4.26. Corollary 4.24 demonstrates that the twist map ϑ acts in an elegant way
on Vandermonde flags. We can also describe the action of the maps rev and ρ on
Vandermonde flags. Namely, let λ ∈ R

n have distinct entries, and let x ∈ P
n−1(C). Then

rev(Vand((λ1, . . . , λn), (x1 : · · · : xn))) = Vand((λn, . . . , λ1), (xn : · · · : x1)),
(4.5)

and

ρ(Vand(λ, x)) = Vand(λ, y), where yi = (−1)i−1

xi
∏

j 
=i (λi − λ j )
for 1 ≤ i ≤ n.

(4.6)

The statement (4.5) follows from Definition 4.20. We can prove (4.6) using a version
of Lemma 4.23 which involves the last column of ι(g), rather than the first column (we
omit the details).

For example, let λ := (1, 0,−1), as in Example 4.25. Then

rev(Vand(λ, x)) = Vand((−1, 0, 1), (x3 : x2 : x1)) = Vand(λ, (x3 : x2 : x1)),
and

ρ(Vand(λ, x)) = Vand(λ, y), where y = ( 1
2x1

: 1
x2

: 1
2x3

)
.

Remark 4.27. Corollary 4.24 gives an explicit parametrization of J >0
λ by P

n−1
>0 . This

parametrization was first introduced byMoser [Mos75, Section 3]. Specifically, Moser’s
variables r1, . . . , rn (required to be positive and satisfy r21 + · · · + r2n = 1) are obtained
by normalizing our x ∈ P

n−1
>0 , i.e.,

r j = x j√
x21 + · · · + x2n

for 1 ≤ j ≤ n.

Moser’s motivation was to give an explicit description of the tridiagonal symmetric Toda
lattice, as we discuss further in Remark 8.7.

While it is relatively simple to describe how to go from a matrix in J >0
λ to its

parameters r1, . . . , rn (for example, they are the normalized first components of the
eigenvectors), the reverse process is nontrivial. The procedure we give above in terms
of the twist map is qualitatively different fromMoser’s, while another approach was de-
scribed by Deift, Lund, and Trubowitz [DLT80, Theorem p. 178] (cf. [DNT83, Theorem
2]). These procedures are all ultimately equivalent; the novelty in our approach is our
use of the twist map, and in the connection to total positivity.

For example, let us verify that the calculation of L1,2 in Example 4.25 is consistent
with the procedure described in [DNT83, Theorem 2]. The formula therein states that

L2
1,2 =

3∑
j=1

((λ j − a1)r j )
2, where r j = x j√

x21 + x22 + x23

and a1 = L1,1 = r21 − r23 .

Using r21 + r22 + r23 = 1, we obtain

L2
1,2 = (1 − a1)

2r21 + (0 − a1)
2r22 + (−1 − a1)

2r23
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= (r22 + 2r23 )2r21 + (−r21 + r23 )2r22 + (−2r21 − r22 )2r23

= (r21r
2
2 + 4r21r

2
3 + r22r

2
3 )(r21 + r22 + r23 )

= r21r
2
2 + 4r21r

2
3 + r22r

2
3 ,

which indeed agrees with Example 4.25.

Finally, we introduce the space of all totally positive Vandermonde flags. It will play
an important role in Sect. 7.

Definition 4.28. Given n ∈ N, let V>0
n denote the subset of Fl>0

n of all totally positive
Vandermonde flags:

V>0
n := {Vand(λ, x) : λ ∈ R

n is strictly decreasing and x ∈ P
n−1
>0 } ⊆ Fl>0

n .

Corollary 4.29. We have the following bijection between the space of all Jacobi matri-
ces modulo translation by scalar multiples of In and rescaling by R>0, and the space of
twisted totally positive Vandermonde flags:

(igl>0
n ) ∩ un/∼

∼=−→ ϑ(V>0
n ), g(iDiag(λ))g−1 	→ g.

Above, two matrices L , M are equivalent under ∼ if and only if M = t (L + cIn) for
some t > 0 and c ∈ R.

Proof. Recall that λ and x are uniquely determined by Vand(λ, x), modulo translating
λ by a scalar multiple of (1, . . . , 1) and rescaling it by a nonzero constant. Also, by
Proposition 4.18, (igl>0

n ) ∩ un is the disjoint union of J >0
λ over all strictly decreasing

λ ∈ R
n . Therefore the result follows from Corollary 4.24.

Recall from Remark 4.22 that the totally positive part of the torus T>0
n acts on V>0

n .
Surprisingly, T>0

n also acts on ϑ(V>0
n ):

Lemma 4.30. The space of twisted totally positive Vandermonde flags ϑ(V>0
n ) is invari-

ant under the action of the totally positive part of the torus T>0
n .

Proof. Consider the action of Tn(C) on un by conjugation. Note that (igl>0
n ) ∩ un is

invariant under T>0
n . The result then follows from Corollary 4.29.

Remark 4.31. A further property shared by V>0
n and ϑ(V>0

n ) is that they are both nat-
urally in bijection with Fl>0

{1,2};n . In particular, the projection map Fl>0
n → Fl>0

{1,2};n
restricts to a bijection on both V>0

n and ϑ(V>0
n ). In the case of V>0

n , this follows from
Definition 4.20 and Lemma 2.13(i). In the case of ϑ(V>0

n ), this is not straightforward to
prove; we will do so in Lemma 7.20.

5. Gradient Flows on Adjoint Orbits

In this section, we study gradient flows on a partial flag variety, viewed as an adjoint
orbit Oλ of un . We consider gradient flows for functions of the form κ(·, N ) for fixed
N ∈ un , where κ is the Killing form of un , in three natural Riemannian metrics: the
Kähler, normal, and induced metrics. We point out that when Oλ is isomorphic to a
Grassmannian, then these three metrics coincide up to dilation, but otherwise they are
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distinct. Our goal will be to determine when such a flow preserves the totally nonnega-
tive part O≥0

λ . In the case of the Kähler metric, we completely classify which gradient
flows preserve positivity. In the case of the normal metric, we show that when Oλ is
isomorphic to Fln(C) with n ≥ 3, there are no nontrivial gradient flows which preserve
positivity. In the case of the induced metric, we make some preliminary investigations
which indicate that whether or not there exists a non-trivial gradient flow on Oλ which
preserves positivity can depend on the spacing between the entries of λ.

We refer to [AMR88, Section 4.1], [Bes87, Chapter 8], and [BMR13, Section 15.2]
for background. For a given flow under consideration, we let L(t) (for t ∈ R) denote the
flow beginning at L(0) = L0, and we let L̇(t) denote the derivative of L(t) with respect
to t . Since Oλ is compact, all flows we consider are complete, i.e., they are defined for
all t ∈ R [AMR88, Corollary 4.1.20]. If L̇(0) = 0, we call L0 an equilibrium.

Definition 5.1. Let λ ∈ R
n be weakly decreasing. We say that a flow on Oλ weakly

preserves positivity if

L(t) ∈ O≥0
λ for all L0 ∈ O≥0

λ and t ≥ 0,

and strictly preserves positivity if

L(t) ∈ O>0
λ for all L0 ∈ O≥0

λ and t > 0.

(So, every flow which strictly preserves positivity also weakly preserves positivity.) We
make the analogous definitions for FlK ;n(C) and Un .

For example, the constant flow on Oλ weakly preserves positivity, but it does not
strictly preserve positivity unless λ is constant (in which caseOλ is a point). We empha-
size that in Definition 5.1, we require that positivity is preserved for all initial choices
L0 ∈ O≥0

λ . In general, it is possible that the flow L(t) remains inO≥0
λ for some choices

of L0 ∈ O≥0
λ , but not for others; see Remark 5.26 for an intriguing instance of this

phenomenon.

Definition 5.2. Let κ denote the Killing form on gln(C), given by

κ(L , M) := 2n tr(LM) − 2 tr(L) tr(M) for all L , M ∈ gln(C).

Then −κ(·, ·) defines a [·, ·]-invariant pairing (i.e. κ(adL(M), N ) = −κ(M, adL(N )))
which is positive semidefinite on un .

Now let λ ∈ R
n be weakly decreasing, and fix a Riemannian metric on Oλ. Given

N ∈ un , we define the gradient flow on Oλ with respect to N (in the given metric) as
the flow given by

L̇(t) = grad(H)(L(t)), where H(M) := κ(M, N ) for all M ∈ Oλ. (5.1)

We emphasize that we use the steepest ascent sign convention for the gradient flow.

Remark 5.3. We are interested in gradient flows on Oλ which preserve positivity with
respect to some N ∈ un (in a given metric). We point out that a necessary condition on
N is that it is purely imaginary, i.e., iN is a real symmetric matrix.
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5.1. Background. Webriefly review the definitions of the threemetrics wewill consider,
following [BMR13, Section 15.2]; also see [Ati82, Section 4].

Definition 5.4. Let λ ∈ R
n be weakly decreasing, and let L ∈ Oλ.

• For X ∈ un , define XL and XL by the (unique) decomposition

X = XL + XL , where XL ∈ im(adL) and XL ∈ ker(adL). (5.2)

Then the normal metric (or standard metric) on Oλ is given at L ∈ Oλ by

〈[L , X ], [L ,Y ]〉normal := −κ(XL ,Y L)

for all tangent vectors [L , X ] and [L ,Y ] at L .
• The induced metric on Oλ is given at L ∈ Oλ by

〈[L , X ], [L ,Y ]〉induced := −κ([L , X ], [L ,Y ]) = 〈−ad2L([L , X ]), [L ,Y ]〉normal

for all tangent vectors [L , X ] and [L ,Y ] at L .
• Let

√
−ad2L denote the positive square root of the positive semidefinite operator

−ad2L . Then the Kähler metric on Oλ is given at L ∈ Oλ by

〈[L , X ], [L ,Y ]〉Kähler := 〈
√

−ad2L([L , X ]), [L ,Y ]〉normal

for all tangent vectors [L , X ] and [L ,Y ] at L .
We remark that the Kähler metric depends only on the corresponding flag variety

under the identification (4.1), not on the specific values of λ (aside from their multiplic-
ities). This is in contrast to the normal and induced metrics, which do depend on the
specific values of λ.

A notable special case is when Oλ is isomorphic to a Grassmannian, as in Sect. 4.3.
Then the three metrics coincide up to dilation (cf. [BFR90, Section 4.2]), as we prove
below. Therefore the three metrics on such Oλ give rise to the same gradient flows, but
their descriptions are not obviously equivalent (see the running example: Example 5.12,
Example 5.22, and Example 5.28). When considering flows which preserve positivity
on such Oλ, it will be most convenient to work in the Kähler metric, while in Sect. 6.2
we will work in the normal metric.

Proposition 5.5. Let λ ∈ R
n with λ1 = · · · = λk > λk+1 = · · · = λn, so that Oλ

∼=
Grk,n(C). Then theKähler, normal, and inducedmetrics onOλ all coincide up to dilation.

Proof. By Definition 5.4, it suffices to show that for any L ∈ Oλ, the operator −ad2L
acts as a positive scalar multiple of the identity on im(adL). Indeed, we claim that

−[L , [L , [L , M]]] = (λ1 − λn)
2 [L , M] for all M ∈ un .

We can verify this by writing −iL = (λ1 − λn)P + λn In for some P ∈ gln(C) with
P2 = P = P∗, as in (4.4).

We will only need to work with Definition 5.4 in the case of the induced metric; for
the Kähler and normal metrics, we will instead use known descriptions for their gradient
flows, which we introduce in the respective subsections. For the induced metric, we will
use the following general computation from [BMR13]:
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Lemma 5.6 (Bloch, Morrison, and Ratiu [BMR13, (15.4)]). Fix a weakly decreasing
λ ∈ R

n, a metric on Oλ, and N ∈ un. Let L(t) ∈ Oλ evolve according to (5.1), i.e., the
gradient flow with respect to N. Suppose that M(t) ∈ un satisfies

〈[L(t), X ], [L(t), M(t)]〉metric = κ([L(t), X ], N )

for all t and tangent vectors [L(t), X ] at L(t). Then we can write (5.1) as

L̇(t) = [L(t), M(t)]. (5.3)

Since (5.3) is in Lax form [Lax68], we can easily translate it into a flow on Un . We
make some general observations about such flows.

Lemma 5.7. Let λ ∈ R
n be weakly decreasing, set K := {i ∈ [n − 1] : λi > λi+1}, and

let M(t) ∈ un.

(i) (Lax [Lax68, p. 470]) Consider the flow on Un

ġ(t) = −M(t)g(t).

Letting L(t) denote g(t)(iDiag(λ))g(t)−1 ∈ Oλ, we have the evolution

L̇(t) = [L(t), M(t)].

(ii) Further suppose that M(t) ∈ on, and that L(t) weakly (respectively, strictly) pre-
serves positivity. Then for all g0 ∈ U≥0

n , we have

�I (g(t)) ≥ 0 (respectively,> 0) for all k ∈ K , I ∈ ([n]
k

)
, and t > 0.

(If K = [n−1], this means precisely that g(t)weakly (respectively, strictly) preserves
positivity in Un.) In particular, for all k ∈ K and I ∈ ([n]

k

)
,

if �I (g0) = 0 then d
dt

∣∣
t=0 �I (g(t)) ≥ 0. (5.4)

Proof. We can verify part (i) directly. Part (ii) follows from Lemma 4.5, Lemma 2.13,
Proposition 3.8, and continuity of g(t) ∈ On .

Remark 5.8. By multilinearity, we may express the derivated determinant in (5.4) as
follows:

d
dt

∣∣
t=0 �I (g(t)) =

k∑
j=1

�I (g0 with column j replaced by column j of ġ(0)). (5.5)
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5.2. The Kähler metric. In this subsection, we classify which gradient flows onOλ with
respect to N ∈ un in the Kähler metric weakly or strictly preserve positivity. Namely,
if iN ∈ gl≥0

n then positivity is weakly preserved, and if iN ∈ gl>0
n then positivity is

strictly preserved. IfOλ is not isomorphic to a Grassmannian, then the converses to these
statements hold. By contrast, in the Grassmannian case, there are additional such N for
which positivity is preserved; see Corollary 5.15 and Corollary 5.19.

While the definition of the Kähler metric on Oλ is difficult to work with directly, its
gradient flows admit a beautiful explicit solution. This has appeared in the literature in
several places; see the work of Duistermaat, Kolk, and Varadarajan [DKV83, Section 3]
and of Guest and Ohnita [GO93, Appendix], and the references therein.

Proposition 5.9 ([DKV83, Section 3]; [GO93, Appendix]). Let λ ∈ R
n be weakly de-

creasing, set K := {i ∈ [n − 1] : λi > λi+1}, and let N ∈ un. Let L(t) evolve
according to the gradient flow on Oλ with respect to N in the Kähler metric, and let
V (t) ∈ FlK ;n(C) be the corresponding partial flag under the inverse map of (4.1). Then

V (t) = exp(t iN )V0 for all t. (5.6)

Letting g(t) ∈ Un be any representative of V (t), we have L(t) = g(t)(iDiag(λ))g(t)−1.
Explicitly, we can take g0 ∈ Un representing V0, and then take (cf. Definition 3.2)

g(t) = πU(exp(t iN )g0) for all t. (5.7)

We emphasize that N ∈ un , and iN is Hermitian. The assumption that λ is weakly
decreasing is not important (until we consider the totally nonnegative part); only its
multiplicities are relevant. Also, (5.6) should be regarded only as a flow on FlK ;n(C),
not on Un ; in order to obtain a flow on Un , we must apply the Iwasawa decomposition,
as in (5.7).

Remark 5.10. There is an alternativeway to describe the solution L(t) in Proposition 5.9.
As in (4.4), write

−iL(t) =
(∑
k∈K

(λk − λk+1)Pk(t)
)
+ λn In, (5.8)

where Pk(t) is the orthogonal projectiononto the subspace spannedby the eigenvectors of
−iL(t) corresponding to the eigenvaluesλ1, . . . , λk . Explicitly, letV (t) = (Vk(t))k∈K ∈
FlK ;n(C) be as in (5.6), with V0 = ((V0)k)k∈K , so that Vk(t) = exp(t iN )(V0)k for
k ∈ K . Regarding elements of Grk,n(C) as n × k matrices, we have

Pk(t) = PVk (t) = Vk(t)(Vk(t)
∗Vk(t))−1Vk(t)

∗

= exp(t iN )(V0)k((V0)
∗
k exp(2t iN )(V0)k)

−1(V0)
∗
k exp(t iN ). (5.9)

Note that (5.8), via (5.9), gives an explicit expression for L(t). It does not require
computing an Iwasawa decomposition; we only need to know (V0)k for all k ∈ K . Also,
by Proposition 5.9, each iPk(t) evolves according to the gradient flow on Oωk with
respect to N in the Kähler metric. But since Oωk

∼= Grk,n(C), by Proposition 5.5, the
Kähler, normal, and induced metrics coincide (because the dilation factors are 1). For
example, if wework instead in the normalmetric, wewill find (see Proposition 5.21) that

i Ṗk(t) = [iPk(t), [iPk(t), N ]].
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As a consequence of Proposition 5.9, when considering flows which preserve posi-
tivity in the Kähler metric, we need only work with (5.6):

Corollary 5.11. Let K ⊆ [n−1], and let N ∈ un. Then for all weakly decreasingλ ∈ R
n

with {i ∈ [n−1] : λi > λi+1} = K, the gradient flow onOλ with respect to N in the Käh-
lermetric weakly preserves positivity if and only if the flow (5.6) onFlK ;n(C)weakly pre-
serves positivity. If so, then the gradient flowonOλ′ with respect to N in theKählermetric
also weakly preserves positivity, for all K ′ ⊆ K and weakly decreasing λ′ with {i ∈ [n−
1] : λ′

i > λ′
i+1} = K ′. The same statements hold with “weakly” replaced by “strictly”.

Proof. This follows from Proposition 5.9 and (2.7).

Example 5.12. Let us consider an example in the case n = 2. Set

L0 := i

[
a b
b −a

]
and iN :=

[
p q
q −p

]
,

where a, b, p, q ∈ R such that a or b is nonzero. We assume that b ≥ 0. We have
L0 ∈ Oλ, where

λ1 :=
√
a2 + b2 and λ2 := −

√
a2 + b2.

