Commun. Math. Phys. 398, 1213-1289 (2023) Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-022-04540-5 M ath em atl Cal

Physics
)]

Check for
updates

Gradient Flows, Adjoint Orbits, and the Topology
of Totally Nonnegative Flag Varieties

Anthony M. Bloch!®, Steven N. Karp?

1 Department of Mathematics, University of Michigan, Ann Arbor, USA. E-mail: abloch@umich.edu
2 Department of Mathematics, University of Notre Dame, Notre Dame, USA. E-mail: skarp2@nd.edu

Received: 22 November 2021 / Accepted: 3 October 2022
Published online: 18 December 2022 — © The Author(s), under exclusive licence to Springer-Verlag GmbH
Germany, part of Springer Nature 2022

Abstract: One can view a partial flag variety in C" as an adjoint orbit O, inside the Lie
algebra of n x n skew-Hermitian matrices. We use the orbit context to study the totally
nonnegative part of a partial flag variety from an algebraic, geometric, and dynamical
perspective. The paper has three main parts: (1) We introduce the totally nonnegative
part of O, and describe it explicitly in several cases. We define a twist map on it, which
generalizes (in type A) a map of Bloch, Flaschka, and Ratiu (Duke Math. J. 61(1): 41-65,
1990) on an isospectral manifold of Jacobi matrices. (2) We study gradient flows on O,
which preserve positivity, working in three natural Riemannian metrics. In the Kéhler
metric, positivity is preserved in many cases of interest, extending results of Galashin,
Karp, and Lam (Adv. Math. 397: Paper No. 108123, 1-23, 2022; Adv. Math. 351: 614—
620, 2019). In the normal metric, positivity is essentially never preserved on a generic
orbit. In the induced metric, whether positivity is preserved appears to depends on the
spacing of the eigenvalues defining the orbit. (3) We present two applications. First, we
discuss the topology of totally nonnegative flag varieties and amplituhedra. Galashin,
Karp, and Lam (2022, 2019) showed that the former are homeomorphic to closed balls,
and we interpret their argument in the orbit framework. We also show that a new family
of amplituhedra, which we call twisted Vandermonde amplituhedra, are homeomorphic
to closed balls. Second, we discuss the symmetric Toda flow on O,. We show that it
preserves positivity, and that on the totally nonnegative part, it is a gradient flow in the
Kihler metric up to applying the twist map. This extends a result of Bloch, Flaschka,
and Ratiu (1990).
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1. Introduction

Let Fl,, (C) denote the complete flag variety, consisting of all sequences V| C --- C V,,_|
of nested subspaces of C” such that each V} has dimension k. We may view Fl,,(C) as the
quotient of GL,, (C) by the subgroup of upper-triangular matrices B,, (C), where Vj is the
subspace spanned by the first k columns of a matrix representative in GL,,(C)/ B, (C).
Lusztig [Lus94,Lus98] introduced two remarkable subsets of the real points of Fl, (C),
called the totally positive and totally nonnegative flag varieties, denoted F1 0 and Flfo,
and defined as follows. Let GL; O be the subset of GL,, (C) of all rotally positive matrices,
i.e., matrices whose minors are all positive. Then FI>'0 is the image of GL; inside
GL,(C)/B,(C), and Fl,?0 is its closure. Equivalently, F1~ O (respectively, Fl,?o) is the
set of flags which can be represented by an element of GL,(C) whose left-justified
minors (i.e. those which use an initial subset of columns) are all positive (respectively,
nonnegative).

More generally, for any subset K of {1, ..., n — 1}, we have the partial flag variety
Flg., (C), consisting of nested sequences of subspaces of dimensions k € K. Its totally

nonnegative part Fl?.)n is defined to be the image of FIEO under the natural projection
which forgets the subspaces of dimensions k ¢ K. Of particular interest is the case
K = {k}, whence we obtain the Grassmannian Gry ,(C) and its totally nonnegative part

Gr,i(,)l . The totally nonnegative parts of Grassmannians and of more general partial flag va-
rieties have been widely studied, with connections to representation theory [Lus94], com-
binatorics [Pos07], cluster algebras [FWZ], high-energy physics [ABC+16,ABL17],
mirror symmetry [RW19], topology [GKL22a], and many other topics.

It is well-known that one can view a partial flag variety as an adjoint orbit inside a
corresponding Lie algebra. The purpose of this paper is to use the orbit context to study
total positivity. We approach this analysis from an algebraic, geometric, and dynamical
perspective.

There are two main inspirations for our work. The first is work of Galashin, Karp, and
Lam [GKL22b,GKL19], who constructed a contractive flow on any totally nonnegative
partial flag variety, in order to show that it is homeomorphic to a closed ball. One of our
goals was to situate these flows in a more general and geometric context. We will see
that these contractive flows are gradient flows in the Kéhler metric on an adjoint orbit.
The second inspiration is work of Bloch, Flaschka, and Ratiu [BFR90], who studied
the tridiagonal Toda flow on an adjoint orbit. They showed that after applying a certain
involution, the flow becomes a gradient flow in the Kéhler metric, and then projecting by
the moment map gives a homeomorphism from the underlying isospectral manifold onto
the moment polytope. Another of our goals was to clarify and extend this construction
using total positivity, and to relate it to the work of Galashin, Karp, and Lam above.
Here we introduce a generalization of this involution called the twist map, which plays
an important role throughout the paper. In order to accomplish these goals, we have
developed the fundamentals of total positivity for adjoint orbits.
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The paper consists of three main parts. In the first part (Sects. 2—4), we introduce the
totally nonnegative part of an adjoint orbit and the twist map. In the second part (Sect. 5),
we study gradient flows on adjoint orbits in three different Riemannian metrics: the Kéh-
ler, normal, and induced metrics. We focus on characterizing which gradient flows are
compatible with positivity. In the third part (Sects. 6-8), we consider two applications of
the theory thus developed: to the topology of totally nonnegative flag varieties and am-
plituhedra, and to the symmetric Toda flow. Below we give further details and highlight
our main results.

Adjoint orbits. Let U, denote the group of n X n unitary matrices, and let u,, denote
the Lie algebra of n x n skew-Hermitian matrices. For a weakly decreasing sequence
A= (1,...,Ay) € R we let O, denote the adjoint orbit inside u,, consisting of all
matrices with eigenvalues iAq, ...,i)A, (wherei = ~—1). We may identify O, with a
partial flag variety Flg.,(C), where K depends on the multiplicities of the entries of
A. Namely, K is the set of k € {1,...,n — 1} such that Ay > A1, and the matrix
L € O, corresponds to the flag V € Flg., (C), where Vj is the span of the eigenvectors
of L corresponding to the eigenvalues i)p, ..., iA. In the generic case (i.e. when A
is strictly decreasing), we have 0, = Fl,(C). At another extreme we have the case
A=wr:=(1,...,1,0,...,0), with k ones followed by n — k zeros; then O, consists
of matrices i P such that P is a projection matrix of rank &, and O, = Gry ,(C).

The totally nonnegative part of Flk.,(C) defines a corresponding subset O/\ZO, the
totally nonnegative part of an adjoint orbit. It is a distinguished subset of the purely
imaginary matrices in 0. Similarly, we obtain the totally positive part O} 0. We show

that in several cases of interest, Ofo can be described using notions familiar in the
literature (see Proposition 4.6, Corollary 4.12, and Proposition 4.18):

Theorem 1.1. LetiL € O,;.

(i) IfA1 > --- > A, >0, theniL € (9;0 if and only if L is eventually totally positive,
Le, L™ € GL;Ofor some m > Q.
(ii) If A = wy, then iL € Ofo (respectively, 1L € OAZO) if and only if all k x k minors
of L are real and positive (respectively, nonnegative).
(iii) If L is tridiagonal, then iL € (9;0 (respectively, 1L € (’)fo) if and only if L is real
and its entries immediately above and below the diagonal are positive (respectively,
nonnegative).

The tridiagonal subset of Ofo (known as a space of Jacobi matrices) will reappear
several times in key places throughout the paper.

The twist map. We introduce an involution ¢ on Fl,?o called the rwist map, defined as

follows. Given V € Fl,%o, we represent V by a (unique) orthogonal matrix g whose left-
justified minors are all nonnegative. Then ¢ (V) is defined to be the element represented
by the matrix ((—1)i*/ g j.i)1<i, j<n» Which is obtained by inverting (or transposing) g
and changing the sign of every other entry. Amazingly, this operation is compatible with
positivity (see Theorem 3.26):
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Theorem 1.2. The twist map ¥ defines an involution on FIZ° and on F17°.

For example, the twist map 9 sends

M3 o_ 1 1 V3 3 1
2 2/2 22 2 4 4
V3L 5 ol L 33, pr20
4 42 4/2 2V2 42 4/2 3
1 33 3 1 5 B
4 42 42 22 42 42

We call 9 the ‘twist map’ since it is analogous to the twist maps introduced by Beren-

stein, Fomin, and Zelevinsky, but with the key difference that our map is based on the

Iwasawa (or Q R-) decomposition of GL, (C), rather than the Bruhat decomposition.
We obtain a corresponding involution for any generic adjoint orbit, given by

Dy Ofo — O/\ZO, gAg™ ' > 8,87 Ags,,

related to the dressing transformations of Poisson geometry. Above, A is the diagonal
matrix with diagonal entries iy, ..., 1Ay, §, is the diagonal matrix with diagonal en-
tries 1, —1,1,..., (=D"! and g € U, is chosen so that all its left-justified minors
are nonnegative. The key point is that in general, g~ ! Ag depends on g (and not just on
the element gAg~" of the orbit), and total nonnegativity provides a canonical way of
selecting the representative g.

Gradient flows. Inspired by [GKL22b], we study flows on O, which strictly preserve
positivity, which means that the flow sends Ofo inside O;O after any positive time. We
focus on gradient flows for height functions of the form L + tr(LN) (coming from
the Killing form) for fixed N € u,, and work in three different Riemannian metrics:
the Kihler, normal, and induced metrics. In several cases we are able to classify which
flows strictly preserve positivity.

One such case is when O, = Gry_, (C), in which case the three metrics coincide up
to dilation. In this case, we have the following classification (see Corollary 5.15, which
also contains the corresponding result fork = 1,n — 1):

Theorem 1.3. Let2 < k < n—2. Then the gradient flow of L — tr(LN) on O, strictly
preserves positivity if and only if iN is real, N; j =0 fori — j # —1,0, 1 (mod n),

iN12, iN23, s iNp 1, (=D NN = 0,
and at least n — 1 of the n inequalities above are strict.

When O;, is not isomorphic to a Grassmannian, then the three metrics are different,
and their gradient flows exhibit markedly different behavior with respect to positivity. In
the case of the Kihler metric, the flows admit a beautiful explicit solution (see Proposi-
tion 5.9). We use it to obtain the following complete classification (see Corollary 5.19):

Theorem 1.4. Let . € R" be weakly decreasing with at least three distinct entries. Then
the gradient flow of L +— tr(LN) on O, in the Kdhler metric strictly preserves positivity
ifand only if iN is a real tridiagonal matrix whose entries immediately above and below
the diagonal are positive.

By contrast, we show that in the normal metric, in the generic case there are no flows
which strictly preserve positivity (see Theorem 5.25):
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Theorem 1.5. Let 1. € R” be strictly decreasing. Then for all N € uy, the gradient flow
of L — tr(LN) on O, in the normal metric does not strictly preserve positivity.

We leave the consideration of positivity-preserving flows in the normal metric for
other choices of A to future work. For the induced metric, our results are much less com-
plete. However, our preliminary investigations indicate that in this case, the existence
of gradient flows on O, which strictly preserve positivity may depend on the spacing
between the entries of ; see Example 5.35 and Proposition 5.36.

We establish analogues of the results stated above for gradient flows on O;, in the Kih-
ler, normal, and induced metrics which weakly preserve positivity, i.e., which send Ofo
inside itself after any positive time (see Corollary 5.15, Corollary 5.19, Example 5.35
and Proposition 5.36).

Topology. Galashin, Karp, and Lam [GKL22b, GKL19] used certain flows which strictly
preserve positivity to show that the totally nonnegative part of a partial flag variety (in
arbitrary Lie type) is homeomorphic to a closed ball. We rephrase their argument in the
orbit language for any gradient flow on O, in the Kihler metric, and show that the height
function provides a strict Lyapunov function for such a flow. This leads to the following
result (see Theorem 6.12):

Theorem 1.6. Suppose that 1, i € R* such that . > pxs1 forall 1 <k <n—1 such
that Ay > Ai+1. Consider the gradient flow of L +— tr(LN) on O,,_in the Kdhler metric,
where —N € O,,. Let S be a nonempty compact subset of the stable manifold of the
global attractor, such that any flow beginning in S remains in the interior of S for all
positive time. Then S is homeomorphic to a closed ball, its interior is homeomorphic to
an open ball, and its boundary is homeomorphic to a sphere.

In particular, by applying Theorem 1.6 in the setting of the gradient flows in The-
orem 1.3 and Theorem 1.4, we obtain that Ofo is homeomorphic to a closed ball, as
shown in [GKL22b,GKL19].

We also apply Theorem 1.6 to study the topology of amplituhedra A, i » (Z). These

are generalizations of the totally nonnegative Grassmannian Gri, 20 ,introduced by Arkani-
Hamed and Trnka [AT14] in order to give a geometric basis for calculating scattering
amplitudes in planar N' = 4 supersymmetric Yang-Mills theory. The amplituhedron
An.k.m(Z) depends on a certain auxiliary (k+m) x n matrix Z, where m is an additional
parameter satisfying k+m < n. Much recent work has focused on the combinatorics and
topology of amplituhedra. It is believed that every amplituhedron Ap.k.m(Z) is home-
omorphic to a closed ball. This is known when k + m = n [GKL22b, Theorem 1.1]
(in which case A, k. (Z) is Grk n) when k = 1 (in which case A, . (Z) is a cyclic
polytope [Stu88]), when m = 1 [KW19, Corollary 6.18], for the family of cyclically
symmetric amplituhedra [GKL22b, Theorem 1.2], and when n — k — m = 1 with m
even [BGPZ19, Theorem 1.8].

We extend the methods of [GKL22b] to show that a new family of amplituhedra,
which we call twisted Vandermonde amplituhedra, are homeomorphic to closed balls.
These are amplituhedra for which the matrix Z arises by applying the twist map ¥ to
a Vandermonde flag (see Definition 7.15). This family of amplituhedra includes all am-
plituhedra A, i »(Z) satisfying n — k — m < 2. We obtain the following result (see
Corollary 7.17 and Corollary 7.22):
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Theorem 1.7. Every twisted Vandermonde amplituhedron (in particular, every ampli-
tuhedron Ay k.m(Z) withn —k —m < 2) is homeomorphic to a closed ball, its interior
is homeomorphic to an open ball, and its boundary is homeomorphic to a sphere.

The symmetric Toda flow. The Toda lattice [Tod67] is an integrable Hamiltonian system
which has been widely studied since it was introduced in 1967. It may be viewed as the
flow L = [L, 7, (—iL)] evolving on an adjoint orbit O,, where 7, (—iL) is the skew-
Hermitian part of —iL. Classically, L is assumed to be a purely imaginary tridiagonal
matrix, but more generally, we can take L to be any element of O,

We observe that the Toda flow provides an example of a gradient flow which weakly
preserves positivity (in both time directions), in two different ways. First, in the tridiag-
onal case, the Toda flow is a gradient flow in the normal metric; this follows from work
of Bloch [B1090]. Second, in the general case, the Toda flow starting at a point in O, is
a twisted gradient flow (see Theorem 8.6):

Theorem 1.8. Let A € R”" be strictly decreasing, and let L(t) denote the Toda flow
on O, beginning at a point in Ofo. Then 9, (L(t)) is a gradient flow of the function
M +— tr(MN) in the Kdihler metric, where iN is the diagonal matrix with diagonal
entries M, ..., Ay.

Theorem 1.8 generalizes a result of Bloch, Flaschka, and Ratiu [BFR90] on the sub-
set of tridiagonal matrices in Ofo (i.e. Jacobi matrices). Their construction of the twist
map ¥, in this case involves an intricate analysis involving the Bruhat decomposition.
The perspective of positivity gives a natural way to define ¥, on Jacobi matrices, and to
generalize it to all of (’)AZO.

Outline. In Sect. 2 we recall some background material. In Sect. 3 we introduce the
totally nonnegative part of the unitary group U,, and define the twist map ¢. In Sect. 4 we
introduce the adjoint orbit O, and its totally nonnegative part. In Sect. 5 we study gradient
flows on O, _in the Kihler, normal, and induced metrics. In Sect. 6 we show that certain
subsets of O, including Ofo, are homeomorphic to closed balls. In Sect. 7 we study
gradient flows on amplituhedra and show that certain amplituhedra are homeomorphic to
closed balls. In Sect. 8 we study the symmetric Toda flow and its relation to total positivity.

We expect that many of the results and techniques in this paper extend to the case of an
arbitrary complex semisimple Lie group g and its compact real form €; the case we con-
sider corresponds to g = sl,,(C) and € = su, (i.e. type A). We have decided to focus on
this case, and to work instead with gl,, (C) and u,,, both for the sake of simplicity and con-
creteness, and to emphasize the connections with the classical theory of total positivity.

2. Background

In this section, we collect notation and background on matrix Lie groups and Lie alge-
bras, and on total positivity, which we will use throughout the paper. For further details
on Lie groups and Lie algebras, we refer to [Kna02]. For further details on total positivity,
we refer to [GK50,Kar68,Lus94,FZ00,Pin10,FJ11], as well as the original references.
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2.1. Notation. LetN :={0,1,2,...}. Forn € N, we let [n] denote {1, 2, ..., n}, and
fori, j € Z, we let [i, j] denote the interval of integers {i,i + 1, ..., j}. Given a set S
and k € N, we let (f) denote the set of k-element subsets of S.

Given an m X n matrix L, we let LT denote its transpose, and let L* := LT denote
its conjugate transpose. For subsets I € [m] and J C [n], we let L ; denote the sub-
matrix of L using rows I and columns J. If |[I| = |J|, we let Aj j(L) denote det(Ly, ),
called a minor of L. If J = [k], where k = |I|, we call Ay j(L) a left-justified minor
of L, which we denote by A;(L). We also let Y I denote the sum of the elements in
I, and let inv(/, J) denote the number of pairs (i, j) € I x J such thati > j. We let

Diag()1, ..., A,) denote the n x n diagonal matrix with diagonal entries Aj, ..., Ay,
and let 8, := Diag(l, —1,1,..., (=D)" 1.
Givenafield Fandn € N, weletey, ..., e, denote the unit vectors of F”*. We define

the following spaces:

P*(F) := (F"* \ {0})/F* = projective n-space over I;
GL,, (F) := {invertible n x n matrices with entries in [F};
B, (F) := {g € GL,(F) : g is upper-triangular};

N,(F) :={g € By(F) : gi; =1forl <i <n};

B, (F) := {g € GL,(FF) : g is lower-triangular} = B, (IF)T;
T,([F) := {g € GL,(IF) : g is diagonal};

U, :={g € GL,(C) : g*g = Ii};

TV := T,(C) N Uy;

0, := U, NGL,(R);

gl, () := {n x n matrices with entries in ['};

n, (F) := {L € gl,(F) : L is strictly upper-triangular};
t,(F) :={L € gl,(F) : L is diagonal};

u, :={L € gl,(C): L*+ L =0};

on = u, Ngl,(R).

The Lie bracket [-, -] on gl, (F) is given by
[L,M]:=LM — ML forallL,M € gl,(F).
We define the adjoint operator ady for L € gl,(IF) by
adp (M) :=[L,M] forall M e gl,(IF).

When F = C, we define the exponential map exp : gl,,(C) — GL,(C) by
1 1 m
P m __ 3
exp(L) := E — L™ = lim (In + —L) .

! m—00
m=0

We recall some properties of the determinant:
Proposition 2.1 ([Gan59, Chapter IJ).

(i) (Laplace expansion) Let M be ann x n matrix, letQ) < k < n,andlet I € ([Z]). Then

det(M) = Y (=DZTZIA; (M) A1, s (M). @.1)

Je(h
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(ii) (Cauchy—Binet identity) Let L be an m X n matrix, and let M be an n X p matrix.
Then for 1 <k <m, p, we have

Arg(LM) = Z ALk (D) Ak (M) forallI € (") and J € (PY).  (2.2)

ke
(iii) (Jacobi’s formula) Let g € GL,(F), and let I, J C [n] have the same size. Then
Arg(g™! Vit A 2.3
i(g )= T det(s) N\, a1\ (8)- (2.3)

(iv) (Vandermonde’s determinantal identity) We have
i—1
det( =ij=n) = [] &= (24)
I<i<j<n
We have the Trotter product formula for the exponential map:

Proposition 2.2 ([AMRSS, p. 256]). Let L, M € gl,(C). Then
exp(L+M) = lim_(exp(y L) exp(M))".

We also recall a classical result of Perron [Per07]:

Theorem 2.3 (Perron—Frobenius [Gan59, Theorem XII1.2.1]). Let A be an n X n matrix
with positive real entries, and let r be the spectral radius of A.

(i) The value r is the unique eigenvalue of A with modulus r, and it has algebraic
multiplicity 1.
(ii) There exists x € R” ) such that Ax =rx.

2.2. Fartial flag varieties. We now introduce partial flag varieties inside F".

Definition 2.4. Let [F be a fieldand n € N. Givenasubset K = {k| < --- < k;} C [n—
1],letPk. , (IF) denote the subgroup of GL,, (IF) of block upper-triangular matrices with di-
agonal blocks of sizes k1, ko —k1, ..., kj—kj—1, n —k;. We define the partial flag variety

Flg;n(F) := GLy(F)/ Pk (F).

We have the embedding

Flga® — B0 @) <. 2@ ),

(2.5)
g = (Qr@) ey - (Ar@) e )
(We can check that the right-hand side of the second line only depends on g modulo the
right action of Pk, (IF).) We call the left-justified minors A;(g) appearing above the
Pliicker coordinates of g € Flg.,(F) (also known as flag minors).
We may identify Flg., (F) with the variety of partial flags of subspaces in "

V=i, Vi) :0C Vi C--- C Vgy CF"and dim(Vy,) = k; for 1 <i <1}.
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The identification sends g € GL,(F)/Pg.,(IF) to the tuple (Vi)kek, where Vj is the
span of the first k columns of g.
Note that forany K’ C K, we have Pg., (F) € Pk, (F). This gives a projection map

Flg.n(F) — Flg., (F). (2.6)

In terms of partial flags of subspaces, the map (2.6) retains only the subspaces whose
dimensions lie in K.

There are two instances of Flg., () which will be of particular interest to us. If
K = [n — 1], then Flg.,(F) is the complete flag variety of F"*, which we denote by
Fl,(IF). If K is the singleton {k}, then Flg., (IF) is the Grassmannian of k-dimensional
subspaces of ", which we denote by Gry , (). We represent an element of Gry , (F) by
an n X k matrix of rank £ modulo column operations. We also extend the definition of
Gry,(F)tok =0and k = n.

Example 2.5. Letn := 4 and K := {1, 3}. Then

* ok k%
0% % %
0% % %
000 *

P34 = C GL4(F) and Fly 3).4(F) = GL4(IF)/ Pyy 3y,4(F).

We can write a generic element of Fly 3).4(IF) as

1000
g= Z(l)(l)g , wherea,b,c,d,e cl.
cdel
(Note that not all elements g of Flj 3;.4(IF) are of this form, such as those with g; 1 = 0.)

Then the embedding (2.5) takes g to

((A1(9) : A2(g) : A3(8) : A4(g)), (A123(8) : A124(g) : A134(g) = A234(g)))
= ((1 :a:b:c),(l:e:—d:c—ad—be)) e]I”3(IF) XP3(IF).

Furthermore, we can identify g € Flyj 3).4(IF) with the partial flag (V7, V3), where

VI C F4 is the span of the first column of g, and V3 C F* is the span of the first three
columns of g. ¢

2.3. Total positivity and total nonnegativity. We now introduce the totally positive and
totally nonnegative parts of several of the spaces defined above.

Definition 2.6. Let n € N. We define the totally positive parts of the following spaces:

o Py :={(xp: - :xy) € P"(R) : xp, ..., x, > 0};

° GL;O ={g e GL,(R) : A7 ;y(g) > 0forall I, J C [r] with |I| = |J]|};
e T>0 :=(geT,(R):gi; >0forl <i<n

° g[,fo :={L € gl,(R) : exp(tL) € GL;0 for all t > 0}

={L € gl,(R) : L is tridiagonal and L; j+1, Li+1; > Ofor1 <i <n —1}.

We also define the rotally nonnegative parts by taking closures in the Euclidean topology:
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o PLy =Py ={(xo::x,) €P"(R):x0,....%, =0}
e GLZ? :=GL;" = {g e GL,(R) : A ;(g) > Oforall I, J C [n] with |I| = |J|};

e gZ% = g% = (L e gl,,(R) : exp(rL) € GLZ? forall r > 0}
={L € gl,,(R) : L is tridiagonal and L; j41, Li+1; > 0for1 <i <n —1}.

(We do not consider T=?, since T ¥ is already closed.)

