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Abstract

Structural bioinformatics analyzes protein structural models with the goal
of uncovering molecular drivers of food functionality. This field aims to
develop tools that can rapidly extract relevant information from protein
databases as well as organize this information for researchers interested in
studying protein functionality. Food bioinformaticians take advantage of
millions of protein amino acid sequences and structures contained within
these databases, extracting features such as surface hydrophobicity that
are then used to model functionality, including solubility, thermostabil-
ity, and emulsification. This work is aided by a protein structure–function
relationship framework, in which bioinformatic properties are linked to
physicochemical experimentation. Strong bioinformatic correlations exist
for protein secondary structure, electrostatic potential, and surface hy-
drophobicity. Modeling changes in protein structures through molecular
mechanics is an increasingly accessible field that will continue to propel food
science research.
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1. INTRODUCTION

Bioinformatics is a diverse field with applications in biological sciences, including identifying new
vaccines and drugs, improving food protein functionality, and understanding protein interactions
(Aguilar-Toalá et al. 2019, Gauthier et al. 2018, Goodman et al. 2016, Lin et al. 2017). Bioin-
formatics can be broadly defined as the development and use of computer algorithms to analyze
biological data, including genetic information, protein amino acid sequences, and protein struc-
tures (Patel et al. 2019). With such a broad definition, it is useful to divide bioinformatics into
categories, and structural bioinformatics is one discipline that shows significant promise in food
science.

Structural bioinformatics analyzes experimental data and models protein molecular structures,
enhancing understanding of protein structure–function relationships. This field grew from the
work of Nobel Prize Laureate Christian Anfinsen, who demonstrated that a protein’s structure
dictates its function, which later became known as the thermodynamic hypothesis (Anfinsen 1973,
Hirata et al. 2018). Since that seminal work, countless biochemists, polymer physicists, and com-
puter scientists have contributed to the understanding of how protein molecules fold and its
implications in biological processes. In food science, bioinformatics is used to analyze protein
structures, providing insights into the effects of molecular structure on emulsification, foaming,
gelation, solubility, denaturation, and other important functionalities (Garcia-Moreno et al. 2020,
Gupta et al. 2016, Hou et al. 2019, Pucci et al. 2017, Tang 2017). This review focuses on the tools
available in the field of structural bioinformatics and how they are used to develop an enhanced
understanding of food functionalities.

2. PROTEIN SEQUENCE AND STRUCTURE OVERVIEW

Proteins comprise twenty unique amino acids, and the primary structure of the protein is the lin-
ear sequence of amino acids (Figure 1) (Ouellette & Rawn 2015). Secondary structure consists
of specific regular arrangements within the polypeptide chain formed due to hydrogen bonding
between the backbone atoms of the amino acid chains, namely oxygen atoms on the carbonyl
groups and the hydrogen atoms on the amino groups. These structures include α-helices or
β-pleated sheets that may be organized in parallel or antiparallel directions. Proteins can further

Primary structure
Amino acid sequence

Secondary structure
α-helix and β-sheet

Tertiary structure
Three-dimensional

folded structure

Quaternary structure
Complex of multiple

protein chains

a b dc d

Figure 1

Protein structure overview depicting, from left to right, the primary structure (amino acid sequence);
secondary structures (β-strands, α-helices, random coils); tertiary structure (folding of secondary structures
into a three-dimensional conformation); and quaternary structures (the organization of protein monomer
chains). Tertiary and quaternary structure PDB (Protein Data Bank) ID:1U6J (Berman et al. 2000).
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adopt three-dimensional (3D) tertiary structures, resulting from interactions between groups of
amino acids. Interactions can be covalent disulfide bonds between cysteine groups and noncovalent
interactions, including electrostatic, hydrophobic, hydrogen bonds, and van der Waals interac-
tions. In nature, many proteins exist as complexes consisting of two or more different polypeptide
chains, which is known as quaternary structure.The quaternary structure is primarily stabilized by
physical interactions, such as van derWaals, hydrophobic, hydrogen bonding, and/or electrostatic
interactions between the different polypeptide chains (Ouellette & Rawn 2015).

3. PROTEIN SEQUENCE AND STRUCTURE DATABASES

Protein databases are foundational in structural bioinformatics, and these include amino acid se-
quence databases, structural databases, and databases that organize proteins based on structural
features. Using databases allows food science researchers to develop models of protein function-
ality like solubility and denaturation (Hou et al. 2019, Pucci et al. 2017) as well as compare protein
structures for relevant features (Tandang-Silvas et al. 2010). Table 1 provides links to common
databases as well as all the tools discussed in this manuscript.

3.1. Sequence Databases, Multiple Sequence Alignment,
and Sequence Clustering Tools

Sequence databases are biological databases containing many nucleic acid or amino acid se-
quences deposited by researchers internationally. The large scale of these repositories led to the
development of sequence retrieval and clustering programs to search for homologous sequences
and create multiple sequence alignments (MSAs) because homologous sequences may share
structural similarities. There are two sequence databases, UniProt (Universal Protein Resource)
(http://www.uniprot.org) and NCBI (National Center for Biotechnology Information), that
are used by most researchers.

UniProt is a comprehensive resource for protein sequences and their functional annotations
(known binding substrates, biological functions, etc.). Each protein entry in the UniProt database
compiles information from four different UniProt services. UniProtKB (UniProt Knowledge-
base) cross-references and integrates information about proteins from various sources. UniRef
(UniProt Reference Clusters) uses sequence identity to combine sequences that are closely re-
lated to aid in increasing search speeds. UniParc (UniProt Archive) is a repository that consists
of the history of stored protein sequences. UniMES (UniProt Metagenomic and Environmental
Sequences) primarily consists of environmental and metagenomic data (UniProt Consort. 2008).
Information from these sources is aggregated into a single report about a protein when searched.
The other major database is the NCBI Protein database, which contains amino acid sequences
that have been translated from coding regions deposited in the GenBank and RefSeq databases.
It also incorporates data from PDB (Protein Data Bank), UniProtKB/Swiss-Prot, PIR (Protein
Information Resource), and PRF (Protein Research Foundation) databases (Acland et al. 2013).

