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Abstract We prove effective density theorems, with a polynomial error rate,
for orbits of the upper triangular subgroup of SLy(R) in arithmetic quotients
of SL,(C) and SL;(R) x SLy(R). The proof is based on the use of a Margulis
function, tools from incidence geometry, and the spectral gap of the ambient
space.
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1 Introduction

The quantitative understanding of the behavior of orbits in homogeneous
spaces is a fundamental problem. Let G be a connected Lie groupand I' C G
a lattice (a discrete subgroup with finite covolume). Let L C G be a closed
connected subgroup. Ratner’s celebrated resolution of Raghunathan’s conjec-
tures, [51-53], provides a complete classification for the closure of individual
L-orbitsin G/ I' if L is unipotent, or more generally is generated by unipotent
subgroups (this is true even if L is not assumed to be connected, see [59]).
Prior to Ratner’s work, some important special cases of this problem were
studied by Margulis [44], and Dani and Margulis [14,15].

These remarkable results all share the lacuna that they are not quantita-
tive, e.g. they do not provide any rate at which the orbit fills up its closure.
Indeed Ratner’s work relies on the pointwise ergodic theorem which is hard to
effectivize. The work of Dani and Margulis uses minimal sets, which though
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Polynomial effective density in quotients 1143

formally ineffective can be effectivized with some effort; a result in this spirit
was obtained by Margulis and the first named author in [41], though the rates
obtained there are of polylog form, and that too after significant effort. With
Margulis and Shah, we have obtained a general effective orbit closure theorem
for unipotent orbits on arithmetic quotients, the first piece of this being [42]
and the continuation is in preparation; however the rates obtained are even
worse than [41].

When G is a unipotent group, Green and Tao gave an effective equidistri-
bution theorem for orbits of subgroups L C G (that of course will also be
unipotent) in [30] with polynomial error rates. When G is semisimple, how-
ever, not much seems to be known. A notable exception is the case where
L C G is ahorospherical subgroups, that is to say if there is an elementa € G
so that

n

L={geG:a"ga™ — lasn — o0},

for instance if L is the full group of strictly upper triangular matrices in G =
SL, (R). In this case, the behaviour of individual orbits can be related to decay
of matrix coefficients, and hence effective equidistribution with polynomial
error rate can be established. The first works in this direction we are aware
of by Sarnak [54], Burger [10], and Kleinbock and Margulis [37] based on
Margulis’ thesis, as well as the more recent papers by Flaminio and Forni
[26], Strombergsson [60], and Sarnak and Ubis [55]. Quantitative horospheric
equidistribution has now been established in much greater generality e.g. by
Kleinbock and Margulis in [36], McAdam in [47] and by Asaf Katz [34].
Moreover a quantitative equidistribution estimate twisted by a character was
proved by Venkatesh [64] and further developed by Tani and Vishe as well
as Flaminio, Forni, and Tanis [27,63]; this was generalized to a disjointness
result with a general nil-system by Asaf Katz in [34]. Closely related is the
case of translates of periodic orbits of subgroups L C G which are fixed by an
involution by Duke, Rudnick and Sarnak, Eskin and McMullen, and Benoist
and Oh in [2,16,23].

Beyond the horospherical case! (and the related case of groups fixed by
an involution) equidistribution results with polynomial rates were known only
for skew products by Strémbergsson [61], Strombergsson and Vishe [62] and
by Wooyeon Kim [35], for random walks by automorphisms of the torus (cf.
[6] by Bourgain Furman, Mozes and the first named author and subsequent
works in this direction, e.g. [32] by He and de Saxce), and for the special case
of periodic orbits of increasing volume by Einsiedler, Margulis, Venkatesh

1 Strictly speaking, the twisted horospherical averages considered in [27,34,63,64] can also
be considered as a non-horospherical flow on a suitable product space, though they are closely
related to the horospherical case.
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1144 E. Lindenstrauss, A. Mohammadi

and by these three authors with the second named author [17,18]. There are
also some quantitative equidistribution results for particular types of unipotent
orbits, e.g. [11] by Chow and Lei Yang.

In this paper, we prove an effective density theorem, with a polynomial
error rate, for orbits of the upper triangular subgroup of SL, (R) in arithmetic
quotients of SL(C) and SLy(R) x SLo(R). These are first results in the lit-
erature which provide a polynomial rate for general orbits in a homogeneous
space of a semisimple group, beyond the aforementioned case of horospherical
subgroups.

Let us now fix some notation in order to state the main theorems. Let

G =SL2(C) or G =SLy(R) x SLa(R).

LetI" C G be alattice, and put X = G/ I'.

Let d be the right invariant metric on G which is defined using the killing
form. This metric induces a metric dy on X, and natural volume forms on X
and its submanifolds. The injectivity radius of a point x € X may be defined
using this metric. For every n > 0, let

X, = {x € X : injectivity radius of x is > n}.

Throughout the paper, H denotes SL,(R) if G = SL;,(C) or the diagonally
embedded copy of SL>(R) in G if G = SL,(R) x SLy(R). That is

SLy(R) € SLa(C) or {(g. ) : g € SLa(R)} € SLo(R) x SL(R).

Let P C H denote the group of upper triangular matrices in H.

An orbit Hx C X is periodic if H N Stab(x) is a lattice in H. For the
semisimple group H, the orbit Hx is periodic iff it is closed.

Let | | denote the absolute value on C, and let || || denote the maximum
norm on Mat,(C) or Mat;(R) x Maty (R) with respect to the standard basis.
For every T > 0 and every subgroup L C G, let

Bple,T)={geL:lg—1| =T}

The following is the main theorem in this paper.

Theorem 1.1 Assume that I is an arithmetic lattice. For every 0 < § < 1/2,
everyxg € X, and large enough T (depending explicitly on § and the injectivity
radius of xo) at least one of the following holds.

(1) Forevery x € X —sc, we have

dx<x, Bp (6, TA>.X()> < ClT_SKl.
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(2) There exists x' € X such that Hx' is periodic with vol(Hx") < T?, and
dx(x',x0) < 1T~

where A, k1, and C| are positive constants depending on X.

The proof of Theorem 1.1 has a similar flavor to [28] by Gamburd, Jakob-
son, and Sarnak as well as to the work of Bourgain and Gamburd [7,8] and
the aforementioned work of Bourgain, Furman, Lindenstrauss, and Mozes
[6]. Indeed in the first step, we use a Diophantine condition to produce some
dimension at a certain scale (initial dimension). In the second step, we use
a Margulis function to show that by passing to a larger scale and translating
Bp(e, T%).xo with a random element of controlled size, we obtain a set with
large dimension. Margulis functions were introduced in the context of homo-
geneous dynamics in [21] by Eskin, Margulis, and Mozes, and have become
an indispensable tool in homogeneous dynamics and beyond.

We then use a projection theorem to move this additional dimension to the
direction of a horospherical subgroup of G. The projection theorem we use
is an adaptation of the work of Kdenmaéki, Orponen, and Venieri [33] and is
based on the works of Wolff and Schlag [56,65]. Finally, we use an argument
due to Venkatesh [64] to conclude the proof.

The main proposition
LetU C N denote the group of upper triangular unipotent matricesin H C G,

respectively.
More explicitly, if G = SL;,(C), then

N = {n(r,s) = ((l)r—iiis) 2 (r,8) eRz}

and U = {n(r, 0) : r € R}; we will often denote the elements in U by u,, i.e.,
n(r, 0) will often be denoted by u, for r € R. Let

V ={n,s) =vs:5 € R}

If G = SLo(R) x SLy(R), then

N = {n(r,s) - ((é“l”),((l) ;)) . (r, 5) eR2}

and U = {n(r, 0) : r € R}. As before, n(r, 0) will be denoted by u, forr € R.
Let V = {n(0,s) = vy : s € R}. In both cases, we have N = U V.
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1146 E. Lindenstrauss, A. Mohammadi

The following proposition is a crucial step in the proof. Roughly speaking,
it states that for every xo € X, we can find a subset of V with dimension
almost 1 near P.xq unless xg is extremely close to a periodic H-orbit with
small volume.

Proposition 1.1 (Main Proposition) There exists some ng > 0 depending on
X with the following property.

Let 0 < 0,8 < 1/2,0 < n < no, and x9 € X. There are ky and A’,
depending on 0, and Ty depending on 8, n, and the injectivity radius of xo, so
that for all T > Ty at least one of the following holds.

(1) There exists a finite subset I C [0, 1] so that both of the following are
satisfied.
(a) The set I supports a probability measure p which satisfies

p(J) < Cold|'~?

for every interval J with |J| > T =% where Cy > 1 depends on 6.
(b) There is a point yo € X, so that

dx (vs.yo, Bp (e, TA/).X()) < C,T7 %

foralls € 1 U{0}.
(2) There exists x' € X so that Hx' is periodic with vol(Hx") < T® and

dx(x',xp) < CoT~ L.

where Co depends on X.

The proof of this proposition will be completed in Sect. 8; it involves three
main steps, which we now outline.

(1) Let us assume that the injectivity radius of xq is bounded below by some
constant depending on X; we can always reduce to this case using certain
non-divergence results which are discussed in Sect. 3.

Since we are interested in information about how points approach each
other transversal to H, we will work with a thickening of P.xg with BH,
a small neighborhood of the identity in H. In the first step, we use Propo-
sition 6.1 (a closing lemma) to show that either Proposition 1.1(2) holds,

or we can find some x € (B - Bp(e, TO(‘S))).xo, whose injectivity
radius is bounded below depending on X, so that any two nearby points in
(BH - Bp (e, T8>>.x have distance > 7~! transversal to H.
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Polynomial effective density in quotients 1147

(2) Assuming Proposition 1.1(2) does not hold, in the second step, we use a
Margulis function to show that translations of the aforementioned thick-

ening of Bp (e, T‘5> .x by certain random elements in Bp (e, TO"“)) have

dimension 1 — 6 transversal to H at scale 719 This step is carried out
in Sect. 7.
The random elements we use in this step further have the property that

translations of (BH -Bp (e, 70 >.x with them stay near P.x — this prop-

erty is reminiscent of Margulis’ thickening technique, albeit unlike the
latter we only thicken in H and not in G.

(3) Inthe third step, we use a projection theorem (Theorem 5.1) combined with
some arguments in homogeneous dynamics, to project the aforementioned
entropy to the direction of N. This is the content of Sect. 5.

Let us now elaborate on how Proposition 1.1 may be used to complete the
proof of Theorem 1.1.

The argument is based on the quantitative decay of correlations for the
ambient space X: There exists kx > 0 so that

' / (@)W (x) dmy — / odmy / U dmy| <goy e @O (1)

forall ¢, ¥ € C°(X) + C - 1, where m is the probability Haar measure on
X and d is our fixed right G-invariant metric on G. See e.g. [37, §2.4] and
references there for (1.1); we note that kx is absolute if I' is a congruence
subgroup, see [9,13,29].

As it is well studied, (1.1) implies quantitative equidistribution results for
expanding pieces of the horospherical group N in X. Note, however, that we
are only supplied with the set

B ={u,v:rel0,1],s €I}
where / is as in Proposition 1.1, i.e., we do not have the luxury of using an
open subset of N. To remedy this issue, we use an argument due to Venkatesh
[64] and show that so long as 6 is small enough — this is quantified using (1.1)

— expanding translations of B are already equidistributed in X, see Proposi-
tion 4.2.

Periodic orbits

The techniques we develop here allow us to prove an effective density theorem
for periodic orbits of H as well. We will show in Lemma 3.3 that there exists
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1148 E. Lindenstrauss, A. Mohammadi

some 1y > 0 so that for every periodic orbit Y, we have
py(Xpy) = 0.9 (1.2)

where py denotes the H-invariant probability measure on Y.

Theorem 1.2 Let Y C X be a periodic H-orbit in X. Then for every x €
Xyol(yy—+3 we have

dx(x,Y) < C3vol(Y) ™.

where k3 > K;‘( /L (for an absolute constant L) and C3 depends explicitly
on kx, vol(X), and the minimum of the injectivity radius of points in X,
see (9.14). If T is congruence, k3 is absolute.

If I" is an arithmetic lattice, Theorem 1.2 is a rather special case of a theo-
rem of Einsiedler, Margulis, and Venkatesh [18] or (when the corresponding
Q-group has over R compact factors) the followup work by Einsiedler, Mar-
gulis, and Venkatesh and the second named author [17]. Note however that
Theorem 1.2 does not require I' to be arithmetic. In particular, unlike [17,18],
our argument does not rely on property (7).

By the arithmeticity theorems of Selberg and Margulis, irreducible lattices
in SLy (R) x SL> (R) are arithmetic. Regarding reducible quotients of SL; (R) x
SL,(R), if such a quotient SL, (R) x SL;(R)/ I'{ x I'; contains infinitely many
closed orbits of H, then I'; is commensurable to I'; (up to a conjugation) and
moreover ['| has infinite index in its commensurator. By a theorem of Margulis,
it follows that I'y is arithmetic, see [45, Ch. IX]. Moreover, it was recently
shown, [1,46], that if SL,(C)/ I" contains infinitely many closed orbits of H,
then I' is arithmetic.

Thus in all cases covered by Theorem 1.2, either I' is arithmetic hence
[17,18] apply (though the proof we give here is very different) or there are
only finitely many closed H-orbits. The key point of Theorem 1.2 is that the
rate of equidistribution depends only on rather coarse properties of X namely
the rate of mixing 'y, the volume of X, and the injectivity radius of the compact
core of X, suitably interpreted. This can be used in some special cases to give
an effective version of the finiteness theorems of [1,46], as we discuss in
the next subsection. It is interesting to note that the proofs in [1,46] rely on
equidistribution results [49] which are in the spirit of Theorem 1.2, albeit in a
qualitative form.
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Polynomial effective density in quotients 1149

Totally geodesic planes in hybrid manifolds

Gromov and Piatetski-Shapiro [31] constructed examples of non-arithmetic
hyperbolic manifolds by gluing together pieces of non-commensurable arith-
metic manifolds. Let I"; and I', be two torsion free lattices in Isom(H3) —
recall that Isom(H?) is an index 2 subgroup of O(3, 1) and that SL,(C) is
locally isomorphic to O(3, 1). Let M; = H?3/T';. Assume further that for
i = 1, 2, there exists 3-dimensional submanifolds with boundary N; C M; so
that

e The Zariski closure of 71(N;) C I'; contains O(3, 1)° where O(3, 1)° is
the connected component of the identity in O(3, 1).

e Every connected component of d N; is a totally geodesic embedded surface
in M; which separates M,.

e 0N; and 0N, are isometric.

Let M be the manifold obtained by gluing N; and N; using the isometry
between dN| and d Np. Then M carries a complete hyperbolic metric, thus,
we consider 7y (M) as a lattice in O(3, 1). Let I/ = 71 (M) N O(3, 1)°, and let
" denote the inverse image of IV in G = SL,(C). If I'y and I'; are arithmetic
and non-commensurable, then M is non-arithmetic, i.e., I" is a non-arithmetic
lattice in G. A totally geodesic plane in M lifts to a periodic orbit of H =
SLr(R)in X = G/T.

The following finiteness theorem, in qualitative form, was proved by Fisher,
Lafont, Miller, and Stover [25, Thm. 1.4], see also [3, §12].

Theorem 1.3 Let M be a hyperbolic 3-manifold obtained by gluing the pieces
N1 and N, from non-commensurable arithmetic manifolds along ¥ = 0Ny =
dNj as described above. The number of totally geodesic planes in M is at most

L/K;‘(
L(area(E)vol(X)nFrcF)
where L is absolute and X = G/ I is as above.

2 Notation and preliminaries
Throughout the paper
G =SLy(C) or G =SLy(R) x SLr(R).

LetI" C G be alattice, and put X = G/ I'.
We define the subgroups H, N, U, and V as in the introduction.
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1150 E. Lindenstrauss, A. Mohammadi

AlsoletU™ = {u,
matrices in H.
For every t € R, let a; denote the images of

e’ 0
(0 e—t/2) 2.1)

in H. Note that a;n(r, s)a_; = n(e'(r, s)) forall r € R and all (r, s) € R2.

: r € R} denote the group of lower triangular unipotent

Lie algebras and norms

Let | | denote the usual absolute value on C (and on R). Let || || denotes the
maximum norm on Mat;(C) and Mat;(R) x Mat,(R), with respect to the
standard basis.

Let g = Lie(G), that is, g = s[(C) or g = slh(R) @ sl (R). We write
g = bh®rwhere h = Lie(H) ~ slh(R), vt = islh(R) if g = s[,(C) and
t=5b(R) @ {0} if g = shL(R) & shL(R).

Throughout the paper, we will use the uniform notation

» — (wn wlZ)
w21 W2

for elements w € t, where w;; € iR if G = SL(C) and w;; € Rif G =
SLy(R) x SLy(R).

Note that v is a Lie algebra in the case G = SLy(R) x SL,(R), but not
when G = SL,(C).

We fix a norm on h by taking the maximum norm where the coordinates are
given by Lie(U), Lie(U ™), and Lie(A); similarly fix a norm on t. By taking
maximum of these two norms we get a norm on g. These norms will also be

denoted by || ||
Let C4 > 1 be so that

|hw| < C4||lw| forall | —I|| <2andallw € g. (2.2)
For all 8 > 0, we define
B = {u; :ls| < B} -las: 1] < B} {uy - |r] < B) (2.3)
for all 0 < B < 1. Note that for all i; € (Bg)il,i =1,...,5, we have

hi - hs € B (2.4)
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We also define Bg = Bg - exp(B.(0, B)) where B,(0, 8) denotes the ball
of radius 8 in ¢ with respect to | ||.

We deviate slightly from the notation in the introduction, and define the
injectivity radius of x € X using Bg instead of the metric d on G. Put

inj(x) = min {0.0l, sup {,B : g > gx is injective on Blco,s }} (2.5)

Taking a further minimum if necessary, we always assume that the injectivity
radius of x defined using the metric d dominates inj(x).
For every n > 0, let

X, = {x € X :inj(x) > n}-

Constants and the x-notation

In our analysis, the dependence of the exponents on I" are via the application
of results in Sect. 4, see (4.1), and Sect. 6.

We will use the notation A =< B when the ratio between the two lies in
[C~!, C] for some constant C > 1 which depends at most on G and I in
general. We write A < B* (resp. A < B) to mean that A < CB* (resp.
A < CB) for some constant C > 0 depending on G and I', and x > 0 which
follows the above convention about exponents.

Lemma 2.1 There exist absolute constants By and Cs > 1 so that the following
holds. Let 0 < B < Bo, and let w1, wy € By (0, B). Thereareh € Handw € t
which satisfy

0.5lwy —wall < wll < 2[lwy — w2l and ||h—1|| < CsB|w]l

so that exp(wy) exp(—w2) = hexp(w).

Proof Using the Baker—Campbell-Hausdorff formula, we have
exp(wi) exp(—w2) = exp(w; — wz + w)

where w € g and ||w| < Bllw; — w2].

Using the open mapping theorem and Baker—Campbell-Hausdorff formula
again, for all small enough B, there is (wy, we) = By (0, CB) x B.(0, CB) and
w' € g with [|w’|| < [[wgl[[well, so that

exp(w; — wy + w) = exp(wp) exp(w,) = exp(wy + we + w) (2.6)

where C and the implied constant are absolute.

@ Springer



1152 E. Lindenstrauss, A. Mohammadi

We show that & = exp(wy) and w = w satisfy the claims in the lemma. In
view of (2.6), we need to verify the bounds on |4 — I|| and |jw.]|.
First note that if 8 is small enough, (2.6) implies that

wl—w2+w:wh+wt+w/. 2.7

Recall that we are using the max norm with respect to v and h which are two
orthogonal subspaces. Note also that wy, wy, we € v and wy € h. Thus, (2.7)
implies that ||wy|| < [[w]| + [[w]. Recall now that ||w| < Bllw; — wall
and [|w'|| < |lwyll|lwe]l < Bllwgll. Thus assuming B is small enough, we
conclude that ||lwy|| < Bllw; — wz]| as we wanted to show.

To see the estimate on ||w.||, we again use (2.7). Indeed (w; — w2) — w, =
wy + w’ — w; moreover, |w] <K Bllwr — w2, |lwyll K Bllwr — wal|, and
lw'| < Jlwlll|well < Bllwyll < B2[wi — wal|. Again assuming f is small
enough, we conclude that

05wy — w2l < lwell = 2[lwy — wall,

which finishes the proof. |

Lemma 2.2 There exists Bo so that the following holds for all 0 < B8 < Po.
Letx € X10g and w € B(0, B). If there are h, h' € Bgﬁ so that exp(w’)hx =

h' exp(w)x, then
W =h and w =Ad(h)w.
Moreover, we have ||w'|| < 2||w||.