The alternative descriptions of gl 0 GL,?O, and g[,?o above are due, respectively,
to Karlin [Kar68, Theorem 3.3.4], Gantmakher and Krein [GK37, Lemma p. 18], and
Loewner [Loe55] (cf. [Rie97]).

We note that GL,; O and GL,?0 are semigroups by (2.2). Also, gl and g[,?o are convex
cones.

a b

Example 2.7. We have GL3? = { |: b
2 cd+7*

]:a,b,c,d>0}. O

Definition 2.8 ([Lus94,Lus98]). Let n € N and K C [rn — 1]. We define the torally
positive part of Flg.,(C), denoted by Fl;?n, as the image of GL,, 0 inside FI k:n(C) =
GL,(C)/ Pk.,(C). We define the fotally nonnegative part of Flg.,(C) by taking the
closure in the Euclidean topology:

>0 . _ 0
FIZ0, == FI0 .

Note that forany K’ € K, the projection map Flg. , (C) — Flg. ,(C) from (2.6) restricts
to surjections

FIZ%, —» FI7Y, and FIF° —FZ) . 2.7)

We remark that we could instead have defined FII>((')n and Fl?n by replacing C with
R. It will turn out to be more convenient for us to work over C.

Example 2.9. We have

1 00 o
Fif%=1la+c10|:a,bc>0p and Grzg=1|, 1|:abcd>0
be b1 e

O

Remark 2.10. 1t follows from Definition 2.8 that the image of GL,?0 inside Flg.,(C) is
contained in Fllzé) ,- However, this containment is strict unless K = @. For example, the

0-1

element { 10

] € FlzZO cannot be represented by an element of GLZZO.

One can show that the Pliicker embedding (2.5) is compatible with total positiv-
. . . o (@) ((&)-1)
ity (see Lemma 2.13), in that it takes Fl., inside PP_ x - x P2y , and
similarly with “> 0” replaced with “> 0”. It is natural to ask whether the preimage of
(@)-1) (G)-) -0 and similarly with “= 0" -
P2y XX P2y equals Fl3” . and similarly with “> 0” replaced with “= 0"
This motivates the following definition.
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Definition 2.11. Let n € N and K C [n — 1]. We define the Pliicker-positive part of

-1
Flk.,(C), denoted by Fl%ilo, as the preimage of ]P’(( - ) e ((kl) ) under the

Pliicker embedding (2.5). That is, FIA>0 consistsofall V € Flg., ((C) such that for every
k € K, we have

Ap(V)>0 forall I e ().

We similarly define the Pliicker-nonnegative part Fl by replacing “> 0” with “> 0”
everywhere above.

Example 2.12. We consider an example when K := {1,3} and n := 4. Let V =
(V1, V3) € Flj1,3),4(C) be represented by the matrix

1000
_|1100
§=11120
1011

Then V € Flﬁ??, 4» since all its Pliicker coordinates are positive:

A(V) =Ax(V) = A3(V) = Ag(V) =1,
A3 (V) = Ap3u(V) =2, Apa(V) = Aa(V) = 1.

However, we can verify that V ¢ FI7;° [1.3):4° for example, by showing that gh ¢ GL‘T0 for
all h € B4(C) (cf. [Chell, Example 10.1]). ¢

As we observed above, Lusztig’s notion of total positivity is stronger than Pliicker
positivity:

Lemma 2.13. Letn € Nand K C [n — 1].
(i) We have Fl>O C FlA>0 That is, if V € FIK . then for every k € K we have

[n]
Aj(V) >0 foralll € (Z)
(ii) We have Fllz((.)n - Flé,zno. Thatis, if V € Fli(,)n, then for every k € K we have

Ar(V)=0 forallle ().

In other words, the Pliicker embedding (2.5) preserves total positivity and total nonneg-
ativity.

The following result of Bloch and Karp [BK] characterizes when Lusztig’s notion of
total positivity coincides with Pliicker positivity. We refer to [BK, Section 1] for further
background and previous related work.

Theorem 2.14 (Bloch and Karp [BK, Theorem 1.1]). Let K C [n — 1]. Then the fol-
lowing are equivalent:
(i) FIY, = FIg=";

(ii) Fl>O = FIIA<>n0, and

(iii) the set K consists of consecutive integers.
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We now make several comments about the notion of Pliicker positivity.

Remark 2.15. The space FI¢ —n was explicitly introduced by Arkani-Hamed, Bai, and
Lam [ABL17, Section 6.3], who called it the naive nonnegative part. Indeed, this space
arises naturally in the physics of scattering amplitudes, in particular, for loop amplituhe-

dra [AT14]. For example, the space Flf,(i(lz}; , isaspecial case of a 1-loop amplituhedron;
the case k = 1 was studied in detail by Bai, He, and Lam [BHL16].

Remark 2.16. An important aspect of the applications to physics mentioned in Re-

mark 2.15 is the cyclic symmetry of FlA 9 in the case that all elements of K have
the same parity. An 1rnportant special case is when K = {k} is a singleton, so that

Fl;on = Flé?ﬂo = Grk > see [Kar19, Section 4] for a survey of various applications of

the cyclic symmetry for Gri?l. The cyclic action is defined as follows. Let o € GL,,(C)
be the signed permutation matrix

010---0
001---0
o=
000---1
+100---0

where the bottom-left entry is 1 is all elements of K are odd, and —1 if all elements of K
are even. Then o acts on Flg., (C); it has order n, since 6" = £1,. In terms of Pliicker

coordinates, o acts by rotating the set [n]. In particular, o preserves Fl = However
unless K = {k} is a singleton, then o does not preserve Fl>? %:.n> €€ [BK, Theorem 1.3].
Remark 2.17. While we will use Lusztig’s notion of total positivity throughout the paper,
most of our proofs only use the weaker notion of Pliicker positivity (via Lemma 2.13),
and therefore the corresponding results hold for both notions of positivity. An important
exception is our classification of gradient flows on an adjoint orbit which preserve pos-
itivity in the Kéhler metric (Corollary 5.19), where for certain orbits the classification
differs depending on which notion of positivity one uses; see Remark 5.20.

Remark 2.18. Note that for V € Flg.,(C), we have V € FlA>0 (respectively, V €
FlA 0) if and only if V; € Gr . (respectively, Vi € Grk’n) for all k € K. This follows
from Definition 2.11 along Wlth Theorem 2.14 applied to Gry ,(C).

We will also need the following result from [BK]:

Lemma 2.19 (Bloch and Karp [BK, Lemma 3.5)). Let V € Gryy and W € Grg) ,
suchthat V.C W.Ife; +ce, € V for some c € R, theney € W.

We have the following refinement of Theorem 2.14 in the case of 1./ 0 which follows
from a classical result of Fekete [FP12].

Lemma 2.20 (Fekete [GK50, Theorem V.8]). Let V € Fl1,(C). Then V < F1> 0 if and
only if

A ji(V)>0 foralll <i <j<n.

The group GL, (C) acts on Flg., (C) by left multiplication. This action is compatible
with total positivity:
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Lemma 2.21. Letn € Nand K C [n — 1].

(i) We have g - Fl%?n - Fl;@n forall g € GL,TO.

(ii) We have g - FIZ° C FIZ° forall g € GLZ.
Proof. By (2.7), it suffices to prove the result for the complete flag variety (i.e. when K =
[ —1]). This case follows from Theorem 2.14 and the Cauchy—Binet identity (2.2). O
Remark 2.22. Thetorus T, (C) acts on Flg. , (C) by left multiplication. Then Lemma2.21
implies that the totally positive part of the torus T, 0 acts on Fli(,) , and Fli(,) ,,- This torus
action will arise repeatedly throughout the paper.

A classical result of Gantmakher and Krein [GK37] (cf. [GKS50, Chapter V]) gives
an explicit connection between GL.*? and FI>°. We will need the following refinement
for matrices whose minors of a fixed order are positive. Our proof follows [GK37], and
is based on the Perron—Frobenius theorem.

Theorem 2.23. Let 1 < k < n, and let g be a complex n x n matrix whose k x k minors
are all positive.

(i) The eigenvalues of g over C may be enumerated as 11, . .., Ay, such that
A1l = > [Ak| > [Mst] = oo = [Ap| and  Ap--- 2 > 0.

(ii) Let V be the linear span of all generalized eigenvectors of g corresponding to the
eigenvalues Ay, ..., M. That is, V is the unique g-invariant subspace such that g
restricted to 'V has eigenvalues My, ..., . Then'V € Grk>9’.

Proof. Consider g acting on the exterior power /\k (C™), which we regard as an ((Z) X

(4))-matrix with entries Ay ;(g) for I, J € ([Z]), and eigenvalues [ [;.; A; for I € ([’,:]).
By assumption, this matrix has positive entries, and so the result follows from Theorem
2.3. O

Corollary 2.24 (Gantmakher and Krein [GK37, Theorems 10 and 13]). Let g € GL; 0,

(i) The matrix g has n distinct positive real eigenvalues A1 > --- > A,.
(ii) If we diagonalize g as

h~'gh = Diag(A1, ..., An), where h € GL,(C),
then the projection of h to F1,(C) lies in F1; O That is, the complete flag generated
by the eigenvectors of g, ordered by decreasing eigenvalue, is totally positive.

We will later state a converse to part (ii); see Proposition 4.6. It implies that for every
Ve FI;O, there exists g € GL;0 suchthatg -V = V.

Example 2.25. We illustrate Corollary 2.24 for the matrix

121
g:=[132|eGL;°.
144
We diagonalize g as follows:
1350 0 3+45 —23-45
hlgh=1] 0 1 0 |, whereh:=|4+2J5 —14—-25| € GL3(C).
0 0I=3¥5 7+3V5 2 7-3V5

We can verify (e.g. from Lemma 2.20) that the projection of & to Fl3(C) lies in Fl13 0.0
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We have the following analogue of Corollary 2.24 for GL,?O. Its statement is more

subtle, because not all elements of GL,?O are diagonalizable (such as [(1) ﬂ)

Corollary 2.26. Let g € GL=0.

(i) The matrix g has n nonnegative real eigenvalues A1 > --- > Ay, (including multi-
plicities).

(ii) Let K :={i € [n—1] : A; > Ai;1}, andtake h € GL,(C) such thath_lgh is the Jor-
dan form of g, with Jordan blocks ordered by decreasing eigenvalue. Then the projec-
tion of h toFlk ., (C) liesin Fl%?n. Thatis, the flag in Flg ., (C) generated by the gen-
eralized eigenvectors of g, ordered by decreasing eigenvalue, is totally nonnegative.

Proof. This follows from Corollary 2.24, using the fact that GL,?0 =GL,; 0, O

2.4. The cell decomposition of FIZ°. We recall a decomposition of F1=°

Lusztig [Lus94].

introduced by
Definition 2.27 ([BB0S, Chapter 2]). For 0 < k < n, we define the partial order < on
([Z]), called the Gale order, as follows:

h<--<id=s{n<-<i} &= a=j....it = jr

Given n € N, let G,, denote the symmetric group of all permutations of [n]. We define
the partial order < on &,,, called the (strong) Bruhat order, as follows:

v<w <= vk <w(k]) forl <k<n-—1.
The Bruhat order on &,, has the minimum id := (i + i) and the maximum wq := (i —
n+1 —1i), and is graded by the function £ : & — N. For example, the Hasse diagram

of G3 is shown in Fig. 1.
For w € G,,, we define the (signed) permutation matrix w € GL,(C) by

. N ESE ifi = w(j);

Wi = forl <i,j <n,

0, otherwise,
where the signs are chosen so that all left-justified minors of 1 are nonnegative. Note that
(W™ = 8, () ~'8.

We will also regard w as an element of Fl,, (C).

0—-10
Example 2.28. Let w := 312 € G3. Then £(w) =2 and w = {0 0 —1}. O
10 0

Definition 2.29 ([Lus94, Section 8]). Given v, w € &,, with v < w, we define

Cyw = (B, (C) - 9) N (B,(C) - ) NFI°,
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321
/// \\\
312 231

| >

213 132

123
Fig. 1. The Hasse diagram of Bruhat order on &3.

which is the intersection inside Fl;o of the opposite Schubert cell indexed by v and the

Schubert cell indexed by w. Then we have the disjoint union

Flr?o = I_l Co,ws (2.8)

v,weS,, vw
and Ciq,y, = FI; 0. We observe that each cell Cy.w 1s preserved by the action of the
totally positive part of the torus T;O from Remark 2.22.

Rietsch [Rie99] proved that (2.8) is a cell decomposition:

Theorem 2.30 (Rietsch [Rie99, Theorem 2.8]). Let v, w € G, withv < w. Then Cy
is homeomorphic to an open ball of dimension £(w) — £(v).

a—1 0
Example 2.31. We have C133,312 = |:0 0 —1} ra > O} C F13ZO, which is homeomor-
10 0

phic to a 1-dimensional open ball.

3. The Totally Nonnegative Part of U,, and the Twist Map

We define the totally positive part and totally nonnegative part of U,,, which we will be
able to identify with Fl;0 and FIEO, respectively. We use this identification to introduce
an involution ¥ on FIEO which we call the fwist map, motivated by similar maps of
Berenstein, Fomin, and Zelevinsky (see Remark 3.23).

We will use the following consequence of the Gram—Schmidt orthonormalization
process, or equivalently, the O R-decomposition. It is an instance of the Iwasawa de-
composition for semisimple Lie groups. We remark that this decomposition has been

studied in the context of totally positive matrices by Gasca and Pefia [GP93, Section 4].
Proposition 3.1 ([Kna02, Section V1.4]). Let n € N.
(i) The multiplication map

U, x T79 x N, (C) — GL,(C), (g1, &2, 83) > 818283 (3.1

is a diffeomorphism.

(i) We have U, / TV = GL,(C)/ B, (C) = Fl,(C).
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Definition 3.2. Given n € N, we let 7y : GL,(C) — U,, denote the projection onto the
first component of the inverse of (3.1). That is, for (g1, g2, g3) € U, X T,TO x N, (C),
we have 7y (g18283) = &1.

Similarly, we let my, : gl,(C) — u, denote the projection onto the first summand
in the direct sum gl,(C) = u, & t,(R) & n,(C), which is linear over R. That is, for
L € gl,(C), the element 7, (L) is skew-Hermitian and L — 7, (L) is upper-triangular
with real diagonal entries.

3.1. The totally nonnegative part of U,. We use the Iwasawa decomposition to define
the totally positive and totally nonnegative parts of U,,.

Definition 3.3. Given n € N, we define the totally positive part of U,,, denoted U, 0 as
the image of GL, 0 under 7ry. That is, an element g; € U, is fotally positive if and only
if there exist g» € T, Oand g3 € N,,(C) such that g g2g3 € GL; 0. We define the totally
nonnegative part of Uy, denoted UZY, as the closure of U>* inside U,,.

We make several remarks about Definition 3.3.

Remark 3.4. We emphasize that although U, is a subset of GL,(C), the same does not
hold for the respective totally positive or totally nonnegative parts unless n = 1. For
example, if n > 2 we have GL,; 0n U, = 0, since every element in U,, has a matrix
entry which is not a positive real number.

Remark 3.5. Tt would make sense to denote UZ" instead by any of 0=°, SUZY, or SOZ°,
since every element of UZ" has real matrix entries and determinant 1. We use the notation

U,?O since we wish to view this space as a subset of the real Lie group U,,.

Remark 3.6. We note that the projection of GLZ" to U, under 7y is contained in UZ?,
but is not equal to Ufo unless n = 1 (cf. Remark 2.10).

Example 3.7. Let us determine U3 0 and Uzzo, using the description of GL7 0 from Ex-
ample 2.7. For a, b, ¢, d > 0, we have the decomposition

“ b,,‘ = x/agﬁ T || Vai+e? Od | abracdibe
cd+*= < 4 0 a 0 |
a Jar Va2 o

as in (3.1). Setting & := arccos (\/Liz), we obtain

a’+c

Uz = {[cos(a) —sin(a)]

sin(a) cos(a) |

:ae(O,%)}.

It follows that

Uzzo _ {[cos(a) — sin(w) S %]} o

sin(a) cos(a) ]

Proposition 3.8. Let n € N.
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(i) Let S be the open subset of Oy, defined by the equations

ZA1>0 for1 <k <n. (3.2)
re(})

Then S contains U;O. The projection map S — Fl,(R) is a diffeomorphism from S
onto its image, and further restricts to bijections

U S P and UZ0 S RO,

(ii) An element of U,, lies in U;O if and only if all its left-justified minors are positive
real numbers.

(iii) An element of Uy, lies in U,?O if and only if all its left-justified minors are nonnegative
real numbers.

Proof. First we prove the forward direction of part (ii), which implies the forward di-
rection of part (iii). Let g; € U;O, so that there exist gy € T;O and g3 € N,,(C) such
that the element g := gjg2g3 lies in GL;O. Write go = Diag(Ay, ..., A,). Then for
every | <k <nand! e ([Z]), we have

Ar(g)) = (A2 AL(g) > 0.

Now we prove part (i), whence the reverse directions of parts (ii) and (iii) follow
from Theorem 2.14. Note that S contains U,?O by the forward direction of part (iii). Let
TE(R) = T}f N Oy, which is a discrete group of size 2". Since the 2" orbits § - g for
g€ TE (R) are disjoint, the projection § — O,, / TE (R) = F1,(R) is a diffeomorphism
onto its image. This completes the proof. O

Remark 3.9. We observe that by Proposition 3.8(i) and Lemma 2.20, an element of U,
lies in U;; O'if and only if all its left-justified minors indexed by consecutive rows are
positive real numbers.

Remark 3.10. Recall from Definition 2.27 that to each permutation w € S,,, we asso-
ciate a signed permutation matrix w € GL, (R). The signs are determined by the fact
that 1 € UZP.

3.2. The reversal and duality maps. In this subsection, we introduce two involutions on
U,,: the reversal map rev and the duality map p. They correspond to reversing the order
of either the rows or the columns of a matrix in U, as well as changing the signs of
certain entries so as to be compatible with total positivity. We recall from Definition 2.27
that we have the matrices

00 - (=1t

W = 0_1 O €Uz’ and §, = Diag(l,—1,1,...,(=D""1) e U,,
10 - 0

satisfying

(o) "' = 8,008, and (Sn_l =3,.
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Definition 3.11. Given n € N, define the involution rev : U,, — U,, by
rev(g) := wod,gdn.
For K C [n — 1], we obtain an involution rev : Flg.,(C) — Flg.,(C), given by
rev(V) = wos, -V forall V € Flg.,(C).

That is, rev(V) is obtained from V by reversing the order of the ground set [n]. Note

that by Proposition 3.8 and (2.7), rev preserves U, U0, Fl?.)n, and Fl?f)n.

Example 3.12. The reversal map rev sends

31 L I _3/3 V3

} 272 2V2 ; 42 42

31 5 3 1 5 . 11>0

T a; Taa|l|E i sl 0
1 33 3 ¥ 1L 1L

4 42 a2 PN NG)

Definition 3.13. Given n € N, let (-, -) denote the inner product (v, w) := viwy +-- -+
v, W, on C". For asubspace V of C", we let V- denote the orthogonal complement of V.
Given K = {k1 < -+ <k} C [n — 1], define K+ := n—k <---<n—k} C
[n—1].ForaflagV = (Vg,, ..., Vi) € Flg.,(C), we define the orthogonally comple-
mentary flag V4 e Flg..,(C) by
vi= Wity ooy Wn—ky), where W,_;, = (Vki)J‘ forl <i <l
Definition 3.14. Given n € N, define the involution p : U, — U, by

p(g) 1= 8,88, 0.

In other words, p(g)i,j = (—1)" " gins1—j for 1 <i, j <n.

Now let K C [n—1]. Note that p(g) ' p(gh) € Pg1.,(C)NU, forallh € Pk, (C)N
Uy, so by Proposition 3.1(ii) we obtain an involution p : Flg.,(C) — Fl Kl;n((C). In
fact, we have

p(V)=8,-VL forall V e Flg.,(C).

We call p(V) the dual flag of V. Note that the maps rev and p on both U,, and Flg. ,,(C)
commute.

Lemma 3.15. Letn € N, and let K C [n — 1].

(i) Let g € U,,. For 0 < k < n, we have
k+1 S —
AL (p(g) = (=D ") det() Ay st (@) forall 1.7 € (1),
(ii) Let V € Flg.,(C). We have
Ar(p(V) = Appa (V) forallk € K+ and I € (W)).

(iii) The involution p preserves U;O and U,?O. It takes Fl;?n onto Fl;(i;n and Fli?n onto
FI=

Kt:n
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Proof. ()ForO0 <k <nand1,J € ([Z]), we have
AL (p(g) = (—DEFERE (DA, (o)
= (~DEEIEI DR inee gl = ¢%)

:(_1)21—(1‘;1)mA[n]\I’[H]\JJ_(g) (by (2.3)).

(ii) This follows from part (i), by representing any element of Flg., (C) by an element
of U, and taking J = [k].

(iii) By part (i) and Proposition 3.8(ii), we see that p preserves U, 0. The result then
follows by Proposition 3.8(i), (2.7), and taking closures. O

Example 3.16. We illustrate Lemma 3.15(iii) in the case of U7 0. By Example 3.7, we

can write any element g € U5% as g = [zfj((z)) _CZISIES;)], where a € (0, %). Then

sin(a) —cos(a) -0
cos(a) sin(a) :| €Uz 0

p(8) = 828820 = [
3.3. The twist map. We now introduce the twist map .

Definition 3.17. Given n € N, define the involution ¢ : GL,(C) — GL,(C) by

U(g) == 8,8 '8y

In other words, t(g);,; = (=1)i* (g_l),',j forl <i,j<n.

Example 3.18. Let g := [Z Z} € GL,(C). Then t(g) = — [d bi|. 0

ad—bc|ca

Fomin and Zelevinsky [FZ99, Section 2.1] call ¢ the “totally nonnegative version” of
the matrix inverse, since it preserves GL,, 0 and GL,?O; this follows from (2.3). We will
focus on the more subtle analogue for U,;:

Proposition 3.19. Let n € N.
(i) Let g € U,.. We have
Ap @)=Y AN AG_isui(g) foralll <i<j<n.
1o
(ii) The involution 1 preserves U and U=,
Proof. (i) For 1 <i < j <n, we have

A j1(1(8))
__L A
det(g)

1

" det(g)

[i—i+2,n]li—1ulj+1,01(8)  (by (2.3))

Z (=1L —i+2. 2 Ari—n(@) Apj—iv2anLj+1,01(8)  (by (2.1)
1V
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= Y M@Ap—sui® by (23),since g7 = g¥).
e

(ii) Recall the descriptions of U 0 from Proposition 3.8(ii) and Remark 3.9. By part
(), if g € U;O, then Aj; jj(t(g)) > Oforall 1 <i < j < n, whence ((g) € U;O.
Therefore ¢ preserves U:°, and also preserves the closure UZ°. O

Remark 3.20. Proposition 3.19(ii) implies that if g € U, 0, then the entries of the first
row of g are nonzero and alternate in sign, i.e.,

(-1)/7lg1 ;>0 forl<j<n. (3.3)

Conversely, if V € FL~ Oand g € U, represents V, then g € U, 0 if and only if g satis-
fies (3.3) (if and only if g satisfies (3.2)). However, note that (3.3) (even after replacing
‘>’ with ‘>’) does not similarly characterize the closure UEO, in contrast to (3.2). For
example, (3.3) does not determine the signs in the signed permutation matrix w € U;O.

‘We will return to this distinction in Remark 8.8.

Definition 3.21. Let n € N. By Proposition 3.19(ii), ¢ preserves UEO. Hence the identi-

fication UZ" = FIZ0 of Proposition 3.8(i) induces an involution

9 FIZ0 - FIZ%, ¢ e Uz (g),

n

which is a diffeomorphism on some open neighborhood of Fl;0 inside Fl,, (R). (Explic-
itly, we can take this open neighborhood to be the image in Fl,(R) of S N ¢(S) € O,,
where S is defined by (3.2).) We call this involution the (Iwasawa) twist map.

Remark 3.22. Tt is not clear how to extend ¥ to all of Fl,(R) or Fl,,(C), since there is
no canonical way to represent a complete flag by an element of U,,. Similarly, it is not
clear how to define a twist map on the totally nonnegative part of an arbitrary partial flag
variety Fl%?n, since there is no canonical way to represent a totally nonnegative partial

flag by an element of U=,

Remark 3.23. The name twist map is motivated by the twist maps defined by Berenstein,
Fomin, and Zelevinsky on N, (C) [BFZ96, Lemma 1.3] and by Fomin and Zelevinsky
on GL,(C) [FZ99, (4.10)]. The key difference between these maps and our map 9 is
that the former are based on the Bruhat decomposition of GL,, (C), whereas ¥ is based
on the Iwasawa decomposition.

Indeed, the map ¥ on Fl,%o takes a complete flag represented as a matrix g € U,%O,
and acts as the map

g SngTB,l .