Let L(t) ∈ Oλ evolve according to the gradient flow with respect to N in the Kähler
metric. We have

L0 = g0(iDiag(λ))g−1
0 , where g0 := 1√

2λ1

[√
λ1 + a −√

λ1 − a√
λ1 − a

√
λ1 + a

]
∈ U2 .

By Proposition 5.9, we have the explicit solution

L(t) = g(t)(iDiag(λ))g(t)−1, where g(t) = πU(exp(t iN )g0).

However, this involves computing a matrix exponential and an Iwasawa decomposition,
which is already cumbersome when n = 2. Instead, for the purposes of illustration as
well as comparison with the normal and induced metrics, let us calculate L̇(0).

For the remainder of this examplewewrite ‘≡’ tomean equality up to O(t2) as t → 0.
Let V0 ∈ Fl2(C) be the flag represented by g0, and let V (t) be defined by (5.6). Then

V (t) = exp(t iN )V0 ≡ (I2 + t iN )V0

= 1√
2λ1

[√
λ1 + a + t (p

√
λ1 + a + q

√
λ1 − a) −√

λ1 − a + t (−p
√

λ1 − a + q
√

λ1 + a)√
λ1 − a + t (q

√
λ1 + a − p

√
λ1 − a)

√
λ1 + a + t (−q

√
λ1 − a − p

√
λ1 + a)

]
.

Applying the Iwasawa decomposition gives

g(t) ≡ 1√
2λ1

[√
λ1 + a − t ( aq−bp

λ1
)
√

λ1 − a −√
λ1 − a − t ( aq−bp

λ1
)
√

λ1 + a√
λ1 − a + t ( aq−bp

λ1
)
√

λ1 + a
√

λ1 + a − t ( aq−bp
λ1

)
√

λ1 − a

]
,

and so

L(t) = g(t)(iDiag(λ))g(t)T ≡ i

[
a − t ( aq−bp

λ1
)2b b + t ( aq−bp

λ1
)2a

b + t ( aq−bp
λ1

)2a −a + t ( aq−bp
λ1

)2b

]
.

Since L(t) ≡ L0 + t L̇(0), we obtain

L̇(0) = 2(aq − bp)

λ1
i

[−b a
a b

]
. ♦
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Example 5.13. We consider the same setup as in Example 5.12, but take iN to be diag-
onal:

iN :=
[
p 0
0 −p

]
.

Let us calculate the explicit solution L(t) = g(t)(iDiag(λ))g(t)−1 to the gradient flow
in the Kähler metric. We have

V (t) = exp(t iN )V0 = 1√
2λ1

[
etp

√
λ1 + a −etp

√
λ1 − a

e−tp√λ1 − a e−tp√λ1 + a

]
.

Applying the Iwasawa decomposition gives

g(t) = 1√
e2tp(λ1 + a) + e−2pt (λ1 − a)

[
etp

√
λ1 + a −e−tp√λ1 − a

e−tp√λ1 − a etp
√

λ1 + a

]
∈ U2,

and so L(t) equals

λ1

e2tp(λ1 + a) + e−2tp(λ1 − a)
i

[
e2tp(λ1 + a) − e−2tp(λ1 − a) 2b

2b −e2tp(λ1 + a) + e−2tp(λ1 − a)

]
.

We can use the formula above to compute the limits of L(t) as t → ±∞. If b = 0
(i.e. λ1 = ±a) or p = 0, then L(t) is constant. Otherwise, we have λ1 ± a > 0. If
p > 0, we obtain

lim
t→∞ L(t) = i

[
λ1 0
0 −λ1

]
and lim

t→−∞ L(t) = i

[−λ1 0
0 λ1

]
.

If p < 0, the limits are exchanged. ♦

We recall from Definition 2.6 that gl≥0
n and gl>0

n are the infinitesimal parts of GL≥0
n

and GL>0
n , respectively. The following theorem is an analogue of this statement, where

instead of considering all minors of an n × n matrix, we only consider minors of a fixed
order k. It will be the key to classifying positivity-preserving gradient flows onOλ, when
Oλ

∼= Grk,n(C). We will only apply it when M is a symmetric matrix, but for complete-
ness we state it for general real M . The result and its proof are natural extensions of
[GKL22b, Section 3.2], which considered the case of a specific matrix M (the cyclic
shift matrix).

Theorem 5.14. Let 1 ≤ k ≤ n − 1, and let M ∈ gln(R). Then the following are equiv-
alent:
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(i) if k = 1: we have Mi, j ≥ 0 for all i 
= j in [n];
if k = n − 1: we have (−1)i+ j−1Mi, j ≥ 0 for all i 
= j in [n];
if 2 ≤ k ≤ n − 2: we have

M1,2, M2,1, M2,3, M3,2, . . . , Mn−1,n, Mn,n−1, (−1)k−1Mn,1, (−1)k−1M1,n ≥ 0

and

Mi, j = 0 for all i, j ∈ [n] such that i − j 
≡ −1, 0, 1 (mod n);
(ii) all k × k minors of exp(tM) are nonnegative, for all t ≥ 0; and
(iii) exp(tM)V ∈ Gr≥0

k,n for all V ∈ Gr≥0
k,n and t ≥ 0.

Now let D be the directed graph on the vertex set [n], where i → j (for i 
= j ) is an
edge of D if and only if Mi, j 
= 0. Then analogously, the following are equivalent:

(iv) condition (i) holds, and in addition, D is strongly connected (i.e. for any i 
= j in
[n], there exists a directed path from i to j);

(v) all k × k minors of exp(tM) are positive, for all t > 0; and
(vi) exp(tM)V ∈ Gr>0

k,n for all V ∈ Gr≥0
k,n and t > 0.

We observe that for 2 ≤ k ≤ n − 2, conditions (i) and (iv) above depend only on
the parity of k. Therefore the other four conditions also only depend on the parity of k,
which is far from obvious.We also remark that the condition that D is strongly connected
arises naturally in the Perron–Frobenius theory of nonnegative matrices and the theory
of Markov chains (see e.g. [Gan59, Chapter XIII]), where it is known as irreducibility.

Proof. (i) ⇒ (ii): We adapt an argument of Brändén [Brä21, Proposition 2.3]. Note
that by Proposition 2.2 and the Cauchy–Binet identity (2.2), the sum of two matrices
satisfying (ii) also satisfies (ii). Therefore it suffices to consider the case when M has
a single nonzero entry, say entry (i, j). If i = j , then exp(tM) = Diag(1, . . . , 1, )
etMi , 1, . . . , 1, and (ii) holds. Otherwise, we have exp(tM) = In + tM , and so every
k × k minor of exp(tM) equals either 1 or (−1)l−1Mi, j t , for some l ∈ [k] satisfying
l ≤ |i − j | and k − l ≤ n − 1 − |i − j |. Therefore if (i) holds, then so does (ii).

(ii) ⇒ (i): Suppose that (ii) holds. Note that for all I, J ∈ ([n]
k

)
with I 
= J , we have

�I,J (exp(tM)) = 0 at t = 0. Therefore, by Remark 5.8, we have

d
dt

∣∣
t=0 �I,J (exp(tM)) =

∑
j∈J

�I,J (In with column j replaced by column j of M) ≥ 0.

Let us take I := K ∪ {i} and J := K ∪ { j}, where i, j ∈ [n] with i 
= j , and
K ∈ ([n]\{i, j}

k−1

)
. Then we get

(−1)inv(i,K )+inv( j,K )Mi, j ≥ 0, (5.10)

where inv(i ′, K ) denotes the number of j ′ ∈ K with i ′ > j ′. We can then verify that
these inequalities reduce to those in (i).

(ii) ⇒ (iii) and (v) ⇒ (vi): Let V ∈ Gr≥0
k,n . By Lemma 2.13(ii), we can regard V as

an n × k matrix whose k × k minors are nonnegative, where at least one of these minors
is positive. Therefore the implications follow from the Cauchy–Binet identity (2.2) and
Theorem 2.14.
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(iii) ⇒ (ii) and (vi) ⇒ (v): For J ∈ ([n]
k

)
, let VJ be the n × k matrix which has an

identity matrix in rows J and zeros elsewhere. We regard VJ as the element of Gr≥0
k,n

with �I (VJ ) = δI,J for all I ∈ ([n]
k

)
. Then for all I ∈ ([n]

k

)
and t ∈ R, we have

�I,J (exp(tM)) = �I (exp(tM)VJ )

(however, we caution that the Plücker coordinates on the right-hand side are only well-
defined modulo a global scalar).

Now suppose that (iii) holds, and let J ∈ ([n]
k

)
. Then for every t ≥ 0, either

�I,J (exp(tM)) ≥ 0 for all I ∈ ([n]
k

)
or �I,J (exp(tM)) ≤ 0 for all I ∈ ([n]

k

)
.

In order to prove (ii), it suffices to rule out the latter case. Note that the columns J of
exp(tM) are linearly independent, so �I,J (exp(tM)) 
= 0 for some I ∈ ([n]

k

)
. Hence in

either case, we have
∑

I∈([n]
k )

�I,J (exp(tM)) 
= 0 for all t ≥ 0.

Since the left-hand side is positive when t = 0, by continuity it is positive for all t ≥ 0.
This proves (ii). We can similarly prove (vi) ⇒ (v).

(iv) ⇒ (v): We adapt the proof of [GKL22b, Lemma 3.5]. Suppose that (iv) holds.
Form the directed graph D̂ on the vertex set

([n]
k

)
, where I → J (for I 
= J ) is an edge

of D̂ if and only if there exists an edge i → j of D such that J = (I \ {i}) ∪ { j}. We
claim that D̂ is strongly connected. Indeed, it suffices to show that given I ∈ ([n]

k

)
, i ∈ I ,

and j ∈ [n] \ I , there exists a directed path from I to (I \ {i}) ∪ { j}. We prove this by
induction on the length l ≥ 1 of the shortest directed path from i to j in D (which exists
since D is strongly connected), with no base case. Given l ≥ 1, suppose that the result
holds for strictly smaller values of l. Take a directed path i = j0 → · · · → jl = j from
i to j , and let 0 ≤ m ≤ l − 1 be maximal such that j0, . . . , jm ∈ I . Then jm+1 /∈ I , so
we have the directed path in D̂

I → (I \ { jm}) ∪ { jm+1} → (I \ { jm−1}) ∪ { jm+1} → · · · → (I \ {i}) ∪ { jm+1}.
Ifm +1 = l, we are done. Otherwise, by the induction hypothesis, there exists a directed
path from (I \ {i}) ∪ { jm+1} to (I \ {i}) ∪ { j}. Therefore we get a directed path from I
to (I \ {i}) ∪ { j}, completing the induction.

Since (iv) ⇒ (i) ⇒ (ii), we know that all k × k minors of exp(tM) are nonnegative
for all t > 0; it remains to show that no such minor is zero. Suppose otherwise that
there exist s > 0 and I, J0 ∈ ([n]

k

)
such that �I,J0 exp(sM) = 0. Since the rows I of

exp(sM) are linearly independent, there exists J1 ∈ ([n]
k

)
with �I,J1(exp(sM)) 
= 0.

Since D̂ is strongly connected, there is a directed path from J1 to J0; it passes through
an edge J ′ → J with �I,J ′(exp(sM)) 
= 0 and �I,J (exp(sM)) = 0. We may write
J = (J ′ \ {i ′}) ∪ { j ′}, where Mi ′, j ′ 
= 0.

Recall that all k×k minors of exp((s+t)M) are nonnegative for t > −s. In particular,
�I,J (exp((s + t)M)) equals 0 at t = 0, and it is nonnegative near t = 0. Therefore

d
dt

∣∣
t=0 �I,J (exp((s + t)M)) = 0.
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By Remark 5.8 and multilinearity of the determinant, the left-hand side above equals
∑
j∈J

�I,J (exp(sM) with column j replaced by column j of exp(sM)M)

=
∑
j∈J

∑
i /∈J

(−1)inv(i,J\{ j})+inv( j,J\{ j})Mi, j�I,(J\{ j})∪{i}(exp(sM)).

By assumption, each summand above is nonnegative (cf. (5.10)), and the summand with
j = j ′ and i = i ′ is nonzero. Therefore the sum is nonzero, a contradiction.

(v)⇒ (iv): Suppose that (v) holds. Since (v)⇒ (ii)⇒ (i), it remains to show that D is
strongly connected. Suppose otherwise, so that there exist distinct i0, j0 ∈ [n] such that
there is no directed path from i0 to j0. Let I0 ⊆ [n] denote the set of i ∈ [n] (including
i0) such that there exists a directed path from i0 to i . Then there are no edges from I0
to [n] \ I0, and j0 /∈ I0. From the expression exp(tM) = limm→∞(In + t

m M)m , we see

that exp(tM)I0,[n]\I0 = 0. Taking any I, J ∈ ([n]
k

)
such that |I ∩ I0| and |J ∩ ([n] \ I0)|

are maximized, we have �I,J (exp(tM)) = 0, a contradiction.

Corollary 5.15. Let λ ∈ R
n with λ1 = · · · = λk > λk+1 = · · · = λn, so that Oλ

∼=
Grk,n(C), and let N ∈ un. Then the gradient flow onOλ with respect to N in the Kähler
metric (equivalently, by Proposition 5.5, in the normal or induced metrics) weakly pre-
serves positivity if and only if the following condition holds, depending on the value of k:

(i) k = 1:

iNi, j ≥ 0 for all i 
= j in [n];
(ii) k = n − 1:

(−1)i+ j−1iNi, j ≥ 0 for all i 
= j in [n];
(iii) 2 ≤ k ≤ n − 2:

iN1,2, iN2,3, . . . , iNn−1,n, (−1)k−1iNn,1 ≥ 0,

and

Ni, j = 0 for all i, j ∈ [n] such that i − j 
≡ −1, 0, 1 (mod n).

Moreover, let � be the undirected graph on the vertex set [n], where {i, j} is an edge of
� if and only if Ni, j 
= 0. Then the gradient flow strictly preserves positivity if and only
if, additionally, � is connected. (For 2 ≤ k ≤ n − 2, this means that at least n − 1 of
the n inequalities in the first line of (iii) hold strictly.)

For example, for the choice of N in Example 5.12, we are in both the cases (i) and
(ii) above. The gradient flow with respect to N in the Kähler metric weakly preserves
positivity if and only if q ≥ 0, and it strictly preserves positivity if and only if q > 0.

Proof. This follows from Corollary 5.11 and Theorem 5.14 (with M = iN ).

We now consider the case when Oλ is not isomorphic to a Grassmannian, i.e., λ has
at least three distinct entries. Our analysis will be based on Theorem 5.14 along with the
following two technical results.
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Lemma 5.16. Let K ⊆ [n − 1] such that |K | ≥ 2, and suppose that M ∈ gln(R) such
that

exp(tM)V ∈ Fl≥0
K ;n for all V ∈ Fl≥0

K ;n and t ≥ 0.

Then Mn,1 = M1,n = 0.

Proof. By symmetry (specifically, using the map rev from Definition 3.11), it suffices
to show that Mn,1 = 0. Take distinct elements k < l of K , and let w ∈ Sn be the cycle
(1 2 · · · k), so that

ẘ =
⎡
⎣ 0 (−1)k−1 0
Ik−1 0 0
0 0 In−k

⎤
⎦ ∈ U≥0

n .

Let V ∈ Fl≥0
K ;n be represented by ẘ ∈ U≥0

n . Recall from Remark 2.22 that T>0
n acts on

Fl≥0
K ;n . In particular,

W := lim
t→0, t>0

Diag(1, . . . , 1, t−1) exp(tM)V

lies in Fl≥0
K ;n , if the limit exists.

To calculate the limit, we replace V with ẘ and work in the space of matrices, ignor-
ing the last column. Since exp(tM) = In + tM +O(t2) as t → 0, and row n of ẘ[n],[n−1]
is zero, we obtain

lim
t→0, t>0

Diag(1, . . . , 1, t−1) exp(tM)ẘ[n],[n−1]

= ẘ[n],[n−1] + Diag(0, . . . , 0, 1)Mẘ[n],[n−1]

=

⎡
⎢⎢⎣

0 (−1)k−1 0
Ik−1 0 0
0 0 In−k−1
∗ (−1)k−1Mn,1 ∗

⎤
⎥⎥⎦ .

(The entries ∗ will turn out to be unimportant.) This shows that the limit defining W
exists. SinceW ∈ Fl≥0

K ;n , it extends to a complete flag (W1, . . . ,Wn−1) ∈ Fl≥0
n . Observe

that e1 + Mn,1en ∈ Wk , so by Lemma 2.19, we have e1 ∈ Wk+1 ⊆ Wl . Because Wl is
spanned by the first l columns of the matrix above, we see that Mn,1 = 0.

Lemma 5.17. Let K := {1, n − 1}, and suppose that M ∈ gln(R) such that

exp(tM)V ∈ Fl≥0
K ;n for all V ∈ Fl≥0

K ;n and t ≥ 0.

Then Mi, j = 0 for all i, j ∈ [n] such that |i − j | ≥ 2.

Proof. We use a similar argument as in the proof of Lemma 5.16. By symmetry, it
suffices to show that Mi, j = 0 for i, j ∈ [n] with i − j ≥ 2. Let

w := (1 2 · · · j)−1(i i + 1 · · · n) ∈ Sn,
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so that

ẘ =

⎡
⎢⎢⎢⎣

0 −I j−1 0 0 0
1 0 0 0 0
0 0 Ii− j−1 0 0
0 0 0 0 (−1)n−i

0 0 0 In−i 0

⎤
⎥⎥⎥⎦ ∈ U≥0

n .

Let V ∈ Fl≥0
K ;n be represented by ẘ ∈ U≥0

n . For t > 0, let h(t) ∈ T>0
n be obtained from

In by replacing the (i, i)-entry with t−1. Assuming the limit exists, define

W := lim
t→0, t>0

h(t) exp(tM)V ∈ Fl≥0
K ;n .