Utilizing these databases is aided by sequence retrieval and alignment tools. The Basic Local
Alignment Search Tool (BLAST) (http://www.ncbi.nlm.nih.gov/blast) is one of the most pop-
ular programs to search for sequences similar to the query (user input) sequence. BLAST can be
run online through the NCBI website, or software can be downloaded and run on a user’s com-
puter. For amino acid sequence alignment, the algorithm finds similar regions between a query
sequence and sequences in the database by splitting the query sequence into smaller groupings of
amino acids. The segments that are similar to those in the database serve as hot spots where se-
quence alignment begins. This approach is relatively fast compared to other sequence alignment
methods ( Johnson et al. 2008).
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Table 1 Software used in various bioinformatics analyses

Types of software
and databases Name Function/brief description Link for the software/database

Sequence database UniProt Functionally annotated protein
sequences

http://www.uniprot.org

NCBI protein
database

Protein sequences translated from
GenBank and RefSeq databases

https://www.ncbi.nlm.nih.gov/protein/

Structure database PDB Experimentally determined
three-dimensional protein
structures

http://www.rcsb.org/

CATH Classification of protein domain
structures

http://www.cathdb.info

SCOP Classification of protein domain
structures

https://scop.mrc-lmb.cam.ac.uk/

Model database SWISS-MODEL
repository

Annotated 3D models of protein
structures generated by
SWISS-MODEL

http://swissmodel.expasy.org/repository/

AlphaFold database 3D models of protein structures
generated by AlphaFold

https://alphafold.ebi.ac.uk

Sequence search/
clustering

BLAST Searches for homologous sequences http://www.ncbi.nlm.nih.gov/blast
HMMER Profile Hidden Markov Models are

used to search for homologous
sequences

http://www.ebi.ac.uk/Tools/hmmer/

MMseqs2 Sequence similarity search tool using
k-mer similarity algorithm

https://github.com/soedinglab/mmseqs2

Homology modeling SWISS-MODEL Homology modeling using
rigid-fragment assembly technique

http://swissmodel.expasy.org

MODELLER Homology modeling using multiple
template structures

https://salilab.org/modeller/

Machine learning–
based modeling

AlphaFold2 Neural-network-based
three-dimensional protein
structure prediction

https://github.com/deepmind/alphafold

RoseTTaFold Multitrack network for protein
structure prediction

https://github.com/RosettaCommons/
RoseTTAFold

Structural assessment
tools

pLDDT by AlphaFold Assigns confidence values to the
predicted structure

https://github.com/deepmind/alphafold

MolProbity Validates predicted protein models http://molprobity.biochem.duke.edu
Pcons Consensus based method for model

quality assessment
http://pcons.net/

PrQ and ProQres Structure-based method for model
quality assessment

https://proq.bioinfo.se/ProQ/index.html.
iso8859-1

CASP Double-blind structure assessments https://predictioncenter.org/
CAMEO https://www.cameo3d.org/

Visualization PyMol Molecular visualization tool that
supports custom Python and pml
scripts

https://pymol.org/2/

Chimera Supports multiple extensions for
additional visualization support

https://www.cgl.ucsf.edu/chimera/

VMD Supports Tcl or Python scripts for
additional custom visualization
tools and can be used to prepare
molecular dynamics systems

https://www.ks.uiuc.edu/Research/vmd/

Swiss-PDB Viewer View and alter structural alignments
for SWISS-MODEL inputs;
provides structural assessment
using Ramachandran Plots

https://spdbv.unil.ch/

(Continued)
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Table 1 (Continued)

Types of software
and databases Name Function/brief description Link for the software/database

Protein–protein
docking

LzerD and
Multi-LzerD

LzerD can dock two proteins with
each other; multi-LzerD can dock
two or more proteins together

https://lzerd.kiharalab.org

Rosetta Dock Monte-Carlo-based algorithm for
protein docking

http://rosettadock.graylab.jhu.edu

HADDOCK Utilizes interface information from
experimental data; can also be used
for protein-oligosaccharide
docking

https://wenmr.science.uu.nl/haddock2.4/

ClusPro Uses PIPER docking program for
rigid body docking of proteins

https://cluspro.org

Protein–ligand
docking

AutoDock4 Predict protein–ligand interactions http://autodock.scripps.edu
Glide Part of the Schrodinger suite of

biological tools; has three docking
modes that can be used for
screening huge databases and
accurate and high-precision
docking

https://www.schrodinger.com/products/
glide

SwissDock Uses EADock DSS docking program http://www.swissdock.ch/
Molecular mechanics CHARMM Molecular simulation program to

assess dynamic properties of
macromolecules

www.charmm.org

CHARMM-GUI Generates input files and molecular
systems for molecular dynamics
simulations

http://www.charmm-gui.org

AMBER Can be used to build carbohydrate
models for molecular dynamics
simulations in addition to other
macromolecules

http://ambermd.org/

GROMACS Fast molecular dynamics simulation
program

https://www.gromacs.org/

NAMD Used for simulations of large
biological systems

https://www.ks.uiuc.edu/Research/namd/

Abbreviations: AMBER,AssociatedModel Buildingwith EnergyRefinement; BLAST,Basic Local Alignment SearchTool; CAMEO,Continuous Automated
Model EvaluatiOn; CASP, Critical Assessment of Structure Prediction; CATH, Classification, Architecture, Topology, Homology; CHARMM, Chemistry
at HARvard Macromolecular Mechanics; CHARMM-GUI, Chemistry at HARvard Macromolecular Mechanics Graphical User Interface; GROMACS,
Groningen Machine for Chemical Simulations; HADDOCK, High Ambiguity Driven protein-protein DOCKing); HMMER, name of software based on
Hidden Markov Models; LzerD, Local 3D Zernike descriptor-based protein docking; MMseqs, many-against-many sequence searching; NAMD, nanoscale
molecular dynamics; NCBI, National Center for Biotechnology Information; PDB, Protein Data Bank; pLDDT, predicted local distance difference test
score; PrQ, protein quality predictors; SCOP, structural classification of proteins; VMD, virtual molecular dynamics.