The map of [BFZ96, Lemma 1.3] induces a rational map on Fl,, (C) defined in a similar
way (up to an application of the map rev from Definition 3.11), but where we instead
represent a complete flag by a matrix of the form

* % koo (=1)]
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For example, when n = 3 we obtain the map on Fl3> 0

bc —b1 bc —(a+c) 1
a+c—10m— | b -1 0 (a,b,c > 0).
1 00 1 0 0

Note that the latter map above is not defined on all of FIEO. Following [FZ99, (4.10)],
one could attempt to extend the definition to all of Flfo, but we would expect the definition
to be different for each cell Cy, ,, in (2.8), and that the resulting map would not necessarily
be continuous when passing between cells. One encounters a similar issue when attempt-
ing to extend ¢ to all of Fl,,(R) or Fl,,(C) (cf. Remark 3.22), but the issue occurs away
from the totally nonnegative part. The fact that 9 is a diffeomorphism defined on a neigh-
borhood of FI=° (and not merely on FI>?) will be essential for us, for example in Sect. 8.

Remark 3.24. The twist map ¢ generalizes (in type A) a map of Bloch, Flaschka, and

Ratiu [BFR90, Section 3] defined on the subset of tridiagonal matrices of Ofo, known
as an isospectral manifold of Jacobi matrices. We discuss this in more detail in Re-
mark 8.8, after introducing Jacobi matrices in Sect. 4.4. It is also closely related to a
map on Fl,, (R) introduced by Martinez Torres and Tomei [MT, Proposition 1]. The main
difference between the two maps is in the domain of definition. Indeed, our twist map
is a diffeomorphism on Fl,?o, and is designed to be compatible with total positivity. On
the other hand, the map of [MT] is defined piecewise on each Bruhat cell of Fl,, (R),
and is designed to be compatible with the asymptotic behavior of the symmetric Toda
flow (see Remark 8.12); however, it is not compatible with total positivity, for the same
reasons as discussed in Remark 3.23. We also mention that the twist map is also related
to the dressing transformations of Poisson geometry [STS85,LW90].

Example 3.25. We explicitly describe the twist map ¥ on Fl,?0 forn = 1,2,3. When

n=1, Fllzo is a point, so ¥ is necessarily the identity. When n = 2, we can verify from
Example 3.7 that ¢ is again the identity.

We now consider the casen = 3. Let g € Flzo, and let A; and A? denote the Pliicker
coordinates of g and ¥ (g), respectively, where the former are normalized so that

Y Aj=1 fork=123. (3.4)
re)
Note that the Pliicker coordinates satisfy the Pliicker relation (cf. [Ful97, Section 9.1])
ArA13 = A1Axz + AzAgg.
By Proposition 3.19(i), we find
AV = A1, A =AAp+A3A, A =Axn, Al =Ap, AY=As
The remaining Pliicker coordinate Alf3 can be obtained from the Pliicker relation:

AVAYL + AJAY,  AjAs+AnAp
A} ArAp + AzAr3

v _
Ajz =

One can verify that the A”’s satisfy the same normalization condition (3.4) and that
A — A7 defines an involution, though this is not obvious. ¢
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The twist map acts on the cell decomposition (2.8) of Flfoz
Theorem 3.26. The twist map ¥ preserves Fl;0 and Flfjo. Forallv, w € G, withv < w,
it restricts to a diffeomorphism ¥ : Cy ., — Cyt -1

Proof. The map v preserves F1 0 and FIEO by Proposition 3.19(ii). Since ¢ is an invo-

lution, it remains to prove the containment #(Cy,) S C,-1 ,,—1. We show that given

g € B, (©)1B,(C) N B(C)w B, (C)) NUy,
we have
((8) € (B, (C) (™) B(C)) N (B4 (C) (™) B, (C)),

Indeed, we have

L(8) = 818" 8 € (5B, (C)T8,)(8,78,)(8,B; (C)T6,) =B, (C) (v™") B,(C)
and

((8) = 81880 € (5 Ba(©) 7' 8,)(8,()7'8,) (8, BA(C)'8,) = Bo(©) (w ™) B,(C). O
Example 3.27. We illustrate Theorem 3.26 in the case n := 3, v := 132, and w := 312:
|:cos(oz) —sin(e) 0 :| ) |:cos(a) 0 sin(a) :|
C132312 3 0 0 —1|  |sin(@) 0 —cos(@) | € Ciz,31 (2 €(0,%). ¢
sin(a) cos(a) O 0 1 0
We conclude this section by relating the three maps rev, p, and ¢

Lemma 3.28. Letn € N.

(i) We have torevo 1= p onU,.
(ii) We have © o rev o ¥ = p on FIZ0.

Proof. We can verify part (i) from the definitions, whence part (ii) follows. O
Like the twist map ¢, the maps rev and p act on the cell decomposition (2.8) of Fl,?():

Lemma 3.29. Letn € N, and let v, w € &,, with v < w.

(i) The map rev : Flg0 — Fl;0 restricts to a diffeomorphism Cy =4 Cuow, wov-

(ii) The map p : Fl,?o — FIEO restricts to a diffeomorphism C, 4, i Cwwo,vwo-

Proof. We prove part (i), whence part (ii) follows from Lemma 3.28(ii) and Theo-
rem 3.26. Since rev is an involution, it suffices to prove the containment rev(C, ,,) <
Cuow,wov- We show that given

g € (B, (C)5B,(C)) N (B,(C) B,(C)) Ny,
we have
rev(g) € (B, (C) (wow) B, (C)) N (B, (C) (wov) B, (C)).
Indeed, we have
rev(g) = wodngdy € (tho B, (C) 9B, (C)) N (1o B, (C) 1 B, (C))
= (B, (C) (wov) B,(©)) N (B, (C) (wow) B,(C)). O
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4. The Totally Nonnegative Part of an Adjoint Orbit

In this section we introduce the totally positive and totally nonnegative parts of any
adjoint orbit O, of u,. We can identify O, with some partial flag variety Flg.,(C), and
its totally positive and totally nonnegative parts are defined so as to agree with those for
Flk ., (C). We then study this notion in more detail in three cases of particular interest:
when the corresponding flag variety is the complete flag variety, when the corresponding
flag variety is a Grassmannian, and for tridiagonal matrices.

4.1. Adjoint orbits of u,. We introduce adjoint orbits of the Lie algebra u,, of U,,.

Definition 4.1. Let . = (A, ..., 1,;) € R” be weakly decreasing, i.e., A > --- > A,.
We define the adjoint orbit

O, = {g(iDiag(1))g ™" : g € Up} S uy.
We define the totally positive and totally nonnegative parts of O, by
07 = {g(iDiag(x))g ™' : g € U; %), 07" := 070 = {g(iDiag(r))g ™" : g € U7°},

where the latter description of Ofo will follow from Lemma 4.5.

Remark 4.2. We note that every adjoint orbit of u,, is of the form O, for some A. The
assumption that A is weakly decreasing is not an arbitrary convention; it is essential for

defining Ofo and Ofo.

Remark 4.3. We have defined O; 0 and (’)fo using the left action of U,, on u,,. If instead
we use the right action, we obtain the same spaces conjugated by §,:

{g~'(iDiag(1))g : g € UZ%) = 5,075, (¢~ '(iDiag(r))g : g € Uz} = 5,07%,,.

This follows from Proposition 3.19(ii).

Example 4.4. Let . := (A1, Ap) € R? with A1 > A,. Then by Example 3.7, we have

=0 _ J.[M cosZ(a) + Ay sin(a) (A1 — A2) sin(a) cos(e) ) .
0= {1 |:(A1 — A2) sin(@) cos(a) Aj sinZ (@) + A2 cosz(a)] e e, 7)} - 0

Lemma 4.5. Let A € R" be weakly decreasing, and set K := {i € [n — 1] : A; > Aj41}.
Then the map

FlK;n((C) - O)u

4.1
g € U, > g(iDiag(»))g™! @D

is a diffeomorphism which takes Fl;?n onto Ofo and Fl?;)n onto Ofo.

Proof. By Proposition 3.1, we have Flg. ,(C) = U, /(Pk.,(C)NU,),and Pg.,(C)NU,
is the centralizer of i Diag(). Therefore (4.1) is well-defined and a diffeomorphism,
and the remaining assertions follow from Proposition 3.8(i). O
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4.2. The complete flag variety and eventually totally positive matrices. We consider the
case when O, = Fl,,(C), i.e., when X is strictly decreasing (or generic). After translating
A by a multiple of (1, ..., 1), we may additionally assume that all its components are
positive. Then results of Gantmakher and Krein [GK37] and Kushel [Kus15] charac-
terize —10; 0 as a space of eventually totally positive matrices. For completeness, we
provide a proof.

Proposition 4.6 (Gantmakher and Krein [GK37, Theorem 16]; Kushel [Kus15, Theo-
rem 7]). Let A = (A1, ..., Ay), where Ay > --- > A, > 0, and let iL € O;. Then the
following are equivalent:

(i)iL € O70;

(ii) L™ € GL;Ofor some m € Zq, and
(iii) L™ € GL;Ofor all sufficiently large m € Zo.
Proof. Note that (iii) = (ii) holds, and (ii) = (i) follows from Corollary 2.24(ii). We
now prove (i) = (iii). Suppose that iL € (9;0, so that L = gDiag(x)g~" for some
geU0 Letl,J e ([Z]), where 1 < k < n. By (2.2), we have

A (L") = Z (ITiex )»i)mAl,K(g)AJ,K(g) =1 A" (A(©)Ay(g) +0(1))
ke

asm — oo. Since Aj(g), Aj(g) > 0by Proposition 3.8(ii), we see that Ay y(L™) > 0
for all m sufficiently large. O

Remark 4.7. A matrix g € GL, (R) is called oscillatory [GK37, Section 2] if g € GL,?0
and g™ € GL, O for some m > 0 (equivalently, for all m > n — 1). Every eventually to-
tally positive matrix is oscillatory, but the converse does not hold. For example, the matrix

11 32 -1
g=13v2 10 342
-1 32 11

is eventually totally positive, but it is not totally nonnegative.

Remark 4.8. We observe that in Proposition 4.6(ii), the required power m € Z- may be
arbitrarily large, even when A is fixed. (This is in contrast to the situation for oscillatory
matrices, where the required power m is at most n — 1.) To see this, take o € (0, %),
and define

L sin(c) -1 L cos()

72 22
iL := g(iDiag(A1, 22, 23))g ' € 070, whereg:=| cos(@) 0 —sin(@) | € U3°.

%Sin(a) % %cos(a)
Then
(L™)13 = 3 (sin® @] = 43) — cos” (@) (35 = A7)).
If L™ € GL3Y, then (L™); 3 > 0, which implies
Mo
=g an(@)
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As o — 0, this requires m — oo.
We also observe that the analogue of Proposition 4.6 for Ofo fails to hold. To see
this, take o := 0 above, so thatil € OAZO. Then

(L™)13 = —3(% =) <0,

so L™ ¢ GL3ZO for all m € Z~o.

~

4.3. The Grassmannian and projection matrices. We consider the case when O, =
Gri ,(C), ie,, when Ay = --- = At > Agy1 = --- = A,. After translating A by a
scalar multiple of (1, ..., 1) and rescaling it by a positive constant, we may assume that
A=(,...,1,0,...,0).

Definition 4.9. Given 0 < k < n, welet wy := (1,...,1,0,...,0) denote the vector
of k ones followed by n — k zeros. Then —i1 0y, is a space of projection matrices:

Ou, = {iP : P € gl,(C) with P> = P = P* and tr(P) = k}.

(We may replace the condition tr(P) = k with rank(P) = k.)

Given V € Gry ,(C), let Py € gl,(C) denote the orthogonal projection from C”
onto the subspace V. If we regard V as an n x k matrix modulo column operations, then
Py = V(v*V)~ly*,

Lemma 4.10. Let 0 < k < n. Then the map

Grin(C) = Oy, V= iPy

is a diffeomorphism which takes Gr,i?l onto (9;]? and Grfg onto O(%]?.
Proof. This follows from Lemma 4.5, since the map V +— iPy is precisely (4.1). i

We explain how to recover the Pliicker coordinates of V from Py . This will lead to
explicit descriptions of (9;,? and (9(%,? . We recall that inv(/, J) denotes the number of
pairs (i, j) € I x J suchthati > j.

Lemma 4.11. Let V € Grg ,(C). Then for 1 <1 < n, we have
3 o (=DM IR Ay (V) Bk V)

Apy(Py)=
D ey Ak
k

foralll,Je ([71).

4.2)
In particular, we have

Ar(V)A;(V)

forall 1,7 € (). (4.3)
2
ZKG([21)|AK(V)|

Apj(Py) =
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Proof. Weregard V as an n x k matrix, sothat Py = V(V*V)~!V* Thenforl </ <n
and I, J € ([’l']), we have

Apy(Py) = Z Arr(V)Ap p(VVYTHAp ; (V) (by (2.2))
e

Y oA (V)<( CLEE <V*V)>A W) by 23)
= Lr [KI\J' . [kI\I" J,J y (2.
Bt det(V¥V)

(— 1)ZI+ZJ’ - .
= Z App (V)( Bt (VY Z Ak,[k]\J'(V)AK,[k]\l'(V)> Ay (V)  (by (2.2)

e kel

1 ! !
= > ( Y (=nx! Az‘p(va,[k]\p(V))( > =¥ AJ,J/(V)AK‘[H\J/(V>),
re(h re(®h

Ke(k[n—]l)

which simplifies to (4.2) by (2.2) and (2.1). O
Corollary 4.12. Let 0 < k < n.

(i) We have OZ/? ={iP € O, : all k x k minors of P are real and positive}.
(ii) We have (95]? ={iP € Oy, : all k x k minors of P are real and nonnegative}.

Proof. This follows from (4.3), Lemma 4.10, and Theorem 2.14. O

Corollary 4.13. Let n € N, and let iP € OZkO. Let 1 < [ < k, and suppose that

1,J e ([';]) satisfy the evenness condition: between any two elements of Z \ (I U J),
there are an even number of elements in the multiset union 1 U J.

() IfFIINJ| > k+1—n, then A; ;(P) > 0.
(i) IfIINJ| <k+1—n, then Aj yj(P) =0.

Proof. The evenness condition implies that inv(/, K) +inv(J, K) is even for all K €
Z\ (I U J). Therefore the numerator of the right-hand side of (4.2) is a sum of positive
terms, by Lemma 4.10 and Lemma 2.13(i). The two cases correspond to whether the
sum has at least one term or not. O

Remark 4.14. Corollary 4.13 implies that certain minors A j (P) are positive or zero for
alliP € (’)ZAQ . We can similarly argue that every other minor is either zero, negative, or
can take any sign (we omit the details). For example, let (k, n) := (2, 4), and consider the
1 x 1 minors (i.e. the entries) of P. We have Py 1, P22, P33, P44, P12, P23, P34 >0
and Pj 4 < 0. The remaining entries P; 3 and P, 4 can take any sign, as demonstrated
by the matrices

6 714 3 415 6 4 —1-7 3 5 —-1-4
17P = 7 114 1 4 117 -1 4 145 1 5 14 4 -1
1 435 1 764 [(-153 4| |-14 6 7
-4 1514 —5-1414 -71 4 11 —-4-17 11

4.4. Tridiagonal matrices. Tridiagonal matrices are often of particular interest in ap-
plications, and will play an important role throughout the paper. We give an explicit
description of the tridiagonal parts of Ofo and Ofo
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Definition 4.15. Let A € R" be weakly decreasing. We define the spaces of Jacobi
matrices

IO =GN0, and J7°:=(giz%) N O;.

That is, jfo (respectively, Jfo) is the set of elements iL € O, such that L is a real
tridiagonal matrix with positive (respectively, nonnegative) entries immediately above
and below the diagonal.

We will show that jfo (respectively, jfo) is precisely the subset of tridiagonal
elements of O 0 (respectively, Ofo). We then give an explicit description of jfo in

terms of Vandermonde flags.

Lemma 4.16. Let A € R” be weakly decreasing, andset K :={i € [n—1] : A; > Aj+1}.
GiveniL € O,, let V = (Vi)rek € Flg.,(C) be the corresponding flag under the in-
verse map of (4.1). Then

L= (Z()‘k — )»k+1)Pk> +Aply, where Py := Py, fork € K. (4.4)
keK

Proof. This follows from Lemma 4.10, by writing A = (Zke[(()‘k — Ak+1)wk) +
Any. O

Lemma 4.17. Suppose that A € R" is weakly decreasing and nonconstant.
(i) Ifil € O;° then L js1 = Lis1; > Ofor 1 <i <n—1.
(i) IfiL € O7°, then Li 1 = Liy1; > 0for 1 <i <n—1.

We note that if A is constant, then (’);0 = fo = 0, = {iDiag(»)}.

Proof. We prove part (i), whence part (ii) follows since Ofo =07 0. SetK :={i € [n—
1] : A; > Aj4+1}, which is nonempty by assumption. LetiL € O,,andletV = (Vi)rex €
Fl}‘,)n be the corresponding flag under the inverse map of (4.1). Then by (4.4), we have

Lijs1 = ) (k= Ms)(Pyiis1 forl <i<n—1.
keK

By Lemma 4.10 and Corollary 4.13(i), we have (Py,); ;+1 > O forall k € K. Therefore
Ly >0. O

Proposition 4.18. Let L € R" be weakly decreasing and nonconstant. Then
I = (L € 07°: Liswidiagonal} and J;° ={L € O;°: L is tridiagonal}.

Moreover, if A is not strictly decreasing, then Jfo is empty.

Proof. The containments D follow from Lemma 4.17. To prove the first C containment,
let il € jfo. Then L € g[;o, so exp(L) € GL°. Applying Corollary 2.24(ii) to
exp(L) implies iL € 039, as desired. Moreover, Corollary 2.24(i) implies that if such
an iL exists, then X is strictly decreasing. The second C containment follows from a
similar argument, using Corollary 2.26(ii). O
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When A is strictly decreasing, the space Jfo is known as an isospectral manifold
of Jacobi matrices. It was first considered by Moser [Mos75] in connection with the
Toda lattice, based on work of Flaschka [Fla74]. We will discuss the Toda lattice further
in Sect. 8. The topology of Jfo was studied by Tomei [Tom84], who showed in par-
ticular that its closure is \750. Bloch, Flaschka, and Ratiu [BFR90] gave the following

descriptions of 7, fo and jfo, which hold for any compact Lie algebra.

Theorem 4.19 (Bloch, Flaschka, and Ratiu [BFR90, Theorem p. 60]). Let A € R" be
strictly decreasing, and let C C R" denote the convex hull of all permutations of X,
which is the moment polytope of O,. Then there is a diffeomorphism from jfo to the

interior of C which extends to a homeomorphism jfo > C.

See Remark 8.8 for further discussion. We plan to study the homeomorphism .7, fo —
C in more detail in future work.
‘We now describe jfo as a subset of FL> 0 under the identification (4.1). Remarkably,

it is a twisted T>-orbit. This is based on a well-known correspondence in numeri-
cal analysis between orthogonal tridiagonalization of a symmetric matrix (which we
uncharacteristically take to be a diagonal matrix) and Krylov subspaces; we refer to
[Par98,GVL13] for further details. This description is also related to Moser’s spectral
variables [Mos75, Section 3] for the manifold .7;0; see Remark 4.27.

Definition 4.20. Let A = (A1, ..., A,) € C" have distinct entries, and let x € P*~1(C)
have no zero entries. Define the Vandermonde flag Vand (X, x) € Fl,,(C) as the complete
flag (V1, ..., V,—1), where

Vi = span(x, Diag(\)x, ..., Diag(x)*~'x) forl <k <n—1.

Thatis, Vand(A, x) isrepresented by the rescaled Vandermonde matrix (A{ _lxi M<i,j<n-
The fact that Vand(A, x) lies in Fl,,(C) follows from (2.4). Moreover, if A, ..., A, are
strictly decreasing real numbers and x € IP’Z_OI, then Vand(, x) € FI; 0 by (2.4) and
Theorem 2.14. We also observe that A and x are uniquely determined by Vand(x, x),
modulo translating A by a scalar multiple of (1, ..., 1) and rescaling it by a nonzero
constant.

X1 Axg )»le
Example 4.21. When n = 3, the flag Vand(A, x) is represented by |:x2 Aaxa A x2:|. O

X3 A3X3 A3X3

Remark 4.22. Let A € C" have distinct entries. Recall the torus action on Fl, (C) from
Remark 2.22. For x € P"*~!(C) with no zero entries and h € T, (C), we have

hVand(i, x) = Vand(a, hx).
In particular, the subset
{Vand(x, x) : x € P"~!(C) has no zero entries} < Fl,(C)
is a T, (C)-orbit. Similarly, if the entries of A are strictly decreasing real numbers, then
{Vand(, x) : x € P",'} C FIO

is a T> O-orbit.
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Lemma 4.23 (cf. [GVL13, Theorem 8.3.1]). Let . € C" have distinct entries, let g € Uy,
let L := gDiag(x) g~! € gl,,(C), and let x be the first column of 1(g). Then the following
are equivalent:
(i) L is tridiagonal and L; ;41 # 0 for1 <i <n —1; and

(ii) all entries of x are nonzero, and the projection of 1(g) to Fl,,(C) equals Vand(h, x).
Proof. Our argument follows [GVL13, Theorem 8.3.1], Which proves the implication (i)
= (i1) over the real numbers. Let M denote the matrix (A{ 71xi )1<i,j<n> Whichrepresents
the flag Vand(X, x). Then part (ii) is equivalent to the statement ((g) "' M € B,,(C). On
the other hand, column j Ofl(g)_lM (forl < j <n)is

1(g)"' Diag()’~'x = (8,8,) Diag(h)’ ~! (Bng ' Sne1) = 8, L7 er.
Therefore part (i) is also equivalent to the statement 1(g)"'M € B, (C). O
Corollary 4.24. Let A € R" be strictly decreasing. Then the inverse map of (4.1)
identifies Jfo with a twisted totally positive torus orbit of Vandermonde flags inside
F1>0:

J70 S 9((Vand(r, x) : x € P7g')) S FIZO.

Proof. LetiL denote an arbitrary element of 079, so that L = g Diag(1) g~! for some

g € U;O. Then the inverse map of (4.1) sendsiL to g € FI,TO. By Proposition 4.18, it
suffices to prove that the following two statements are equivalent:

(i) L istridiagonal and L; ;41 #0for1 <i <n —1;and

(ii) ¥(g) = Vand(x, x) for some x € P" .

Note that the first column of ¢(g) has positive entries, by Proposition 3.19(ii) and Propo-
sition 3.8(ii). Therefore the result follows from Lemma 4.23. O

Example 4.25. We illustrate Corollary 4.24 in the case n := 3. Let A := (1,0, —1), and
let x € P2 ). Then Vand(x, x) € FI3" is represented by the matrix

X1 X1 X1
x» 0 O
X3 —X3 X3

We act on the right by B3(C) to turn this matrix into an element of U7 0

2 2
X1 —x1 (x5 +2X3) X2X3
2,422 2,22 2.2 2,2,.2.2 2.2 2.2,.2.2
\/x1+x2+x3 \/(xl+x2+x3)(x1x2+4x1x3+x2x3) x1x2+4x1x3+x2x3
2_ .2
X2 x2 (X7 —x3) —2x1X3 ( )
=:1(g).
2,.,2,..2 2,.,2,.2 2.2 2,2,.2.2 2.2 2,2,.2.2
\/x1+x2+x3 \/(xl+x2+x3)(x1x2+4x1x3+x2x3) Xy Xy +AxTX5+x5 X3
2,.2
X3 x3(2x7+x3) X1X2

2,.,2,.2 2,.2,.2 2.2 2.2,.2.2 2.2 2.2,.2.2
\/x1+x2+x3 \/(xl+x2+x3)(x1x2+4x1x3+x2x3) X{x5HAXT XS +X5 X3

Setting iL := g(iDiag(»))g~' € O, we find that

X%_Xg xlzx%+4x12x§+x%x32 0
dedl T
I = ,/x12x§+4x12x32+x§x§ (x%—x%)(x§—4x|2x§) 2x1xzx%/x12+x%+x§
x12+x%+x32 (x12+x%+x32)(xlzx%+4x12x§+x%x32) xlzx%+4x12x§+x%x§
0 2x1X2X3 x]2+x§+x% X§(X§—Xf)

2.2 2,.2,.2.2 2.2 2.2,.2.2
X{X5HAXTXS+X5 X3 X{X5+HAXT XS +X5 X3
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Note that L indeed lies in Jfo, ie., itis tridiagonal and L1, L23 > 0. ¢

Remark 4.26. Corollary 4.24 demonstrates that the twist map ¢ acts in an elegant way
on Vandermonde flags. We can also describe the action of the maps rev and p on
Vandermonde flags. Namely, let & € R” have distinct entries, and let x € P"~!(C). Then

rev(Vand((A1, ..., An), (x1 1 -+ 1 xp))) = Vand((hy, ..., A1), (X 1 -+ - 2 x1)),
4.5)

and

_ (=it ,
(Vand(A, x)) = Vand(, y), where yj=————"——— forl <i <n.
P g T T i — A
(4.6)

The statement (4.5) follows from Definition 4.20. We can prove (4.6) using a version
of Lemma 4.23 which involves the last column of ¢(g), rather than the first column (we
omit the details).