Proof Recall that v is invariant under the adjoint action of H. We rewrite the
equation exp(w’)hx = h’ exp(w)x as follows

exp(w’)hx = exp(Ad(h)w)h'x. (2.8)

Since h’ € Bgs,wehaveAd(h’)w/ = w'4w where ||| < B||lw’||. Therefore,

assuming S is small enough, we have 0.5|w| < || Ad(h")w’|| < 2|lw||. This
estimate, (2.8), and the fact that x € Xog imply that
exp(w')h = exp(Ad(h")w)h'.

Moreover, the map (w, h) — exp(u'))ﬁ from B.(0,28) x ng to G is

injective, for all small enough B. Therefore, h = h’ and w’ = Ad(h")w.
The final claim follows as ||w’|| = || Ad(h)w|| < 2| w]. 0
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ThesetE, ; g
Foralln, 8 > 0andt > 0, set
E,ip = Bg ay {ur :r €0, n]} C H. (2.9
Then my(Ey; p) < nBZe' where my denotes our fixed Haar measure on H.
Throughout the paper, the notation E,, ; g will be used only for n, ¢, 8 > 0

which satisfy e 700! < 8 < 52 even if this is not explicitly mentioned.
For all n, 8, m > 0, put

Qfly = {us s ts1 = pe b ta i = gy {u i =0} @10y

Roughly speaking, Qf{ is a small thickening of the (B8, n)-neighborhood of

the identity in AU. We write QH for QH
The following lemma will also be used 1n the sequel.

Lemma 2.3 (/) Letm > 1, and let 0 < n, B < 0.1. Then

- +1\3
((QO.OIU,O.Olﬂ,m> ) - Qn B,m*

(2) Forall0 < B <n<1,t,m>0 andall |r| <2, we have
H +1
(Qﬂzvm) ) amurEnJ’,B/ C amurEi’],l,ﬁa (211)

where B/ = 8 — 10082
Proof Recall that for all a, b, ¢, d with ad — bc = 1 and a # 0, we have

aby (1 0\(a O 1b/a
cd) \c/al)\O1l/a)\O 1 )"
The claim in part (1) follows from this identity.
To see part (2), recall that

— -1 -
(ug auyr) - (@muy) = apuru, U

emsal/le—mr/l/lr

for all u; au, € Qg’z "

Note that e”|s| < B2 and e |r'| < B>. Let now

(M;(ldl/lb) cdp - Upr € En,l,ﬂ—100ﬁ2’
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where |c|, |d|, |b] < B — 10082, |r"| < n.
Then

_ — —-1 - —
(g aup)(amuy) (U, agupaiuyr) = amity (U, Un QUe—mprty) (U, AqUp) Ay

Since |r| < 2, we have u, - Bgl2 cu_, C Bf{)ﬁz' Moreover, Bf{)ﬁz . Bgl C
BH

+10082" The claim follows. O

A linear algebra lemma

Note that both h and v are invariant under the adjoint representation of H
on g; moreover, both of these representations are isomorphic to the adjoint
representation of H on Lie(H).

We will use the following lemma in the sequel

Lemma 2.4 ([22], Lemma 5.1, and [20]) Let 1/3 <a < 1,0 # w € g, and
t > 0. Then

1 C —at
_ 6€ _
| i ar < S i
0 -

where Cg is an absolute constant and @ = ITT“.

We will apply the above lemma with ¢t = ¢m,, £ € N, where m,, is defined

by zfga e~%ma — ¢~ The choice of m, and Lemma 2.4 imply

1
/ lamurwl| = dr < e~ lw] . (2.12)
0

3 Nondivergence results

In this section, we record some facts which will be used to deal with non-
uniform lattices; the results in this section are known to the experts. Our goal
here is to tailor these results to our applications in the paper.

Throughout this section, I is assumed to be non-uniform unless otherwise
is explicated. We do not assume T is arithmetic in this section.

To deal with cases where I" may not be arithmetic, we appeal to some facts
from hyperbolic geometry, see Case 1 below. If I is a non-uniform irreducible
lattice in SL;(R) x SL;(R), i.e. Case 2 below, I' is arithmetic by a theorem
of Selberg — this is a special case of Margulis’ arithmeticity theorem.
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Proposition 3.1 There exist C7 > 1 with the following property. Let 0 <
e,n<landx € X. Let I C [—10, 10] be an interval with |I| > n. Then

Hr e I :inj(a;u,x) < 82” < Cre|l|

so long as t > |log(n?inj(x))| + C7.

Proposition 3.1 in particular implies that for all # > log(n2 inj (x)) +0(Q)
most points in {a;u,x : r € I} return to a fixed compact subset of X.

For the proof of the proposition, it is more convenient to investigate two
separate cases as follows. These are:

Case 1: G = SL(C) or G = SLo(R) x SL>(R) and I' is reducible.

Case 2: G = SLy(R) x SLy(R) and I is irreducible.

The proofs ultimately rely on non-divergence results of Margulis, Dani,
and Kleinbock. To prepare the stage for such results to be applicable, in Case
1 we use the thick-thin decomposition from hyperbolic geometry. This will
be completed in this section. In Case 2 thanks to Selberg’s theorem I' is an
arithmetic lattice. The proof in this case uses explicit reduction theory of such
lattices and and the aforementioned works of Margulis et al; this proof is given
in Appendix A.

Let us thus assume G = SL,(C) or G = SLy(R) x SLy(R) and I is
reducible. Let IF denote R or C, and let A C SL;(IF) be a lattice. Using the
thick-thin decomposition of SL,(IF)/A, there exists a compact subset G C
SL>(IF)/ A and a finite collection of disjoint cusps {€; : 1 < j < £} so that

SLa(F)/A =& | wi_,ep.

Each cusp €; corresponds to the A-orbit of a parabolic fixed point of A in
dH, d = 2 or 3 depending on F; alternatively, ¢ j corresponds to a tube of
closed U-orbits

aNg;A C SLr(F) ¢ <0,

where N denotes the group of upper triangular unipotent matrices in SL; (F).

We will also consider a linearized version of the thick-thin decomposi-
tion. It is more convenient to identify SL,(F)/{#I} with SO(Q)° where
Qvy, v, v3) = 2v1v3+v% ifd =2,and Q(vy, va, v3, V4) = 21)1114-|-v§+v32
if d = 3. We choose this identification so that N fixes €; where {e;} is the
standard basis for R4+,

Ifd =2, thatis F = R, we let L = SO(Q)° and write W = R3. If d = 3,
that is: F = C, we let L be the isometry group of the restriction of Q to the
subspace W spanned by {e[, €3, €4} — in the latter case L ~ PSL,>(R) and
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he, = e; for all h € L. Note that in both cases the adjoint action of H on
slh (R) factors through the action of L on W.
Set v; = gj_lel for 1 < j < ¢ where e is the first coordinate vector

in R4t and g ;i € SLp(IF). Note that Av; C R*! is a closed (and hence
discrete) subset of RA+! gee e.g. [48, Lemma 6.2].
Given a point gA € SLy(F)/A we define

wa(gA) = max{2, max{||g8vj||_l SeAl<j< e}}

For the following see e.g. [48, §6].

Lemma 3.1 Let A C SL,(IF) be a lattice. There exists some C = C(A) > 2so
that the following holds. Assume that wa (g A) > C for some gA € SLy(IF)/A.
Then there exists some 1 < jo < € and some &y € A so that ||g80vj0||_1 =
wa(gA) and

lgdv;ll > 1/C,  forall (8, j) # (b0, jo)-
We will also use the following elementary lemma.

Lemma 3.2 Let n > 0, and let I be an interval of length at least n. There
exists some Cg so that the following holds. Let o > 0, and let v € SO(Q)°.e;.
Then

{r e 12l < enlvie?}| < cuell

Proof Note that we may assume o is small compared to absolute constants.
Let us consider the case d = 3, the other case, i.e.,d = 2, is contained in this
case. Recall that W denotes the R-span of {e, €3, e4}; write v = cy€3 + w,
where w, € W and ¢, € R. Since Q(v) = 0, we have ||wy| > c||v|| for some
absolute constant 0 < ¢ < 1. Moreover, forevery h € L = H
hv = cy€ + hwy. (3.1)

Identifying W with the adjoint representation of H, for every w € W and
every 0 < § < 1, let

I(w,d) = {r €l :[(Ad(ur)w)i2| < 0-013772I|w||},
where w;; is the (i, j)-th entry of w € sl (R).
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A direct computation gives
(Ad(ur)w)12 = —w21r2 —2w1r + wia. (3.2)

Therefore, sup; |(Ad(u,)w)12| > 0.01n2||w|| — recall that || > 1. We con-
clude that | I (w, §)| < C81/2|I| for some C > 0, see e.g. [38, §3].

Let § = 100c~!0?, where we assume o is small enough so that § < 1.
Let v be as in the statement, and define w, as above. Then ||w,|| > c|lv| and
|1 (wy, 8)| < 10Cc™'20|1].

Letr € I \ I(wy, d), then

IAd @) wp)iall = ¢ P lwyllo?.
Since a; expands the (1, 2)-entry by a factor of ¢’, we conclude
lasurvll > llasu,wyl| by (3.1)
> e |(Ad(uy)wy)12] = ¢ el n?|wyllo?
> e'n?|lvllo®.
The claim thus holds with Cg = 10Cc~1/2. o

Proof of Proposition 3.1: Case I Letus firstconsider G = SL;(R) x SL» (R).
Since I is reducible, there exists a finite index subgroup I'' C T so that
IV = I'1 x I';. The constant Cy in Proposition 3.1 is allowed to depend on
the index of I'" in ', thus, abusing the notation, we replace I' by I'” in the
remaining parts of the argument. In particular,

X = X] X X2 = SLz(R)/Fl X SLQ(R)/ Fz.
Let us write w; for wr,, fori = 1, 2. Define
(x) 1= max{w; (x1), w2(x2)} (3.3)

forall x = (x1,x2) € X.

We denote the corresponding vectors for I'y by vy, 1 < j < £4, and for I',
by v, 1 <k < 4¥5.

Note that w(x) = inj (x)71, see e.g. [48, Prop. 6.7]. Therefore, it suffices to
prove the proposition with inj(x) replaced by w (x).

Let(g1,22) €G,(y1,y2) ell,1 <j<{,and1l <k < {>.ByLemma3.2
applied with g1y1v1; and g2y2va, we conclude

{r € 1+ law @i, a0l < Pl grvn, 2v20lle? ]| = 2Csel
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forevery 0 < o < 1.

Let o9 = O.1C8_1, and choose (g1, g2) € G so that x = (g1, g2I"). Then
the above implies that for all (y1, y») € I',all1 < j < /{j,andalll < k < {5,
there exists some r € I so that

larur(g1y1vij, g2v2v20) 1l = etnzll(gl/lvu, g2y2v0) |le?
> e'n’o(x) "' 0f. (3.4)

In view of (3.4), and by choosing C7 large enough to account for the implicit
constant in w (x) X< inj (x)~!, we have

sup{lla,u, (g1y1v1, g2y2v20)|| i 7 € I} > 03

so long as 1 > |log(n? inj(x))| + C7.

Therefore, we may apply [38, Thm. 4.1] and the proposition follows in
this case. The argument in the case G = SL(C) is similar — in light of
Lemma 3.1, the use of [38, Thm. 4.1] simplifies significantly. O

As we mentioned the proof in Case 2 is given in Appendix A.

Proposition 3.2 There exists 0 < nx < 1, depending on X, so that the fol-
lowing holds. Let 0 < n < 1l andlet x € X. Let I C [—10, 10] be an interval
with length at least . Then

I{r € I :au,x € Xy} > 0.99|7]

for all t = |log(n? inj(x))| 4 C7.

Proof Apply Proposition 3.1 with ¢ = 0.01C5 ! The claim thus holds with
2
nx = é&-. O

3.1 The subsets Xpt and Sept

Decreasing nx if necessary we always assume that X \ X, is a disjoint union
(possibly empty) of finitely many cusps.

If X is compact, let Xcp = X; otherwise, let X¢pe = {gx : x € Xy, lg —
I| <2} where X, is given by Proposition 3.2.

We also fix once and for all a compact subset with piecewise smooth bound-
ary G¢pe C G which projects onto Xcpy.

We end this section with the following

Lemma 3.3 Let Y be a periodic H-orbit. Then wy(Xy,) > 0.9 where iy
denotes the H-invariant probability measure on Y.
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Proof Letp = 1x,,andlet y € Y. Then by [37, §2.2.2] we have

1
im [ oG y)dr = / o duy.
0

t—00

The lemma thus follows from Proposition 3.2. O

4 From large dimension to effective density

In this section we use the exponential decay of correlations for the ambient
space X to prove Proposition 4.2, which says that expanding translations of
subsets of N which are foliated by local U orbits and have dimension close
but not necessarily equal to 2 are equidistributed in X.

This proposition will be used in the proofs of Theorems 1.1 and 1.2, but it
is also of independent interest. The proof is similar to an argument in [64, §3].

Recall our notation from Sect. 2: n(r, s) = u, vy where vy = n(0, s) and
u, = n(r,0) € U.Recall also that a;n(r, s)a_, = n(e'(r, s)) forall t € R and
all (r, s) € R

We need the following estimate on the decay of correlations in X. There
exists kx depending on X so that

l / (@)W (x) dmy — / odmy f ¥ dmy| < e ICOS(OSW) (@.1)

forall ¢, ¥ € C2°(X) + C- 1 where the implied constant is absolute and d is
our fixed right G-invariant on G, see e.g. [37, §2.4] and references there. We
note that xy is absolute if I" is a congruence subgroup, see [9,13,29].

Here S(-) is a certain Sobolev norm on C2°(X) + C - 1 which is assumed to
dominate ||-|| and the Lipschitznorm ||-||Lip. Moreover, S(g. f) < [1gII*S(f)
where the implied constants are absolute.

Let us put

Cx = ny ' vol(G/T) 4.2)

where nx is as in Proposition 3.2 and vol(G/I') is computed using the Rie-
mannian metric d.

We also need the following statement.

Proposition 4.1 ([37], Prop. 2.4.8) There exists k4 > kx (where the implied
constant is absolute) and an absolute constant ks so that the following holds.
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LetO <n <1,t>0,andx € X,. Then for every f € C(X)+C-1,

/ f(an.x)dn —/fdmx
Byn(0,1)

where By (0, 1) = {u,vs 0<rs < 1}, the measure on N is normalized so

< Con VK S(fre

that By (0, 1) has measure 1, and Cg9 < LC)L( for an absolute constant L and
Cx asin(4.2).

Proof This statement is well known to the experts, see e.g. [34,36,37,47]; we
reproduce the argument for the convenience of the reader.

Throughout the argument, the implied exponents are absolute and implied
multiplicative constants are < LCf( for an absolute L. Let 0 < ¢™ < 1bea
smooth function supported on By (0, 1) so that |’ By. 1 — eT)dn < e ¥t

and S(p™) <« e**! for some « which will be optimized later. Then

/ flam.x)dn —/ flanx)pT(m)ydn| < || flloce ™. (4.3)
By(0,1) N

Recall that By (0, 1)X;, C Xq.1;; using a smooth partition of unity argu-
ment, we can write ¢ = Z?’IZI <,o;r so that M <« n~*%, S((p;r) L nre*,
and the map g — gy is injective on supp(<p;r) forall y € By (0, 1).X,, and all
’ In consequence, we may fix one (p;r for the rest of the argument. Arguing as
in [37, Prop. 2.4.8], see also [36, Thm. 2.3], there exists a compactly supported
smooth function ¢ (an e *'-thickening of <p;.r along the weak-stable directions

in G) so that S(¢) <x n~ *e* and

/Nf(atn-X)rpf(n) dn—/xf(aty)w(y)dmx(y)‘ L N fllipe™, 44

where || f||Lip 18 the Lipschitz constant of f.
Finally in view of (4.1), we have

’ / Flary)o(y) dmx(y) / £ dmy / pdmy| < S(HS(@)e "

< n_*e*KtS(f)e_th.
4.5)

The claim follows from (4.3), (4.4), and (4.5) by optimizing «. |
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The following is a generalization of Proposition 4.1 where one replaces the
average over By (0, 1) with an average over certain subsets of dimension close
to 2, but not necessarily equal to 2.

Proposition 4.2 There exist kg and o (both >> K)2( with an absolute implied

constant) so that the following holds. Let 0 < ¢ < eggand 0 < b < 0.1. Let p
be a probability measure on [0, 1] which satisfies

p(J) < Cb'~* (4.6)

for every interval J of length b and a constant C > 1.
Let0 <n < 1, x € Xy, then

1 1
/ / f(azurvs-X)drdp(S)—/fdmx
0 0

forall [logb|/4 <t < |logh|/2and all f € CX°(X) +C - 1, where Cjp <
LC)L( for an absolute constant L and Cyx as in (4.2).

1
< Ci1oCn *sS(f)e "

Proof We will prove this for the case G = SL,>(R) x SL,(R); the proof in the
case G = SL,(C) is similar. .

Throughout the argument, the implicit multiplicative constants are < LCg;
for some absolute L.

Without loss of generality, we may assume | x fdmx =0.

Let M e Nbesothat 1/M <b <1/(M — 1).Forevery 1 < j < M, let
I; = [%, ﬁ), also put s; = 25—;[1 and ¢; = p(I;) for all j. Since I;’s are
disjoint, we have }; ¢; = 1.

For all such j, let

B, = {urvs crel0,1],s e (s; — i—’,Sj + %)}.
In view of the choice of M, we have B; N Bjy = ¢ for all j # ;. Let
¢ =3 ;2b7'¢c;lp,. Then [y ¢(n(r,s))drds = 1.
We make the following observation. Using (4.6), we have ¢; < Cbh'~¢ for
all j. This and the fact that B;’s are disjoint imply that
@(n(z)) <max{2b'¢; 11 <j<M}<2Ch~* 4.7)

for all n(z) € N; here and in what follows, z = (r, s) and dz = dr ds.
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Using the fact that /;’s are disjoint, we have

1 1
|| ramnarans =3 [ [ famvenaraoe)
0 Jo ~ /i,

thus, we conclude that

1 1
f / f(a;uyvs.x)drdp(s) — E cj-/f(a,urvsl..x)dr
0 JO . ’
j

< Z/ / ‘f(atbtrvs.X) - f(a,urvsj.x)‘ drdp(s) < S(F)B'? (4.8
i i

where we used the facts that |s —s ;| < bandt < |log b|/2in the lastinequality.
In view of (4.8), thus, we need to bound Zj cj f f(aturvij) dr. Similar
to (4.8), we can now make the following computation.

1
> /0 ¢ f(@n(r,s).x) dr — /N (@) f (an(2).x) dz
J

Si+7

! 3
< Z/ 2b—1cJ-/ b ‘f(am(r, sj).x) — f(amn(r,s).x) ds‘dr (4.9)
P 5j=%
<L S(f)b'/?

where again we used the facts that [s — s;| < band ¢ < [logb|/2.
Thus, it suffices to investigate

A= / o(n(2)) f (@rn(2).x) dz.

To that end, let £ > 2 be a parameter which will be optimized later. Set
T—e Tl = e~"+7, and define

Ay = %/O fw(n(z))f(aturn(z)-X)dzdr;

roughly speaking, we introduce an extra averaging in the direction of U.
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Forevery 0 < r < t, we have |(B; +r)AB;| < |Bj|r. Hence,
'/(p(z)f(aturn(z)-X) dz—/fp(z)f(am(z)-X)dz
< 2b—1c-/ | f(an(2)x)| dz
; / (Bj+r)AB; '
<Y 267'¢jIBjlll flloo

j
< N flleet K S(f)T8

we used |B;| = b/2 for every j and ) ¢; = 1, in the penultimate inequality.
Averaging the above over [0, ], we conclude that

A1 — Az] € S(f)T < S(fe ? <« S(f)b'3; (4.10)
recall that T = ell;ét, ¢>2 andt > |logh|/4.

In consequence, we have reduced to the study of A, to which we now turn.
By the Cauchy-Schwarz inequality, we have

1 [ 2
|A2|2 < /(;/O f(a,u,n(z).x)dr) ¢(n(z))dz.

2
Now using (% fOT flan(r + z).x) dr) > 0, (4.7), and the above estimate,

we conclude

1 T 2
|As|* < 2Cb_8/ (—/ f(a,n(z)u,.x)dr) dz
B(0,1)\T Jo

1 [ [t A
= —2/ / / 2Cb™° fy, r(an(z).x)dzdridry  (4.11)
™ Jo Jo JB(,1)

where B(0,1) = By(0,1) = {u,vy : 0 < r,s < 1} has measure 1 with
respect to dz, and for all r1, r € [0, T] we put

Frin) = flau(r)a—,.y) f(@u(r)a—.y).