A second approach to finding similar sequences is based on profile hidden Markov models
(HMMs). HMMs are used across multiple disciplines to identify whether a sample is similar to a
training data set. In sequence alignment, HMMs convert the MSAs into a position-specific scor-
ing matrix that is used to search databases for similar sequences, reducing the perplexity (the
number of computations needed). This encodes evolutionary changes that have occurred in a set
of closely related sequences in a position-specific manner and captures information about gaps
due to deletions or insertions in the sequences (Eddy 1998). One online tool using HMMs is
HMMER (http://www.ebi.ac.uk/Tools/hmmer/), which identifies similar sequences by using
profile HMMs. HMMER incorporates four programs that iteratively search databases and rec-
ommend similar sequences. The similarity of resultant sequences is reported using E-values or
bit-scores,which aremetrics that show sequence similarity, and lowE-values indicate likely similar
sequences (Finn et al. 2011).
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Hhblits (HMM-HMM–based lightning-fast iterative sequence search) is a method that uses
HMM–HMM alignment for sequence searching. It extends the Hhsearch HMM–HMM align-
ment method for faster iterative sequence searching by using two prefilters before HMM–HMM
alignments are conducted. The method employed by Hhblits also improves the quality of align-
ment in the profile by adding pseudo counts, which prevent amino acid position probabilities from
becoming 0. It is possible that a particular amino acid at a given position is not observed in a data
set, but it is not necessarily true that it has a probability of 0, thus a pseudo count is added so that
the probability is always greater than 0. The profile generated is used to search against a separate
HMM database. Sequences that are below the predefined standard score (E-value) are added to
the initial query MSA. This appended query MSA is then used to build the profile HMM for the
next iteration of the search (Remmert et al. 2012).

3.2. Protein Structural Databases and Their Use in Developing
an Understanding of Protein Structure–Function Relationships

The PDB (http://www.rcsb.org) is the primary database for experimentally determined 3D
protein structures. It includes structures resolved using X-ray crystallography, nuclear magnetic
resonance, and cryo-electron microscopy methods. The database can be searched using the PDB
ID of a deposited structure (e.g., 2PHL is the PDB ID for phaseolin, a plant seed storage
protein), the amino acid sequence, the name of the protein (e.g., legumin), or the simplified
molecular input line-entry system (SMILES) code of the docked ligand, where the SMILES an-
notation is a one-line method of writing molecular structure [e.g., c1nc(c2c(n1)n(cn2)[C@H]3
[C@@H]([C@@H]([C@H](O3)CO[P@@]( = O)(O)O[P@]( = O)(O)OP( = O)(O)O)O)O)N) is
the SMILES code for ADENOSINE-5′-TRIPHOSPHATE] (Weininger 1988). The Protein
Feature View links with other databases to quickly compare sequences (UniProt) and structural
similarity (Pfam) (Berman et al. 2000, Rose et al. 2017).

In addition to PDB’s experimental structures, there are two primary databases that compile
models of protein structures. Protein model databases contain predictions of protein struc-
tures based on machine learning methods or automated homology modeling and may not have
experimental data to validate the accuracy of the model.

The SWISS-MODEL Repository (http://swissmodel.expasy.org/repository/) contains an-
notated 3D models of protein structures generated by automated homology modeling through
the SWISS-MODEL pipeline (Waterhouse et al. 2018). As of May 26, 2022, the database has
2,217,761 models for sequences in UniProtKB generated by SWISS-MODEL.The database uses
the QMEAN quality metric for model accuracy. QMEAN is a composite score that relies on cal-
culating the mean force between atoms in the protein, which can be compared to other proteins,
and a z-score is reported to determine the model’s relative accuracy (Bienert et al. 2016, Studer
et al. 2020).

The AlphaFold protein structure database (https://alphafold.ebi.ac.uk) contains 3D models
for protein sequences predicted by DeepMind’s AlphaFold2 ( Jumper et al. 2021). It contains a
large repertoire of predicted structures for the human proteome and other model organisms, in-
cluding soybeans and maize. The number of structures continues to grow, but in June of 2022,
it contained 995,411 predicted structures. It covers most sequences from the UniProt reference
proteome as well as Swiss-Prot, although it excludes proteins that are shorter than 16 or longer
than 2,700 amino acids. Proteins with nonstandard amino acids, such as hydroxyproline or hy-
droxylysine found in collagen or N-formylmethionine found in prokaryotic proteins, as well as
proteins found in viruses, are also excluded (Varadi et al. 2022).

With millions of available structures, organizing them is a daunting task. The Class, Ar-
chitecture, Topology, Homology (CATH) database (http://www.cathdb.info) classifies protein
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structures from PDB hierarchically based on their domains. Protein domains are smaller regions
of the amino acid chain that are capable of folding independently from the rest of the protein.
The Class component groups proteins based on secondary structures; Architecture groups them
according to orientation of secondary structures; Topology groups them based on the order of the
secondary structures, and at the Homologous superfamily level, the domains are grouped based
on their sequence and structural similarity (Knudsen & Wiuf 2010). CATH obtains domain in-
formation from data deposited in PDB and applies a combination of manual and computational
methods to identify and classify the domains based on structural similarity. Proteins that share sim-
ilar structures are also likely to have similar functionalities, allowing for the selection of proteins
for targeted applications.

The Structural Classification of Proteins (SCOP) database (https://scop.mrc-lmb.cam.
ac.uk/) is similar to the CATH database in that it also uses a hierarchical classification of pro-
tein domains.The classification is based on the family, superfamily, classes, and folds of the protein
(Hubbard et al. 1997). Protein families are characterized by proteins that share similarities in their
sequence, structure, or function owing to a shared ancestor. Superfamilies are the largest possible
group of proteins that share a common ancestor and are characterized by structural similarity,
even in the absence of strong sequence similarity. Classes correlate to the tertiary structure of the
protein such as the globular organization of proteins. Fold-based classification groups proteins
based on the topology of the tertiary structure, which considers similar secondary structure fea-
tures such as all α-helix and all β-sheet regions (Csaba et al. 2009). The classifications between
SCOP and CATH show some overlap, but the differences in grouping methods lead to some dif-
ference in how proteins are clustered. Using the databases in tandem is a useful strategy to gain
insight into which proteins share the greatest similarity with a structure of interest.