For example, let A := (1, 0, —1), as in Example 4.25. Then

rev(Vand(), x)) = Vand((—1,0, 1), (x3 : x : x1)) = Vand(X, (x3 : x2 : x1)),
and

— _ (1L .1 .1
p(Vand(x, x)) = Vand(x, y), wherey = (m Ly m)-
Remark 4.27. Corollary 4.24 gives an explicit parametrization of ‘7)\>0 by ]P";O]. This
parametrization was first introduced by Moser [Mos75, Section 3]. Specifically, Moser’s
variables r1, ..., r, (required to be positive and satisfy rl2 +-- 4 r,% = 1) are obtained

by normalizing our x € P’;Bl, ie.,

Xj .
ri=———— forl<j<n.
X4+ x2
Moser’s motivation was to give an explicit description of the tridiagonal symmetric Toda
lattice, as we discuss further in Remark 8.7.

While it is relatively simple to describe how to go from a matrix in jfo to its
parameters rq, ..., r, (for example, they are the normalized first components of the
eigenvectors), the reverse process is nontrivial. The procedure we give above in terms
of the twist map is qualitatively different from Moser’s, while another approach was de-
scribed by Deift, Lund, and Trubowitz [DLT80, Theorem p. 178] (cf. [DNT83, Theorem
2]). These procedures are all ultimately equivalent; the novelty in our approach is our
use of the twist map, and in the connection to total positivity.

For example, let us verify that the calculation of L 7 in Example 4.25 is consistent
with the procedure described in [DNT83, Theorem 2]. The formula therein states that
i anda; = L1 =r]2—r32.

2 2 2

3
2 2
Li,= E ((Aj —aprj)”, wherer; =
j=1 X7+ x5 +x3

Using rl2 + r22 + r32 = 1, we obtain

Li,=(—a)’ri+0—a)’ry+(-1—a)’r;
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= (r22 + 2r32)2r12 + (—rl2 + r32)2r22 + (—2r12 — r22)2r32
= (r12r22 + 4r12r32 + rzzrg)(rl2 + r22 + r32)
= r12r22 + 4r12r32 + r22r32,

which indeed agrees with Example 4.25.

Finally, we introduce the space of all totally positive Vandermonde flags. It will play
an important role in Sect. 7.

Definition 4.28. Given n € N, let V 0 denote the subset of F17 0 of all totally positive
Vandermonde flags:

V;O = {Vand(x, x) : > € R" is strictly decreasing and x € IP”;GI} - FI;O.

Corollary 4.29. We have the following bijection between the space of all Jacobi matri-
ces modulo translation by scalar multiples of I,, and rescaling by R+, and the space of
twisted totally positive Vandermonde flags:

GgC0) N, /~ > 9(V70), g(iDiagr))g™" > g.

Above, two matrices L, M are equivalent under ~ if and only if M = t(L + cI) for
somet > 0andc € R.

Proof. Recall that A and x are uniquely determined by Vand(A, x), modulo translating
A by a scalar multiple of (1, ..., 1) and rescaling it by a nonzero constant. Also, by
Proposition 4.18, (igl; 9 N u, is the disjoint union of Jfo over all strictly decreasing
A € R". Therefore the result follows from Corollary 4.24. |

Recall from Remark 4.22 that the totally positive part of the torus T;* acts on V0.
Surprisingly, T, 0 also acts on vV, 0y:

Lemma 4.30. The space of twisted totally positive Vandermonde flags v (V,; 0 is invari-
ant under the action of the totally positive part of the torus T, 0,

Proof. Consider the action of T,(C) on u, by conjugation. Note that (igl;’ N, is
invariant under T;°. The result then follows from Corollary 4.29. O

Remark 4.31. A further property shared by 1V~ 0 and ®(V>9) is that they are both nat-

urally in bijection with Fl{>l(,)2};n' In particular, the projection map F1~ 0 Fl{>l(,)2};n

restricts to a bijection on both V. 0 and vV, 0). In the case of |2 0 this follows from

Definition 4.20 and Lemma 2.13(i). In the case of ¢ (V,; 0), this is not straightforward to
prove; we will do so in Lemma 7.20.

5. Gradient Flows on Adjoint Orbits

In this section, we study gradient flows on a partial flag variety, viewed as an adjoint
orbit O, of u,. We consider gradient flows for functions of the form « (-, N) for fixed
N € u,, where « is the Killing form of u,,, in three natural Riemannian metrics: the
Kihler, normal, and induced metrics. We point out that when O, is isomorphic to a
Grassmannian, then these three metrics coincide up to dilation, but otherwise they are
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distinct. Our goal will be to determine when such a flow preserves the totally nonnega-
tive part O/\ZO. In the case of the Kéhler metric, we completely classify which gradient
flows preserve positivity. In the case of the normal metric, we show that when O, is
isomorphic to Fl,(C) with n > 3, there are no nontrivial gradient flows which preserve
positivity. In the case of the induced metric, we make some preliminary investigations
which indicate that whether or not there exists a non-trivial gradient flow on O, which
preserves positivity can depend on the spacing between the entries of A.

We refer to [AMRSS, Section 4.1], [Bes87, Chapter 8], and [BMR13, Section 15.2]
for background. For a given flow under consideration, we let L(¢) (for ¢ € R) denote the
flow beginning at L(0) = L, and we let L(¢) denote the derivative of L(¢) with respect
to t. Since O, is compact, all flows we consider are complete, i.e., they are defined for
all r € R [AMRSS, Corollary 4.1.20]. If L(0) = 0, we call Lo an equilibrium.

Definition 5.1. Let 1 € R"” be weakly decreasing. We say that a flow on O, weakly
preserves positivity if

L) e Ofo forall Ly € (’)fo andr > 0,
and strictly preserves positivity if

L(t) € Ofo forall Ly € O,\ZO and t > 0.

(So, every flow which strictly preserves positivity also weakly preserves positivity.) We
make the analogous definitions for Flg.,(C) and U,,.

For example, the constant flow on O, weakly preserves positivity, but it does not
strictly preserve positivity unless A is constant (in which case O, is a point). We empha-
size that in Definition 5.1, we require that positivity is preserved for all initial choices
Ly € Ofo. In general, it is possible that the flow L(¢) remains in Ofo for some choices
of Lo € Ofo, but not for others; see Remark 5.26 for an intriguing instance of this
phenomenon.

Definition 5.2. Let « denote the Killing form on gl,, (C), given by
k(L,M):=2nte(LM) —2tr(L)tr(M) forall L, M € gl,(C).

Then —«k (-, -) defines a [-, -]-invariant pairing (i.e. k (adp (M), N) = —« (M, adp (N)))
which is positive semidefinite on u,,.

Now let & € R" be weakly decreasing, and fix a Riemannian metric on O,.. Given
N € u,, we define the gradient flow on O, with respect to N (in the given metric) as
the flow given by

L(t) = grad(H)(L(t)), where H(M) :=«k(M,N) forall M € O,. (5.1)

We emphasize that we use the steepest ascent sign convention for the gradient flow.

Remark 5.3. We are interested in gradient flows on O, which preserve positivity with
respect to some N € u, (in a given metric). We point out that a necessary condition on
N is that it is purely imaginary, i.e., iN is a real symmetric matrix.
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5.1. Background. We briefly review the definitions of the three metrics we will consider,
following [BMR13, Section 15.2]; also see [Ati82, Section 4].

Definition 5.4. Let 1 € R" be weakly decreasing, and let L € O;.

e For X € u,, define X and X by the (unique) decomposition
X =Xl +X;, where X' €im(ady) and X € ker(ady). 5.2)
Then the normal metric (or standard metric) on O, is given at L € O, by
(L. X1, [L, Y Dnormal := — (X", Y5)

for all tangent vectors [L, X] and [L, Y] at L.
e The induced metric on O, is given at L € O, by

(IL, X1, [L, ¥ Dinduced := —k ([L, X1, [L, Y1) = (—ad] (IL, X1, [L, Y D)normal

for all tangent vectors [L, X]and [L, Y] at L.
elet,/ —ad% denote the positive square root of the positive semidefinite operator

—ad%. Then the Kdhler metric on O, is given at L € O, by

([L, X, [L, Y Dganter = {/ —ad} (IL, X1), [L, Y Dnormal

for all tangent vectors [L, X] and [L, Y] at L.

We remark that the Kihler metric depends only on the corresponding flag variety
under the identification (4.1), not on the specific values of A (aside from their multiplic-
ities). This is in contrast to the normal and induced metrics, which do depend on the
specific values of A.

A notable special case is when O, is isomorphic to a Grassmannian, as in Sect. 4.3.
Then the three metrics coincide up to dilation (cf. [BFR90, Section 4.2]), as we prove
below. Therefore the three metrics on such O, give rise to the same gradient flows, but
their descriptions are not obviously equivalent (see the running example: Example 5.12,
Example 5.22, and Example 5.28). When considering flows which preserve positivity
on such O,, it will be most convenient to work in the Kéhler metric, while in Sect. 6.2
we will work in the normal metric.

Proposition 5.5. Let A € R” with A| = --+ = A > Agsl = -+ = Ap, S0 that O; =
Gry , (C). Then the Kdhler, normal, and induced metrics on Oy, all coincide up to dilation.

Proof. By Definition 5.4, it suffices to show that for any L € O,, the operator —ad%
acts as a positive scalar multiple of the identity on im(ady ). Indeed, we claim that

—[L,[L,[L, M1l = (A — An)?[L, M] forall M e u,,.

We can verify this by writing —iL = (A — X,) P + Anl, for some P € gl,(C) with
P?2=P =P*asin(44). O

We will only need to work with Definition 5.4 in the case of the induced metric; for
the Kéhler and normal metrics, we will instead use known descriptions for their gradient
flows, which we introduce in the respective subsections. For the induced metric, we will
use the following general computation from [BMR13]:
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Lemma 5.6 (Bloch, Morrison, and Ratiu [BMR13, (15.4)]). Fix a weakly decreasing
A € R", a metric on O, and N € wy,. Let L(t) € O;, evolve according to (5.1), i.e., the
gradient flow with respect to N. Suppose that M (t) € u, satisfies

([L(2), X1, [L(2), M (1)) metric = K ([L(7), X1, N)
for all t and tangent vectors [L(t), X] at L(t). Then we can write (5.1) as
L@t) = [L(t), M(1)]. (5.3)

Since (5.3) is in Lax form [Lax68], we can easily translate it into a flow on U,,. We
make some general observations about such flows.

Lemma 5.7. Let A € R” be weakly decreasing, set K := {i € [n — 1] : A; > Ai;+1}, and
let M (1) € u,.

(i) (Lax [Lax68, p. 470]) Consider the flow on U,
g@t) =—M(t)g(1).
Letting L(t) denote g(t)(iDiag(r))g(t)~! € O;, we have the evolution
L) =[L1). M®)].

(ii) Further suppose that M (t) € o,, and that L(t) weakly (respectively, strictly) pre-
serves positivity. Then for all go € U,?O, we have

Ap(g(0) =0 (respectively, > 0) forallk € K, 1 € (), andt > 0.

(If K = [n—1], this means precisely that g (t) weakly (respectively, strictly) preserves
positivity in U,,.) In particular, for allk € K and I € ([Z]),

iFAI(g0) =0 then 4| _ Ar(g(t) = 0. (5.4)

Proof. We can verify part (i) directly. Part (ii) follows from Lemma 4.5, Lemma 2.13,
Proposition 3.8, and continuity of g(¢) € O,. O

Remark 5.8. By multilinearity, we may express the derivated determinant in (5.4) as
follows:

k
%|t=0 Ar(g(t)) = Z A (go with column j replaced by column j of g(0)). (5.5)
=
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5.2. The Kdihler metric. In this subsection, we classify which gradient flows on O, with
respect to N € u,, in the Kihler metric weakly or strictly preserve gositivity. Namely,
ifiN € g[,?o then positivity is weakly preserved, and if iN € gl>" then positivity is
strictly preserved. If O, is not isomorphic to a Grassmannian, then the converses to these
statements hold. By contrast, in the Grassmannian case, there are additional such N for
which positivity is preserved; see Corollary 5.15 and Corollary 5.19.

While the definition of the Kéhler metric on O, is difficult to work with directly, its
gradient flows admit a beautiful explicit solution. This has appeared in the literature in
several places; see the work of Duistermaat, Kolk, and Varadarajan [DKV83, Section 3]
and of Guest and Ohnita [GO93, Appendix], and the references therein.

Proposition 5.9 ([DKV83, Section 3]; [GO93, Appendix]). Let 1 € R" be weakly de-
creasing, set K = {i € [n — 1] : A; > Aj41}, and let N € u,. Let L(t) evolve
according to the gradient flow on O, with respect to N in the Kdhler metric, and let
V(t) € Flk.,(C) be the corresponding partial flag under the inverse map of (4.1). Then

V(t) =exp(tiN)Vy forallt. (5.6)

Letting g(t) € U,, be any representative of V (t), we have L(t) = g(¢)(i Diag(}) )g(t)_l.
Explicitly, we can take go € U, representing V), and then take (cf. Definition 3.2)

g(t) = my(exp(tiN)go) forallt. 6.7

We emphasize that N € u,, and iN is Hermitian. The assumption that A is weakly
decreasing is not important (until we consider the totally nonnegative part); only its
multiplicities are relevant. Also, (5.6) should be regarded only as a flow on Flg.,(C),
not on U,,; in order to obtain a flow on U,,, we must apply the Iwasawa decomposition,
as in (5.7).

Remark 5.10. There is an alternative way to describe the solution L(#) in Proposition 5.9.
Asin (4.4), write

—iL) = (D Ok = ) Pe0)) + n (5.8)

keK

where Py (t) is the orthogonal projection onto the subspace spanned by the eigenvectors of
—iL(t) corresponding to the eigenvalues A1, . . ., Ax. Explicitly,let V(1) = (Vi (t))kek €
Flg.,(C) be as in (5.6), with Vo = ((Vo)k)kek, so that Vi(t) = exp(tiN)(Vp)x for
k € K. Regarding elements of Grg_,(C) as n x k matrices, we have

Pe(t) =Py, = Vi Ve @)* V@) Ve ()*
= exp(tiN) (Vo) (Vo)} expReiN) (Vo)) ™' (Vo) exp(riN).  (5.9)

Note that (5.8), via (5.9), gives an explicit expression for L(¢). It does not require
computing an Iwasawa decomposition; we only need to know (Vp) forall k € K. Also,
by Proposition 5.9, each iPy(¢) evolves according to the gradient flow on O, with
respect to N in the Kahler metric. But since O, = Gry ,(C), by Proposition 5.5, the
Kihler, normal, and induced metrics coincide (because the dilation factors are 1). For
example, if we work instead in the normal metric, we will find (see Proposition 5.21) that

1Pe(t) = [ Pe(2), [i Pe(t), NTI.
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As a consequence of Proposition 5.9, when considering flows which preserve posi-
tivity in the Kéhler metric, we need only work with (5.6):

Corollary 5.11. Let K C [n—1], andlet N € u,. Then for all weakly decreasing A € R"
with{i € [n—1]: X; > Aiy1} = K, the gradient flow on O, with respectto N in the Kcih-
ler metric weakly preserves positivity if and only if the flow (5.6) on Flg ., (C) weakly pre-
serves positivity. If so, then the gradient flow on O, with respect to N in the Kiihler metric
also weakly preserves positivity, for all K' C K and weakly decreasing A’ with {i € [n—
11: X} > A}, } = K'. The same statements hold with “weakly” replaced by “strictly”.

1

Proof. This follows from Proposition 5.9 and (2.7). O

Example 5.12. Let us consider an example in the case n = 2. Set

__.|la b .o |p g
Lo ._1|:b —a] and iN = |:q —p]’

where a, b, p, g € R such that a or b is nonzero. We assume that » > 0. We have

Ly € Oy, where
A i=vVa?+b? and Ay i= —Va?+b2.

Let L(z) € O, evolve according to the gradient flow with respect to N in the Kéhler
metric. We have

Lo = go( Diag(k))g()_l, where gg :=

1 |:\/)»1+a —«/M—aJEU
V2 VA —a VA +a .

By Proposition 5.9, we have the explicit solution

L(t) = g(r)(iDiag(®))g(r)~", where g(t) = my(exp(tiN)go).

However, this involves computing a matrix exponential and an Iwasawa decomposition,
which is already cumbersome when n = 2. Instead, for the purposes of illustration as
well as comparison with the normal and induced metrics, let us calculate L(0).

For the remainder of this example we write ‘=" to mean equality up to O (t>) ast — 0.
Let Vp € Fl»(C) be the flag represented by go, and let V (¢) be defined by (5.6). Then

V(1) = exp(tiN)Vp = (I + tiN) Vi

1 |:\/A1 +a+t(py/A+a+qgyr —a) —J/A —a+t(—pJA —a+qgA +a):|
T V26 WA —a+t@VA ta = pVhi—a) Vat+a+t(—qJ/h —a—pYr+a) |

Applying the Iwasawa decomposition gives

0= 1 [V +a-— t(@)\/xl a4~/ —a-— t(@)«/)\l +a
SO= | Vi mas it v Jhra - () i —a |
and so

Iy Iy

b+ t(“q;f”’)za —a+ r(“‘f*IbP)Zb

_ o [a—r5E2b b4 r(“4)2a
L(t) = g(1)(iDiag(2))g(1)" =1 :
A

Since L(1) = Lo + ¢L(0), we obtain

2(aq —bp), [—b ai| Lo

LO=—+ a b
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Example 5.13. We consider the same setup as in Example 5.12, but take i N to be diag-

onal:
.. |p O
iN = |:O —p:| .

Let us calculate the explicit solution L(f) = g(¢)(i Diag(1))g(t) ! to the gradient flow
in the Kédhler metric. We have

1 p _,tp —
V(t) = exp(tiN)Vy = [ ePr+a —e'P/A a} .

e P/ —a e P /A +a

V21

Applying the Iwasawa decomposition gives

g =

1 e’/ +a —e P /A —a U
€ Uy,
VAP +a)+e2Pi(n —a) e P/ —a ePA+a

and so L(t) equals

A ) P\ +a)—e 2P (M —a) 2b
1 .
eXP(Ly +a) +e 2P (A — a) 2b —e2P (A1 +a) +e 2P (W — a)

We can use the formula above to compute the limits of L(¢) ast — oo.If b =0
(i.e. A1 = Z£a) or p = 0, then L(¢) is constant. Otherwise, we have A1 =a > 0. If
p > 0, we obtain

. M0 . =20
zl—lfgoL(t)_l[O _Mi| and thm L(l‘)—l[ 0 Mi|.

——00

If p < 0, the limits are exchanged. ¢

We recall from Definition 2.6 that g[fo and gl O are the infinitesimal parts of GL,?0
and GL, 9, respectively. The following theorem is an analogue of this statement, where
instead of considering all minors of an n x n matrix, we only consider minors of a fixed
order k. It will be the key to classifying positivity-preserving gradient flows on O,, when
Oy = Gry »(C). We will only apply it when M is a symmetric matrix, but for complete-
ness we state it for general real M. The result and its proof are natural extensions of
[GKL?22b, Section 3.2], which considered the case of a specific matrix M (the cyclic
shift matrix).

Theorem 5.14. Let 1 <k <n — 1, and let M € gl,(R). Then the following are equiv-
alent:
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(i) ifk = 1: we have M; j > O forall i # j in [n];
ifk =n— 1: we have (=1)*/='M; ; > O foralli # j in [nl;
if2 <k <n-—2:we have

Mya, My, Ma3, M3, ..., My—10, My 1, (=D "M, 1, (=) 'My,, >0
and
M; ;=0 foralli,j € [n]suchthati — j # —1,0,1 (mod n);

(ii) all k x k minors of exp(t M) are nonnegative, for all t > 0; and
(iii) exp(tM)V € G, forall V € Griy andt > 0.

Now let D be the directed graph on the vertex set [n], where i — j (fori # j)isan
edge of D if and only if M; ; # 0. Then analogously, the following are equivalent:

(iv) condition (i) holds, and in addition, D is strongly connected (i.e. for any i # j in
[n], there exists a directed path from i to j);
(v) all k x k minors of exp(t M) are positive, for all t > 0; and

(vi) exp(tM)V € Gr,zgfor allV e Gr,i?l andt > 0.

We observe that for 2 < k < n — 2, conditions (i) and (iv) above depend only on
the parity of k. Therefore the other four conditions also only depend on the parity of &,
which is far from obvious. We also remark that the condition that D is strongly connected
arises naturally in the Perron—Frobenius theory of nonnegative matrices and the theory
of Markov chains (see e.g. [Gan59, Chapter XIII]), where it is known as irreducibility.

Proof. (1) = (ii): We adapt an argument of Brindén [Brid21, Proposition 2.3]. Note
that by Proposition 2.2 and the Cauchy—Binet identity (2.2), the sum of two matrices
satisfying (ii) also satisfies (ii). Therefore it suffices to consider the case when M has
a single nonzero entry, say entry (i, j). If i = j, then exp(tM) = Diag(l,...,1,)
e™i 1,...,1, and (ii) holds. Otherwise, we have exp(tM) = I, + tM, and so every
k x k minor of exp(tM) equals either 1 or (—1)/=!'M; ;t, for some I € [k] satisfying
[ <li—jlandk —1 <n—1—1]i — j|. Therefore if (i) holds, then so does (ii).

(i) = (i): Suppose that (ii) holds. Note that for all 7, J € (}}) with I # J, we have
Ag j(exp(tM)) = 0 att = 0. Therefore, by Remark 5.8, we have

%‘t:O Ag jexp(M)) = Z Ay, j (I, with column j replaced by column j of M) > 0.
jeJ

Let us take / := K U {i} and J := K U {j}, where i, j € [n] with i # j, and
K c ([n}(\_{ll,]}). Then we get

(= 1)V K)+HVGLK) g i >0, (5.10)

where inv(i’, K) denotes the number of j* € K with i’ > j’. We can then verify that
these inequalities reduce to those in (i).

(i) = (iii) and (v) = (vi): Let V € Gr,i(r)l. By Lemma 2.13(ii), we can regard V as
an n x k matrix whose k x k minors are nonnegative, where at least one of these minors
is positive. Therefore the implications follow from the Cauchy-Binet identity (2.2) and
Theorem 2.14.
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(iii) = (ii) and (vi) = (v): For J € (%)), let V; be the n x k matrix which has an
identity matrix in rows J and zeros elsewhere. We regard V; as the element of Grfg
with Aj(Vy) =87 5 forall I € ([Z]). Then for all I € ([Z]) and ¢ € R, we have

A y(exp(tM)) = Aj(exp(tM)Vy)

(however, we caution that the Pliicker coordinates on the right-hand side are only well-
defined modulo a global scalar).

Now suppose that (iii) holds, and let J € ('Zl). Then for every ¢ > 0, either

Apy(expM)) = 0forall I € (W) or Az (exp(tM)) <O0forall I e ().

In order to prove (ii), it suffices to rule out the latter case. Note that the columns J of

exp(t M) are linearly independent, so Ay j(exp(tM)) # 0 for some [ € ([Z]). Hence in
either case, we have

> Ars(exp(tM)) #0 forallt > 0.
re('y

Since the left-hand side is positive when ¢ = 0, by continuity it is positive for all £ > 0.
This proves (ii). We can similarly prove (vi) = (v).

(iv) = (v): We adapt the proof of [GKL22b, Lemma 3.5]. Suppose that (iv) holds.
Form the directed graph D on the vertex set ([Z]), where I — J (for I # J)is an edge
of D if and only if there exists an edge i — j of D suchthat J = (I \ {i}) U {j}. We
claim that D is strongly connected. Indeed, it suffices to show that given I € ([Z]), iel,
and j € [n] \ I, there exists a directed path from / to (I \ {i}) U {j}. We prove this by
induction on the length [ > 1 of the shortest directed path from i to j in D (which exists
since D is strongly connected), with no base case. Given [ > 1, suppose that the result
holds for strictly smaller values of /. Take a directed pathi = jo — --- — j; = j from
itoj,andlet0 <m <[ —1be maximal such that jo, ..., j,, € I. Then j,4+1 ¢ I, so
we have the directed path in D

I = (I\ {jmD U {mer} = U\ {jnaD U ljmer} = - = T\ iD U {ms1}-

If m+1 = [, we are done. Otherwise, by the induction hypothesis, there exists a directed
path from (7 \ {i}) U {jm+1} to (I \ {i}) U {j}. Therefore we get a directed path from 7
to (1 \ {i}) U {j}, completing the induction.

Since (iv) = (i) = (ii), we know that all k x k minors of exp(s M) are nonnegative
for all + > 0; it remains to show that no such minor is zero. Suppose otherwise that

there exist s > O and I, Jy € ([ZJ) such that A;, s, exp(sM) = 0. Since the rows I of

exp(sM) are linearly independent, there exists J; € ([ZJ) with Ay, (exp(sM)) # 0.
Since D is strongly connected, there is a directed path from J; to Jp; it passes through
an edge J' — J with A; y/(exp(sM)) # 0 and Aj j(exp(sM)) = 0. We may write
J =\ {i'h U{j'}, where M;: j # 0.