Note that S(f;lgrz) & S(H2('T)* « S(f)*e*/t. We now choose £ <
1/k4 large enough so that

S(fri.r) € S(f)7e /2, (4.12)
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By Proposition 4.1, we have

‘b‘g / Frimlam(z)x) dz
B(0,1)

= b_8/ fl”l,rZ de
X
+ b7 0 S O(S(frym)e ™).
Recall from (4.12) that S(frl,rz)e_’(“’ < S(f)%e~*4!/2 Moreover, since t >

|log b|/4 if we assume & < k4/16, then e Kat/2p—e < pra/16, Altogether, we
conclude that

‘b‘g f Frimlam(z)x) dz
B(0,1)

=b_£f Friry dmy
X
+ S(f)2n Vs pral16, (4.13)

We now use estimates on the decay of matrix coefficients, (4.1), together
with the fact that d(e, u;) > |¢|, and obtain the following bound.

& S()2e™H if|r) — | > e (4.14)

‘ / Friom () dmy
X

Divide now the integral fOT for in (4.11) into terms: one with |r| — rp| >

¢~!t2 = re~ 7 and the other its complement. We thus get from (4.11), (4.13),
and (4.14) that

_L —K _
|As]* < Cnp” 75 S(f)z(b_e (ezzxt + ezelf> +bl<4/16)‘

Recall that £ << 1/k4 and k4 > «x. Thus if ¢ < Kf /L for a large enough
L, the above, together with (4.8), (4.9), and (4.10), finishes the proof. m|

5 A Marstrand type projection theorem

In this section, we combine a certain projection theorem with some argu-
ments in homogeneous dynamics to prove Proposition 5.1. The outcome of
this proposition will serve as an input when we apply Proposition 4.2.

Proposition 5.1 Let 0 < n < 0.01nx, and let 0 < 100e < o < 1. Suppose
there exist x1 € Xy and F C B.(0, nz), containing 0, so that
F={expw)x;:we F} CX, and

Yo lw—w|I"* < D-#F)'"*  forallw € F, (5.1)
w'e F\{w}
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for some D > 1.
Assume further that #F is large enough, depending explicitly on n and e.
Then exists a finite subset I C [0, 1], some by > 0 with

3—a+5e
(#F)73-at20e < by < (#F)F, (5.2)

and some x € X; N (a| log(bp)| *{tr = || < 2}) .JF so that both of the following

statements hold true.

(1) The set I supports a probability measure p which satisfies

p(J) < CL. g3

—15¢
forallintervals J with |J| > (#F)3-«+20¢, where C, < &™* (with absolute
implied constants).
(2) There is an absolute constant C, so that for all s € I, we have

vex2 € (BEy, - ajtogon - (ur : Irl = 2}).?.

The proof of Proposition 5.1 is based on the following projection theorem.
This theorem may be thought of as a finitary version of the work of Kienmiki,
Orponen, and Venieri, [33]. Its proof, which is given in Appendix B, is based
on the works of Wolff and Schlag, [56,65] which in turn relies on a cell
decomposition theorem of Clarkson, Edelsbrunner, Guibas, Sharir, and Welzl
[12].

Theorem 5.1 LetO < «, by, by < 1 (a should be thought of fixed, and by < b
as small). Let E C B.(0, by) be so that

forall w € vand all b > by, and some D' > 1. Let 0 < k < 0.1, and let
J C R be an interval. There exists J' C J with |J'| > 0.9|J| satisfying the
following. Let r € J', then there exists a subset E, C E with

#E, > 0.9 . (#E)

such that for all w € E, and all b > by, we have

/ g () —&, <b _
#Huw'eE : |§ (#)E) & (w)|<b} < Ce - (b/b)* 3

@ Springer



1166 E. Lindenstrauss, A. Mohammadi

where C, is a constant which depends polynomially on «, |J|, and D', and
& (w) = (Ad@)w)i2 = —warr? = 2wiir + wia. (5.3)

with w;;j denoting the (i, j)-th entry of w € t.

The proof of Proposition 5.1 will also use the following version of [6, Lemma
5.2], see also [5]. We reproduce the argument in Appendix C.

Lemma 5.1 Let F C B.(0, 1) be a subset which satisfies (5.1). Then there
exist wg € F, by > 0, with

_ 3—a+5e
(#F) 3-a+20e < by < (#F)"°,

and a subset F' C By(wq, b1) N F so that the following holds. Let w € t, and
letb > (#F)~!. Then

#(F’ b -
(F f;i‘(/w ) < C/ . (b/bl)a 208’

where C' < p & * with absolute implied constants.
We now begin the proof of the proposition.

Proof of Proposition 5.1 The general strategy is straightforward. First we
apply Lemma 5.1 to replace the set F with a local version of it, i.e., we
replace F with F’ C B¢(wo, b1) N F. Then using Theorem 5.1, we project the
discretized dimension in t to the direction of Lie(V) = v N Lie(N). Finally,
we use the action of A to expand this subset of V to size 1.

The details however are a bit more involved, in particular, we need to care-
fully control the size of various elements; we also need to use Proposition 3.1
(when X is not compact) to ensure returns to X;).

Throughout the proof, we will assume #F' is large enough so that

#F)™* < (2C5C7) "', (5.4)

see Lemma 2.1 and Proposition 3.1. O

Localizing the entropy

Apply Lemma 5.1 with F as in the proposition. Let wg € F, by > 0, and
F’ C Bi(wg, b1) N F be given by that lemma; in particular, we have

3—a+5e
(HF) 352 < by < (#F)™°". (5.5)
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Replacing wo with a different point in F and increasing C” if necessary, we
will assume that F' C B(wg, b1 /(6Cs)) N F. In view of Lemma 2.1, for all
w’ € F’, there exist h € H and w € t so that

hexp(w) = exp(w”) exp(—wo)
lh =1 < b%/3 and |lw| < 2[lwo — w'|| < b1/(3Cs).

(5.6)
Set
E = {w €rv:3h e H,w' € F'sothat h, w, wy, w’ satisfy (5.6)}. (5.7)
Lemma 5.2 Let the notation be as above. Then
#(Em#BE(w,b)) < ¢ (bby)* 2% (5.8)
forallw € vand b > #F)™" where ¢ <2cC.

This lemma is proved after the completion of the proof of the proposition.
Let x) := exp(wo)x1, and let w’ € F’. Then if # and w are as in (5.6),

hexp(w)x) = exp(w’) exp(—wp) exp(wo)x; = exp(w)x; € F.  (5.9)

We also need the following elementary lemma whose proof will be given
after the completion of the proof of the proposition.

Lemma 5.3 There exists ro € [0, 1] and a subset
E € Ad(u) E 0 {w € Be(©, )t fwia] = 107w

so that #E > #E /4.

Thanks to Lemma 5.3, we may replace x), by u,,x) for some ro € [0, 1]
and E by a subset E with #E > #E /4 (which we continue to denote by E),
to ensure that

E c fwe B : lwial = 107w}, (5.10)

where w1, denotes thq (1, 2)-th entry of w € t, see (5.3). Note that (5.8) holds
for the new E with 4C, we suppress the factor 4.
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Estimates on the size of elements

Lett = |log(by)|. By (5.9), for all » € [0, 1], we have
a;urhexp(w).xy € a; - {u, = r € [0, 11}.F, (5.11)
where w € E, i.e, hexp(w) = exp(w’) exp(—wy).
We now investigate properties of the element a,u, h exp(w)u_,a—;. In view

of (5.6) and the definition of ¢, for all » € [0, 1], we have

| Ad(aq;u)w| < 1, and (5.122)
larurhu_ra_; — I|| < by; (5.12b)

note, moreover, that a;u, hu_,a_, € H.
In view of (5.10), for all || < 10~ we have

[(Ad(u,)w)12] = 1074w

Therefore, for all |r| < 10~%, we have

Ad(a;u)w = <v11 v12>

V21 V22

where |vi1], |vaz] < 10%e¢~"|vi2| and |va1| < 10%*e~%|v12|. Hence for |r| <
10~4, we have

a;uyh exp(w).xé = (quyhu_ra_;) - g - exp(e’(Ad(a,ur)w)lelg).a,urxé;

for some g € G which in view of the estimate in (5.12a) satisfies
lg — 1l < b1 (5.13)

with an absolute implied constant.
Using (5.11) and (5.12b), we conclude that

exp(e' (Ad(@u)w) 12 Erz ) gy

€ (ngl 'ngl ~ar - {uy 2 r €10, 1]}).]-“, (5.14)
where C is an absolute constant.
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Applying Theorem 5.1

We now choose a particular |r| < 10~* in order to the define the set / in
Proposition 5.1. This choice is based on Proposition 3.1 and Theorem 5.1.
Recall that t = |log(b;)| and

by < #F)™° < 2CsCy)~'n’, (5.15)

Apply Proposition 3.1 with 7, xj = exp(wo)x; € X, and the interval J =
[—10~*, 10~*]. Then if we set

J'={r:|r| < 10_4,a,ur.x§ € Xy} (5.16)

by the proposition |J”| > 0.9 -2 - 1074,

We also apply Theorem 5.1 with E, J = [—10_4, 10_4], o — 20e, and
k = e. Let J' be given by that Theorem. Fix some r € J' N J” for the
remainder of the argument.

Put x» := a,u,.x}. By definition of J” in (5.16), x> € X, and by (5.14)

exp(e' (Ad(w)12) ) x2 € (BE,, -BE,, - ar - {uy i € [0,11)).F. (5.17)
In the notation of Theorem 5.1, put
[:={'&w):weE);

recall that &.(w) = (Ad(a.rg)w)12. We will show that the proposition holds
with x;, I, and b . First note that the claimed bound (5.2) on b in the statement
of the proposition holds in view of (5.5). The assertion in part (2) of the
proposition also holds by (5.17).

Thus it only remains to establish (1) of the proposition. Let p be the pushfor-
ward of the normalized counting measure on E, under the map w > e'&, (w).
That is,

o(K) = #wek, :#e’é‘r(w)eK}

E,

for any interval K C R.
Recall again that e=" = b;. Let w € E,, and put s = ¢'&,(w). By Theo-
rem 5.1, and in view of the fact that #E, > 0.9-(#E), forevery b > et-(#F)_l,
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we have that

,O({s/ el:ls—s|< b}) _ #{w’ € E, : Iér(u;/;r_ £ (w)| < eftb}

< Cg . (e—lb/bl)a—27€ — égba_27€,

(5.18)
where C, < &7*.
Using the estimate in (5.5), we have
¢ ] —15¢
e -(#F) ' < (#F)3a+20e;
this estimate and (5.18) finish the proof of part (1). O

Proof of Lemma 5.2 Let n < 0.01, and let wg € B.(0, ). Define the map
[ B(0,7) — B(0,27) by f(w) = w where

hexp(w) = exp(w’) exp(—wg) with h € chsﬁz and w € B(0, 27)).

By the Baker—Campel-Hausdorff formula, see Lemma 2.1, f is a diffeo-
morphism. Moreover, we have

pu(r) 1] <00

forallw’ € B.(0, 77), in particular, D, ( f 1) is invertible for all w’ € B.(0, 7).
We conclude that # f (E) = #E, and

#(Bt(zi), b) N f(E)) < #(Bt(f_l(zb), 2b) N E)

for all b < 7. The claim follows. O

Proof of Lemma 5.3 This is a consequence of the fact that the adjoint action of
H on v is irreducible; the argument below is based on explicit computations.
Recall that ||w| = max{|w2]|, |w21|, |[w|21}; moreover, recall that

(Aol(u,)w)12 = —wor? — 2wiir + wia. (5.19)

Now if
#w € E : |lwyz| = 0.001||w|} = #E /4,

then the claim holds with rop = 0.
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3-(#E)
i

Therefore, we assume #E > where £ = {w € E : |wpp| <

0.001||w||}. If
#w e E: |w] = 0.1]|w|} = #E /4,

then the claim holds with ro = 0.1 and the set on the left side of the above.
Therefore, we may assume

#Hwe E :|lwn| <0.1|w|} > #E/2.

For every w in the set on the left side of the above, ||w|| = |wj1|. The claim
now holds with ro = 0.9 and the set on the left side of the above. O

6 A closing lemma

For the proof of Theorem 1.1, one needs to guarantee that a certain initial
separation is satisfied. This is the task in this section. This initial separation
estimate is then bootstrapped in Sect. 7 to give a better (finitary) dimension
estimate that is used to conclude the theorem. Throughout this section, I is
assumed to be arithmetic. Indeed, this section is the only place where arith-
meticity of I is used in this paper, more specifically Lemma 6.1. Superficially
arithmeticity is also used Lemma 6.2, but there the usage of arithmeticity is
rather mild — by local rigidity a lattice I" in SL(2, C) or an irreducible lattice
in SL(2, R) x SL(2, R) can be conjugated to have algebraic entries in some
number field, which is good enough for our (relatively coarse) purposes.
Recall from (2.9) the definition

E,ip= Bgl.at . {ur :r € [0, n]} C H;

recall also that we always assume e ~*! < 8 < 1, and in this section we will

be mainly interested in the case n = 1; to simplify the notation, we will write
E; for Ei ;.
Letx € X and ¢t > 0. For every z € E;.x, put

L(z) = {w €t:0 < |wl < injz), exp(w)z € E,.x}. 6.1)

Note that this is a finite subset of t. In (7.3), we will define I¢(h, z) for all
h € H and more general sets £.
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Let 0 < o < 1. Define the function f; o : E;.x — [2, 00) (which we will
later use as a Margulis function in the bootstrap phase of the proof) as follows

Y wen o IwI™ if Ii(z) # 0
inj(z)™“ otherwise

Jra(2) =

The following is the main result of this section.

Proposition 6.1 There exists Do (which depends explicitly on I") satisfying
the following. Let D > Do + 1, and let xo € X. Then for all large enough t
(depending explicitly on inj(xg) and X) at least one of the following holds.

(1) There is some x € Xcp N {agiur.xo @ r € [0, 1]} such that
(a) h — hx is injective over E;.
(b) Forall z € E;.x, we have

fra(z) <P

forall) <o < 1.
(2) There is x' € X such that H.x" is periodic with

vol(H.x") < P and dx(x', xg) < PO,

The proof we give here is similar to that of Margulis and the first named
authorin [41, Lemma 5.2]. A certain Diophantine condition (namely, inherita-
ble boundedness condition) is used in the formulation of loc. cit. to guarantee
in particular that our initial point is not close to a periodic U orbit. We do
not need such a condition here since we consider essentially translations of
local U orbits by expanding elements in A, and not long orbits of U (this is
reminiscent of a result of Nimish Shah [58, Thm. 1.1]). As in [41] the argu-
ment is elementary; a result of similar spirit to our Proposition 6.1 is proved
by Einsiedler, Margulis, and Venkatesh in [18, Prop. 13.1] using property-t,
i.e. a uniform spectral gap.

Let us begin with some preliminary statements. In Proposition 6.1, we are
allowed to choose ¢ large depending on I'. Therefore, by passing to a finite
index subgroup, we will assume that both of the following hold: I' is torsion
free and if I' C SLy(R) x SL2(R) is reducible, then I' = I"; x I'p

It is more convenient to consider G as the set of R-points of an algebraic
group defined over R — this way H can be realized of as an algebraic subgroup
of G. To that end, we let G = SL, x SL; if G = SLy(R) x SLy(R). If
G = SLy(C), we let G = Resc/r(SL2). In either case, G is defined over R
and G = G(R).
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Recall that r is assumed to be arithmetic. Therefore, there exists a §emisim-
ple Q-group G C SLj;, for some M, and an epimorphism p : G(R) —
G(R) = G of R-groups with compact kernel so that

I" is commensurable with p((}(Z)), (6.2)

where G(Z) = G(R) N SLas(Z). Note that G can be chosen to be Q-almost
simple unless I' C SLy(R) x SL»>(R) is a reducible lattice, in which case G
can be chosen to have two Q-almost simple factors.

Letg = Lie(f}(R)), this Lie algebra has a natural QQ-structure. Moreover,
gz :=gNsly(Z)isa G (Z)-stable lattice in g.

We continue to write Lie(G) = g and Lie(H) = h; these are considered as
6-dimensional (resp. 3-dimensional) R-vector spaces.

Let vy be a unit vector on the line A3h. Note that

Ng(H)={g € G : gvy = vy}

which contains H as a subgroup of index two.
Recall also that we fixed a compact subset G¢py C G which projects onto
Xcpt, see Sect. 3.1 for the notation.

Lemma 6.1 There exist C11 and k7 depending on M and G.p, so that the
Jfollowing holds. Let y1, y» € T be two non-commuting elements. If g € Gcp
is so that yig vy = g vy fori = 1,2, then HgT is a closed orbit with

K7
vol(Hgl) < Cur (max{lly=' I Iy 1)

Proof In view of our assumption in the lemma, we have
(71, v2) C Stabg (¢~ 'v) = Ng(g~ ' Heg).

Let A := (gyig~ ', g»og~!). We claim that A := A; N H is Zariski
dense in H. Indeed since (yy, y») is a torsion free, non-commutative, discrete
subgroup of NG (g~ ' Hg), we have A is discrete and torsion free. This and the
fact that H >~ SLy(R) imply that if A is non-commutative, then it is Zariski
dense in H. Assume thus that A is commutative, which implies that A >~ Z
and that A C A (recall that A is non-commutative). Since Ng(H) = HC
where C is the center of G if G = SL>(R) x SLy(R) and C = (diag(i, —i)) if
G = SLy(C),wehave Ng(H)/H >~ 7Z/27Z;thus A1/ A =~ Z/27. This implies
that A1 is isomorphic to Z or Z x Z/2Z or 7, /27 x Z. Either possibility leads
to a contradiction to A being non-commutative and torsion free.
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Let L be the Zariski closure of (y1, y2). In view of the above discussion,
¢ 'Hg c L(R) C Ng(g~'Hy). (6.3)

Since Ng(H)/H =~ 7Z/27Z, replacing y; by yiz if necessary we assume that
L(R) =g 'Hg.

Lety; € G(Z) be so that p(y;) = y;. Then the Zariski closure L of (Y1, 72)
is semisimple and p (L(R)) = L(R). Therefore, in view of a theorem of Borel
and Harish-Chandra [4, Thm. 7.8], we have i(]R) N G(Z) is a lattice in I:(]R).

This implies that L(R)I" is a periodic orbit, which in view of (6.3) implies
that HgI is a periodic orbit. ~
_ We now turn to the proof of the second claim. Let [ = Lie(L(R)) C g. Then
[ is a rational subspace of g; we will show that the height of this subspace is
<« ®* where ® := max{ ||y1jEl Il, ||y23El I}. That is to say: [ has a basis consisting
of vectors in gz N [ with norm <« ©*, e. g., by Minkowski’s second theorem.

Indeed by Chevalley’s theorem and the fact that L(R) is semisimple (hence
it has no character), there exists a finite dimensional (Q-representation of G on
a space ® with the following property. Let ®° denote the vectors in & which
are fixed by E(R), then

LR)={gcGMR):g.g=gq, forallg € o'

in terms of the Lie algebras, this is = (weg:wd =0}

Since (71, 7») is Zariski dense in L, we conclude that ®° is a rational
subspace with height < (max{]| )71i1 I, Il )7551 IH* <« ®*; we used the fact that
p(7) = y; to bound || 7= || from above by ||y |I* fori = 1, 2.

Using this and the fact that [ = {weg: w.®% = 0}, we conclude that

height of Tis < ©* as we claimed. This height bound implies that
vol(i(R)(;(Z)) < 0",

see e.g. [18, §17], or [17, App. B] (see also [19, §2], which treats the case of
tori; the proof there works for the semisimple case as well).

We deduce that vol(L(R)I") <« ©*; recall that the kernel of p is compact
and L(R) = p(E(R)). The claimed bound on vol(H gI") now follows in view
of (6.3) and the fact that g € Gcp. |

We also need the following lemma.
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Lemma 6.2 There exist kg, k9, and C1> so that the following holds. Let yy, y» €
" be two non-commuting elements, and let

— k8
5 = ! (maxly I v )

Suppose there exists some g € Gy so that )/ig’1 vy = eigfl vy fori =1,2

where ||€; — I|| < 8. Then, there is some g’ € G such that

. 9
I’ = g1 = Cras((max{llyE Il Iy 1)

and y;g'vy = g'vy fori =1, 2.

Proof This is essentially proved in [18, §13.3, §13.4], we recall parts of the
argument for the convenience of the reader.

With a slight change in the notation from the proof of the previous lemma,
let L be the R-group defined by E(R) = ,o_l(g_ng) C G(R), and let
d= dim(ﬂ(R)). Fix a unit vector vy on the line A? (Lie(ﬂ(R))).