To calculate the limit, we replace V with ẘ and work in the space of matrices, ignor-
ing the last column. Since exp(tM) = In + tM +O(t2) as t → 0, and row i of ẘ[n],[n−1]
is zero, we obtain

lim
t→0, t>0

h(t) exp(tM)ẘ[n],[n−1] =

⎡
⎢⎢⎢⎣

0 −I j−1 0 0
1 0 0 0
0 0 Ii− j−1 0

Mi, j ∗ ∗ ∗
0 0 0 In−i

⎤
⎥⎥⎥⎦ .

(The entries ∗ will turn out to be unimportant.) This shows that the limit defining W
exists. Since W ∈ Fl≥0

K ;n , it extends to a complete flag (W1, . . . ,Wn−1) ∈ Fl≥0
n .

Let C[ j,i] denote the span of ek for j ≤ k ≤ i , which has dimension at least 3. For
1 ≤ k ≤ n−1, let dk denote the dimension ofWk∩C[ j,i], so thatWk∩C[ j,i] ∈ Gr≥0

dk ,i− j+1.
Observe that the sequence d1, . . . , dn−1 increases by either 0 or 1 at each step. Since
d2 ≤ 2 ≤ dn−1, we have dk = 2 for some 2 ≤ k ≤ n − 1. Applying Lemma 2.19 to
W1 ∩ C

[ j,i] and Wk ∩ C
[ j,i], we get that e j ∈ Wk ∩ C

[ j,i] ⊆ Wn−1. Because Wn−1 is
spanned by the columns of the matrix above, we see that Mi, j = 0.

We have the following analogue of Theorem 5.14 for an arbitrary partial flag variety
which is not a Grassmannian:

Theorem 5.18. Let K ⊆ [n − 1] such that |K | ≥ 2, and let M ∈ gln(R).

(i) We have M ∈ gl≥0
n if and only if

exp(tM)V ∈ Fl≥0
K ;n for all V ∈ Fl≥0

K ;n and t ≥ 0. (5.11)

(ii) We have M ∈ gl>0
n if and only if

exp(tM)V ∈ Fl>0
K ;n for all V ∈ Fl≥0

K ;n and t ≥ 0. (5.12)

Proof. The forward directions of parts (i) and (ii) follow from Lemma 2.21. To prove
the reverse directions, suppose that (5.11) holds. Then for every k ∈ K , (5.11) also holds
with K replaced by {k}, so the conditions of Theorem 5.14(i) hold. These conditions,
along with Lemma 5.16 and Lemma 5.17, imply that M ∈ gl≥0

n . This proves the reverse
direction of part (i). Now suppose that in addition, (5.12) holds. Then taking any k ∈ K ,
we have that (5.12) holds with K replaced by {k}, so the condition of Theorem 5.14(iv)
holds. Since M ∈ gl≥0

n , this implies that M ∈ gl>0
n . This proves the reverse direction of

part (ii).
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Corollary 5.19. Let λ ∈ R
n be weakly decreasing with at least three distinct entries (so

that Oλ is not isomorphic to a Grassmannian), and let N ∈ un. Then the gradient flow
on Oλ with respect to N in the Kähler metric weakly preserves positivity if and only if
iN ∈ gl≥0

n , and it strictly preserves positivity if and only if iN ∈ gl>0
n .

Proof. This follows from Corollary 5.11 and Theorem 5.18 (with M = iN ).

Remark 5.20. Recall the notion Plücker positivity introduced in Definition 2.11. In anal-
ogy with Definition 5.1, for any weakly decreasing λ ∈ R

n , we can consider flows onOλ

which weakly or strictly preserve Plücker positivity. Note that a flow which preserves
Plücker positivity does not necessarily preserve positivity, and vice-versa. However, we
expect the two notions to be closely related. Here we discuss the case of the gradient
flow with respect to N ∈ un in the Kähler metric, and consider weak preservation (we
have an entirely analogous analysis for strict preservation).

Let K := {i ∈ [n−1] : λi > λi+1}. For simplicity, we assume that K 
= {1, n−1}. By
Remark 2.18 and Proposition 5.9 (cf. Remark 5.10), the gradient flow onOλ with respect
to N weakly preserves Plücker positivity if and only if the gradient flow onOωk with re-
spect to N weakly preserves Plücker positivity, for all k ∈ K ; and this holds if and only if
each k ∈ K satisfies the condition of Corollary 5.15. Comparing thiswithCorollary 5.19,
we see that if the gradient flow on Oλ weakly preserves positivity, then it weakly pre-
serves Plücker positivity. The converse holds for all N if and only if K is a singleton or
contains both an even and an odd number. Indeed, suppose that |K | ≥ 2 and that all ele-
ments of K have the same parity. Then in order for positivity to be weakly preserved with
respect to N , we must have iNn,1 = iN1,n = 0. However, Plücker positivity is preserved
as long as iNn,1 = iN1,n has fixed sign (depending on the parity of the elements of K ).

5.3. The normal metric. In this subsection, we show that whenOλ is isomorphic to the
complete flag variety Fln(C) with n ≥ 3, the only gradient flow in the normal metric
which weakly preserves positivity is the constant flow (Theorem 5.25). This is in stark
contrast to the case that Oλ is isomorphic to the Grassmannian Grk,n(C), whence the
normal metric coincides with the Kähler metric up to dilation (see Proposition 5.5), and
the gradient flows which preserve positivity are classified by Corollary 5.15. We do not
consider here the remaining cases (i.e. when Oλ is isomorphic to neither Fln(C) nor
Grk,n(C)); we leave this to future work.

We use an explicit description of the gradient flow as a double-bracket flow, which
was first observed by Brockett [Bro91]. It can be verified from Lemma 5.6 (we omit the
derivation).

Proposition 5.21 (Brockett [Bro91]; Bloch, Brockett, and Ratiu [BBR92, Proposition
1.4]). Let λ ∈ R

n and let N ∈ un. Then the gradient flow onOλ with respect to N in the
normal metric is given by

L̇(t) = [L(t), [L(t), N ]]. (5.13)

Example 5.22. Let us consider the same setup as in Example 5.12, but let L(t) evolve in
the normal metric rather than the Kähler metric. By Proposition 5.5, these two evolutions
must agree up to a dilation in t :

Lnormal(t) = LKähler((λ1 − λ2)t).
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Indeed, using the result of Example 5.12 and Proposition 5.21, we can verify that this
holds for L̇(0):

L̇normal(0) = [L0, [L0, N ]] = 4(aq − bp)i

[−b a
a b

]
= (λ1 − λ2)L̇Kähler(0). ♦

Lemma 5.23. Let λ ∈ R
n be strictly decreasing, and suppose that the gradient flow

(5.13) on Oλ with respect to N ∈ un in the normal metric weakly preserves positivity.
Then iN ∈ gl≥0

n .

Proof. We assume that iN is real. We must show that

iNi, j = 0 for all i ≥ j + 2 and iN j+1, j ≥ 0 for all j.

To this end, set g0 := In ∈ U≥0
n , and let g(t) ∈ Un and L(t) ∈ Oλ evolve as in

Lemma 5.7(i), with M(t) := [L(t), N ]. By (5.4), we have

d
dt

∣∣
t=0 �I (g(t)) ≥ 0 for all I ⊆ [n] such that I 
= [1], . . . , [n].

Note that

ġ(0) = −[L0, N ]g0 = −[iDiag(λ), N ], so ġ(0)i, j = i(λ j − λi )Ni, j for 1 ≤ i, j ≤ n.

Using (5.5), for i ≥ j + 1 we calculate

d
dt

∣∣
t=0 �[ j−1]∪{i}(g(t)) = i(λ j − λi )Ni, j , so iNi, j ≥ 0.

Similarly, for i ≥ j + 2 we calculate

d
dt

∣∣
t=0 �[ j−1]∪{ j+1,i}(g(t)) = −i(λ j − λi )Ni, j , so iNi, j ≤ 0.

Remark 5.24. We observe that Lemma 5.23 and its proof extend to the case that λ is
weakly decreasing. Rather than obtaining that iN lies in gl≥0

n , the conclusion is that iN
is a block Jacobi matrix, where the block sizes are determined by the multiplicities of λ.

Theorem 5.25. Let λ ∈ R
n be strictly decreasing, and let N ∈ un. Then the gradient

flow (5.13) on Oλ with respect to N in the normal metric does not strictly preserves
positivity, and it weakly preserves positivity if and only if N is a scalar multiple of In
(i.e. the flow is constant).

Proof. Suppose that the gradient flow (5.13) with respect to N weakly preserves positiv-
ity. We must show that N is a scalar multiple of In . By Lemma 5.23, we have iN ∈ gl≥0

n .
It suffices to show that for all 1 ≤ j ≤ n − 2, the principal submatrix of N using rows
and columns { j, j + 1, j + 2} is a scalar multiple of I3.

To this end, we first consider the case n = 3. Let g0 ∈ U≥0
3 , and let g(t) ∈ U3 and

L(t) ∈ Oλ evolve as in Lemma 5.7(i), with M(t) := [L(t), N ]. For various choices of
g0 and I such that �I (g0) = 0, we apply (5.4) and obtain d

dt

∣∣
t=0 �I (g(t)) ≥ 0.

We have

g0 =
⎡
⎢⎣
1 0 0
0 1√

2
− 1√

2
0 1√

2
1√
2

⎤
⎥⎦ , I = {3} �⇒ −λ2 − λ3

2
i N2,1 ≥ 0,
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and

g0 =
⎡
⎢⎣
0 − 1√

2
1√
2

0 − 1√
2

− 1√
2

1 0 0

⎤
⎥⎦ , I = {1} �⇒ −λ2 − λ3

2
i N2,3 ≥ 0.

Since iN2,1 ≥ 0 and iN2,3 ≥ 0, we get N2,1 = N2,3 = 0. Therefore N is diagonal.
Now we have

g0 =
⎡
⎢⎣

1√
2

− 1
2

1
2

1√
2

1
2 − 1

2

0 1√
2

1√
2

⎤
⎥⎦ , I = {3} �⇒ λ2 − λ3

4
i (N1,1 − N2,2) ≥ 0,

g0 =
⎡
⎢⎣

0 − 1√
2

1√
2

1√
2

− 1
2 − 1

2
1√
2

1
2

1
2

⎤
⎥⎦ , I = {1} �⇒ λ2 − λ3

4
i (N3,3 − N2,2) ≥ 0,

g0 =
⎡
⎢⎣

1
2 − 1

2
1√
2

1
2 − 1

2 − 1√
2

1√
2

1√
2

0

⎤
⎥⎦ , I = {1, 2} �⇒ λ1 − λ2

4
i (N2,2 − N1,1) ≥ 0,

and

g0 =
⎡
⎢⎣

1√
2

− 1√
2

0
1
2

1
2 − 1√

2
1
2

1
2

1√
2

⎤
⎥⎦ , I = {2, 3} �⇒ λ1 − λ2

4
i (N2,2 − N3,3) ≥ 0.

(We note that these four choices are related by applying the maps rev and ρ; cf.
Lemma 3.29.) Therefore N1,1 = N2,2 = N3,3, so N is a scalar multiple of I3, as desired.

Now we consider the case of general n ≥ 3. Let Ñ denote the principal submatrix of
N using rows and columns { j, j +1, j +2}, where 1 ≤ j ≤ n−2.We prove by induction
on j (with no base case) that Ñ is a scalar multiple of I3. Given g̃0 ∈ U≥0

3 , define

g0 :=
⎡
⎣
I j−1 0 0
0 g̃0 0
0 0 In− j−2

⎤
⎦ ∈ U≥0

n .

Let g(t) ∈ Un and L(t) ∈ Oλ evolve as in Lemma 5.7(i), with M(t) := [L(t), N ].
Let g̃(t) ∈ U3 and L̃(t) ∈ O(λ j ,λ j+1,λ j+2) evolve similarly, with M̃(t) := [L̃(t), Ñ ]. By
induction, we may assume that

N =
⎡
⎣
cI j−1 0 0
0 Ñ ∗
0 ∗ ∗

⎤
⎦ for some scalar c, so that ġ(0) =

⎡
⎣
0 0 0
0 ˙̃g(0) ∗
0 ∗ ∗

⎤
⎦ .

Now for any Ĩ ⊆ [3], define I ⊆ [ j + 2] by I := [ j − 1] ∪ { j − 1 + i : i ∈ Ĩ }. Then
using (5.5), we find

�I (g0) = � Ĩ (g̃0) and d
dt

∣∣
t=0 �I (g(t)) = d

dt

∣∣
t=0 � Ĩ (g̃(t)).
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Therefore by (5.4), choosing g̃0 and Ĩ as in the case n = 3 above, we find that Ñ is a
scalar multiple of I3. This completes the induction.

Remark 5.26. Let λ ∈ R
n be strictly decreasing, where n ≥ 3. We note that while the

constant flowonOλ is the only gradient flow in the normalmetricwhichweakly preserves
positivity, there do exist nonconstant gradient flowswhich preserve the tridiagonal subset
J ≥0

λ ofO≥0
λ . Indeed, the gradient flowwith respect to N := −iDiag(n−1, . . . , 1, 0) ∈

un preserves J ≥0
λ in both time directions, by Theorem 8.3 and Theorem 8.6(i). This

is the Toda lattice flow, which we study in detail in Sect. 8. It would be interesting to
know if there are other natural subsets ofO≥0

λ which are preserved by some nonconstant
gradient flow.

5.4. The induced metric. In this subsection, we consider the gradient flow on Oλ with
respect to N in the induced metric, when Oλ is isomorphic to the complete flag variety
Fln(C). We will show (see Proposition 5.33) that a necessary condition for positivity to
be preserved is that iN ∈ gl≥0

n . We will also give an example (see Example 5.35 and
Proposition 5.36) showing that the condition iN ∈ gl≥0

n is not sufficient. While we are
not able to determine necessary and sufficient conditions in general, our investigations
indicate that such conditions likely depend in an intricate way on both N and λ. This is
in contrast to gradient flows onOλ in the other two metrics, where the conditions do not
depend on λ. In the case of the Kähler metric, this is because by definition, the metric
does not depend on the choice of λ. In the case of the normal metric, this is not obvious
beforehand, but it follows from Theorem 5.25.

We begin by giving explicit descriptions for gradient flows in the induced metric. We
begin by considering any weakly decreasing λ, and will later specialize to the case that
λ is strictly decreasing. We recall the decomposition (5.2).

Proposition 5.27. Let λ ∈ R
n be weakly decreasing, and let N ∈ un. Then the gradient

flow on Oλ with respect to N in the induced metric is given by

L̇(t) = −NL(t). (5.14)

Proof. Take M(t) ∈ un such that [L(t), M(t)] = −NL(t). Using Definition 5.4 and
Lemma 5.6, we must show that

κ([L(t), X ], NL(t)) = κ([L(t), X ], N )

for all t and tangent vectors [L(t), X ] at L(t). Indeed, since κ is [·, ·]-invariant, we have
κ([L(t), X ], N ) = −κ(X, [L(t), N ]) = −κ(X, [L(t), NL(t)]) = κ([L(t), X ], NL(t)).

Example 5.28. Let us consider the same setup as in Example 5.12 and Example 5.22,
but let L(t) evolve in the induced metric. By Proposition 5.5, we must have

L induced(t) = LKähler((λ1 − λ2)
−1t) = Lnormal((λ1 − λ2)

−2t).

Let us verify that this holds for L̇(0). We have the decomposition

N = NL0 + NL0 = −aq − bp

a2 + b2
i

[−b a
a b

]
− ap + bq

a2 + b2
i

[
a b
b −a

]
.
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By Proposition 5.27, we obtain

L̇ induced(0) = −NL0 = aq − bp

a2 + b2
i

[−b a
a b

]
= 1

λ1 − λ2
L̇Kähler(0) = 1

(λ1 − λ2)2
L̇normal(0). ♦

We now use Lemma 5.7 to translate (5.14) into a flow on FlK ;n(C), by defining for
all L , N ∈ un an element M ∈ un such that [L , M] = −NL . While such an M is only
uniquely defined modulo ker(adL), we fix a specific choice of M , which we denote by
ad−1

L (−N ).

Definition 5.29. Let λ ∈ R
n be weakly decreasing. Define the linear operator ad−1

iDiag(λ)

on un by

(ad−1
iDiag(λ)

(M))i, j :=
{
0, if λi = λ j ;

i
λ j−λi

Mi, j , otherwise,
for 1 ≤ i, j ≤ n.

Then given L ∈ Oλ, write L = g(iDiag(λ))g−1 for some g ∈ Un , and define the linear
operator ad−1

L on un by

ad−1
L (M) := g ad−1

iDiag(λ)
(g−1Mg)g−1. (5.15)

We can verify that the definition of ad−1
L depends only on L , not on the choice of g. In

particular, ad−1
L (M) is a smooth function of L ∈ Oλ and M ∈ un .

Lemma 5.30. Let λ ∈ R
n be weakly decreasing, and let L ∈ Oλ. Then

[L , ad−1
L (M)] = ML for all M ∈ un .

Proof. First we consider the case L = iDiag(λ) . The desired equality follows directly
using

(M iDiag(λ) )i, j =
{
0, if λi = λ j ;
Mi, j , otherwise,

for 1 ≤ i, j ≤ n.

Now we consider the case of general L . Write L = g(iDiag(λ))g−1 for some
g ∈ Un . Note that ML = g(g−1Mg)iDiag(λ) g−1. Therefore, taking the desired equality
[L , ad−1

L (M)] = ML and conjugating it by g−1, we obtain

[iDiag(λ), ad−1
iDiag(λ)

(g−1Mg)] = (g−1Mg)iDiag(λ) ,

which we have verified above.

Lemma 5.31. Let λ ∈ R
n be weakly decreasing, and let N ∈ un. Let g(t) ∈ Un evolve

according to

ġ(t) = ad−1
L(t)(N )g(t), where L(t) = g(t)(iDiag(λ))g(t)−1, (5.16)

beginning at g0 ∈ Un. Then

L̇(t) = −[L(t), ad−1
L(t)(N )],

and L(t) is the gradient flow (5.14) on Oλ with respect to N in the induced metric,
beginning at L0 = g0(iDiag(λ))g−1

0 ∈ Oλ.



