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Abstract We prove effective density theorems, with a polynomial error rate,
for orbits of the upper triangular subgroup of SL2(R) in arithmetic quotients
of SL2(C) and SL2(R)×SL2(R). The proof is based on the use of a Margulis
function, tools from incidence geometry, and the spectral gap of the ambient
space.
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1 Introduction

The quantitative understanding of the behavior of orbits in homogeneous
spaces is a fundamental problem. Let G be a connected Lie group and � ⊂ G
a lattice (a discrete subgroup with finite covolume). Let L ⊂ G be a closed
connected subgroup. Ratner’s celebrated resolution of Raghunathan’s conjec-
tures, [51–53], provides a complete classification for the closure of individual
L-orbits in G/� if L is unipotent, or more generally is generated by unipotent
subgroups (this is true even if L is not assumed to be connected, see [59]).
Prior to Ratner’s work, some important special cases of this problem were
studied by Margulis [44], and Dani and Margulis [14,15].

These remarkable results all share the lacuna that they are not quantita-
tive, e.g. they do not provide any rate at which the orbit fills up its closure.
Indeed Ratner’s work relies on the pointwise ergodic theorem which is hard to
effectivize. The work of Dani and Margulis uses minimal sets, which though
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Polynomial effective density in quotients 1143

formally ineffective can be effectivized with some effort; a result in this spirit
was obtained by Margulis and the first named author in [41], though the rates
obtained there are of polylog form, and that too after significant effort. With
Margulis and Shah, we have obtained a general effective orbit closure theorem
for unipotent orbits on arithmetic quotients, the first piece of this being [42]
and the continuation is in preparation; however the rates obtained are even
worse than [41].

When G is a unipotent group, Green and Tao gave an effective equidistri-
bution theorem for orbits of subgroups L ⊂ G (that of course will also be
unipotent) in [30] with polynomial error rates. When G is semisimple, how-
ever, not much seems to be known. A notable exception is the case where
L ⊂ G is a horospherical subgroups, that is to say if there is an element a ∈ G
so that

L = {g ∈ G : anga−n → 1 as n → ∞},
for instance if L is the full group of strictly upper triangular matrices in G =
SLn(R). In this case, the behaviour of individual orbits can be related to decay
of matrix coefficients, and hence effective equidistribution with polynomial
error rate can be established. The first works in this direction we are aware
of by Sarnak [54], Burger [10], and Kleinbock and Margulis [37] based on
Margulis’ thesis, as well as the more recent papers by Flaminio and Forni
[26], Strömbergsson [60], and Sarnak and Ubis [55]. Quantitative horospheric
equidistribution has now been established in much greater generality e.g. by
Kleinbock and Margulis in [36], McAdam in [47] and by Asaf Katz [34].
Moreover a quantitative equidistribution estimate twisted by a character was
proved by Venkatesh [64] and further developed by Tani and Vishe as well
as Flaminio, Forni, and Tanis [27,63]; this was generalized to a disjointness
result with a general nil-system by Asaf Katz in [34]. Closely related is the
case of translates of periodic orbits of subgroups L ⊂ G which are fixed by an
involution by Duke, Rudnick and Sarnak, Eskin and McMullen, and Benoist
and Oh in [2,16,23].

Beyond the horospherical case1 (and the related case of groups fixed by
an involution) equidistribution results with polynomial rates were known only
for skew products by Strömbergsson [61], Strömbergsson and Vishe [62] and
by Wooyeon Kim [35], for random walks by automorphisms of the torus (cf.
[6] by Bourgain Furman, Mozes and the first named author and subsequent
works in this direction, e.g. [32] by He and de Saxce), and for the special case
of periodic orbits of increasing volume by Einsiedler, Margulis, Venkatesh

1 Strictly speaking, the twisted horospherical averages considered in [27,34,63,64] can also
be considered as a non-horospherical flow on a suitable product space, though they are closely
related to the horospherical case.
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1144 E. Lindenstrauss, A. Mohammadi

and by these three authors with the second named author [17,18]. There are
also some quantitative equidistribution results for particular types of unipotent
orbits, e.g. [11] by Chow and Lei Yang.

In this paper, we prove an effective density theorem, with a polynomial
error rate, for orbits of the upper triangular subgroup of SL2(R) in arithmetic
quotients of SL2(C) and SL2(R) × SL2(R). These are first results in the lit-
erature which provide a polynomial rate for general orbits in a homogeneous
space of a semisimple group, beyond the aforementioned case of horospherical
subgroups.

Let us now fix some notation in order to state the main theorems. Let

G = SL2(C) or G = SL2(R) × SL2(R).

Let � ⊂ G be a lattice, and put X = G/�.
Let d be the right invariant metric on G which is defined using the killing

form. This metric induces a metric dX on X , and natural volume forms on X
and its submanifolds. The injectivity radius of a point x ∈ X may be defined
using this metric. For every η > 0, let

Xη = {x ∈ X : injectivity radius of x is ≥ η}.
Throughout the paper, H denotes SL2(R) if G = SL2(C) or the diagonally

embedded copy of SL2(R) in G if G = SL2(R) × SL2(R). That is

SL2(R) ⊂ SL2(C) or {(g, g) : g ∈ SL2(R)} ⊂ SL2(R) × SL2(R).

Let P ⊂ H denote the group of upper triangular matrices in H .
An orbit Hx ⊂ X is periodic if H ∩ Stab(x) is a lattice in H . For the

semisimple group H , the orbit Hx is periodic iff it is closed.
Let | | denote the absolute value on C, and let ‖ ‖ denote the maximum

norm on Mat2(C) or Mat2(R) × Mat2(R) with respect to the standard basis.
For every T > 0 and every subgroup L ⊂ G, let

BL(e, T ) = {g ∈ L : ‖g − I‖ ≤ T }.
The following is the main theorem in this paper.

Theorem 1.1 Assume that � is an arithmetic lattice. For every 0 < δ < 1/2,
every x0 ∈ X, and large enough T (depending explicitly on δ and the injectivity
radius of x0) at least one of the following holds.

(1) For every x ∈ XT−δκ1 , we have

dX
(
x, BP

(
e, T A

)
.x0

)
≤ C1T

−δκ1 .
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Polynomial effective density in quotients 1145

(2) There exists x ′ ∈ X such that Hx ′ is periodic with vol(Hx ′) ≤ T δ , and

dX (x ′, x0) ≤ C1T
−1.

where A, κ1, and C1 are positive constants depending on X.

The proof of Theorem 1.1 has a similar flavor to [28] by Gamburd, Jakob-
son, and Sarnak as well as to the work of Bourgain and Gamburd [7,8] and
the aforementioned work of Bourgain, Furman, Lindenstrauss, and Mozes
[6]. Indeed in the first step, we use a Diophantine condition to produce some
dimension at a certain scale (initial dimension). In the second step, we use
a Margulis function to show that by passing to a larger scale and translating
BP(e, T δ).x0 with a random element of controlled size, we obtain a set with
large dimension. Margulis functions were introduced in the context of homo-
geneous dynamics in [21] by Eskin, Margulis, and Mozes, and have become
an indispensable tool in homogeneous dynamics and beyond.

We then use a projection theorem to move this additional dimension to the
direction of a horospherical subgroup of G. The projection theorem we use
is an adaptation of the work of Käenmäki, Orponen, and Venieri [33] and is
based on the works of Wolff and Schlag [56,65]. Finally, we use an argument
due to Venkatesh [64] to conclude the proof.

The main proposition

LetU ⊂ N denote the group of upper triangular unipotent matrices in H ⊂ G,
respectively.

More explicitly, if G = SL2(C), then

N =
{
n(r, s) =

(
1 r + is
0 1

)
: (r, s) ∈ R

2
}

and U = {n(r, 0) : r ∈ R}; we will often denote the elements in U by ur , i.e.,
n(r, 0) will often be denoted by ur for r ∈ R. Let

V = {n(0, s) = vs : s ∈ R}.
If G = SL2(R) × SL2(R), then

N =
{
n(r, s) =

((
1 r + s
0 1

)
,

(
1 r
0 1

))
: (r, s) ∈ R

2
}

andU = {n(r, 0) : r ∈ R}. As before, n(r, 0) will be denoted by ur for r ∈ R.
Let V = {n(0, s) = vs : s ∈ R}. In both cases, we have N = UV .
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1146 E. Lindenstrauss, A. Mohammadi

The following proposition is a crucial step in the proof. Roughly speaking,
it states that for every x0 ∈ X , we can find a subset of V with dimension
almost 1 near P.x0 unless x0 is extremely close to a periodic H -orbit with
small volume.

Proposition 1.1 (Main Proposition) There exists some η0 > 0 depending on
X with the following property.
Let 0 < θ, δ < 1/2, 0 < η < η0, and x0 ∈ X. There are κ2 and A′,

depending on θ , and T1 depending on δ, η, and the injectivity radius of x0, so
that for all T > T1 at least one of the following holds.

(1) There exists a finite subset I ⊂ [0, 1] so that both of the following are
satisfied.
(a) The set I supports a probability measure ρ which satisfies

ρ(J ) ≤ Cθ |J |1−θ

for every interval J with |J | ≥ T−δκ2 where Cθ ≥ 1 depends on θ .
(b) There is a point y0 ∈ Xη so that

dX
(
vs .y0, BP

(
e, T A′)

.x0
)
≤ C2T

−δκ2

for all s ∈ I ∪ {0}.
(2) There exists x ′ ∈ X so that Hx ′ is periodic with vol(Hx ′) ≤ T δ and

dX (x ′, x0) ≤ C2T
−1.

where C2 depends on X.

The proof of this proposition will be completed in Sect. 8; it involves three
main steps, which we now outline.

(1) Let us assume that the injectivity radius of x0 is bounded below by some
constant depending on X ; we can always reduce to this case using certain
non-divergence results which are discussed in Sect. 3.
Since we are interested in information about how points approach each
other transversal to H , we will work with a thickening of P.x0 with BH ,
a small neighborhood of the identity in H . In the first step, we use Propo-
sition 6.1 (a closing lemma) to show that either Proposition 1.1(2) holds,

or we can find some x ∈
(
BH · BP

(
e, T O(δ)

))
.x0, whose injectivity

radius is bounded below depending on X , so that any two nearby points in(
BH · BP

(
e, T δ

))
.x have distance > T−1 transversal to H .
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Polynomial effective density in quotients 1147

(2) Assuming Proposition 1.1(2) does not hold, in the second step, we use a
Margulis function to show that translations of the aforementioned thick-

ening of BP

(
e, T δ

)
.x by certain random elements in BP

(
e, T Oθ (1)

)
have

dimension 1− θ transversal to H at scale T−0.1δ . This step is carried out
in Sect. 7.
The random elements we use in this step further have the property that

translations of
(
BH · BP

(
e, T δ

))
.x with them stay near P.x — this prop-

erty is reminiscent of Margulis’ thickening technique, albeit unlike the
latter we only thicken in H and not in G.

(3) In the third step, we use a projection theorem (Theorem 5.1) combinedwith
some arguments in homogeneous dynamics, to project the aforementioned
entropy to the direction of N . This is the content of Sect. 5.

Let us now elaborate on how Proposition 1.1 may be used to complete the
proof of Theorem 1.1.

The argument is based on the quantitative decay of correlations for the
ambient space X : There exists κX > 0 so that

∣∣∣∣
∫

ϕ(gx)ψ(x) dmX −
∫

ϕ dmX

∫
ψ dmX

∣∣∣∣ �ϕ,ψ e−κXd(e,g) (1.1)

for all ϕ, ψ ∈ C∞
c (X) + C · 1, where mX is the probability Haar measure on

X and d is our fixed right G-invariant metric on G. See e.g. [37, §2.4] and
references there for (1.1); we note that κX is absolute if � is a congruence
subgroup, see [9,13,29].

As it is well studied, (1.1) implies quantitative equidistribution results for
expanding pieces of the horospherical group N in X . Note, however, that we
are only supplied with the set

B = {urvs : r ∈ [0, 1], s ∈ I }

where I is as in Proposition 1.1, i.e., we do not have the luxury of using an
open subset of N . To remedy this issue, we use an argument due to Venkatesh
[64] and show that so long as θ is small enough— this is quantified using (1.1)
— expanding translations of B are already equidistributed in X , see Proposi-
tion 4.2.

Periodic orbits

The techniques we develop here allow us to prove an effective density theorem
for periodic orbits of H as well. We will show in Lemma 3.3 that there exists
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1148 E. Lindenstrauss, A. Mohammadi

some ηX > 0 so that for every periodic orbit Y , we have

μY (XηX ) ≥ 0.9 (1.2)

where μY denotes the H -invariant probability measure on Y .

Theorem 1.2 Let Y ⊂ X be a periodic H-orbit in X. Then for every x ∈
Xvol(Y )−κ3 we have

dX (x, Y ) ≤ C3vol(Y )−κ3 .

where κ3 ≥ κ4
X/L (for an absolute constant L) and C3 depends explicitly

on κX , vol(X), and the minimum of the injectivity radius of points in XηX ,
see (9.14). If � is congruence, κ3 is absolute.

If � is an arithmetic lattice, Theorem 1.2 is a rather special case of a theo-
rem of Einsiedler, Margulis, and Venkatesh [18] or (when the corresponding
Q-group has over R compact factors) the followup work by Einsiedler, Mar-
gulis, and Venkatesh and the second named author [17]. Note however that
Theorem 1.2 does not require � to be arithmetic. In particular, unlike [17,18],
our argument does not rely on property (τ ).

By the arithmeticity theorems of Selberg and Margulis, irreducible lattices
in SL2(R)×SL2(R) are arithmetic. Regarding reducible quotients of SL2(R)×
SL2(R), if such a quotient SL2(R)×SL2(R)/�1×�2 contains infinitelymany
closed orbits of H , then �2 is commensurable to �1 (up to a conjugation) and
moreover�1 has infinite index in its commensurator. By a theoremofMargulis,
it follows that �1 is arithmetic, see [45, Ch. IX]. Moreover, it was recently
shown, [1,46], that if SL2(C)/� contains infinitely many closed orbits of H ,
then � is arithmetic.

Thus in all cases covered by Theorem 1.2, either � is arithmetic hence
[17,18] apply (though the proof we give here is very different) or there are
only finitely many closed H -orbits. The key point of Theorem 1.2 is that the
rate of equidistribution depends only on rather coarse properties of X namely
the rate ofmixing κX , the volume of X , and the injectivity radius of the compact
core of X , suitably interpreted. This can be used in some special cases to give
an effective version of the finiteness theorems of [1,46], as we discuss in
the next subsection. It is interesting to note that the proofs in [1,46] rely on
equidistribution results [49] which are in the spirit of Theorem 1.2, albeit in a
qualitative form.
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Totally geodesic planes in hybrid manifolds

Gromov and Piatetski-Shapiro [31] constructed examples of non-arithmetic
hyperbolic manifolds by gluing together pieces of non-commensurable arith-
metic manifolds. Let �1 and �2 be two torsion free lattices in Isom(H3) —
recall that Isom(H3) is an index 2 subgroup of O(3, 1) and that SL2(C) is
locally isomorphic to O(3, 1). Let Mi = H

3/�i . Assume further that for
i = 1, 2, there exists 3-dimensional submanifolds with boundary Ni ⊂ Mi so
that

• The Zariski closure of π1(Ni ) ⊂ �i contains O(3, 1)◦ where O(3, 1)◦ is
the connected component of the identity in O(3, 1).

• Every connected component of ∂Ni is a totally geodesic embedded surface
in Mi which separates Mi .

• ∂N1 and ∂N2 are isometric.

Let M be the manifold obtained by gluing N1 and N2 using the isometry
between ∂N1 and ∂N2. Then M carries a complete hyperbolic metric, thus,
we consider π1(M) as a lattice in O(3, 1). Let �′ = π1(M)∩O(3, 1)◦, and let
� denote the inverse image of �′ in G = SL2(C). If �1 and �2 are arithmetic
and non-commensurable, then M is non-arithmetic, i.e., � is a non-arithmetic
lattice in G. A totally geodesic plane in M lifts to a periodic orbit of H =
SL2(R) in X = G/�.

The following finiteness theorem, in qualitative form, was proved by Fisher,
Lafont, Miller, and Stover [25, Thm. 1.4], see also [3, §12].

Theorem 1.3 Let M be a hyperbolic 3-manifold obtained by gluing the pieces
N1 and N2 from non-commensurable arithmetic manifolds along � = ∂N1 =
∂N2 as described above. The number of totally geodesic planes in M is at most

L

(
area(�)vol(X)η−1

X κ−1
X

)L/κ4X

where L is absolute and X = G/� is as above.

2 Notation and preliminaries

Throughout the paper

G = SL2(C) or G = SL2(R) × SL2(R).

Let � ⊂ G be a lattice, and put X = G/�.
We define the subgroups H , N , U , and V as in the introduction.
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1150 E. Lindenstrauss, A. Mohammadi

Also letU− = {u−
r : r ∈ R} denote the group of lower triangular unipotent

matrices in H .
For every t ∈ R, let at denote the images of

(
et/2 0
0 e−t/2

)
(2.1)

in H . Note that atn(r, s)a−t = n(et (r, s)) for all t ∈ R and all (r, s) ∈ R
2.

Lie algebras and norms

Let | | denote the usual absolute value on C (and on R). Let ‖ ‖ denotes the
maximum norm on Mat2(C) and Mat2(R) × Mat2(R), with respect to the
standard basis.

Let g = Lie(G), that is, g = sl2(C) or g = sl2(R) ⊕ sl2(R). We write
g = h ⊕ r where h = Lie(H) � sl2(R), r = isl2(R) if g = sl2(C) and
r = sl2(R) ⊕ {0} if g = sl2(R) ⊕ sl2(R).

Throughout the paper, we will use the uniform notation

w =
(

w11 w12
w21 w22

)

for elements w ∈ r, where wi j ∈ iR if G = SL2(C) and wi j ∈ R if G =
SL2(R) × SL2(R).

Note that r is a Lie algebra in the case G = SL2(R) × SL2(R), but not
when G = SL2(C).

We fix a norm on h by taking the maximum norm where the coordinates are
given by Lie(U ), Lie(U−), and Lie(A); similarly fix a norm on r. By taking
maximum of these two norms we get a norm on g. These norms will also be
denoted by ‖ ‖.

Let C4 ≥ 1 be so that

‖hw‖ ≤ C4‖w‖ for all ‖h − I‖ ≤ 2 and all w ∈ g. (2.2)

For all β > 0, we define

BH
β := {u−

s : |s| ≤ β} · {at : |t | ≤ β} · {ur : |r | ≤ β} (2.3)

for all 0 < β < 1. Note that for all hi ∈ (BH
β )±1, i = 1, . . . , 5, we have

h1 · · · h5 ∈ BH
100β. (2.4)
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Polynomial effective density in quotients 1151

We also define BG
β := BH

β · exp(Br(0, β)) where Br(0, β) denotes the ball
of radius β in r with respect to ‖ ‖.

We deviate slightly from the notation in the introduction, and define the
injectivity radius of x ∈ X using BG

β instead of the metric d on G. Put

inj(x) = min
{
0.01, sup

{
β : g �→ gx is injective on BG

10β

}}
. (2.5)

Taking a further minimum if necessary, we always assume that the injectivity
radius of x defined using the metric d dominates inj(x).

For every η > 0, let

Xη =
{
x ∈ X : inj(x) ≥ η

}
.

Constants and the �-notation

In our analysis, the dependence of the exponents on � are via the application
of results in Sect. 4, see (4.1), and Sect. 6.

We will use the notation A � B when the ratio between the two lies in
[C−1,C] for some constant C ≥ 1 which depends at most on G and � in
general. We write A � B� (resp. A � B) to mean that A ≤ CBκ (resp.
A ≤ CB) for some constant C > 0 depending on G and �, and κ > 0 which
follows the above convention about exponents.

Lemma 2.1 There exist absolute constantsβ0 andC5 ≥ 1 so that the following
holds. Let 0 < β ≤ β0, and letw1, w2 ∈ Br(0, β). There are h ∈ H andw ∈ r
which satisfy

0.5‖w1 − w2‖ ≤ ‖w‖ ≤ 2‖w1 − w2‖ and ‖h − I‖ ≤ C5β‖w‖
so that exp(w1) exp(−w2) = h exp(w).

Proof Using the Baker–Campbell–Hausdorff formula, we have

exp(w1) exp(−w2) = exp(w1 − w2 + w̄)

where w̄ ∈ g and ‖w̄‖ � β‖w1 − w2‖.
Using the open mapping theorem and Baker–Campbell–Hausdorff formula

again, for all small enough β, there is (wh, wr) = Bh(0,Cβ)× Br(0,Cβ) and
w′ ∈ g with ‖w′‖ � ‖wh‖‖wr‖, so that

exp(w1 − w2 + w̄) = exp(wh) exp(wr) = exp(wh + wr + w′) (2.6)

where C and the implied constant are absolute.
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We show that h = exp(wh) and w = wr satisfy the claims in the lemma. In
view of (2.6), we need to verify the bounds on ‖h − I‖ and ‖wr‖.