Let also y; € (}(Z) be so that p(y;) = y;, fori = 1, 2. Then [18, Lemma
13.1] holds true for linear transformation

A= —-DHen—1)
from A to A @ AYG. Therefore, there exists a vector w € A?g, with
lw —voll < CO“S (6.4)

so that Aw = 0, where ® := max{||y1i1||, ||y2:ﬂ||}, C depends on G and
depends on dim G. We again used p(y;) = y; to bound ||)7l.il || by a power of

+1
”_yil"hi”s. implies that y;w = w fori = 1, 2. By [18, Lemma 13.2], there exist
C and k > 1 so that if
lw —wll < C~'O7,
then there exists g € G(R) satisfying that ||g — I|| < C’|lw — vo|| and
Vigvy = gug fori =1, 2,

see [43] for sharper results concerning equivariant projections.
Let now § satisfy

0<8< (O e+,
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Then (6.4) implies that there exists some § € G(R) with ||g — I|| < C'COXS
so that y,gvy = gvp for i = 1, 2. This estimate implies that

lo@g™" —g ' < C"O"s

for some C” depending on G.
Let g’ = p(g)g~". Then y;g'vy = g'vy and the claim holds for g'vy. O

We need the following lemma, see Lemma 7.2 in the sequel for a more
general statement.

Lemma 6.3 Let x € Xcp. Then for every z € E;.x, we have
#1,(2) < .
For the convenience of the reader, we recall from (6.1) that
I(z) = {w €t:0 < wl < injz), exp(w)z € E,.x}.
Proof Recall from (2.5) that
inj(z) = min {0.01, sup {e : g > gz is injective on BIGOSH,

where for every 0 < & < 0.1, we put BY := B . exp(B.(0, ¢)).
Note that since x € X¢p, we have

inj(hx) > 10ce™" forall h € E;, (6.5)

where ¢ depends only on X.
Let z € E,.x and w € I;(z) (hence exp(w)z € E;.x). Therefore,

BZ,_, exp(w)z C E/4.x,

_RH
where we define E;; = Bﬂ+zce_, - E;.

In view of (6.5) and the definition of inj(z), the map (h, w) — hexp(w)z
is injective over Bg _ X exp(B(0,1inj(z))). Hence we have

Bfe*f exp(w)z N Bg,, exp(w)z =¥  for all distinct w, w’" € I,;(z).

Since mpy (E;+) < €' and mH(Bg,,) > e, the claim follows. |
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Proof of Proposition 6.1 By Proposition 3.2 if d > |1log(10~®inj(y))| + C7,
then

Hr e J :aqu,y € Xepe}| = 0.99J] (6.6)

forall J C [0, 1] with |J| > 1073.

Lett > |log(10_6 inj(xg))| + C7 for the rest of the argument. Let ry €
[0, 1/2] be so that x; = a;u,,x¢ satisfies both of the following: x; € X¢pe and
a7 xy € Xep. Write x; = g1I" where g1 € Gpy.

We introduce the shorthand notation 4, := ay;u,, for any r € [0, 1]. Note
that for all » € [0, 1], we have h,x; € {ag;u, xg : ' € [0, 1]}. Assume now
the claim in part (1) fails for all » € [0, 1] so that 4, x; € Xcp. That is: for all
r € [0, 1] so that 4, x1 € Xcpt

e cither there exists z € E,.,x; so that f; 4 (z) > e,
e or the map h +— hh, x| is not injective on E;.

In what follows all the implied multiplicative constants depend only on X.

Finding lattice elements y,

Let us first investigate the former situation. That is: fix r € [0, 1] so that
hyx1 € Xcpe and suppose that for some z = hyh, x| € E;.h,x1, it holds that
fr.a(z) > eP'. Since h,x| € Xept, we have

inj(hh,x1) > e, forallh e E,. (6.7)

Using the definition of f; 4, thus, we conclude thatif I; (z) = @, then f; o (z) <
e'. Hence, assuming ¢ is large enough, I;(z) # @; recall also from Lemma 6.3
that #1,(z) < e*'.
Altogether, if D > 5 and ¢ is large enough, there exists some w € [;(z)
with
0 < w| <P,

The above implies that for some w € t with ||w| < e =P and hy =
h, € E;, we have exp(w)h{h,x; = hoh,x;. Thus

exp(w, )b s hexy = xy, (6.8)

where s, = hy'hy, w, = Ad(h;'h; Hw. In particular, [lw, || < e~P+137,
Assuming ¢ is large enough compared to the implied multiplicative constant,

0 < [lw,| <P, (6.9)
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Recall that x; = g1I" where g1 € Gcp, thus, (6.8) implies

exp(wy)h; 's,hy = g1yrgy (6.10)

where 1 #£s, € H with ||, || < e’ ande # y, € T.
Similarly, if h — hh, x; is not injective, we conclude that

hr_lsrhr = glyrgl_l #e.

In this case we actually have e # y, € gl_lH g1 — we will not use this extra
information in what follows.

Some properties of the elements y,
Note that, in either case, we have

Iy < e (6.11)

again we assumed ¢ is large compared to ||g1 | hence the estimate < % is
replaced by < .
Let & > 0 be so that ||gyg_1 — 1| = 20¢ forall y e I' \ {1} and g € Gcp.

Write s, = <Z; Zi) € H where |a;| < 10¢’. Then by (6.10), we have

-7t
1 ar e "ap
Ik sy — 1| = |u_, <e7ta3 o )ur—l > 10¢,
which implies that
max{e’|as|, |ay — 1|, |as — 1]} > &£ > 1. (6.12)

Note also that if e’ |a3| < &, then |azaz| < 10€e™%, thus |ajas — 1| < e .
We conclude from (6.12) that |a; — a4| > 1. Altogether,

max{e” ||, la; — as|} > 1. (6.13)

Let Iy = {r € [0, 1] : hyx1 € Xep) and Jop = {r € [1/2,1] : hyxy €
cht}-

Claim

There are > ¢ distinct elements in {yr 7 € Jepi}
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By (6.6) applied with y = x;,d = 7¢t, and J = [1/2, 1] we have |Jcp| >
1/4 (assuming ¢ is large enough). Fix r € Jep as above, and consider the set
of " € Jep so that and y, = y,. Then for each such 7/,

hy's b, = exp(—w,)g1yrgy | = exp(—w,) exp(w,)h ' s,k
= exp(wrr’)h;lsr’hr’s

where w,,» € g and ||w,|| < e(=PHIDI,
Set t = e’!(r' — r). Assuming D > 30, we conclude that

UrSrtt—g = hphy ' s, bt = exp(iy, sy, (6.14)

where |0, = || Ad(h,)w,, || < e=P+2Dr,
Finally, we compute

NSl — ay + azt az + (ay — ay))t — azt?
et a3 as — azt :

In view of (6.13), for every r € Jep the set of r' e Jept so that

lare™ " + (as — a))(r' —r) —aze” (' — r)?| < 104%™ (6.15)

has measure < e~ since at least one of the coefficients of this quadratic

polynomial is of size > 1. Let J, be the setof ' € Jept for which (6.15) holds.
If v € Jept \ Jr, then |ay + (a4 — a))T — a312| > 10% (recall that
T =¢e'(r' —r)), thus for all /' € Jept \ Jr-, we have

luesyu—cl > 10%€" > || exp(idy, )8, |l
in contradiction to (6.14).
In other words, for each y € T' the set of r € J for which y, = y has

measure < e and so the set {y, : r € Jept} has at least > e distinct
elements, establishing the claim.

Zariski closure of the group generated by {y, : r € Iy}

We now consider two possibilities for the elements {y; : r € I¢p}.

Case 1

The family {y; : r € I.p} is commutative.
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Let L denote the Zariski closure of (y; : r € Icpt). Since (y;) is commutative,
sois L. Let Cg denote the center of G. We claim that L = L'C’ where C' C Cg
and L/ is either a unipotent group or a torus. Indeed since L is commutative,
we have L. = TV where T is a (possibly finite) algebraic subgroup of a torus,
V is a unipotent group and T and V commute. Therefore, if both T and V
are non-central, then G = SL,(R) x SLy(R) and I' = I'; x I'; is reducible.
Moreover, T C T'Cg where T’ is an algebraic subgroup of a torus, and T’ and
V belong to different SL,(R) factors in G. Let us assume V belongs to the
second factor. Recall from (6.8) that

expw)h; s by = giyrgr ! (6.16)

where ||w, | < ePHY" with D > 30 and h's,h, € H = {(h, h) :
h e SLy(R)}). Now if - = (3}, ¥2), then (6.16) together with the bound
Ihts k|| < €¥ implies that |tr(y,)) — tr(y?)| < eP+22"; moreover,
since yrz € VCgq, we have |tr(yr2)| = 2. This and the fact that the length of
closed geodesics in (finite volume) hyperbolic surfaces is bounded away from
zero imply that |tr(yr1)| = 2 if ¢ is large enough. This contradicts the fact that
T is a non-central subgroup of a torus. Hence, the claim holds.

We now show that L is indeed a unipotent group. In view of the above
discussion, #{y, : r € Jept} > e3'. Note also that that for every torus T C G,
we have

#(Br(e, R)NT) < (log R)?,
where the implied constant is absolute. These, in view of the bound ||y, || < ¢,
see (6.11), imply that L is unipotent.
Since L is a unipotent subgroup of G, we have that
#Hyr vl < P} < ¥
Furthermore, there are > ¢3! distinct elements yr with r € Jep. Thus

#yr Nyl > 100eM/3 and r € Jepe) > €.

For every r € Iep, write

ayy a
S, = 1,r 42.r € H,
az,r d4.r
where |a; .| < 10e'.

We will obtain an improvement of (6.12). Let& < T < ¢*/3 and assume
that ||g1)/rg171 — I|| = 20T — by definition of &, this holds with T = & for
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all r € Icpe and as we have just seen this also holds for with T = e*/3 for
many choices of r € Jep. We claim

laz,| = Ye . (6.17)

Indeed by (6.10), we have

\hts hy — 1| = > 10Y.

—Tt
ai,yr € Ay
u_r\ 7 u — 1
€ aszy a4y

This implies that max{e7’|a3,r|, lai » — 1], laz » — 1|} = Y. Assume contrary
to our claim that |a3 | < Ye~’’. Then

max{lar,, — 1], laa, — 1]} = T; (6.18)
furthermore, we get |az a3 | < Ye % Thus,
lay yas, — 1] < Ye 8 « 71473, (6.19)

Moreover, since h, Is,.h, is very nearly g1y gl_l, and the latter is either a
unipotent element or its minus, we conclude that

min(jarr + as,r — 2|, lay, + as, +2]) < 70T (6.20)

Equations (6.19) and (6.20) contradict (6.18) if ¢ is large enough, hence nec-
essarily |a3 | > Te 7.

Using this, we now show that Case 1 cannot occur. Since L’ is unipotent,
there exists some g so that L'(R) C gNg~!; moreover g can be chosen to be
in the maximal compact subgroup of G — for our purposes, we only need to
know that the size of g can be bounded by an absolute constant.

It follows that

—7t
al,r e az,r _ 1 )
e (671‘6131 as., ) ur € exp(—wy)(gNg ) - Cg (6.21)

forall r € Icpc. We show that this leads to a contradiction when G = SL»(C),
the proof in the other case is similar by considering first and second coordinates.

Let us write g = <CCI Z), then for all z € C we have

1z\ 1 (l—-acz a’z
§lo1)8 =\ =22 1+acz)
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Recall from the beginning of the proof that hgx; € Xcp, i€, 0 € Iop. It
follows that for some z¢ € C,

-7t 2
ao e az .o 1-— aczo a“zo
7t = texp(—wy) 2 1 :
e’'azo a4,0 —C 20 + aczo

By (6.17) applied with Y = £, |az o] > &e~"". Since |a|, |b|, |c|, |d] < 1
comparing the bottom left entries of the matrices we get |zg| > 1. Now, since
laz.0l < 10e’, comparing the top right entries we conclude that |a| <« e 3,
Since det(g) = 1, it follows that |c]| is also > 1.

Let now r € Jep be so that ||y, || > 100e¥/3. We write a2 L= - az.r

and a3 = ¢’"az .. By (6.17), applied this time with T = ¢*/3, we have that

lay | > e*/3; note also that |a) .| < e~%. In view of (6.21), there exists
zr € C so that

/ / / / 2
air ay, _(arr—ray, ay, + (asr — a1 )r — as .r
U=r\al a Ur = 4 + ra,
3,r Y4.r a3,r a4.r a3,r

1 —acz a’z
= +exp(-wy) ( —czzrr 1+ aZ'zr) '

Since |aj .| > e¥/3, |ay ;| and |ay, | are < €', and laj | < e~ % and since
re [%, 1], we have that

|5, 1/10 < |ab, + (aa, — ay,)r — aj,r?| < 2lak,|;
hence, since w, is small, a%z, and ¢?z, should be comparable in size. On the
other hand, using » = 0 we already established |a| < ¢~ and |c| > I, thus

la’z,| <« e73|c?z,], in contradiction.
Altogether, we conclude that Case 1 cannot occur.

Case 2

There are r, 1’ € Icpy so that y, and y,» do not commute.
Let vy be as in Lemma 6.2. Then since exp(w,)h,‘lsrhr = gly,gl_l

vr-81 vi = exp(Ad(gy Hw,).g; v
Moreover, since ||w, || < e(=PH14)1,

I Ad(gy Hw, || « TP,
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similar statements also hold for r’.
Therefore, if D is large enough, we may apply Lemma 6.2 to conclude that
there exists some g, € G with

llg1 — gall < Cipe P14

so that yr.gz_lvH = gz_lvH and yr/.gglvH = gz_lvH.
In view of Lemma 6.1, thus, we have Hg»I" is periodic and

K7
vol(HgaD) = Cui (max{lly Il Iy 1}) " = Cuie”™,

where we used ||y, '], ||yr%l | < e’

Then for ¢ large enough, vol(Hg,I') < ePo! and dx (g, g2 «
e(=D+DY)1 for D, = 9max{x7, ko} + 14.

Since g1I' = x1 = asu,yxo, part (2) in the proposition holds with x" =
(aturo)_lng‘ and Dy = max{D6 + 2, 30} if ¢ is large enough (recall that we
already assumed in several places that D > 30). O

7 Margulis functions and random walks

As was mentioned earlier, the proof of Proposition 1.1 relies on two main
ingredients: evolutions of Margulis functions under a certain random walk, and
the (finitary) projection theorem, specifically Proposition 5.1, proved in Sect. 5.
In this section we develop the necessary Margulis function techniques and
show how to combine them with the results of Sect. 5 to prove Theorem 1.1
in Sect. 8.

The following is the main proposition encapsulating what is obtained using
Margulis function techniques (and then input into Proposition 5.1).

Proposition 7.1 Let 0 < n < 0.0lnx, D > Do + 1, and xo € X, where
Dy is as in Proposition 6.1, and nx as in Proposition 3.2. Then there exists
to, depending on n, inj(xp), and X, so that if t > tg, then at least one of the
following holds:

(1) Let 0 < & < 0.1 and 0 < a < 1. Then there exist x; € X, some T with
9t < t <9t +2myDt (for mo depending on a — see (7.1)), and a subset
F C B:(0, 1) containing 0 with
et/2 S #F S eSt,

so that both of the following properties are satisfied:
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° {exp(w)xl Tw € F} C (Bg,/R cap - {upxg || < 4}) N X, where
R > O depends on D, ¢, and «,
° Zw/#w lw—w'||~% < C-(#F)'*¢ forallw € F (where the summation
is over w' € F and C is an absolute constant).
(2) There is x' € X such that Hx' is periodic with

vol(Hx") < P and dx(x', xg) < e ~P+PO1,

Explicitly, m is equal to m of (2.12), chosen so that for all w € g, we have
1

| Namgrw= ar < = up. @)
0

7.1 The definition of a Margulis function

Throughout this section, £ C X denotes a Borel set which is a disjoint finite
union of local H orbits. More precisely, there is a finite set ' and for every
w € F, there exist x,, € X and a bounded Borel set E,, C H satisfying the
following

e the map h — h.x,, is injective over E,, for all w € F, and
o Ey\.xyy NEy .xy =@ forallw # w',

sothat £ =, cp Ew-Xw.
For every w € F, let ug, denote the pushforward of the Haar measure
mpy|g, under the map h — h.x,,. Put

1
- , 72
pe = = Xw:MEw (7.2)

For every (h, z) € H x &, define
Ie(h, ) = {w €t:0 < [lw| < injhz), exp(w)hz € hé‘}. (7.3)

Since E,, is bounded for every w and F is finite, I¢ (%, z) is a finite set for all
(h,z) e H xE&.

Fix some 0 < a < 1. Define the Margulis function fg = fe o : H X £ —
[1, c0) as follows:

S werstna IwI™ if Ie(h, 2) # 9

7.4
inj(hz)™¢ otherwise 7.4

fe(h,z) = {
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Let v = v(«) be the probability measure on H defined by

1
v(p) = / @(amou,) dr forall ¢ € C.(H), (7.5)
0

where m is as in (7.1).
Define ¢ on H x £ by

Ve(h,2) i= (max{#le(h, 2), 1)) - inj(h) 7. (7.6)

We will use the following lemma to increase the transversal dimension induc-
tively.

Lemma 7.1 There exists some C13 = C13(v) so that for all £ € N and all
z € &€, we have

¢
/ fe(h,2) v (h) < e fe(e,2) + Ciz Yy e/ / Ye(h, 2) vV (h),
j:l

where v) denotes the j-fold convolution of v for every j € N.

Proof Throughout the argument, the set £ is fixed; thus, we drop it from the
indices in the notation. Note that supp(v) C {h € H : ||h| < e?™0F1}. Let
C > 1 be so that

IAd(Ww]| = Cllw]|

for all i with ||h]| < ¢*"0+! and all w € g. Increasing C if necessary, we also
assume that inj(z)/C < inj(hz) < Cinj(z) for all such 4 and all z € X.

Let h = ay,u, for some r € [0, 1]. Let z € &£, and let h' € H. First, let
us assume that there exists some w € I (hh’, z) with |w| < inj(hh'z)/C>.
In view of the choice of C, this in particular implies that both I (hh’, z) and
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I (h', 7) are non-empty. Hence, we have

fh' =" fw|™®

wel (hl,z7)

= > dwl™+ D fwl®

lwll <inj(hh'z)/C? lwllZinj(hh'z)/ C2

< Y Ad(h)w||’°‘+C2°‘-<#I(hh’,z))-inj(hh’z)’“
wel (h',z)

= Y IAdmw| ™ + C**y (Al 2). (1.7)
wel (W,z7)

Note also that if ||w]| > inj(hh’z)/C2 for all w € I (hh', 7) (which in view
of the choice of C includes the case I (h', z) = @) orif I (h}’, z) = @, then

', 7)< C™ . (max{#l(hh’, 2), 1}) inj(hh'z) ™
= C2y (hi, 2). (7.8)

We now average (7.7) and (7.8) over [0, 1] and conclude hat

1 1
/ flampurh' 2ydr < Y7 / lamourw]|~* dr
0 0

wel(h,z)

1
+ Cza / w(amourh/, Z) drv
0

where we replace the summation on the right by 0if 7 (', z) = @. Thus by (7.1)
we may conclude that

/f(hh/,z) dv(h) <e ' f(h',2) +C2°’/1p(hh/,z) dv(h)
for all A’ € H. Iterating this estimate, we have

ff(h,z) dv® ) < e—lff(h’,z) dv<f—1>(h’)+cz°f/¢(h,z) dv®©(h).

The claim in the lemma thus follows from the above by induction if we
let C13 = C? and sum the geometric series. O
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7.2 Incremental dimension increase

Let0 < n < 0.0lny and 0 < B < 2. Define
E=BY. {u, r| < 0-1n}-

Let FF C B(0, B) be a finite set, and let yo € X»,. Then for all w € F
exp(w)yo € X, and h — hexp(w)y is injective on E. Put

& =E.{exp(w)yg : w € F}. (7.9

Let us begin with the following two elementary lemmas.

Lemma 7.2 There exists C14 > 0 so that the following holds. For every m €
N, every |r| <2, and every z € &, we have

#lg(amty, 7) < Crap 0™ - (#F)
Moreover, we have
Ye(amuy, 7) < Crap™ ™ - (#F).

Proof Let z € &, and let w € Ig(ayu,, z). Then exp(w)anu,z € amu,&.
Therefore, using Lemma 2.3(2), we have

lez’m.exp(w)amurz C apu,Ex

where £, = B urexp(w)yo : |r] <0.1n, w € F} and

H
,3+100/32{
ng’m = {u; s < ,3267'”} Aa; 1] < B} {ur ) < ,82}.
Note that the map (h, w’) — hexp(w’)a,,u,z is injective over
Qff ey X eXP(Be(0, inj(@mu,2))),

and let jg, is the probability measure on £ defined as in (7.2). Then

AmUr.|Le, (ng,m exp(w).amurz) > (min{ﬁz, inj(amurz)})ae_m (#F)_I,
where the implied constant is absolute.

Recall now that & C X,,. Thus, inj(a,u,z) > e "n. Recall also that
B < n?, this implies the first claim.
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We now show the second claim. The above estimate and the definition of
Ve (h, z) thus imply that

Ve antty, ) < (B0 - #F)) - inj(anu )"

we also used 0 < o < 1 in the above upper bound. The second claim in the
lemma follows. O

Lemma 7.3 Let the notation be as above. In particular, yo € X3, and
& =E.{exp(w)yo : w € F},
where F C B¢(0, B). Let wo € F, then
>ty 0 = woll ™ < 2fe (e, 2),

where 7 = exp(wg)yo and the summation is over w € F.