1260 A. M. Bloch, S. N. Karp

Proof. This follows from Lemma 5.7(i), using Proposition 5.27 and Lemma 5.30.

Example 5.32. Let us consider the same setup as in Example 5.28, i.e.,

L0 := i

[
a b
b −a

]
and N := −i

[
p q
q −p

]
.

As in Example 5.12, we have L0 ∈ Oλ, where λ1 = √
a2 + b2 = −λ2. Also,

L0 = g0(iDiag(λ))g−1
0 , where g0 := 1√

2λ1

[√
λ1 + a −√

λ1 − a√
λ1 − a

√
λ1 + a

]
∈ U2 .

By (5.15), we have

ad−1
L0

(N ) = g0 ad
−1
iDiag(λ)

(g−1
0 Ng0)g

−1
0 = g0

aq − bp

2(a2 + b2)

[
0 −1
1 0

]
g−1
0 = aq − bp

2(a2 + b2)

[
0 −1
1 0

]
.

Therefore by Lemma 5.31, we have

L̇ induced(0) = −[L0, ad
−1
L0

(N )] = aq − bp

a2 + b2
i

[−b a
a b

]
,

in agreement with Example 5.28. ♦

In the remainder of this subsection, we focus on the case that λ is strictly decreasing,
i.e.,Oλ

∼= Fln(C). The following result and its proof are analogous to Lemma 5.23, with
the normal metric replaced by the induced metric; Remark 5.24 also applies.

Proposition 5.33. Let λ ∈ R
n be strictly decreasing, and suppose that the gradient flow

(5.14) on Oλ with respect to N ∈ un in the induced metric weakly preserves positivity.
Then iN ∈ gl≥0

n .

Proof. We assume that iN is real. We must show that

iNi, j = 0 for all i ≥ j + 2 and iN j+1, j ≥ 0 for all j.

To this end, set g0 := In ∈ U≥0
n , and let g(t) ∈ Un evolve as in (5.16), with L(t) =

g(t)(iDiag(λ))g(t)−1 ∈ Oλ. By (5.4), we have

d
dt

∣∣
t=0 �I (g(t)) ≥ 0 for all I ⊆ [n] such that I 
= [1], . . . , [n].

Note that

ġ(0) = ad−1
L0

(N )g0 = ad−1
iDiag(λ)

(N ), so ġ(0)i, j =
{
0, if i = j;

i
λ j−λi

Ni, j , otherwise.

Using (5.5), for i ≥ j + 1 we calculate

d
dt

∣∣
t=0 �[ j−1]∪{i}(g(t)) = i

λ j−λi
Ni, j , so iNi, j ≥ 0.

Similarly, for i ≥ j + 2 we calculate

d
dt

∣∣
t=0 �[ j−1]∪{ j+1,i}(g(t)) = −i

λ j−λi
Ni, j , so iNi, j ≤ 0.
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We now further consider the flow (5.16). Using (5.15), we can rewrite (5.16) as

ġ(t) = g(t) ad−1
iDiag(λ)

(g(t)−1Ng(t)). (5.17)

When λ is strictly decreasing, we wish to view (5.17) as a flow on Fln(C), and it will
be more convenient to have g(t) acted upon on the left, rather than the right. To achieve
this, we apply the twist map from Sect. 3.3. Since the twist map preserves total positivity
and total nonnegativity (see Theorem 3.26), we may work with the twisted flow when
considering which flows (5.16) preserve positivity. This in turn is equivalent to working
with (5.14), by Lemma 5.7(ii).We summarize these observations in the following result:

Lemma 5.34. Let λ ∈ R
n be strictly decreasing, and let N ∈ un. Let g(t) ∈ Un evolve

according to (5.16), and set h(t) := ι(t) = δng(t)−1δn ∈ Un. Then h(t) evolves ac-
cording to

ḣ(t) = −ad−1
iDiag(λ)

(h(t)δnNδnh(t)−1)h(t). (5.18)

Furthermore, the gradient flow on Oλ with respect to N in the induced metric weakly
(respectively, strictly) preserves positivity if and only if the flow (5.18) on Un weakly
(respectively, strictly) preserves positivity.

Proof. This follows from the preceding discussion, where we obtain (5.18) from (5.17).

We emphasize that since we are employing the twist map, Lemma 5.34 only applies
when λ is strictly decreasing. We also observe that the technique of applying the twist
map can be employed to flows much more generally, and we will do so again for the
symmetric Toda flow in Sect. 8.2.

We believe it may be possible to use (5.18) to classify which gradient flows on Oλ

(when λ is strictly decreasing) in the induced metric preserve positivity. As a first step
in this direction, we investigate the case n = 3. We will find that, curiously, whether or
not positivity is preserved appears to depend on the choice of λ (though we are unable
to prove this); see (5.23) and Proposition 5.36.

Example 5.35. Let n := 3, let λ ∈ R
3 be strictly decreasing, and let N ∈ u3. We wish

to determine when the gradient flow on Oλ with respect to N in the induced metric
weakly preserves positivity. By Proposition 5.33, it suffices to consider the case when
iN ∈ gl≥0

3 . Also, after translating N by a scalar multiple of I3 (which does not change
the gradient flow), we may assume that N2,2 = 0. That is,

N = −i

⎡
⎣
p u 0
u 0 v

0 v q

⎤
⎦ for some p, q ∈ R and u, v ≥ 0. (5.19)

For convenience, we also set

c := λ1 − λ2 > 0 and d := λ2 − λ3 > 0.

Let g(t) evolve according to (5.18), beginning at an arbitrary g0 ∈ U≥0
3 . In particular,

we have

ġ(0) = −ad−1
iDiag(λ)

(
g0i

⎡
⎣

−p u 0
u 0 v

0 v −q

⎤
⎦ g−1

0

)
g0.
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We will determine when the inequalities in (5.4) hold:

d
dt

∣∣
t=0 �I (g(t)) ≥ 0 for all I ⊆ [3] such that �I (g0) = 0. (5.20)

We can express the left-hand side above as follows:

d
dt

∣∣
t=0 �{i}(g(t)) = ġ(0)i,1 and d

dt

∣∣
t=0 �[3]\{i}(g(t)) = (−1)i−1ġ(0)i,3

for all i ∈ [3], where the second equality follows from (2.3). We emphasize that our
approach based on (5.20) gives a necessary condition for positivity to be preserved,
but not necessarily a sufficient condition, because (5.4) only considers g(t) to first
order in t .

We consider several cases, depending on which cell Cv,w contains g0 in the cell de-
composition (2.8) of Fl≥0

3 . Here, v and w are permutations in S3 such that v ≤ w (cf.
Fig. 1).We observe that by symmetry, some cases are redundant. Namely, recall the invo-
lutions rev and ρ defined onUn from Sect. 3.2, which act on the cell decomposition (2.8)
according to Lemma 3.29. Therefore we only need to consider one cell among the orbit

Cv,w, Cw0w,w0v, Cww0,vw0 , Cw0vw0,w0ww0 ,

where w0 = 321. On the other hand, rev and ρ are compatible with (5.18): the latter is
invariant under the transformations

h ↔ rev(h) = ẘ0δ3hδ3, N ↔ −δ3Nδ3, (λ1, λ2, λ3) ↔ (−λ3,−λ2,−λ1);
and

h ↔ ρ(h) = δ3hδ3ẘ0, N ↔ ẘ0δ3N ẘ0δ3.

In terms of the data (c, d, p, q, u, v), these transformations correspond to, respectively,

c ↔ d, p ↔ −p, q ↔ −q; and p ↔ q, u ↔ v. (5.21)

Also observe thatwhen (v,w) = (123, 321), we haveCv,w = Fl>0
3 , so that�I (g0) 
=

0 for all I ⊆ [3]. Therefore (5.20) is vacuously satisfied in this case, and so we do not
need to consider it below. We note that the discussion above for n = 3 can be easily
generalized to any n.

We now consider the six possible cases. Below, we let α and β denote arbitrary
numbers in the interval (0, π

2 ).
Case 1: (v,w) equals (123, 123) or (321, 321).Weassume that (v,w) = (123, 123).

Then

g0 =
⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦ and ġ(0) =

⎡
⎣
0 − u

c 0
u
c 0 − v

d
0 v

d 0

⎤
⎦ .

We must check (5.20) when I = {2}, {3}, {1, 3}, {2, 3}:
u

c
≥ 0, 0 ≥ 0,

v

d
≥ 0, 0 ≥ 0.
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These inequalities are always satisfied.
Case 2: (v,w) equals (132, 132), (312, 312), (231, 231), or (213, 213).We assume

that (v,w) = (132, 132). Then

g0 =
⎡
⎣
1 0 0
0 0 −1
0 1 0

⎤
⎦ and ġ(0) =

⎡
⎣

0 − u
c+d 0

0 v
d 0

u
c+d 0 v

d

⎤
⎦ .

We must check (5.20) when I = {2}, {3}, {1, 2}, {2, 3}:

0 ≥ 0,
u

c + d
≥ 0,

v

d
≥ 0, 0 ≥ 0.

These inequalities are always satisfied.
Case 3: (v,w) equals (123, 132), (312, 321), (231, 321), or (123, 213).We assume

that (v,w) = (123, 132). Then

g0 =
⎡
⎣
1 0 0
0 cos(α) − sin(α)

0 sin(α) cos(α)

⎤
⎦ and ġ(0) =

⎡
⎢⎣

∗ ∗ du sin(2α)
2c(c+d)

u cos(α)
c ∗ ∗

u sin(α)
c+d ∗ ∗

⎤
⎥⎦ ,

where the entries ∗ are unimportant. We must check (5.20) when I = {2}, {3}, {2, 3}:
u cos(α)

c
≥ 0,

u sin(α)

c + d
≥ 0,

du sin(2α)

2c(c + d)
≥ 0.

These inequalities are always satisfied.
Case 4: (v,w) equals (213, 231) or (132, 312).Weassume that (v,w) = (213, 231).

Then

g0 =
⎡
⎣
0 −cos(α) sin(α)

1 0 0
0 sin(α) cos(α)

⎤
⎦ and ġ(0) =

⎡
⎢⎣

u cos(α)
c ∗ ∗
∗ ∗ − (c+d)u sin(2α)

2cd
u sin(α)

d ∗ ∗

⎤
⎥⎦ ,

where the entries ∗ are unimportant. We must check (5.20) when I = {1}, {3}, {1, 3}:
u cos(α)

c
≥ 0,

u sin(α)

d
≥ 0,

(c + d)u sin(2α)

2cd
≥ 0.

These inequalities are always satisfied.
Case 5: (v,w) equals (132, 231) or (213, 312).Weassume that (v,w) = (132, 231).

Then

g0 =
⎡
⎣
cos(α) 0 sin(α)

sin(α) 0 −cos(α)

0 1 0

⎤
⎦ and

ġ(0) =
⎡
⎣

∗ ∗ ∗
∗ ∗ ∗

cu(1−cos(2α))−cv sin(2α)+2du
2(c+d)d ∗ cv(1+cos(2α))−cu sin(2α)+2dv

2(c+d)d

⎤
⎦ ,
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where the entries ∗ are unimportant. We must check (5.20) when I = {3}, {1, 2}:
cu(1 − cos(2α)) − cv sin(2α) + 2du

2(c + d)d
≥ 0,

cv(1 + cos(2α)) − cu sin(2α) + 2dv

2(c + d)d
≥ 0.

The left-hand side of the first inequality above is minimized (as a function of α) when
tan(2α) = v

u , and the left-hand side of the second inequality is minimized when
tan(2α) = − u

v
. Therefore these inequalities are equivalent to

c(u −
√
u2 + v2) + 2du ≥ 0, c(v −

√
u2 + v2) + 2dv ≥ 0. (5.22)

Symmetrizing according to (5.21), we conclude that (5.20) holds in this case if and only if

u = v = 0 or min

(
u√

u2 + v2
,

v√
u2 + v2

)
≥ max

(
c

c + 2d
,

d

2c + d

)
. (5.23)

Case 6: (v,w) equals (123, 231), (213, 321), (132, 321), or (123, 312).We assume
that (v,w) = (123, 231). Then

g0 =
⎡
⎣
cos(α) −sin(α) cos(β) sin(α) sin(β)

sin(α) cos(α) cos(β) −cos(α) sin(β)

0 sin(β) cos(β)

⎤
⎦ .

We must check (5.20) when I = {3}:
ġ(0)3,1 = cq sin(2α) sin(2β) + 2cu(1 − cos(2α)) sin(β) + 2cv sin(2α) cos(2β) + 4du sin(β)

4(c + d)d
≥ 0.

Multiplying by 2(c+d)d
sin(β)

, we obtain the equivalent inequality

cq sin(2α) cos(β) + cu(1 − cos(2α)) + cv sin(2α)
cos(2β)

sin(β)
+ 2du ≥ 0. (5.24)

Note that if q ≥ 0, then the left-hand side above is a weakly decreasing function of β,
whence it is minimized as β → π

2 . The inequality then becomes

cu(1 − cos(2α)) − cv sin(2α) + 2du ≥ 0,

which we considered in Case 5. In particular, if p = q = 0, then after symmetrizing
according to (5.21), we find that (5.20) holds if and only if (5.23) holds. In the general
case when p or q is nonzero, (5.24) (and its images under (5.21)) will yield stronger
conditions than (5.23).

In conclusion, (5.20) is equivalent to the inequality (5.24) alongwith its images under
(5.21). These inequalities imply (5.23), and they are equivalent to (5.23) in the case that
p = q = 0.

In particular, when λ is fixed (i.e. c, d are fixed), there exists a nonzero N (i.e. there
exist p, q, u, v not all zero) satisfying (5.20) if and only if

max
( c
d

,
d

c

)
≤ 2 + 2

√
2. (5.25)
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To see this, note that if (5.25) holds, then we may take (p, q, u, v) := (0, 0, 1, 1). Con-
versely, suppose that (5.25) does not hold; we must show that p = q = u = v = 0.
First we consider the inequality in (5.23). If u or v is nonzero, then the left-hand side
is at most 1√

2
, while by assumption, the right-hand side is greater than 1√

2
. Therefore

u = v = 0. Then the inequality (5.24) becomes cq sin(2α) cos(β) ≥ 0, which implies
q ≥ 0. Symmetrizing according to (5.21) gives the inequalities q ≤ 0, p ≥ 0, and
p ≤ 0, so p = q = 0, as desired. ♦

Based on Example 5.35, we make the following observation:

Proposition 5.36. Let λ ∈ R
3 be strictly decreasing such that λ1−λ2

λ2−λ3
lies outside the

interval
[ 1
2+2

√
2
, 2 + 2

√
2
]
, and let N ∈ u3. Then the gradient flow (5.14) on Oλ with

respect to N in the induced metric does not strictly preserves positivity, and it weakly
preserves positivity if and only if N is a scalar multiple of I3 (i.e. the flow is constant).

Proof. This follows from the last paragraph of Example 5.35.

6. Lyapunov Function and Homeomorphism onto a Closed Ball

Galashin, Karp, and Lam [GKL22b,GKL19] recently employed the notion of a con-
tractive flow in order to show that the totally nonnegative part of any partial flag variety
G/P (as well as several other spaces appearing in algebraic combinatorics) is home-
omorphic to a closed ball. In this section we rephrase this argument in the case that
G/P = FlK ;n(C) in terms of the orbit language. The key point is that by Proposi-
tion 5.9, the flows on FlK ;n(C) considered in [GKL22b,GKL19] (which were defined
by the explicit formula (5.6)) are in fact gradient flows in the Kähler metric. Therefore
there is a natural candidate for a Lyapunov function, which we can then substitute for
the role of the metric which was used in [GKL22b,GKL19].

6.1. Stable manifold. In this subsection, we describe the stable manifold inside Oλ of
the unique global attractor for a gradient flow in the Kähler metric.

Definition 6.1. Let −N ∈ Oμ, and set K := {i ∈ [n − 1] : μi > μi+1}. (The reason
that we are letting μ index the orbit of −N , rather than the orbit of N , is that we wish
to consider the eigenvalues of iN in decreasing order.) As in (4.4), let us write

iN =
(∑
k∈K

(μk − μk+1)Pk
)
+ μn In, (6.1)

where Pk is orthogonal projection from C
n onto the subspace spanned by the eigenvec-

tors of iN corresponding to the eigenvalues μ1, . . . , μk . We define P∞
k (N ) := Pk for

all k ∈ K .
Now let λ ∈ R

n be weakly decreasing such that K ′ := {i ∈ [n − 1] : λi > λi+1} is
contained in K . Then we define

L∞(N ; λ) :=
( ∑
k∈K ′

(λk − λk+1)iP∞
k (N )

)
+ λn i In ∈ Oλ. (6.2)
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We define the stable manifold (of L∞(N ; λ) under the gradient flow with respect to N
in the Kähler metric) as

Os
λ(N ) := {L0 ∈ Oλ : L(t) → L∞(N ; λ) as t → ∞},

where L(t) evolves as in Proposition 5.9.

Example 6.2. We set n := 2, and consider (cf. Example 5.12)

iN :=
[
p q
q −p

]
, where p ∈ R, q ∈ C, and p and q are not both zero.

We have −N ∈ Oμ, where

μ1 :=
√
p2 + |q|2 and μ2 := −

√
p2 + |q|2.

Since p and q are not both zero, we have μ1 > μ2, and P∞
1 (N ) is orthogonal projection

onto the eigenspace of μ1. Therefore the expansion (6.1) is

iN = (μ1 − μ2)P∞
1 (N ) + μ2 I2, where P∞

1 (N ) = 1

2μ1

[
μ1 + p q

q μ1 − p

]
.

Now let λ1 ≥ λ2. Then

L∞(N ; λ) = (λ1 − λ2)iP∞
1 (N ) + λ2i I2 = λ1 − λ2

2μ1
i

[
p q
q −p

]
+

λ1 + λ2

2
i I2 ∈ Oλ.

If λ1 = λ2, then Oλ = {L∞(N ; λ)} is a point. Otherwise, it will follow from Proposi-
tion 6.6(i) that the stable manifold Os

λ(N ) equals Oλ minus the single point

(λ1 − λ2)iQ + λ2i I2 = −λ1 + λ2

2μ1
i

[
p q
q −p

]
+

λ1 + λ2

2
i I2.