First note that if β is small enough, (2.6) implies that

w1 − w2 + w̄ = wh + wr + w′. (2.7)

Recall that we are using the max norm with respect to r and h which are two
orthogonal subspaces. Note also that w1, w2, wr ∈ r and wh ∈ h. Thus, (2.7)
implies that ‖wh‖ � ‖w̄‖ + ‖w′‖. Recall now that ‖w̄‖ � β‖w1 − w2‖
and ‖w′‖ � ‖wh‖‖wr‖ � β‖wh‖. Thus assuming β is small enough, we
conclude that ‖wh‖ � β‖w1 − w2‖ as we wanted to show.

To see the estimate on ‖wr‖, we again use (2.7). Indeed (w1 −w2)−wr =
wh + w′ − w̄; moreover, ‖w̄‖ � β‖w1 − w2‖, ‖wh‖ � β‖w1 − w2‖, and
‖w′‖ � ‖wh‖‖wr‖ � β‖wh‖ � β2‖w1 − w2‖. Again assuming β is small
enough, we conclude that

0.5‖w1 − w2‖ ≤ ‖wr‖ ≤ 2‖w1 − w2‖,

which finishes the proof. ��
Lemma 2.2 There exists β0 so that the following holds for all 0 < β ≤ β0.
Let x ∈ X10β and w ∈ Br(0, β). If there are h, h′ ∈ BH

2β so that exp(w′)hx =
h′ exp(w)x, then

h′ = h and w′ = Ad(h)w.

Moreover, we have ‖w′‖ ≤ 2‖w‖.
Proof Recall that r is invariant under the adjoint action of H . We rewrite the
equation exp(w′)hx = h′ exp(w)x as follows

exp(w′)hx = exp(Ad(h′)w)h′x . (2.8)

Since h′ ∈ BH
2β , we haveAd(h

′)w′ = w′+ŵwhere ‖ŵ‖ � β‖w′‖. Therefore,
assuming β is small enough, we have 0.5‖w‖ ≤ ‖Ad(h′)w′‖ ≤ 2‖w‖. This
estimate, (2.8), and the fact that x ∈ X10β imply that

exp(w′)h = exp(Ad(h′)w)h′.

Moreover, the map (w̄, h̄) �→ exp(w̄)h̄ from Br(0, 2β) × BH
2β to G is

injective, for all small enough β. Therefore, h = h′ and w′ = Ad(h′)w.
The final claim follows as ‖w′‖ = ‖Ad(h′)w‖ ≤ 2‖w‖. ��
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The set Eη,t,β

For all η, β > 0 and t ≥ 0, set

Eη,t,β := BH
β · at ·

{
ur : r ∈ [0, η]} ⊂ H. (2.9)

Then mH (Eη,t,β) � ηβ2et where mH denotes our fixed Haar measure on H .
Throughout the paper, the notation Eη,t,β will be used only for η, t, β > 0

which satisfy e−0.01t < β < η2 even if this is not explicitly mentioned.
For all η, β,m > 0, put

QH
η,β,m =

{
u−
s : |s| ≤ βe−m

}
· {at : |t | ≤ β} ·

{
ur : |r | ≤ η

}
. (2.10)

Roughly speaking,QH
η,β,m is a small thickening of the (β, η)-neighborhood of

the identity in AU . We write QH
β,m for QH

β,β,m
The following lemma will also be used in the sequel.

Lemma 2.3 (1) Let m ≥ 1, and let 0 < η, β < 0.1. Then

((
QH

0.01η,0.01β,m

)±1
)3

⊂ QH
η,β,m .

(2) For all 0 ≤ β ≤ η ≤ 1, t,m > 0, and all |r | ≤ 2, we have

(
QH

β2,m

)±1 · amurEη,t,β ′ ⊂ amurEη,t,β, (2.11)

where β ′ = β − 100β2.

Proof Recall that for all a, b, c, d with ad − bc = 1 and a �= 0, we have

(
a b
c d

)
=

(
1 0
c/a 1

) (
a 0
0 1/a

) (
1 b/a
0 1

)
.

The claim in part (1) follows from this identity.
To see part (2), recall that

(u−
s aur ′) · (amur ) = amuru

−1
r u−

emsaue−mr ′ur

for all u−
s aur ′ ∈ QH

β2,m
.

Note that em |s| ≤ β2 and e−m |r ′| ≤ β2. Let now

(u−
c adub) · at · ur ′′ ∈ Eη,t,β−100β2,
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where |c|, |d|, |b| ≤ β − 100β2, |r ′′| ≤ η.
Then

(u−
s aur ′)(amur )(u

−
c adubatur ′′) = amur (u

−1
r u−

emsaue−mr ′ur )(u
−
c adub)atur ′′ .

Since |r | ≤ 2, we have ur · BH
β2 · u−r ⊂ BH

10β2 . Moreover, BH
10β2 · BH

β ⊂
BH

β+100β2 . The claim follows. ��

A linear algebra lemma

Note that both h and r are invariant under the adjoint representation of H
on g; moreover, both of these representations are isomorphic to the adjoint
representation of H on Lie(H).

We will use the following lemma in the sequel

Lemma 2.4 ([22], Lemma 5.1, and [20]) Let 1/3 < α < 1, 0 �= w ∈ g, and
t > 0. Then

∫ 1

0
‖aturw‖−α dr ≤ C6e−α̂t

2− 2α
‖w‖−α;

where C6 is an absolute constant and α̂ = 1−α
4 .

We will apply the above lemma with t = �mα , � ∈ N, where mα is defined
by C6

2−2α e−α̂mα = e−1. The choice of mα and Lemma 2.4 imply

∫ 1

0
‖amαurw‖−α dr ≤ e−1‖w‖−α. (2.12)

3 Nondivergence results

In this section, we record some facts which will be used to deal with non-
uniform lattices; the results in this section are known to the experts. Our goal
here is to tailor these results to our applications in the paper.

Throughout this section, � is assumed to be non-uniform unless otherwise
is explicated.We do not assume � is arithmetic in this section.

To deal with cases where � may not be arithmetic, we appeal to some facts
from hyperbolic geometry, see Case 1 below. If � is a non-uniform irreducible
lattice in SL2(R) × SL2(R), i.e. Case 2 below, � is arithmetic by a theorem
of Selberg — this is a special case of Margulis’ arithmeticity theorem.
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Proposition 3.1 There exist C7 ≥ 1 with the following property. Let 0 <

ε, η < 1 and x ∈ X. Let I ⊂ [−10, 10] be an interval with |I | ≥ η. Then

∣∣∣
{
r ∈ I : inj(atur x) < ε2

}∣∣∣ < C7ε|I |

so long as t ≥ | log(η2 inj(x))| + C7.

Proposition 3.1 in particular implies that for all t ≥ log
(
η2 inj(x)

) + O(1)
most points in {atur x : r ∈ I } return to a fixed compact subset of X .

For the proof of the proposition, it is more convenient to investigate two
separate cases as follows. These are:

Case 1: G = SL2(C) or G = SL2(R) × SL2(R) and � is reducible.
Case 2: G = SL2(R) × SL2(R) and � is irreducible.
The proofs ultimately rely on non-divergence results of Margulis, Dani,

and Kleinbock. To prepare the stage for such results to be applicable, in Case
1 we use the thick-thin decomposition from hyperbolic geometry. This will
be completed in this section. In Case 2 thanks to Selberg’s theorem � is an
arithmetic lattice. The proof in this case uses explicit reduction theory of such
lattices and and the aforementioned works of Margulis et al; this proof is given
in Appendix A.

Let us thus assume G = SL2(C) or G = SL2(R) × SL2(R) and � is
reducible. Let F denote R or C, and let � ⊂ SL2(F) be a lattice. Using the
thick-thin decomposition of SL2(F)/�, there exists a compact subset S ⊂
SL2(F)/� and a finite collection of disjoint cusps {C j : 1 ≤ j ≤ �} so that

SL2(F)/� = S
⊔

(��
j=1C j ).

Each cusp C j corresponds to the �-orbit of a parabolic fixed point of � in
∂H

d , d = 2 or 3 depending on F; alternatively, C j corresponds to a tube of
closed U -orbits

atNg j� ⊂ SL2(F) t < 0,

where N denotes the group of upper triangular unipotent matrices in SL2(F).
We will also consider a linearized version of the thick-thin decomposi-

tion. It is more convenient to identify SL2(F)/{±I } with SO(Q)◦ where
Q(v1, v2, v3) = 2v1v3+v22 if d = 2, andQ(v1, v2, v3, v4) = 2v1v4+v22 +v23
if d = 3. We choose this identification so that N fixes e1 where {e j } is the
standard basis for R

d+1.
If d = 2, that is F = R, we let L = SO(Q)◦ and write W = R

3. If d = 3,
that is: F = C, we let L be the isometry group of the restriction of Q to the
subspace W spanned by {e1,e3,e4} — in the latter case L � PSL2(R) and
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he2 = e2 for all h ∈ L . Note that in both cases the adjoint action of H on
sl2(R) factors through the action of L on W .

Set v j := g−1
j e1 for 1 ≤ j ≤ � where e1 is the first coordinate vector

in R
d+1 and g j ∈ SL2(F). Note that �v j ⊂ R

d+1 is a closed (and hence
discrete) subset of R

d+1, see e.g. [48, Lemma 6.2].
Given a point g� ∈ SL2(F)/� we define

ω�(g�) = max

{
2,max

{
‖gδv j‖−1 : δ ∈ �, 1 ≤ j ≤ �

}}
.

For the following see e.g. [48, §6].

Lemma 3.1 Let� ⊂ SL2(F)be a lattice. There exists someC = C(�) > 2 so
that the following holds. Assume thatω�(g�) ≥ C for some g� ∈ SL2(F)/�.
Then there exists some 1 ≤ j0 ≤ � and some δ0 ∈ � so that ‖gδ0v j0‖−1 =
ω�(g�) and

‖gδv j‖ > 1/C, for all (δ, j) �= (δ0, j0).

We will also use the following elementary lemma.

Lemma 3.2 Let η > 0, and let I be an interval of length at least η. There
exists some C8 so that the following holds. Let � > 0, and let v ∈ SO(Q)◦.e1.
Then

∣∣∣
{
r ∈ I : ‖aturv‖ ≤ etη‖v‖�2

}∣∣∣ ≤ C8�|I |.

Proof Note that we may assume � is small compared to absolute constants.
Let us consider the case d = 3, the other case, i.e., d = 2, is contained in this

case. Recall that W denotes the R-span of {e1,e3,e4}; write v = cve2 + wv

where wv ∈ W and cv ∈ R. Since Q(v) = 0, we have ‖wv‖ ≥ c‖v‖ for some
absolute constant 0 < c < 1. Moreover, for every h ∈ L = H

hv = cve2 + hwv. (3.1)

Identifying W with the adjoint representation of H , for every w ∈ W and
every 0 < δ < 1, let

I (w, δ) =
{
r ∈ I : |(Ad(ur )w)12| ≤ 0.01δη2‖w‖

}
,

where wi j is the (i, j)-th entry of w ∈ sl2(R).

123



Polynomial effective density in quotients 1157

A direct computation gives

(
Ad(ur )w

)
12

= −w21r
2 − 2w11r + w12. (3.2)

Therefore, supI |(Ad(ur )w)12| ≥ 0.01η2‖w‖ — recall that |I | ≥ η. We con-
clude that |I (w, δ)| ≤ Cδ1/2|I | for some C > 0, see e.g. [38, §3].

Let δ = 100c−1�2, where we assume � is small enough so that δ < 1.
Let v be as in the statement, and define wv as above. Then ‖wv‖ ≥ c‖v‖ and
|I (wv, δ)| ≤ 10Cc−1/2�|I |.

Let r ∈ I \ I (wv, δ), then

‖(Ad(ur )wv)12‖ ≥ c−1η2‖wv‖�2.

Since at expands the (1, 2)-entry by a factor of et , we conclude

‖aturv‖ ≥ ‖aturwv‖ by (3.1)

≥ et |(Ad(ur )wv)12| ≥ c−1etη2‖wv‖�2

≥ etη2‖v‖�2.

The claim thus holds with C8 = 10Cc−1/2. ��
Proof of Proposition 3.1: Case 1 Let us first considerG = SL2(R)×SL2(R).
Since � is reducible, there exists a finite index subgroup �′ ⊂ � so that
�′ = �1 × �2. The constant C7 in Proposition 3.1 is allowed to depend on
the index of �′ in �, thus, abusing the notation, we replace � by �′ in the
remaining parts of the argument. In particular,

X = X1 × X2 = SL2(R)/�1 × SL2(R)/�2.

Let us write ωi for ω�i , for i = 1, 2. Define

ω(x) := max{ω1(x1), ω2(x2)} (3.3)

for all x = (x1, x2) ∈ X .
We denote the corresponding vectors for �1 by v1 j , 1 ≤ j ≤ �1, and for �2

by v2k , 1 ≤ k ≤ �2.
Note that ω(x) � inj(x)−1, see e.g. [48, Prop. 6.7]. Therefore, it suffices to

prove the proposition with inj(x) replaced by ω(x).
Let (g1, g2) ∈ G, (γ1, γ2) ∈ �, 1 ≤ j ≤ �1, and 1 ≤ k ≤ �2. By Lemma 3.2

applied with g1γ1v1 j and g2γ2v2k , we conclude∣∣∣
{
r ∈ I : ‖atur (g1γ1v1 j , g2γ2v2k)‖ ≤ etη2‖(g1v1 j , g2v2k)‖�2

}∣∣∣ ≤ 2C8�|I |
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for every 0 < � < 1.
Let �0 = 0.1C−1

8 , and choose (g1, g2) ∈ G so that x = (g1�, g2�). Then
the above implies that for all (γ1, γ2) ∈ �, all 1 ≤ j ≤ �1, and all 1 ≤ k ≤ �2,
there exists some r ∈ I so that

‖atur (g1γ1v1 j , g2γ2v2k)‖ ≥ etη2‖(gγ1v1 j , g2γ2v2k)‖ε2
≥ etη2ω(x)−1�2

0. (3.4)

In view of (3.4), and by choosing C7 large enough to account for the implicit
constant in ω(x) � inj(x)−1, we have

sup{‖atur (g1γ1v1 j , g2γ2v2k)‖ : r ∈ I } ≥ �2
0

so long as t ≥ | log(η2 inj(x))| + C7.
Therefore, we may apply [38, Thm. 4.1] and the proposition follows in

this case. The argument in the case G = SL2(C) is similar — in light of
Lemma 3.1, the use of [38, Thm. 4.1] simplifies significantly. ��

As we mentioned the proof in Case 2 is given in Appendix A.

Proposition 3.2 There exists 0 < ηX < 1, depending on X, so that the fol-
lowing holds. Let 0 < η < 1 and let x ∈ X. Let I ⊂ [−10, 10] be an interval
with length at least η. Then

|{r ∈ I : atur x ∈ XηX }| ≥ 0.99|I |

for all t ≥ | log(η2 inj(x))| + C7.

Proof Apply Proposition 3.1 with ε = 0.01C−1
7 . The claim thus holds with

ηX = ε2. ��

3.1 The subsets Xcpt andScpt

Decreasing ηX if necessary we always assume that X \ XηX is a disjoint union
(possibly empty) of finitely many cusps.

If X is compact, let Xcpt = X ; otherwise, let Xcpt = {gx : x ∈ XηX , ‖g −
I‖ ≤ 2} where XηX is given by Proposition 3.2.
We also fix once and for all a compact subset with piecewise smooth bound-

ary Scpt ⊂ G which projects onto Xcpt.
We end this section with the following

Lemma 3.3 Let Y be a periodic H-orbit. Then μY (XηX ) ≥ 0.9 where μY
denotes the H-invariant probability measure on Y .
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Proof Let ϕ = 1Xη , and let y ∈ Y . Then by [37, §2.2.2] we have

lim
t→∞

∫ 1

0
ϕ(atur y) dr =

∫
ϕ dμY .

The lemma thus follows from Proposition 3.2. ��

4 From large dimension to effective density

In this section we use the exponential decay of correlations for the ambient
space X to prove Proposition 4.2, which says that expanding translations of
subsets of N which are foliated by local U orbits and have dimension close
but not necessarily equal to 2 are equidistributed in X .

This proposition will be used in the proofs of Theorems 1.1 and 1.2, but it
is also of independent interest. The proof is similar to an argument in [64, §3].

Recall our notation from Sect. 2: n(r, s) = urvs where vs = n(0, s) and
ur = n(r, 0) ∈ U . Recall also that atn(r, s)a−t = n(et (r, s)) for all t ∈ R and
all (r, s) ∈ R

2.
We need the following estimate on the decay of correlations in X . There

exists κX depending on X so that

∣∣∣∣
∫

ϕ(gx)ψ(x) dmX −
∫

ϕ dmX

∫
ψ dmX

∣∣∣∣ � e−κXd(e,g)S(ϕ)S(ψ) (4.1)

for all ϕ, ψ ∈ C∞
c (X) + C · 1 where the implied constant is absolute and d is

our fixed right G-invariant on G, see e.g. [37, §2.4] and references there. We
note that κX is absolute if � is a congruence subgroup, see [9,13,29].

Here S(·) is a certain Sobolev norm on C∞
c (X)+C · 1 which is assumed to

dominate‖·‖∞ and theLipschitz norm‖·‖Lip.Moreover,S(g. f ) � ‖g‖�S( f )
where the implied constants are absolute.

Let us put

C̄X = η−1
X vol(G/�) (4.2)

where ηX is as in Proposition 3.2 and vol(G/�) is computed using the Rie-
mannian metric d.

We also need the following statement.

Proposition 4.1 ([37], Prop. 2.4.8) There exists κ4 � κX (where the implied
constant is absolute) and an absolute constant κ5 so that the following holds.
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Let 0 < η < 1, t > 0, and x ∈ Xη. Then for every f ∈ C∞
c (X) + C · 1,

∣∣∣∣
∫

BN (0,1)
f (atn.x) dn −

∫
f dmX

∣∣∣∣ ≤ C9η
−1/κ5S( f )e−κ4t

where BN (0, 1) =
{
urvs : 0 ≤ r, s ≤ 1

}
, the measure on N is normalized so

that BN (0, 1) has measure 1, and C9 ≤ LC̄L
X for an absolute constant L and

C̄X as in (4.2).

Proof This statement is well known to the experts, see e.g. [34,36,37,47]; we
reproduce the argument for the convenience of the reader.

Throughout the argument, the implied exponents are absolute and implied
multiplicative constants are ≤ LC̄L

X for an absolute L . Let 0 ≤ ϕ+ ≤ 1 be a
smooth function supported on BN (0, 1) so that

∫
BN (0,1)(1 − ϕ+) dn ≤ e−κt

and S(ϕ+) � e�κt for some κ which will be optimized later. Then

∣∣∣∣
∫

BN (0,1)
f (atn.x) dn −

∫

N
f (atn.x)ϕ+(n) dn

∣∣∣∣ � ‖ f ‖∞e−κt . (4.3)

Recall that BN (0, 1)Xη ⊂ X0.1η; using a smooth partition of unity argu-
ment, we can write ϕ+ = ∑M

j=1 ϕ+
j so that M � η−�, S(ϕ+

j ) � η−�e�κt ,

and the map g �→ gy is injective on supp(ϕ+
j ) for all y ∈ BN (0, 1).Xη and all

j .
In consequence, we may fix one ϕ+

j for the rest of the argument. Arguing as
in [37, Prop. 2.4.8], see also [36, Thm. 2.3], there exists a compactly supported
smooth function ϕ (an e−κt -thickening of ϕ+

j along the weak-stable directions
in G) so that S(ϕ) �X η−�e�κt and

∣∣∣∣
∫

N
f (atn.x)ϕ+

j (n) dn −
∫

X
f (at y)ϕ(y) dmX (y)

∣∣∣∣ � ‖ f ‖Lipe−κt , (4.4)

where ‖ f ‖Lip is the Lipschitz constant of f .
Finally in view of (4.1), we have

∣∣∣∣
∫

f (at y)ϕ(y) dmX (y) −
∫

f dmX

∫
ϕ dmX

∣∣∣∣ � S( f )S(ϕ)e−κX t

� η−�e�κtS( f )e−κX t .

(4.5)

The claim follows from (4.3), (4.4), and (4.5) by optimizing κ . ��
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The following is a generalization of Proposition 4.1 where one replaces the
average over BN (0, 1)with an average over certain subsets of dimension close
to 2, but not necessarily equal to 2.

Proposition 4.2 There exist κ6 and ε0 (both � κ2
X with an absolute implied

constant) so that the following holds. Let 0 ≤ ε ≤ ε0 and 0 < b ≤ 0.1. Let ρ
be a probability measure on [0, 1] which satisfies

ρ(J ) ≤ Cb1−ε (4.6)

for every interval J of length b and a constant C ≥ 1.
Let 0 < η < 1, x ∈ Xη, then

∣∣∣∣
∫ 1

0

∫ 1

0
f (aturvs .x) dr dρ(s) −

∫
f dmX

∣∣∣∣ ≤ C10Cη
− 1

2κ5 S( f )e−κ6t

for all | log b|/4 ≤ t ≤ | log b|/2 and all f ∈ C∞
c (X) + C · 1, where C10 ≤

LC̄L
X for an absolute constant L and C̄X as in (4.2).