Recall that all k x k minors of exp((s+¢) M) are nonnegative for t > —s. In particular,
Ay j(exp((s +t)M)) equals 0 at t = 0, and it is nonnegative near t = 0. Therefore

2| _o Ar.s(exp((s +HM)) = 0.
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By Remark 5.8 and multilinearity of the determinant, the left-hand side above equals

Z Ay, j(exp(sM) with column j replaced by column j of exp(sM)M)
jeJ
— Z Z(—1)inv(i’J\{j})+inv(j’J\{j})Mi,jAl,(]\{j})u{i}(eXP(SM))~
jeJ i¢d
By assumption, each summand above is nonnegative (cf. (5.10)), and the summand with
j = j’ and i =i’ is nonzero. Therefore the sum is nonzero, a contradiction.

(v) = (iv): Suppose that (v) holds. Since (v) = (ii) = (i), it remains to show that D is
strongly connected. Suppose otherwise, so that there exist distinct ig, jo € [n] such that
there is no directed path from ig to jo. Let Ip € [n] denote the set of i € [n] (including
ip) such that there exists a directed path from i to i. Then there are no edges from Iy
to [n] \ 1o, and jo ¢ Iy. From the expression exp(t M) = lim,,—, oo (I, + %M)’”, we see
that exp(t M), (n)\ 1, = 0. Taking any 1, J € (")) such that |7 N Io| and |J N ((n]\ Io)|
are maximized, we have A j(exp(tM)) = 0, a contradiction. O

Corollary 5.15. Let L € R with A = -+ = A > Mgyl = -+ + = Ay, 50 that O; =
Gry ., (C), and let N € u,. Then the gradient flow on O with respect to N in the Kdhler
metric (equivalently, by Proposition 5.5, in the normal or induced metrics) weakly pre-
serves positivity if and only if the following condition holds, depending on the value of k:

(i) k =1:
iN; j >0 foralli # jin|[n];
(ii)k=n—1:
(=)™ NN; ;>0 foralli # jin[nl;
(iii) 2 <k <n —2:
iN12, iN23, ooy iNg— 1, (=DF TN, >0,
and
Nij=0 foralli,j € [n]suchthati —j # —1,0,1 (mod n).

Moreover, let T be the undirected graph on the vertex set [n], where {i, j} is an edge of
I ifand only if N; j # 0. Then the gradient flow strictly preserves positivity if and only
if, additionally, T is connected. (For 2 < k < n — 2, this means that at least n — 1 of
the n inequalities in the first line of (iii) hold strictly.)

For example, for the choice of N in Example 5.12, we are in both the cases (i) and
(ii) above. The gradient flow with respect to N in the Kéihler metric weakly preserves
positivity if and only if g > 0, and it strictly preserves positivity if and only if ¢ > 0.

Proof. This follows from Corollary 5.11 and Theorem 5.14 (with M = iN). O

We now consider the case when O, is not isomorphic to a Grassmannian, i.e., A has
at least three distinct entries. Our analysis will be based on Theorem 5.14 along with the
following two technical results.
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Lemma 5.16. Let K C [n — 1] such that |K| > 2, and suppose that M € gl,(R) such
that

exp(tM)V e Fl%?n forall V e Fl%?n andt > 0.

Then M, 1 = My, =0.

Proof. By symmetry (specifically, using the map rev from Definition 3.11), it suffices
to show that M, | = 0. Take distinct elements k < [ of K, and let w € &,, be the cycle
(1 2 --- k), sothat

0 (=DK1 o
w=|hL-1 O 0 | euz’.
0 0 ) "

LetV e Fl?,)n be represented by 1 € UZC. Recall from Remark 2.22 that T;? acts on
FIIZ((')n' In particular,

W:= lim Diag(l,...,1,:~ Y expt M)V

t—0, >0

lies in FIZ?, . if the limit exists.

To calculate the limit, we replace V with 1 and work in the space of matrices, ignor-
ing the last column. Since exp(t M) = I, +t M + O(t%) ast — 0, and row n of Win],[n—1]
is zero, we obtain

lim Diag(1,..., 1,71 exp(t M)bp. (-1

t—0,t>0
= Wn).—17 + Diag(o, ..., 0, 1) M), 1n—13
0 (=D 0
| Tk 0 0
—1 0 0 In—k—1

x (=DM, %

(The entries * will turn out to be unimportant.) This shows that the limit defining W

exists. Since W € Fl?,)n, it extends to a complete flag (Wy, ..., W,_1) € Fl,?o. Observe
that e; + M, 1e, € Wi, so by Lemma 2.19, we have e; € Wi, € W,. Because W is
spanned by the first / columns of the matrix above, we see that M, 1 = 0. O

Lemma 5.17. Let K := {1, n — 1}, and suppose that M € gl,(R) such that
exp(tM)V € FIZ),  forall V e FIZ andt > 0.

Then M; ; = 0 for all i, j € [n] such that |i — j| > 2.

Proof. We use a similar argument as in the proof of Lemma 5.16. By symmetry, it
suffices to show that M; ; = O fori, j € [n] withi — j > 2. Let

wi=1 2 - N7 i+1 - n)eS,,
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so that
0-I;—y O 0 0
1 0 0 0 0
w=|[0 0 [L_;—1 O 0 € U%O.
0 0 0 0 (=D
0 O 0 I,-; 0

LetV e Fl?.)n be represented by 1 € UZ. For t > 0, let i() € T be obtained from
I,, by replacing the (i, i)-entry with ~'. Assuming the limit exists, define

= i M I
w l_)(l){rll>0h(t)exp(t )V e Kon

To calculate the limit, we replace V with 1 and work in the space of matrices, ignor-
ing the last column. Since exp(tM) = I, +t M + O@*) ast — 0,androw i of Win],[n—1]
is zero, we obtain

0 —Ij.; 0 0

1 0 0 0

lim h(l)eXp(tM)lf)[n],[n_l]: 0 0 I,'_j_l 0
t—0,1>0 Mij % * %

0 0 0 I

(The entries * will turn out to be unimportant.) This shows that the limit defining W
exists. Since W € Fl%?n, it extends to a complete flag (W1, ..., W,_) € Fl,?o.

Let CU-11 denote the span of ¢ for j < k < i, which has dimension at least 3. For
1 < k < n—1,letdy denote the dimension of W;,NCL-i1 so that W, NCL/i1 € Grfk(?i_jﬂ.
Observe that the sequence dy, ..., d,—1 increases by either O or 1 at each step. Since
dy <2 <d,_1,wehave di =2 for some 2 < k < n — 1. Applying Lemma 2.19 to
wi N CY-1 and Wy, N CU-1, we getthate; € Wi N Clil € W,_;. Because W,_; is
spanned by the columns of the matrix above, we see that M; ; = 0. O

We have the following analogue of Theorem 5.14 for an arbitrary partial flag variety
which is not a Grassmannian:

Theorem 5.18. Let K C [n — 1] such that |K| > 2, and let M € gl,,(R).
(i) We have M € g[,?o if and only if

exp(tM)V € FIZ),  forall V e FIZ) andt > 0. (5.11)
(ii) We have M € g[jo if and only if
exp(tM)V € FIZ", forall V e FI) andt > 0. (5.12)

Proof. The forward directions of parts (i) and (ii) follow from Lemma 2.21. To prove
the reverse directions, suppose that (5.11) holds. Then for every k € K, (5.11) also holds
with K replaced by {k}, so the conditions of Theorem 5.14(i) hold. These conditions,
along with Lemma 5.16 and Lemma 5.17, imply that M € g[fo. This proves the reverse
direction of part (i). Now suppose that in addition, (5.12) holds. Then taking any k € K,
we have that (5.12) holds with K replaced by {k}, so the condition of Theorem 5.14(iv)
holds. Since M € gI=, this implies that M € gI;’°. This proves the reverse direction of
part (ii). O
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Corollary 5.19. Let & € R" be weakly decreasing with at least three distinct entries (so
that O, is not isomorphic to a Grassmannian), and let N € u,,. Then the gradient flow
on O, with respect to N in the Kihler metric weakly preserves positivity if and only if
iN € gIZ° and it strictly preserves positivity if and only if iN € gI;O.

n ’

Proof. This follows from Corollary 5.11 and Theorem 5.18 (with M = iN). i

Remark 5.20. Recall the notion Pliicker positivity introduced in Definition 2.11. In anal-
ogy with Definition 5.1, for any weakly decreasing A € R", we can consider flows on O;,
which weakly or strictly preserve Pliicker positivity. Note that a flow which preserves
Pliicker positivity does not necessarily preserve positivity, and vice-versa. However, we
expect the two notions to be closely related. Here we discuss the case of the gradient
flow with respect to N € u, in the Kidhler metric, and consider weak preservation (we
have an entirely analogous analysis for strict preservation).

LetK :={i € [n—1]: A; > Aj4+1}. For simplicity, we assume that K # {1, n—1}. By
Remark 2.18 and Proposition 5.9 (cf. Remark 5.10), the gradient flow on O, with respect
to N weakly preserves Pliicker positivity if and only if the gradient flow on O, with re-
spect to N weakly preserves Pliicker positivity, for all k € K; and this holds if and only if
eachk € K satisfies the condition of Corollary 5.15. Comparing this with Corollary 5.19,
we see that if the gradient flow on O, weakly preserves positivity, then it weakly pre-
serves Pliicker positivity. The converse holds for all N if and only if K is a singleton or
contains both an even and an odd number. Indeed, suppose that | K| > 2 and that all ele-
ments of K have the same parity. Then in order for positivity to be weakly preserved with
respect to N, we must have iN, 1 = 1N, = 0. However, Pliicker positivity is preserved
as long as iV, 1 = 1Ny, has fixed sign (depending on the parity of the elements of K).

5.3. The normal metric. In this subsection, we show that when O, is isomorphic to the
complete flag variety Fl,(C) with n > 3, the only gradient flow in the normal metric
which weakly preserves positivity is the constant flow (Theorem 5.25). This is in stark
contrast to the case that O, is isomorphic to the Grassmannian Gry ,(C), whence the
normal metric coincides with the Kéhler metric up to dilation (see Proposition 5.5), and
the gradient flows which preserve positivity are classified by Corollary 5.15. We do not
consider here the remaining cases (i.e. when (0, is isomorphic to neither Fl,(C) nor
Gry , (C)); we leave this to future work.

We use an explicit description of the gradient flow as a double-bracket flow, which
was first observed by Brockett [Bro91]. It can be verified from Lemma 5.6 (we omit the
derivation).

Proposition 5.21 (Brockett [Bro91]; Bloch, Brockett, and Ratiu [BBR92, Proposition
1.4]). Let .. € R" and let N € u,,. Then the gradient flow on O, with respect to N in the
normal metric is given by

L(t) = [L@), [L(), N1I. (5.13)
Example 5.22. Let us consider the same setup as in Example 5.12, but let L(¢) evolve in

the normal metric rather than the Kihler metric. By Proposition 5.5, these two evolutions
must agree up to a dilation in #:

Lnormal () = LKéihler(()‘«l — A2)1).
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Indeed, using the result of Example 5.12 and Proposition 5.21, we can verify that this
holds for L(0):

Liormal(0) = [Lo, [Lo, NI = 4(aq — bp)i |:_ab Zi| = (M — 22) Lgiipier(0). O

Lemma 5.23. Let A € R" be strictly decreasing, and suppose that the gradient flow
(5.13) on O, with respect to N € u, in the normal metric weakly preserves positivity.
TheniN e glZ°.

Proof. We assume that i N is real. We must show that
iN;j=0foralli > j+2 and iNj; ; > Oforall j.

To this end, set go := I, € U,?O, and let g(r) € U, and L(t) € O, evolve as in
Lemma 5.7(i), with M (¢) := [L(¢), N]. By (5.4), we have

%L:O Ar(g(t)) =0 forall I C [n]suchthat #[1],...,[n].
Note that
£(0) = —[Lo, N]go = —[iDiag(2), NI, so £(0);; =i(h; —A))N; jforl <i,j <n.
Using (5.5), fori > j + 1 we calculate
%Lzo Arj-nuy (@) =i — A)N;j, so iN;; = 0.
Similarly, for i > j + 2 we calculate
%’,ZO Apj—1ugj+1,i (@) = —i(A; — ANy j, so iN;; <0. O

Remark 5.24. We observe that Lemma 5.23 and its proof extend to the case that X is
weakly decreasing. Rather than obtaining that iV lies in g[,?o, the conclusion is that iN
is a block Jacobi matrix, where the block sizes are determined by the multiplicities of A.

Theorem 5.25. Let . € R" be strictly decreasing, and let N € w,. Then the gradient
flow (5.13) on O, with respect to N in the normal metric does not strictly preserves
positivity, and it weakly preserves positivity if and only if N is a scalar multiple of I,
(i.e. the flow is constant).

Proof. Suppose that the gradient flow (5.13) with respect to N weakly preserves positiv-
ity. We must show that N is a scalar multiple of /. By Lemma 5.23, we have iN € gI,?O.
It suffices to show that for all 1 < j < n — 2, the principal submatrix of N using rows
and columns {j, j + 1, j + 2} is a scalar multiple of I5.

To this end, we first consider the case n = 3. Let gg € U3ZO, and let g(#) € Uz and
L(t) € O, evolve as in Lemma 5.7(i), with M (¢) := [L(¢), N]. For various choices of
go and [ such that A;(go) = 0, we apply (5.4) and obtain %|z=0 Ar(g(t)) =0.

We have

0
_ L Ag —
V2 I =3 = -

2

A3,
80 iN21 >0,

Il
S O =
NENE
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and
0o —--L L
*{5 ﬁl A2 — A3,
80 = 0—\—@—\/—5 I ={1} = - 1N2,3ZO~
1 0 0

Since iN2,1 > 0and iN2 3 > 0, we get N2 1 = N2 3 = 0. Therefore N is diagonal.
Now we have

1 1 1 A
A 2 2
\? 1 1 A2 — A3,
go=|p 2 —2|.1=03 = 1(N1y,1 — N2p) =0,
1 1
0 5 A
0 —-L LA
1 _\? l/il Ay — A3,
8=\, 3 2. I={1}) = i(N33— Nzp2) >0,
1 1 1
5 2 1
11 1
2 2
1 1 ﬁl Al — A2,
=2 2 -~ 4# |- I1=112}) = 1(N22— Ni,1) =20,
11
2a 0
and
L _ 1L
\@ 1ﬁ 1 Al — A2
g=|2 2 ~—5| 1={23 = 1(N22— N33) > 0.
1 1
2 2 2

(We note that these four choices are related by applying the maps rev and p; cf.
Lemma 3.29.) Therefore Ni,1 = N2 2 = N3 3,50 N is a scalar multiple of I3, as desired.

Now we consider the case of general n > 3. Let N denote the principal submatrix of
N using rows and columns {j, j+1, j+2}, where | < j < n—2. We prove by induction

on j (with no base case) that N is a scalar multiple of I3. Given gg € U3ZO, define

Iji—1 0 0
go:=| 0 g 0 e Uz,
0 0 ILi—j

Let g(t) € U, and L(t) € O, evolve as in Lemma 5.7(i), with M(¢) := [L(t) N].
Let g(¢) € Uz and L) € O(A Jjs1,hj42) €volve similarly, with M) :=[L(t), N]. By
induction, we may assume that

clj_1 00 000
N = 0 N x| for some scalar ¢, so that g(0) = | 0 g(0) =
0 * 0 x =

Now for any I C [3], define I € [j+2]by I :=[j—11U{j —1+i:i e I}. Then
using (5.5), we find

Ar(g0) = Aj(30) and &| _ Ap(g(1) = &| _ AFE®).
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Therefore by (5.4), choosing go and [ as in the case n = 3 above, we find that N is a
scalar multiple of /3. This completes the induction. O

Remark 5.26. Let A € R" be strictly decreasing, where n > 3. We note that while the
constant flow on O, is the only gradient flow in the normal metric which weakly preserves
positivity, there do exist nonconstant gradient flows which preserve the tridiagonal subset
JAZO of Ofo. Indeed, the gradient flow with respectto N := —iDiag(n—1,...,1,0) €
U, preserves jfo in both time directions, by Theorem 8.3 and Theorem 8.6(i). This
is the Toda lattice flow, which we study in detail in Sect. 8. It would be interesting to
know if there are other natural subsets of (’)fo which are preserved by some nonconstant
gradient flow.

5.4. The induced metric. In this subsection, we consider the gradient flow on O, with
respect to N in the induced metric, when O, is isomorphic to the complete flag variety
Fl1,,(C). We will show (see Proposition 5.33) that a necessary condition for positivity to
be preserved is that iN € gl>". We will also give an example (see Example 5.35 and
Proposition 5.36) showing that the condition iN € g[,?o is not sufficient. While we are
not able to determine necessary and sufficient conditions in general, our investigations
indicate that such conditions likely depend in an intricate way on both N and X. This is
in contrast to gradient flows on O, in the other two metrics, where the conditions do not
depend on A. In the case of the Kihler metric, this is because by definition, the metric
does not depend on the choice of A. In the case of the normal metric, this is not obvious
beforehand, but it follows from Theorem 5.25.

We begin by giving explicit descriptions for gradient flows in the induced metric. We
begin by considering any weakly decreasing A, and will later specialize to the case that
A is strictly decreasing. We recall the decomposition (5.2).

Proposition 5.27. Let . € R" be weakly decreasing, and let N € u,,. Then the gradient
Sflow on O, with respect to N in the induced metric is given by

L(t) = —NLO, (5.14)

Proof. Take M(t) € u, such that [L(r), M(t)] = —NL®_ Using Definition 5.4 and
Lemma 5.6, we must show that

K([L(t), X1, N*O) =k ([L(t), X1, N)
for all # and tangent vectors [L(¢), X] at L(t). Indeed, since « is [-, -]-invariant, we have
K([L(t), X1, N) = —k (X, [L(1), N]) = —k (X, [L(t), N*OT) = « (L (1), X], N*D). O

Example 5.28. Let us consider the same setup as in Example 5.12 and Example 5.22,
but let L(z) evolve in the induced metric. By Proposition 5.5, we must have

Linduced (1) = LKéihler(()"l - )\2)_11‘) = Lnormal (A1 — )‘2)_2”-
Let us verify that this holds for L(0). We have the decomposition

_ NL _aq—Dbp [—ba| ap+bq.[a b
N =N 0+NL0_——a2+b21|:a b]_—a2+b21 b —al
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By Proposition 5.27, we obtain

. B Lo a4 —bp.[—-ba] _ 1 . 1 .
Linduced(o) =—-N™" = d2 +b2 1 |: a bi| = mLKahler(O) = anormal(0)~ <>

We now use Lemma 5.7 to translate (5.14) into a flow on Flg.,(C), by defining for
all L, N € u, an element M € u, such that [L, M] = —NL. While such an M is only
uniquely defined modulo ker(ad; ), we fix a specific choice of M, which we denote by
ad; ' (—N).

-1

Definition 5.29. Let A € R" be weakly decreasing. Define the linear operator ad; Diag()

on u, by

d—l " . 0, if A = )»j;
(a 1D|ag()»)( ))l,,/ — ﬁMl‘,j’ OtherWise,

forl <i,j <n.

Then given L € O;, write L = g(i Diag(1))g~! for some g € U,,, and define the linear
operator adz1 on u, by

ad; ' (M) := gad; 5,0, (€' Me)g ™. (5.15)
We can verify that the definition of adz1 depends only on L, not on the choice of g. In

particular, adzl(M ) is a smooth function of L € O; and M € u,,.
Lemma 5.30. Let A € R" be weakly decreasing, and let L € O,. Then
[L,ad; ' (M)) = M"Y forall M € u,.
Proof. First we consider the case L = iDiag(A). The desired equality follows directly
using

0, if A =Aj;

(MlDlag()\.))l_,j — .
M; j, otherwise,

forl <i,j <n.

Now we consider the case of general L. Write L = g(i Diag(x))g~" for some
g € U,. Note that ML = g(g~'Mg)'P8W ¢—1 Therefore, taking the desired equality
[L, adz1 (M)] = M* and conjugating it by g~!, we obtain

[iDiag(%). ad;p 'Mg)] = (5" Mg)'D29%),

iDiag(n) (&
which we have verified above. O

Lemma 5.31. Let A € R" be weakly decreasing, and let N € u,. Let g(t) € U, evolve
according to

g() = adz(lt)(N)g(t), where L(t) = g(1)(iDiag(x))g (1) ™", (5.16)
beginning at go € U,,. Then
L) = =[L(@), ad(, (N1,

and L(t) is the gradient flow (5.14) on O, with respect to N in the induced metric,
beginning at Ly = go(i Diag()»))ga1 € O,.
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Proof. This follows from Lemma 5.7(i), using Proposition 5.27 and Lemma 5.30. |

Example 5.32. Let us consider the same setup as in Example 5.28, i.e.,

_i|a b —_|Pa
LO._1[b_ai| and N = 1[q —p]'

As in Example 5.12, we have Lo € Oy, where A = va? + b? = —A,. Also,

1 |:\/k1+a _\/A,]_aJ-eU
V2 WA —a Jar+a 2

Lo = go(iDiag(n))gy ', where go :=
By (5.15), we have

—1 -1 -1 —1 ag—bp [0—-1] _y aq—bp [0—1
ALy (N) = goad;piagy) (80 Ne0)go ™ = 80 507725 [1 O]go T 2@+ (1 0]

Therefore by Lemma 5.31, we have

. _ aqg—bp. [—b
Linaueea(©) = ~[Lo. ad (V)] = =T [ ) Z} ,
in agreement with Example 5.28. ¢

In the remainder of this subsection, we focus on the case that A is strictly decreasing,
i.e., O, = Fl,,(C). The following result and its proof are analogous to Lemma 5.23, with
the normal metric replaced by the induced metric; Remark 5.24 also applies.

Proposition 5.33. Let ). € R” be strictly decreasing, and suppose that the gradient flow
(5.14) on Oy, with respect to N € uy, in the induced metric weakly preserves positivity.
TheniN e glZ°.

Proof. We assume that iN is real. We must show that
iN; j=0foralli > j+2 and 1N ; > Oforall j.

To this end, set gg := I, € U,?O, and let g(r) € U, evolve as in (5.16), with L(z) =
g(1)(iDiag(L))g()~! € O,. By (5.4), we have

L|_o Ar(g®) =0 forall I C[n]suchthat ! #[1],..., [n].
Note that
(0) = ad; ' (N)go = ad k. (N O =1 fHi=;
g(0)=a LO( )80 = a iDiag(k)( ), so g( )z,] = )L.I_)L.Ni,jv otherwise.
J i
Using (5.5), fori > j + 1 we calculate
iHimo Au—TUn (8(D) = 52 Nij, so 1N 2 0.

Similarly, for i > j + 2 we calculate

5—,|,:O Arj—nugj+1,iy (@) = ﬁNi,j, so iN;; <0. O
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We now further consider the flow (5.16). Using (5.15), we can rewrite (5.16) as
£ = g ady ) (€)' Ng(). (5.17)

When A is strictly decreasing, we wish to view (5.17) as a flow on F1,,(C), and it will
be more convenient to have g(¢) acted upon on the left, rather than the right. To achieve
this, we apply the twist map from Sect. 3.3. Since the twist map preserves total positivity
and total nonnegativity (see Theorem 3.26), we may work with the twisted flow when
considering which flows (5.16) preserve positivity. This in turn is equivalent to working
with (5.14), by Lemma 5.7(ii). We summarize these observations in the following result:

Lemma 5.34. Let A € R" be strictly decreasing, and let N € u,. Let g(t) € U, evolve
according to (5.16), and set h(t) := 1(t) = 8ng(t)’18n € U,,. Then h(t) evolves ac-
cording to

h(t) = —ad ]

iDiag(1) (h(t)8, N8, h (1)~ h(2). (5.18)

Furthermore, the gradient flow on O, with respect to N in the induced metric weakly
(respectively, strictly) preserves positivity if and only if the flow (5.18) on U, weakly
(respectively, strictly) preserves positivity.

Proof. This follows from the preceding discussion, where we obtain (5.18) from (5.17).
O

We emphasize that since we are employing the twist map, Lemma 5.34 only applies
when 1 is strictly decreasing. We also observe that the technique of applying the twist
map can be employed to flows much more generally, and we will do so again for the
symmetric Toda flow in Sect. 8.2.

We believe it may be possible to use (5.18) to classify which gradient flows on O;,
(when A is strictly decreasing) in the induced metric preserve positivity. As a first step
in this direction, we investigate the case n = 3. We will find that, curiously, whether or
not positivity is preserved appears to depend on the choice of A (though we are unable
to prove this); see (5.23) and Proposition 5.36.

Example 5.35. Let n := 3, let A € R3 be strictly decreasing, and let N € u3. We wish
to determine when the gradient flow on O, with respect to N in the induced metric
weakly preserves positivity. By Proposition 5.33, it suffices to consider the case when

iN € 9[320. Also, after translating N by a scalar multiple of I3 (which does not change
the gradient flow), we may assume that N » = 0. That is,

pu0
N=—-1|uOv for some p,g € Rand u, v > 0. (5.19)
Ovg

For convenience, we also set
c:=A1—X>0 and d:=Xx —A3>0.