Here Q = I2 −P∞
1 (N ) is orthogonal projection onto the eigenspace of μ2 = −μ1. ♦

We show that Definition 6.1 is compatible with positivity:

Lemma 6.3. Let λ ∈ R
n be weakly decreasing, and set K := {i ∈ [n − 1] : λi > λi+1}.

Suppose that −N ∈ Oμ such that the gradient flow on Oλ with respect to N in the
Kähler metric strictly preserves positivity. Then for all k ∈ K, we have μk > μk+1 and
iP∞

k (N ) ∈ O>0
ωk

.

Proof. By Corollary 5.11, for k ∈ K , the flow (5.6) on Grk,n(C) strictly preserves
positivity. Hence by the implication (vi) ⇒ (v) of Theorem 5.14, all k × k minors of
exp(iN ) (which has eigenvalues eμ1 ≥ · · · ≥ eμn ) are positive. Then Theorem 2.23(i)
impliesμk > μk+1, and Theorem2.23(ii) and Lemma 4.10 imply iP∞

k (N ) ∈ O>0
ωk

.

We begin by describing the stable manifold of Oλ in the Grassmannian case (cf.
Definition 4.9), adapting the proof of [GKL22b, Proposition 3.4].

Lemma 6.4. Let 1 ≤ k ≤ n − 1, and let −N ∈ Oμ such that μk > μk+1.

(i) We have Os
ωk

(N ) = {iP ∈ Oωk : rank(P∞
k (N )P) = k}.

(ii) If iP∞
k (N ) ∈ O>0

ωk
, then the stable manifold Os

ωk
(N ) contains O≥0

ωk
.



Gradient Flows and Adjoint Orbits 1267

Proof. (i) Let iP ∈ Oωk , and let iP(t) evolve according to the gradient flow on
Oωk with respect to N in the Kähler metric (with P(0) = P). We must show that
limt→∞ P(t) = P∞

k (N ) if and only if rank(P∞
k (N )P) = k.

For the forward direction, note that t 	→ rank(P∞
k (N )P(t)) is a continuous function

of t , and hence it is constant. If limt→∞ P(t) = P∞
k (N ), then this function is identically

equal to k; taking t = 0 gives rank(P∞
k (N )P) = k.

Conversely, suppose that rank(P∞
k (N )P) = k. Let us work in an orthonormal ba-

sis of eigenvectors of iN corresponding to the eigenvalues μ1 ≥ · · · ≥ μn , so that

iN = Diag(μ) and P∞
k (N ) =

[
Ik 0
0 0

]
. By Lemma 4.10, we can write P = PV for some

V ∈ Grk,n(C), which we regard as an n × k matrix. Write

V =
[
X
Y

]
, where X is k × k and Y is (n − k) × k.

For the moment, suppose that the columns of V are orthonormal. Then

P = VV ∗ =
[
XX∗ XY ∗
Y X∗ YY ∗

]
.

Since rank(P∞
k (N )P) = k, we have rank(X) = k. After multiplying V on the right by

X−1, we may assume that X = Ik .
By (5.6), we have P(t) = PV (t) = V (t)(V (t)∗V (t))−1V (t)∗, where V (t) :=

exp(t iN )V . Note that exp(t iN ) = Diag(etμ1 , . . . , etμn ) , so we may regard V (t) as
the n × k matrix

V (t) =
[

Ik
Diag(etμk+1, . . . , etμn )Y Diag(e−tμ1 , . . . , e−tμk )

]
.

Since μk > μk+1, we have Diag(etμk+1, . . . , etμn )Y Diag(e−tμ1 , . . . , e−tμk ) → 0 as
t → ∞. Therefore

lim
t→∞ P(t) =

[
Ik 0
0 0

]
= P∞

k (N ).

(ii) Suppose that iP∞
k (N ) ∈ O>0

ωk
. Given iP ∈ O≥0

ωk
, we must show that iP ∈

Os
ωk

(N ). By part (i), it is equivalent to show that rank(P∞
k (N )P) = k. Recall that

P∞
k (N ) and P have rank k, so P∞

k (N )P has rank at most k. Conversely, by Corol-
lary 4.12, all k×k minors ofP∞

k (N ) are real and positive; also, all k×k minors of P are
real and nonnegative, and at least one such minor is positive. Therefore by the Cauchy–
Binet identity (2.2), P∞

k (N )P has a positive k × k minor, so its rank is at least k.

Remark 6.5. We observe that in Lemma 6.4, if iP∞
k (N ) ∈ O≥0

ωk
, then the stable man-

ifold Os
ωk

(N ) contains O>0
ωk

; the proof is similar to that of part (ii). Furthermore, if
iP∞

k (N ) ∈ O≥0
ωk

\O>0
ωk

, then there exists a point inO≥0
ωk

\O>0
ωk

which is not in the stable

manifoldOs
ωk

(N ). Namely, by Corollary 4.12 and (4.3), there exists J ∈ ([n]
k

)
such that

�I,J (P∞
k (N )) = 0 for all I ∈ ([n]

k

)
. Then take P to be orthogonal projection onto the

span of ei for i ∈ J . The only nonzero minor of P is �J,J (P) = 1, so iP ∈ O≥0
ωk

\O>0
ωk

byCorollary 4.12. Also, by the Cauchy–Binet identity (2.2), all k×kminors ofP∞
k (N )P

are zero. Hence iP /∈ Os
ωk

(N ) by Lemma 6.4(i).
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Proposition 6.6. Let λ ∈ R
n be weakly decreasing, set K := {i ∈ [n − 1] : λi > λi+1},

and let −N ∈ Oμ such that μk > μk+1 for all k ∈ K.

(i) Let L ∈ Oλ, and write −iL = (
∑

k∈K (λk − λk+1)Pk) + λn In as in (4.4). Then

L ∈ Os
λ(N ) ⇐⇒ rank(P∞

k (N )Pk) = k for all k ∈ K .

(ii) If iP∞
k (N ) ∈ O>0

ωk
for all k ∈ K, then the stable manifold Os

λ(N ) contains O≥0
λ .

Proof. By the observations of Remark 5.10, we see that

L ∈ Os
λ(N ) ⇐⇒ iPk ∈ Os

ωk
(N ) for all k ∈ K .

Also, by (2.7), if L ∈ O≥0
λ , then iPk ∈ O≥0

ωk
for all k ∈ K . The results then follow from

Lemma 6.4.

Remark 6.7. In Proposition 6.6(i), we have given an explicit description of the stable
manifoldOs

λ(N ). If we only wish to know thatOs
λ(N ) contains O≥0

λ when the gradient
flow on Oλ with respect to N in the Kähler metric strictly preserves positivity, then
the following alternative proof suffices. Let S ⊆ Oλ denote the complement of the set
of equilibrium points other than L∞(N ; λ). By Corollary 5.15, we can argue (e.g. us-
ing Perron–Frobenius theory) that S contains O≥0

λ . Then LaSalle’s invariance principle
[HSD13, Section 9.2] along with Proposition 6.9 imply that Os

λ(N ) contains O≥0
λ .

6.2. Lyapunov function. In this subsection, we show that −κ(·, N ) is a Lyapunov func-
tion for L∞(N ; λ), for the gradient flow on Oλ with respect to N in the Kähler metric.
While this essentially follows from the fact that the flow is the gradient flow of the
function κ(·, N ), we also give an elementary direct proof using the explicit description
of the flow in Remark 5.10. We refer to [HSD13, Section 9] and [AMR88, Section 4.3]
for further background on Lyapunov stability theory.

Definition 6.8. Consider a flow defined on a differentiable manifold R, and let M ∈ R
be an equilibrium point. A strict Lyapunov function for M is a differentiable function
V : S → R, where S ⊆ R is an open subset containing M , satisfying the following two
properties:

(L1) V (L) > V (M) for all L 
= M in S; and
(L2) d

dt

∣∣
t=0 V (L(t)) < 0 for all L0 
= M in S, where L(t) denotes the flow beginning

at L0.

The existence of a strict Lyapunov function for the equilibrium point M implies that it
is asymptotically stable [HSD13, Section 9.2].

We observe that if S has a Riemannian metric 〈·, ·〉metric, then
d
dt

∣∣
t=0 V (L(t)) = 〈grad(V )(L), L̇(0)〉metric.

In particular, for the gradient flow of the function −V , i.e.,

L̇(t) = grad(−V )(L(t)),

(L2) is always satisfied for non-equilibrium points L0. Therefore V is a strict Lyapunov
function for M on the stable manifold of M (cf. [HSD13, Section 9.3]).

We now prove a slightly stronger statement in the case of gradient flows on Oλ in
the Kähler metric. Our proof of (L2) will use the explicit description of the flows, rather
than the fact it is gradient. We adapt an argument of Bloch, Brockett, and Ratiu [BBR92,
p. 70] for double-bracket flows (i.e. gradient flows in the normal metric).
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Proposition 6.9. Let λ ∈ R
n be weakly decreasing, set K := {i ∈ [n − 1] : λi > λi+1},

and let −N ∈ Oμ such that μk > μk+1 for all k ∈ K. Consider the gradient flow onOλ

with respect to N in the Kähler metric, and let S ⊆ Oλ be the complement of the set of
equilibrium points other than L∞(N ; λ). (In particular, S contains the stable manifold
Os

λ(N ).) Then

V : S → R, L 	→ −κ(L , N )

is a strict Lyapunov function for L∞(N ; λ) on S.

Proof. We must verify the two conditions of Definition 6.8. First we consider (L1). We
claim that in fact V (L) > V (L∞(N ; λ)) for all L 
= L∞(N ; λ) in Oλ. This essentially
follows from a theorem of Schur [Sch23] (one direction of the Schur–Horn theorem);
we give a detailed argument below.

As in (4.4), let us write

−iL =
(∑
k∈K

(λk − λk+1)Pk
)
+ λn In,

where P2
k = Pk = P∗

k and tr(Pk) = k. Recall the analogous expansion (6.2) of
L∞(N ; λ). We begin by proving that

tr(P∞
k (N )iN ) ≥ tr(Pk iN ) for all k ∈ K . (6.3)

Let us work in an orthonormal basis of eigenvectors of iN corresponding to the eigenval-

ues μ1 ≥ · · · ≥ μn , so that iN = Diag(μ) and P∞
k (N ) =

[
Ik 0
0 0

]
. Then (6.3) becomes

μ1 + · · · + μk ≥ (Pk)1,1μ1 + · · · + (Pk)n,nμn .

By assumption, the diagonal entries of Pk lie in the interval [0, 1] and sum to k. Therefore
we obtain (6.3). Moreover, since μk > μk+1, the inequality is strict if Pk 
= P∞

k (N );
and the latter condition holds for some k ∈ K , because L 
= L∞(N ; λ). Multiplying
(6.3) by λk − λk+1 and summing over k, we obtain tr(L∞(N ; λ)N ) > tr(LN ), which is
equivalent to the desired inequality V (L) > V (L∞(N ; λ)).

We now prove that (L2) holds for L 
= L∞(N ; λ) in S. Let us expand −iL(t) as in
(5.8). Set Pk := Pk(0) for k ∈ K . Then by Remark 5.10, we have

d
dt

∣∣
t=0 V (L(t)) = −κ(L̇(0), N ) = −

∑
k∈K

(λk − λk+1)κ(i Ṗk(0), N )

= −
∑
k∈K

(λk − λk+1)κ([iPk, [iPk, N ]], N ) =
∑
k∈K

(λk − λk+1)κ([iPk, N ], [iPk, N ]),

where in the last step we used the fact that κ is [·, ·]-invariant.
Since −κ is positive semidefinite, we have κ([iPk, N ], [iPk, N ]) ≤ 0 for all k ∈ K .

Moreover, since L̇(0) 
= 0, we have i Ṗk(0) 
= 0 for some k ∈ K ; then [iPk, N ] 
= 0,
and so κ([iPk, N ], [iPk, N ]) < 0. Therefore d

dt

∣∣
t=0 V (L(t)) < 0.

We will need the following consequence of Proposition 6.9 in Sect. 6.3:

Corollary 6.10. Adopt the notation and assumptions of Proposition 6.9. Let S0 be a
compact subset of S. Then for any gradient flow L(t) in Oλ which is not the constant
flow at L∞(N ; λ), we have L(t) /∈ S0 for some t ≤ 0.
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Proof. By Proposition 6.9, V : S → R is a strict Lyapunov function for L∞(N ; λ). Let
S1 := V−1([V (L0),∞)) ∩ S0, which is compact since V is continuous. By (L2), for
t ≤ 0 we have V (L(t)) ≥ V (L0), so if L(t) ∈ S0 then L(t) ∈ S1. Hence it suffices to
show that L(t) /∈ S1 for some t ≤ 0.

We proceed by contradiction and suppose that L(t) ∈ S1 for all t ≤ 0. For M ∈ Oλ,
letM(t) ∈ Oλ denote the gradient flow beginning atM . Define c ∈ R to be theminimum
of− d

dt

∣∣
t=0 V (M(t)) over all M in the compact set S1. By (L1) we have L∞(N ; λ) /∈ S1,

so (L2) implies that c > 0. By (L2), we obtain

V (L(t)) ≥ V (L0) − ct for all t ≤ 0.

Therefore V is unbounded on the compact set S1, a contradiction.

6.3. Homeomorphism onto a closed ball. We now use gradient flows to show that the
totally nonnegative partO≥0

λ of an adjoint orbit is homeomorphic to a closed ball. As we
have mentioned, this result was proved by Galashin, Karp, and Lam [GKL19] in general
Lie type, which we rephrase in type A in the orbit language. We adopt the framework
of contractive flows developed in [GKL22b, Section 2]; the main modification is that
we use a Lyapunov function in place of the Euclidean norm employed in [GKL22b].
We deduce the result about O≥0

λ as a consequence of the more general Theorem 6.12,
which we will also use to show that the Plücker-nonnegative part of a partial flag variety
is homeomorphic to a closed ball (see Corollary 6.16), and to study the topology of
amplituhedra (see Sect. 7.4).

Wewill need a continuity result for gradient flows onOλ, which follows from general
principles. In the case relevant to us, namely for the Kähler metric, it also follows from
the explicit formula (5.6).

Lemma 6.11 ([AMR88, Proposition 4.1.17(iii)]).Consider a gradient flow (5.1) onOλ.
For L ∈ Oλ, let L(t) ∈ Oλ denote the gradient flow beginning at L. Then the function

R × Oλ → Oλ, (t, L) 	→ L(t)

is continuous.

Theorem 6.12. Let λ ∈ R
n be weakly decreasing, set K := {i ∈ [n − 1] : λi > λi+1},

and let −N ∈ Oμ such that μk > μk+1 for all k ∈ K. Consider the gradient flow onOλ

with respect to N in the Kähler metric. Let S be a nonempty compact subset of the stable
manifold Os

λ(N ), and let S◦ denote the interior of S inside Oλ. Suppose that any flow
beginning in S lies in S◦ for all positive time. Then S is homeomorphic to a closed ball, S◦
is homeomorphic to an open ball, and its boundary S \ S◦ is homeomorphic to a sphere.

Proof. We closely follow the proof of [GKL22b, Lemma 2.3]. Let V : Os
λ(N ) → R de-

note the strict Lyapunov function forL∞(N ; λ) fromProposition 6.9.Define the function

ν : Os
λ(N ) → R, L 	→ V (L) − V (L∞(N ; λ)).

In particular, ν is nonnegative and equals zero precisely at L∞(N ; λ). If L(t) is the
gradient flow beginning at any point of Os

λ(N ) other than L∞(N ; λ), then ν(L(t)) is
strictly decreasing as a function of t and approaches 0 as t → ∞.

For r > 0, define Br := ν−1([0, r ]) ∩ Os
λ(N ). By assumption, L∞(N ; λ) is con-

tained in S, and therefore also in S◦. By the Morse lemma (cf. [AMR88, Lemma 5.4.9],
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[Dur83]), we may take r sufficiently small that Br is contained in S◦ and is homeomor-
phic to a closed ball, B◦

r = ν−1([0, r)) ∩ Os
λ(N ) is homeomorphic to an open ball, and

Br \ B◦
r = ν−1(r)∩Os

λ(N ) is homeomorphic to a sphere. (In fact, by letting the gradient
flow act on Br , we get that Br is homeomorphic to a closed ball for all r > 0, though
we will not need to use this.)

We now define two functions tr , t∂ : Os
λ(N ) \ {L∞(N ; λ)} → R, as follows. Given

L ∈ Os
λ(N ) \ {L∞(N ; λ)}, let L(t) ∈ Oλ denote the gradient flow beginning at L . By

Corollary 6.10, there exists t0 ∈ R such that L(t0) /∈ S. In particular, ν(L(t0)) > r .
Since ν(L(t)) is strictly decreasing as a function of t and approaches 0 as t → ∞, there
exists a unique t ∈ R such that ν(L(t)) = r , which we define to be tr (L). Now observe
that by assumption, we have L(t) /∈ S for all t ≤ t0, and we also have L(tr (L)) ∈ S.
Therefore we may define t∂ (L) := inf{t ∈ R : L(t) ∈ S}. Again by assumption, we
have L(t∂ (L)) ∈ S \ S◦ and L(t) ∈ S◦ for all t > t∂ (L).

We claim that tr and t∂ are continuous functions on Os
λ(N ) \ {L∞(N ; λ)}. First

we prove that tr is continuous. It suffices to show that given an open interval I ⊆ R,
the preimage t−1

r (I ) is open. To this end, let L ∈ t−1
r (I ), and let L(t) ∈ Oλ denote

the gradient flow beginning at L . Take t1, t2 ∈ I such that t1 < tr (L) < t2. Let
r1 := ν(L(t1)) and r2 := ν(L(t2)), so that r1 > r > r2 by (L2). For M ∈ Oλ,
let M(t) ∈ Oλ denote the gradient flow starting at M . By Lemma 6.11, the function
M 	→ ν(M(t1)) is continuous. Hence there exists an open neighborhood U1 of L such
that for allM ∈ U1, we have ν(M(t1)) > r . Similarly, there exists an open neighborhood
U2 of L such that for all M ∈ U2, we have r > ν(M(t2)). LetU := U1∩U2, which is an
open neighborhood of L . Then for all M ∈ U , we have ν(M(t1)) > r > ν(M(t2)), so
(L2) implies that tr (M) ∈ (t1, t2) ⊆ I . That is, U ⊆ t−1

r (I ), and hence t−1
r (I ) is open.