Proof We will prove this for the case G = SL2(R)×SL2(R); the proof in the
case G = SL2(C) is similar.

Throughout the argument, the implicit multiplicative constants are ≤ LC̄L
X

for some absolute L .
Without loss of generality, we may assume

∫
X f dmX = 0.

Let M ∈ N be so that 1/M ≤ b ≤ 1/(M − 1). For every 1 ≤ j ≤ M , let

I j =
[
j−1
M ,

j
M

)
; also put s j = 2 j−1

2M and c j = ρ(I j ) for all j . Since I j ’s are

disjoint, we have
∑

j c j = 1.
For all such j , let

B j =
{
urvs : r ∈ [0, 1], s ∈ (s j − b

4 , s j + b
4 )

}
.

In view of the choice of M , we have B j ∩ B j ′ = ∅ for all j �= j ′. Let
ϕ = ∑

j 2b
−1c j1B j . Then

∫
N ϕ(n(r, s)) dr ds = 1.

We make the following observation. Using (4.6), we have c j ≤ Cb1−ε for
all j . This and the fact that B j ’s are disjoint imply that

ϕ(n(z)) ≤ max{2b−1c j : 1 ≤ j ≤ M} ≤ 2Cb−ε (4.7)

for all n(z) ∈ N ; here and in what follows, z = (r, s) and dz = dr ds.
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1162 E. Lindenstrauss, A. Mohammadi

Using the fact that I j ’s are disjoint, we have

∫ 1

0

∫ 1

0
f (aturvs .x) dr dρ(s) =

∑
j

∫

I j

∫
f (aturvs .x) dr dρ(s);

thus, we conclude that

∣∣∣∣
∫ 1

0

∫ 1

0
f (aturvs .x) dr dρ(s) −

∑
j

c j

∫
f (aturvs j .x) dr

∣∣∣∣

≤
∑
j

∫

I j

∫ ∣∣∣ f (aturvs .x) − f (aturvs j .x)
∣∣∣ dr dρ(s) � S( f )b1/2 (4.8)

wherewe used the facts that |s−s j | ≤ b and t ≤ | log b|/2 in the last inequality.
In view of (4.8), thus, we need to bound

∑
j c j

∫
f (aturvs j x) dr . Similar

to (4.8), we can now make the following computation.

∣∣∣∣
∑
j

∫ 1

0
c j f (atn(r, s j ).x) dr −

∫

N
ϕ(n(z)) f (atn(z).x) dz

∣∣∣∣

≤
∑
j

∫ 1

0
2b−1c j

∫ s j+b
4

s j−b
4

∣∣∣ f (atn(r, s j ).x) − f (atn(r, s).x) ds
∣∣∣ dr (4.9)

� S( f )b1/2

where again we used the facts that |s − s j | ≤ b and t ≤ | log b|/2.
Thus, it suffices to investigate

A1 =
∫

ϕ(n(z)) f (atn(z).x) dz.

To that end, let � ≥ 2 be a parameter which will be optimized later. Set

τ = e
1−�
�

t = e−t+ t
� , and define

A2 := 1

τ

∫ τ

0

∫
ϕ(n(z)) f (aturn(z).x) dz dr;

roughly speaking, we introduce an extra averaging in the direction of U .
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For every 0 ≤ r ≤ τ , we have |(B j + r)�B j | � |B j |τ . Hence,
∣∣∣∣
∫

ϕ(z) f (aturn(z).x) dz −
∫

ϕ(z) f (atn(z).x) dz

∣∣∣∣

≤
∑
j

2b−1c j

∫

(B j+r)�B j

| f (atn(z)x)| dz

≤
∑
j

2b−1c j |B j |τ‖ f ‖∞

≤ ‖ f ‖∞τ � S( f )τ ;
we used |B j | = b/2 for every j and

∑
c j = 1, in the penultimate inequality.

Averaging the above over [0, τ ], we conclude that
|A1 − A2| � S( f )τ ≤ S( f )e−t/2 � S( f )b1/8; (4.10)

recall that τ = e
1−�
�

t , � ≥ 2, and t ≥ | log b|/4.
In consequence, we have reduced to the study of A2 to which we now turn.

By the Cauchy-Schwarz inequality, we have

|A2|2 ≤
∫ (

1

τ

∫ τ

0
f (aturn(z).x) dr

)2

ϕ(n(z)) dz.

Now using

(
1
τ

∫ τ

0 f (atn(r + z).x) dr

)2

≥ 0, (4.7), and the above estimate,

we conclude

|A2|2 ≤ 2Cb−ε

∫

B(0,1)

(
1

τ

∫ τ

0
f (atn(z)ur .x) dr

)2

dz

= 1

τ 2

∫ τ

0

∫ τ

0

∫

B(0,1)
2Cb−ε f̂r1,r2(atn(z).x) dz dr1 dr2 (4.11)

where B(0, 1) = BN (0, 1) = {urvs : 0 ≤ r, s ≤ 1} has measure 1 with
respect to dz, and for all r1, r2 ∈ [0, τ ] we put

f̂r1,r2(y) = f (atu(r1)a−t .y) f (atu(r2)a−t .y).

Note that S( f̂r1,r2) � S( f )2(etτ)� � S( f )2e�t/�. We now choose � �
1/κ4 large enough so that

S( f̂r1,r2) � S( f )2eκ4t/2. (4.12)
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By Proposition 4.1, we have
∣∣∣∣b−ε

∫

B(0,1)
f̂r1,r2(atn(z)x) dz

∣∣∣∣ = b−ε

∫

X
f̂r1,r2 dmX

+ b−εη−1/κ5O(S( f̂r1,r2)e
−κ4t ).

Recall from (4.12) that S( f̂r1,r2)e
−κ4t ≤ S( f )2e−κ4t/2. Moreover, since t ≥

| log b|/4 if we assume ε ≤ κ4/16, then e−κ4t/2b−ε ≤ bκ4/16. Altogether, we
conclude that

∣∣∣∣b−ε

∫

B(0,1)
f̂r1,r2(atn(z)x) dz

∣∣∣∣ = b−ε

∫

X
f̂r1,r2 dmX

+ S( f )2η−1/κ5bκ4/16. (4.13)

We now use estimates on the decay of matrix coefficients, (4.1), together
with the fact that d(e, ut ) ≥ |t |, and obtain the following bound.

∣∣∣∣
∫

X
f̂r1,r2(x) dmX

∣∣∣∣ � S( f )2e−
κX
2� t if |r1 − r2| > e−t+ t

2� . (4.14)

Divide now the integral
∫ τ

0

∫ τ

0 in (4.11) into terms: one with |r1 − r2| >

e−t+ t
2� = τe− t

2� and the other its complement.We thus get from (4.11), (4.13),
and (4.14) that

|A2|2 � Cη
− 1

κ5 S( f )2
(
b−ε

(
e

−κX
2� t + e

−1
2� t

)
+ bκ4/16

)
.

Recall that � � 1/κ4 and κ4 � κX . Thus if ε ≤ κ2
4/L for a large enough

L , the above, together with (4.8), (4.9), and (4.10), finishes the proof. ��

5 A Marstrand type projection theorem

In this section, we combine a certain projection theorem with some argu-
ments in homogeneous dynamics to prove Proposition 5.1. The outcome of
this proposition will serve as an input when we apply Proposition 4.2.

Proposition 5.1 Let 0 < η < 0.01ηX , and let 0 < 100ε < α < 1. Suppose
there exist x1 ∈ Xη and F ⊂ Br(0, η2), containing 0, so that

F := {exp(w)x1 : w ∈ F} ⊂ Xη and∑
w′∈F\{w}

‖w − w′‖−α ≤ D · (#F)1+ε for all w ∈ F, (5.1)
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for some D ≥ 1.
Assume further that #F is large enough, depending explicitly on η and ε.

Then exists a finite subset I ⊂ [0, 1], some b1 > 0 with

(#F)−
3−α+5ε
3−α+20ε ≤ b1 ≤ (#F)−ε, (5.2)

and some x2 ∈ Xη∩
(
a| log(b1)| · {ur : |r | ≤ 2}

)
.F so that both of the following

statements hold true.

(1) The set I supports a probability measure ρ which satisfies

ρ(J ) ≤ C ′
ε · |J |α−30ε

for all intervals J with |J | ≥ (#F)
−15ε

3−α+20ε , where C ′
ε � ε−� (with absolute

implied constants).
(2) There is an absolute constant C, so that for all s ∈ I , we have

vs x2 ∈
(
BG
Cb1 · a| log(b1)| · {ur : |r | ≤ 2}

)
.F .

The proof of Proposition 5.1 is based on the following projection theorem.
This theoremmay be thought of as a finitary version of the work of Käenmäki,
Orponen, and Venieri, [33]. Its proof, which is given in Appendix B, is based
on the works of Wolff and Schlag, [56,65] which in turn relies on a cell
decomposition theorem of Clarkson, Edelsbrunner, Guibas, Sharir, and Welzl
[12].

Theorem 5.1 Let 0 < α, b0, b1 < 1 (α should be thought of fixed, and b0 < b1
as small). Let E ⊂ Br(0, b1) be so that

#(E ∩ Br(w,b))
#E ≤ D′ · (b/b1)α

for all w ∈ r and all b ≥ b0, and some D′ ≥ 1. Let 0 < κ < 0.1, and let
J ⊂ R be an interval. There exists J ′ ⊂ J with |J ′| ≥ 0.9|J | satisfying the
following. Let r ∈ J ′, then there exists a subset Er ⊂ E with

#Er ≥ 0.9 · (#E)

such that for all w ∈ Er and all b ≥ b0, we have

#{w′∈E : |ξr (w′)−ξr (w)|≤b}
#E ≤ Cκ · (b/b1)α−7κ ,
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where Cκ is a constant which depends polynomially on κ , |J |, and D′, and

ξr (w) = (Ad(ur )w)12 = −w21r
2 − 2w11r + w12. (5.3)

with wi j denoting the (i, j)-th entry of w ∈ r.

Theproof ofProposition5.1will also use the followingversionof [6,Lemma
5.2], see also [5]. We reproduce the argument in Appendix C.

Lemma 5.1 Let F ⊂ Br(0, 1) be a subset which satisfies (5.1). Then there
exist w0 ∈ F, b1 > 0, with

(#F)−
3−α+5ε
3−α+20ε ≤ b1 ≤ (#F)−ε,

and a subset F ′ ⊂ Br(w0, b1)∩ F so that the following holds. Let w ∈ r, and
let b ≥ (#F)−1. Then

#(F ′∩B(w,b))
#F ′ ≤ C ′ · (b/b1)α−20ε,

where C ′ �D ε−� with absolute implied constants.

We now begin the proof of the proposition.

Proof of Proposition 5.1 The general strategy is straightforward. First we
apply Lemma 5.1 to replace the set F with a local version of it, i.e., we
replace F with F ′ ⊂ Br(w0, b1)∩ F . Then using Theorem 5.1, we project the
discretized dimension in r to the direction of Lie(V ) = r ∩ Lie(N ). Finally,
we use the action of A to expand this subset of V to size 1.

The details however are a bit more involved, in particular, we need to care-
fully control the size of various elements; we also need to use Proposition 3.1
(when X is not compact) to ensure returns to Xη.

Throughout the proof, we will assume #F is large enough so that

(#F)−ε ≤ (2C5C7)
−1η3, (5.4)

see Lemma 2.1 and Proposition 3.1. ��

Localizing the entropy

Apply Lemma 5.1 with F as in the proposition. Let w0 ∈ F , b1 > 0, and
F ′ ⊂ Br(w0, b1) ∩ F be given by that lemma; in particular, we have

(#F)−
3−α+5ε
3−α+20ε ≤ b1 ≤ (#F)−ε. (5.5)
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Replacing w0 with a different point in F and increasing C ′ if necessary, we
will assume that F ′ ⊂ Br(w0, b1/(6C5)) ∩ F . In view of Lemma 2.1, for all
w′ ∈ F ′, there exist h ∈ H and w ∈ r so that

h exp(w) = exp(w′) exp(−w0)

‖h − I‖ ≤ b21/3 and ‖w‖ ≤ 2‖w0 − w′‖ ≤ b1/(3C5).
(5.6)

Set

E =
{
w ∈ r : ∃h ∈ H, w′ ∈ F ′ so that h, w, w0, w

′ satisfy (5.6)
}
. (5.7)

Lemma 5.2 Let the notation be as above. Then

#(E ∩ B(w,b))
#E ≤ Ĉ · (b/b1)α−20ε (5.8)

for all w ∈ r and b ≥ (#F)−1 where Ĉ ≤ 2C ′.

This lemma is proved after the completion of the proof of the proposition.
Let x ′2 := exp(w0)x1, and let w′ ∈ F ′. Then if h and w are as in (5.6),

h exp(w)x ′2 = exp(w′) exp(−w0) exp(w0)x1 = exp(w′)x1 ∈ F . (5.9)

We also need the following elementary lemma whose proof will be given
after the completion of the proof of the proposition.

Lemma 5.3 There exists r0 ∈ [0, 1] and a subset

Ē ⊂ Ad(ur0)E ∩
{
w ∈ Br(0, η) : |w12| ≥ 10−3‖w‖

}

so that # Ē ≥ #E/4.

Thanks to Lemma 5.3, we may replace x ′2 by ur0x
′
2 for some r0 ∈ [0, 1]

and E by a subset Ē with # Ē ≥ #E/4 (which we continue to denote by E),
to ensure that

E ⊂
{
w ∈ Br(0, η) : |w12| ≥ 10−3‖w‖

}
, (5.10)

wherew12 denotes the (1, 2)-th entry of w ∈ r, see (5.3). Note that (5.8) holds
for the new E with 4Ĉ , we suppress the factor 4.
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Estimates on the size of elements

Let t = | log(b1)|. By (5.9), for all r ∈ [0, 1], we have

aturh exp(w).x ′2 ∈ at · {ur : r ∈ [0, 1]}.F, (5.11)

where w ∈ E , i.e, h exp(w) = exp(w′) exp(−w0).
We now investigate properties of the element aturh exp(w)u−ra−t . In view

of (5.6) and the definition of t , for all r ∈ [0, 1], we have

‖Ad(atur )w‖ ≤ 1, and (5.12a)

‖aturhu−ra−t − I‖ ≤ b1; (5.12b)

note, moreover, that aturhu−ra−t ∈ H .
In view of (5.10), for all |r | ≤ 10−4 we have

|(Ad(ur )w)12| ≥ 10−4‖w‖.

Therefore, for all |r | ≤ 10−4, we have

Ad(atur )w =
(

v11 v12
v21 v22

)

where |v11|, |v22| ≤ 104e−t |v12| and |v21| ≤ 104e−2t |v12|. Hence for |r | ≤
10−4, we have

aturh exp(w).x ′2 = (aturhu−ra−t ) · g · exp
(
et (Ad(atur )w)12E12

)
.atur x

′
2;

for some g ∈ G which in view of the estimate in (5.12a) satisfies

‖g − I‖ � b1 (5.13)

with an absolute implied constant.
Using (5.11) and (5.12b), we conclude that

exp
(
et (Ad(atur )w)12E12

)
.atur x

′
2

∈
(
BG
Cb1 · BH

Cb1 · at · {ur : r ∈ [0, 1]}
)
.F, (5.14)

where C is an absolute constant.
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Applying Theorem 5.1

We now choose a particular |r | ≤ 10−4 in order to the define the set I in
Proposition 5.1. This choice is based on Proposition 3.1 and Theorem 5.1.

Recall that t = | log(b1)| and

b1 ≤ (#F)−ε ≤ (2C5C7)
−1η3. (5.15)

Apply Proposition 3.1 with t , x ′2 = exp(w0)x1 ∈ Xη, and the interval J =
[−10−4, 10−4]. Then if we set

J ′′ = {r : |r | ≤ 10−4, atur .x
′
2 ∈ Xη} (5.16)

by the proposition |J ′′| > 0.9 · 2 · 10−4.
We also apply Theorem 5.1 with E , J = [−10−4, 10−4], α − 20ε, and

κ = ε. Let J ′ be given by that Theorem. Fix some r ∈ J ′ ∩ J ′′ for the
remainder of the argument.

Put x2 := atur .x ′2. By definition of J ′′ in (5.16), x2 ∈ Xη, and by (5.14)

exp
(
et (Ad(urw)12)

)
.x2 ∈

(
BG
Cb1 · BH

Cb1 · at · {ur : r ∈ [0, 1]}
)
.F . (5.17)

In the notation of Theorem 5.1, put

I := {etξr (w) : w ∈ Er };

recall that ξr (w) = (Ad(aτ rθ )w)12. We will show that the proposition holds
with x2, I , and b1. First note that the claimed bound (5.2) on b1 in the statement
of the proposition holds in view of (5.5). The assertion in part (2) of the
proposition also holds by (5.17).

Thus it only remains to establish (1) of the proposition. Let ρ be the pushfor-
ward of the normalized counting measure on Er under the mapw �→ etξr (w).
That is,

ρ(K ) = #{w∈Er : et ξr (w)∈K }
#Er

for any interval K ⊂ R.
Recall again that e−t = b1. Let w ∈ Er , and put s = etξr (w). By Theo-

rem 5.1, and in view of the fact that #Er ≥ 0.9·(#E), for every b ≥ et ·(#F)−1,
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we have that

ρ
(
{s′ ∈ I : |s − s′| ≤ b}

)
=

#
{
w′ ∈ Er : |ξr (w′) − ξr (w)| ≤ e−t b

}

#Er

≤ C̄ε · (e−t b/b1)
α−27ε = C̄εb

α−27ε,

(5.18)

where C̄ε � ε−�.
Using the estimate in (5.5), we have

et · (#F)−1 ≤ (#F)
−15ε

3−α+20ε ;
this estimate and (5.18) finish the proof of part (1). ��
Proof of Lemma 5.2 Let η̄ ≤ 0.01, and let w0 ∈ Br(0, η̄). Define the map
f : Br(0, η̄) → Br(0, 2η̄) by f (w′) = w where

h exp(w) = exp(w′) exp(−w0) with h ∈ BH
2C5η̄

2 and w ∈ Br(0, 2η̄).

By the Baker–Campel–Hausdorff formula, see Lemma 2.1, f is a diffeo-
morphism. Moreover, we have

∥∥∥Dw′
(
f ±1

)
− I

∥∥∥ ≤ 0.1

for allw′ ∈ Br(0, η̄), in particular, Dw′( f ±1) is invertible for allw′ ∈ Br(0, η̄).
We conclude that # f (E) = #E , and

#
(
Br(w̄, b) ∩ f (E)

)
≤ #

(
Br( f

−1(w̄), 2b) ∩ E
)

for all b ≤ η̄. The claim follows. ��
Proof of Lemma 5.3 This is a consequence of the fact that the adjoint action of
H on r is irreducible; the argument below is based on explicit computations.
Recall that ‖w‖ = max{|w12|, |w21|, |w|21}; moreover, recall that

(
Ad(ur )w

)
12

= −w21r
2 − 2w11r + w12. (5.19)

Now if

#{w ∈ E : |w12| ≥ 0.001‖w‖} ≥ #E/4,

then the claim holds with r0 = 0.

123



Polynomial effective density in quotients 1171

Therefore, we assume # Ê ≥ 3·(#E)
4 where Ê = {w ∈ E : |w12| ≤

0.001‖w‖}. If

#{w ∈ Ê : |w11| ≥ 0.1‖w‖} ≥ #E/4,

then the claim holds with r0 = 0.1 and the set on the left side of the above.
Therefore, we may assume

#{w ∈ Ê : |w11| ≤ 0.1‖w‖} ≥ #E/2.

For every w in the set on the left side of the above, ‖w‖ = |w21|. The claim
now holds with r0 = 0.9 and the set on the left side of the above. ��

6 A closing lemma

For the proof of Theorem 1.1, one needs to guarantee that a certain initial
separation is satisfied. This is the task in this section. This initial separation
estimate is then bootstrapped in Sect. 7 to give a better (finitary) dimension
estimate that is used to conclude the theorem. Throughout this section, � is
assumed to be arithmetic. Indeed, this section is the only place where arith-
meticity of � is used in this paper, more specifically Lemma 6.1. Superficially
arithmeticity is also used Lemma 6.2, but there the usage of arithmeticity is
rather mild — by local rigidity a lattice � in SL(2, C) or an irreducible lattice
in SL(2, R) × SL(2, R) can be conjugated to have algebraic entries in some
number field, which is good enough for our (relatively coarse) purposes.

Recall from (2.9) the definition

Eη,t,β = BH
β · at ·

{
ur : r ∈ [0, η]} ⊂ H ;

recall also that we always assume e−0.01t < β < 1, and in this section we will
be mainly interested in the case η = 1; to simplify the notation, we will write
Et for E1,t,β .