Proof By the definition of fg, we have

fele,2) = Zyelg(g7z) ol ~%.

Let wg # w € F. We will find a unique vector v, € I¢(e, z) whose length
is comparable to ||w — wol|. Let us begin with the following computation.

exp(w)y = exp(w) exp(—wp) exp(wo) yo
= hy, exp(vy) exp(wp)yo
=hy exp(vw)z,

where hy € H, vy € ¢, |hy — || < CsB||lvyw ||, and
0.5]lw — woll < [Jvwll < 2[lw — woll, (7.10)
see Lemma 2.1.

In particular, we have ||, — I|| <« B%; assuming 8 < 52 is small enough,
we conclude that hil € Bgl . Hence,

exp(vy)z = h;l exp(w)yg € &.

Moreover, using (7.10), we have ||vy || < 28 < inj(z). We thus conclude that
vy € Ig(e, 2).
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Since exp(w)yy # exp(w’)yo for w # w’ € F C B(0, 8), the map
w > vy, is well-defined and one-to-one. Altogether, we deduce that

Y g 10 = w0 <25 oy 017 =2 (e, 2),

as was claimed. O

Lemma 7.4 There exist 0 < k19 = k10(v) < %0 and nq depending on X so
that the following holds. Let £ be defined as in (7.9). Assume further that

fele,2) <M forallz e & (7.11)

for some M > 0 and an integer n > n.
Then forall 0 < & < 0.1 and all B > e~ 201" at least one of the following

holds.

(1) eM" < e1/2 . (#F), or
(2) For all integers 0 < £ < k1pen and all 7 € &, we have

/fg(h,z) dv® (h) < 2eMn—¢,

Proof By Lemma 7.1, applied with f¢, we have
e . .
/ fe(h, ) dv O (h) < e fele,2) + Ciz3 Y e/~ / Ve (h, 2) v (h).
j=1

Assuming n is large enough, Lemma 7.2 implies that there exists a constant
C depending only on v so that if j < en/C, then

Ve(h,2) < 2C13) " e/ - (#F),
forall i € supp(v)) — weused B > e~01¢" and assumed n is large enough

to account for the factor C148 ~7in Lemma 7.2.
Let k19 = (2C)~!, and let £ < k1pen. Then

[ Feth @O < e eter )+ ) < Mg )

Therefore, either part (1) holds or eM"—¢ > ¢03—K10)en . (# ) > on/4 . (#F).
In the latter case, the above implies that

/ fe(h, z) dv® (h) < 2eMn—¢
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as we claimed in part (2). O

From this point until the Lemma 7.8, we fix some 0 < ¢ < 0.1, and let
B = e /2 where 0 < k < 0.02k10& will be explicated later.

The following lemma will convert the estimate we obtained on average in
Lemma 7.4 into pointwise information at most points. This is done in a fairly
straightforward way essentially by using the Chebyshev inequality. Recall
from Proposition 3.1 that for any interval / C R of length at least n and
t > |log(n* inj(x))| + C7

Hr € [ :inj(a;u,x) < EZH < Crell]|.

Lemma 7.5 Let the notation be as in Lemma 7.4. Let 0 < ¢ < 0.1, and
assume that

¢ = |k10en] = 3|logn| + C7 + 6.
Further assume that Lemma 7.4(2) holds for these choices.

There exists a subset Lg C supp(v(z)) with v (Lg) > 1 — 2¢7 /8 50 that
both of the following hold.

(1) Forall hy € Lg we have
/fs(hO,Z) dpe(z) < M=%

(2) Forall hy € Lg, there exists E(hg) C & with ug(E(hg)) > 1 — 0(n'/?),
so that for all z € E(hg) we have

Blhop-2 C € (7.12a)
hoz € Xa, (7.12b)
fho.2) < M (7.12¢)

Proof Let us begin by finding Lg which satisfies part (1). Apply Lemma 7.4
with £ = |kj9en]. Since Lemma 7.4(2) holds, we have

/ felh, 2) dpe @) dv®@(h) < 277
Using this estimate and Chebyshev’s inequality, we have

u“){h e suppw©) 1 [ f(h, 2)dpe(z) > eM"—%} <2078 (7.13)
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Let L¢ be the complement in supp(v“)) of the set on the left side of (7.13),
and let hg € Lg. Then

f S (ho,2)dpe(z) < M=% (7.14)

The claim in part (1) thus holds with Lg.
Let us now turn to the proof of (2). Let & € supp(v(e)). Then h = agpyu;

where 7 = Zf;%) €_jm0rj+1 for some ry, ..., ry € [0, 1].

For every z = ug au, u, exp(w).yo € £, we have
hz = (agmoup)uy auyu, exp(w).yp = h/a€m<)“r_;+f+r exp(w).yo

where b’ € BEI and |r]| <« B for an absolute implied constant. Therefore, if
Apmoly! +74+r €XP(W) Yo € X4y, then hz € X2y,

Apply Proposition 3.1 with exp(w)ygp € £ C X, and the interval | =
[ri+7—0.1n,r, + 7+ 0.1n]. Since £ > 3|logn| + C7 + 6, we conclude

[{r € [=0.1n, 0.1n] : @emotty; 174 exp(w)yo ¢ Xantl < 0.4C7n/n.

This estimate, the above observation, and the definition of pg imply that

pnefz € €1 hz ¢ Xon} <2C7./1, (7.15)

for every h € supp(v).
Put

E_= Bg_zooﬁz{u, exp(w)yo : |r] <0.1n, w € F};
then pug(E-) > 1 - 0(B).

Let now hg € Lg. Recall also that 0 < 8 < 772. Then (7.15), implies that
there is a subset £’ (hg) C £ with

e (€' (ho)) = 1— 003,

so that for all z € &'(ho) we have hoz € X,,. Hence all points in £ (hg)
satisfy (7.12a) and (7.12b).
We will find a subset £ (hg) C £’ (hy) which satisfies (7.12c¢). Let

g = {z e & (hg) : f(ho,2) > eM”_¥}.
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Then
3¢
ne €)M < / Flho, 2) dpe (@)
g//

S/f(ho,z)dus(z) < Mk by (7.14).
£

We conclude from the above that g (£7) < e~ /8. Recall that B = e~ *""/2
where 0 < « < 0.02«1¢¢, thus we conclude that ug (") < 1.

Put E(hg) = E'(ho) \ £”. Then pe(E(hg)) > 1 — O(n'/?) and (7.12¢)
holds for every z € £(hg). The proof is complete. O

In the remaining parts of this section, we will write Q¥ for
Q0 = {151 = B2} e = 87 fu 21 < 87 @16)
where £ = |k1pen], see (2.10).

Let us also define a subset in G by thickening Q¥ in the transversal direction
as follows. Put

Q% := Q. exp(B.(0, 28%)). (7.17)

Lemma 7.6 There exists a covering {QG.yj cjed,yj € Xn} of X, where

#J < B~12e"0 and the implied constant depends on X.
Moreover, if for every hy € Lg we let

Tho) ={j € T : ho.pe(ho€ho) N QCy;) = e~} (7.18)
and define £ (ho) C E(ho) by
ho€ ho) = ho€ (o) (1) (Ui Q-5 ).

then g (é (ho)) = 1 — O(/n) where the implied constant depends on X. In
particular, J (ho) # 0.

Proof For simplicity in the notation, let us write BC for
B, = By - exp(B: (0, p%)).
We begin by constructing a covering of B . First recall that

M Q152 ) = € Om (exp(By (0, B2))), (7.19)
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where the implied constant is absolute, see (2.10). Moreover, by Lemma 2.3
we have

QH

0.0182,¢mg (&1 )= c Qf, (7.20)

0.0182,¢m B>.tmg”

Fix a maximal subset H C Bglz so that

H H r_
QO.OlﬂZ,Zmoh N Q0.01/32,Zm0h =,

forall h # h' € H. In view of (7.19), we have #H <« e!0 where the implied

constant is absolute. Then using (7.20), we conclude that (Qfh jhjeH)

COVers Bgz and #H = et™o,

Taking the product with exp(B: (0, %)), we thus obtain a covering
{Q"hjexp(B.(0, 7)) : hj € H}
of the set BC.
Recall that 8 < n?, and that by Lemma 2.1, we have (Bg;)_1 . Bg; C Bgs
for all § > 0, where c is an absolute constant. Hence, arguing as above, there
exists a covering

{Bcj}k : k e ]Cv )A}k E X27]}7

of X5, which satisfies #C < B ~12 for an implied constant depending on X.
Combining these two coverings, we obtain a covering

{Qfhj exp(B:(0, )5 : hj € M, k € K}.
of X7,. Note further that
Q1 exp(B.(0, ) = Q7 exp (Ad(hj)Bt(O, ﬂz))hj c Q%h;;
where we used the fact that Ad(h;)B.(0, ,32) C B:(0, 2/32) in the final inclu-
sion above — this holds since ||h; — I]| < 2% and B is small.

Finally note that since yx € X2, and ||h; — I]| < 282, we have hjye € Xy,
for every j, k. Altogether, we obtain a covering

{QCy;:jed,yje X)) ={Qh;3 :h; e H,k € K}
of X5, where #7 <« ﬁ_lzeemo. This finishes the proof of the first claim.
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To see the other claims, let iy € Lg, and define 7 (hg) as in the statement.
Then for every j ¢ J(hg), we have

ho.ue (h()g(h()) N QG.yj) < ,3136_0’10.

This estimate and the bound on #.7 yield

ho.lLg (h()g(h()) N (Uj¢j(h0)QG.yj)) <L B,
where the implied constant depends on X. The desired bound on the measure
of ho& (ho) thus follows since ho. e (hoé(ho)) > 1— 0(JM).

The fact that 7 (hg) # ¥ is a consequence of the fact that £ (ho) # @, which
is immediate from the above bound. m|

The following lemma yields a set £ defined as in (7.9), for some y; and
F1, but with an improved bound for f¢, (e, z). This lemma will serve as our
main tool for incremental dimension increase in the proof of Proposition 7.1.

Lemma 7.7 There exists ng so that the following holds for all n > nq. Let the
notation be as in Lemmas 7.5 and 7.6. In particular, 0 < ¢ < 0.1 and

¢ = |Kkipen] > 3|logn| + C7 + 6;

assume further that #F > ¢"/? and that Lemma 7.4(2) holds.
Let hy € Lg, and let y = y; for some j € J (ho). There exists some

hoz1 € ho€(ho) NQC.y
and a subset
Fi C B0, B) with #F, = [B'0. (#F)]

containing 0, so that both of the following are satisfied.
(1) Forall w € Fi, we have

exp(w)hoz1 € B{{)Oﬂz ho& (ho).

(2) If we define &1 = E.{exp(w)hoz1 : w € F1}, then at least one of the
following two possibilities hold

fe,(e,z) <2 (#F))ITe forall z € &1, or (7.21a)

2K10¢

fe,(e,z) < eM=73n forall 7 € &. (7.21b)
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Proof Let hg € Lg and y = y; be as in the statement of the lemma.
The set ho€ (hg) NQC .y is contained in a finite union of local H-orbits. Let
M € N be minimal so that

M
ho(ho) NQ%.y C |_J Q7 exp(w)y. (7.22)

i=I

where w; € B(0,2p%).
Foreach 1 <i < M, fix some z; € £(ho) so that hgz; € QC.y and write

hozi = hiexp(w;)y  for some h; € QF. (7.23)
We claim that both of the following properties are satisfied

Q7 hozi NQ hoz; =0 1<i#j<M. (7.24a)

M
ho€(ho)NQ%.y c | ) Q" - @) " hozi. (7.24b)

i=1
Assume contrary to (7.24a) that hhoz; = h'hoz; fori # j. Then

h~'h'h; exp(w;)y = h™'h'hoz;
= hoz; = h; exp(w;)y.

That is exp(—wi)héxp(wj)y = y where h = h;lh_lh/hj. Note more-

over that hAeB%Oﬂz, see (2.4), and w; # w; € B(0, 28?%). Therefore

I # exp(—w;)h éxp(wj) € B§00ﬁ2' Recall however that 8 < n?>and y € X2y,
G

thus, g — g.hoz; is injective on 8100052

diction implies that (7.24a) holds.

We now show (7.24b). Let hoz € ho&(ho) N QC.y, then hoz = hexp(w;)y
for 1 <i < Mandh e Q. Moreover, we have hoz; = h; exp(w;)y, thus
hoz = hhl._lhoz,- as claimed in (7.24b).

Recall now that £ = E.{exp(w)x : w € F} where E C H with mg(E) <
/3217. In view of the definition of g, see (7.2), we conclude that

for all small enough B. This contra-

houe (Qf hozi) < ple™tmop=2n @)™ « g3oetmo@F) T,
recall that 8 < .

Using (7.24a) and the definition of 7 (ko) in (7.18), we deduce from the
above that M >> g% . (#F). Assuming g is small so to account for the implied
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multiplicative constant (which depends only on G and I'), we get
M > Bl0. #F). (7.25)
Let 1 <i, j < M, then using (7.23) we have

hoz; = h; exp(w;)y = h; exp(w;) exp(—wj)hflhozj'
= h;h’ ! exp(Ad(h;)w;) exp(— Ad(h,)w)hoz,

= h;h7'hij exp(wij)hoz;, (7.26)

where h;; € H and w;; € v, h;; = I, w;; = 0 for all i, j; moreover, we have
lhij — 11l < CsB%llwijll - and (7.27a)

051l Ad(h))(w; — w)ll < llwijll < 21 Ad(h)(w; —w)ll.  (7.27b)

for all i, j, see Lemma 2.1.
Let {w;1} be defined as in (7.26), and let

FiC{wii:1<i<M} with #F, = [B'0. #F)1; (7.28)

this is possible thanks to (7.25). We will show that the claims in the lemma
hold with z; and Fj.

First note that hoz; € ho&(ho) NQC.y by its definition, and that F satisfies
the claimed properties by its definition and (7.28). Let us now show that part (1)
in the statement of the lemma holds. Indeed by (7.26), we have

hozi = hihl_lhil exp(w;1)hoz1 € <B%52>.exp(w,~1)hozl N ho& (ho).

Therefore, exp(wi1)hoz1 € (B} ﬂz)—lhosmo) c B 5h0E (ho), see (2.4)
for the last inclusion. This establishes the claim in part (1) of the lemma.
For the proof of part (2) in the statement of the lemma, we need the following.

Sublemma Let
&1 = Efexp(w)hpz; : w € Fi}.

Let 7 € &, and write 7 = hu, exp(w;1)hoz1 where h € Bgl, |r| < 0.1n, and
wil1 € F]. Then

fe,(e,2) < 2fe(ho, zi) + B2 - (#F)),
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where z; € E(hg) is defined as in (7.23), in particular it satisfies
hozi = h:h'hi1 exp(wii)hozi,

see (7.26), and £ = |k1pen].

Let us first assume the sublemma, and finish the proof of the lemma.
Recall that 8 = e~*"*/2 where

0 <« <0.02¢10¢. (7.29)
In view of (7.25), we have
#F =M > B10. #F) > (17100n/2 (7.30)

where we used the bound #F > ¢"/2.

Recall also that kjgmo < 1/4; this estimate and (7.29) imply that
k10emo +k < (1 — 10k)e/2.
Using this and (7.30), we conclude that
eleroemotion -y < (U102 gy < ()1 (7.31)

Let z € &1, and let z; € £(hp) be as in the sublemma. Then, by (7.12c) we
have

3
fe(ho, zi) < M4,

where ¢ = |kj9en]. Thus, using the sublemma and (7.31) we deduce that

3k10¢
fer(e,2) = (20) - eMTTE 4 b0t ()
3k

< 6eM="m L gy 1+e

3Kk10€
We now consider two possibilities. Indeed, if (#F DIte > 6eM 7%)”,

then the above bound implies that
feile.n) < 2(F)'™,

hence, (7.21a) holds.
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3k10€
Alternatively, if (#F;)!1¢ < 6eM —=4" then

3k10€ 2K10¢
fei(e.2) < TeM=7am < (M=7500n,

assuming n > no is large enough. In consequence, (7.21b) holds.
These estimate finish the proof of part (2) and of the lemma, assuming the
sublemma. O

Proof of the Sublemma The proof is similar to the proof of Lemma 7.3.
Let z € £1. Then

=

fe (e, 2) = Zwelgl ey W
= Z||u)||§e—‘m0‘32 ”w”—a + Z||w||>e_‘3’”052 IIwII_“
< D jwl<e-tmoge w7 4 e0B72 - (#Fy). (7.32)
In consequence, we need to investigate the first summation in (7.32). Let
w € Ig (e, z), then z, exp(w)z € &;. In view of the definition of £} and (7.26),
we may write

z = hu, exp(w;)hoz1 = hu,h'hih  hozi = higz

similarly, exp(w)z = ﬁ’hozj wherel <i, j < Mandh,h' € Bglsn,see (2.4).
Recall also from (7.26), that

hozj = h;ihthj; exp(w;i)hozi

where hj; and w j; satisfy (7.27a) and (7.27b). Hence we may apply Lemma 2.2,
recall that ,32 < 0.1n, and conclude

lwjill < 2flwll. (7.33)
Moreover, since hozx’s belong to different local H-orbits, see (7.23), w — w;
is well-defined and is one-to-one.
Assume now that [|w|| < e~ 82, then lwjill < 2¢~tm0 B2 This estimate
and (7.27a) imply that
Ihji = 11l < 2Csp>[wjill < e™"0p°

assuming S is small enough.
Recall also that h;, h; € Q" and that (7.12a) holds for z j- Therefore, as
hg € supp(v(g)), in particular it is of the form hy = agmou, for |r| < 2, we
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have by (2.11) and (7.12a) that h;.lhih;lhoz,- € ho&. That yields
exp(w;j;)hoz; = h;l.lh,-hjflhozi € ho&

which implies wj; € Ig(ho, z;) —recall that [[wj; || < 2e~“"0 B2 < inj(hoz;).
This, (7.33), and the fact that w +— w; is one-to-one imply that

Y jufze-tmog2 1w~ < 2fe(ho. 20).
This estimate and (7.32) finish the proof of the sublemma. O

We also need a lemma which is based on Proposition 6.1 and will provide
the base case for our inductive argument in the proof Proposition 7.1.

Lemma 7.8 Let the notation be as in Proposition 7.1. In particular, let 0 <
n < 0.0lnx, D > Dy, and xo € X. There exists t|, depending on n, D, and
the injectivity radius of xo, so that the following holds for all t > t,.

Let0 <& < 0.1, and let B = e ¥UTD/2 ywhere 0 < k < 0.02k106. Then at
least one of the following holds.

(1) There exists a subset F C B(0, B) with
o TKUHD) < g < AHOSK(HD)
and some 'y € Xop N (Bgl . a9t>.{urx0 :r €10, 1.05]} so that if we put
& =E.{exp(w)y : w € F},
then £ C (B{‘(I)l3 -a9t>.{urxo :r €[0,1.1]} and

fe(e, z) < PUTD forall z € €.
(2) There is x' € X such that Hx' is periodic with
vol(Hx') < P and dx(xp, x') < e ~P+DPo),
Proof Put Cy = {ag;u,xo : r € [0, 1]}. Apply Proposition 6.1 with xq and 7.
If part (2) in that proposition holds, then part (2) above holds and the proof is

complete. Therefore, let us assume that Proposition 6.1(1) holds.
Let x € X¢pe N Cp be a point given by Proposition 6.1(1); put

C= <B§I -a,).{urx :r e [0, 1]} C X;
andlet C_ = Bg—IOOﬁZ -ay - {urx cr € [100e™,1 — IOOe_t]}.
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Let uc denote the pushforward to C of the normalized restriction of the
Haar measure on H to C := Bg ~a; - {uy :r €0, 1]} C H— the set C was
denoted by Ej ; g in (2.9), we will use the notation C in this proof to avoid
confusion with E = Bgl Au, : |r] <0.1n} from Sect. 7.2.

We now use arguments similar to, and simpler than, the ones used in Lemmas
7.6 and 7.7 to construct the set £ as in part (1).

First note that by Proposition 3.1, if # > [logn| + C (where C depends on
X) we have

peC—NXap) =1 =0/ ), (7.34)

where the implied constant depends on G and I'.