Now we prove that t∂ is continuous, by a similar argument. Let L ∈ t−1
∂ (I ), where

I ⊆ R is an open interval, and take t1, t2 ∈ I such that t1 < t∂ (L) < t2. Observe that
L(t1) ∈ Os

λ(N ) \ S and L(t2) ∈ S◦, and that both sets Os
λ(N ) \ S and S◦ are open.

Hence there exists an open neighborhood U1 of L such that for all M ∈ U1, we have
M(t1) ∈ Os

λ(N ) \ S. Similarly, there exists an open neighborhoodU2 of L such that for
all M ∈ U2, we have M(t2) ∈ S◦. Then U := U1 ∩ U2 is an open neighborhood of L
contained in t−1

∂ (I ). Thus t∂ is continuous.
We now define maps α : S → Br and β : Br → S as follows. If L 
= L∞(N ; λ), we

set

α(L) := L(tr (L) − t∂ (L)) and β(L) := L(t∂ (L) − tr (L)),

where L(t) ∈ Oλ denotes the gradient flow beginning at L . We also set α(L∞(N ; λ)) :=
L∞(N ; λ) and β(L∞(N ; λ)) := L∞(N ; λ). We can verify that α and β are well-defined,
and that they are inverses of each other. Also note that α(S \ S◦) ⊆ Br \ B◦

r and
β(Br \ B◦

r ) ⊆ S \ S◦. Thus α restricts to a bijection from S \ S◦ to Br \ B◦
r , and hence

also restricts to a bijection from S◦ to B◦
r .

Therefore to complete the proof, it suffices to show that α and β are continuous.
We prove that α is continuous; because S is compact, this then implies that β = α−1

is continuous. By Lemma 6.11 and since tr and t∂ are continuous, we have that α is
continuous except possibly at L∞(N ; λ). Now observe that every open neighborhood of
L∞(N ; λ) in Br contains the open subset ν−1([0, ε)) for some ε > 0. By (L2) we have
α(ν−1([0, ε)) ⊆ ν−1([0, ε)), so α is continuous at L∞(N ; λ).

Corollary 6.13 (Galashin, Karp, and Lam [GKL19, Theorem 1]). Let λ ∈ R
n be weakly

decreasing. ThenO≥0
λ is homeomorphic to a closed ball, its interiorO>0

λ is homeomor-

phic to an open ball, and its boundary O≥0
λ \ O>0

λ is homeomorphic to a sphere.
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The fact thatO>0
λ is homeomorphic to an open ball was originally proved by Rietsch

[Rie99, Theorem 2.8].

Proof. We apply Theorem 6.12, taking S to beO≥0
λ , and taking −N ∈ Oμ such that the

gradient flow on Oλ with respect to N in the Kähler metric strictly preserves positivity.
(For example, we may take iN ∈ gl>0

n , by Corollary 5.15 and Corollary 5.19.) Let us
verify that the hypotheses of Theorem 6.12 are satisfied. Setting K := {i ∈ [n − 1] :
λi > λi+1}, we have μk > μk+1 for all k ∈ K by Lemma 6.3. Also, S is compact
since it is a closed subset of the compact space Oλ, and S is contained in Os

λ(N ) by
Proposition 6.6(ii) (using Lemma 6.3).

Remark 6.14. In subsequent work, Galashin, Karp, and Lam [GKL22a, Theorem 1.1]
proved the stronger result that the cell decomposition (2.8) (as well as its analogue in
general Lie type) is a regular CW complex, confirming a conjecture of Williams [Wil07,
Section 7]. In particular, the closure of each cell Cv,w is homeomorphic to a closed ball,
and its boundary is homeomorphic to a sphere. The arguments employed in [GKL22a]
are different than those of [GKL22b,GKL19], and in particular do not employ contrac-
tive flows. It would be very interesting to find a proof that (2.8) is a regular CW complex
along the lines of the arguments in this section.

Recall the Plücker-nonnegative part Fl�≥0
K ;n of FlK ;n(C) from Definition 2.11. We

now use Theorem 6.12 to show that Fl�≥0
K ;n is homeomorphic to a closed ball. We re-

mark that Rietsch [Rie98, Lemma 5.2] used a similar construction to show that Fl�>0
K ;n

is contractible. We will need the following result from [BK]:

Lemma 6.15 (Bloch and Karp [BK, Proposition 3.3(ii)].) Let K ⊆ [n− 1]. Then Fl�>0
K ;n

is the interior of Fl�≥0
K ;n .

Corollary 6.16. Let K ⊆ [n − 1]. Then Fl�≥0
K ;n is homeomorphic to a closed ball, its

interior Fl�>0
K ;n is homeomorphic to an open ball, and its boundary Fl�≥0

K ;n \Fl�>0
K ;n is

homeomorphic to a sphere.

Proof. Take λ ∈ R
n weakly decreasing such that K = {i ∈ [n − 1] : λi > λi+1}. We

apply Theorem 6.12, taking S ⊆ Oλ to be the image of Fl�≥0
K ;n under (4.1), and taking

−N ∈ Oμ such that the gradient flow on Oωk with respect to N in the Kähler metric
strictly preserves positivity for all k ∈ K . (For example, we may take iN ∈ gl>0

n , by
Corollary 5.15.) Let us verify that the hypotheses of Theorem 6.12 are satisfied.We have
μk > μk+1 for all k ∈ K , by Lemma 6.3 applied to Oωk . Also, S is compact since it
is a closed subset of the compact space Oλ, and S is contained in Os

λ(N ) by applying
Lemma 6.4(ii) for all k ∈ K (using Lemma 6.3). By Lemma 6.15, S◦ is the image of
Fl�>0

K ;n under (4.1). Therefore any flow beginning in S remains in S◦ for all positive time.

Remark 6.17. Recall from Proposition 5.9 that the gradient flow on Oλ with respect to
N in the Kähler metric corresponds to the flow V (t) = exp(t iN )V0 on the FlK ;n(C).
We can consider the same flow on FlK ;n(C) with iN replaced by any M ∈ gln(R) (not
necessarily symmetric), and much of the analysis of this section can be replicated in this
case. We do not pursue this here, since it is outside the scope of adjoint orbits.
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7. Gradient Flows on Amplituhedra

In this section we study gradient flows on the amplituhedronAn,k,m(Z), a subset of the
Grassmannian Grk,k+m(C) defined in terms of an auxiliary matrix Z (see Definition 7.1).
It generalizes both the totally nonnegative Grassmannian Gr≥0

k,n (which we obtain when
k + m = n) and a cyclic polytope (which we obtain when k = 1). Amplituhedra were
introduced byArkani-Hamed andTrnka [AT14] in order to give a geometric basis for cal-
culating scattering amplitudes in planarN = 4 supersymmetric Yang–Mills theory. The
case relevant for physics is when m = 4, but amplituhedra are interesting mathematical
objects for any m.

There has been a lot of work studying the geometric properties of amplituhedra, in-
cluding determining the homeomorphism type. It is expected that An,k,m(Z) is homeo-
morphic to a closedball of dimension km. This is knownwhen k+m = n [GKL22b,Theo-
rem 1.1] (since every such amplituhedron is homeomorphic to Gr≥0

k,n), when k = 1 (since
every convex polytope is homeomorphic to a closed ball), when m = 1 [KW19, Corol-
lary 6.18] (cf. [KM, Corollary 1.2]), for the family of cyclically symmetric amplituhedra
[GKL22b, Theorem 1.2], and when n−k−m = 1withm even [BGPZ19, Theorem 1.8].

We show that a new family of amplituhedra are also homeomorphic to closed balls,
which we call twisted Vandermonde amplituhedra (see Corollary 7.17). This family
includes all amplituhedra with n − k − m ≤ 2 (see Corollary 7.22). Our argument is
based on the proof of [GKL22b, Theorem 1.2], which uses contractive flows to show
that cyclically symmetric amplituhedra are homeomorphic to closed balls. (However, we
note that the family of twistedVandermonde amplituhedra does not include the cyclically
symmetric amplituhedra; see Remark 7.18 for further discussion.)

7.1. Background. We now define amplituhedra.

Definition 7.1. Let n, k,m ∈ N such that k +m ≤ n, and let Z be a complex (k +m)×n
matrix of rank k + m. We also regard Z as a linear map C

n → C
k+m . We introduce the

rational map

Z̃ : Grk,n(C) → Grk,k+m(C), V 	→ {Z(v) : v ∈ V }, (7.1)

which is defined whenever V ∩ ker(Z) = {0}.
Now suppose that Z is real and its (k +m)× (k +m) minors are all positive. Then by

[AT14, Section 4] (cf. [Kar17, Section 4]), Z̃ is defined on Gr≥0
k,n . We denote the image

Z̃(Gr≥0
k,n) by An,k,m(Z), called a (tree) amplituhedron.

In (7.1), V is a k-dimensional subspace of Cn . If we instead regard V as an n × k
matrix modulo column operations, then Z̃(V ) = ZV .

We point out two special cases of Definition 7.1. First, if k + m = n, then up to a
linear change of coordinates, we may assume that Z = In , so that An,k,m(Z) is the
totally nonnegative Grassmannian Gr≥0

k,n . Second, if k = 1, then it follows from work
of Sturmfels [Stu88] that An,k,m(Z) is an alternating polytope (a special kind of cyclic
polytope) in Pm(C).

Remark 7.2. Wenote that Definition 7.1 can be generalized in variousways. The tree am-
plituhedronAn,k,m(Z) is related to the tree-level term of the scattering amplitude; there
are also loop amplituhedra corresponding to the higher-order terms of the amplitude
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[AT14] (cf. Remark 2.15). Alternatively, we can relax the condition that Z has positive
(k +m) × (k +m) minors, or replace Gr≥0

k,n by the closure of a cell in its cell decomposi-

tion. The corresponding image under Z̃ is called aGrassmann polytope, studied by Lam
[Lam16]. Yet another generalization is provided by replacing Grk,n(C) by an arbitrary
partial flag variety FlK ;n(C), giving the flag polytopes introduced by Arkani-Hamed,
Bai, and Lam [ABL17, Section 6.5].Whilewewill focus on the case of tree amplituhedra
An,k,m(Z), many of the results and techniques in this section apply more generally.

Example 7.3. Let n := 4 and k + m := 3, and take Z to be the matrix

Z :=
⎡
⎣
1 0 0 a
0 1 0 −b
0 0 1 c

⎤
⎦ , where a, b, c > 0.

Note that the 3×3minors of Z are all positive, so Z defines an amplituhedronA4,k,m(Z) =
Z̃(Gr≥0

k,4). When k = 1 and m = 2, the map Z̃ : Gr≥0
1,4 → Gr1,3(C) is given by

(x0 : x1 : x2 : x3) ∈ P
3≥0 	→

x0(1 : 0 : 0) + x1(0 : 1 : 0) + x2(0 : 0 : 1) + x3(a : −b : c) ∈ P
2(C),

and A4,1,2(Z) is the quadrilateral in P
2(C) with vertices (1 : 0 : 0), (0 : 1 : 0),

(0 : 0 : 1), and (a : −b : c). When k = 2 and m = 1, by work of Karp and Williams
[KW19, Theorem 6.16], we can identify the amplituhedronA4,2,1(Z) with the bounded
complex of a cyclic hyperplane arrangement of 4 hyperplanes in R2. ♦

Remark 7.4. Let Z be a complex (k + m) × n matrix of rank k + m, let g ∈ GLk+m(C),
and set Z ′ := gZ . Then Z̃ ′ = gZ̃ , so the rational map Z̃ only depends on ker(Z)

(or equivalently, the row span of Z ), up to a linear change of coordinates on C
k+m . In

particular, we may assume (as it will turn out to be convenient) that the rows of Z are
orthonormal, i.e., Z Z∗ = Ik+m . Further, if Z is real and its (k +m)× (k +m) minors are
all positive, and g is real with det(g) > 0, then Z ′ is real and its (k +m)× (k +m)minors
are all positive. Therefore the amplituhedronAn,k,m(Z) ⊆ Grk,k+m(C) only depends on
ker(Z), and we may assume that Z ZT = Ik+m .

7.2. Projecting gradient flows. In this subsection, we determine when the rational map
Z̃ : Grk,n(C) → Grk,k+m(C) from (7.1) projects gradient flows on Grk,n(C) in a coher-
ent way, where we identify Grk,n(C) and Grk,k+m(C) with adjoint orbits via (4.1). By
this, we mean that for any two points V,W ∈ Grk,n(C) such that Z̃(V ) = Z̃(W ), the
gradient flows beginning at V and W have the same image under Z̃ . It turns out that if
this is the case, then up to a linear change of coordinates (cf. Definition 7.4), the pro-
jected gradient flows are also gradient flows on Grk,k+m(C). Since we are working with
Grassmannians, the three metrics discussed in Sect. 5 are the same up to dilation (see
Proposition 5.5). We will find it most convenient to use the description of the gradient
flows given in Proposition 5.9.

We will use the following description of the fibers of Z̃ ; see [KW19, Proposition
3.12] for a closely related result.
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Lemma 7.5. Let Z be a complex (k+m)×n matrix of rank k+m,and let V,W ∈ Grk,n(C)

such that Z̃(V ) and Z̃(W ) are defined. Then

Z̃(V ) = Z̃(W ) ⇐⇒ V + ker(Z) = W + ker(Z).

Proof. (⇒) Suppose that Z̃(V ) = Z̃(W ). We show that V ⊆ W + ker(Z); we similarly
have W ⊆ V + ker(Z), which implies the result. To this end, let v ∈ V . Then Zv ∈
Z̃(V ) = Z̃(W ), so Zv = Zw for somew ∈ W . Then v−w ∈ ker(Z), so v ∈ W+ker(Z).

(⇐) Suppose that V + ker(Z) = W + ker(Z). We show that Z̃(V ) ⊆ Z̃(W ); we
similarly have Z̃(W ) ⊆ Z̃(V ). To this end, let Z(v) be an element of Z̃(V ), where
v ∈ V . Then v = w + x for some w ∈ W and x ∈ ker(Z), so Zv = Zw ∈ Z̃(W ).

Proposition 7.6. Let Z be a complex (k +m) × n matrix of rank k +m, where k,m ≥ 1,
and let N ∈ un. Then the following conditions are equivalent.

(i) The rational map Z̃ : Grk,n(C) → Grk,k+m(C) coherently projects the gradient
flows on Grk,n(C) with respect to N. That is, for all gradient flows V (t) and W (t) in
Grk,n(C) with respect to N such that Z̃(V0) = Z̃(W0), we have Z̃(V (t)) = Z̃(W (t))
for all t .

(ii) We have N (ker(Z)) ⊆ ker(Z).
(iii) There exists M ∈ glk+m(C) such that Z N = MZ, namely, M = ZN Z∗(Z Z∗)−1.

We observe that in general, the element M in part (iii) does not necessarily lie
in uk+m . However, under the assumption Z Z∗ = Ik+m (cf. Definition 7.4), we have
M = ZN Z∗ ∈ uk+m .

Proof. We use the description of the gradient flow with respect to N from (5.6).
(i) ⇒ (ii): Suppose that Z̃ coherently projects the gradient flows with respect to N . It

suffices to prove that exp(t iN ) ker(Z) = ker(Z) for all t ∈ R. We will show that given
a nonzero x ∈ ker(Z), we have exp(t iN )x ∈ ker(Z).

To this end, let V ∈ Grk,n(C) such that V ∩ ker(Z) = {0}, so that Z̃(V ) is de-
fined. Take W ∈ Grk,n(C) such that W ⊆ V + span(x), W 
= V , and x /∈ W .
Note that W ∩ ker(Z) = {0}, so Z̃(W ) is defined, and v + x ∈ W for some v ∈ V .
Also, let T ⊆ C denote the set of t ∈ C such that Z̃(exp(t iNV )) is not defined, i.e.,
exp(t iN )V∩ker(Z) 
= {0}. Viewing V as an n×kmatrix and ker(Z) as an n×(n−k−m)

matrix, we see that T is the common zero set of the (n − m) × (n − m) minors of the
concatenation of exp(t iN )V and ker(Z). Each such minor is an analytic function of t ,
and because 0 /∈ T , we get that T is discrete.

Since W + ker(Z) ⊆ V + ker(Z), we have Z̃(V ) = Z̃(W ) by Lemma 7.5. There-
fore by assumption, we have Z̃(exp(t iN )V ) = Z̃(exp(t iN )W ) for all t ∈ R. Again by
Lemma 7.5, we have exp(t iN )V + ker(Z) = exp(t iN )W + ker(Z) for all t ∈ R \ T .
Multiplying by exp(−t iN ), we get

V + exp(−t iN ) ker(Z) = W + exp(−t iN ) ker(Z) for all t ∈ R \ T .

Since v + x ∈ W ⊆ V + exp(−t iN ) ker(Z), we obtain

x ∈ V + exp(−t iN ) ker(Z) for all t ∈ R \ T .

The conclusion above holds for all V ∈ Grk,n(C) such that V ∩ ker(Z) = {0};
considering k + 1 generic such V , since m ≥ 1 we obtain

x ∈ exp(−t iN ) ker(Z) for all t ∈ R not contained in some discrete set.
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By continuity, we get x ∈ exp(−t iN ) ker(Z) for all t ∈ R, as desired.
(ii) ⇒ (iii): Suppose that N (ker(Z)) ⊆ ker(Z). Since Z : Cn → C

k+m is surjective,
we can simply define M by MZx := ZNx for all x ∈ C

n . This is well-defined because
if Zx = 0, then ZNx = 0.