Let x ∈ X and t > 0. For every z ∈ Et .x , put

It (z) :=
{
w ∈ r : 0 < ‖w‖ < inj(z), exp(w)z ∈ Et .x

}
. (6.1)

Note that this is a finite subset of r. In (7.3), we will define IE(h, z) for all
h ∈ H and more general sets E .
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Let 0 < α < 1. Define the function ft,α : Et .x → [2,∞) (which we will
later use as a Margulis function in the bootstrap phase of the proof) as follows

ft,α(z) =
{∑

w∈It (z) ‖w‖−α if It (z) �= ∅
inj(z)−α otherwise

.

The following is the main result of this section.

Proposition 6.1 There exists D0 (which depends explicitly on �) satisfying
the following. Let D ≥ D0 + 1, and let x0 ∈ X. Then for all large enough t
(depending explicitly on inj(x0) and X) at least one of the following holds.

(1) There is some x ∈ Xcpt ∩ {a8t ur .x0 : r ∈ [0, 1]} such that
(a) h �→ hx is injective over Et .
(b) For all z ∈ Et .x, we have

ft,α(z) ≤ eDt

for all 0 < α < 1.
(2) There is x ′ ∈ X such that H.x ′ is periodic with

vol(H.x ′) ≤ eD0t and dX (x ′, x0) ≤ e(−D+D0)t .

The proof we give here is similar to that of Margulis and the first named
author in [41, Lemma 5.2]. A certain Diophantine condition (namely, inherita-
ble boundedness condition) is used in the formulation of loc. cit. to guarantee
in particular that our initial point is not close to a periodic U orbit. We do
not need such a condition here since we consider essentially translations of
local U orbits by expanding elements in A, and not long orbits of U (this is
reminiscent of a result of Nimish Shah [58, Thm. 1.1]). As in [41] the argu-
ment is elementary; a result of similar spirit to our Proposition 6.1 is proved
by Einsiedler, Margulis, and Venkatesh in [18, Prop. 13.1] using property-τ ,
i.e. a uniform spectral gap.

Let us begin with some preliminary statements. In Proposition 6.1, we are
allowed to choose t large depending on �. Therefore, by passing to a finite
index subgroup, we will assume that both of the following hold: � is torsion
free and if � ⊂ SL2(R) × SL2(R) is reducible, then � = �1 × �2

It is more convenient to consider G as the set of R-points of an algebraic
group defined overR—thisway H can be realized of as an algebraic subgroup
of G. To that end, we let G = SL2 × SL2 if G = SL2(R) × SL2(R). If
G = SL2(C), we let G = ResC/R(SL2). In either case, G is defined over R

and G = G(R).
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Recall that� is assumed to be arithmetic. Therefore, there exists a semisim-
ple Q-group G̃ ⊂ SLM , for some M , and an epimorphism ρ : G̃(R) →
G(R) = G of R-groups with compact kernel so that

� is commensurable with ρ(G̃(Z)), (6.2)

where G̃(Z) = G̃(R) ∩ SLM(Z). Note that G̃ can be chosen to be Q-almost
simple unless � ⊂ SL2(R) × SL2(R) is a reducible lattice, in which case G̃
can be chosen to have two Q-almost simple factors.

Let g̃ = Lie(G̃(R)), this Lie algebra has a natural Q-structure. Moreover,
g̃Z := g̃ ∩ slM(Z) is a G̃(Z)-stable lattice in g̃.

We continue to write Lie(G) = g and Lie(H) = h; these are considered as
6-dimensional (resp. 3-dimensional) R-vector spaces.

Let vH be a unit vector on the line ∧3h. Note that

NG(H) = {g ∈ G : gvH = vH }

which contains H as a subgroup of index two.
Recall also that we fixed a compact subset Scpt ⊂ G which projects onto

Xcpt, see Sect. 3.1 for the notation.

Lemma 6.1 There exist C11 and κ7 depending on M and Scpt, so that the
following holds. Let γ1, γ2 ∈ � be two non-commuting elements. If g ∈ Scpt
is so that γi g−1vH = g−1vH for i = 1, 2, then Hg� is a closed orbit with

vol(Hg�) ≤ C11

(
max{‖γ±1

1 ‖, ‖γ±1
2 ‖}

)κ7
.

Proof In view of our assumption in the lemma, we have

〈γ1, γ2〉 ⊂ StabG(g−1vH ) = NG(g−1Hg).

Let �1 := 〈gγ1g−1, gγ2g−1〉. We claim that � := �1 ∩ H is Zariski
dense in H . Indeed since 〈γ1, γ2〉 is a torsion free, non-commutative, discrete
subgroup of NG(g−1Hg), we have � is discrete and torsion free. This and the
fact that H � SL2(R) imply that if � is non-commutative, then it is Zariski
dense in H . Assume thus that � is commutative, which implies that � � Z

and that � � �1 (recall that �1 is non-commutative). Since NG(H) = HC
where C is the center of G if G = SL2(R)×SL2(R) and C = 〈diag(i,−i)〉 if
G = SL2(C), we have NG(H)/H � Z/2Z; thus�1/� � Z/2Z. This implies
that �1 is isomorphic to Z or Z×Z/2Z or Z/2Z � Z. Either possibility leads
to a contradiction to �1 being non-commutative and torsion free.
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Let L be the Zariski closure of 〈γ1, γ2〉. In view of the above discussion,

g−1Hg ⊂ L(R) ⊂ NG(g−1Hg). (6.3)

Since NG(H)/H � Z/2Z, replacing γi by γ 2
i if necessary we assume that

L(R) = g−1Hg.
Let γ̃i ∈ G̃(Z) be so that ρ(γ̃i ) = γi . Then the Zariski closure L̃ of 〈γ̃1, γ̃2〉

is semisimple and ρ(L̃(R)) = L(R). Therefore, in view of a theorem of Borel
and Harish-Chandra [4, Thm. 7.8], we have L̃(R)∩ G̃(Z) is a lattice in L̃(R).

This implies that L(R)� is a periodic orbit, which in view of (6.3) implies
that Hg� is a periodic orbit.

We now turn to the proof of the second claim. Let l̃ = Lie(L̃(R)) ⊂ g̃. Then
l̃ is a rational subspace of g̃; we will show that the height of this subspace is
� �� where� := max{‖γ±1

1 ‖, ‖γ±1
2 ‖}. That is to say: l̃ has a basis consisting

of vectors in g̃Z ∩ l̃ with norm � ��, e.g., by Minkowski’s second theorem.
Indeed by Chevalley’s theorem and the fact that L̃(R) is semisimple (hence

it has no character), there exists a finite dimensional Q-representation of G̃ on
a space � with the following property. Let �0 denote the vectors in �R which
are fixed by L̃(R), then

L̃(R) = {g ∈ G̃(R) : g.q = q, for all q ∈ �0};

in terms of the Lie algebras, this is l̃ = {w ∈ g̃ : w.�0 = 0}.
Since 〈γ̃1, γ̃2〉 is Zariski dense in L̃, we conclude that �0 is a rational

subspace with height � (max{‖γ̃±1
1 ‖, ‖γ̃±1

2 ‖})� � ��; we used the fact that
ρ(γ̃i ) = γi to bound ‖γ̃±1

i ‖ from above by ‖γ±1
i ‖� for i = 1, 2.

Using this and the fact that l̃ = {w ∈ g̃ : w.�0 = 0}, we conclude that
height of l̃ is � �� as we claimed. This height bound implies that

vol
(
L̃(R)G̃(Z)

)
� ��.

see e.g. [18, §17], or [17, App. B] (see also [19, §2], which treats the case of
tori; the proof there works for the semisimple case as well).

We deduce that vol(L(R)�) � ��; recall that the kernel of ρ is compact
and L(R) = ρ(L̃(R)). The claimed bound on vol(Hg�) now follows in view
of (6.3) and the fact that g ∈ Scpt. ��

We also need the following lemma.
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Lemma 6.2 There existκ8,κ9, andC12 so that the followingholds. Letγ1, γ2 ∈
� be two non-commuting elements, and let

δ ≤ C−1
12

(
max{‖γ±1

1 ‖, ‖γ±1
2 ‖}

)−κ8
.

Suppose there exists some g ∈ Scpt so that γi g−1vH = εi g−1vH for i = 1, 2
where ‖εi − I‖ ≤ δ. Then, there is some g′ ∈ G such that

‖g′ − g−1‖ ≤ C12δ
(
max{‖γ±1

1 ‖, ‖γ±1
2 ‖}

)κ9

and γi g′vH = g′vH for i = 1, 2.

Proof This is essentially proved in [18, §13.3, §13.4], we recall parts of the
argument for the convenience of the reader.

With a slight change in the notation from the proof of the previous lemma,
let L̃ be the R-group defined by L̃(R) = ρ−1(g−1Hg) ⊂ G̃(R), and let
d = dim(L̃(R)). Fix a unit vector v0 on the line ∧d(Lie(L̃(R))).

Let also γ̃i ∈ G̃(Z) be so that ρ(γ̃i ) = γi , for i = 1, 2. Then [18, Lemma
13.1] holds true for linear transformation

A = (γ̃1 − I ) ⊕ (γ̃2 − I )

from ∧d g̃ to ∧d g̃⊕ ∧d g̃. Therefore, there exists a vector w ∈ ∧d g̃, with

‖w − v0‖ ≤ C�κδ (6.4)

so that Aw = 0, where � := max{‖γ±1
1 ‖, ‖γ±1

2 ‖}, C depends on G̃ and κ

depends on dim G̃. We again used ρ(γ̃i ) = γi to bound ‖γ̃±1
i ‖ by a power of

‖γ±1
i ‖.
This implies that γ̃iw = w for i = 1, 2. By [18, Lemma 13.2], there exist

C̄ and κ̄ ≥ 1 so that if

‖w − v0‖ ≤ C̄−1�−κ̄ ,

then there exists g̃ ∈ G̃(R) satisfying that ‖g̃ − I‖ ≤ C ′‖w − v0‖ and

γ̃i g̃v0 = g̃v0 for i = 1, 2,

see [43] for sharper results concerning equivariant projections.
Let now δ satisfy

0 < δ ≤ (CC̄)−1�−κ ′−κ .
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Then (6.4) implies that there exists some g̃ ∈ G̃(R) with ‖g̃ − I‖ ≤ C ′C�κδ

so that γ̃i g̃v0 = g̃v0 for i = 1, 2. This estimate implies that

‖ρ(g̃)g−1 − g−1‖ ≤ C ′′�κδ

for some C ′′ depending on G̃.
Let g′ = ρ(g̃)g−1. Then γi g′vH = g′vH and the claim holds for g′vH . ��
We need the following lemma, see Lemma 7.2 in the sequel for a more

general statement.

Lemma 6.3 Let x ∈ Xcpt. Then for every z ∈ Et .x, we have

#It (z) � e4t .

For the convenience of the reader, we recall from (6.1) that

It (z) :=
{
w ∈ r : 0 < ‖w‖ < inj(z), exp(w)z ∈ Et .x

}
.

Proof Recall from (2.5) that

inj(z) = min
{
0.01, sup

{
ε : g �→ gz is injective on BG

10ε

}}
,

where for every 0 < ε ≤ 0.1, we put BG
ε := BH

ε · exp(Br(0, ε)).
Note that since x ∈ Xcpt, we have

inj(hx) > 10ce−t for all h ∈ Et , (6.5)

where c depends only on X .
Let z ∈ Et .x and w ∈ It (z) (hence exp(w)z ∈ Et .x). Therefore,

BH
ce−t exp(w)z ⊂ Et+.x,

where we define Et+ = BH
β+2ce−t · Et .

In view of (6.5) and the definition of inj(z), the map (h, w) �→ h exp(w)z
is injective over BH

ce−t × exp(Br(0, inj(z))). Hence we have

BH
ce−t exp(w)z ∩ BH

ce−t exp(w′)z = ∅ for all distinct w, w′ ∈ It (z).

Since mH (Et+) � et and mH (BH
ce−t ) � e−3t , the claim follows. ��
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Proof of Proposition 6.1 By Proposition 3.2 if d ≥ | log(10−6 inj(y))| + C7,
then

|{r ∈ J : adur y ∈ Xcpt}| ≥ 0.99|J | (6.6)

for all J ⊂ [0, 1] with |J | ≥ 10−3.
Let t ≥ | log(10−6 inj(x0))| + C7 for the rest of the argument. Let r0 ∈

[0, 1/2] be so that x1 = atur0x0 satisfies both of the following: x1 ∈ Xcpt and
a7t x1 ∈ Xcpt. Write x1 = g1� where g1 ∈ Scpt.

We introduce the shorthand notation hr := a7t ur , for any r ∈ [0, 1]. Note
that for all r ∈ [0, 1], we have hr x1 ∈ {a8t ur ′x0 : r ′ ∈ [0, 1]}. Assume now
the claim in part (1) fails for all r ∈ [0, 1] so that hr x1 ∈ Xcpt. That is: for all
r ∈ [0, 1] so that hr x1 ∈ Xcpt

• either there exists z ∈ Et .hr x1 so that ft,α(z) > eDt ,
• or the map h �→ hhr x1 is not injective on Et .

In what follows all the implied multiplicative constants depend only on X .

Finding lattice elements γr

Let us first investigate the former situation. That is: fix r ∈ [0, 1] so that
hr x1 ∈ Xcpt and suppose that for some z = h1hr x1 ∈ Et .hr x1, it holds that
ft,α(z) > eDt . Since hr x1 ∈ Xcpt, we have

inj(hhr x1) � e−t , for all h ∈ Et . (6.7)

Using the definition of ft,α , thus, we conclude that if It (z) = ∅, then ft,α(z) �
et . Hence, assuming t is large enough, It (z) �= ∅; recall also from Lemma 6.3
that #It (z) � e4t .

Altogether, if D ≥ 5 and t is large enough, there exists some w ∈ It (z)
with

0 < ‖w‖ ≤ e(−D+5)t .

The above implies that for some w ∈ r with ‖w‖ ≤ e(−D+5)t and h1 �=
h2 ∈ Et , we have exp(w)h1hr x1 = h2hr x1. Thus

exp(wr )h
−1
r sr hr x1 = x1, (6.8)

where sr = h−1
2 h1, wr = Ad(h−1

r h−1
2 )w. In particular, ‖wr‖ � e(−D+13)t .

Assuming t is large enough compared to the implied multiplicative constant,

0 < ‖wr‖ ≤ e(−D+14)t . (6.9)
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Recall that x1 = g1� where g1 ∈ Scpt, thus, (6.8) implies

exp(wr )h
−1
r sr hr = g1γr g

−1
1 , (6.10)

where 1 �= sr ∈ H with ‖sr‖ � et and e �= γr ∈ �.
Similarly, if h �→ hhr x1 is not injective, we conclude that

h−1
r sr hr = g1γr g

−1
1 �= e.

In this case we actually have e �= γr ∈ g−1
1 Hg1 — we will not use this extra

information in what follows.

Some properties of the elements γr

Note that, in either case, we have

‖γ±1
r ‖ ≤ e9t (6.11)

again we assumed t is large compared to ‖g1‖ hence the estimate � e8t is
replaced by ≤ e9t .

Let ξ > 0 be so that ‖gγ g−1 − I‖ ≥ 20ξ for all γ ∈ � \ {1} and g ∈ Scpt.

Write sr =
(
a1 a2
a3 a4

)
∈ H where |ai | ≤ 10et . Then by (6.10), we have

‖h−1
r sr hr − I‖ =

∥∥∥∥u−r

(
a1 e−7t a2

e7t a3 a4

)
ur − I

∥∥∥∥ ≥ 10ξ,

which implies that

max{e7t |a3|, |a1 − 1|, |a4 − 1|} ≥ ξ � 1. (6.12)

Note also that if e7t |a3| < ξ , then |a2a3| ≤ 10ξe−6t , thus |a1a4 − 1| � e−6t .
We conclude from (6.12) that |a1 − a4| � 1. Altogether,

max{e7t |a3|, |a1 − a4|} � 1. (6.13)

Let Icpt = {r ∈ [0, 1] : hr x1 ∈ Xcpt} and Jcpt = {r ∈ [1/2, 1] : hr x1 ∈
Xcpt}.

Claim

There are � e3t distinct elements in {γr : r ∈ Jcpt}.
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By (6.6) applied with y = x1, d = 7t , and J = [1/2, 1] we have |Jcpt| ≥
1/4 (assuming t is large enough). Fix r ∈ Jcpt as above, and consider the set
of r ′ ∈ Jcpt so that and γr = γr ′ . Then for each such r ′,

h−1
r sr hr = exp(−wr )g1γr g

−1
1 = exp(−wr ) exp(wr ′)h

−1
r ′ sr ′hr ′

= exp(wrr ′)h
−1
r ′ sr ′hr ′,

where wrr ′ ∈ g and ‖wrr ′‖ � e(−D+14)t .
Set τ = e7t (r ′ − r). Assuming D ≥ 30, we conclude that

uτsr u−τ = hr ′h
−1
r sr hr h

−1
r ′ = exp(ŵrr ′)sr ′, (6.14)

where ‖ŵrr ′‖ = ‖Ad(hr ′)wrr ′‖ � e(−D+21)t .
Finally, we compute

uτsr u−τ =
(
a1 + a3τ a2 + (a4 − a1)τ − a3τ 2

a3 a4 − a3τ

)
.

In view of (6.13), for every r ∈ Jcpt the set of r ′ ∈ Jcpt so that

|a2e−7t + (a4 − a1)(r
′ − r) − a3e

7t (r ′ − r)2| ≤ 104e−6t (6.15)

has measure � e−3t since at least one of the coefficients of this quadratic
polynomial is of size� 1. Let Jr be the set of r ′ ∈ Jcpt for which (6.15) holds.

If r ′ ∈ Jcpt \ Jr , then |a2 + (a4 − a1)τ − a3τ 2| > 104et (recall that
τ = e7t (r ′ − r)), thus for all r ′ ∈ Jcpt \ Jr , we have

‖uτsr u−τ‖ > 104et > ‖ exp(ŵrr ′)sr ′‖,

in contradiction to (6.14).
In other words, for each γ ∈ � the set of r ∈ Jcpt for which γr = γ has

measure � e−3t and so the set {γr : r ∈ Jcpt} has at least � e3t distinct
elements, establishing the claim.

Zariski closure of the group generated by {γr : r ∈ Icpt}
We now consider two possibilities for the elements {γr : r ∈ Icpt}.

Case 1

The family {γr : r ∈ Icpt} is commutative.
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Let L denote the Zariski closure of 〈γr : r ∈ Icpt〉. Since 〈γr 〉 is commutative,
so isL. LetCG denote the center ofG.We claim thatL = L′C′whereC′ ⊂ CG
and L′ is either a unipotent group or a torus. Indeed since L is commutative,
we have L = TV where T is a (possibly finite) algebraic subgroup of a torus,
V is a unipotent group and T and V commute. Therefore, if both T and V
are non-central, then G = SL2(R) × SL2(R) and � = �1 × �2 is reducible.
Moreover, T ⊂ T′CG where T′ is an algebraic subgroup of a torus, and T′ and
V belong to different SL2(R) factors in G. Let us assume V belongs to the
second factor. Recall from (6.8) that

exp(wr )h
−1
r sr hr = g1γr g

−1
1 , (6.16)

where ‖wr‖ ≤ e(−D+14)t with D ≥ 30 and h−1
r sr hr ∈ H = {(h, h) :

h ∈ SL2(R)}. Now if γr = (γ 1
r , γ 2

r ), then (6.16) together with the bound
‖h−1

r sr hr‖ � e8t implies that |tr(γ 1
r ) − tr(γ 2

r )| � e(−D+22)t ; moreover,
since γ 2

r ∈ VCG, we have |tr(γ 2
r )| = 2. This and the fact that the length of

closed geodesics in (finite volume) hyperbolic surfaces is bounded away from
zero imply that |tr(γ 1

r )| = 2 if t is large enough. This contradicts the fact that
T is a non-central subgroup of a torus. Hence, the claim holds.

We now show that L′ is indeed a unipotent group. In view of the above
discussion, #{γr : r ∈ Jcpt} ≥ e3t . Note also that that for every torus T ⊂ G,
we have

#(BT (e, R) ∩ �) � (log R)2,

where the implied constant is absolute. These, in view of the bound ‖γr‖ ≤ e9t ,
see (6.11), imply that L′ is unipotent.

Since L′ is a unipotent subgroup of G, we have that

#{γr : ‖γr‖ ≤ e4t/3} � e8t/3.

Furthermore, there are � e3t distinct elements γr with r ∈ Jcpt. Thus

#{γr : ‖γr‖ > 100e4t/3 and r ∈ Jcpt} � e3t .

For every r ∈ Icpt, write

sr =
(
a1,r a2,r
a3,r a4,r

)
∈ H,

where |a j,r | ≤ 10et .
We will obtain an improvement of (6.12). Let ξ ≤ ϒ ≤ e4t/3 and assume

that ‖g1γr g−1
1 − I‖ ≥ 20ϒ — by definition of ξ , this holds with ϒ = ξ for
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all r ∈ Icpt and as we have just seen this also holds for with ϒ = e4t/3 for
many choices of r ∈ Jcpt. We claim

|a3,r | ≥ ϒe−7t . (6.17)

Indeed by (6.10), we have

‖h−1
r sr hr − I‖ =

∥∥∥∥u−r

(
a1,r e−7t a2,r

e7t a3,r a4,r

)
ur − I

∥∥∥∥ ≥ 10ϒ.