Let {Bgz.)?j : j € J} be a covering of X4, so that J =< B~'2 where the
implied constant depends on G and T, see Lemma 7.6. Let J' be the set of
those j € J so that

pue(C-N X4y NBG.I) = B (7.35)

This definition, the fact that uc is a probability measure (and moreover
by (7.34) a probability measure giving large measure to C_ N X4,) and the
estimate J = ! imply that

uc(c_ ﬂ(U Bg';.ﬁj)) > 1— 0/,

jelJ’

where the implied constant depends on X. Moreover, (7.35) implies that for
any j € J/, Bgz.y,» C X3y
Letj e J';puty =3, andC = C_ﬂBgz.)?.Then, there are w; € B.(0, f?)

and h; € Bfé,i =1,..., M, so that h; exp(w;)y € C_ and

M
C= U Cih; exp(w;)y,

i=1

_ H
where C; C 81052‘

Recall that 8 < n? and that m 7 (C) < ¢’ 2. In consequence, we have
neBilp) < B0 (e'pH ™ = ple.
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This and (7.35) imply that M > B%’. Assuming that 8 is small enough, to
account for the implicit constant, we have

M > g1l (7.36)

We now use C to define £ which satisfies the desired properties in part (1).
To that end, note that for every i and j we have

h; exp(w;)y = h; exp(w;) eXP(—wj)l‘I;Ihj exp(w;)y

= hih;I hij exp(w,-j)hj exp(wj)jz, (7.37)

where h;; € H and w;; € v, h;; = 1, w;; = 0 for all i, j; moreover, we have
lhij =TIl < CsB*||lwij|  and (7.38a)
0.5 Ad(hj)(w; — wpll < [lwill < 2[ Ad(hj) (w; —w;))l, (7.38b)

for all i, j, see Lemma 2.1. In particular, for all i, j we have
lhij — 11l < B* (7.39)

for an absolute implied constant.

Thus, assuming B is small enough, we have hih;lhij € B%ﬂQ, for all , j.
This and the fact that h; exp(w;)y € C_ imply that
exp(w;;j)hjexp(w;)y = (hihflhij)_lhi exp(w;)y
" (7.40)
€ B10,32'C— cC,

for all i and ;.
Let y := hyexp(w1)y € C_- N Xopand F = {w;; : i = 1,..., M}. First
note that by (7.40) and Lemma 6.3, we have
#F << e4l‘ S ﬂ_le4t,

where in the last inequality we assume g is small to account for the implied
constant. This and (7.36) imply that

el*SK(lﬁ*l) — ﬁloel < #F — M < ﬁfle4l — e4t+0.5K(l+1)’ (7'41)
which is the bound we claimed in part (1).
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Define £ = E.{exp(w;1)y : w;; € F}. By (7.40), we have {exp(w;1)y :

w;1 € F} C B{{)ﬂz.c,. Recall also that E = Bg Auy 1 |r] <0.1n} and

U - Bg ~ay C ng Ay Uty (7.42)
for all |r| < 0.1n. Thus

€=Bf {u, : |r| <0.1n}{exp(w;1)y : wi1 € F}
c Bf -BY, - a{uyx i r €[0,1]}
C B - afurx :r €0, 11)
- (ng ~ar - {uy :r €0, 1]}) ~ag; {u,xo 1 r € [0, 17}

- ng - ay - Bgﬂ Auy o |r| <2} -ageurxo i r €0, 1]},

where BZ = {uy :|s| <o} -{aq : |d| < o} and we use x € Cp in the third
line. Using u,ag; = ag;u,—s:,, which holds for all r and ¢, we conclude

EC ng -ay - Bgﬁ ~ags {uyxo - r € [0, 1.1]},
solongast > 1.
Finally note that a,Biﬂa_t ={u; :|s| <2e7'B}-{as:|l| < 2B} forallr.
Thus assuming 7 is large enough, we have
€ C Bl - ag, - {urxo : r € [0, 1.1]}.
We claim
fele,z) <2eP" < PUFD  forallz € €. (7.43)
In view of the above discussion, this estimate finishes the proof of part (1) and
of the lemma modulo (7.43).
The proof of (7.43) is similar to the proof of Lemma 7.3. Forevery 1 <i <
M, put z; = h; exp(w;)y. Let w € Ig(e, ), then z, exp(w)z € E. In view of
the definition of £ and (7.37), we may write

z = hu, exp(wi1)y = hu,(hhy'hi) "'z = hz;

similarly, exp(w)z = ﬁ’zj where 1 < i, j < M and |’_1, h' e Bglsn’ see (7.39)
and (2.4). Recall also from (7.37) again that

zj =h;hhjexp(w;i)zi
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where hj; and w j; satisfy (7.38a) and (7.38b). Hence we may apply Lemma 2.2,
recall that 8 < nz, and conclude

lwjill < 2[wll. (7.44)

Moreover, since hy exp(wy)3’s belong to different local H-orbits, w — wj;
is well-defined and one-to-one. Recall also from (7.40) that

(hjhi’lhji)_IZj = exp(w;;)z; €C,

for all 7, j. Moreover by (7.38b), we have ||w ;| < ;32 < inj(z;). Altogether,
we conclude that wj; € I¢(e, z;).
This, (7.44), and the fact that w > w; is one-to-one imply that

fele,2) = Zwelg(e,z) Jw] ™
= 2211)61@(6,1[) ”w”—tx
=2fc(e, z;) < 2e™",

where the last inequality is a consequence of Proposition 6.1(1). O

Proof of Proposition 7.1

We now complete the proof of Proposition 7.1. Roughly speaking, the proof
is based on repeatedly applying Lemma 7.7 to improve the bound on the
corresponding Margulis function.

Let0 < n < 0.01nx, D > Doy + 1 (for Dg as in Proposition 6.1), xg € X,
and ¢t > 0 (large) be as in the statement of Proposition 7.1.

Fix some « satisfying

0<k < K108
~ 100D’

(7.45)

and put f = e <0+D/2,

We assume ¢ is large enough so that 8 < nz; assume further that ¢t > £,
where #; is as in Lemma 7.8.

Base of the induction

Apply Lemma 7.8 with n, 8, D, xo, and ¢. If Lemma 7.8(2) holds, then
Proposition 7.1(2) holds and the proof is complete. Therefore, we assume
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that Lemma 7.8(1) holds. Let
€ =E{exp(w)y : w € F} CB{{g-ag, - {urxo: r €[0,1.1]}  (7.46)
be asin Lemma 7.8(1). Putn =t +1,M = D,ygo =y, Fp = F,and &y = £.
We further assume 7 + 1 > 4ng where ng is as in Lemma 7.4.
Apply Lemma 7.4 with this &. If Lemma 7.4(1) holds, then eM” < /2.
(#Fp). Since #Fy > ¢! 7K+ > on/2 we have
feole.z) < M < ™2 (#Fy) < (#Fp)' .
Hence by Lemma 7.3, for all w € Fp,

Zw;ﬁw’ ||w - w/”ia 5 4 : (#FO)1+8

This estimate together with (7.46) implies that part (1) in the proposition
holds with T = 97, x; = y and F = Fy if we choose R large enough so that
e~ !/R > 108.

The inductive step
In view of the above discussion, let us assume that Lemma 7.4(2) holds for

&o. Let Lg, be asin Lemma 7.5. Let hg € Lg,, and let y; for some j € J (ho)
be as in Lemma 7.6. Moreover, note that

en/Z < et—5/c(t+1) < #FO < e4t+0.5k(l+l) — ,3_1€4t,

and n > ng. Therefore, we may apply Lemma 7.7. By that lemma, there exist
z1 with

hoz1 € ho&y(hg) N QG.yj
and a subset F; C B.(0, 8), containing 0, with
#F) = [B'0- #F)))

so that both of the following are satisfied.

(I-1) For all w € Fi, we have

exp(w)hozi € Bfyz-h0o(ho).-
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(I1-2) If we put & = E.{exp(w)hoz; : w € F}}, then at least one of the
following properties hold:

fe,(e.2) <2- (#Fy)!Te forall z € £, or (7.47a)

2k10€
fr (e, 2) < eM="3m forall z € &. (7.47b)

If (7.47a) holds, we set &, = &£1. Otherwise, we repeat the above construc-
tion to define sets F3, ... and the corresponding &, . . ..

Let imax = L%‘fl ;83 ] + 1, then by the choice of « in (7.45), we have
M — z’gogimax <1/2 and Sk(imax +1) < 1/4 (7.48)
Suppose now that i < ip., and we have constructed &,...,E& so

that (7.47a) does not hold for &, for all 0 < k < i. Then (7.47b) holds
and we have

2K108
fe(e,7) < eM——ion

forall0 <k <iandall z € &. (7.49)
By the second estimate in (7.48), for all 0 < k < i, we have

#Fk > ﬁIOk . (#FO) > et—SK(k+1)(t+1)
> e(3t71)/4 > eZn/3.

Since (7.47a) does not hold for &, but (7.47b) holds, we have

esn/2 . (#Fk) < (#Fk)1+8 < e(M—ZK%ioak)n

forall0 <k <.

Thus we are in case Lemma 7.4(2) for all these k, moreover, we have the
bound #F; > ¢>*/3. In consequence, Lemma 7.7 is applicable in every step,
and we can define F; | and & 1.

The conclusion of the proof

We now show that in at most i;,,x many steps, we obtain a set £ which satisfies
(I-1) above and (7.47a). Indeed, in view of the first estimate in (7.48),

2K1()8.
e(M*Tlmax)n < en/z_

As #F; > ¢2"/3 for all F;’s which are constructed, this observation together
with (7.49) implies that in at most iyx number of steps, (7.47a) holds.
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In consequence, we get some ifin < imax, SO that if we put Fg, 1= Fj;, C
B:(0, B), then #Fq, > ¢2"/3, and the set

Efn = E.{exp(w) yfin : w € Fin}
satisfies
fem(e,2) <2+ (#Fn)'** (7.50)

for all z € &gy (cf. (7.47a)).
We claim that Fg, and yg, also satisfy

{exp(w) yfin : w € Fiin} C (Bf{)o(,'ﬁnﬂom cag - Aup 2 |r] < 4}> X0 N Xy,
(7.51)

with 7 satisfying
9t <1 =91 +ifnk10emo(t + 1) <9t 4+ 2moMt = 9t + 2mogDt. (7.52)

Let us first assume (7.51) and finish the proof of the proposition.
First note that using the above definitions, we have

e'? < #Fp <#Fy < ple¥ <.
The assertion (7.50) and Lemma 7.3 imply that for all w € Fgp,
Y lw = w7 < 4 #Fga) T

This estimate together with (7.51) implies that part (1) in the proposition
holds with x; = ys, and F = Fy, if we choose R large enough so that
e~/ > 100(ig, 4+ 10)B. This concludes the proof of Proposition 7.1 modulo
the proof of (7.51).

To see that (7.51) holds, note that at every step, the element A is of the form
amgeur, Where ri € [0, 1] and £ = |kyoe(t + 1)]. Now for all 0 < k < ifp,
we have

Exp1 C By - amgottr - {u = [F| <2e7™°) - &, (7.53)

where B; = {uy :|s| <o} -{aq : |d| < o}. To see this note that by (I-1), we
have

{exp(w)x; : w € Fry1} C 8{100;32 “Amgettry -Ek -
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H
10082°
h' e Biﬂ and |r'| < 2; mOreover, u, amyr = Amgel ,~mot,o. Assuming £ > 5,

which may be guaranteed by taking ¢ large, and using the definition

Now for every |r| < 1, h eBgI andh e B we have F]urh = h'u,» where

Eit1 = Efexp(w)x; : w € Fi41},

the inclusion in (7.53) follows.
Arguing similarly, (7.46) implies that

& C B“}Oﬂ ~aog; - {uyxg : r €[0,1.15]}.

Using the fact that ay,¢Bja—mq¢ C By, and arguing inductively,

H .
Eiv1 C B]OO(iﬁn+]0)ﬁ : (am()é”f,-HUi—i—l) ce (amoéuﬁ Uy) - {agu, : |r] < 2}.x0,

where 7 € [0, 1] and Uy = {u; : |F| < 100(k + 10)B}. Moreover, for every

i S imax,
. 4
(@moetty,  Uit1) - - (@mgertp U1) C amgi+1ye - up - {ur 2 [7] < 1078},

where 7 = Y e 0 *=DER < [0, 1.5].
This implies (7.51) except for the bound (7.52) on t. To see the claimed
bound on 7, note that

imaxl < (B4=3 4 Dicyoe(t + 1) < 2M¢t

4dr10e

which implies the bound on 7. O

8 Proof of the main theorem

In this section we will complete the proofs of Proposition 1.1 and Theorem 1.1.

8.1 Proof of Proposition 1.1

Let Dy be as in Proposition 6.1, and choose D > 2D so that §/2 < Dgy/(D —
Do) < 6.

Let no = 0.01nx, and let 0 < n < no. Let x; € X, and let 7y be as in
Proposition 7.1 applied with D and 7.

Define t by T = ¢P=P0) and let T; be so that T > T implies 1 > 1.

We may assume that Proposition 7.1(1) holds. Indeed, if Proposition 7.1(2)
holds, then since ¢P?0! = 7 Po/(P=Do) 3pq 8/2 < Do/(D — Dg) < 6, Proposi-
tion 1.1(2) holds and the proof is complete.
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1208 E. Lindenstrauss, A. Mohammadi

Let 0 < 6 < 1/2 be arbitrary. Apply Proposition 7.1(1) with ¢ = 0.016
and o = 1 — e. Without loss of generality, we will further assume that 77 is
large enough so that e e/2 < (2C5C7)_1n3, this is motivated by (5.4).

By Proposition 7.1(1), there exists R > 0, depending on D and 6, so that
the following holds. There exist x; € X, some 9t < © < 9t +2mDt (where
mq depends on 6 as in (7.1)), and a subset ' C B.(0, 1), containing 0, with
e'/? < #F < &', so that both of the following properties are satisfied.

{fexp(w)x; :w € F} C (BEH,,/R sar{urxg i lr] < 4}) NX, and (8.1a)
D 0 — w7 K #F)'T¢  forallw € F, (8.1b)
where the implied constant depends on X.
Now apply Proposition 5.1 with n, ¢, « = 1 — ¢, x1, and F’; note that (5.4)
is satisfied since #F > ¢'/?. Let

x2 € Xy Najiogp|{ur exp(w)xy : r| <2, w € F}, (8.2)

I C [0, 1], b1 > 0, and the probability measure p on / be as in that proposition.
In particular, we have

e < (HF) T < by < (HF)"°, (8.3)
and the following hold
p(J) < CLIJI*"%  forall |[J| > (#F)Ti (8.42)
UgXp € ngl “A|logby|-{ur exp(w)xy : [r| <2, w e F} foralls €1,
(8.4b)

where C is an absolute constant.

& _ 8 . /2
Set k := IDy = 00Dg" Since #F > ¢'/=, we have

(#F)211251€5 < #F)~¢ < e—gz/z < T—9¢/4Do _ T—SK; (8.5)

recall that §/2 < Dy/(D — Dg) < 8 and T = (P—P0)t,
Combining (8.5) and equation (8.4a), we conclude that

p(J) < CLlJ1%730% < L1719, for all intervals J with [J| > T %,
(8.6)

This establishes Proposition 1.1(1)(a) if we put Cg = C}.
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Let us now turn to the proof of Proposition 1.1(1)(b). We first claim that
{ur expw)xy : |r| <2, w e F} C By, -ar - {urxo : Ir] <9/2},  (8.7)

where o = ¢ /R and BZ) ={uy :ld| <o} -{a¢: €] < o}. To see this, first
note that using (8.1a), we have

{exp(w)x; : w € F} C Bgl car - {upxg :r| < 4.
Now for every |r| < 2 and & € BY, we have u,h = h'u,» where h’ € Biog
and |r’| < 3; moreover, u, a; = d;u,—,. The claim follows as T > 2.

Combining (8.7), (8.4b), and (8.2) for all s € I U {0} we have

G
UsgX2 € BCb] *Alloghy] * {ur exp(w)x; : |r| <2, w € F}

(8.8)

€ BE,, - ajioghy| - Blo, - ar - {urxo 1 r| <9/2}.
By the definition of B, 0 above, we conclude that
alog b1|Blopad—11oghi| C {uy @ |d| < bi}-{ae : €] < 100}
This and (8.8) imply that
vex € B, - ({ac : 16] < 100} - acjtogn - {ur < Ir] < 9/2}).x0. (8.9)

Recall that by < (#F)~¢ < e~ ¢1/2 < T=8/4D0 and o = ¢~'/R . Moreover,
note that the bound e~® < b; in (8.3) and t < 97 4+ 2moDt imply

e(t+|logb1|)/2 <e' < e9t+2m()Dt < TA/_I,
for A’ depending only on 6. Hence, in view of (8.9), we have
dx (stz, Bp (6, TA/)JCO) <y TP,

for all s € I U {0}.
The above and (8.5) finish the proof of the proposition if we let yp = x»

_ & _ %
and K2 = 75 = 00D

8.2 Proof of Theorem 1.1

Let 8 = ¢¢9/2 where ¢ is given by Proposition 4.2.
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1210 E. Lindenstrauss, A. Mohammadi

Apply Proposition 1.1 with xg, 0, n = 10_417 x,and the given 8. Let T > T
where T is as in Proposition 1.1.

If Proposition 1.1(2) holds, then Theorem 1.1(2) holds and we are done.
Therefore, let us assume that Proposition 1.1(1) holds. Let yg, I, and p be as
in Proposition 1.1(1).

Let0 < ¢ < 0.1nx, and let z € X,,. There is a function f, ; supported on
BG 1,z with [ fo,.dmx = 1and S(f,,.) < 0", where N is absolute.

Let b = T7%2 and let r = |logb|/4. In view of Proposition 1.1(1), p
satisfies (4.6) with Cy.

Apply Proposition 4.2, with f = f, . for o = e~%6!/2N Then

‘ f flauvs.y0) do(s)dr — 1| K¢, S(f)e ™ ¢, e /%,

where we used 7 = 10™%5x, hence the dependence on 7 in Proposition 4.2
can be absorbed in the implicit constant.

Assuming T is large enough, depending on 6, the right side of the above is
< 1/2. Thus asu,vs.yo € supp(f) forsomer € [0, 1]and s € 1.

Let k11 = k6/8N. The above thus implies that

dx<z,at.{urvsyo rel0,1],s € 1}) & b (8.10)

forall z € Xpen1.
Moreover, by Proposition 1.1(1), we have

dX (”rvs-yO» <ur : BP(ea TA/))-XO) E Cébv

forall s € 1 U{0}and r € [0, 1]. Note also that if z, 7/ € X satisfy, d(z, 7') <
Céb, then dx (a;z, a;7") < b'/2. In consequence,

dx(“"{”’vsyo irel01],s € 1}, Bp(e, TA/“).xo) < b2 (8.11)
where we used
a-{ur :r €0, 11} Bpe, T*) C Bp(e, TH),

which in turn follows from ¢ = | log b|/4 and b = T %2,
Combining (8.10) and (8.11), we conclude that

dx(z, Bp(e, TA 1) .xp) < b¥11 = 702
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for all z € Xpri1, where the implied constant depends on X. This implies
Theorem 1.1(1) with k1 = k2k11.

As was remarked in Sect. 4, kx in (4.1) is absolute if I" is a congruence
subgroup, see [9,13,29]. Hence, if I" is assumed to be a congruence subgroup,
then A and k| only depend on I'" via (6.2). O

9 Proof of Theorem 1.2
Let nx be as in Proposition 3.2 and C7 as in Proposition 3.1. Define
Cx = ny' vol(G/T)e“, 9.1)

where vol(G/I') is computed using the Riemannian metric d, see also (4.2).
For 0 < @ < 1 choose an my > 0 as in (2.12), i.e., m,, satisfies that

1
/ lam,urw|~dr < e 'w|™ forallw e g. 9.2)
0

In this section, the notation a <x b means a < LC)L( b where L is an
absolute constant. Similarly, ¢ <x b means

a < LCLel™a b, (9.3)

where L is an absolute constant. Define a >>x b and a >>x , accordingly.

Throughout this section, ¥ = Hx is a periodic orbit. Let pg, denote
the probability H-invariant measure on Hx. We put vol(Y) = V. In view of
Lemma 3.3, we have v >>x 1. The following proposition is our replacement
for Proposition 7.1 in the setting at hand.

Proposition 9.1 Let 0 < a < 1. There exists yo € Y and a subset F C
B (0, 1), containing 0, with #F >>x V so that both of the following properties
are satisfied:

(9.1-a) {exp(w)yo W €E F} C Y N Xept, see Sect. 3.1 for the definition of
Xept-

(9.1-b) Zuh&w lw—w' ||~ <x.o #F for all w € F where the summation is
overw' € F.

The general strategy in proving Proposition 9.1 is similar to the strategy we
used to prove Proposition 7.1. However, the argument simplifies significantly
thanks to the fact that Y is equipped with an H -invariant probability measure.
In particular, we do not require Proposition 6.1, hence I' is not assumed to be
an arithmetic lattice in this section, see Proposition 9.2.
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Forevery) <6 < 1landevery y € Y, put
1(y,8) = {w €t:0 < w| < 8inj(y) and exp(w)y € Y},
see also (7.3). We will write I (y) = I(y, 6g) where
80 = ¢ >~ min{inj(x) : x € Xept), (9.4)

see (9.1); recall also that inj(x) < 1 forall x € X.
We need the following lemma.