By grouping proteins based on sequence and structural similarity, insight into functional
attributes can be obtained by comparing conserved and divergent regions, where a conserved
region is a similar structure or amino acid sequence motif across time and species and divergent
areas show differences (Brown & Babbitt 2014; Tandang-Silvas et al. 2010, 2011, 2012; Uberto
& Moomaw 2013). This is based on the hypothesis that conserved regions are of particular
functional interest (Brown & Babbitt 2014, Rahman et al. 2020, Tandang-Silvas et al. 2010). Once
conserved regions are identified using sequence or structure alignment tools, they are analyzed
to understand functionality and its physical characteristics. This method has been applied to
plant-based storage proteins, showing sequence conservation within the 11S proteins of pumpkin,
soy, pea, and others ranged between 36% and 63% identical amino acids, and the maximum
root mean square difference (RMSD) between structures was ∼9 Å after structure alignment
(Tandang-Silvas et al. 2010). This was similar to the sequence conservation of pea protein 11S
subunits when classified into legumin A, J, and S families, where sequence identity was 38.9%
across all families (Helmick et al. 2021b). Further analysis revealed that internal protein cavities,
the number of intramolecular hydrogen bonds, length of looping regions, and proline are impor-
tant factors in distinguishing the high thermal stability of plant-based storage proteins, which is a
common trait of cupin proteins, and was supported through differential scanning calorimetry in
their work (Tandang-Silvas et al. 2010, Uberto &Moomaw 2013). Other research used homology
models of napin and cruciferin to compare their structural and sequence similarity to known
antimicrobial peptides, finding a conserved region with bacteriostatic properties (Rahman et al.
2020). Experimental validation showed that the napin proteins could effectively inhibit the
growth of Staphylococcus saprophyticus, although the cruciferin did not show the same properties
(Rahman et al. 2020). The conserved domain approach can also point to functional regions in
enzymes and allergens, and there is a conserved domain between a variety of allergenic tree nut
2S proteins (Brown & Babbitt 2014, Goodman et al. 2016). This similarity-based approach can be
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used in the food industry to identify which proteins have health-promoting peptides, allowing for
the selection of ingredients that could facilitate health claims of newly developed products, and it
can also be used to select proteins that would enhance shelf life through antimicrobial properties.

Some protein databases integrate structural information with experimental information, in-
cluding solubility (Hou et al. 2019), thermostability (Bava et al. 2004), isoelectric points (Kozlowski
2016), and enzyme activity (carbohydrates) (Cantarel et al. 2008).When using large data sets that
compile experimental information, it is important to consider that data are reported by researchers
using different methods to obtain experimental information. For example, the temperature and
enthalpy of denaturation can be obtained by measuring tryptophan fluorescence in ultraviolet
visible spectroscopy, circular dichroism, and differential scanning calorimetry (Bava et al. 2004).
Furthermore, thermodynamic parameters depend on solvent conditions (ionic strength and pH),
rate of temperature increase during the experiment, and protein structure (Bava et al. 2004, Sun
& Arntfield 2010). When generalizing models derived from data sets, experimental differences
must be addressed for robust model generation. Additionally, databases frequently have redun-
dant structures, over-representing a particular type of protein, reducing model generalizability,
and leading to faulty conclusions (Walsh et al. 2015).Web servers like PISCES minimize this bias
by removing similar proteins based on user-defined sequence similarity cutoffs (Walsh et al. 2015,
Wang et al. 2003). Once a diverse and representative data set is developed, protein structures can
be analyzed to produce models of functionality.

One approach to developing models from data sets is by comparing proteins from a data set
with a known functionality (e.g., thermal stability) to a second independent data set that is a ran-
dom collection of proteins. This allows for the development of statistical potentials (Miyazawa &
Jernigan 1996, Shen & Sali 2006). If an attribute is significantly more common in the protein
data set with known functionality than in the random data set, this may be a variable that im-
parts functionality. This concept was pioneered in assessing the interatomic distance of amino
acids in protein structures, finding that particular amino acid pairs, such as hydrophobic amino
acids, tended to be located physically close together (Miyazawa & Jernigan 1996, Shen & Sali
2006). These distances followed a Boltzmann distribution, which allowed for estimations of pro-
tein free energy based on interatomic distances and enhancing models of protein folding (Shen
& Sali 2006). Statistical potential is now used to improve model accuracy in several applications,
such as protein–protein docking, protein–ligand docking, and protein solubility or thermostability
enhancement (Alford et al. 2017, Hou et al. 2019, Pucci et al. 2017).

One example of using database information to model protein functionality is in making pre-
dictions of protein solubility (Hou et al. 2019). Solubility is a property dependent on many factors
(protein hydrophobicity, electrical charge, molecular weight, etc.), but through the use of a ran-
dom forest model, coupled with statistical potentials based on π electron interactions, Hou et al.
(2019) developed a model (named SOLart) that had R values of 0.78 when using the Esol database.
Protein thermostability was investigated using the ProTherm database to predict protein stability
using the Gibbs-Helmholtz model through the SCooP algorithm (Pucci et al. 2017). The algo-
rithm uses a linear combination of statistical potentials to predict the enthalpy and temperature
of denaturation from the database with R values of 0.80 and 0.72, respectively (Pucci et al. 2017).
The thermodynamic parameters obtained are used to solve the Gibbs-Helmholtz model of pro-
tein denaturation, providing the range of protein stability (Becktel & Schellman 1987, Pucci et al.
2017).

Working with data sets that have thousands, if not millions, of proteins requires knowledge of
data science programming languages, including R or Python, which can be a barrier to entry for
some researchers. However, bioinformatics tools like SOLart and SCooP are also implemented
through web servers or software that can help users apply the models to their own data, and entire
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issues of leading bioinformatics journals aggregate these data into annual publications of web-
based services (Brazas et al. 2010, Hou et al. 2019, Pucci et al. 2017). This can aid in selecting
proteins for product developers when solubility and thermal stability are important variables, such
as in nutritional beverages or egg replacement in the baking industry.

4. CONSTRUCTING NEW AND ACCURATE PROTEIN
STRUCTURAL MODELS

Structural databases contain many protein structures, but researchers often need to generate pro-
tein models based on amino acid sequences generated in their research or amino acid sequences
stored in databases. Model generation can be broadly grouped into homology modeling or ab
initio methods. Homology modeling uses an experimentally solved structure of a homologous
sequence as a template to generate a 3D model of the query sequence. Recent ab initio methods
use machine learning to generate protein structures without the use of a single reference template.
Both methods model secondary and tertiary structures of proteins by using either homologous
sequences and structures or the incorporation of advanced neural network architectures (Mirdita
et al. 2022).