This implies that max{e7t |a3,r |, |a1,r − 1|, |a3,r − 1|} ≥ ϒ . Assume contrary
to our claim that |a3,r | < ϒe−7t . Then

max{|a1,r − 1|, |a4,r − 1|} ≥ ϒ; (6.18)

furthermore, we get |a2,ra3,r | � ϒe−6t . Thus,

|a1,ra4,r − 1| � ϒe−6t � e−14t/3. (6.19)

Moreover, since h−1
r sr hr is very nearly g1γr g

−1
1 , and the latter is either a

unipotent element or its minus, we conclude that

min(|a1,r + a4,r − 2|, |a1,r + a4,r + 2|) � e(−D+22)t . (6.20)

Equations (6.19) and (6.20) contradict (6.18) if t is large enough, hence nec-
essarily |a3,r | ≥ ϒe−7t .

Using this, we now show that Case 1 cannot occur. Since L′ is unipotent,
there exists some g so that L′(R) ⊂ gNg−1; moreover g can be chosen to be
in the maximal compact subgroup of G — for our purposes, we only need to
know that the size of g can be bounded by an absolute constant.

It follows that

u−r

(
a1,r e−7t a2,r

e7t a3,r a4,r

)
ur ∈ exp(−wr )(gNg−1) · CG (6.21)

for all r ∈ Icpt. We show that this leads to a contradiction when G = SL2(C),
the proof in the other case is similar by consideringfirst and second coordinates.

Let us write g =
(
a b
c d

)
, then for all z ∈ C we have

g

(
1 z
0 1

)
g−1 =

(
1− acz a2z
−c2z 1+ acz

)
.
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Recall from the beginning of the proof that h0x1 ∈ Xcpt, i.e., 0 ∈ Icpt. It
follows that for some z0 ∈ C,

(
a1,0 e−7t a2,0

e7t a3,0 a4,0

)
= ± exp(−wr )

(
1− acz0 a2z0
−c2z0 1+ acz0

)
.

By (6.17) applied with ϒ = ξ , |a3,0| ≥ ξe−7t . Since |a|, |b|, |c|, |d| � 1,
comparing the bottom left entries of the matrices we get |z0| � 1. Now, since
|a2,0| ≤ 10et , comparing the top right entries we conclude that |a| � e−3t .
Since det(g) = 1, it follows that |c| is also � 1.

Let now r ∈ Jcpt be so that ‖γr‖ ≥ 100e4t/3. We write a′
2,r = e−7t a2,r

and a′
3,r = e7t a3,r . By (6.17), applied this time with ϒ = e4t/3, we have that

|a′
3,r | ≥ e4t/3; note also that |a′

2,r | � e−6t . In view of (6.21), there exists
zr ∈ C so that

u−r

(
a1,r a′

2,r
a′
3,r a4,r

)
ur =

(
a1,r − ra′

3,r a
′
2,r + (a4,r − a1,r )r − a′

3,rr
2

a′
3,r a4,r + ra′

3,r

)

= ± exp(−wr )

(
1− aczr a2zr
−c2zr 1+ aczr

)
.

Since |a′
3,r | ≥ e4t/3, |a1,r | and |a4,r | are � et , and |a′

2,r | � e−6t , and since

r ∈ [12 , 1], we have that

|a′
3,r |/10 ≤ |a′

2,r + (a4,r − a1,r )r − a′
3,rr

2| ≤ 2|a′
3,r |;

hence, since wr is small, a2zr and c2zr should be comparable in size. On the
other hand, using r = 0 we already established |a| � e−3t and |c| � 1, thus
|a2zr | � e−3t |c2zr |, in contradiction.

Altogether, we conclude that Case 1 cannot occur.

Case 2

There are r, r ′ ∈ Icpt so that γr and γr ′ do not commute.
Let vH be as in Lemma 6.2. Then since exp(wr )h−1

r sr hr = g1γr g
−1
1

γr .g
−1
1 vH = exp(Ad(g−1

1 )wr ).g
−1
1 vH .

Moreover, since ‖wr‖ ≤ e(−D+14)t ,

‖Ad(g−1
1 )wr‖ � e(−D+14)t ;
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similar statements also hold for r ′.
Therefore, if D is large enough, we may apply Lemma 6.2 to conclude that

there exists some g2 ∈ G with

‖g1 − g2‖ ≤ C12e
(−D+14+9κ9)t ,

so that γr .g
−1
2 vH = g−1

2 vH and γr ′ .g
−1
2 vH = g−1

2 vH .
In view of Lemma 6.1, thus, we have Hg2� is periodic and

vol(Hg2�) ≤ C11

(
max{‖γ±1

r ‖, ‖γ±1
r ′ ‖}

)κ7 ≤ C11e
9κ7t ,

where we used ‖γ±1
r ‖, ‖γ±1

r ′ ‖ ≤ e9t .

Then for t large enough, vol(Hg2�) ≤ eD
′
0t and dX (g1�, g2�) �

e(−D+D′
0)t for D′

0 = 9max{κ7, κ9} + 14.
Since g1� = x1 = atur0x0, part (2) in the proposition holds with x ′ =

(atur0)
−1g2� and D0 = max{D′

0 + 2, 30} if t is large enough (recall that we
already assumed in several places that D ≥ 30). ��

7 Margulis functions and random walks

As was mentioned earlier, the proof of Proposition 1.1 relies on two main
ingredients: evolutions ofMargulis functions under a certain randomwalk, and
the (finitary) projection theorem, specifically Proposition 5.1, proved in Sect. 5.
In this section we develop the necessary Margulis function techniques and
show how to combine them with the results of Sect. 5 to prove Theorem 1.1
in Sect. 8.

The following is the main proposition encapsulating what is obtained using
Margulis function techniques (and then input into Proposition 5.1).

Proposition 7.1 Let 0 < η < 0.01ηX , D ≥ D0 + 1, and x0 ∈ X, where
D0 is as in Proposition 6.1, and ηX as in Proposition 3.2. Then there exists
t0, depending on η, inj(x0), and X, so that if t ≥ t0, then at least one of the
following holds:

(1) Let 0 < ε < 0.1 and 0 < α < 1. Then there exist x1 ∈ Xη, some τ with
9t ≤ τ ≤ 9t + 2m0Dt (for m0 depending on α — see (7.1)), and a subset
F ⊂ Br(0, 1) containing 0 with

et/2 ≤ #F ≤ e5t ,

so that both of the following properties are satisfied:
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1184 E. Lindenstrauss, A. Mohammadi

•
{
exp(w)x1 : w ∈ F

}
⊂

(
BH
e−t/R · aτ · {ur x0 : |r | ≤ 4}

)
∩ Xη, where

R > 0 depends on D, ε, and α,
• ∑

w′ �=w ‖w−w′‖−α ≤ C ·(#F)1+ε for allw ∈ F (where the summation
is over w′ ∈ F and C is an absolute constant).

(2) There is x ′ ∈ X such that Hx ′ is periodic with

vol(Hx ′) ≤ eD0t and dX (x ′, x0) ≤ e(−D+D0)t .

Explicitly, m0 is equal to mα of (2.12), chosen so that for all w ∈ g, we have

∫ 1

0
‖am0urw‖−α dr ≤ e−1‖w‖−α. (7.1)

7.1 The definition of a Margulis function

Throughout this section, E ⊂ X denotes a Borel set which is a disjoint finite
union of local H orbits. More precisely, there is a finite set F and for every
w ∈ F , there exist xw ∈ X and a bounded Borel set Ew ⊂ H satisfying the
following

• the map h �→ h.xw is injective over Ew for all w ∈ F , and
• Ew.xw ∩ Ew′ .xw′ = ∅ for all w �= w′,

so that E = ⋃
w∈F Ew.xw.

For every w ∈ F , let μEw
denote the pushforward of the Haar measure

mH |Ew
under the map h �→ h.xw. Put

μE = 1∑
w mH (Ew)

∑
w

μEw
. (7.2)

For every (h, z) ∈ H × E , define

IE(h, z) :=
{
w ∈ r : 0 < ‖w‖ < inj(hz), exp(w)hz ∈ hE

}
. (7.3)

Since Ew is bounded for every w and F is finite, IE(h, z) is a finite set for all
(h, z) ∈ H × E .

Fix some 0 < α < 1. Define the Margulis function fE = fE,α : H × E →
[1,∞) as follows:

fE(h, z) =
{∑

w∈IE (h,z) ‖w‖−α if IE(h, z) �= ∅
inj(hz)−α otherwise

. (7.4)
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Let ν = ν(α) be the probability measure on H defined by

ν(ϕ) =
∫ 1

0
ϕ(am0ur ) dr for all ϕ ∈ Cc(H), (7.5)

where m0 is as in (7.1).
Define ψE on H × E by

ψE(h, z) :=
(
max

{
#IE(h, z), 1

}) · inj(hz)−α. (7.6)

We will use the following lemma to increase the transversal dimension induc-
tively.

Lemma 7.1 There exists some C13 = C13(ν) so that for all � ∈ N and all
z ∈ E , we have

∫
fE(h, z) dν(�)(h) ≤ e−� fE(e, z) + C13

�∑
j=1

e j−�

∫
ψE(h, z) dν( j)(h),

where ν( j) denotes the j-fold convolution of ν for every j ∈ N.

Proof Throughout the argument, the set E is fixed; thus, we drop it from the
indices in the notation. Note that supp(ν) ⊂ {h ∈ H : ‖h‖ ≤ e2m0+1}. Let
C ≥ 1 be so that

‖Ad(h)w‖ ≤ C‖w‖

for all h with ‖h‖ ≤ e2m0+1 and all w ∈ g. Increasing C if necessary, we also
assume that inj(z)/C ≤ inj(hz) ≤ C inj(z) for all such h and all z ∈ X .

Let h = am0ur for some r ∈ [0, 1]. Let z ∈ E , and let h′ ∈ H . First, let
us assume that there exists some w ∈ I (hh′, z) with ‖w‖ < inj(hh′z)/C2.
In view of the choice of C , this in particular implies that both I (hh′, z) and
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I (h′, z) are non-empty. Hence, we have

f (hh′, z) =
∑

w∈I (hh′,z)
‖w‖−α

=
∑

‖w‖<inj(hh′z)/C2

‖w‖−α +
∑

‖w‖≥inj(hh′z)/C2

‖w‖−α

≤
∑

w∈I (h′,z)
‖Ad(h)w‖−α + C2α ·

(
#I (hh′, z)

)
· inj(hh′z)−α

=
∑

w∈I (h′,z)
‖Ad(h)w‖−α + C2αψ(hh′, z). (7.7)

Note also that if ‖w‖ ≥ inj(hh′z)/C2 for all w ∈ I (hh′, z) (which in view
of the choice of C includes the case I (h′, z) = ∅) or if I (hh′, z) = ∅, then

f (hh′, z) ≤ C2α ·
(
max{#I (hh′, z), 1}

)
· inj(hh′z)−α

= C2αψ(hh′, z). (7.8)

We now average (7.7) and (7.8) over [0, 1] and conclude hat
∫ 1

0
f (am0urh

′, z) dr ≤
∑

w∈I (h′,z)

∫ 1

0
‖am0urw‖−α dr

+ C2α
∫ 1

0
ψ(am0urh

′, z) dr,

wherewe replace the summation on the right by 0 if I (h′, z) = ∅. Thus by (7.1)
we may conclude that

∫
f (hh′, z) dν(h) ≤ e−1 · f (h′, z) + C2α

∫
ψ(hh′, z) dν(h)

for all h′ ∈ H . Iterating this estimate, we have

∫
f (h, z) dν(�)(h) ≤ e−1

∫
f (h′, z) dν(�−1)(h′) + C2α

∫
ψ(h, z) dν(�)(h).

The claim in the lemma thus follows from the above by induction if we
let C13 = C2 and sum the geometric series. ��
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7.2 Incremental dimension increase

Let 0 < η ≤ 0.01ηX and 0 < β ≤ η2. Define

E = BH
β ·

{
ur : |r | ≤ 0.1η

}
.

Let F ⊂ Br(0, β) be a finite set, and let y0 ∈ X2η. Then for all w ∈ F
exp(w)y0 ∈ Xη, and h �→ h exp(w)y0 is injective on E. Put

E = E.{exp(w)y0 : w ∈ F}. (7.9)

Let us begin with the following two elementary lemmas.

Lemma 7.2 There exists C14 > 0 so that the following holds. For every m ∈
N, every |r | ≤ 2, and every z ∈ E , we have

#IE(amur , z) ≤ C14β
−6e4m · (#F)

Moreover, we have

ψE(amur , z) ≤ C14β
−7e5m · (#F).

Proof Let z ∈ E , and let w ∈ IE(amur , z). Then exp(w)amur z ∈ amurE .
Therefore, using Lemma 2.3(2), we have

QH
β2,m . exp(w)amur z ⊂ amurE+

where E+ = BH
β+100β2

{
ur exp(w)y0 : |r | ≤ 0.1η, w ∈ F

}
and

QH
β2,m =

{
u−
s : |s| ≤ β2e−m

}
· {at : |t | ≤ β2} ·

{
ur : |r | ≤ β2

}
.

Note that the map (h, w′) �→ h exp(w′)amur z is injective over

QH
inj(amur z) × exp(Br(0, inj(amur z))),

and let μE+ is the probability measure on E+ defined as in (7.2). Then

amur .μE+
(
QH

β2,m exp(w).amur z
)
� (min{β2, inj(amur z)})3e−m(#F)−1,

where the implied constant is absolute.
Recall now that E ⊂ Xη. Thus, inj(amur z) � e−mη. Recall also that

β ≤ η2, this implies the first claim.
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We now show the second claim. The above estimate and the definition of
ψE(h, z) thus imply that

ψE(amur , z) �
(
β−6e4m · (#F)

)
· inj(amur z)−1;

we also used 0 < α < 1 in the above upper bound. The second claim in the
lemma follows. ��
Lemma 7.3 Let the notation be as above. In particular, y0 ∈ X2η and

E = E.{exp(w)y0 : w ∈ F},

where F ⊂ Br(0, β). Let w0 ∈ F, then

∑
w �=w0

‖w − w0‖−α ≤ 2 fE(e, z),

where z = exp(w0)y0 and the summation is over w ∈ F.

Proof By the definition of fE , we have

fE(e, z) = ∑
v∈IE (e,z) ‖v‖−α.

Let w0 �= w ∈ F . We will find a unique vector vw ∈ IE(e, z) whose length
is comparable to ‖w − w0‖. Let us begin with the following computation.

exp(w)y = exp(w) exp(−w0) exp(w0)y0
= hw exp(vw) exp(w0)y0
= hw exp(vw)z,

where hw ∈ H , vw ∈ r, ‖hw − I‖ ≤ C5β‖vw‖, and

0.5‖w − w0‖ ≤ ‖vw‖ ≤ 2‖w − w0‖, (7.10)

see Lemma 2.1.
In particular, we have ‖hw − I‖ � β2; assuming β ≤ η2 is small enough,

we conclude that h±1
w ∈ BH

β . Hence,

exp(vw)z = h−1
w exp(w)y0 ∈ E .

Moreover, using (7.10), we have ‖vw‖ ≤ 2β ≤ inj(z). We thus conclude that
vw ∈ IE(e, z).
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Since exp(w)y0 �= exp(w′)y0 for w �= w′ ∈ F ⊂ Br(0, β), the map
w �→ vw is well-defined and one-to-one. Altogether, we deduce that

∑
w �=w0

‖w − w0‖−α ≤ 2
∑

v∈IE (e,z) ‖v‖−α = 2 fE(e, z),

as was claimed. ��
Lemma 7.4 There exist 0 < κ10 = κ10(ν) ≤ 1

4m0
and n0 depending on X so

that the following holds. Let E be defined as in (7.9). Assume further that

fE(e, z) ≤ eMn for all z ∈ E (7.11)

for some M > 0 and an integer n ≥ n0.
Then for all 0 < ε < 0.1 and all β ≥ e−0.01εn at least one of the following

holds.

(1) eMn < eεn/2 · (#F), or
(2) For all integers 0 < � ≤ κ10εn and all z ∈ E , we have

∫
fE(h, z) dν(�)(h) ≤ 2eMn−�.

Proof By Lemma 7.1, applied with fE , we have

∫
fE(h, z) dν(�)(h) ≤ e−� fE(e, z) + C13

�∑
j=1

e j−�

∫
ψE(h, z) dν( j)(h).

Assuming n is large enough, Lemma 7.2 implies that there exists a constant
C depending only on ν so that if j ≤ εn/C , then

ψE(h, z) ≤ (2C13)
−1eεn/4 · (#F),

for all h ∈ supp(ν( j))—we used β ≥ e−0.01εn and assumed n is large enough
to account for the factor C14β

−7 in Lemma 7.2.
Let κ10 = (2C)−1, and let � ≤ κ10εn. Then

∫
fE(h, z) dν(�)(h) ≤ e−� fE(e, z) + eεn/4 · (#F) ≤ eMn−� + eεn/4 · (#F).

Therefore, either part (1) holds or eMn−� ≥ e(0.5−κ10)εn · (#F) ≥ eεn/4 · (#F).
In the latter case, the above implies that

∫
fE(h, z) dν(�)(h) ≤ 2eMn−�
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as we claimed in part (2). ��
From this point until the Lemma 7.8, we fix some 0 < ε < 0.1, and let

β = e−κn/2 where 0 < κ ≤ 0.02κ10ε will be explicated later.
The following lemma will convert the estimate we obtained on average in

Lemma 7.4 into pointwise information at most points. This is done in a fairly
straightforward way essentially by using the Chebyshev inequality. Recall
from Proposition 3.1 that for any interval I ⊂ R of length at least η and
t ≥ | log(η2 inj(x))| + C7

∣∣∣
{
r ∈ I : inj(atur x) < ε2

}∣∣∣ < C7ε|I |.

Lemma 7.5 Let the notation be as in Lemma 7.4. Let 0 < ε < 0.1, and
assume that

� = �κ10εn� ≥ 3| log η| + C7 + 6.

Further assume that Lemma 7.4(2) holds for these choices.
There exists a subset LE ⊂ supp(ν(�)) with ν(�)(LE) ≥ 1− 2e−�/8 so that

both of the following hold.

(1) For all h0 ∈ LE we have

∫
fE(h0, z) dμE(z) ≤ eMn− 7�

8 .

(2) For all h0 ∈ LE , there exists E(h0) ⊂ E with μE(E(h0)) ≥ 1 − O(η1/2),
so that for all z ∈ E(h0) we have

BH
100β2 .z ⊂ E (7.12a)

h0z ∈ X2η (7.12b)

f (h0, z) ≤ eMn− 3�
4 . (7.12c)

Proof Let us begin by finding LE which satisfies part (1). Apply Lemma 7.4
with � = �κ10εn�. Since Lemma 7.4(2) holds, we have

∫∫
fE(h, z) dμE(z) dν(�)(h) ≤ 2eMn−�.

Using this estimate and Chebyshev’s inequality, we have

ν(�)
{
h ∈ supp(ν(�)) : ∫

f (h, z) dμE(z) > eMn− 7�
8

}
< 2e−�/8. (7.13)
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Let LE be the complement in supp(ν(�)) of the set on the left side of (7.13),
and let h0 ∈ LE . Then

∫
f (h0, z) dμE(z) ≤ eMn− 7�

8 . (7.14)

The claim in part (1) thus holds with LE .
Let us now turn to the proof of (2). Let h ∈ supp(ν(�)). Then h = a�m0ur̂

where r̂ = ∑�−1
j=0 e

− jm0r j+1 for some r1, . . . , r� ∈ [0, 1].
For every z = u−

s aur ′ur exp(w).y0 ∈ E , we have

hz = (a�m0ur̂ )u
−
s aur ′ur exp(w).y0 = h′a�m0ur ′s+r̂+r exp(w).y0

where h′ ∈ BH
β and |r ′s | � β for an absolute implied constant. Therefore, if

a�m0ur ′s+r̂+r exp(w)y0 ∈ X4η, then hz ∈ X2η.
Apply Proposition 3.1 with exp(w)y0 ∈ E ⊂ Xη and the interval I =

[r ′s + r̂ − 0.1η, r ′s + r̂ + 0.1η]. Since � ≥ 3| log η| + C7 + 6, we conclude

|{r ∈ [−0.1η, 0.1η] : a�m0ur ′s+r̂+r exp(w)y0 /∈ X4η}| ≤ 0.4C7η
√

η.

This estimate, the above observation, and the definition of μE imply that

μE{z ∈ E : hz /∈ X2η} ≤ 2C7
√

η, (7.15)

for every h ∈ supp(ν(�)).
Put

E− = BH
β−200β2{ur exp(w)y0 : |r | ≤ 0.1η, w ∈ F};

then μE(E−) ≥ 1− O(β).
Let now h0 ∈ LE . Recall also that 0 < β < η2. Then (7.15), implies that

there is a subset E ′(h0) ⊂ E− with

μE(E ′(h0)) ≥ 1− O(η1/2),

so that for all z ∈ E ′(h0) we have h0z ∈ X2η. Hence all points in E ′(h0)
satisfy (7.12a) and (7.12b).