Lemma 9.1 There exists Ci15 <x 1 so that
#I(y) < C15V

foreveryy eY.

Proof This is proved for G = SL,(C) in [48, Lemma 8.13], see also [24, §8].
The same argument applies in the case of G = SL,(R) x SL>(R) if we
replace [48, Lemma 8.4] by Proposition 3.2. We sketch the proof for the sake
of completeness.
By virtue of Lemma 7.2, for all y € X¢p(, we have

#1(y,1) <x V.

Suppose now that y € ¥\ X¢p, andlets = |loginj(y)|+C7. By Proposition
3.2, there exists |r| < 1 so that a;u,y € Xcp. Moreover, for all [[w] <
doinj(y), see (9.4), we have

lacu,wl| < 3¢ lwll = 3¢ inj(») " lwll < 0.5 inj(aruy ).
This and the fact that Y is invariant under H imply thatif w € I (y) = I (y, o),
then a;u,w € I (asu,y, 1).
The above estimate also implies that the map w — a;u,w is an injective
map from 7 (y) into I (a;u,y, 1). Consequently,
#1(y) < #1(au,ry, 1) Kx V.

The proof is complete. |

Let 0 < @ < 1, and define a Margulis function fy : ¥ — [2, 00) by

Zwel(y) lw||™ ifI(y) #9
inj(y)™¢ otherwise

fr(y) =
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Let mg be as in (9.2). Define the probability measure v on H by the property
that for every ¢ € C.(X)

1
vk @(y) =/0 @(amguyy)dr.

The following proposition may be thought of as our replacement for Propo-
sition 6.1.

Proposition 9.2 There exists C1g <x,o 1 s0 that

/fY()’)dMY()’) <Cig- V.

The following lemma is analogue of Lemma 7.1, and will be used in the
proof of Proposition 9.2.

Lemma 9.2 There exists C17 <x.o 1 so that forall £ € Nandally € Y, we
have

v fr(p) < e () + Cv el T xinj(n . (9.5)
Proof Note that supp(v) C {h € H : ||h|| < e*™T1}. Let C > 1 be so that
IAd(hw] < Cllw]|
for all & with ||h]| < ¢*"et! and all w € g. Increasing C if necessary, we

also assume that inj(z)/C < inj(hz) < Cinj(z) for all such i and all 7 € X.
Arguing as in the proof of Lemma 7.1, there exists some C so that

vi fr) <e - fr() +Covxy(y)

forall y € Y, where ¥ (y) = max{1, #/(y)} - inj(y) ™. This and Lemma 9.1
imply that

v fr) = e fr () + Cv - (v ini() ™) 9:6)

with C17 = CCys. Iterating (9.6), we get (9.5). |

Proof of Proposition 9.2 The fact that estimates similar to Lemma 9.2 imply
integrability is by now a standard fact, see e.g. [21, §5] or [24, Lemma 11.1];
we recall the argument. In view of Proposition A.3, we have

/ inj(hx)"* dv™(h) < e " inj %(x) + B
H
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for all n € N where B «x 1. This and Lemma 9.2 imply that
limsupv™ * fy(y) <1+ 2Cj7VB. (9.7)

Note that supp(v(”)) C A{amgnur : |r| < 4}. This, together with the
fact that (H, py) is mixing, implies that puy is v-ergodic. Thus by Chacon-
Ornstein theorem, for every ¢ € LI(Y, uy) and puy-a.e. y € Y, we have

N
T Lm0 V™ k0 (») > [@duy.
For every k € N, put ¢ = min{ fy, k}. There exists a full measure set Y( so
that for every y € Yy and every k, there exists some Ny, so thatif N > Ny y,

then ﬁ Zﬁlv:() v® % o (v) > 0.5 [ g duy.

Let y € Yy, then the above estimate and (9.7), applied with y, imply that
[ ¢k duy < 2(142C17vB) forall k. Using Lebesgue’s monotone convergence
theorem, we conclude that

/fY duy <2(1+2C17vB).

The claim follows as vV >y 1. O

Proof of Proposition 9.1 Put n = 0.1ny where ny is as in Proposition 3.2.
Recall from Lemma 3.3 that

ur (Xay) = 0.9. (9.8)

As was done in Lemma 7.5, we will first convert the information in Propo-
sition 9.2 into a pointwise estimate at most points. Let

Y'={yeY: fr(y) < 100Ci6V}. 9.9)

Then by Proposition 9.2, we have uy (Y \ Y”) < 0.01.

Let Y’ = Y” N X»,, and let B = n?> = 0.01n%. The above and (9.8) imply
that wy (Y") > 0.9. Let {Bgz.zj :zj € Xoy, j € J} be a covering of X5, so
that #7 < x 1. Then there exists some ¢ >>x 1 and some jg so that

My(Bgz.z WnNY)>c. (9.10)

Recall that Y is H-invariant and gz; € Xcp forall j and ||g — 1| < 2,
see Sect. 3.1 where X¢p is defined. Let yo € Bgz.z jo NY'. As was done in

Lemma 7.7, let Fi C B(0, 282) be so that

Bgz.zjo Ny c U Bg.exp(w)yo.

weF]
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Then #F| > cn_SV. Put

& =E-{exp(w)yo: we Fi1} CY N Xeps

recall that E = Bg’ . {ur | < O.ln}.
Recall the definition fg, from (7.4). There exists C' <y o 1 so that

fe(e,2) < fy(z) <C'v forallz € & 9.11)

To see this, note that by the definition of fy, foreveryh € H with ||[h—1| <1
andall y € X;, NY, we have fy(hy) < fy(y) + CV where C <y 1. Now for
every z € £, there exists y € Y/ C Y” and some h € H with ||h —I| < 105>
so that z = hy. This implies the claim in view of the definition of ¥” in (9.9).
Alternatively, (9.11) can be seen by letting £ = 0 in the proof of the sublemma
in Lemma 7.7, see in particular (7.32).

Now (9.11) and Lemma 7.3 imply that

D w = w7 < Cv,

w'#w

where the summation is over w’ € Fj and C <y o 1.
The proposition holds with yy and F = Fj. |

9.1 Proof of Theorem 1.2
The proof goes along the same lines as the proof of Theorem 1.1 if we replace
Proposition 7.1 with Proposition 9.1 as we now explicate.

Let ¢ = 0.0005¢p and o« = 1 — & where & is given by Proposition 4.2. By
Proposition 9.1, the conditions in Proposition 5.1 holds with yo € ¥ N X¢p,
F,a,and n =0.1nx.

Recall that #F >>x v. We assume V is large enough so that

#F)~° < 2C5C7) "'’

Then by Proposition 5.1, there exist y; € X, a finite subset I C [0, 1], and
some b; > 0 with

_ 246 _ 246e
V 2Rl Ly (BF) 2021e <by < (#F)7% «<x v ¢, 9.12)
so that both of the following two statements hold true:
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(1) The set I supports a probability measure p which satisfies

p(J) < Lg%

for all intervals J with |J| > (#F) 2115188, where C, < ¢7* for absolute
implied constants.
(2) There is an absolute constant C <x 1, so that for all s € I, we have

w31 € BE,, -+ (a10gm) - {1y : 17 < 2)) dexp(w)yo : w € F)

G
C Bcbl.Y-

For the last inclusion in (2) we used (9.1-a) and the H-invariance of Y.
In particular, part (2) and | < (#F)~¢ imply that

dx (v(s)yl, Y) <Cv=  foralls e, (9.13)

where C' <x 4 1.

The proof of Theorem 1.2 is now completed as the proof of Theorem 1.1 if
we replace Proposition 1.1 with part (1) above and (9.13), see Sect. 8.2.

We note that

C3 Lxo 1 and k3 = ckpe, (9.14)

where the notation < x 4 is defined in (9.3), ¢ is an absolute constant, and ¢ is
as in Proposition 4.2; we also used the fact that C1g < x 1, see Proposition 4.2.
Note that kx in (4.1), and hence k3, is absolute if I" is congruence. O

9.2 Proof of Theorem 1.3

Let I' C SL,(C) be as in the statement. As was mentioned prior to Theo-
rem 1.3, a totally geodesic plane in M lifts to a periodic orbit of H = SL»(R)
inX =G/T.

Recall from Sect. 3.1 that X \ X, is a disjoint union of finitely many cusps.
Let My C M denote the image of X, in M. Then M \ M) is a disjoint union
of finitely many (possibly none) cusps.

Let n; > 0 be so that for i = 1, 2 there exists x; € X, such that B,]G1 X;
projects into the interior of N; N My. In view of [48, Thm. 1.5], applied with
s = 1/2, we have n; >x area(E)_4 where ¥ = dN| = ON».

Thus, Theorem 1.2 implies that if Hx is a periodic orbit which satisfies

Csvol(Hx)™ < 0.5min{n;, nx}, (9.15)
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tzl:len Hx ﬂBnGl .x; # @, fori = 1, 2. Therefore, the corresponding plane crosses

Let us now assume that S is a plane which crosses X. By [25, Thm. 4.1], see
also [3, Prop. 12.1], S intersects X orthogonally. It is shown in [25, Prop 5.1]
that one can construct an explicit open set O of the unit tangent bundle of M
which projects into the 1-neighborhood of M\ and does not intersect such an
S — indeed this set is constructed using a tubular neighborhood of ¥ N M.

Letn, and x € X be so that B,]G2 .x projects into O. In view of [48, Thm. 1.5],
applied with s = 1/2, and the construction in [25, Prop 5.1], we have 2 >x
area(X) 4.

Note that Hx N BnGz.x = (). However, by Theorem 1.2 again, if

C3vol(Y)™ < 0.51,,

then Hx N BnGz.x # 0.
This and (9.15) thus imply that

vol(Hx) < (W)l/m <x area(2)4/x3c3l/l<3.
Moreover, in view of [48, Cor. 10.7], the number of periodic H-orbits with
vol(Hx) < T is «x T°.

When G = SL,(C) (which is the case here), C7 < |log nx| for an abso-
lute implied constant; see the proof of Proposition 3.1. Moreover, in view of
Lemma 2.4 and the fact that « = 1 — 0.0005¢g, we have ¢ « /c;* for
absolute implied constants (see Proposition 4.2).

The proof is thus complete in view of the above, (9.14), and (9.3). m|
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Appendix A: Proof of Proposition 3.1, Case 2

In this section we complete the proof of Proposition 3.1. Recall that we are
left with the case where G = SLy(R) x SL>(R) and I' is irreducible.

By a theorem of Selberg [57], we have the following: up to automorphisms
of G, irreducible non-uniform lattices in SL; (R) x SL; (R) are commensurable
to SL(O) where O is the ring of integers in a totally real quadratic extension

L/Q.
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Passing to a finite index subgroup, we may assume that I' C SL»(O).
Since the statement of Proposition 3.1 is insensitive to passing to a finite index
subgroup we may (and will) assume I' = SL,(0O). By fixing a Z-basis for O
one can now identify

G=G[R) and T =G(2),

where G = Res; /@ (SL>), the restriction of scalars from L to Q. This choice
of Z basis induces a canonical identification between G(Q) and SL,(L) and
in the sequel we shall implicitly identify these two groups.

Let B C SL; denote the group of upper triangular matrices in SL, and put
P = Res; ,o(B). Then P is a minimal and maximal Q-parabolic subgroup of
G. By a theorem of Borel and Harish-Chandra, he action of I on P(Q)\G(Q)
has finitely many orbits; let 8 C G(Q) be a finite subset which contains
exactly one representative for each orbit (we always assume E contains the
identity element). Then

G(Q) =P@Q)ET, (A.1)

and if yélP(Q)Sfly_l = SQP(Q)Sz_l where y € I' and éi_l € E, then

&1 = &.
In the case athand, g = Lie(G) = sl (R) @& sl (R), moreover, g is equipped
with the Q-structure:

go =sh(L) Cg.

We will also write gz for sl (O); then gz is a lattice in g.

Note that O* gz = gz. Recall the following elementary fact: there exists
some ¢ = ¢y, so that the following holds. For every w = (w1, w) € g with
lwy|[llwz]] # 0, there exists some S € O so that

_1 172 1/2
M (honliwzl) < Ipiswl < e(lwonliwal) . A2)

for i = 1, 2, where p; denotes the projection onto the i-th components, see
e.g. [39, Lemma 8.6].

Let N = R,(P(R)), i.e. N is the unipotent radical of P(R). We fix a basis
{v1, va} for Lie(N) consisting of primitive integral vectors as follows. Write

L = Q[/Bl;putv; = (Elz, Elz) and v, = («/EElz, —\/EEIZ) where E1;

denotes the elementary matrix with 1 at the (1, 2)-entry, and define

V.=V AV E /\zg.
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Since v € /\Zgz, for any g € G(Q), we have I'g.v is contained in the set of
rational vectors in A2g whose denominators (with respect to the Z-structure
given by gz) are bounded in terms of g. In particular, I'g.v is a discrete and
closed subset of AZg.

Note that for any g = (g1, g2) € G, we have

gv = (gv1) A (gv2)

(A3)
= —2/B<81E12, 0) A (0, nglz)-
Define w : G/T" — [2, 00) as follows:
w(gl) = max{2, max{||gy$.v||_1 teglye F}} (A4)

We have the following analogue of Lemmas 3.1 and 3.2. In the case at hand,
this result is a consequence of the fact that the Q-rank of G is 1 — recall that
P is a minimal and maximal Q-parabolic subgroup of G.

Lemma A.1 Let the notation be as above.

(1) There exists C = C(I') > 2 so that the following holds. Let gI" € X. If
w(gl) = C, then there is & € B~ and yy € T so that ||gyo&o.v| ™" =
w(gl) and

lgy&v|| > 1/C, forall (§,y) sothat y&.v # yyép.v.

(2) There exists C1g so that the following holds. Let 0 < o,n < 1, ¢t > 0, and
g € G. Let I C R be an interval of length at least n. Then

{r e 12 1amg ol < ne*lgul| = Ciselr.

Proof Aswe mentioned above, there is some M € NsothatI” 2l C ﬁ 9z.
Let 0 < 6 < 1 be a small number which will be explicated later. Suppose
there are y&.v # y’&’.v so that

lgyEvll <8 and [gy'&"v|| <. (A.5)
We first show that y&.v ¢ R.y’€"v. Assume contrary to this claim that y&.v =

Ay'E'v for some A € R. Then since P(R) is the projective stabilizer of v, we
conclude that

yEPR)E 1y~ =y e P®)E

@ Springer



1220 E. Lindenstrauss, A. Mohammadi

This in view of the choice of &, see the discussion following (A.1), implies that
& = &', Thus, since P(R) is its own normalizer in G(R), y ~'y’ € EP(R)e 1.
We conclude that A = Ny, /@(32) for a unit in s € O (recall that G =
Rr/@(SL2)). Hence, A = 1 which contradicts our assumption.

Recall thatv = v Av, where v = <E12, E12> and vy = (ﬂElz, —ﬁE12>.
Since y&.v ¢ R.y’&’v the subspace generated by the four vectors w; = gy&.v;
w; = gy'&’.v;, for i = 1,2 has dimension > 3. We claim this subspace also
generates a nilpotent subalgebra of g. This contradicts the fact that the dimen-
sion of any maximal nilpotent subalgebra in g is 2 and finishes the proof of
part (1).

To see the claim, note that (A.5) and the identity in (A.3) imply

[p1(woll - I p2(w2)|| < 8/2,

similarly for w| and w}. In view of the definition of v; (and w;), therefore,
1w - lIp2(wi) |l <pg 8 fori = 1, 2. Similarly, we have w} and wy.

We now apply (A.2) to the four vectors wy, wa, w}, w5. In consequence,
there are s;,8; € O so that [|s;w;| <g §1/2 and Isjw/ll <gp s1/2 for
i=1,2.

Moreover, {Sjw1, Sows, Sjw], S;w5} are nilpotent elements in % Ad(g)gz.
Since H (w, w'] H < lw|llw’|l, we get from the discreteness of Ad(g)gyz that

if 8 is small enough, then {sjw1, S;ws, 8w, 8,w)} generates a nilpotent Lie
algebra as we claimed.

The argument for part (2) is similar to the proof of Lemma 3.2 as we now
explain. For every g € G and every § > 0, put

1(g.8) = {r e I+ 1p] wrgv)ll = 0.0180% pi(g.v)l fori = 1ori =2},

where pfr denotes the projection from g onto R(E>, 0) and p;“ denotes the
projection from g onto R(0, E2); recall also that p; denotes projection onto
the i-th component. As it was observed in Lemma 3.2, we have

11(g.8)] <2C'8'2|1).
Let 8§ = 10002, and letr € I \ I(g, 8). Then

Ip; (g o)l = 0l pi(g.vi)ll@® fori =1,2. (A.6)
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Using (A.3), we have ||g.v|| = 2||p1(g.v)|l- || p2(g.v2)]|. Since a;.w = e'w
forany w € span{ (E12,0), (0, E12) }, using (A.3) and (A.6), we conclude that

intlgllet = 2¢2 n* I pi(g.v)l - I p2(g.v2)llo*
< 2¢% | pF (urgo)| - 1S (urgv)l

ar (1), 0) A 0, p3 urg.v2)) )| < llasurg.vl.

The claim thus holds with C;g = 20C". O

Lemma A.2 Let the notation be as above. There exists Ci9 so that
c-! —1 _ i o2 -1
19 @) = mj(x)” < Crw(x)
forall x € X.
Proof Let g € G and assume that inj(gI") < 6. Then
glg~' NBE; # {e}

where C is an absolute constant.
If § is small enough, then gT'g ™' N Bg s consists only of unipotent elements.
Therefore, there exists some nilpotent element w € gz so that

lgwll <8,

where the implied constant is absolute.

Since all minimal Q-parabolic subgroups of G are conjugate to each other
by elements in G(Q), it follows from (A.1) that there exists some y € I" and
some £ € E sothat w € y_lé_l .Lie(N). Therefore, we may write

w=y" e (b +cV/BEL (b - c/BER)

where b, ¢ € %Z for some M depending on E.

Using the Iwasawa decomposition, we write gy ~'&~! = kan where k €
SO(2) x SO(2),n € N, and a = (ay,, ar,) is diagonal. Therefore,

el|+t2(b2 +C2,3) < 52,
where the implied constant is absolute.
Now since b, ¢ € %Z are non-zero, we have b? + ¢2 B > 1. Altogether,
we conclude that
lgy ~ & il = 2 pi(as, v)llll p2(ar v2) |
< 2\/Eetl+f2 < 2\/5@52
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where C depends on I'. Since a)(gF)_1 < ||gy_1"§_1.v||, the lower bound in
the lemma follows.

We now turn to the proof of the upper bound. Using the reduction theory
for arithmetic groups, see e.g. [50, Ch. 4], there exist #9, ro > 0 so that

(502 x 50@)) - {(@. ar) 11+ <10} - tnGr ) 11, Is| < ro} -

is a (generalized) fundamental domain for I" in G.
In particular, using Lemma A.1(1), there exists ¢t < fy so that if g =
k(ay;, a)n(r, s)éyo fort +1' < 11, then

o(gr) = max{llgys vl ™ € y) e Ex T} = llgrg g5 vl ™!
= llk(ar. apn@r.s).ol ™ = o) 7.

Moreover, using (A.3) and (A.2) we conclude that gyo_léo_ ! (NNT)é&oyo g_1
contains elements of size e~"~")/2, The upper bound estimate follows. |

Proof of Proposition 3.1: Case 2 By Lemma A.2,t > | log(n2 inj(gl')H|+C7
implies 2t > log(w(gI")/n*) if we assume C7 is large enough.
Let o9 =0.1C fgl. In view of Lemma A.1(2) we have

sup{||aturgy§_l.v|| ir € I} > Qg forally e'and & € B

so long as 2t > |log(w(gT)/n™)|.

Altogether, the conditions in [38, Thm. 4.1] are satisfied so long as ¢ >
| log(n2 inj(gI"))| + C7. Hence, similar to the previous case, the conclusion of
the proposition in this case also holds true in view of [38, Thm. 4.1] — in light
of Lemma A.1(1), the proof simplifies significantly. O

We also record the following which is a special case of the results and
techniques developed in [22] and [20] tailored to our setup here.

Proposition A.3 Let O < o < 1 and let my be as in (2.12). There exists some
B = B(X, a) > 1 satisfying the following. For every x € X and everyn € N
we have

/ inj(hx)~*dv™ (h) < e "inj %(x) + B,
H

where v(p) = fol p(am,uy)dr for every ¢ € C.(H) and v denotes the
n-fold convolution of v.
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Proof If X is compact, then inj : X — R is a bounded function and the result
is clear.

Therefore, we may assume X is not compact. If G = SL,(C), the claim in
the proposition is proved in [48].