4.1. Platforms for Generating Accurate Models of Protein Structure

SWISS-MODEL (http://swissmodel.expasy.org) is used for homology/comparative modeling
of protein structures. It employs a rigid fragment assembly technique,matching all similar regions
to the template and recreating similar structures (Waterhouse et al. 2018). To generate the model,
a user’s input sequence is compared against sequences in the ExPDB library, which is a structural
database derived from PDB. Structural alignment is generated using the template structures after
calculating the local pair-wise alignment of the query sequence to the template structure. The
model is built by averaging the positions of the backbone atoms in the template structure. In
regions with indels (insertions or deletions), the template coordinates cannot be used for model
generation, so a set of compatible fragments with the neighboring stems in the template struc-
ture is generated using constraint space programming (CSP). A scoring scheme that considers
force field energy, favorable interactions, and steric hindrance selects the best-formed loop for
these regions. An experimentally determined loop library is used for fragments if CSP cannot
model the loops well. Steepest descent energy minimization, using the GROMOS96 force field,
normalizes deviations in themodeled structure.The outputmodel file contains a C-score that esti-
mates the variability of all template structures for every position. A C-score of 99 indicates regions
where the model could not use template coordinates or information owing to indels (Schwede
et al. 2003). These steps are completed in minutes using an online server, and SWISS-MODEL
can produce quaternary structure, which is not always the case in homology modeling software.

MODELLER is another homology modeling software that follows the main steps of template
search, alignment of the query and template, and building the model with evaluation metrics.
Unlike SWISS-MODEL, MODELLER combines information derived from multiple template
structures in two ways. Different template structures may be aligned to different domains of
the query sequence without much overlap, aiding in constructing a homology-based model on
the query sequence. Additionally, multiple template structures may align with the same domain
of the query sequence in which case the homology model would be constructed by selecting
the best template that fits the local context. Hence, MODELLER includes multiple template
structures that may differ from each other but still have an overall similarity to the query
sequence. These templates all contribute to modeling different sections of the target sequence.
Query–template alignment is conducted by aligning multiple sequences from a database of
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both the query and template. MODELLER then generates a homologous structure by using
distance geometry or other techniques that satisfy information of spatial restraints derived
from the alignment. For model accuracy, MODELLER extracts distance and dihedral angle
restraints from the query–template alignment, the statistical information for the dihedral angles,
the nonbonded related atomic distance from a representative subset of all known proteins, and
stereochemical restraints (bond length and angle) from the CHARMM (Chemistry at Harvard
Macromolecular Mechanics) force field. It then refines the model structure using methods that
aid in spatial restraint violation minimization, relying on molecular dynamics (Fiser & Šali 2003).
MODELLER does not build a quaternary structure by default, although this can be developed
through modeling each subunit of a larger protein structure individually.

Homology models depend on the presence of an experimentally solved template with high
sequence similarity (>30%) to model the structures of the query sequence (Patel et al. 2019).
This makes it difficult for homology modeling algorithms to generate accurate models without
template information from databases. Machine learning methods can be used to circumvent this
drawback.

AlphaFold2 is a neural-network-based protein structure modeling tool that predicts the 3D
structures of query sequences with high accuracy, even without close homolog templates ( Jumper
et al. 2021). Structures predicted by AlphaFold2 proved to be highly accurate in CASP14 (Critical
Assessment of Structure Prediction), which is a biannual competition of more than 100 protein
modeling researcher groups to develop better prediction algorithms (Kryshtafovych et al. 2021).
AlphaFold2 structures had a median backbone accuracy of 0.96 Å Cα RMSD when considering
95% of amino acids and an all-atom accuracy of 1.5 Å when compared to X-ray crystallography
models. The next best prediction method’s median backbone accuracy was 2.8 Å RMSD at 95%
residue coverage and all-atom accuracy of 3.5 Å RMSD (width of the carbon atom is 1.4 Å). This
makes AlphaFold2 ab initio structures competitive with X-ray crystallography structures in terms
of model accuracy.

In AlphaFold2, a query sequence is compared against sequence databases to build an MSA of
homologous sequences that is used as one of several inputs into a neural network architecture.
The first two layers exchange information from an MSA that aids in spatial arrangements of the
final protein structure. A structural layer then incorporates information from structures used in
training data. After an initial model is built, the program refines amino acid side-chain placements
iteratively. This iterative process is referred to as recycling, and it was shown to greatly improve
the accuracy of predictions for side chains ( Jumper et al. 2021). AlphaFold2 is highly accurate,
although it is limited to proteins of fewer than 2,700 amino acids, and takes several hours to con-
struct protein models when run using the Google Colab notebook that serves as the AlphaFold2
web server (https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/
AlphaFold2.ipynb).

AlphaFold2 assigns confidence scores to its predicted models through predicted local distance
difference test scores (Figure 2). Every residue in the structure receives a score ranging from 0 to
100 wherein a score of 100 shows the highest confidence in the position and atomic coordinates of
that residue.These are calculated at the end of the network using small-scale per-residue networks
( Jumper et al. 2021).

RoseTTaFold is an alternative structure prediction algorithm that also incorporates a multi-
track neural network to effectively design accurate proteinmodels. It consists of a one-dimensional
(1D) sequence alignment track, a two-dimensional (2D) track of the distance matrix (map), and
a 3D backbone coordinate track. This parallel flow of information ensures the understanding of
residue distances, sequence, atomic coordinates, and residue orientation information in modeling
the final structure. This is in comparison to the AlphaFold2 network architecture wherein the 1D
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Figure 2

pLDDT (predicted local distance difference test) scores. Red regions indicate high confidence and blue
regions indicate low confidence in the protein structure predicted using AlphaFold2. AlphaFold Database
ID: AF-A0A1D6PQ72.

and 2D information of sequences and distance maps gets processed first, followed by the structure
module considering the 3D coordinates. The relationship between the sequence and structure can
be extractedmore effectively using this three-track flow of information as compared to a two-track
network. The final predicted 3D structures are constructed by averaging the 1D and 2D features
and feeding them to a special Euclidian 3D [SE(3)]-equivariant layer, and RoseTTaFold also avail-
able as an online tool (https://www.rosettacommons.org/docs/latest/Rosetta-Servers) (Baek
et al. 2021).

4.2. Tools Available for Independent Validation of Structure Model Accuracy

Although the above programs provide model quality estimators, several tools exist to indepen-
dently validate models. Assessment methods provide a range of confidence levels in prediction
accuracy over the entire structure. Regions of the structure with low prediction confidence can
further be refined using alternative modeling strategies before using them to model functionality
or interactions with other macromolecules.

MolProbity (http://molprobity.biochem.duke.edu) is one tool to validate models. It builds
on software like PROCHECK that has primarily been used for the assessment of homology mod-
els. MolProbity has multiple categories of structure check parameters, such as Ramachandran
plots for the φ, ψ backbone angles, all-atom contact assessment, sidechain rotamer χ angles, and
torsion angle criteria.MolProbity incorporates the REDUCE software to add hydrogen bonds to
structures, which is necessary for the assessment of all-atom contact clash analysis and optimizes
their positions. The PROBE program then analyzes the all-atom contacts by measuring the over-
lap between nonbonded atom pairs. An overlap of 0.4 Å or more is considered a clash (Chen et al.
2010, Williams et al. 2018).