Let g(¢) evolve according to (5.18), beginning at an arbitrary go € U;O. In particular,
we have

1 P 0 1
g(O) = _adi_Diag(A) <g01 u 0 v g()_ >g0
0 v—gq
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We will determine when the inequalities in (5.4) hold:

4| Ar(g() =0 forall I C[3]such that Aj(go) = 0. (5.20)

We can express the left-hand side above as follows:

Lo Ay (@) = §0)i1 and 4| _o Appgi(g(1)) = (=1 71g(0); 3

for all i € [3], where the second equality follows from (2.3). We emphasize that our
approach based on (5.20) gives a necessary condition for positivity to be preserved,
but not necessarily a sufficient condition, because (5.4) only considers g(¢) to first
order in 7.

We consider several cases, depending on which cell Cy, ,, contains g in the cell de-
composition (2.8) of Fl?o. Here, v and w are permutations in &3 such that v < w (cf.
Fig. 1). We observe that by symmetry, some cases are redundant. Namely, recall the invo-
lutions rev and p defined on U,, from Sect. 3.2, which act on the cell decomposition (2.8)
according to Lemma 3.29. Therefore we only need to consider one cell among the orbit

Cv,wa CU)()UJ,UJ()Ua wao,vwo, Cwovwo,wowwo»

where wy = 321. On the other hand, rev and p are compatible with (5.18): the latter is
invariant under the transformations

h <> rev(h) = wpd3hds, N <> —383N383, (A1, A2, A3) <> (—A3, —A2, —A1);
and
h < p(h) = 83hé3wg, N <> Wed3Nwod3.
In terms of the data (c, d, p, g, u, v), these transformations correspond to, respectively,

c<d, p<o—p, q< —q and p<gq, u< . (5.21)

Also observe that when (v, w) = (123, 321), wehave C, ,, = F13>0, sothat Aj(go) #
0 for all I C [3]. Therefore (5.20) is vacuously satisfied in this case, and so we do not
need to consider it below. We note that the discussion above for n = 3 can be easily
generalized to any n.

We now consider the six possible cases. Below, we let « and B denote arbitrary
numbers in the interval (0, 5).

Case I: (v, w) equals (123, 123) or (321, 321). We assume that (v, w) = (123, 123).
Then

100 0-2 0
g=1,010 and gO)=|2 0 —3
001 0o Y o0
d
We must check (5.20) when I = {2}, {3}, {1, 3}, {2, 3}:
u v
- >0, 0>0, - >0, 0>0.
c d
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These inequalities are always satisfied.

Case 2: (v, w) equals (132, 132), (312, 312), (231, 231), or (213, 213). We assume
that (v, w) = (132, 132). Then

100 0 —ﬁ 0
go=100-1 and g0)=1| 0 5 0
01 0 =7 0 5
We must check (5.20) when I = {2}, {3}, {1, 2}, {2, 3}:
u v
0=>0, >0, - >0, 0=>0.
c+d d

These inequalities are always satisfied.

Case 3: (v, w) equals (123, 132), (312, 321), (231, 321), or (123, 213). We assume
that (v, w) = (123, 132). Then

du sin(2a)
10 0 * o Serd)
go = |0 cos() — sin() and ¢(0) = ucocs(a) X N ’
0 sin(a) cos(w) u sin(a)
c+d ¥ *

where the entries * are unimportant. We must check (5.20) when I = {2}, {3}, {2, 3}:

u cos(a) - u sin(a) - du sin(2a) -
2c¢(c+d) —

3

c c+d
These inequalities are always satisfied.

Case4: (v, w) equals (213, 231) or (132, 312). We assume that (v, w) = (213, 231).
Then

0 —cos(a) sin(a) %S(“) * *
go=|1 0 0 and £(0) = % x _(c+d)g;}n(2a) ’
0 sin(a) cos(a) usis(a) " %

where the entries * are unimportant. We must check (5.20) when I = {1}, {3}, {1, 3}:

u cos() > 0. u sin() >0, (c + d)usin(2) -0
c - d - 2cd -

These inequalities are always satisfied.

Case 5: (v, w) equals (132, 231) or (213, 312). We assume that (v, w) = (132, 231).
Then

_cos(a) 0 sin(x)
go = | sin(a) 0 —cos(a) and
0 1 0
B * * *
§0) = * * *
cu(1—cos(2a))—cv sin(Qa)+2du * cv(l+cos(Qa))—cu sin(Qa)+2dv
L 2(c+d)d 2(c+d)d
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where the entries * are unimportant. We must check (5.20) when I = {3}, {1, 2}:

cu(l — cosRa)) — cv sin(R) + 2du -0 cv(l +cosRa)) — cusin(e) + 2dv -0
2(c+d)d ’ 2(c+d)d -

The left-hand side of the first inequality above is minimized (as a function of o) when
tan(2) = 7, and the left-hand side of the second inequality is minimized when
tan(2c) = — 7. Therefore these inequalities are equivalent to

clu —vVu?+v)+2du >0, c(v—+vu2+v2)+2dv>0. (5.22)

Symmetrizing according to (5.21), we conclude that (5.20) holds in this case if and only if

u v c d
—0=0 i , > , . (5.23
e o mm(\/u2+v2 x/u2+v2)_max<c+2d 20+d> 429

Case 6. (v, w) equals (123, 231), (213, 321), (132, 321), or (123, 312). We assume
that (v, w) = (123, 231). Then

cos(a) —sin(a) cos(B) sin(w) sin(B)
go = | sin(x) cos(a)cos(B) —cos(a)sin(B)

0 sin(B) cos(B)
We must check (5.20) when I = {3}:

cq sin(2a) sin(2B) + 2cu(1 — cos(2e)) sin(B) + 2cv sin(2w) cos(2B) + 4du sin(B) =0

8031 = dc+d)d

Multiplying by zs(fn?%))d , we obtain the equivalent inequality

cos(2P)

sin(B)

cq sin(2a) cos(B) + cu(1 — cos(2e)) + cv sin(Rw) +2du > 0. (5.24)

Note that if ¢ > 0, then the left-hand side above is a weakly decreasing function of g,
whence it is minimized as 8 — 7. The inequality then becomes

cu(l — cos(a)) — cvsin(Ra) + 2du > 0,

which we considered in Case 5. In particular, if p = ¢ = 0, then after symmetrizing
according to (5.21), we find that (5.20) holds if and only if (5.23) holds. In the general
case when p or ¢ is nonzero, (5.24) (and its images under (5.21)) will yield stronger
conditions than (5.23).

In conclusion, (5.20) is equivalent to the inequality (5.24) along with its images under
(5.21). These inequalities imply (5.23), and they are equivalent to (5.23) in the case that
p=4q9=0.

In particular, when A is fixed (i.e. c, d are fixed), there exists a nonzero N (i.e. there
exist p, g, u, v not all zero) satisfying (5.20) if and only if

d
nmx(g,—)5;2+2¢§. (5.25)
C

O
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To see this, note that if (5.25) holds, then we may take (p, ¢, u, v) := (0,0, 1, 1). Con-
versely, suppose that (5.25) does not hold; we must show that p = g = u = v = 0.
First we consider the inequality in (5.23). If # or v is nonzero, then the left-hand side
is at most \%, while by assumption, the right-hand side is greater than Lz Therefore

u = v = 0. Then the inequality (5.24) becomes cq sin(2«) cos(8) > 0, which implies
g > 0. Symmetrizing according to (5.21) gives the inequalities ¢ < 0, p > 0, and
p <0,50 p=gq =0,asdesired. ¢

Based on Example 5.35, we make the following observation:

Az lies outside the

Proposition 5.36. Let . € R3 be strictly decreasing such that
interval [2 ek 2+ 2\/_] and let N € us. Then the gradlentﬂow (5 14) on O, with

respect to N in the induced metric does not strictly preserves positivity, and it weakly
preserves positivity if and only if N is a scalar multiple of I (i.e. the flow is constant).

Proof. This follows from the last paragraph of Example 5.35. O

6. Lyapunov Function and Homeomorphism onto a Closed Ball

Galashin, Karp, and Lam [GKL22b,GKL19] recently employed the notion of a con-
tractive flow in order to show that the totally nonnegative part of any partial flag variety
G/ P (as well as several other spaces appearing in algebraic combinatorics) is home-
omorphic to a closed ball. In this section we rephrase this argument in the case that
G/P = Flg.,(C) in terms of the orbit language. The key point is that by Proposi-
tion 5.9, the flows on Flg., (C) considered in [GKL22b,GKL19] (which were defined
by the explicit formula (5.6)) are in fact gradient flows in the Kéhler metric. Therefore
there is a natural candidate for a Lyapunov function, which we can then substitute for
the role of the metric which was used in [GKL22b, GKL19].

6.1. Stable manifold. In this subsection, we describe the stable manifold inside O, of
the unique global attractor for a gradient flow in the Kéhler metric.

Definition 6.1. Let —N € Oy, and set K := {i € [n — 1] : u; > p;4+1}. (The reason
that we are letting u index the orbit of — N, rather than the orbit of N, is that we wish
to consider the eigenvalues of i N in decreasing order.) As in (4.4), let us write

iN = (k;wk — kD) i) + ©.1)

where Py is orthogonal projection from C” onto the subspace spanned by the eigenvec-
tors of iN corresponding to the eigenvalues w1, ..., ux. We define P°(N) := P for
allk € K.

Now let A € R” be weakly decreasing such that K’ := {i € [n — 1] : A; > Aj31} is
contained in K. Then we define

L®(N; ) := ( 3 i - Ak+1)iP,f°(N)) + iy € O 6.2)
keK’
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We define the stable manifold (of L°°(N; A) under the gradient flow with respect to N
in the Kéhler metric) as

O5(N):={Lo € O, : L(t) > L*(N; ) as t — o0},
where L(¢) evolves as in Proposition 5.9.

Example 6.2. We set n := 2, and consider (cf. Example 5.12)

iN = [; _qp:| , where p € R, g € C, and p and ¢ are not both zero.

We have —N e O, where

pri=/p*+Iql? and = —\/p?+lq|?.

Since p and g are not both zero, we have w1 > >, and Pcl’o (N) is orthogonal projection
onto the eigenspace of j11. Therefore the expansion (6.1) is

I [up+
iN = — PSO(N) + wa 1o, where P®(N) = — |1 P 4 .
(1 — w2)PT(N) + u2In (V) ol @ m—»p

Now let A; > Ay. Then

A — A T A+
L“(N;A):(Al—kz)iP‘fo(N)+Azi12=%i [q” _qp + 12 2il, € 0.
1 |

If A; = Ao, then O = {L°°(N; L)} is a point. Otherwise, it will follow from Proposi-
tion 6.6(i) that the stable manifold (’)i(N ) equals O, minus the single point

. . —At+A2. [p g AM+A.
AM—A)IQ+ il = ——i |2 + ilp.
(A1 = 2210 + A2llp o |:q —p > 2

Here Q = I, — P{°(N) is orthogonal projection onto the eigenspace of o = —p1. O
We show that Definition 6.1 is compatible with positivity:

Lemma 6.3. Let A € R” be weakly decreasing, and set K :={i € [n — 1] : A; > Aj41}.
Suppose that —N e O, such that the gradient flow on Oy with respect to N in the
Kdihler metric strictly preserves positivity. Then for all k € K, we have uy > r+1 and
iPR(N) € 030,

Proof. By Corollary 5.11, for k € K, the flow (5.6) on Grg ,(C) strictly preserves
positivity. Hence by the implication (vi) = (v) of Theorem 5.14, all k£ x k minors of
exp(iN) (which has eigenvalues e/! > ... > eHn) are positive. Then Theorem 2.23(i)
implies (g > fux+1,and Theorem 2.23(ii) and Lemma 4.10 imply iPZ°(N) € ngo. O

We begin by describing the stable manifold of O, in the Grassmannian case (cf.
Definition 4.9), adapting the proof of [GKL22b, Proposition 3.4].

Lemma 6.4. Let 1 <k <n —1, andlet =N € O such that jij > i1
(i) We have Ofok (N) ={iP € O, : rank(P°(N)P) = k}.
(ii) IfiP°(N) € 029 then the stable manifold O, (N) contains (95]?.

g’
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Proof. (i) Let iP € O,,, and let iP(t) evolve according to the gradient flow on
Oy, with respect to N in the Kéhler metric (with P(0) = P). We must show that
lim; o P(¢) = PZ°(N) if and only if rank (PZ°(N) P) = k.

For the forward direction, note that ¢ — rank (P7°(NV) P(1)) is a continuous function
of ¢, and hence it is constant. If lim; , oo P(¢) = P°(N), then this function is identically
equal to k; taking ¢ = 0 gives rank(P{°(N)P) = k.

Conversely, suppose that 1rank(P,‘go (N)P) = k. Let us work in an orthonormal ba-
sis of eigenvectors of i N corresponding to the eigenvalues 1 > --- > w,, so that

iN = Diag(u) and P°(N) = [Ik 0} By Lemma 4.10, we can write P = Py for some

V € Gry »(C), which we regard as an n x k matrix. Write

V:[);] where X isk x kand Y is (n — k) x k.

For the moment, suppose that the columns of V are orthonormal. Then

P VYt = [XX* XY*:|

YX*yr*

Since rank(P,‘j<> (N)P) =k, we have rank(X) = k. After multiplying V on the right by

X! we may assume that X = I.

By (5.6), we have P(t) = Py = VOV V(@) 'V ()*, where V(1) :=
exp(tiN)V. Note that exp(tiN) = Diag(e’*!, ..., e'"*n), so we may regard V (¢) as
the n x k matrix

V) = I:Diag(e””'“, ...,e'tnyyDiag(e ™, ..., e_”"‘):| )

Since wy > pir+1, we have Diag(e'#+1, ..., e'*n)Y Diag(e "1, ..., e ") — 0 as
t — 00. Therefore
. k0] peo
Jim P(#) = [0 0] =P W).

(11) Suppose that iPP°(N) € O>0 Given iP € (9 , we must show that iP €

o (V). By part (i), it is equlvalent to show that rank(Poo(N )P) = k. Recall that
PZO(N ) and P have rank k, so P°(N)P has rank at most k. Conversely, by Corol-
lary 4.12, all k x k minors of P,fo (N) are real and positive; also, all k x k minors of P are
real and nonnegative, and at least one such minor is positive. Therefore by the Cauchy—
Binet identity (2.2), P2°(N) P has a positive k x k minor, so its rank is at least k. O

Remark 6.5. We observe that in Lemma 6.4, if iP°(N) € 0z0
ifold O, (N) contains Owk ; the proof is similar to that of part (ii). Furthermore, if
iPP(N) e O(Dk \ (9;]?, then there exists a point in (’)Sf \ (’);ko which is not in the stable
manifold O, (N). Namely, by Corollary 4.12 and (4.3), there exists J € ([Zl) such that
Ay (P°°(N )) =0forall I (["]) Then take P to be orthogonal projection onto the
span of ¢; fori € J. The only nonzero minor of P is Ay j(P) = 1,s50iP € (’)>0 \ (’)>0
by Corollary 4.12. Also, by the Cauchy—Binet identity (2.2), all k x k minors of P]é’o (N ) P
are zero. Hence iP ¢ O3 o (N) by Lemma 6.4(i).

o then the stable man-
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Proposition 6.6. Let . € R” be weakly decreasing, set K :={i € [n — 1] : A; > Aj41},
and let —N € Oy such that i, > g1 for allk € K.

(i) Let L € O,, and write —i1L = (ZkeK()‘k — A1) Pr) + An L, as in (4.4). Then
LeO;(N) <= rank(P°(N)Px) =k forallk € K.
(ii) IfiP°(N) € Ozko for all k € K, then the stable manifold O} (N) contains Ofo.

Proof. By the observations of Remark 5.10, we see that
LeO,(N) <<= iP.€O, (N)foralkeK.

Also, by (2.7),if L € Ofo, theniPy € (951? for all k € K. The results then follow from
Lemma 6.4. O

Remark 6.7. In Proposition 6.6(i), we have given an explicit description of the stable
manifold O3 (N). If we only wish to know that O; (N) contains Ofo when the gradient
flow on O, with respect to N in the Kéhler metric strictly preserves positivity, then
the following alternative proof suffices. Let S € O, denote the complement of the set
of equilibrium points other than L>°(N; 1). By Corollary 5.15, we can argue (e.g. us-
ing Perron-Frobenius theory) that S contains Ofo. Then LaSalle’s invariance principle

[HSD13, Section 9.2] along with Proposition 6.9 imply that O3 (N) contains Ofo.

6.2. Lyapunov function. In this subsection, we show that —« (-, N) is a Lyapunov func-

tion for L*°(N; 1), for the gradient flow on O, with respect to N in the Kihler metric.

While this essentially follows from the fact that the flow is the gradient flow of the

function « (-, N), we also give an elementary direct proof using the explicit description

of the flow in Remark 5.10. We refer to [HSD13, Section 9] and [AMRSS, Section 4.3]

for further background on Lyapunov stability theory.

Definition 6.8. Consider a flow defined on a differentiable manifold R, and let M € R

be an equilibrium point. A strict Lyapunov function for M is a differentiable function

V : S — R, where S C R is an open subset containing M, satisfying the following two

properties:

L) V(L) > V(M) forall L # M in S; and

(L2) 5_:|r=0 V(L(t)) < Oforall Ly # M in S, where L(¢) denotes the flow beginning
at Lg.

The existence of a strict Lyapunov function for the equilibrium point M implies that it

is asymptotically stable [HSD13, Section 9.2].

We observe that if S has a Riemannian metric (-, *) metric, then
Fili—o VL) = (grad(V)(L), L(0)) metic-
In particular, for the gradient flow of the function —V, i.e.,
L(t) = grad(=V)(L(1)),

(L2) is always satisfied for non-equilibrium points L. Therefore V is a strict Lyapunov
function for M on the stable manifold of M (cf. [HSD13, Section 9.3]).

We now prove a slightly stronger statement in the case of gradient flows on O, in
the Kéhler metric. Our proof of (L2) will use the explicit description of the flows, rather
than the fact it is gradient. We adapt an argument of Bloch, Brockett, and Ratiu [BBR92,
p. 70] for double-bracket flows (i.e. gradient flows in the normal metric).
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Proposition 6.9. Let A € R” be weakly decreasing, set K := {i € [n — 1] : A; > Aj;1},
and let —N € O, such that px > k41 for all k € K. Consider the gradient flow on O,
with respect to N in the Kdhler metric, and let S C O, be the complement of the set of
equilibrium points other than L°°(N; 1). (In particular, S contains the stable manifold
O3 (N).) Then

V:S—>R, L+ —«(L,N)
is a strict Lyapunov function for L°(N; 1) on S.

Proof. We must verify the two conditions of Definition 6.8. First we consider (L.1). We
claim that in fact V(L) > V(L*°(N; 1)) for all L # L°°(N; A) in O,. This essentially
follows from a theorem of Schur [Sch23] (one direction of the Schur—Horn theorem);
we give a detailed argument below.

Asin (4.4), let us write

—iL = (Z()\k - )»k+1)Pk) + Al

keK

where sz = P, = P} and tr(P;) = k. Recall the analogous expansion (6.2) of
L°(N; A). We begin by proving that

tr(P°(N)iN) > tr(PiN) forallk € K. (6.3)

Let us work in an orthonormal basis of eigenvectors of i N corresponding to the eigenval-
ues ji] > -+ > iy, so thatiN = Diag(u) and P°(N) = [ ] Then (6.3) becomes

witee g = (P + -+ (Pnnbn-

By assumption, the diagonal entries of Py lie in the interval [0, 1] and sum to k. Therefore
we obtain (6.3). Moreover, since ux > pk+1, the inequality is strict if Py # PZ°(N);
and the latter condition holds for some k € K, because L # L°(N; A). Multiplying
(6.3) by A — Ag+1 and summing over k, we obtain tr(L®°(N; A)N) > tr(LN), which is
equivalent to the desired inequality V(L) > V(L*(N; 1)).

We now prove that (L2) holds for L # L°°(N; A) in S. Let us expand —iL(¢) as in
(5.8). Set Py := P,(0) for k € K. Then by Remark 5.10, we have

Ll o VIL®) = =k (L(0), N) = = >k — bk (i Pe(0), N)
keK

=— > O = M) ([i P, [iPi, N1, N) = D~ Ok = M) ([ P, N1, [ P, ND),
keK keK

where in the last step we used the fact that « is [-, -]-invariant.

Since —« is positive semidefinite, we have « ([i P, N1, [i Py, N]) < 0 for all k e K.
Moreover, since L(0) # 0, we have i P (0) ;é 0 for some k € K; then [i P, N] # 0,
and so k([i Py, N1, [i Py, N]) < 0. Therefore dt|t= V(L()) < 0. O

We will need the following consequence of Proposition 6.9 in Sect. 6.3:

Corollary 6.10. Adopt the notation and assumptions of Proposition 6.9. Let Sy be a
compact subset of S. Then for any gradient flow L(t) in O, which is not the constant
flow at L°(N; 1), we have L(t) ¢ So for somet < 0.
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Proof. By Proposition 6.9, V : § — R is a strict Lyapunov function for L*(N; A). Let
S1 := VY[V (Lo), o)) N Sy, which is compact since V is continuous. By (L2), for
t < 0wehave V(L(t)) > V(Lg), soif L(¢) € So then L(¢) € S;. Hence it suffices to
show that L(z) ¢ Sy for some ¢ < 0.

We proceed by contradiction and suppose that L(t) € S| forall t < 0. For M € O,,
let M(¢) € O, denote the gradient flow beginning at M. Define ¢ € R to be the minimum
of —j—t]tzo V(M(t)) over all M in the compact set S;. By (L1) we have L (N; A) ¢ Sy,
so (L2) implies that ¢ > 0. By (L2), we obtain

V(L()) = V(Lg) —ct forallt <O0.

Therefore V is unbounded on the compact set S, a contradiction. O

6.3. Homeomorphism onto a closed ball. We now use gradient flows to show that the
totally nonnegative part Ofo of an adjoint orbit is homeomorphic to a closed ball. As we
have mentioned, this result was proved by Galashin, Karp, and Lam [GKL19] in general
Lie type, which we rephrase in type A in the orbit language. We adopt the framework
of contractive flows developed in [GKL22b, Section 2]; the main modification is that
we use a Lyapunov function in place of the Euclidean norm employed in [GKL22b].
We deduce the result about Ofo as a consequence of the more general Theorem 6.12,
which we will also use to show that the Pliicker-nonnegative part of a partial flag variety
is homeomorphic to a closed ball (see Corollary 6.16), and to study the topology of
amplituhedra (see Sect. 7.4).

We will need a continuity result for gradient flows on Oy, which follows from general
principles. In the case relevant to us, namely for the Kahler metric, it also follows from
the explicit formula (5.6).

Lemma 6.11 (JAMRSS, Proposition 4.1.17(iii)]). Consider a gradient flow (5.1) on O,.
For L € O, let L(t) € O, denote the gradient flow beginning at L. Then the function

R x Oy — Oy, (t,L) — L(1)
is continuous.

Theorem 6.12. Let ). € R" be weakly decreasing, set K :={i € [n — 1] : A; > Aj+1},
and let —N € O, such that py > i1 forallk € K. Consider the gradient flow on O,
with respect to N in the Kdhler metric. Let S be a nonempty compact subset of the stable
manifold O3 (N), and let S° denote the interior of S inside O;.. Suppose that any flow
beginning in S lies in S° for all positive time. Then S is homeomorphic to a closed ball, S°
is homeomorphic to an open ball, and its boundary S \ S° is homeomorphic to a sphere.

Proof. We closely follow the proof of [GKL22b, Lemma 2.3]. Let V : O (N) — R de-
note the strict Lyapunov function for L*°(N; A) from Proposition 6.9. Define the function

V:OLN) = R, L> V(L) — V(L®(N; 1)).

In particular, v is nonnegative and equals zero precisely at L (N; A). If L(¢) is the
gradient flow beginning at any point of O] (N) other than L>(N; 1), then v(L(t)) is
strictly decreasing as a function of # and approaches 0 as r — oo.

For r > 0, define B, := v=1([0, r]) N O3 (N). By assumption, L>°(N; 1) is con-
tained in S, and therefore also in S°. By the Morse lemma (cf. [AMRS88, Lemma 5.4.9],
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[Dur83]), we may take r sufficiently small that B, is contained in S° and is homeomor-
phic to a closed ball, B = p~l ([0, )N Oi (N) is homeomorphic to an open ball, and
B, \B; = v N O3 (N) is homeomorphic to a sphere. (In fact, by letting the gradient
flow act on B,, we get that B, is homeomorphic to a closed ball for all » > 0, though
we will not need to use this.)

We now define two functions #,, ty : O5 (N) \ {L°(N; 1)} — R, as follows. Given
L € O5(N) \ {L*(N; 1)}, let L(t) € O, denote the gradient flow beginning at L. By
Corollary 6.10, there exists o € R such that L(#p) ¢ S. In particular, v(L(tp)) > r.
Since v(L(t)) is strictly decreasing as a function of # and approaches 0 as t — oo, there
exists a unique ¢ € R such that v(L(#)) = r, which we define to be 7.(L). Now observe
that by assumption, we have L(¢) ¢ S for all ¢+ < #y, and we also have L(t.(L)) € S.
Therefore we may define 73(L) := inf{t € R : L(t) € S}. Again by assumption, we
have L(ty(L)) € S\ S°and L(¢r) € S° forall ¢ > ty(L).