We will find a subset E(h0) ⊂ E ′(h0) which satisfies (7.12c). Let

E ′′ =
{
z ∈ E ′(h0) : f (h0, z) > eMn− 3�

4

}
.

123



1192 E. Lindenstrauss, A. Mohammadi

Then

μE(E ′′)eMn− 3�
4 ≤

∫

E ′′
f (h0, z) dμE(z)

≤
∫

E
f (h0, z) dμE(z) ≤ eMn− 7�

8 by (7.14).

We conclude from the above that μE(E ′′) � e−�/8. Recall that β = e−κn/2

where 0 < κ ≤ 0.02κ10ε, thus we conclude that μE(E ′′) � η.
Put E(h0) := E ′(h0) \ E ′′. Then μE(E(h0)) ≥ 1 − O(η1/2) and (7.12c)

holds for every z ∈ E(h0). The proof is complete. ��
In the remaining parts of this section, we will write QH for

QH
β2,�m0

=
{
u−
s : |s| ≤ β2e−�m0

}
· {at : |t | ≤ β2} ·

{
ur : |r | ≤ β2

}
, (7.16)

where � = �κ10εn�, see (2.10).
Let us also define a subset inG by thickeningQH in the transversal direction

as follows. Put

QG := QH · exp(Br(0, 2β
2)). (7.17)

Lemma 7.6 There exists a covering
{
QG .y j : j ∈ J , y j ∈ Xη

}
of X2η where

#J � β−12e�m0 and the implied constant depends on X.
Moreover, if for every h0 ∈ LE we let

J (h0) =
{
j ∈ J : h0.μE

(
h0E(h0) ∩QG .y j

)
≥ β13e−�m0

}
(7.18)

and define Ê(h0) ⊂ E(h0) by

h0Ê(h0) = h0E(h0)
⋂ ( ⋃

j∈J (h0) Q
G .y j

)
,

then μE(Ê(h0)) ≥ 1 − O(
√

η) where the implied constant depends on X. In
particular, J (h0) �= ∅.
Proof For simplicity in the notation, let us write BG for

BG
β2 = BH

β2 · exp(Br(0, β
2)).

We begin by constructing a covering of BG . First recall that

mH (QH
0.01β2,�m0

) � e−�m0mH (exp(Bh(0, β
2))), (7.19)
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where the implied constant is absolute, see (2.10). Moreover, by Lemma 2.3
we have

QH
0.01β2,�m0

· (QH
0.01β2,�m0

)±1 ⊂ QH
β2,�m0

. (7.20)

Fix a maximal subsetH ⊂ BH
β2 so that

QH
0.01β2,�m0

h ∩QH
0.01β2,�m0

h′ = ∅,

for all h �= h′ ∈ H. In view of (7.19), we have #H � e�m0 where the implied
constant is absolute. Then using (7.20), we conclude that {QHh j : h j ∈ H}
covers BH

β2 and #H � e�m0 .

Taking the product with exp(Br(0, β2)), we thus obtain a covering

{QHh j exp(Br(0, β
2)) : h j ∈ H}

of the set BG .
Recall that β ≤ η2, and that by Lemma 2.1, we have (BG

δ )−1 · BG
δ ⊂ BG

cδ
for all δ > 0, where c is an absolute constant. Hence, arguing as above, there
exists a covering

{BG .ŷk : k ∈ K, ŷk ∈ X2η},

of X2η which satisfies #K � β−12 for an implied constant depending on X .
Combining these two coverings, we obtain a covering

{QHh j exp(Br(0, β
2)).ŷk : h j ∈ H, k ∈ K}.

of X2η. Note further that

QHh j exp(Br(0, β
2)) = QH exp

(
Ad(h j )Br(0, β

2)
)
h j ⊂ QGh j ;

where we used the fact that Ad(h j )Br(0, β2) ⊂ Br(0, 2β2) in the final inclu-
sion above — this holds since ‖h j − I‖ ≤ 2β2 and β is small.

Finally note that since ŷk ∈ X2η and ‖h j − I‖ ≤ 2β2, we have h j ŷk ∈ Xη,
for every j, k. Altogether, we obtain a covering

{QG .y j : j ∈ J , y j ∈ Xη} = {QG .h j ŷk : h j ∈ H, k ∈ K}

of X2η where #J � β−12e�m0 . This finishes the proof of the first claim.

123



1194 E. Lindenstrauss, A. Mohammadi

To see the other claims, let h0 ∈ LE , and define J (h0) as in the statement.
Then for every j /∈ J (h0), we have

h0.μE
(
h0E(h0) ∩QG .y j

)
< β13e−�m0 .

This estimate and the bound on #J yield

h0.μE
(
h0E(h0) ∩ (∪ j /∈J (h0)Q

G .y j )
)
� β,

where the implied constant depends on X . The desired bound on the measure

of h0Ê(h0) thus follows since h0.μE
(
h0Ê(h0)) ≥ 1− O(

√
η).

The fact that J (h0) �= ∅ is a consequence of the fact that Ê(h0) �= ∅, which
is immediate from the above bound. ��

The following lemma yields a set E1 defined as in (7.9), for some y1 and
F1, but with an improved bound for fE1(e, z). This lemma will serve as our
main tool for incremental dimension increase in the proof of Proposition 7.1.

Lemma 7.7 There exists n0 so that the following holds for all n ≥ n0. Let the
notation be as in Lemmas 7.5 and 7.6. In particular, 0 < ε ≤ 0.1 and

� = �κ10εn� ≥ 3| log η| + C7 + 6;

assume further that #F ≥ en/2 and that Lemma 7.4(2) holds.
Let h0 ∈ LE , and let y = y j for some j ∈ J (h0). There exists some

h0z1 ∈ h0E(h0) ∩QG .y

and a subset

F1 ⊂ Br(0, β) with #F1 =  β10 · (#F)!
containing 0, so that both of the following are satisfied.

(1) For all w ∈ F1, we have

exp(w)h0z1 ∈ BH
100β2 .h0E(h0).

(2) If we define E1 = E.{exp(w)h0z1 : w ∈ F1}, then at least one of the
following two possibilities hold

fE1(e, z) ≤ 2 · (#F1)1+ε for all z ∈ E1, or (7.21a)

fE1(e, z) ≤ e(M− 2κ10ε

3 )n for all z ∈ E1. (7.21b)
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Proof Let h0 ∈ LE and y = y j be as in the statement of the lemma.
The set h0E(h0)∩QG .y is contained in a finite union of local H -orbits. Let

M ∈ N be minimal so that

h0E(h0) ∩QG .y ⊂
M⋃
i=1

QH . exp(wi )y, (7.22)

where wi ∈ Br(0, 2β2).
For each 1 ≤ i ≤ M, fix some zi ∈ E(h0) so that h0zi ∈ QG .y and write

h0zi = hi exp(wi )y for some hi ∈ QH . (7.23)

We claim that both of the following properties are satisfied

QH .h0zi ∩QH .h0z j = ∅ 1 ≤ i �= j ≤ M. (7.24a)

h0E(h0) ∩QG .y ⊂
M⋃
i=1

QH · (QH )−1.h0zi . (7.24b)

Assume contrary to (7.24a) that hh0zi = h′h0z j for i �= j . Then

h−1h′h j exp(w j )y = h−1h′h0z j
= h0zi = hi exp(wi )y.

That is exp(−wi ) ˆh exp(w j )y = y where ĥ = h−1
i h−1h′h j . Note more-

over that ˆh ∈BH
100β2 , see (2.4), and wi �= w j ∈ Br(0, 2β2). Therefore

I �= exp(−wi ) ˆh exp(w j ) ∈ BG
200β2 . Recall however that β ≤ η2 and y ∈ X2η,

thus, g �→ g.h0zi is injective on BG
1000β2 for all small enough β. This contra-

diction implies that (7.24a) holds.
We now show (7.24b). Let h0z ∈ h0E(h0)∩QG .y, then h0z = h exp(wi )y

for 1 ≤ i ≤ M and h ∈ QH . Moreover, we have h0zi = hi exp(wi )y, thus
h0z = hh−1

i h0zi as claimed in (7.24b).
Recall now that E = E.{exp(w)x : w ∈ F} where E ⊂ H with mH (E) �

β2η. In view of the definition of μE , see (7.2), we conclude that

h0μE(QH .h0zi ) � β6e−�m0β−2η−1(#F)−1 � β3.5e−�m0(#F)−1;

recall that β ≤ η2.
Using (7.24a) and the definition of J (h0) in (7.18), we deduce from the

above thatM � β9.5 · (#F). Assuming β is small so to account for the implied
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multiplicative constant (which depends only on G and �), we get

M ≥ β10 · (#F). (7.25)

Let 1 ≤ i, j ≤ M, then using (7.23) we have

h0zi = hi exp(wi )y = hi exp(wi ) exp(−w j )h
−1
j h0z j

= hih
−1
j exp(Ad(h j )wi ) exp(−Ad(h j )w j )h0z j

= hih
−1
j hi j exp(wi j )h0z j , (7.26)

where hi j ∈ H and wi j ∈ r, hi i = I , wi i = 0 for all i, j ; moreover, we have

‖hi j − I‖ ≤ C5β
2‖wi j‖ and (7.27a)

0.5‖Ad(h j )(wi − w j )‖ ≤ ‖wi j‖ ≤ 2‖Ad(h j )(wi − w j )‖, (7.27b)

for all i, j , see Lemma 2.1.
Let {wi1} be defined as in (7.26), and let

F1 ⊂ {wi1 : 1 ≤ i ≤ M} with #F1 =  β10 · (#F)!; (7.28)

this is possible thanks to (7.25). We will show that the claims in the lemma
hold with z1 and F1.

First note that h0z1 ∈ h0E(h0)∩QG .y by its definition, and that F1 satisfies
the claimed properties by its definition and (7.28). Let us now show that part (1)
in the statement of the lemma holds. Indeed by (7.26), we have

h0zi = hih
−1
1 hi1 exp(wi1)h0z1 ∈

(
BH
10β2

)
. exp(wi1)h0z1 ∩ h0E(h0).

Therefore, exp(wi1)h0z1 ∈ (BH
10β2)

−1h0E(h0) ⊂ BH
100β2h0E(h0), see (2.4)

for the last inclusion. This establishes the claim in part (1) of the lemma.
For the proof of part (2) in the statement of the lemma,weneed the following.

Sublemma Let

E1 = E.{exp(w)h0z1 : w ∈ F1}.

Let z ∈ E1, and write z = hur exp(wi1)h0z1 where h ∈ BH
β , |r | ≤ 0.1η, and

wi1 ∈ F1. Then

fE1(e, z) ≤ 2 fE(h0, zi ) + β−2e�m0 · (#F1),
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where zi ∈ E(h0) is defined as in (7.23), in particular it satisfies

h0zi = hih
−1
1 hi1 exp(wi1)h0z1,

see (7.26), and � = �κ10εn�.
Let us first assume the sublemma, and finish the proof of the lemma.
Recall that β = e−κn/2 where

0 < κ ≤ 0.02κ10ε. (7.29)

In view of (7.25), we have

#F1 = M ≥ β10 · (#F) ≥ e(1−10κ)n/2, (7.30)

where we used the bound #F ≥ en/2.
Recall also that κ10m0 ≤ 1/4; this estimate and (7.29) imply that

κ10εm0 + κ ≤ (1− 10κ)ε/2.

Using this and (7.30), we conclude that

e(κ10εm0+κ)n · (#F1) ≤ e(1−10κ)εn/2 · (#F1) ≤ (#F1)
1+ε. (7.31)

Let z ∈ E1, and let zi ∈ E(h0) be as in the sublemma. Then, by (7.12c) we
have

fE(h0, zi ) ≤ eMn− 3�
4 ,

where � = �κ10εn�. Thus, using the sublemma and (7.31) we deduce that

fE1(e, z) ≤ (2e) · e(M− 3κ10ε

4 )n + e(κ10εm0+κ)n · (#F1)
≤ 6e(M− 3κ10ε

4 )n + (#F1)
1+ε.

We now consider two possibilities. Indeed, if (#F1)1+ε ≥ 6e(M− 3κ10ε

4 )n ,
then the above bound implies that

fE1(e, z) ≤ 2(#F1)
1+ε,

hence, (7.21a) holds.
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Alternatively, if (#F1)1+ε < 6e(M− 3κ10ε

4 )n , then

fE1(e, z) ≤ 7e(M− 3κ10ε

4 )n ≤ e(M− 2κ10ε

3 )n,

assuming n ≥ n0 is large enough. In consequence, (7.21b) holds.
These estimate finish the proof of part (2) and of the lemma, assuming the

sublemma. ��
Proof of the Sublemma The proof is similar to the proof of Lemma 7.3.

Let z ∈ E1. Then

fE1(e, z) = ∑
w∈IE1 (e,z) ‖w‖−α

= ∑
‖w‖≤e−�m0β2 ‖w‖−α + ∑

‖w‖>e−�m0β2 ‖w‖−α

≤ ∑
‖w‖≤e−�m0β2 ‖w‖−α + e�m0β−2 · (#F1). (7.32)

In consequence, we need to investigate the first summation in (7.32). Let
w ∈ IE1(e, z), then z, exp(w)z ∈ E1. In view of the definition of E1 and (7.26),
we may write

z = hur exp(wi1)h0z1 = hurh
−1
i1 h1h

−1
i h0zi = h̄h0zi

similarly, exp(w)z = h̄′h0z j where 1 ≤ i, j ≤ M and h̄, h̄′ ∈ BH
0.15η, see (2.4).

Recall also from (7.26), that

h0z j = h jh
−1
i h j i exp(w j i )h0zi

whereh j i andw j i satisfy (7.27a) and (7.27b).HencewemayapplyLemma2.2,
recall that β2 ≤ 0.1η, and conclude

‖w j i‖ ≤ 2‖w‖. (7.33)

Moreover, since h0zk’s belong to different local H -orbits, see (7.23),w �→ w j i
is well-defined and is one-to-one.

Assume now that ‖w‖ ≤ e−�m0β2, then ‖w j i‖ ≤ 2e−�m0β2. This estimate
and (7.27a) imply that

‖h j i − I‖ ≤ 2C5β
2‖w j i‖ ≤ e−�m0β2

assuming β is small enough.
Recall also that hi ,h j ∈ QH and that (7.12a) holds for z j . Therefore, as

h0 ∈ supp(ν(�)), in particular it is of the form h0 = a�m0ur for |r | < 2, we
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have by (2.11) and (7.12a) that h−1
j i hih

−1
j h0zi ∈ h0E . That yields

exp(w j i )h0zi = h−1
j i hih

−1
j h0zi ∈ h0E

which impliesw j i ∈ IE(h0, zi )—recall that ‖w j i‖ ≤ 2e−�m0β2 < inj(h0zi ).
This, (7.33), and the fact that w �→ w j i is one-to-one imply that

∑
‖w‖≤e−�m0β2 ‖w‖−α ≤ 2 fE(h0, zi ).

This estimate and (7.32) finish the proof of the sublemma. ��
We also need a lemma which is based on Proposition 6.1 and will provide

the base case for our inductive argument in the proof Proposition 7.1.

Lemma 7.8 Let the notation be as in Proposition 7.1. In particular, let 0 <

η < 0.01ηX , D ≥ D0, and x0 ∈ X. There exists t1, depending on η, D, and
the injectivity radius of x0, so that the following holds for all t ≥ t1.

Let 0 < ε < 0.1, and let β = e−κ(t+1)/2 where 0 < κ ≤ 0.02κ10ε. Then at
least one of the following holds.

(1) There exists a subset F ⊂ Br(0, β) with

et−5κ(t+1) ≤ #F ≤ e4t+0.5κ(t+1)

and some y ∈ X2η ∩
(
BH

β · a9t
)
.{ur x0 : r ∈ [0, 1.05]} so that if we put

E = E.{exp(w)y : w ∈ F},
then E ⊂

(
BH
10β · a9t

)
.{ur x0 : r ∈ [0, 1.1]} and

fE(e, z) ≤ eD(t+1) for all z ∈ E .

(2) There is x ′ ∈ X such that Hx ′ is periodic with

vol(Hx ′) ≤ eD0t and dX (x0, x
′) ≤ e(−D+D0)t .

Proof Put C0 = {a8t ur x0 : r ∈ [0, 1]}. Apply Proposition 6.1 with x0 and t .
If part (2) in that proposition holds, then part (2) above holds and the proof is
complete. Therefore, let us assume that Proposition 6.1(1) holds.

Let x ∈ Xcpt ∩ C0 be a point given by Proposition 6.1(1); put

C =
(
BH

β · at
)
.{ur x : r ∈ [0, 1]} ⊂ X;

and let C− = BH
β−100β2 · at ·

{
ur x : r ∈ [100e−t , 1− 100e−t ]

}
.
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Let μC denote the pushforward to C of the normalized restriction of the
Haar measure on H to C := BH

β · at · {ur : r ∈ [0, 1]} ⊂ H — the set C was
denoted by E1,t,β in (2.9), we will use the notation C in this proof to avoid
confusion with E = BH

β · {ur : |r | ≤ 0.1η} from Sect. 7.2.
Wenowuse arguments similar to, and simpler than, the ones used inLemmas

7.6 and 7.7 to construct the set E as in part (1).
First note that by Proposition 3.1, if t > | log η| + C (where C depends on

X ) we have

μC(C− ∩ X4η) ≥ 1− O(
√

η), (7.34)

where the implied constant depends on G and �.
Let {BG

β2 .ŷ j : j ∈ J } be a covering of X4η so that J � β−12 where the

implied constant depends on G and �, see Lemma 7.6. Let J ′ be the set of
those j ∈ J so that

μC(C− ∩ X4η ∩ BG
β2 .ŷ j ) ≥ β13. (7.35)

This definition, the fact that μC is a probability measure (and moreover
by (7.34) a probability measure giving large measure to C− ∩ X4η) and the
estimate J � β−12 imply that

μC
(
C−

⋂( ⋃
j∈J ′

BG
β2 .ŷ j

))
≥ 1− O(

√
η),

where the implied constant depends on X . Moreover, (7.35) implies that for
any j ∈ J ′, BG

β2 .ŷ j ⊂ X3η.

Let j ∈ J ′; put ŷ = ŷ j and Ĉ = C−∩BG
β2 .ŷ. Then, there arewi ∈ Br(0, β2)

and hi ∈ BH
β2 , i = 1, . . . ,M, so that hi exp(wi )ŷ ∈ C− and

Ĉ =
M⋃
i=1

Cihi exp(wi )ŷ,

where Ci ⊂ BH
10β2 .

Recall that β ≤ η2 and that mH (C) � etβ2. In consequence, we have

μC(BH
10β2) � β6 · (etβ2)−1 = β4e−t .
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This and (7.35) imply that M � β9et . Assuming that β is small enough, to
account for the implicit constant, we have

M ≥ β10et . (7.36)

We now use Ĉ to define E which satisfies the desired properties in part (1).
To that end, note that for every i and j we have

hi exp(wi )ŷ = hi exp(wi ) exp(−w j )h
−1
j h j exp(w j )ŷ

= hih
−1
j hi j exp(wi j )h j exp(w j )ŷ, (7.37)

where hi j ∈ H and wi j ∈ r, hi i = 1, wi i = 0 for all i, j ; moreover, we have

‖hi j − I‖ ≤ C5β
2‖wi j‖ and (7.38a)

0.5‖Ad(h j )(wi − w j )‖ ≤ ‖wi j‖ ≤ 2‖Ad(h j )(wi − w j )‖, (7.38b)

for all i, j , see Lemma 2.1. In particular, for all i, j we have

‖hi j − I‖ � β4 (7.39)

for an absolute implied constant.
Thus, assuming β is small enough, we have hih

−1
j hi j ∈ BH

10β2 , for all i, j .

This and the fact that hi exp(wi )ŷ ∈ C− imply that

exp(wi j )h j exp(w j )ŷ = (hih
−1
j hi j )−1hi exp(wi )ŷ

∈ BH
10β2 .C− ⊂ C,

(7.40)

for all i and j .
Let y := h1 exp(w1)ŷ ∈ C− ∩ X2η and F = {wi1 : i = 1, . . . ,M}. First

note that by (7.40) and Lemma 6.3, we have

#F � e4t ≤ β−1e4t ,

where in the last inequality we assume β is small to account for the implied
constant. This and (7.36) imply that

et−5κ(t+1) = β10et ≤ #F = M ≤ β−1e4t = e4t+0.5κ(t+1), (7.41)

which is the bound we claimed in part (1).
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Define E = E.{exp(wi1)y : wi1 ∈ F}. By (7.40), we have {exp(wi1)y :
wi1 ∈ F} ⊂ BH

10β2 .C−. Recall also that E = BH
β · {ur : |r | ≤ 0.1η} and

ur · BH
β · at ⊂ BH

2β · at · ue−t r , (7.42)

for all |r | ≤ 0.1η. Thus

E = BH
β · {ur : |r | ≤ 0.1η}.{exp(wi1)y : wi1 ∈ F}

⊂ BH
β · BH

2β · at .{ur x : r ∈ [0, 1]}
⊂ BH

5β · at .{ur x : r ∈ [0, 1]}
⊂

(
BH
5β · at · {ur : r ∈ [0, 1]}

)
· a8t .{ur x0 : r ∈ [0, 1]}

⊂ BH
5β · at · Bs

5β · {ur : |r | ≤ 2} · a8t .{ur x0 : r ∈ [0, 1]},

where Bs
� = {u−

s : |s| ≤ �} · {ad : |d| ≤ �} and we use x ∈ C0 in the third
line. Using ura8t = a8t ue−8t r , which holds for all r and t , we conclude

E ⊂ BH
5β · at · Bs

5β · a8t .{ur x0 : r ∈ [0, 1.1]},
so long as t ≥ 1.