A second suite of programs is available from the Wallner & Elofsson (2007) research group.
These methods use three categories of programs developed for the assessment of model qual-
ity: consensus-based, structure-based, and evolutionary-based. Consensus-based methods, such as
Pcons, assess multiple predicted models for structural consensus by comparing the similarity of
the selected models to all other predicted models in the consensus. It uses a structural superpo-
sition algorithm called dLGscore to obtain structural consensus. It depends on the idea that if a
pattern is recurring in multiple models, it is likely to be correct. The result is a global and local
quality score indicating correctness.

Structure-based methods (ProQ and ProQres) use structural features of proteins, including
residue or atom contacts and agreement of tertiary structure to the secondary structure. These
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features are used as inputs to a trained neural network that predicts model quality (Wallner &
Elofsson 2007). Although ProQ predicts the global quality by extracting these features from a
whole-protein model, ProQres predicts the local quality of the structure.

Consensus methods have been shown to perform best in most cases, whereas ProQprof per-
forms best when there is a long evolutionary distance between the predicted model’s query
sequence and the template used for alignment. ProQres depends on high-quality predicted mod-
els to assess the local quality of the structural features of the overall model to match the quality of
the training set of the network (Wallner & Elofsson 2007).

In addition to servers, competitions such asCASP, a biannual double-blinded experiment, assess
protein monomer and oligomer structure prediction methodologies. Participants are provided
with the amino acid sequence of a protein and then generate a 3D structure.These submissions are
compared against the experimentally determined (X-ray crystallography) structures of the target
and assessed for the accuracy of the modeled structure, including protein features and residue
placement. CASP provides a platform for assessing the performance of breakthrough tools, such
as AlphaFold2, in predicting structures and encourages the development of tools for improved
predictions (Kryshtafovych et al. 2021).

CAMEO (Continuous Automated Model EvaluatiOn) assessments are a more frequent blind
assessment of structure prediction methodologies. CAMEO is based on the model prediction of
sequences that are prereleased weekly before the structures are published in PDB. It collects mod-
els over a four-day window and releases the benchmarking results of the models weekly. This
provides developers with a tool to constantly validate their methods (Haas et al. 2018).

5. SOFTWARE FOR ANALYZING PROTEIN STRUCTURAL MODELS
AND APPLICATIONS IN FOOD SCIENCE

Once an accurate protein model is available, whether from a database or modeling platform, re-
searchers extract structural information of interest. There are several programs that aid in this
research, but the most common are PyMol, Chimera, and Swiss-PDB Viewer.

PyMol is a molecular visualization tool (based on Python) that is used to display and assess
atomic- and residue-level distances in biomolecular structures such as protein, DNA, and RNAs.
It is an effective tool to visualize structures with different representations, including molecular
surfaces, cartoons of the secondary structures, and atomic structures, aiding in the interpretation of
interactions with ligands and protein folding. It further supports custom Python or PyMol Macro
Language (pml) scripts that can be used for extracting protein characteristics.Molecular dynamics
trajectories can be visualized as a movie in PyMol to understand the changes in interactions and
folds throughout the simulation. It has additional plugins that can be used to show clashes and
allow virtual screening of ligands and analysis of the binding sites. It also provides a mutagenesis
tool for introducing point mutations in proteins or nucleic acids (Mooers 2020, Seeliger & de
Groot 2010).

Chimera is another molecular visualization system primarily programmed in Python. It can
incorporate multiple extensions akin to the plugins that have many of the same functionalities as
PyMol and has the same visualization capacity as well. UCSF ChimeraX is a recent visualization
tool that builds on the original Chimera by incorporating capabilities to handle a wider range of
biological analyses such as medical imaging data as well as larger structures and has a user-friendly
interface (Pettersen et al. 2004, 2021).

Swiss-PDB Viewer has many of the same molecular display and analysis tools as the other
mentioned software programs (molecular representations, distances, etc.). It can be used to view
and alter structural alignments before using them as a direct input in SWISS-MODEL. Like
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PyMol and Chimera, it provides amino acid point mutation tools (Guex & Peitsch 1997). Unlike
PyMol and Chimera, the scripting language is YACC (Yet Another Compiler Compiler), which is
similar to languages such as Perl.

Using analytical software, proteins can be scanned for features, including surface hydropho-
bicity, secondary structure, and the electrostatic environment of the protein, that are related to
physical properties (Helmick et al. 2021a,b; Hou et al. 2019; Pripp et al. 2005; Pucci et al. 2017).
This analysis is aided by a quantitative structure–property relationship framework [also referred
to as quantitative structure–activity relationships], and this leads to an enhanced understanding
of emulsification abilities, solubility, gelation, and thermal stability (Garcia-Moreno et al. 2020,
Helmick et. al. 2023, Hou et al. 2019, Katritzky et al. 2010, Pucci et al. 2017, Tang 2017). A dif-
ficulty in modeling food functionality is that protein isolates used in food are often a mixture
of globulins, albumins, glutelins, and prolamins (Tandang-Silvas et al. 2011). As such, much of
the work that models the functionality of food protein takes averages of protein categories that
predominate the composition of extracted proteins, such as the 7S and 11S portions of many
plant-based proteins, glutenin and gliadin in wheat, and α/β lactoglobulin in whey (Ainis et al.
2019, Helmick et al. 2021b, Keller 2018, Tandang-Silvas et al. 2011, Wu et al. 2021).

One approach to model food functionality is to first relate bioinformatic structural properties
to physicochemical data from materials characterization techniques, including Fourier transform
infrared (FTIR) spectroscopy, circular dichroism, differential scanning calorimetry, zeta potential,
and surface hydrophobicity measurements (Helmick et al. 2021b, Katritzky et al. 2010, Pucci et al.
2017, Robertson &Murphy 1997). These techniques are often sensitive to specific bonding inter-
actions that can be readily extracted from bioinformatic models, such as hydrogen bonding (FTIR)
or electrostatic interactions (zeta potential). Information from these physicochemical techniques
correlates to attributes in food, such as texture and mouthfeel, and rheological characterizations,
and these techniques make up much of the base structure–function relationships in food protein
(Dickie & Kokini 1983, Helmick et. al. 2023, Rasheed et al. 2020, Turasan et al. 2017). Utilizing
these approaches, food bioinformaticians aid in providing molecular understanding and drivers of
food functionality, developing in silico models of protein functionality.