(iii) ⇒ (i): Suppose that there exists M ∈ glk+m(C) such that ZN = MZ . Then
Z exp(t iN ) = exp(t iM)Z for all t ∈ R, so

Z̃(exp(t iN )V ) = exp(t iM)Z̃(V ) in Grk,k+m(C) for all V ∈ Grk,n(C) and t ∈ R.

(7.2)

In particular, the projection of the gradient flow with respect to N beginning at V ∈
Grk,n(C) only depends on Z̃(V ).

Corollary 7.7. Let Z be a complex (k+m)×n matrix such that Z Z∗ = Ik+m. Let N ∈ un
such that N (ker(Z)) ⊆ ker(Z), and set M := ZN Z∗ ∈ uk+m. Then the rational map
Z̃ : Grk,n(C) → Grk,k+m(C) takes gradient flows with respect to N to gradient flows
with respect to M (given by (5.6) and respecting the parameter t).

Proof. This follows from the implication (ii)⇒ (iii) of Proposition 7.6, along with (7.2)
(which both hold for all k,m ≥ 0).

7.3. Gradient flows preserving amplituhedra. In this subsection, we show that if Z̃
projects a positivity-preserving gradient flow in a coherent way, then the projected
gradient flow preserves the corresponding amplituhedron. In order to state our result
precisely, we make the following analogue of Definition 5.1 for amplituhedra.

Definition 7.8. Let Z be a real (k +m) × n matrix whose (k +m) × (k +m) minors are
all positive, and consider the amplituhedron An,k,m(Z) ⊆ Grk,k+m(C). We say that a
flow V (t) on Grk,k+m(C) weakly preserves An,k,m(Z) if

V (t) ∈ An,k,m(Z) for all V0 ∈ An,k,m(Z) and t ≥ 0,

and strictly preserves An,k,m(Z) if

V (t) ∈ An,k,m(Z)◦ for all V0 ∈ An,k,m(Z) and t > 0,

where An,k,m(Z)◦ denotes the interior of An,k,m(Z).

We will need the following result of Galashin and Lam [GL20]:

Lemma 7.9 (Galashin and Lam [GL20, Lemma 9.4]). Let Z be a real (k +m) × n ma-
trix whose (k + m) × (k + m) minors are all positive. Then Z̃(V ) ∈ An,k,m(Z)◦ for all
V ∈ Gr>0

k,n.

As in Sect. 7.2, we identify the Grassmannians Grk,n(C) andGrk,k+m(C)with adjoint
orbits via (4.1). We also recall the stable manifold defined in Definition 6.1.

Proposition 7.10. Let Z be a real (k + m) × n matrix whose (k + m) × (k + m) minors
are all positive and such that Z ZT = Ik+m. Let N ∈ un such that N (ker(Z)) ⊆ ker(Z),
and set M := ZN Z∗ ∈ uk+m.

(i) If the gradient flow on Grk,n(C) with respect to N weakly preserves positivity, then
the gradient flow on Grk,k+m(C) with respect to M weakly preserves An,k,m(Z).
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(ii) If the gradient flow on Grk,n(C) with respect to N strictly
preserves positivity, then the gradient flow on Grk,k+m(C) with respect to M strictly
preservesAn,k,m(Z). Moreover, the stable manifold for M insideGrk,k+m(C) is well-
defined (i.e. if −M ∈ Oμ, then μk > μk+1), and it contains An,k,m(Z).

Proof. By Corollary 7.7 and Lemma 7.9, if the gradient flow on Grk,n(C) with re-
spect to N weakly (respectively, strictly) preserves positivity, then the gradient flow on
Grk,k+m(C) with respect to M weakly (respectively, strictly) preservesAn,k,m(Z). It re-
mains to show that, assuming the gradient flowonGrk,n(C)with respect to N strictly pre-
serves positivity, the stable manifold for M inside Grk,k+m(C) contains An,k,m(Z). Let
W∞ ∈ Gr>0

k,n denote the subspace ofC
n spannedby the eigenvectors of iN corresponding

to its k largest eigenvalues, which is well-defined by Lemma 6.3. Let V∞ := Z̃(W∞),
which lies inAn,k,m(Z)◦ by Lemma 7.9. By assumption, the spectrum of iM equals the
spectrum of iN minus the spectrum of iN restricted to ker(Z). Since Z̃(W∞) is defined,
we have W∞ ∩ ker(Z) = {0}, and so the k largest eigenvalues of iM and iN coincide.
In particular, the stable manifold for the gradient flow on Oωk with respect to M as in
Definition 6.1 is well-defined, and the equilibrium point therein corresponds via (4.1)
to V∞. Therefore by Proposition 6.6(ii), the stable manifold of V∞ inside Grk,k+m(C)

contains An,k,m(Z).

Remark 7.11. InProposition7.10, the simultaneous conditions on N ∈ un that N (ker(Z))

⊆ ker(Z) and that the gradient flow on Grk,n(C) with respect to N preserves positivity
are highly constraining. Rather than relying on the existence of such an N , it would be in-
teresting to classify directly those M ∈ uk+m such that the gradient flow on Grk,k+m(C)

with respect to M preserves An,k,m(Z). This may be possible using the intrinsic de-
scriptions of An,k,m(Z) conjectured by Arkani-Hamed, Thomas, and Trnka [ATT18]
(cf. [KW19, Section 3.3]).

7.4. Amplituhedra homeomorphic to a closed ball. We now show that any amplituhe-
dron An,k,m(Z) satisfying the hypotheses of Proposition 7.10(ii) is homeomorphic to a
closed ball.

Lemma 7.12. Let n, k,m ∈ N such that k + m ≤ n, and let N ∈ un such that the
gradient flow on Grk+m,n(C) with respect to N strictly preserves positivity. Let Z be a
real (k +m)×n matrix whose rows form an orthonormal basis for the subspace spanned
by the eigenvectors of iN corresponding to the k + m largest eigenvalues, so that in
particular Z ZT = Ik+m.

(i) All (k + m) × (k + m) minors of Z are positive (perhaps after negating a row of Z).
(ii) We have N (ker(Z)) ⊆ ker(Z).

Proof. (i) By Lemma 2.13(i), it suffices to verify that the row span of Z lies in Gr>0
k+m,n .

This follows from Lemma 6.3 (which also shows that Z is well-defined).
(ii) This follows from the fact that ker(Z) is spanned by the eigenvectors of iN

corresponding to the n − k − m smallest eigenvalues.

Theorem 7.13. Let n, k,m ∈ N such that k + m ≤ n, and let N ∈ un such that the
gradient flows on bothGrk,n(C) andGrk+m,n(C)with respect to N strictly preserve pos-
itivity. (Recall that such N are explicitly described by Corollary 5.15.) Let Z be any real
(k+m)×n matrixwhose rows formabasis for the subspace spannedby the eigenvectors of
iN corresponding to the k+m largest eigenvalues. Then the amplituhedronAn,k,m(Z) is
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well-defined (perhaps after negating a row of Z). It is homeomorphic to a closed ball, its
interior is homeomorphic to an open ball, and its boundary is homeomorphic to a sphere.

Proof. By Definition 7.4, we may assume that the rows of Z are orthonormal. Then by
Lemma 7.12(i), all (k +m) × (k +m) minors of Z are positive (perhaps after negating a
row of Z ), so the amplituhedronAn,k,m(Z) is well-defined. We also have N (ker(Z)) ⊆
ker(Z). Consider the gradient flow on Grk,k+m(C)with respect to M := ZN ZT ∈ uk+m ,
where we identify Grk,k+m(C) with the adjoint orbit Oωk via (4.1). We apply Theo-
rem 6.12, taking S to be An,k,m(Z). The space S is compact because it is the image
of the compact space Gr≥0

k,n under the continuous map Z̃ . The remaining hypotheses of
Theorem 6.12 follow from Proposition 7.10(ii).

Remark 7.14. While Theorem 7.13 applies only to a special subset of amplituhedra, we
expect that every amplituhedron is homeomorphic to a closed ball. It would be inter-
esting to determine whether this can be proved using Theorem 6.12, by constructing a
contractive gradient flow on an arbitrary amplituhedron, or if only a distinguished subset
of amplituhedra admit contractive gradient flows.

7.5. Twisted Vandermonde amplituhedra. We now exhibit an explicit family of matrices
Z for which Theorem 7.13 implies that the corresponding amplituhedra An,k,m(Z) are
homeomorphic to closed balls. Our description will use the Vandermonde flags intro-
duced in Sect. 4.4 and the twist map ϑ from Sect. 3.3.

Definition 7.15. Let n, k,m ∈ N such that k + m ≤ n. Let V ∈ V>0
n be a totally pos-

itive Vandermonde flag, so that ϑ(V ) ∈ Fl>0
n by Theorem 3.26. Regarding ϑ(V ) as a

sequence of subspaces of Cn , let Z be a (k + m) × n real matrix whose rows form a
basis for the subspace of dimension k + m. By Lemma 2.13(i), all (k + m) × (k + m)

minors of Z are positive (perhaps after negating a row of Z ). We call the corresponding
amplituhedron An,k,m(Z) a twisted Vandermonde amplituhedron.

We observe that the definition of Z above depends only on k + m, not on k or m.
Therefore each such Z gives rise to several different twistedVandermonde amplituhedra.

Example 7.16. We give an example in the case n := 3 and k + m := 2. As in Exam-
ple 4.25, we consider the Vandermonde flag Vand(λ, x), where λ := (1, 0,−1) and
x ∈ P

2
>0. Then the twisted flag ϑ(Vand(λ, x)) ∈ Fl>0

3 is represented by the matrix
⎡
⎢⎢⎢⎢⎢⎣

x1√
x21+x

2
2+x

2
3

−x2√
x21+x

2
2+x

2
3

x3√
x21+x

2
2+x

2
3

x1(x22+2x
2
3 )√

(x21+x
2
2+x

2
3 )(x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3 )

x2(x21−x23 )√
(x21+x

2
2+x

2
3 )(x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3 )

−x3(2x21+x
2
2 )√

(x21+x
2
2+x

2
3 )(x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3 )

x2x3√
x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3

2x1x3√
x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3

x1x2√
x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3

⎤
⎥⎥⎥⎥⎥⎦

.

Therefore the associated twisted Vandermonde amplituhedronAn,k,m(Z) is defined by

Z :=

⎡
⎢⎢⎣

x1√
x21+x

2
2+x

2
3

x1(x22+2x
2
3 )√

(x21+x
2
2+x

2
3 )(x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3 )

x2x3√
x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3

−x2√
x21+x

2
2+x

2
3

x2(x21−x23 )√
(x21+x

2
2+x

2
3 )(x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3 )

2x1x3√
x21 x

2
2+4x

2
1 x

2
3+x

2
2 x

2
3

⎤
⎥⎥⎦ . ♦
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Corollary 7.17. Every twistedVandermondeamplituhedron is homeomorphic to a closed
ball, its interior is homeomorphic to an open ball, and its boundary is homeomorphic
to a sphere.

Proof. Consider a twisted Vandermonde amplituhedron coming from the twisted Van-
dermonde flag ϑ(V ). Let −N ∈ Oλ correspond to ϑ(V ) under the map (4.1). By
Corollary 4.24, we have iN ∈ gl>0

n . Therefore by Corollary 5.15, the gradient flows on
both Grk,n(C) and Grk,k+m(C) with respect to N strictly preserve positivity. The result
then follows from Theorem 7.13.

Remark 7.18. We note that the twisted Vandermonde amplituhedra are precisely those
which arise in Theorem 7.13 when the matrix N is tridiagonal. Recall that in general,
the matrices N in Theorem 7.13 are described by Corollary 5.15; for simplicity, here we
assume that k ≥ 2 or k +m ≤ n−2. Whenm is odd, all such matrices N are tridiagonal,
and therefore the twisted Vandermonde amplituhedra are the only ones which arise in
Theorem 7.13. However, when m is even, the corner entry (iN )n,1 = (iN )1,n of iN
can be nonzero, of sign (−1)k−1. (We may still assume that the entries (iN )i,i+1 for
i = 1, . . . , n − 1 are nonzero; if some such entry is zero, we can use the cyclic action
from Remark 2.16 to transform N into a tridiagonal matrix.)

We focus in this subsection on the case that the corner entry is zero because when N
is tridiagonal, we have an explicit description of the corresponding element of the flag
variety Fln(C), by Corollary 4.24. It would be interesting to generalize this description to
the case when the corner entry of N is nonzero. The simplest such matrix N is given by

iN =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 (−1)k−1

1 0 1 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1
(−1)k−1 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This is the matrix used by Galashin, Karp, and Lam [GKL22b, Theorem 1] to show
that the totally nonnegative Grassmannian Gr≥0

k,n is homeomorphic to a closed ball (cf.
Sect. 6.3). They also studied the corresponding amplituhedron in [GKL22b, Section
5], which they called the cyclically symmetric amplituhedron, because the cyclic action
from Remark 2.16 on Gr≥0

k,n restricts coherently to a cyclic action on An,k,m(Z). For
example, when k = 1 and m = 2, the cyclically symmetric amplituhedron is a regular
n-gon. For this specific choice of iN , there is an elegant explicit description of the row
span of the associated (k + m) × n matrix Z [Kar19].

Remark 7.19. Even more generally, as discussed in Remark 6.17, we can replace iN
with M ∈ gln(R) (not necessarily symmetric), although this setup falls outside the orbit
framework. If M satisfies condition Theorem 5.14(iv) for both k and k + m, we can
conclude that the corresponding amplituhedronAn,k,m(Z) is homeomorphic to a closed
ball. Still, we expect that some significant new ideas are required to use this approach
to show that every amplituhedron An,k,m(Z) is homeomorphic to a closed ball. We can
justify this with a dimension count. Indeed, the space of amplituhedra An,k,m(Z) for
all Z is naturally indexed by Gr>0

k+m,n , which has dimension (k + m)(n − k − m). On
the other hand, consider the space of matrices M ∈ gln(R) satisfying the condition
Theorem 5.14(iv) for both k and k +m, modulo translation by scalar multiples of In and
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rescaling by R>0. Then assuming k ≥ 2 or k + m ≤ n − 2, the dimension of this space
is either 3n− 2 (if m is even) or 3n− 4 (if m is odd). Note that when 4 ≤ k +m ≤ n− 4
and n ≥ 15, we have (k + m)(n − k − m) > 3n − 2. However, it may be possible to
use the approach above to show that every amplituhedron An,k,m(Z) with k +m ≤ 3 or
n−k−m ≤ 3 is homeomorphic to a closed ball, generalizing the arguments in Sect. 7.6.

7.6. The case when n−k−m ≤ 2. In this subsection, we show that every amplituhedron
An,k,m(Z)with either k +m ≤ 2 or n−k−m ≤ 2 is a twisted Vandermonde amplituhe-
dron. It particular, every such amplituhedron is homeomorphic to a closed ball. Recall
from (2.7) that for any K ′ ⊆ K , we have a surjective projection map Fl>0

K ;n � Fl>0
K ′;n .

Also recall the space of totally positive Vandermonde flags V>0
n from Definition 4.28.

Lemma 7.20. Let n ≥ 2.

(i) The projection map Fl>0
n → Fl>0

{1,2};n is a bijection when restricted to ϑ(V>0
n ).

(ii) The projection map Fl>0
n → Fl>0

{n−2,n−1};n is a bijection when restricted to ϑ(V>0
n ).

Proof. (i) By Corollary 4.29, it suffices to prove that that the map

(igl>0
n ) ∩ un/∼ → Fl>0

{1,2};n, g(iDiag(λ))g−1 	→ g

is a bijection, that is, any given V = (V1, V2) ∈ Fl>0
{1,2};n has a unique preimage

L ∈ (igl>0
n ) ∩ un , modulo translating L by a scalar multiple of In and rescaling it

by an element of R>0. We will show, equivalently, that V has a unique preimage L
which lies in J >0

λ , for some strictly decreasing λ ∈ R
n with λ1 = 0 and λ2 = −1.

Recall the torus action from Remark 2.22. After replacing V and L by, respectively,
hV and hLh−1 for some h ∈ T>0

n , we may assume that V1 is spanned by (1, . . . , 1).
Now take a nonzero vector y = (y1, . . . , yn) ∈ V2 orthogonal to (1, . . . , 1), so that
y1 + · · · + yn = 0. By Lemma 2.13(i), the 2 × 2 minors of the matrix

⎡
⎢⎣
1 −y1
...

...

1 −yn

⎤
⎥⎦

are all positive (perhaps after replacing y by −y), whence y1 > · · · > yn . We must
show that there is a unique L ∈ (igl>0

n ) ∩ un satisfying the following two properties:

(a) the vectors (1, . . . , 1) and y are eigenvectors of −iL with eigenvalues 0 and −1,
respectively; and

(b) the two largest eigenvalues of −iL are 0 and −1.

First we show that there is a unique L ∈ (igl>0
n ) ∩ un satisfying property (a). Write

L = i

⎡
⎢⎢⎢⎢⎣

b1 a1 0 · · · 0
a1 b2 a2 · · · 0
0 a2 b3 · · · 0
...

...
...

. . .
...

0 0 0 · · · bn

⎤
⎥⎥⎥⎥⎦

∈ un, where a1, . . . , an−1, b1, . . . , bn ∈ R.
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Then property (a) holds if and only if

ai−1 + bi + ai = 0 and ai−1yi−1 + bi yi + ai yi+1 = −yi for 1 ≤ i ≤ n,

where we set a0, an := 0. These equations have a unique solution, namely,

ai = y1 + · · · + yi
yi − yi+1

for 1 ≤ i ≤ n − 1 and bi = −ai−1 − ai for 1 ≤ i ≤ n. (7.3)

Note that the conditions on y imply that ai > 0 for 1 ≤ i ≤ n − 1, so L ∈ igl>0
n .

Now we verify that the matrix L given by (7.3) satisfies property (b). Since L(Vk) ⊆
Vk for k = 1, 2, we have that Vk is spanned by some k eigenvectors of −iL; we must
show that these eigenvectors correspond to the k largest eigenvalues. To this end, consider
the gradient flow on Grk,n(C) with respect to −L , where we identify Grk,n(C) with the
adjoint orbitOωk via (4.1). By Corollary 5.15, this flow strictly preserves positivity, and
by construction, Vk is a totally positive equilibrium point. Therefore by Lemma 6.4(ii)
(usingLemma6.3), we have that Vk is spanned by the eigenvectors of−iL corresponding
to the k largest eigenvalues, as desired.