Finally note that atBs
2βa−t = {u−

s : |s| ≤ 2e−tβ} · {a� : |l| ≤ 2β} for all t .
Thus assuming t is large enough, we have

E ⊂ BH
10β · a9t · {ur x0 : r ∈ [0, 1.1]}.

We claim

fE(e, z) ≤ 2eDt ≤ eD(t+1) for all z ∈ E . (7.43)

In view of the above discussion, this estimate finishes the proof of part (1) and
of the lemma modulo (7.43).

The proof of (7.43) is similar to the proof of Lemma 7.3. For every 1 ≤ i ≤
M, put zi = hi exp(wi )ŷ. Let w ∈ IE(e, z), then z, exp(w)z ∈ E . In view of
the definition of E and (7.37), we may write

z = hur exp(wi1)y = hur (hih
−1
1 hi1)−1zi = h̄zi

similarly, exp(w)z = h̄′z j where 1 ≤ i, j ≤ M and h̄, h̄′ ∈ BH
0.15η, see (7.39)

and (2.4). Recall also from (7.37) again that

z j = h jh
−1
i h j i exp(w j i )zi
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whereh j i andw j i satisfy (7.38a) and (7.38b).HencewemayapplyLemma2.2,
recall that β ≤ η2, and conclude

‖w j i‖ ≤ 2‖w‖. (7.44)

Moreover, since hk exp(wk)ŷ’s belong to different local H -orbits, w �→ w j i
is well-defined and one-to-one. Recall also from (7.40) that

(h jh
−1
i h j i )

−1z j = exp(w j i )zi ∈ C,

for all i, j . Moreover by (7.38b), we have ‖w j i‖ � β2 ≤ inj(zi ). Altogether,
we conclude that w j i ∈ IC(e, zi ).

This, (7.44), and the fact that w �→ ŵ j i is one-to-one imply that

fE(e, z) = ∑
w∈IE (e,z) ‖w‖−α

≤ 2
∑

w∈IC(e,zi ) ‖w‖−α

= 2 fC(e, zi ) ≤ 2eDt ,

where the last inequality is a consequence of Proposition 6.1(1). ��

Proof of Proposition 7.1

We now complete the proof of Proposition 7.1. Roughly speaking, the proof
is based on repeatedly applying Lemma 7.7 to improve the bound on the
corresponding Margulis function.

Let 0 < η < 0.01ηX , D ≥ D0 + 1 (for D0 as in Proposition 6.1), x0 ∈ X ,
and t > 0 (large) be as in the statement of Proposition 7.1.

Fix some κ satisfying

0 < κ ≤ κ10ε

100D
, (7.45)

and put β = e−κ(t+1)/2.
We assume t is large enough so that β ≤ η2; assume further that t ≥ t1

where t1 is as in Lemma 7.8.

Base of the induction

Apply Lemma 7.8 with η, β, D, x0, and t . If Lemma 7.8(2) holds, then
Proposition 7.1(2) holds and the proof is complete. Therefore, we assume
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that Lemma 7.8(1) holds. Let

E = E.{exp(w)y : w ∈ F} ⊂ BH
10β · a9t · {ur x0 : r ∈ [0, 1.1]} (7.46)

be as in Lemma 7.8(1). Put n = t + 1, M = D, y0 = y, F0 = F , and E0 = E .
We further assume t + 1 ≥ 4n0 where n0 is as in Lemma 7.4.

Apply Lemma 7.4 with this E0. If Lemma 7.4(1) holds, then eMn ≤ eεn/2 ·
(#F0). Since #F0 ≥ et−5κ(t+1) ≥ en/2, we have

fE0(e, z) ≤ eMn ≤ eεn/2 · (#F0) ≤ (#F0)
1+ε.

Hence by Lemma 7.3, for all w ∈ F0,

∑
w �=w′ ‖w − w′‖−α ≤ 4 · (#F0)1+ε.

This estimate together with (7.46) implies that part (1) in the proposition
holds with τ = 9t , x1 = y and F = F0 if we choose R large enough so that
e−t/R ≥ 10β.

The inductive step

In view of the above discussion, let us assume that Lemma 7.4(2) holds for
E0. Let LE0 be as in Lemma 7.5. Let h0 ∈ LE0 , and let y j for some j ∈ J (h0)
be as in Lemma 7.6. Moreover, note that

en/2 ≤ et−5κ(t+1) ≤ #F0 ≤ e4t+0.5κ(t+1) = β−1e4t ,

and n > n0. Therefore, we may apply Lemma 7.7. By that lemma, there exist
z1 with

h0z1 ∈ h0E0(h0) ∩QG .y j

and a subset F1 ⊂ Br(0, β), containing 0, with

#F1 =  β10 · (#F0)!

so that both of the following are satisfied.

(I-1) For all w ∈ F1, we have

exp(w)h0z1 ∈ BH
100β2 .h0E0(h0).
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(I-2) If we put E1 = E.{exp(w)h0z1 : w ∈ F1}, then at least one of the
following properties hold:

fE1(e, z) ≤ 2 · (#F1)1+ε for all z ∈ E1, or (7.47a)

fE1(e, z) ≤ e(M− 2κ10ε

3 )n for all z ∈ E1. (7.47b)

If (7.47a) holds, we set Efin = E1. Otherwise, we repeat the above construc-
tion to define sets F2, . . . and the corresponding E2, . . ..

Let imax := �6M−3
4κ10ε

� + 1, then by the choice of κ in (7.45), we have

M − 2κ10ε
3 imax ≤ 1/2 and 5κ(imax + 1) ≤ 1/4 (7.48)

Suppose now that i ≤ imax, and we have constructed E0, . . . , Ei so
that (7.47a) does not hold for Ek , for all 0 ≤ k ≤ i . Then (7.47b) holds
and we have

fEk (e, z) ≤ e(M− 2κ10ε

3 k)n for all 0 ≤ k ≤ i and all z ∈ Ek . (7.49)

By the second estimate in (7.48), for all 0 ≤ k ≤ i , we have

#Fk ≥ β10k · (#F0) ≥ et−5κ(k+1)(t+1)

≥ e(3t−1)/4 ≥ e2n/3.

Since (7.47a) does not hold for Ek , but (7.47b) holds, we have

eεn/2 · (#Fk) ≤ (#Fk)
1+ε ≤ e(M− 2κ10ε

3 k)n

for all 0 ≤ k ≤ i .
Thus we are in case Lemma 7.4(2) for all these k, moreover, we have the

bound #Fk ≥ e2n/3. In consequence, Lemma 7.7 is applicable in every step,
and we can define Fi+1 and Ei+1.

The conclusion of the proof

We now show that in at most imax many steps, we obtain a set E which satisfies
(I-1) above and (7.47a). Indeed, in view of the first estimate in (7.48),

e(M− 2κ10ε

3 imax)n < en/2.

As #Fk ≥ e2n/3 for all Fk’s which are constructed, this observation together
with (7.49) implies that in at most imax number of steps, (7.47a) holds.
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In consequence, we get some ifin ≤ imax, so that if we put Ffin := Fifin ⊂
Br(0, β), then #Ffin ≥ e2n/3, and the set

Efin = E.{exp(w)yfin : w ∈ Ffin}

satisfies

fEfin(e, z) ≤ 2 · (#Ffin)1+ε (7.50)

for all z ∈ Efin (cf. (7.47a)).
We claim that Ffin and yfin also satisfy

{exp(w)yfin : w ∈ Ffin} ⊂
(
BH
100(ifin+10)β · aτ · {ur : |r | ≤ 4}

)
.x0 ∩ Xη,

(7.51)

with τ satisfying

9t ≤ τ = 9t + ifinκ10εm0(t + 1) ≤ 9t + 2m0Mt = 9t + 2m0Dt. (7.52)

Let us first assume (7.51) and finish the proof of the proposition.
First note that using the above definitions, we have

et/2 ≤ #Ffin ≤ #F0 ≤ β−1e4t ≤ e5t .

The assertion (7.50) and Lemma 7.3 imply that for all w ∈ Ffin,

∑
w �=w′ ‖w − w′‖−α ≤ 4 · (#Ffin)1+ε.

This estimate together with (7.51) implies that part (1) in the proposition
holds with x1 = yfin and F = Ffin if we choose R large enough so that
e−t/R ≥ 100(ifin + 10)β. This concludes the proof of Proposition 7.1 modulo
the proof of (7.51).

To see that (7.51) holds, note that at every step, the element h0 is of the form
am0�urk where rk ∈ [0, 1] and � = �κ10ε(t + 1)�. Now for all 0 ≤ k < ifin,
we have

Ek+1 ⊂ Bs
2β · am0�urk · {ur̄ : |r̄ | ≤ 2e−m0�} · Ek, (7.53)

where Bs
� = {u−

s : |s| ≤ �} · {ad : |d| ≤ �}. To see this note that by (I-1), we
have

{exp(w)x1 : w ∈ Fk+1} ⊂ BH
100β2 · am0�urk .Ek .

123



Polynomial effective density in quotients 1207

Now for every |r | ≤ 1, ĥ ∈BH
β and h ∈ BH

100β2 , we have ĥurh = h′ur ′ where
h′ ∈ Bs

2β and |r ′| ≤ 2; moreover, ur ′am0� = am0�ue−m0�r ′ . Assuming � ≥ 5,
which may be guaranteed by taking t large, and using the definition

Ei+1 = E.{exp(w)x1 : w ∈ Fi+1},
the inclusion in (7.53) follows.

Arguing similarly, (7.46) implies that

E0 ⊂ Bs
10β · a9t · {ur x0 : r ∈ [0, 1.15]}.

Using the fact that am0�B
s
�a−m0� ⊂ Bs

� and arguing inductively,

Ei+1 ⊂ BH
100(ifin+10)β · (am0�ur̂i+1Ui+1) · · · (am0�ur̂1U1) · {a9t ur : |r | ≤ 2}.x0,

where r̂k ∈ [0, 1] and Uk = {ur̄ : |r̄ | ≤ 100(k + 10)β}. Moreover, for every
i ≤ imax,

(am0�ur̂i+1Ui+1) · · · (am0�ur̂1U1) ⊂ am0(i+1)� · ur̂ · {ur̄ : |r̄ | ≤ 104β},

where r̂ = ∑
e−m0(k−1)�r̂k ∈ [0, 1.5].

This implies (7.51) except for the bound (7.52) on τ . To see the claimed
bound on τ , note that

imax� ≤ (6M−3
4κ10ε

+ 1)κ10ε(t + 1) ≤ 2Mt

which implies the bound on τ . ��

8 Proof of the main theorem

In this sectionwewill complete the proofs of Proposition 1.1 and Theorem 1.1.

8.1 Proof of Proposition 1.1

Let D0 be as in Proposition 6.1, and choose D ≥ 2D0 so that δ/2 ≤ D0/(D−
D0) ≤ δ.
Let η0 = 0.01ηX , and let 0 < η < η0. Let x1 ∈ Xη, and let t0 be as in

Proposition 7.1 applied with D and η.
Define t by T = e(D−D0)t , and let T1 be so that T ≥ T1 implies t ≥ t0.
We may assume that Proposition 7.1(1) holds. Indeed, if Proposition 7.1(2)

holds, then since eD0t = T D0/(D−D0) and δ/2 ≤ D0/(D− D0) ≤ δ, Proposi-
tion 1.1(2) holds and the proof is complete.
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1208 E. Lindenstrauss, A. Mohammadi

Let 0 < θ < 1/2 be arbitrary. Apply Proposition 7.1(1) with ε = 0.01θ
and α = 1 − ε. Without loss of generality, we will further assume that T1 is
large enough so that e−εt/2 ≤ (2C5C7)

−1η3, this is motivated by (5.4).
By Proposition 7.1(1), there exists R > 0, depending on D and θ , so that

the following holds. There exist x1 ∈ Xη, some 9t ≤ τ ≤ 9t +2m0Dt (where
m0 depends on θ as in (7.1)), and a subset F ⊂ Br(0, 1), containing 0, with
et/2 ≤ #F ≤ e5t , so that both of the following properties are satisfied.

{exp(w)x1 : w ∈ F} ⊂
(
BH
e−t/R · aτ .{ur x0 : |r | ≤ 4}

)
∩ Xη and (8.1a)

∑
w′ �=w ‖w − w′‖−α � (#F)1+ε for all w ∈ F, (8.1b)

where the implied constant depends on X .
Now apply Proposition 5.1 with η, ε, α = 1− ε, x1, and F ; note that (5.4)

is satisfied since #F ≥ et/2. Let

x2 ∈ Xη ∩ a| log b1|.{ur exp(w)x1 : |r | ≤ 2, w ∈ F}, (8.2)

I ⊂ [0, 1], b1 > 0, and the probabilitymeasureρ on I be as in that proposition.
In particular, we have

e−5t ≤ (#F)−
2+6ε
2+21ε ≤ b1 ≤ (#F)−ε, (8.3)

and the following hold

ρ(J ) ≤ C ′
ε|J |α−30ε for all |J | ≥ (#F)

−15ε
2+21ε (8.4a)

vs x2 ∈ BG
Cb1 · a| log b1|.{ur exp(w)x1 : |r | ≤ 2, w ∈ F} for all s ∈ I,

(8.4b)

where C is an absolute constant.
Set κ := ε

4D0
= θ

400D0
. Since #F ≥ et/2, we have

(#F)
−15ε
2+21ε ≤ (#F)−ε ≤ e−εt/2 ≤ T−δε/4D0 = T−δκ; (8.5)

recall that δ/2 ≤ D0/(D − D0) ≤ δ and T = e(D−D0)t .
Combining (8.5) and equation (8.4a), we conclude that

ρ(J ) ≤ C ′
ε|J |α−30ε ≤ C ′

ε|J |1−θ , for all intervals J with |J | ≥ T−δκ .

(8.6)

This establishes Proposition 1.1(1)(a) if we put Cθ = C ′
ε.
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Let us now turn to the proof of Proposition 1.1(1)(b). We first claim that

{ur exp(w)x1 : |r | ≤ 2, w ∈ F} ⊂ Bs
10� · aτ · {ur x0 : |r | ≤ 9/2}, (8.7)

where � = e−t/R and Bs
� = {u−

d : |d| ≤ �} · {a� : |�| ≤ �}. To see this, first
note that using (8.1a), we have

{exp(w)x1 : w ∈ F} ⊂ BH
� · aτ · {ur x0 : |r | ≤ 4}.

Now for every |r | ≤ 2 and h ∈ BH
� , we have urh = h′ur ′ where h′ ∈ Bs

10�
and |r ′| ≤ 3; moreover, ur ′aτ = aτue−τ r ′ . The claim follows as τ ≥ 2.

Combining (8.7), (8.4b), and (8.2) for all s ∈ I ∪ {0} we have

vs x2 ∈ BG
Cb1 · a| log b1| · {ur exp(w)x1 : |r | ≤ 2, w ∈ F}

∈ BG
Cb1 · a| log b1| · Bs

10� · aτ · {ur x0 : |r | ≤ 9/2}. (8.8)

By the definition of Bs
10� above, we conclude that

a| log b1|Bs
10�a−| log b1| ⊂ {u−

d : |d| ≤ b1} · {a� : |�| ≤ 10�}.

This and (8.8) imply that

vs x2 ∈ BG
C ′b1 ·

(
{a� : |�| ≤ 10�} · aτ+| log b1| · {ur : |r | ≤ 9/2}

)
.x0. (8.9)

Recall that b1 ≤ (#F)−ε ≤ e−εt/2 ≤ T−εδ/4D0 and � = e−t/R . Moreover,
note that the bound e−6t ≤ b1 in (8.3) and τ ≤ 9t + 2m0Dt imply

e(τ+| log b1|)/2 ≤ eτ ≤ e9t+2m0Dt ≤ T A′−1,

for A′ depending only on θ . Hence, in view of (8.9), we have

dX
(
vs x2, BP

(
e, T A′)

.x0
)
�X T−δε/4D0,

for all s ∈ I ∪ {0}.
The above and (8.5) finish the proof of the proposition if we let y0 = x2

and κ2 = ε
4D0

= θ
400D0

.

8.2 Proof of Theorem 1.1

Let θ = ε0/2 where ε0 is given by Proposition 4.2.
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1210 E. Lindenstrauss, A. Mohammadi

Apply Proposition 1.1 with x0, θ , η = 10−4ηX , and the given δ. Let T > T1
where T1 is as in Proposition 1.1.

If Proposition 1.1(2) holds, then Theorem 1.1(2) holds and we are done.
Therefore, let us assume that Proposition 1.1(1) holds. Let y0, I , and ρ be as
in Proposition 1.1(1).

Let 0 < � < 0.1ηX , and let z ∈ X�. There is a function f�,z supported on
BG
0.1�.z with

∫
f�,z dmX = 1 and S( f�,z) ≤ �−N , where N is absolute.

Let b = T−δκ2 , and let t = | log b|/4. In view of Proposition 1.1(1), ρ

satisfies (4.6) with Cθ .
Apply Proposition 4.2, with f = f�,z for � = e−κ6t/2N . Then

∣∣∣∣
∫∫

f (aturvs .y0) dρ(s) dr − 1

∣∣∣∣ �Cθ S( f )e−κ6t �Cθ e−κ6t/2;

where we used η = 10−4ηX , hence the dependence on η in Proposition 4.2
can be absorbed in the implicit constant.

Assuming T is large enough, depending on θ , the right side of the above is
< 1/2. Thus aturvs .y0 ∈ supp( f ) for some r ∈ [0, 1] and s ∈ I .

Let κ11 = κ6/8N . The above thus implies that

dX
(
z, at .

{
urvs y0 : r ∈ [0, 1], s ∈ I

})
� bκ11 (8.10)

for all z ∈ Xbκ11 .
Moreover, by Proposition 1.1(1), we have

dX
(
urvs .y0,

(
ur · BP(e, T A′

)
)
.x0

)
≤ C ′

2b,

for all s ∈ I ∪ {0} and r ∈ [0, 1]. Note also that if z, z′ ∈ X satisfy, d(z, z′) ≤
C ′
2b, then dX (at z, at z′) � b1/2. In consequence,

dX
(
at .

{
urvs y0 : r ∈ [0, 1], s ∈ I

}
, BP(e, T A′+1).x0

)
� b1/2, (8.11)

where we used

at · {ur : r ∈ [0, 1]} · BP(e, T A′
) ⊂ BP(e, T A′+1),

which in turn follows from t = | log b|/4 and b = T−δκ2 .
Combining (8.10) and (8.11), we conclude that

dX (z, BP(e, T A′+1).x0) � bκ11 = T−δκ2κ11
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for all z ∈ Xbκ11 , where the implied constant depends on X . This implies
Theorem 1.1(1) with κ1 = κ2κ11.

As was remarked in Sect. 4, κX in (4.1) is absolute if � is a congruence
subgroup, see [9,13,29]. Hence, if � is assumed to be a congruence subgroup,
then A and κ1 only depend on � via (6.2). ��

9 Proof of Theorem 1.2

Let ηX be as in Proposition 3.2 and C7 as in Proposition 3.1. Define

CX = η−1
X vol(G/�) eC7, (9.1)

where vol(G/�) is computed using the Riemannian metric d, see also (4.2).
For 0 < α < 1 choose an mα > 0 as in (2.12), i.e., mα satisfies that

∫ 1

0
‖amαurw‖−α dr ≤ e−1‖w‖−α for all w ∈ g. (9.2)

In this section, the notation a �X b means a ≤ LCL
X b where L is an

absolute constant. Similarly, a �X,α b means

a ≤ LCL
Xe

Lmα b, (9.3)

where L is an absolute constant. Define a �X b and a �X,α accordingly.
Throughout this section, Y = Hx is a periodic orbit. Let μHx denote

the probability H -invariant measure on Hx . We put vol(Y ) = v. In view of
Lemma 3.3, we have v �X 1. The following proposition is our replacement
for Proposition 7.1 in the setting at hand.

Proposition 9.1 Let 0 < α < 1. There exists y0 ∈ Y and a subset F ⊂
Br(0, 1), containing 0, with #F �X v so that both of the following properties
are satisfied:

(9.1-a)
{
exp(w)y0 : w ∈ F

}
⊂ Y ∩ Xcpt, see Sect. 3.1 for the definition of

Xcpt.
(9.1-b)

∑
w′ �=w ‖w − w′‖−α �X,α #F for all w ∈ F where the summation is

over w′ ∈ F.