Secondary structure is a useful attribute in describing the functionality of food proteins and
has been shown to correlate with thermal stability, gelation, and emulsification (Barth 2007, Patel
et al. 2019, Tang 2017). Experimentally, secondary structure is assigned using circular dichroism,
Raman, or FTIR spectroscopy, and the quantification of secondary structure is based on curve
fitting the Amide I region or observing ellipticity at specific wavelengths (Barth 2007, Turasan &
Kokini 2016). Curve fits are based on comparing the results of spectroscopic techniques with X-
ray crystallography models of proteins that predominantly have a single secondary structure, and
these become representative spectroscopic readings for that secondary structure (Goormaghtigh
et al. 2009, Turasan & Kokini 2016). Standard deviations for these techniques are between 8%
and 24%when compared to X-ray crystallographymodels (Goormaghtigh et al. 2009).Homology
models with sequence identities greater than 30% typically deviate from the X-ray crystallography
models by ∼2 Å (Patel et al. 2019). Thus, the information gained from bioinformatic analysis,
even of homology models, is comparable to the experimental results in observing native protein
structures from X-ray crystallography. An example comparing an X-ray crystallography structure
and homology model is shown in Figure 3. These models represent the native structure of the
protein, and starting from the native structure can be useful in deriving relationships, even though
the proteins have not been subjected to extraction and processing.

In work with kafirin films, solvent polarity was correlated with the formation of α-helical
structures, confirmed by circular dichroism (Dianda et al. 2019). This was bioinformatically
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Figure 3

(a) Representative image of a homology model generated in SWISS-MODEL from a soybean amino acid
sequence (PI11827.2) and visualized in Chimera. Coloring between the X-ray crystallography structure
(1IPK) and homology model shows sequence conservation. (b) Display of solvent-accessible surface area
colored using the Kyte-Doolittle hydrophobicity scale where yellow is the most hydrophobic (+4.5), blue is
the least hydrophobic (−4.5), and gray is neutral (∼0). (c) Representative image on solving the Poisson-
Boltzmann model for a protein’s structure. Homology model of pea 7S protein, accession CBK38923.1,
solved at pH 7, 25°C, and no mobile ion presence. This is two sides of the same protein molecule showing
the anisotropy of charge in the pea protein molecule.

investigated by using the I-TASSER homology modeling platform and analysis of hydrophobic
amino acids in α-helices (Dianda et al. 2019). The burial and exposure of hydrophobic amino
acids were the cause of the observed structural change and correlated with the hydrophobicity
of films made with kafirin, measured through water contact angles (Dianda et al. 2019). Other
work focused on the alignment of hydrophobic and hydrophilic amino acids within protein pep-
tides and found that when hydrophobic residues occur at every N and N+4 position in α-helices,
or every other residue in β-sheets, hydrophobic and hydrophilic faces are formed, allowing for
suitable emulsifiers (Aguilar-Toalá et al. 2019). These findings were validated through tensiome-
ter experiments, finding a reduction in surface tension of emulsions made using bioinformatically
identified peptides (Garcia-Moreno et al. 2020). Less-ordered structures, indicated by high pro-
portions of random coils, are also favorably correlated with emulsification and foaming abilities
due to their molecular flexibility (Li et al. 2019, Tang 2017). Flexibility allows for rapid protein
denaturation at the oil–water or air–water interface, producing superior emulsions and foams with
strongly adsorbed protein (Li et al. 2019, Tang 2017). By using bioinformatics analysis, secondary
structures of food materials can be estimated before processing, which can be used as one criterion
in selecting proteins for targeted applications, such as emulsification or producing biodegradable
films.
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Surface hydrophobicity is another important feature that influences solubility, emulsification,
gelation, foaming, and interactions with other molecules (Helmick et al. 2021b, Moro et al. 2001,
Nakai 1983, Tong et al. 2021). Experimental measures of surface hydrophobicity include
fluorescent probes that bind to hydrophobic surface regions on a protein such as ANS
[1-(anilino)naphthalene-8-sulfonate] or PRODAN [6-propionyl-2-(N,N-dimethylamino)
naphthalene] and hydrophobic chromatography (Alizadeh-Pasdar & Li-Chan 2000, Heldt
et al. 2017). Bioinformatically, the surface hydrophobicity is calculated by measuring the solvent-
accessible surface area of the protein and finding the contribution of the surface area imparted
by hydrophobic amino acids using one of more than forty scales of amino acid hydrophobicity
(Heldt et al. 2017, Lienqueo et al. 2002, Salgado et al. 2005). This value is the average surface
hydrophobicity (ASH) (Heldt et al. 2017, Lienqueo et al. 2002). An example of a protein colored
based on surface hydrophobicity according to the Kyte-Doolittle scale is shown in Figure 3.
Two studies using small data sets (<7 proteins) found the ASH values from protein homology
models and X-ray crystallography models, obtained using the Eisenberg or Kyte-Doolittle scale
of hydrophobicity, correlated well with hydrophobic probes and chromatography (Heldt et al.
2017, Helmick et al. 2021b, Salgado et al. 2005). Calculating protein ASH requires 3D models
of the protein; however, attempts at measuring hydrophobicity based strictly on the amino acid
sequences have also been made, and R values between 0.769 and 0.803 were obtained using a
sample of 1982 proteins and a machine learning approach (Salgado et al. 2005).

The electrostatic environment around a protein is another characteristic used by food scien-
tists that can be derived bioinformatically (Helmick et al. 2021a,Honig &Nichols 1992,Klemmer
et al. 2010). Experimentally, the pH-dependent electrostatic environment of protein is measured
as the zeta potential, which is defined by the charged layer around a protein at the slipping plane
that exists at some distance from the molecular surface of the protein (Chakravorty et al. 2017).
Owing to the anisotropy of protein shape, determining where the slip plane lies bioinformati-
cally is a challenging proposition, and the anisotropy of shape and charge leads to a difference in
functionality between proteins; such is the case for β-lactoglobulin, lysozyme, and rapeseed napin
protein (Ainis et al. 2019, Chakravorty et al. 2017). An example of this anisotropy in pea protein’s
7S component is shown in Figure 3. By applying Coulombic or Poisson-Boltzmann models to
solve the surface charge of the protein, estimates of the electrostatic environment of protein can
be obtained bioinformatically (Ainis et al. 2019, Jurrus et al. 2018). The most robust model com-
monly used for these calculations is the Poisson-Boltzmannmodel (Honig &Nichols 1992, Jurrus
et al. 2018).