We claim that 7 and #; are continuous functions on O3 (N) \ {L°°(N; A)}. First
we prove that 7. is continuous. It suffices to show that given an open interval / C R,
the preimage ¢~ L) is open. To this end, let L € ¢~ L(I), and let L(t) € O, denote
the gradient flow beginning at L. Take t1,#, € I such that 1; < #.(L) < 1. Let
r1 := v(L(#1)) and rp := v(L(tp)), so that r{ > r > rp by (L2). For M € O,
let M(t) € O, denote the gradient flow starting at M. By Lemma 6.11, the function
M +— v(M(t1)) is continuous. Hence there exists an open neighborhood U; of L such
thatforall M € Uy, wehave v(M(t1)) > r.Similarly, there exists an open neighborhood
U, of L such that forall M € U,, wehaver > v(M(tp)). Let U := U; NU,, whichis an
open neighborhood of L. Then for all M € U, we have v(M(t1)) > r > v(M(t2)), so
(L2) implies that ¢, (M) € (#1,t) € I. Thatis, U C tr_l(I), and hence tr_l(I) is open.

Now we prove that #; is continuous, by a similar argument. Let L € 1(I ), where
I C R is an open interval, and take #1, #, € I such that #; < t3(L) < t,. Observe that
L(t;) € O{(N)\ S and L(t;) € S°, and that both sets O5 (N) \ S and S° are open.
Hence there exists an open neighborhood U; of L such that for all M € U;, we have
M(t1) € O5(N)\ S. Similarly, there exists an open neighborhood U, of L such that for
all M € U, we have M (t;) € S°. Then U := U;j N U, is an open neighborhood of L
contained in z,° ! (I). Thus ¢; is continuous.

We now define maps « : S — B, and 8 : B, — S as follows. If L # L°(N; 1), we
set

a(L) := Lt (L) —13(L)) and B(L) := L(13(L) — 1-(L)),

where L(t) € O, denotes the gradient flow beginning at L. We also set « (L (N; 1)) :=
L°°(N; A) and B(L*°(N; A)) := L°°(N; A). We can verify that & and § are well-defined,
and that they are inverses of each other. Also note that «(S \ $°) € B, \ By and
B(B,\ B?) € S\ §° Thus « restricts to a bijection from S \ §° to B, \ B/, and hence
also restricts to a bijection from S° to B;.

Therefore to complete the proof, it suffices to show that « and f are continuous.
We prove that « is continuous; because S is compact, this then implies that f = o~
is continuous. By Lemma 6.11 and since ¢ and #; are continuous, we have that « is
continuous except possibly at L°°(N; 1). Now observe that every open neighborhood of
L°°(N; A) in B, contains the open subset v~1([0, &)) for some ¢ > 0. By (L2) we have
a0, £)) € v=1([0, ¢)), so « is continuous at L®(N; 1). O
Corollary 6.13 (Galashin, Karp, and Lam [GKL19, Theorem 1]). Let . € R" be weakly
decreasing. Then Ofo is homeomorphic to a closed ball, its interior O;O is homeomor-
phic to an open ball, and its boundary Ofo \ C’);O is homeomorphic to a sphere.
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The fact that Ofo is homeomorphic to an open ball was originally proved by Rietsch
[Rie99, Theorem 2.8].

Proof. We apply Theorem 6.12, taking S to be OEO, and taking —N € O, such that the
gradient flow on O, with respect to N in the Kahler metric strictly preserves positivity.
(For example, we may take iN € gl 9 by Corollary 5.15 and Corollary 5.19.) Let us
verify that the hypotheses of Theorem 6.12 are satisfied. Setting K = {i € [n — 1] :
Ai > Ait1}, we have ugp > ug4q for all k € K by Lemma 6.3. Also, S is compact
since it is a closed subset of the compact space O;, and S is contained in O; (N) by
Proposition 6.6(ii) (using Lemma 6.3). O

Remark 6.14. In subsequent work, Galashin, Karp, and Lam [GKL22a, Theorem 1.1]
proved the stronger result that the cell decomposition (2.8) (as well as its analogue in
general Lie type) is a regular CW complex, confirming a conjecture of Williams [Wil07,
Section 7]. In particular, the closure of each cell C,_,, is homeomorphic to a closed ball,
and its boundary is homeomorphic to a sphere. The arguments employed in [GKL22a]
are different than those of [GKL22b,GKL19], and in particular do not employ contrac-
tive flows. It would be very interesting to find a proof that (2.8) is a regular CW complex
along the lines of the arguments in this section.

Recall the Pliicker-nonnegative part Fl of Flg.,(C) from Definition 2.11. We

now use Theorem 6.12 to show that FIA— is homeomorphlc to a closed ball. We re-
mark that Rietsch [Rie98, Lemma 5.2] used a similar construction to show that Fl%?no
is contractible. We will need the following result from [BK]:

Lemma 6.15 (Bloch and Karp [BK, Proposition 3.3(ii)].) Let K € [n — 1]. Then Fl%?no
is the interior ofFlA>0

Corollary 6.16. Let K C [n — 1]. Then FlAZO is homeomorphic to a closed ball, its

interior FIA>n0 is homeomorphic to an open ball, and its boundary F1A>0\FIA>O
homeomorphic to a sphere.

Proof. Take A € R" weakly decreasing such that K = {i e [n — 1] : X > Ajs1}. We
apply Theorem 6.12, taking S € O, to be the image of Fl = under (4.1), and taking
—N e O, such that the gradient flow on O, with respect to N in the Kihler metric
strictly preserves positivity for all k € K. (For example, we may take iN € g[n , by
Corollary 5.15.) Let us verify that the hypotheses of Theorem 6.12 are satisfied. We have
Wi > e forall k € K, by Lemma 6.3 applied to O,,. Also, S is compact since it
is a closed subset of the compact space O, and § is contained in 05 (N) by applying
Lemma 6.4(ii) for all k¥ € K (using Lemma 6.3). By Lemma 6.15, S° is the image of
F1A>O under (4.1). Therefore any flow beginning in S remains in S° for all positive time.

|

Remark 6.17. Recall from Proposition 5.9 that the gradient flow on O, with respect to
N in the Kihler metric corresponds to the flow V() = exp(tiN)Vj on the Flg., (C).
We can consider the same flow on Flg. , (C) with iN replaced by any M € gl (R) (not
necessarily symmetric), and much of the analysis of this section can be replicated in this
case. We do not pursue this here, since it is outside the scope of adjoint orbits.
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7. Gradient Flows on Amplituhedra

In this section we study gradient flows on the amplituhedron A, i ,,(Z), a subset of the
Grassmannian Gry g+, (C) defined in terms of an auxiliary matrix Z (see Definition 7.1).

It generalizes both the totally nonnegative Grassmannian Grk » (Which we obtain when
k + m = n) and a cyclic polytope (which we obtain when k& = 1). Amplituhedra were
introduced by Arkani-Hamed and Trnka [AT14] in order to give a geometric basis for cal-
culating scattering amplitudes in planar N = 4 supersymmetric Yang—Mills theory. The
case relevant for physics is when m = 4, but amplituhedra are interesting mathematical
objects for any m.

There has been a lot of work studying the geometric properties of amplituhedra, in-
cluding determining the homeomorphism type. It is expected that A, ¢ »,(Z) is homeo-
morphic to a closed ball of dimension km. This is known when k+m = n [GKL22b, Theo-
rem 1.1] (since every such amplituhedron is homeomorphic to Gr,i?l), when k = 1 (since
every convex polytope is homeomorphic to a closed ball), when m = 1 [KW19, Corol-
lary 6.18] (cf. [KM, Corollary 1.2]), for the family of cyclically symmetric amplituhedra
[GKL22b, Theorem 1.2], and whenn —k —m = 1 with m even [BGPZ19, Theorem 1.8].

We show that a new family of amplituhedra are also homeomorphic to closed balls,
which we call twisted Vandermonde amplituhedra (see Corollary 7.17). This family
includes all amplituhedra with n — k — m < 2 (see Corollary 7.22). Our argument is
based on the proof of [GKL22b, Theorem 1.2], which uses contractive flows to show
that cyclically symmetric amplituhedra are homeomorphic to closed balls. (However, we
note that the family of twisted Vandermonde amplituhedra does not include the cyclically
symmetric amplituhedra; see Remark 7.18 for further discussion.)

7.1. Background. We now define amplituhedra.

Definition 7.1. Let n, k, m € Nsuch thatk+m < n, and let Z be a complex (k+m) X n
matrix of rank k + m. We also regard Z as a linear map C" — C¥*". We introduce the
rational map

Z : Grpn(C) -> Gy jsm(C), V> {Z() :v e V}, (7.1)

which is defined whenever V Nker(Z) = {0}.
Now suppose that Z is real and its (k +m) X (k +m) minors are all positive. Then by
[AT14, Section 4] (cf. [Karl7, Section 4]), Z is defined on Gr,??l. We denote the image

Z(Grkz)?l) by Ay k.m(Z), called a (tree) amplituhedron.

In (7.1), V is a k-dimensional subspace of C". If we instead regard V as ann x k
matrix modulo column operations, then Z (V)y=2V.

We point out two special cases of Definition 7.1. First, if K + m = n, then up to a
linear change of coordinates, we may assume that Z = I, so that A, x n(Z) is the
totally nonnegative Grassmannian Grk Second, if k = 1, then it follows from work
of Sturmfels [Stu88] that A, ¢, (Z) is an alternating polytope (a special kind of cyclic
polytope) in P (C).

Remark 7.2. We note that Definition 7.1 can be generalized in various ways. The tree am-
plituhedron A,  » (Z) is related to the tree-level term of the scattering amplitude; there
are also loop amplituhedra corresponding to the higher-order terms of the amplitude
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[AT14] (cf. Remark 2.15). Alternatively, we can relax the condition that Z has positive
(k+m) x (k+m) minors, or replace Gri?l by the closure of a cell in its cell decomposi-

tion. The corresponding image under Z is called a Grassmann polytope, studied by Lam
[Lam16]. Yet another generalization is provided by replacing Gry , (C) by an arbitrary
partial flag variety Flg.,(C), giving the flag polytopes introduced by Arkani-Hamed,
Bai, and Lam [ABL17, Section 6.5]. While we will focus on the case of tree amplituhedra
Ap k.m(Z), many of the results and techniques in this section apply more generally.

Example 7.3. Letn := 4 and k + m := 3, and take Z to be the matrix

100 a
Z:=1010-b|, wherea,b,c>0.
001 ¢

Note that the 3 x 3 minors of Z are all positive, so Z defines an amplituhedron A4 ¢ ,, (Z) =
Z(Grig). When k = 1 and m = 2, the map Z: Grfz — Gr,3(C) is given by

(X0 : X1 :x2:x3) e]P’;O =
x0(1:0:0)+x1(0:1:0)+x20:0:1)+x3(a:—-b:c)€ ]P’z((C),

and A4 12(Z) is the quadrilateral in P2(C) with vertices (1 : 0 : 0), (0 : 1 : 0),
O:0:1),and (@ : —=b : ¢). When k = 2 and m = 1, by work of Karp and Williams
[KW19, Theorem 6.16], we can identify the amplituhedron A4 > 1 (Z) with the bounded
complex of a cyclic hyperplane arrangement of 4 hyperplanes in R2. ¢

Remark 7.4. Let Z be a complex (k + m) X n matrix of rank k + m, let g € GLj4,, (C),
and set Z' := gZ. Then 7 = gZ, so the rational map V4 only depends on ker(Z)
(or equivalently, the row span of Z), up to a linear change of coordinates on C**. In
particular, we may assume (as it will turn out to be convenient) that the rows of Z are
orthonormal, i.e., ZZ* = Ij,,,. Further, if Z is real and its (k +m) x (k + m) minors are
all positive, and g is real with det(g) > 0, then Z’ is real and its (k +m) x (k +m) minors
are all positive. Therefore the amplituhedron A, x m(Z) € Grg k+m (C) only depends on

ker(Z), and we may assume that A Tiom.

7.2. Projecting gradient flows. In this subsection, we determine when the rational map
Z: Gr,, (C) -» Grg g+, (C) from (7.1) projects gradient flows on Gry ,(C) in a coher-
ent way, where we identify Gry ,(C) and Grg x4, (C) with adjoint orbits via (4.1). By
this, we mean that for any two points V, W € Gry_,(C) such that Z(V) = Z(W), the
gradient flows beginning at V and W have the same image under Z. 1t turns out that if
this is the case, then up to a linear change of coordinates (cf. Definition 7.4), the pro-
jected gradient flows are also gradient flows on Grg g+ (C). Since we are working with
Grassmannians, the three metrics discussed in Sect. 5 are the same up to dilation (see
Proposition 5.5). We will find it most convenient to use the description of the gradient
flows given in Proposition 5.9.

We will use the following description of the fibers of Z; see [KW19, Proposition
3.12] for a closely related result.
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Lemma 7.5. Let Z be a complex (k+m) xn matrix of rank k+m, andlet V, W € Gry_,(C)
such that Z(V) and Z(W) are defined. Then

Z(V)=Z(W) <= V+ker(Z) =W +ker(2).

Proof. (=) Suppose that Z(V) = Z(W). We show that V C W +ker(Z); we similarly
have W C V + ker(Z), which implies the result. To this end, let v € V. Then Zv €
Z(V) = Z(W),so Zv = Zwforsomew € W.Thenv—w € ker(Z),sov € W+ker(Z).

(<) Suppose that V + ker(Z) = W + ker(Z). We show that Z(V) € Z(W); we
similarly have Z(W) C Z(V). To this end, let Z(v) be an element of Z(V), where
veV.Thenv = w+x forsome w € W and x € ker(Z),s0 Zv = Zw € Z(W). O

Proposition 7.6. Let Z be a complex (k +m) x n matrix of rank k + m, where k,m > 1,
and let N € u,. Then the following conditions are equivalent.

(i) The rational map Z: Gr 2 (C) -> Grg k4m (C) coherently projects the gradient
Sflows on Gry_, (C) with respect to N. That is, for all gradient flows V (t) and W (¢) in
Gy, (C) with respect to N such that Z(Vo) = Z (W), we have Z(V (1)) = Z(W (1))
forallt.

(ii) We have N (ker(Z)) C ker(Z).

(iii) There exists M € gl,,,(C) such that ZN = M Z, namely, M = ZNZ*(ZZ*)~".

We observe that in general, the element M in part (iii) does not necessarily lie
in uy,. However, under the assumption ZZ* = I, (cf. Definition 7.4), we have
M =ZNZ" € ugsm.

Proof. We use the description of the gradient flow with respect to N from (5.6).

(i) = (ii): Suppose that z coherently projects the gradient flows with respect to N. It
suffices to prove that exp(tiN) ker(Z) = ker(Z) for all + € R. We will show that given
anonzero x € ker(Z), we have exp(tiN)x € ker(Z).

To this end, let V € Gry ,(C) such that V Nker(Z) = {0}, so that Z(V) is de-
fined. Take W € Gry ,(C) such that W < V +span(x), W # V,and x ¢ W.
Note that W Nker(Z) = {0}, so Z(W) is defined, andv+x € W forsomev € V.
Also, let T C C denote the set of r € C such that Z(exp(¢iNV)) is not defined, i.e.,
exp(tiN)VNker(Z) # {0}. Viewing V asann x k matrix and ker(Z) asann x (n—k—m)
matrix, we see that 7' is the common zero set of the (n — m) x (n — m) minors of the
concatenation of exp(tiN)V and ker(Z). Each such minor is an analytic function of ¢,
and because 0 ¢ T, we get that T is discrete.

Since W +ker(Z) C V +ker(Z), we have Z(V) = Z(W) by Lemma 7.5. There-
fore by assumption, we have Z(exp(tiN)V) = Z(exp(tiN)W) for all ¢+ € R. Again by
Lemma 7.5, we have exp(tiN)V + ker(Z) = exp(tiN)W +ker(Z) forallt € R\ T.
Multiplying by exp(—tiN), we get

V +exp(—tiN)ker(Z) = W +exp(—tiN) ker(Z) forallt e R\ T.
Since v+x € W C V +exp(—tiN) ker(Z), we obtain
x € V+exp(—tiN)ker(Z) forallt e R\ T.

The conclusion above holds for all V' € Grg ,(C) such that V N ker(Z) = {0};
considering k + 1 generic such V, since m > 1 we obtain

x € exp(—tiN)ker(Z) forall ¢ € R not contained in some discrete set.
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By continuity, we get x € exp(—tiN) ker(Z) for all r € R, as desired.

(ii) = (iii): Suppose that N (ker(Z)) < ker(Z). Since Z : C" — Ck+m ig surjective,
we can simply define M by M Zx := ZNx for all x € C". This is well-defined because
if Zx =0,then ZNx = 0.

(iii) = (i): Suppose that there exists M € gl;,,,(C) such that ZN = MZ. Then
Zexp(tiN) = exp(tiM)Z for all t € R, so

Z(exp(tiN)V) = exp(tiM)Z(V) in Gry t4m(C) forall V € Gry,(C) and f € R.
(7.2)

In particular, the projection of the gradient flow with respect to N beginning at V €
Gry,, (C) only depends on Z(V). O

Corollary 7.7. Let Z be a complex (k+m) x n matrix suchthat ZZ* = Iy4pm. Let N € uy,
such that N (ker(Z)) C ker(Z), and set M := ZNZ* € gyp. Then the rational map

Z: Gri 4 (C) -> Grg g+m (C) takes gradient flows with respect to N to gradient flows
with respect to M (given by (5.6) and respecting the parameter t).

Proof. This follows from the implication (ii) = (iii) of Proposition 7.6, along with (7.2)
(which both hold for all k, m > 0). ]

7.3. Gradient flows preserving amplituhedra. In this subsection, we show that if Z
projects a positivity-preserving gradient flow in a coherent way, then the projected
gradient flow preserves the corresponding amplituhedron. In order to state our result
precisely, we make the following analogue of Definition 5.1 for amplituhedra.

Definition 7.8. Let Z be a real (k + m) x n matrix whose (k +m) x (k + m) minors are
all positive, and consider the amplituhedron A, x m(Z) S Grg k+m (C). We say that a
flow V (¢) on Gry k4m (C) weakly preserves Ay k.m(Z) if

V() € Apkm(Z) forall Vo € Ay km(Z)andt > 0,
and strictly preserves Ay j.m(Z) if
V() € Apkm(Z)° forall Vo € Ay fm(Z) and t > 0,
where A, r.m(Z)° denotes the interior of A, i . (Z).
We will need the following result of Galashin and Lam [GL20]:

Lemma 7.9 (Galashin and Lam [GL20, Lemma 9.4)). Let Z be a real (k +m) x n ma-
trix whose (k +m) x (k + m) minors are all positive. Then Z(V) € Ay k.m(Z)° for all
V eGrph.

Asin Sect. 7.2, we identify the Grassmannians Gry_, (C) and Gry ., (C) with adjoint
orbits via (4.1). We also recall the stable manifold defined in Definition 6.1.

Proposition 7.10. Let Z be a real (k + m) x n matrix whose (k + m) x (k + m) minors
are all positive and such that A Iism. Let N € u, such that N (ker(Z)) C ker(Z),
and set M .= ZNZ* € Uym.

(i) If the gradient flow on Gry ,(C) with respect to N weakly preserves positivity, then
the gradient flow on Gry j1m (C) with respect to M weakly preserves Ay k.m(Z).
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(i) If the gradient flow on Gry,(C) with respect to N  strictly
preserves positivity, then the gradient flow on Gr_g4m (C) with respect to M strictly
preserves A k.m(Z). Moreover, the stable manifold for M inside Gr_j+m (C) is well-
defined (i.e. if —M € Oy, then py > [ii+1), and it contains Ay k m(Z).

Proof. By Corollary 7.7 and Lemma 7.9, if the gradient flow on Gry ,(C) with re-
spect to N weakly (respectively, strictly) preserves positivity, then the gradient flow on
Gry k+m (C) with respect to M weakly (respectively, strictly) preserves A, k. (Z). It re-
mains to show that, assuming the gradient flow on Gry_, (C) with respectto N strictly pre-
serves positivity, the stable manifold for M inside Gr i+, (C) contains A, x.m(Z). Let
W e Gr,i?l denote the subspace of C" spanned by the eigenvectors of i N corresponding

to its k largest eigenvalues, which is well-defined by Lemma 6.3. Let V™ := Z(Wo"),
which lies in Ay k,m (Z)° by Lemma 7.9. By assumption, the spectrum of i M equals the
spectrum of i N minus the spectrum of i N restricted to ker(Z). Since Z (W) is defined,
we have W Nker(Z) = {0}, and so the k largest eigenvalues of iM and i N coincide.
In particular, the stable manifold for the gradient flow on O, with respect to M as in
Definition 6.1 is well-defined, and the equilibrium point therein corresponds via (4.1)
to V. Therefore by Proposition 6.6(ii), the stable manifold of V> inside Gry g+, (C)
contains Ay k. m(Z2). O

Remark 7.11. InProposition 7.10, the simultaneous conditionson N € u,, that N (ker(Z))
C ker(Z) and that the gradient flow on Gry_, (C) with respect to N preserves positivity
are highly constraining. Rather than relying on the existence of such an N, it would be in-
teresting to classify directly those M € u4y, such that the gradient flow on Gry g4, (C)
with respect to M preserves A, x.m(Z). This may be possible using the intrinsic de-
scriptions of A, x.m(Z) conjectured by Arkani-Hamed, Thomas, and Trnka [ATT18]
(cf. [KW19, Section 3.3]).

7.4. Amplituhedra homeomorphic to a closed ball. We now show that any amplituhe-
dron A, i . (Z) satisfying the hypotheses of Proposition 7.10(ii) is homeomorphic to a
closed ball.

Lemma 7.12. Let n, k,m € N such that k + m < n, and let N € u, such that the
gradient flow on Gtyim »(C) with respect to N strictly preserves positivity. Let Z be a
real (k+m) X n matrix whose rows form an orthonormal basis for the subspace spanned
by the eigenvectors of iN corresponding to the k + m largest eigenvalues, so that in
particular z7Z" = Tiim.

(i) All (k + m) x (k +m) minors of Z are positive (perhaps after negating a row of Z).
(ii) We have N (ker(Z)) C ker(Z).

>0

Proof. (i) By Lemma 2.13(1), it suffices to verify that the row span of Z lies in Gr,, .

This follows from Lemma 6.3 (which also shows that Z is well-defined).
(i1) This follows from the fact that ker(Z) is spanned by the eigenvectors of iN
corresponding to the n — k — m smallest eigenvalues. O

Theorem 7.13. Let n, k,m € N such that k + m < n, and let N € w, such that the
gradient flows on both Gry , (C) and Gty o (C) with respect to N strictly preserve pos-
itivity. (Recall that such N are explicitly described by Corollary 5.15.) Let Z be any real
(k+m) x n matrix whose rows form a basis for the subspace spanned by the eigenvectors of
iN corresponding to the k+m largest eigenvalues. Then the amplituhedron A, i 1 (Z) is
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well-defined (perhaps after negating a row of Z). It is homeomorphic to a closed ball, its
interior is homeomorphic to an open ball, and its boundary is homeomorphic to a sphere.

Proof. By Definition 7.4, we may assume that the rows of Z are orthonormal. Then by
Lemma 7.12(i), all (k +m) x (k +m) minors of Z are positive (perhaps after negating a
row of Z), so the amplituhedron A, i, (Z) is well-defined. We also have N (ker(Z)) <
ker(Z). Consider the gradient flow on Gry_ g4, (C) with respectto M := ZN AN Wkt »
where we identify Gry i1, (C) with the adjoint orbit O,, via (4.1). We apply Theo-
rem 6.12, taking S to be A, x.m(Z). The space S is compact because it is the image

of the compact space Grkz,g under the continuous map Z. The remaining hypotheses of
Theorem 6.12 follow from Proposition 7.10(ii). O

Remark 7.14. While Theorem 7.13 applies only to a special subset of amplituhedra, we
expect that every amplituhedron is homeomorphic to a closed ball. It would be inter-
esting to determine whether this can be proved using Theorem 6.12, by constructing a
contractive gradient flow on an arbitrary amplituhedron, or if only a distinguished subset
of amplituhedra admit contractive gradient flows.

7.5. Twisted Vandermonde amplituhedra. We now exhibit an explicit family of matrices
Z for which Theorem 7.13 implies that the corresponding amplituhedra A, i, (Z) are
homeomorphic to closed balls. Our description will use the Vandermonde flags intro-
duced in Sect. 4.4 and the twist map ¥ from Sect. 3.3.

Definition 7.15. Let n, k,m € Nsuchthatk+m < n.LetV € V;O be a totally pos-
itive Vandermonde flag, so that ¥ (V) € F1> 0 by Theorem 3.26. Regarding (V) as a
sequence of subspaces of C", let Z be a (k + m) x n real matrix whose rows form a
basis for the subspace of dimension k + m. By Lemma 2.13(i), all (k + m) x (k + m)
minors of Z are positive (perhaps after negating a row of Z). We call the corresponding
amplituhedron A, ., (Z) a twisted Vandermonde amplituhedron.