We now consider G = SL,(R) x SL;(R) and consider separately the cases
where I is a reducible lattice and I" is irreducible.

Case 1. Let use first assume that I is reducible. As was done before, passing
to a finite index subgroup, we may assume I’ = I'; x [';.

Let w be defined as in (3.3). That is:

o (x) = max{w; (x1), w2 (x2)},

where x = (x1, x2).

By [48, Prop. 6.7] we have o (x) = inj(x)~!. Therefore, it suffices to prove
the proposition with inj(x) replaced by w(x). The result for w; and w; is
well-known, see e.g. [20,22,48].

The result for w thus follows as 0* < of + 0§ < 2.

Case 2. Assume now that I is irreducible. We will use the notation which
we fixed in the beginning of this appendix. In particular, as was done in (A.4),
define

w(gl) = max{2, max{||g)/5§.v||_1 (€€ E_l, y € F}}

In view of Lemma A.2, we have w(x) < inj ()c)_2 for all x € X. Therefore,
it suffices to prove the claim for w!/? instead if inj.
Let us recall from (A.3) that

gv = —2(p1(g.v),0) A (0, p2(g.v))
= —2/B(g1E12,0) A (0, 2E12) (A7)
for any g = (g1, &2).
Letx = gI'.Fixy e I'and & € 21 forallr € [0,1] and ¢ € N put

hy = apu,y&. In view of the Cauchy-Schwarz inequality and (A.7), applied
with &, g, we have

1
( / Iy gull " dr)
0

1 1
=< 2\/5/0 lhrig1Enl™ dr/O Ihr282E12] ™ dr. (A.8)

2
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Then for i = 1, 2, by choice of m,, we have

|
/ lamgurgivi&i Eall ™ dr < e Vgivi&i Ennll ™,
0
see (2.12).

Using (A.7) in reverse order and (A.8), we conclude from the above two
estimates that

1
/ lam,urgyEv]| ™% dr < eV gyEv]| =2, (A.9)
0

Let C(I'") be as in Lemma A.1. Then there exists some B,/na > 0 so that if
w(gl) = |lgy&vl|~! = C(I') - B;,_, then

@ (amyu;gT) = lamurgyév| ™ = C(I)

for all r € [0, 1].
This and (A.9) imply that for all x € X, we have

1
/a)"‘/z(hx)dv(h) :/ 0 (@, uyx)dr < e 'w*?(x) + B”,
0

where B” = max{w (am,u,gl") : r € [0, 1], w(gT") < C(T') - By,
Iterating this estimate and summing the geometric sum, we conclude that

f o (hx) ™ (h) < e7"w*/?(x) + B (A.10)
for all n € N where B = 2B”. The proof is complete. ]

Appendix B: Proof of Theorem 5.1

Recall that v C Lie(G) is identified with sl (R) equipped with the adjoint
action of SL;(R).

Theorem B.1 Let 0 < o < 1, and let0 < by < b1 < 1. Let E C B.(0, by)
be a finite set, and let p denote the uniform measure on E. Assume that

p(Be(w, b)) < Y - (b/b))* forallwandallb > by,  (B.1)

where T > 1.
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Let0 < & < 0.0la, and let J C [0, 1] be an interval with |J| > 107°. For
every b > by, there exists a subset J, C J with |J \ Jp| < Co(b/b1)? so that
the following holds. Let r € Jy, then there exists a subset E , C E with

P(E\ Ep,) < Ce(b/b1)*
such that for all w € Eyp, ,, we have
p(w' € E: | ) — &) < b)) = Colb/b)*™™
where Ce K e 7*Y™* (implied constants are absolute) and
£(w) = (Ad(u)w) 12 = —wor? — 2wiir + wya.

We need some more notation for the proof. First note that the assumption
and the conclusion in the theorem are invariant under scaling. Thus replacing
E by bl_1 - E and bg by bg/b1, we may assume b1 = 1. We prove the theorem

for J = [0, 1], the proof in general is similar.
Let

2w = {0~ &) :re o 1]

forevery w € E,and let & = (J,, E(w).
For every b > 0 and every w € E, let

2bw) = {(g1,42) € 0. 1] x R : Ig2 = &, (w)] < b}.
Finally, for all ¢ € R? and b > 0, define
mh(q) = p({u/ criqe Eb(u/)}). (B.2)

The assertion in the theorem may be rewritten in terms of the multiplicity
function m’; as follows. We seek the set J, C [0, 1], and for every r € Jp, the
set Ep » C E so that

m’;((r, g,(w))) < Cob*7¢ forallw e Ep,. (B.3)

The following lemma plays a crucial role in the proof of Theorem B.1. This
is a more detailed version of [56, Lemma 8] in the setting at hand, see also
[65, Lemma 1.4] and [66, Lemma 2.1]. Indeed, Lemma B.2 is a restatement
of [33, Lemma 5.1] for a family of parabolas; similar to loc. cit., the regularity

@ Springer



1226 E. Lindenstrauss, A. Mohammadi

of the measure p, (B.1), is used as a replacement for the assumption in [56,
Lemma 8] that the family has separated radii.

Lemma B.2 Let the notation be as in Theorem B.1 with by = 1. In particular,
E C B:(0,1) and (B.1) is satisfied. For every 0 < ¢ < 0.0l«, there exists
0 < D K< e7*Y* (implied constants are absolute) so that the following holds.
Letb > bg. Then there exlsts a subset E = Eb C E with#(E\ E) < b®-(#E)
so that for every w € E, we have

< >/ E (w)].

25 (w) N {q eR>:mb(g) = Db"‘_78}

The proof of this lemma is mutatis mutandis of the argument in [33, Lemma
5.1] where one replaces the use of [65, Lemma 1.4] with [66, Lemma 5.18].
We explicate the notation and the main steps for the convenience of the reader.

Define @ : R? x R? — R by

d(x,y) = y2 + 2x1y1 + x2¥7.

Given xo € R? and rg € R, the set {y € R? : ®(xq, y) = ro} is a special
example of a ®-circle in [40,66].

Note that E (w) = {y eR2:y €0, 1], CID((wll, wa1), y) - wlz}. The
family E satisfies the cinematic curvature conditions [66, Eq. (1.5) and (1.6)].
Indeed in the case at hand, these conditions follow from the following estimate

gmax{|xi], lxl) < |52 + |a oz = 3max{xl, xafk (B.4)

we remark that when ® (0, y) = y», as is the case here, (B.4) (with 3 replaced
by a constant C) may be taken as the definition of the cinematic curvature
conditions, see [40, Eq. (21)].

Let w, w' € B.(0, 1); define

Aw —w') = ‘det(

The function A may be used to quantitatively measure the tangency of & (w)
and E(w’). Our choice of A is different from A g (9 2) which is defined in [66,
Def. 2.2], however, in the case at hand A < Ap (0,2) — indeed, the (reduced)
discriminant of &, (w) — & (w’) equals — det(w — w’).
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By [40, Lemma 3.1], forall 0 < § < 0.1 and all w, w’ € B(0, 1), we have

_ JAw—w)+3s

dlam(Ea (w) N E° (w’)) < A”—;w_ wlf)”)j;, (B.5a)
82

12%w) N 8% w')| < (B.5b)

Vw = wT+8)(Aw —w) +8)’

here and in the remaining parts of the argument, the implied constants are
absolute unless otherwise is stated explicitly.
Let W, B C B:(0, 1). We say (W, B) is t-bipartite if

max{diam(W), diam(B)} <t <d(W, B). (B.6)

LetO <& <t < 1. A (8, t)rectangle R C R2is a 8-neighborhood of
a piece of a parabola E(w), w € B.(0, 1), with length /5/7. We say that
two (8, t)-rectangles are C-comparable if there is a (C$, t)-rectangle which
contains both of them. Otherwise, they are C-incomparable. Let w € B:(0, 1),
the parabola E(w) is C-tangent to a (§, t)-rectangle R, if 2% (w) contains R.
Finally, fixing some large absolute constant C>1,we say that two rectangles
are comparable, if they are C -comparable. Similarly, E (w) is said to be tangent
to a rectangle R if E(w) is é-tangent to R.

LetO < 8 <t < 1,andlet (W, B) be t-bipartite. Let R be a (8, t)-rectangle.
Put W = {w € W : E(w) is tangent to R}; define B analogously. We say
R is of type (> u, > v) with respect to p, W, and B if

p(Wg) = n and p(Bg) > v.

We say R is of type (i, v) if u < p(Wg) <2u and v < p(Bg) < 2v.
The following is an analogue of [65, Lemma 1.4] tailored to our setting
here; see also [66, Lemma 5.18] and [33, Lemma 4.4].

Lemma B.3 LetQ < 6 <t < 1,andlet (W, B) be t-bipartite. Lets > 0. Then
the number of pairwise incomparable (38, t)-rectangles of type (= w, > v) with
respect to p, W, and B is at most

3/4
Dnga)*"((%f“”) + 20V Pﬁ?))

where Dy << €7 and the implied constants are absolute.

Proof Replacing the use of [65, Lemma 1.4] with [66, Lemma 5.18], the
same proof as in [33, Lemma 4.4] applies here. The argument is standard:
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given (W, B) and a collection R of incomparable (8, t)-rectangles, one uses
a dyadic decomposition argument to find i, j € N with

20/i2 <s3u7! and 2772 <8707l

a subset R’ C R with #R' > ¢ *(#R)8% 1u°v*, and a t-bipartite (W', B)
where W', B" C B (0, 1) are §-separated with #)/" < 2'p(W) and #5’ <
27 p(B), so that every R € R/ is of type

(Z D;ziﬂl+8538,z D;Zjvl+8838)

with respect to the counting measure, VW', and B’ for some D, <« ¢~*. One
then applies [66, Lemma 5.18] to (W', B’) and R’ and obtains a bound for
#R’ which implies the desired bound for #R. We note that the definition of a
t-bipartite family in [66] requires the radii are §-separated, [66, Def. 2.3]; this
assumption however is not used in the proof of [66, Lemma 5.18]. Indeed as
in [65, Lemma 1.4], one only needs §-separation is the parameter space, i.e.
lw — w’|| > 8 in the case at hand.

The final estimate D, < ¢~* follows from D < ¢~* and the fact that the
implied constant in [66, Lemma 5.18] is < ¢ ~*. This follows from the proof
of [66, Lemma 5.18], see in particular [65, pp. 1252-1253]. O

Proof of Lemma B.2 Throughout the argument, D will be assumed to be a
large constant which is allowed to depend (polynomially) on 1/¢ and Y.

Let b > by be the largest dyadic number where the lemma fails; taking
D large enough, we assume that b is small compared to absolute constants
whenever necessary. Let A = (Db™3¢)!/® and A = b%/®. By the choice
of b, there exists u > Db 7E = A%)729p% and a subset E/ C E with
#E' > b - (#E) = D'/3A=*/3 . (#E) so that for all w € E’, we have

2 w)n fq e R :mbg) = n}| = A ().

For every w € vt and dyadic numbers 7, § € (b, 1], define

_ ). . mb =by, t<|lw—w| <2t
E&,(U))—{U) eE:E°(w)NE (w)#@’BsA(w—w/)<28 .

Define Ep ;(w) similarly, except in this case no lower bound is assumed for
A, that is, we only assume A(w — w’) < 2b.

For every F C E, define m,(q|F) = p({w/ €eF:qc¢ E'(u/)}). Replac-
ing the use of [33, Lemma 3.6] with (B.5a) and (B.5b), one may argue as in
the proof of [33, Eq. (5.4)] and conclude the following. There exist absolute
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constants C,C; > 1, E C E' with #E > C~'|logb|=C - (#E’), and some

dyadic number n € {1, ..., §/b}, so that if we put
As = |logh| =€ *9 As = C|logb|© A9 (B.7)
=|lo C—_— = 4] - —, .
) g Cnb ) g nb
and s = |10gb|*C . %, then for all w € E we have

18°w) N {q € R? : mSP(q|Es. (w)) = pus}| = 22|18 (w)|,  (B.Y)

see [33, Eq. (5.12)]. Note also that us > | logb|_*Ag’)\(;2“5°‘.

Fix a large dyadic number N > 2, in particular, N§ > 2b. Now (B.8) and
the inductive hypothesis (recall the choice of b), imply that there exists a subset
E' C E with #E' > #E so that for all w € E’, we have

28 w) N g € B2 : s = m§P (gl Es () = mi(g) < Ms |

> As|ES(w)

, (B.9)

where M5 = Ag‘(k(g/CN)_za(S“ < |logb|*us, see [33, Eq. (5.14)].

Let {B.(w;,0.17)} be a covering of E’ chosen so that {B.(w;,2.1f)}
has bounded multiplicity. Replacing E’ with a subset whose p measure is
> 0.5p(E’), we assume that p(B(w;, 0.11) NE") > t3p(E’) forall w; € E’.

Let ip be so that p (B (w;,, 0.11) N E/)/p(Br(in, 2.1t)) is maximized. Put
W' = Be(wjy, 0.1¢) N E" and B := By (wj,, 2.1¢) \ Be(wj,, 0.9¢).

Replacing W' by a subset W C W with p(WW) > 0.5p(V’), we may
assume that for all z € W, there is a dyadic cube Q(z) of side-length § which
contains z and p(Q(z) NW) > (8/1)° p(W) > |log b|™*A~%/383. Note also
that since the covering { B.(w;,, 2.1¢)} has bounded multiplicity, we have

pW) = 0.50W") > |logb| *A~3p(B).

By the definition, (W, B) is t-bipartite, see (B.6). Moreover, for all w € W,
we have E;5 ,(w) C B. Hence,

mS(q|Es. (w) N B) = mS(q|Es.(w)), (B.10)
forallw € Wandgqg € R2. We conclude from (B.10), (B.9), and (B.1) that
| log b| ™ A$257%8% < s < mS(q|Es(w) N B) < p(B) < 1%

therefore, § is much smaller than ¢ if D is large enough, see (B.7) and recall
that A = (Db=3)1/ and 0 < 15 < 1.
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Since W C E’, (B.9) and (B.10) imply that for all w € W, we have

28 w) N {g € R : 1y = m$12(q1Esy(w) N B) = mi(q) < M}

@mﬂ
(B.11)

> As

Assuming N is large enough, depending on C1, (B.11) implies that every
w € W supplies > As+/1/8 incomparable (8, t)-rectangles each of which is
N/2-tangent to E(w) and has type > s with respect to B where the type
refers to N-tangency. From this, we conclude that there are

> |logb| ™ pW)rs/1/8/vs

incomparable (§, t)-rectangles of type (> vs, > ws) with respect to p, ¥V, and
B where b* < vs < Mjs is a dyadic number and type refers to N-tangency.
Comparing this bound with the bound given by Lemma B.3 yields a contra-
diction and finishes the proof, see [33, pp. 20-21].

The assertion D < ¢*Y ~* follows from the above outline, together with
the fact D, in Lemma B.3 is << ¢ 7*. O

We now turn to the proof of Theorem B.1. The argument is a slight modifi-
cation of the proof of [33, Thm. 7.2].

Proof of Theorem B.1 Assume that the conclusion of the theorem fails for
some C. That is, there exists a subset J C [0, 1] with |J| > Cb?® so that for
all » € J we have

p(E}) = Cb*, (B.12)

where E, = {w e E: mi’) ((r, Sr(w))) > Cb“_75}. We will get a contradic-

tion if C is large enough.

Let E be as in Lemma B.2 applied with 8b, then ,o(E) > 1 — (8b)¢. This
and (B.12) now imply that for every r € J, we have ,o(E NE) > Cb®/2s0
long as C > 16.

We conclude that

212 o~
(wagfﬁp@ﬂEDm

< [ 1 mbog ) > co T do.
E
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Therefore, there exists some wq € E so that

Hr €[0,1]: mg((r, g,(wo))) > Cb"‘_78} > 0.5C2p%. (B.13)

For every r € [0, 1], let L, := {(r,s) : s € R} be a vertical line, and let
I C L, be an interval of length b containing (r, &-(wp)). Put

Ly = {(ql,qz) €lr—br+blxR:3(rs) €l |g—s| < b}.
If (g1, g2) € I+ p, then |qy — r| < b and |g2 — &, (wo)| < 2b. Therefore,
lg2 — &4, (wo)| < |g2 — & (wo)| + & (wo) — &4, (wo)| < 8D.

We conclude that (1, ¢2) € E% (wo). This and m?, <(r, g,(wo))) > CpeTe
imply that for every g € I ;, we have

mi(q) = p({w' € E: (n& @) e 1)) = Co* ", (B.14)
Combining (B.13) and (B.14), we obtain that
=8 (1) N lq e R2 - mz;b(q) > Cba—78}}‘ > C2plt2e
> C?p*| 8% (wo)| > b*/*|E% (wo)|,

where the implied constant is absolute, and we assume C is large enough so
that the final estimate holds — recall that 0 < o < 1.
This contradicts the fact that wy € E and finishes the proof. O

Proof of Theorem 5.1 Fix some k. We may assume b’s are dyadic numbers,

in particular b; = 2=t fori =0, 1. Let £, be so that

0
Z C.27*¢ < 0.1 min{|J], 1}.
=ty

Let J/ = ﬂﬁozez Jo—¢. Then the choice of ¢, and Theorem B.1 imply that
[J'] > 0.9]|J].

Foreveryr € J/,let E, = ﬂﬁozez Ej—¢ . Then by Theorem B.1, p(E,) >
0.9. Moreover, for all w € E, and all £, < £ < £y we have

p(lw' € E : |& W) — & )] <274) < 207700,
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The above implies that Theorem 5.1 holds true with J and E, if we increase
C, to account for all b > 272, o
Appendix C: Proof of Lemma 5.1
We will prove Lemma 5.1 in this section. As was mentioned before, the proof
is taken from [6, Lemma 5.2], see also [5]; we reproduce the argument to

explicate the stated bounds on by.

Proof of Lemma 5.1 We identify v with R, By a dyadic cube we mean a cube

ny ni+l ny np+l n3 n3+l
(3 250 x 13 %0 x [, 5D

for an integer k > 0and 0 < n; < 2k,
Let p denote the uniform measure on F. Letbh > (#F)~(1+8)/% and w € R3,
then

b‘“p<B(w, b)) < #(b‘“ + Z lw — u/||—“>

w'eB(w,b),w'#w
(C.1)

< #(b*“ + D(#F)<1+€>>

<(D+1)- (#F)".

We will absorb the constant D using the notation > and « in what follows.
Let by = (#F)~'. Using the Besicovitch covering lemma and the fact that p
is probability measure, we conclude from (C.1) that F' contains a subset F of
bo-separated points with

#E > b,

where the implied constant is absolute. A
Arguing as in the proof [6, Lemma 5.2], see also [5],Awith Fand o — ¢,
there exists some 7', depending on ¢, and a subset F| C F, with

#F > Chy*™™ (C.2)

so that the following holds. Let ky = [—log,(bo)/ T'1, then there exist integers
Ri,....,Ry, withl < Ry < 23T 5o that every 24T _cube which intersects F
contains exactly Ry 1, 2~ (DT _cybes which intersect Fj.
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Since each remaining 2~%17 -cube contains exactly one point, we have
ky
> log, Ry = log, (#F1) = (a — 26)T (k1 — 2), (C.3)
=1

where we assume 7' is large enough to account for the constant C.
For every k > |kie]| =: ko, let

¢
1

M, = in —— 1 R;.

k kg%?klf—k/;()gz'

Let k2 be the smallest integer so that My, > (a¢ — 20¢)T if such exists, else
let ko = k1. We claim

ek < ky < =558 k). (C.4)

The lower bound follows from the definition of k,, we show the upper bound.
First note that if k; = ko + 1, there is nothing to prove; suppose thus that
ky > ko + 1. Then for every ko < i < ko, there is some i < i’ < kj so that

Z?:i log, Ry < (¢ —s +&)T (i —i’); thus there is ky < k < kj, so that

k

>~ logy Ry < (o —20e)T (k — ko).
{=ko+1

This, (C.3), and the fact that log, Ry < 3T for all £ imply that

k

3Tko + (o —208)T (k — ko) + 3T (k1 —k) = 3Tko+ > log, R
C=ko+1
ki
+3T (ki —k) = Y logy Ry = (o — 2)T (k1 — 2);
=1

we conclude that k(3 — o + 20¢) < ki <3 —o+ 58). This finishes the proof

of (C4)asky <k.
Let now D be any 2~%2T -cube which intersects Fj. Let ko < £ < ki, and
let D' C D be a2~ -cube. Then

V4
—1
#(D' N F) < <#(D N Fl)) I1 &
i=ky+1
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Since Ziz log, R; > (o —20e)T (£ — k), we conclude that

—20¢
#(B(w,b)NDNFy) / —Thk \*
#DNF) E=C (b/z 2)

forall b > (#F)~! where C’ « ¢~ with absolute implied constants.

Let F/ = DN Fy, and let wg € D N F;. The lemma holds with wy,

by =2"Tk and F' = DN F; C B(wo, by). O
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