This model allows for the presence of mobile ion species (e.g., NaCl), temperature, and pH of
the calculation, and the results show the nature of the electrostatic interactions that surround the
protein (Figure 3c) ( Jurrus et al. 2018). Protein protonation and deprotonation based on user-
defined pH can be conducted using web servers, such as the adaptive Poisson-Boltzmann solver
and PDB2PQR (Dolinsky et al. 2004, Jurrus et al. 2018). The Poisson-Boltzmann model corre-
lates well with the zeta potential in pea legumin, vicilin, and commercial isolate when using protein
homologymodels (Helmick et al. 2021a), and the net charge on soy protein calculated through the
Henderson-Hasselbach equation considering Asp,Glu,Lys, and Arg correlated with themeasured
zeta potential in soy protein (Malhotra & Coupland 2004). Models like those for hydrophobicity
and zeta potential show that bioinformatics can be a useful tool in describing processes like gela-
tion that are partially driven by hydrophobic and electrostatic interactions (Guldiken et al. 2021,
Liang & Tang 2013). This allows for the selection of proteins that minimize and maximize these
interactions, aiding product developers in engineering specific textures of foods by minimizing or
maximizing specific interactions.
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6. PREDICTING AND SIMULATING PROTEIN MOLECULAR
INTERACTIONS THROUGH MOLECULAR MECHANICS

Proteins are seldom present in a pure and isolated form, and understanding interactions with
other biomacromolecules has important implications for food functionalities. This can be done
through protein docking simulations or molecular mechanics simulations. Other reviews show
how software like LzerD uses geometric hashing to find how proteins may interact with one an-
other or how proteins interact with ligands (Aguilar-Toalá et al. 2019, Christoffer et al. 2021, Tao
et al. 2020, Vidal-Limon et al. 2022). Although computationally expensive, molecular mechanics
is another approach that shows strong potential for advancing food science research.

Molecular mechanics methods simulate the behavior of macromolecules in conditions similar
to their biological environment or under experimental conditions of interest. These simulations
can be run using protein homologymodels or X-ray crystallographymodels.Molecular mechanic/
dynamic simulations then simulate atomic movement by solving equations for Brownian dynam-
ics and incorporating restraints from predefined force fields as to how particles are allowed to
move based on chemical interactions, such as van der Waals and electrostatic forces (Van Der
Spoel et al. 2005). Although not by default, molecular systems are often built into programs such
as CHARMM and AMBER (Associated Model Building with Energy Refinement), and the simu-
lation is conducted in a second software such as GROMACS (Groningen Machine for Chemical
Simulations) or NAMD (Nanoscale Molecular Dynamics) and finally visualized in programs like
Chimera, PyMol, or Virtual Molecular Dynamics (VMD) (Case et al. 2005, Hsin et al. 2008,
Humphrey et al. 1996, Phillips et al. 2005, Vanommeslaeghe et al. 2010). Many of these soft-
ware programs must be run through a command line interface, which limits their usability for
some researchers.

CHARMM-GUI helps make these tools more accessible (http://www.charmm-gui.org) by
offering a graphical user interface to generate input files and molecular systems for simulations
in other programs. This aids in creating accurate molecular systems with appropriate files for
conducting simulations, which is complicated, even for those experienced in molecular mechanics
( Jo et al. 2008). The platform walks users through several steps, starting with the PDB Reader,
which prepares structures for analysis by converting a PDB file to CHARMM compatible files.
The solvator tool adds water molecules to the system, solvating the molecule in a water box of
a user-defined shape, such as cubic or octahedral. Ions, including KCl, NaCl, and CaCl2, can
be added at this point to obtain solution electrostatic neutrality. The quick molecular dynamics
simulator step generates the input files for molecular dynamics simulations and instructions for
running the simulation. The membrane builder tool simulates a realistic complex of proteins and
membranes. It can be used to generate lipid bilayers with different types of lipid molecules, ions,
pores, and bulk water, and can orient macromolecules through the use of the Orientations of
Proteins in Membranes web server ( Jo et al. 2008, Lomize et al. 2011).

In food science, molecular mechanics simulations have shown ovalbumin denaturation at high
temperatures and resultant interactions in wheat dough (Sang et al. 2018), how β-lactoglobulin
changes as the result of pressure treatment (Reznikov et al. 2011), and the nature of adsorption
of β-lactoglobulin to oil interface during emulsification (Zare et al. 2016). It has also been shown
that relatively long α-helices are converted to β-sheet structures under an applied strain (Qin &
Buehler 2010), and this is consistent with experimental evidence from capillary rheology, which
showed an increase in β-sheet structures with increasing levels of shear in pea protein (Beck et al.
2016). Lastly, gelation mechanisms of bovine serum albumin were investigated with the aid of
molecularmechanics, showing a stabilizing impact of low concentrations of sodium dodecyl sulfate
on protected helices as well as a hydrophobically driven aggregation that occurred below pH 3.5
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(Baler et al. 2014, Nnyigide & Hyun 2020). Full utilization of these tools has yet to be realized
in food science research, but as they become more accessible through programs like CHARMM-
GUI, their use will likely expand into uncovering the nature of a variety of food processes.

7. CONCLUSION

Structural bioinformatics is a rich field that shows promise for food product developers, ingre-
dient designers, and researchers. By using tools to analyze amino acid sequences and 3D models
of protein structure, it is possible to draw strong relationships between models and key factors
in food functionality, such as surface hydrophobicity, secondary structure, and zeta potential.
These physicochemical relationships help create strong links between bioinformatics models and
functional properties of food, including emulsification, foaming, gelation, and solubility. Future
directions of research may be aided by developing databases of food-relevant proteins and their
experimental characteristics. This would allow for more specific data science research for food sci-
ence and would show greater applicability in the proteins of most interest to food developers, such
as plant-based proteins, dairy proteins, and other proteins commonly used in the food industry.
Lastly, as computing power increases to access longer timescales, the use of molecular mechanic
tools to simulate food matrices in a great level of detail can be developed. The development of
such programs could allow food developers to better model phenomena such as product shelf life
and interactions during food processing like extrusion or baking and make inferences about the
textures of food.
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