We observe that the definition of Z above depends only on k + m, not on k or m.
Therefore each such Z gives rise to several different twisted Vandermonde amplituhedra.

Example 7.16. We give an example in the case n := 3 and k + m := 2. As in Exam-
ple 4.25, we consider the Vandermonde flag Vand(), x), where A := (1,0, —1) and
x € ]P>2>0. Then the twisted flag ©#(Vand(x, x)) € Fl3 0 is represented by the matrix

S S __—X 3
2,.2,.2 2,,2.,2 2,.2,.2
XT+X5+X3 XTHX5+X3 XTHX5+X3

X1 (x22+2x§) X2 (xlz—x%) —Xx3 (2x12+x%)

2 2
\/(xl‘+x%+x§)(xlzx%+4x12x§+x%x32) \/(x12+x§+x§)(xlzx%+4x12x§+x§x§) \/(xlz+x§+x32)(x12x§+4x12x§+x%x§)
X2X3 2x1X3 X1X2

xlzx%+4x12x§+x%x32 x]2x§+4x]2x§+x%x§ xlzx%+4x|2x32+x22x§

Therefore the associated twisted Vandermonde amplituhedron A, x ,, (Z) is defined by

2 2
X1 X1 (x2+2x3) X2X3
2,22 2,.2,.2 2.2 2,2,.2.2 2.2 2,.2,.2.2
7 = \/x1+x2+x3 \/(xl+x2+x3)(x1x2+4x1x3+x2x3) \/xlx2+4x1x3+x2x3 <>
o 2 2
—X2 X2 (x7—x3) 2x1x3

2..2..2 2.2, 28 2.2, 42,2, 2.2 2.2.4,2,2,.2.2
\/x1+x2+x3 \/(xl+x2+x3)(x1x2+4x1x3+x2x3) Xy Xy +AXT X5 +x5 X3
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Corollary 7.17. Every twisted Vandermonde amplituhedron is homeomorphic to a closed
ball, its interior is homeomorphic to an open ball, and its boundary is homeomorphic
to a sphere.

Proof. Consider a twisted Vandermonde amplituhedron coming from the twisted Van-
dermonde flag ¥ (V). Let —N € O, correspond to ©(V) under the map (4.1). By
Corollary 4.24, we have iN € gl O Therefore by Corollary 5.15, the gradient flows on
both Gry_, (C) and Gry +m (C) with respect to N strictly preserve positivity. The result
then follows from Theorem 7.13. |

Remark 7.18. We note that the twisted Vandermonde amplituhedra are precisely those
which arise in Theorem 7.13 when the matrix N is tridiagonal. Recall that in general,
the matrices N in Theorem 7.13 are described by Corollary 5.15; for simplicity, here we
assume that k > 2 or k+m < n —2. When m is odd, all such matrices N are tridiagonal,
and therefore the twisted Vandermonde amplituhedra are the only ones which arise in
Theorem 7.13. However, when m is even, the corner entry (iN), 1 = (iN);, of iN
can be nonzero, of sign (=D =1 (We may still assume that the entries (iN); ;41 for
i =1,...,n — 1 are nonzero; if some such entry is zero, we can use the cyclic action
from Remark 2.16 to transform N into a tridiagonal matrix.)

We focus in this subsection on the case that the corner entry is zero because when N
is tridiagonal, we have an explicit description of the corresponding element of the flag
variety Fl,, (C), by Corollary 4.24. It would be interesting to generalize this description to
the case when the corner entry of N is nonzero. The simplest such matrix N is given by

0 10---0(=D*!
1 01---0 O
0 10---0 O

0 00---0 1

(-p=too---1 0
This is the matrix used by Galashin, Karp, and Lam [GKL22b, Theorem 1] to show
that the totally nonnegative Grassmannian Gr,i?l is homeomorphic to a closed ball (cf.
Sect. 6.3). They also studied the corresponding amplituhedron in [GKL22b, Section
5], which they called the cyclically symmetric amplituhedron, because the cyclic action
from Remark 2.16 on Grfz restricts coherently to a cyclic action on A,  ,,(Z). For
example, when k = 1 and m = 2, the cyclically symmetric amplituhedron is a regular

n-gon. For this specific choice of iV, there is an elegant explicit description of the row
span of the associated (k + m) x n matrix Z [Kar19].

Remark 7.19. Even more generally, as discussed in Remark 6.17, we can replace iN
with M € gl,(R) (not necessarily symmetric), although this setup falls outside the orbit
framework. If M satisfies condition Theorem 5.14(iv) for both k£ and k + m, we can
conclude that the corresponding amplituhedron Ay, « » (Z) is homeomorphic to a closed
ball. Still, we expect that some significant new ideas are required to use this approach
to show that every amplituhedron A, ., (Z) is homeomorphic to a closed ball. We can
justify this with a dimension count. Indeed, the space of amplituhedra A, i », (Z) for
all Z is naturally indexed by Grf, +0m’n, which has dimension (k + m)(n — k — m). On
the other hand, consider the space of matrices M < gl,(R) satisfying the condition
Theorem 5.14(iv) for both k and k +m, modulo translation by scalar multiples of 7,, and
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rescaling by R ¢. Then assuming k > 2 or k + m < n — 2, the dimension of this space
is either 3n — 2 (if m is even) or 3n — 4 (if m is odd). Note that when 4 < k+m <n —4
and n > 15, we have (k + m)(n — k — m) > 3n — 2. However, it may be possible to
use the approach above to show that every amplituhedron A,  ,, (Z) withk+m < 3 or
n—k—m < 3is homeomorphic to a closed ball, generalizing the arguments in Sect. 7.6.

7.6. The case whenn—k—m < 2. Inthis subsection, we show that every amplituhedron
Apk.m(Z) witheither k+m < 2orn—k —m < 21is a twisted Vandermonde amplituhe-
dron. It particular, every such amplituhedron is homeomorphic to a closed ball. Recall
from (2.7) that for any K’ € K, we have a surjective projection map Fl;?n —» Fl;g);n.

Also recall the space of totally positive Vandermonde flags V 9 from Definition 4.28.
Lemma 7.20. Let n > 2.

(i) The projection map FI;O — F1{>102},n is a bijection when restricted to ¥ (V,, 0y,
(ii) The projection map FI;O — Fl{>no_2’n_1};n is a bijection when restricted to l?(V,fO).

Proof. (i) By Corollary 4.29, it suffices to prove that that the map
(gl;%) N/~ —> FIY,.,. g(iDiagl)g™" g

is a bijection, that is, any given V = (V1, V») € F1{>1(?2}; , has a unique preimage

L € (igl; 9 N u,, modulo translating L by a scalar multiple of 7, and rescaling it
by an element of R.y. We will show, equivalently, that V has a unique preimage L
which lies in jfo, for some strictly decreasing A € R” with Ay = 0 and A, = —1.

Recall the torus action from Remark 2.22. After replacing V and L by, respectively,
hV and hLh~! for some h € T;O, we may assume that Vj is spanned by (1,..., 1).
Now take a nonzero vector y = (y1,...,yn) € V; orthogonal to (1,..., 1), so that
y1+---+y, = 0. By Lemma 2.13(i), the 2 x 2 minors of the matrix

1 —y1
1 —Yn
are all positive (perhaps after replacing y by —y), whence y; > --- > y,. We must

show that there is a unique L € (igl;, %) N u, satisfying the following two properties:

(a) the vectors (1, ..., 1) and y are eigenvectors of —iL with eigenvalues 0 and —1,
respectively; and
(b) the two largest eigenvalues of —iL are 0 and —1.

First we show that there is a unique L € (igl;; ) Nw, satisfying property (a). Write

blalo---O
arbray --- 0
L=i|0a@abs-- 01 cy = wherea,...,an1,bi,...,by €R.

000O0---b,
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Then property (a) holds if and only if

ai—1+bi+a; =0 and a;_1y;_1+biy;i +ajyiq1 =—y; forl <i <mn,
where we set ap, a, := 0. These equations have a unique solution, namely,

yit---+ty . .
aq=——forl<i<n-—1 and b; =—a;_1 —a; forl <i <n. (7.3)

Yi — Yi+l

Note that the conditions on y imply thata; > Ofor1 <i <n—1,s0L € ig[jo.

Now we verify that the matrix L given by (7.3) satisfies property (b). Since L(V}) €
Vi for k = 1, 2, we have that Vj is spanned by some k eigenvectors of —iL; we must
show that these eigenvectors correspond to the k largest eigenvalues. To this end, consider
the gradient flow on Gry , (C) with respect to —L, where we identify Gry , (C) with the
adjoint orbit O, via (4.1). By Corollary 5.15, this flow strictly preserves positivity, and
by construction, Vj is a totally positive equilibrium point. Therefore by Lemma 6.4(ii)
(using Lemma 6.3), we have that V is spanned by the eigenvectors of —i L corresponding
to the k largest eigenvalues, as desired.

(i) By (4.5) we have rev(V;%) = V>0 whence p(@ (V%) = 0V by
Lemma 3.28(ii). Therefore the result follows from part (i) and Lemma 3.15(ii). O

Remark 7.21. Tt is tempting to try to prove Lemma 7.20(i) by observing that the pro-
jection map F1~ 0 Fl{ﬁ?z}; , is a bijection when restricted to V,” 0, and then applying
bijectivity of the twist map ¢. However, there is good reason to expect such an ar-
gument may fail. Indeed, fix a strictly decreasing A € R". Then the projection map
FI>0 — Flﬁ?;n = IF";Bl is a bijection when restricted to {Vand(, x) : x € ]P”;Bl}, as
it sends Vand(1, x) to x. But the projection map Fl. 0 IP";BI is in general neither

injective nor surjective when restricted to ¢ ({Vand(i, x) : x € P’;Bl }). For example, let
A= (1,0, —1), as in Example 4.25. Then the projection map sends ¢ (Vand(x, x)) to

(y1:y2:y3):= (xl\/xlzxg +4x|2x32 +x§)c32 : xl(xg +2x32) : x2x3,/x|2 +x§ +x32) € IP2>0.

The points x = (1 : 1 : 1) and x = (+/10 : 4 : 2) have the same image, so the map
is not injective. Also, any such (y; : y» : y3) satisfies the constraint min(yy, y3) < 2
(proof omitted), so the map is not surjective.

Corollary 7.22. Every amplituhedron A, x m(Z) with eitherk+m < 2orn—k—m <2
is a twisted Vandermonde amplituhedron. In particular, it is homeomorphic to a closed
ball, its interior is homeomorphic to an open ball, and its boundary is homeomorphic
to a sphere.

Proof. Suppose that k + m < 2 orn —k —m < 2. Then Lemma 7.20 implies that
the projection map Fl, 0 Gr;fmy , 18 surjective when restricted to 19(Vn>0), SO ev-
ery amplituhedron A, x » (Z) is a twisted Vandermonde amplituhedron. The remaining

statements follow from Corollary 7.17. O
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8. Symmetric Toda Flow

The Toda lattice is an integrable Hamiltonian system which has been widely studied
since it was introduced by Toda in 1967 [Tod67]; see the survey of Kodama and Shipman
[KS18]. By work of Flaschka [Fla74], we may view the Toda lattice as a flow evolving on
an adjoint orbit O, . In this section, we observe that the Toda flow provides an example of
a gradient flow on O,. Curiously, this happens in two different ways: in both the normal
metric and the Kihler metric. The Toda flow is also an example of a flow which weakly
preserves positivity (in fact, in both the positive and negative time directions). As we
discuss further in Remark 8.7, while these results are largely implicit in the literature,
we believe the explicit focus on total positivity offers a new perspective. In particular, a
key role is played by the twist map ¢ introduced in Sect. 3.3, which facilitates the study
of the Toda flow as a gradient flow in the Kihler metric. This generalizes and clarifies a
construction of Bloch, Flaschka, and Ratiu [BFR90], as we explain in Remark 8.8.

8.1. Background. We introduce the (finite nonperiodic) Toda lattice; we refer to [KS18]
for further details. It is the Hamiltonian system with Hamiltonian

1 n 5 n—1 o
H(G1s .. s Gns Pls -y Pn) = Ez;pi +X;eq’ gi+l
i= i=

The Toda lattice may be interpreted as a system of n points on a line of unit mass
governed by an exponential potential.
Following Flaschka [Fla74], we set

4 —4i+1 . .
a,-::%e 2 forl <i<mn-—1 and bi::—%p,- forl <i <n.

Then the Hamiltonian equations become (with ag, a, := 0)
d,’ = a,'(b,'+1 —bl’) and I;,' = 2(ai2 _aizfl)'

We also let L be the tridiagonal matrix

b1a10~-~0 O—al 0 -0

arbray --- 0 a 0 —apy---0
Li=i|O@bi-- 0| othat my(—iL)y=|0 @ 0 -0

000O0:---b, 0O 0 0 ---0

where ,, was defined in Definition 3.2. Then we can write the flow of the Toda lattice
in the Lax form (cf. Lemma 5.7(i))

L(t) = [L@t), my(—iL(1))]. (8.1)

Therefore (8.1) defines a flow on the adjoint orbit O,

Above, L was assumed to be i times a real symmetric tridiagonal matrix, but more
generally, we can consider any L € O,.. We call the flow (8.1) defined on the tridiagonal
part of u,, the tridiagonal symmetric Toda flow, and call the flow defined on all of u,, the
full symmetric Toda flow, which was studied by Deift, Li, Nanda, and Tomei [DLNT86].
(The term symmetric is conventional, since L is usually defined to be a real symmetric
matrix, without the factor of i. We prefer instead to work in O, following e.g. [BFR90].)

Symes [Sym80] found an explicit solution to (8.1) using the Iwasawa decomposition
(cf. Proposition 3.1). It can be verified directly.
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Theorem 8.1 (Symes [Sym80, Section 7], [Sym82, (3.2)]). Let L(t) be a solution to the
Sfull symmetric Toda flow (8.1), with Loy € u,. Then

L(t) = mu(exp(—1iLo)) ™' Lo mu(exp(~1iLo)). (8.2)

We observe that using (8.2), one can read off the asymptotic behavior of L(¢) as
t — Zoo. In particular, the limits are both diagonal matrices; see Remark 8.12.

Remark 8.2. Another important reformulation of the Toda lattice was given by Kostant
[Kos79] in terms of tridiagonal Hessenberg matrices, rather than symmetric matrices.
This was generalized to all Hessenberg matrices by Ercolani, Flaschka, and Singer
[EFS93], and is known as the full Kostant—Toda lattice. The Kostant-Toda flows are
in general more complicated than the symmetric Toda flows; for example, they are not
necessarily complete. As is the case for the symmetric Toda flow, total positivity plays
an important role for the Kostant—Toda flow, as shown by Gekhtman and Shapiro [GS97]
and Kodama and Williams [KW15]. It would be interesting to explore this connection
further. We leave this to future work, since the Kostant—Toda flow does not directly fit
into the framework of adjoint orbits considered in this paper.

8.2. The Toda flow as a gradient flow in the normal metric. In this subsection we con-
sider the tridiagonal symmetric Toda flow. Bloch [Blo90] observed that

my(—iLl) =[L,—iDiag(n —1,...,1,0)] for L € u, tridiagonal. (8.3)
Therefore the following result holds:

Theorem 8.3 (Bloch [B1090, Section 6]). Ser N := —iDiag(n—1,...,1,0) € u,, and
let Lo € u, be tridiagonal. Then the tridiagonal symmetric Toda flow (8.1) beginning
at Lo can be written as

L(t) = [L(t), [L(t), N]I.

In particular (cf. Proposition 5.21), the tridiagonal symmetric Toda flow restricted to
O, is the gradient flow with respect to N in the normal metric.

Remark 8.4. In general, for L € O, not assumed to be tridiagonal, the equality (8.3) fails
to hold, and (8.1) is not a gradient flow in the normal metric. Nevertheless, De Mari and
Pedroni [DMP99, Theorem 5.1] (cf. [BGYS, Proposition 2.3]) generalized Theorem 8.3
to the full symmetric Toda flow, by showing that it is a gradient flow in a modification
of the normal metric. Bloch and Gekhtman [BG98, Section 2.3] proved an analogous
result for the full Kostant—Toda flow.

8.3. The Toda flow as a twisted gradient flow in the Kdihler metric. In this subsection

we consider the full symmetric Toda flow, restricted to the totally nonnegative part (’)AZO
of an adjoint orbit. Our analysis is based on Symes’s formula (8.2), and the twist map
introduced in Sect. 3.3.

Definition 8.5. Recall the twist map ® : FIZ° — FI=0 from Definition 3.21. Given any
strictly decreasing A € R”, via the identification (4.1), we may also regard the twist map

as amap Uy : Ofo — Ofo. Explicitly, it is the involution defined as
9;.(g(iDiag(1))g™") := t(g)(iDiag(1))(t(g)) ™" = 8,¢~ ' (iDiag(r))gs, forall g € UF°.

(If A € R" is weakly decreasing but not strictly decreasing, then ¢, is undefined; cf.
Remark 3.22.)
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We also recall the cell decomposition (2.8) of Flfo. If A € R” is strictly decreasing,
this induces a cell decomposition of Ofo via (4.1).

Theorem 8.6. Let A € R” be strictly decreasing, and set N := —iDiag(L) € u,,.

(i) The full symmetric Toda flow on O, weakly preserves positivity in both the positive
and negative time directions. That is, if L(t) evolves according to (8.1) beginning at

Ly e Ofo, then L(t) € Ofofor allt € R. Moreover, L(t) (fort € R) is contained
in a single cell of the cell decomposition (2.8) of (9%0.

(ii) The full symmetric Toda flow restricted to Ofo is the twisted gradient flow with
respect to N in the Kdhler metric. That is, if L(t) evolves according to (8.1) begin-
ning at Lo € Ofo, then 9, (L(t)) is the gradient flow (5.7) with respect to N in the
Kdihler metric beginning at ¥, (L) € OAZO.

We observe that because the matrix N above is diagonal, the twisted flow o (L(?))
is contained in a torus orbit of O,. This fact is relevant if we wish to map such flows to
a moment polytope, as considered by Bloch, Flaschka, and Ratiu [BFR90] and Kodama
and Williams [KW15]. We discuss this further in Remark 8.8.

Proof. LetLg € Ofo, and set My := U, (Lg) € O/\ZO. Let L(t) evolve according to (8.1)
beginning at L, and let M (¢) be the gradient flow with respect to N in the Kihler metric
beginning at M. Using Theorem 3.26, it suffices to verify the following two facts.

(1) We have M(¢) € Ofo for all ¢t € R. Moreover, M (t) (for ¢t € R) is contained in a

single cell of the cell decomposition (2.8) of Ofo.
(ii) We have L(t) = 9, (M (¢)) for all r € R.

Since My € Ofo, we can write My = go(i Diag()»))go_1 for some gg € U%O. Then
we define g(¢) € U, as in (5.7), so that M (r) = g(¢)(i Diag(»))g(r)~! for all t € R:

g(t) := mu(exp(tiN)go) = my(Diag(e™', ..., e*") go).

Since Diag(e’™!, ..., e*) € T, and each cell of (2.8) is preserved by the action of

n
T, 0 we obtain part (i) above.
Now observe that

92(M (1)) = 8,8(1)~" (iDiag(A) ) g(1)5,.

In particular, taking ¢+ = 0 we obtain

Lo = 9(Mo) = 8,8, ' (iDiag(:))god-
Therefore using (8.2), in order to prove part (ii) above, it suffices to show that

8(t) = godn mu(exp(—1iLo))dy.
This equality follows from exp(—tiLg) = 8ng0_1 Diag(e'’, ..., e'*) go8,, along with
the fact that wy commutes with both left multiplication by U,, and right multiplication
by T, (C). O
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Remark 8.7. The fact that a trajectory L(¢) of the full symmetric Toda flow (8.1) can be
realized as a gradient flow in a torus orbit of a flag variety is well-known (see e.g. [Sin91,
Section 5.2]). This was first observed in the tridiagonal case by Moser [Mos75, (1.4)],
who embedded Jfo inside IP”Q)l (cf. Remark 4.27). The new insight provided here is

that there is a canonical such embedding when Lg € Ofo, which is given by a smooth

map defined on all of Ofo (namely, the twist map). The subtlety of constructing such a
map in general was noted by Ercolani, Flaschka, and Singer [EFS93, Remark p. 194];
also see Remark 8.8. For a related approach to this problem, see [MT, Theorem 1].

Remark 8.8. As we alluded to in Remark 3.24, when we restrict the domain of the twist
map v, from Ofo to the tridiagonal subset jfo (discussed in Sect. 4.4), it specializes to
a map constructed by Bloch, Flaschka, and Ratiu [BFR90] in general Lie type, and de-
noted ¢. (The map ¢ of [BFR90] is different from the map we denote by the same letter in
Definition 3.17. We also emphasize that in general, the image 9 (J, /\30) is not contained
in jfo.) The context in which the map ¢ appeared in [BFR90] is similar to the one in

the current discussion, namely, in order to realize the Toda flow on jfo as a gradient
flow compatible with the torus action; see [BFR90, Theorem p. 63]. The ultimate goal

in [BFR90] was to prove Theorem 4.19, by mapping Jfo to its moment polytope. It

turns out that the usual moment map is neither injective nor surjective on \7)\20, but if
we first apply the map ¢, we obtain a homeomorphism onto the moment polytope which
restricts to a diffeomorphism from jfo onto its interior.

The subtlety in constructing the maps ¥, and ¢ is to pick a canonical representative
in O, (out of a possible 2") for an arbitrary element of Fl, (R). It is impossible to pick
a smooth representative over all of Fl,, (R), which is why in defining ¢ we restrict to the
totally nonnegative part Fl,?0 and pick the representative in which all left-justified minors
are nonnegative. In [BFR90], the representative in O,, is chosen to be the one in which
the first row is positive. This is ultimately equivalent to our choice (up to multiplying
by 8,) when we restrict to FI>°, but on the boundary of FIZ? some entries of the first
row of the matrix representative may be zero; see Remark 3.20. This issue necessitated
in [BFR90] an intricate analysis involving the Bruhat decomposition. (The embedding
jfo — P’;Bl of Moser mentioned in Remark 8.7 does not extend to the closure 7, AZO
for similar reasons.) We find the perspective of total positivity gives a natural way to
define and extend the map ¢, which requires no special consideration at the boundary.

Remark 8.9. In the case of the real tridiagonal symmetric Toda flow, there is no loss of
generality in restricting to the totally nonnegative part 7, fo. That is, suppose we are given
Lo € u, such that —iLg is a real tridiagonal symmetric matrix. Then we can conjugate
L by an element of the form Diag(+£1, ..., £1) so that the off-diagonal entries of —iLg
become nonnegative, whence Lg € J, fo. On the other hand, this conjugation commutes
with the flow (8.1). We note that this reduction to the totally nonnegative case from the
real case does not extend to the complex case, nor to the real full symmetric case.

Remark 8.10. Kodama and Williams [KW15, Section 5] proved a result analogous to
Theorem 8.6(i) for the full Kostant—Toda flow. Namely, to any point in Fl,?0 they as-
sociate a Hessenberg matrix, and show that the corresponding Kostant-Toda flow is
complete; moreover, when the flow is mapped back to Flfo, it is contained inside a
single cell of the cell decomposition (2.8). (In the case of the top-dimensional cell F1; 0
this is a special case of an earlier result of Gekhtman and Shapiro [GS97, Theorem 2].)
Kodama and Williams further translate their results to the full symmetric Toda lattice
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[KW15, Section 7], following a procedure of Bloch and Gekhtman [BG98]. This trans-
lation employs a different convention than we use for mapping between Fl,,(C) and O;,
(cf. Remark 4.3), and getting between the two (in the totally nonnegative case) requires
applying the twist map. In particular, Theorem 8.6(i) follows from [KW 15, Proposition
7.8] once we know the properties of the twist map given in Theorem 3.26.

Remark 8.11. Gladwell [Gla02, Theorem 2] proved a result analogous to Theorem 8.6(i)
for totally positive matrices. Namely, let M € gl,, (R) be symmetric, and let L(#) evolve
according to (8.1) beginning at Ly := iM € u,. Write L(¢) = iM(¢). Gladwell
showed that if M € GL,?O, then M(t) € GL,?0 forallt € R;and if M € GL,TO,
then M(t) € GL,, O for all # € R. We observe that this result neither directly implies,
nor is directly implied by, Theorem 8.6(i).

Remark 8.12. We note that the Toda flow does not quite fit into the framework of Sect. 6,
because it only weakly (rather than strictly) preserves positivity. In particular, we cannot
use the Toda flow to show that Ofo is homeomorphic to a closed ball. Nevertheless, we
can apply Remark 6.5 (along with Theorem 8.6) to obtain the sorting property for the
full symmetric Toda flow restricted to O3 0. Namely, letting L(r) € O;, evolve according

to (8.1) beginning at Ly € (9;0, we have

lim L(t) =iDiag(A(,...,4,) and lim L(r) =iDiag(A,, ..., A1).
t—00 t——00

In general, Chernyakov, Sharygin, and Sorin [CSS14, Section 3.3] (cf. [KW 15, Theorem
7.9] and [MT, Theorem 2]) showed that the limits of L(¢) as t — =00 are diagonal
matrices determined by the Schubert and opposite Schubert cells containing L.
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