(ii) By (4.5) we have rev(V>0
n ) = V>0

n , whence ρ(ϑ(V>0
n )) = ϑ(V>0

n ) by
Lemma 3.28(ii). Therefore the result follows from part (i) and Lemma 3.15(iii).

Remark 7.21. It is tempting to try to prove Lemma 7.20(i) by observing that the pro-
jection map Fl>0

n → Fl>0
{1,2};n is a bijection when restricted to V>0

n , and then applying
bijectivity of the twist map ϑ . However, there is good reason to expect such an ar-
gument may fail. Indeed, fix a strictly decreasing λ ∈ R

n . Then the projection map
Fl>0

n → Fl>0
{1};n = P

n−1
>0 is a bijection when restricted to {Vand(λ, x) : x ∈ P

n−1
>0 }, as

it sends Vand(λ, x) to x . But the projection map Fl>0
n → P

n−1
>0 is in general neither

injective nor surjective when restricted to ϑ({Vand(λ, x) : x ∈ P
n−1
>0 }). For example, let

λ := (1, 0,−1), as in Example 4.25. Then the projection map sends ϑ(Vand(λ, x)) to

(y1 : y2 : y3) := (
x1
√
x21 x

2
2 + 4x21 x

2
3 + x22 x

2
3 : x1(x22 + 2x23 ) : x2x3

√
x21 + x22 + x23

) ∈ P
2
>0.

The points x = (1 : 1 : 1) and x = (
√
10 : 4 : 2) have the same image, so the map

is not injective. Also, any such (y1 : y2 : y3) satisfies the constraint min(y1, y3) < y2
(proof omitted), so the map is not surjective.

Corollary 7.22. Every amplituhedronAn,k,m(Z)with either k+m ≤ 2 or n−k−m ≤ 2
is a twisted Vandermonde amplituhedron. In particular, it is homeomorphic to a closed
ball, its interior is homeomorphic to an open ball, and its boundary is homeomorphic
to a sphere.

Proof. Suppose that k + m ≤ 2 or n − k − m ≤ 2. Then Lemma 7.20 implies that
the projection map Fl>0

n → Gr>0
k+m,n is surjective when restricted to ϑ(V>0

n ), so ev-
ery amplituhedronAn,k,m(Z) is a twisted Vandermonde amplituhedron. The remaining
statements follow from Corollary 7.17.
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8. Symmetric Toda Flow

The Toda lattice is an integrable Hamiltonian system which has been widely studied
since it was introduced by Toda in 1967 [Tod67]; see the survey of Kodama and Shipman
[KS18]. Bywork of Flaschka [Fla74], wemay view the Toda lattice as a flow evolving on
an adjoint orbitOλ. In this section, we observe that the Toda flow provides an example of
a gradient flow onOλ. Curiously, this happens in two different ways: in both the normal
metric and the Kähler metric. The Toda flow is also an example of a flow which weakly
preserves positivity (in fact, in both the positive and negative time directions). As we
discuss further in Remark 8.7, while these results are largely implicit in the literature,
we believe the explicit focus on total positivity offers a new perspective. In particular, a
key role is played by the twist map ϑ introduced in Sect. 3.3, which facilitates the study
of the Toda flow as a gradient flow in the Kähler metric. This generalizes and clarifies a
construction of Bloch, Flaschka, and Ratiu [BFR90], as we explain in Remark 8.8.

8.1. Background. We introduce the (finite nonperiodic) Toda lattice; we refer to [KS18]
for further details. It is the Hamiltonian system with Hamiltonian

H(q1, . . . , qn, p1, . . . , pn) := 1

2

n∑
i=1

p2i +
n−1∑
i=1

eqi−qi+1 .

The Toda lattice may be interpreted as a system of n points on a line of unit mass
governed by an exponential potential.

Following Flaschka [Fla74], we set

ai := 1
2e

qi−qi+1
2 for 1 ≤ i ≤ n − 1 and bi := − 1

2 pi for 1 ≤ i ≤ n.

Then the Hamiltonian equations become (with a0, an := 0)

ȧi = ai (bi+1 − bi ) and ḃi = 2(a2i − a2i−1).

We also let L be the tridiagonal matrix

L := i

⎡
⎢⎢⎢⎢⎣

b1 a1 0 · · · 0
a1 b2 a2 · · · 0
0 a2 b3 · · · 0
...

...
...

. . .
...

0 0 0 · · · bn

⎤
⎥⎥⎥⎥⎦

, so that πu(−iL) =

⎡
⎢⎢⎢⎢⎣

0 −a1 0 · · · 0
a1 0 −a2 · · · 0
0 a2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎦

,

where πu was defined in Definition 3.2. Then we can write the flow of the Toda lattice
in the Lax form (cf. Lemma 5.7(i))

L̇(t) = [L(t), πu(−iL(t))]. (8.1)

Therefore (8.1) defines a flow on the adjoint orbit Oλ.
Above, L was assumed to be i times a real symmetric tridiagonal matrix, but more

generally, we can consider any L ∈ Oλ. We call the flow (8.1) defined on the tridiagonal
part of un the tridiagonal symmetric Toda flow, and call the flow defined on all of un the
full symmetric Toda flow, which was studied by Deift, Li, Nanda, and Tomei [DLNT86].
(The term symmetric is conventional, since L is usually defined to be a real symmetric
matrix, without the factor of i.We prefer instead to work inOλ, following e.g. [BFR90].)

Symes [Sym80] found an explicit solution to (8.1) using the Iwasawa decomposition
(cf. Proposition 3.1). It can be verified directly.
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Theorem 8.1 (Symes [Sym80, Section 7], [Sym82, (3.2)]). Let L(t) be a solution to the
full symmetric Toda flow (8.1), with L0 ∈ un. Then

L(t) = πU(exp(−t iL0))
−1L0 πU(exp(−t iL0)). (8.2)

We observe that using (8.2), one can read off the asymptotic behavior of L(t) as
t → ±∞. In particular, the limits are both diagonal matrices; see Remark 8.12.

Remark 8.2. Another important reformulation of the Toda lattice was given by Kostant
[Kos79] in terms of tridiagonal Hessenberg matrices, rather than symmetric matrices.
This was generalized to all Hessenberg matrices by Ercolani, Flaschka, and Singer
[EFS93], and is known as the full Kostant–Toda lattice. The Kostant–Toda flows are
in general more complicated than the symmetric Toda flows; for example, they are not
necessarily complete. As is the case for the symmetric Toda flow, total positivity plays
an important role for the Kostant–Toda flow, as shown byGekhtman and Shapiro [GS97]
and Kodama and Williams [KW15]. It would be interesting to explore this connection
further. We leave this to future work, since the Kostant–Toda flow does not directly fit
into the framework of adjoint orbits considered in this paper.

8.2. The Toda flow as a gradient flow in the normal metric. In this subsection we con-
sider the tridiagonal symmetric Toda flow. Bloch [Blo90] observed that

πu(−iL) = [L ,−iDiag(n − 1, . . . , 1, 0) ] for L ∈ un tridiagonal. (8.3)

Therefore the following result holds:

Theorem 8.3 (Bloch [Blo90, Section 6]). Set N := −iDiag(n−1, . . . , 1, 0) ∈ un, and
let L0 ∈ un be tridiagonal. Then the tridiagonal symmetric Toda flow (8.1) beginning
at L0 can be written as

L̇(t) = [L(t), [L(t), N ]].
In particular (cf. Proposition 5.21), the tridiagonal symmetric Toda flow restricted to
Oλ is the gradient flow with respect to N in the normal metric.

Remark 8.4. In general, for L ∈ Oλ not assumed to be tridiagonal, the equality (8.3) fails
to hold, and (8.1) is not a gradient flow in the normal metric. Nevertheless, De Mari and
Pedroni [DMP99, Theorem 5.1] (cf. [BG98, Proposition 2.3]) generalized Theorem 8.3
to the full symmetric Toda flow, by showing that it is a gradient flow in a modification
of the normal metric. Bloch and Gekhtman [BG98, Section 2.3] proved an analogous
result for the full Kostant–Toda flow.

8.3. The Toda flow as a twisted gradient flow in the Kähler metric. In this subsection
we consider the full symmetric Toda flow, restricted to the totally nonnegative partO≥0

λ
of an adjoint orbit. Our analysis is based on Symes’s formula (8.2), and the twist map
introduced in Sect. 3.3.

Definition 8.5. Recall the twist map ϑ : Fl≥0
n → Fl≥0

n from Definition 3.21. Given any
strictly decreasing λ ∈ R

n , via the identification (4.1), we may also regard the twist map
as a map ϑλ : O≥0

λ → O≥0
λ . Explicitly, it is the involution defined as

ϑλ(g(iDiag(λ))g−1) := ι(g)(iDiag(λ))(ι(g))−1 = δng
−1(iDiag(λ))gδn for all g ∈ U≥0

n .

(If λ ∈ R
n is weakly decreasing but not strictly decreasing, then ϑλ is undefined; cf.

Remark 3.22.)
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We also recall the cell decomposition (2.8) of Fl≥0
n . If λ ∈ R

n is strictly decreasing,
this induces a cell decomposition of O≥0

λ via (4.1).

Theorem 8.6. Let λ ∈ R
n be strictly decreasing, and set N := −iDiag(λ) ∈ un.

(i) The full symmetric Toda flow onOλ weakly preserves positivity in both the positive
and negative time directions. That is, if L(t) evolves according to (8.1) beginning at
L0 ∈ O≥0

λ , then L(t) ∈ O≥0
λ for all t ∈ R. Moreover, L(t) (for t ∈ R) is contained

in a single cell of the cell decomposition (2.8) of O≥0
λ .

(ii) The full symmetric Toda flow restricted to O≥0
λ is the twisted gradient flow with

respect to N in the Kähler metric. That is, if L(t) evolves according to (8.1) begin-
ning at L0 ∈ O≥0

λ , then ϑλ(L(t)) is the gradient flow (5.7) with respect to N in the

Kähler metric beginning at ϑλ(L0) ∈ O≥0
λ .

We observe that because the matrix N above is diagonal, the twisted flow ϑλ(L(t))
is contained in a torus orbit of Oλ. This fact is relevant if we wish to map such flows to
a moment polytope, as considered by Bloch, Flaschka, and Ratiu [BFR90] and Kodama
and Williams [KW15]. We discuss this further in Remark 8.8.

Proof. Let L0 ∈ O≥0
λ , and set M0 := ϑλ(L0) ∈ O≥0

λ . Let L(t) evolve according to (8.1)
beginning at L0, and let M(t) be the gradient flow with respect to N in the Kähler metric
beginning at M0. Using Theorem 3.26, it suffices to verify the following two facts.

(i) We have M(t) ∈ O≥0
λ for all t ∈ R. Moreover, M(t) (for t ∈ R) is contained in a

single cell of the cell decomposition (2.8) of O≥0
λ .

(ii) We have L(t) = ϑλ(M(t)) for all t ∈ R.

Since M0 ∈ O≥0
λ , we can write M0 = g0(iDiag(λ))g−1

0 for some g0 ∈ U≥0
n . Then

we define g(t) ∈ Un as in (5.7), so that M(t) = g(t)(iDiag(λ))g(t)−1 for all t ∈ R:

g(t) := πU(exp(t iN )g0) = πU(Diag(etλ1 , . . . , etλn )g0).

Since Diag(etλ1 , . . . , etλn ) ∈ T>0
n , and each cell of (2.8) is preserved by the action of

T>0
n , we obtain part (i) above.
Now observe that

ϑλ(M(t)) = δng(t)
−1(iDiag(λ))g(t)δn.

In particular, taking t = 0 we obtain

L0 = ϑλ(M0) = δng
−1
0 (iDiag(λ))g0δn .

Therefore using (8.2), in order to prove part (ii) above, it suffices to show that

g(t) = g0δn πU(exp(−t iL0))δn .

This equality follows from exp(−t iL0) = δng
−1
0 Diag(etλ1 , . . . , etλn )g0δn , along with

the fact that πU commutes with both left multiplication by Un and right multiplication
by Tn(C).
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Remark 8.7. The fact that a trajectory L(t) of the full symmetric Toda flow (8.1) can be
realized as a gradient flow in a torus orbit of a flag variety is well-known (see e.g. [Sin91,
Section 5.2]). This was first observed in the tridiagonal case by Moser [Mos75, (1.4)],
who embedded J >0

λ inside Pn−1
>0 (cf. Remark 4.27). The new insight provided here is

that there is a canonical such embedding when L0 ∈ O≥0
λ , which is given by a smooth

map defined on all of O≥0
λ (namely, the twist map). The subtlety of constructing such a

map in general was noted by Ercolani, Flaschka, and Singer [EFS93, Remark p. 194];
also see Remark 8.8. For a related approach to this problem, see [MT, Theorem 1].

Remark 8.8. As we alluded to in Remark 3.24, when we restrict the domain of the twist
map ϑλ fromO≥0

λ to the tridiagonal subsetJ ≥0
λ (discussed in Sect. 4.4), it specializes to

a map constructed by Bloch, Flaschka, and Ratiu [BFR90] in general Lie type, and de-
noted ι. (The map ι of [BFR90] is different from the map we denote by the same letter in
Definition 3.17. We also emphasize that in general, the image ϑλ(J ≥0

λ ) is not contained
in J ≥0

λ .) The context in which the map ι appeared in [BFR90] is similar to the one in
the current discussion, namely, in order to realize the Toda flow on J ≥0

λ as a gradient
flow compatible with the torus action; see [BFR90, Theorem p. 63]. The ultimate goal
in [BFR90] was to prove Theorem 4.19, by mapping J ≥0

λ to its moment polytope. It
turns out that the usual moment map is neither injective nor surjective on J ≥0

λ , but if
we first apply the map ι, we obtain a homeomorphism onto the moment polytope which
restricts to a diffeomorphism from J >0

λ onto its interior.
The subtlety in constructing the maps ϑλ and ι is to pick a canonical representative

in On (out of a possible 2n) for an arbitrary element of Fln(R). It is impossible to pick
a smooth representative over all of Fln(R), which is why in defining ϑ we restrict to the
totally nonnegative part Fl≥0

n and pick the representative inwhich all left-justifiedminors
are nonnegative. In [BFR90], the representative in On is chosen to be the one in which
the first row is positive. This is ultimately equivalent to our choice (up to multiplying
by δn) when we restrict to Fl>0

n , but on the boundary of Fl≥0
n some entries of the first

row of the matrix representative may be zero; see Remark 3.20. This issue necessitated
in [BFR90] an intricate analysis involving the Bruhat decomposition. (The embedding
J >0

λ ↪→ P
n−1
>0 of Moser mentioned in Remark 8.7 does not extend to the closure J ≥0

λ
for similar reasons.) We find the perspective of total positivity gives a natural way to
define and extend the map ι, which requires no special consideration at the boundary.

Remark 8.9. In the case of the real tridiagonal symmetric Toda flow, there is no loss of
generality in restricting to the totally nonnegative partJ ≥0

λ . That is, supposewe are given
L0 ∈ un such that −iL0 is a real tridiagonal symmetric matrix. Then we can conjugate
L0 by an element of the form Diag(±1, . . . ,±1) so that the off-diagonal entries of−iL0

become nonnegative, whence L0 ∈ J ≥0
λ . On the other hand, this conjugation commutes

with the flow (8.1). We note that this reduction to the totally nonnegative case from the
real case does not extend to the complex case, nor to the real full symmetric case.

Remark 8.10. Kodama and Williams [KW15, Section 5] proved a result analogous to
Theorem 8.6(i) for the full Kostant–Toda flow. Namely, to any point in Fl≥0

n they as-
sociate a Hessenberg matrix, and show that the corresponding Kostant–Toda flow is
complete; moreover, when the flow is mapped back to Fl≥0

n , it is contained inside a
single cell of the cell decomposition (2.8). (In the case of the top-dimensional cell Fl>0

n ,
this is a special case of an earlier result of Gekhtman and Shapiro [GS97, Theorem 2].)
Kodama and Williams further translate their results to the full symmetric Toda lattice
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[KW15, Section 7], following a procedure of Bloch and Gekhtman [BG98]. This trans-
lation employs a different convention than we use for mapping between Fln(C) andOλ

(cf. Remark 4.3), and getting between the two (in the totally nonnegative case) requires
applying the twist map. In particular, Theorem 8.6(i) follows from [KW15, Proposition
7.8] once we know the properties of the twist map given in Theorem 3.26.

Remark 8.11. Gladwell [Gla02, Theorem 2] proved a result analogous to Theorem 8.6(i)
for totally positive matrices. Namely, let M ∈ gln(R) be symmetric, and let L(t) evolve
according to (8.1) beginning at L0 := iM ∈ un . Write L(t) = iM(t). Gladwell
showed that if M ∈ GL≥0

n , then M(t) ∈ GL≥0
n for all t ∈ R; and if M ∈ GL>0

n ,
then M(t) ∈ GL>0

n for all t ∈ R. We observe that this result neither directly implies,
nor is directly implied by, Theorem 8.6(i).

Remark 8.12. We note that the Toda flow does not quite fit into the framework of Sect. 6,
because it only weakly (rather than strictly) preserves positivity. In particular, we cannot
use the Toda flow to show thatO≥0

λ is homeomorphic to a closed ball. Nevertheless, we
can apply Remark 6.5 (along with Theorem 8.6) to obtain the sorting property for the
full symmetric Toda flow restricted toO>0

λ . Namely, letting L(t) ∈ Oλ evolve according
to (8.1) beginning at L0 ∈ O>0

λ , we have

lim
t→∞ L(t) = iDiag(λ1, . . . , λn) and lim

t→−∞ L(t) = iDiag(λn, . . . , λ1) .

In general, Chernyakov, Sharygin, and Sorin [CSS14, Section 3.3] (cf. [KW15, Theorem
7.9] and [MT, Theorem 2]) showed that the limits of L(t) as t → ±∞ are diagonal
matrices determined by the Schubert and opposite Schubert cells containing L0.
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