The general strategy in proving Proposition 9.1 is similar to the strategy we
used to prove Proposition 7.1. However, the argument simplifies significantly
thanks to the fact that Y is equipped with an H -invariant probability measure.
In particular, we do not require Proposition 6.1, hence � is not assumed to be
an arithmetic lattice in this section, see Proposition 9.2.
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1212 E. Lindenstrauss, A. Mohammadi

For every 0 < δ ≤ 1 and every y ∈ Y , put

I (y, δ) =
{
w ∈ r : 0 < ‖w‖ < δ inj(y) and exp(w)y ∈ Y

}
,

see also (7.3). We will write I (y) = I (y, δ0) where

δ0 = e−3−C7 min{inj(x) : x ∈ Xcpt}, (9.4)

see (9.1); recall also that inj(x) ≤ 1 for all x ∈ X .
We need the following lemma.

Lemma 9.1 There exists C15 �X 1 so that

#I (y) ≤ C15v

for every y ∈ Y .

Proof This is proved for G = SL2(C) in [48, Lemma 8.13], see also [24, §8].
The same argument applies in the case of G = SL2(R) × SL2(R) if we

replace [48, Lemma 8.4] by Proposition 3.2. We sketch the proof for the sake
of completeness.

By virtue of Lemma 7.2, for all y ∈ Xcpt, we have

#I (y, 1) �X v.

Suppose now that y ∈ Y \Xcpt, and let t = | log inj(y)|+C7. By Proposition
3.2, there exists |r | ≤ 1 so that atur y ∈ Xcpt. Moreover, for all ‖w‖ <

δ0 inj(y), see (9.4), we have

‖aturw‖ ≤ 3et‖w‖ = 3eC7 inj(y)−1‖w‖ < 0.5 inj(atur y).

This and the fact that Y is invariant under H imply that ifw ∈ I (y) = I (y, δ0),
then aturw ∈ I (atur y, 1).

The above estimate also implies that the map w �→ aturw is an injective
map from I (y) into I (atur y, 1). Consequently,

#I (y) ≤ #I (atur y, 1) �X v.

The proof is complete. ��
Let 0 < α < 1, and define a Margulis function fY : Y → [2,∞) by

fY (y) =
{∑

w∈I (y) ‖w‖−α if I (y) �= ∅
inj(y)−α otherwise

.
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Letmα be as in (9.2). Define the probability measure ν on H by the property
that for every ϕ ∈ Cc(X)

ν ∗ ϕ(y) =
∫ 1

0
ϕ(amαur y) dr.

The following proposition may be thought of as our replacement for Propo-
sition 6.1.

Proposition 9.2 There exists C16 �X,α 1 so that

∫
fY (y) dμY (y) ≤ C16 · v.

The following lemma is analogue of Lemma 7.1, and will be used in the
proof of Proposition 9.2.

Lemma 9.2 There exists C17 �X,α 1 so that for all � ∈ N and all y ∈ Y , we
have

ν(�) ∗ fY (y) ≤ e−� fY (y) + C17v
∑�

j e
j−�ν( j) ∗ inj(y)−α. (9.5)

Proof Note that supp(ν) ⊂ {h ∈ H : ‖h‖ ≤ e2mα+1}. Let C ≥ 1 be so that

‖Ad(h)w‖ ≤ C‖w‖

for all h with ‖h‖ ≤ e2mα+1 and all w ∈ g. Increasing C if necessary, we
also assume that inj(z)/C ≤ inj(hz) ≤ C inj(z) for all such h and all z ∈ X .
Arguing as in the proof of Lemma 7.1, there exists some C so that

ν ∗ fY (y) ≤ e−1 · fY (y) + C · ν ∗ ψ(y)

for all y ∈ Y , where ψ(y) = max{1, #I (y)} · inj(y)−α . This and Lemma 9.1
imply that

ν ∗ fY (y) ≤ e−1 · fY (y) + C17v ·
(
ν ∗ inj(y)−α

)
(9.6)

with C17 = CC15. Iterating (9.6), we get (9.5). ��
Proof of Proposition 9.2 The fact that estimates similar to Lemma 9.2 imply
integrability is by now a standard fact, see e.g. [21, §5] or [24, Lemma 11.1];
we recall the argument. In view of Proposition A.3, we have

∫

H
inj(hx)−α dν(n)(h) ≤ e−n inj−α(x) + B
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1214 E. Lindenstrauss, A. Mohammadi

for all n ∈ N where B �X 1. This and Lemma 9.2 imply that

lim sup ν(n) ∗ fY (y) ≤ 1+ 2C17vB. (9.7)

Note that supp(ν(n)) ⊂ {amαnur : |r | ≤ 4}. This, together with the
fact that (H, μY ) is mixing, implies that μY is ν-ergodic. Thus by Chacon-
Ornstein theorem, for every ϕ ∈ L1(Y, μY ) and μY -a.e. y ∈ Y , we have
1

N+1

∑N
n=0 ν(n) ∗ ϕ(y) → ∫

ϕ dμY .
For every k ∈ N, put ϕk = min{ fY , k}. There exists a full measure set Y0 so

that for every y ∈ Y0 and every k, there exists some Nk,y so that if N ≥ Nk,y ,
then 1

N+1

∑N
n=0 ν(n) ∗ ϕk(y) ≥ 0.5

∫
ϕk dμY .

Let y ∈ Y0, then the above estimate and (9.7), applied with y, imply that∫
ϕk dμY ≤ 2(1+2C17vB) for all k. UsingLebesgue’smonotone convergence

theorem, we conclude that
∫

fY dμY ≤ 2(1+ 2C17vB).

The claim follows as v �X 1. ��
Proof of Proposition 9.1 Put η = 0.1ηX where ηX is as in Proposition 3.2.
Recall from Lemma 3.3 that

μY (X2η) ≥ 0.9. (9.8)

As was done in Lemma 7.5, we will first convert the information in Propo-
sition 9.2 into a pointwise estimate at most points. Let

Y ′′ = {y ∈ Y : fY (y) ≤ 100C16v}. (9.9)

Then by Proposition 9.2, we have μY (Y \ Y ′′) ≤ 0.01.
Let Y ′ = Y ′′ ∩ X2η, and let β = η2 = 0.01η2X . The above and (9.8) imply

that μY (Y ′) ≥ 0.9. Let {BG
β2 .z j : z j ∈ X2η, j ∈ J } be a covering of X2η so

that #J �X 1. Then there exists some c �X 1 and some j0 so that

μY (BG
β2 .z j0 ∩ Y ′) ≥ c. (9.10)

Recall that Y is H -invariant and gz j ∈ Xcpt for all j and ‖g − I‖ ≤ 2,
see Sect. 3.1 where Xcpt is defined. Let y0 ∈ BG

β2 .z j0 ∩ Y ′. As was done in

Lemma 7.7, let F1 ⊂ Br(0, 2β2) be so that

BG
β2 .z j0 ∩ Y ′ ⊂

⋃
w∈F1

BH
β . exp(w)y0.
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Then #F1 ≥ cη−3v. Put

E1 = E · {exp(w)y0 : w ∈ F1} ⊂ Y ∩ Xcpt;

recall that E = BH
β ·

{
ur : |r | ≤ 0.1η

}
.

Recall the definition fE1 from (7.4). There exists C ′ �X,α 1 so that

fE1(e, z) ≤ fY (z) ≤ C ′v for all z ∈ E1 (9.11)

To see this, note that by the definition of fY , for every h ∈ H with ‖h− I‖ ≤ 1
and all y ∈ Xη ∩ Y , we have fY (hy) ≤ fY (y)+ C̄v where C̄ �X 1. Now for
every z ∈ E1, there exists y ∈ Y ′ ⊂ Y ′′ and some h ∈ H with ‖h− I‖ ≤ 10η2

so that z = hy. This implies the claim in view of the definition of Y ′′ in (9.9).
Alternatively, (9.11) can be seen by letting � = 0 in the proof of the sublemma
in Lemma 7.7, see in particular (7.32).

Now (9.11) and Lemma 7.3 imply that

∑
w′ �=w

‖w − w′‖−α ≤ Cv,

where the summation is over w′ ∈ F1 and C �X,α 1.
The proposition holds with y0 and F = F1. ��

9.1 Proof of Theorem 1.2

The proof goes along the same lines as the proof of Theorem 1.1 if we replace
Proposition 7.1 with Proposition 9.1 as we now explicate.

Let ε = 0.0005ε0 and α = 1− ε where ε0 is given by Proposition 4.2. By
Proposition 9.1, the conditions in Proposition 5.1 holds with y0 ∈ Y ∩ Xcpt,
F , α, and η = 0.1ηX .
Recall that #F �X v. We assume v is large enough so that

(#F)−ε ≤ (2C5C7)
−1η3.

Then by Proposition 5.1, there exist y1 ∈ Xη, a finite subset I ⊂ [0, 1], and
some b1 > 0 with

v−
2+6ε
2+21ε �X (#F)−

2+6ε
2+21ε ≤ b1 ≤ (#F)−ε �X v−ε, (9.12)

so that both of the following two statements hold true:
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1216 E. Lindenstrauss, A. Mohammadi

(1) The set I supports a probability measure ρ which satisfies

ρ(J ) ≤ C ′
ε · |J |α−30ε

for all intervals J with |J | ≥ (#F)
−15ε
2+21ε , where C ′

ε � ε−� for absolute
implied constants.

(2) There is an absolute constant C �X 1, so that for all s ∈ I , we have

vs y1 ∈ BG
Cb1 ·

(
a| log b1| · {ur : |r | ≤ 2}

)
.{exp(w)y0 : w ∈ F}

⊂ BG
Cb1 .Y.

For the last inclusion in (2) we used (9.1-a) and the H -invariance of Y .
In particular, part (2) and b1 ≤ (#F)−ε imply that

dX
(
v(s)y1, Y

)
≤ C ′v−ε for all s ∈ I, (9.13)

where C ′ �X,α 1.
The proof of Theorem 1.2 is now completed as the proof of Theorem 1.1 if

we replace Proposition 1.1 with part (1) above and (9.13), see Sect. 8.2.
We note that

C3 �X,α 1 and κ3 = cκ6ε, (9.14)

where the notation�X,α is defined in (9.3), c is an absolute constant, and κ6 is
as in Proposition 4.2; we also used the fact thatC10 �X 1, see Proposition 4.2.

Note that κX in (4.1), and hence κ3, is absolute if � is congruence. ��

9.2 Proof of Theorem 1.3

Let � ⊂ SL2(C) be as in the statement. As was mentioned prior to Theo-
rem 1.3, a totally geodesic plane in M lifts to a periodic orbit of H = SL2(R)

in X = G/�.
Recall from Sect. 3.1 that X \ XηX is a disjoint union of finitely many cusps.

Let M0 ⊂ M denote the image of XηX in M . Then M \ M0 is a disjoint union
of finitely many (possibly none) cusps.

Let η1 > 0 be so that for i = 1, 2 there exists xi ∈ Xη0 such that BG
η1

.xi
projects into the interior of Ni ∩ M0. In view of [48, Thm. 1.5], applied with
s = 1/2, we have η1 �X area(�)−4 where � = ∂N1 = ∂N2.

Thus, Theorem 1.2 implies that if Hx is a periodic orbit which satisfies

C3vol(Hx)−κ3 ≤ 0.5min{η1, ηX }, (9.15)
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then Hx∩BG
η1

.xi �= ∅, for i = 1, 2. Therefore, the corresponding plane crosses
�.

Let us now assume that S is a plane which crosses�. By [25, Thm. 4.1], see
also [3, Prop. 12.1], S intersects � orthogonally. It is shown in [25, Prop 5.1]
that one can construct an explicit open set O of the unit tangent bundle of M
which projects into the 1-neighborhood of M0 and does not intersect such an
S — indeed this set is constructed using a tubular neighborhood of � ∩ M0.
Let η2 and x ∈ X be so thatBG

η2
.x projects into O . In view of [48, Thm. 1.5],

applied with s = 1/2, and the construction in [25, Prop 5.1], we have η2 �X
area(�)−4.

Note that Hx ∩ BG
η2

.x = ∅. However, by Theorem 1.2 again, if

C3vol(Y )−κ3 ≤ 0.5η2,

then Hx ∩ BG
η2

.x �= ∅.
This and (9.15) thus imply that

vol(Hx) ≤
(

2C3
min{ηX ,η1,η2}

)1/κ3 �X area(�)4/κ3C1/κ3
3 .

Moreover, in view of [48, Cor. 10.7], the number of periodic H -orbits with
vol(Hx) ≤ T is �X T 6.

When G = SL2(C) (which is the case here), C7 � | log ηX | for an abso-
lute implied constant; see the proof of Proposition 3.1. Moreover, in view of
Lemma 2.4 and the fact that α = 1 − 0.0005ε0, we have emα � κ−�

X for
absolute implied constants (see Proposition 4.2).

The proof is thus complete in view of the above, (9.14), and (9.3). ��
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Appendix A: Proof of Proposition 3.1, Case 2

In this section we complete the proof of Proposition 3.1. Recall that we are
left with the case where G = SL2(R) × SL2(R) and � is irreducible.

By a theorem of Selberg [57], we have the following: up to automorphisms
ofG, irreducible non-uniform lattices in SL2(R)×SL2(R) are commensurable
to SL2(O) whereO is the ring of integers in a totally real quadratic extension
L/Q.
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Passing to a finite index subgroup, we may assume that � ⊂ SL2(O).
Since the statement of Proposition 3.1 is insensitive to passing to a finite index
subgroup we may (and will) assume � = SL2(O). By fixing a Z-basis for O
one can now identify

G = G(R) and � = G(Z),

where G = ResL/Q(SL2), the restriction of scalars from L to Q. This choice
of Z basis induces a canonical identification between G(Q) and SL2(L) and
in the sequel we shall implicitly identify these two groups.

Let B ⊂ SL2 denote the group of upper triangular matrices in SL2 and put
P = ResL/Q(B). Then P is a minimal and maximal Q-parabolic subgroup of
G. By a theorem of Borel and Harish-Chandra, he action of � on P(Q)\G(Q)

has finitely many orbits; let � ⊂ G(Q) be a finite subset which contains
exactly one representative for each orbit (we always assume � contains the
identity element). Then

G(Q) = P(Q)��, (A.1)

and if γ ξ1P(Q)ξ−1
1 γ−1 = ξ2P(Q)ξ−1

2 where γ ∈ � and ξ−1
i ∈ �, then

ξ1 = ξ2.
In the case at hand, g = Lie(G) = sl2(R)⊕sl2(R), moreover, g is equipped

with the Q-structure:

gQ = sl2(L) ⊂ g.

We will also write gZ for sl2(O); then gZ is a lattice in g.
Note that O×gZ = gZ. Recall the following elementary fact: there exists

some c = cL so that the following holds. For every w = (w1, w2) ∈ g with
‖w1‖‖w2‖ �= 0, there exists some s ∈ O× so that

c−1
(
‖w1‖‖w2‖

)1/2 ≤ ‖pi (sw)‖ ≤ c
(
‖w1‖‖w2‖

)1/2
, (A.2)

for i = 1, 2, where pi denotes the projection onto the i-th components, see
e.g. [39, Lemma 8.6].

Let N = Ru(P(R)), i.e. N is the unipotent radical of P(R). We fix a basis
{v1, v2} for Lie(N ) consisting of primitive integral vectors as follows. Write

L = Q[√β]; put v1 =
(
E12, E12

)
and v2 =

(√
βE12,−√

βE12

)
where E12

denotes the elementary matrix with 1 at the (1, 2)-entry, and define

v := v1 ∧ v2 ∈ ∧2g.
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Polynomial effective density in quotients 1219

Since v ∈ ∧2gZ, for any g ∈ G(Q), we have �g.v is contained in the set of
rational vectors in ∧2g whose denominators (with respect to the Z-structure
given by gZ) are bounded in terms of g. In particular, �g.v is a discrete and
closed subset of ∧2g.

Note that for any g = (g1, g2) ∈ G, we have

gv = (gv1) ∧ (gv2)

= −2
√

β
(
g1E12, 0

)
∧

(
0, g2E12

)
.

(A.3)

Define ω : G/� → [2,∞) as follows:

ω(g�) = max

{
2,max

{
‖gγ ξ.v‖−1 : ξ ∈ �−1, γ ∈ �

}}
. (A.4)

We have the following analogue of Lemmas 3.1 and 3.2. In the case at hand,
this result is a consequence of the fact that the Q-rank of G is 1 — recall that
P is a minimal and maximal Q-parabolic subgroup of G.

Lemma A.1 Let the notation be as above.

(1) There exists C = C(�) ≥ 2 so that the following holds. Let g� ∈ X. If
ω(g�) ≥ C, then there is ξ0 ∈ �−1 and γ0 ∈ � so that ‖gγ0ξ0.v‖−1 =
ω(g�) and

‖gγ ξ.v‖ > 1/C, for all (ξ, γ ) so that γ ξ.v �= γ0ξ0.v.

(2) There exists C18 so that the following holds. Let 0 < �, η < 1, t > 0, and
g ∈ G. Let I ⊂ R be an interval of length at least η. Then

∣∣∣
{
r ∈ I : ‖atur g.v‖ ≤ e2tη4�4‖gv‖

}∣∣∣ ≤ C18�|I |.

Proof Aswementioned above, there is someM ∈ N so that��−1.vi ⊂ 1
M gZ.

Let 0 < δ < 1 be a small number which will be explicated later. Suppose
there are γ ξ.v �= γ ′ξ ′.v so that

‖gγ ξ.v‖ < δ and ‖gγ ′ξ ′.v‖ < δ. (A.5)

We first show that γ ξ.v /∈ R.γ ′ξ ′v. Assume contrary to this claim that γ ξ.v =
λγ ′ξ ′v for some λ ∈ R. Then since P(R) is the projective stabilizer of v, we
conclude that

γ ξP(R)ξ−1γ−1 = γ ′ξ ′P(R)ξ ′−1γ ′−1.
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1220 E. Lindenstrauss, A. Mohammadi

This in view of the choice of�, see the discussion following (A.1), implies that
ξ = ξ ′. Thus, since P(R) is its own normalizer inG(R), γ−1γ ′ ∈ ξP(R)ξ−1.
We conclude that λ = NL/Q(s2) for a unit in s ∈ O× (recall that G =
RL/Q(SL2)). Hence, λ = 1 which contradicts our assumption.

Recall thatv = v1∧v2 wherev1 =
(
E12, E12

)
andv2 =

(√
βE12,−√

βE12

)
.

Since γ ξ.v /∈ R.γ ′ξ ′v the subspace generated by the four vectorswi = gγ ξ.vi
w′
i = gγ ′ξ ′.vi , for i = 1, 2 has dimension ≥ 3. We claim this subspace also

generates a nilpotent subalgebra of g. This contradicts the fact that the dimen-
sion of any maximal nilpotent subalgebra in g is 2 and finishes the proof of
part (1).

To see the claim, note that (A.5) and the identity in (A.3) imply

‖p1(w1)‖ · ‖p2(w2)‖ ≤ δ/2,

similarly for w′
1 and w′

2. In view of the definition of vi (and wi ), therefore,
‖p1(wi )‖ · ‖p2(wi )‖ �β δ for i = 1, 2. Similarly, we have w′

1 and w′
2.

We now apply (A.2) to the four vectors w1, w2, w
′
1, w

′
2. In consequence,

there are si , s′i ∈ O× so that ‖siwi‖ �β δ1/2 and ‖s′iw′
i‖ �β δ1/2 for

i = 1, 2.
Moreover, {s1w1, s2w2, s′1w′

1, s
′
2w

′
2} are nilpotent elements in 1

M Ad(g)gZ.

Since
∥∥∥[w, w′]

∥∥∥ ≤ ‖w‖‖w′‖, we get from the discreteness of Ad(g)gZ that

if δ is small enough, then {s1w1, s2w2, s′1w′
1, s

′
2w

′
2} generates a nilpotent Lie

algebra as we claimed.
The argument for part (2) is similar to the proof of Lemma 3.2 as we now

explain. For every g ∈ G and every δ > 0, put

I (g, δ) =
{
r ∈ I : ‖p+i (ur g.vi )‖ ≤ 0.01δη2‖pi (g.vi )‖ for i = 1 or i = 2

}
,

where p+1 denotes the projection from g onto R(E12, 0) and p+2 denotes the
projection from g onto R(0, E12); recall also that pi denotes projection onto
the i-th component. As it was observed in Lemma 3.2, we have

|I (g, δ)| ≤ 2C ′δ1/2|I |.

Let δ = 100�2, and let r ∈ I \ I (g, δ). Then

‖p+i (ur g.vi )‖ ≥ η2‖pi (g.vi )‖�2 for i = 1, 2. (A.6)
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Polynomial effective density in quotients 1221

Using (A.3), we have ‖g.v‖ = 2‖p1(g.v1)‖·‖p2(g.v2)‖. Since at .w = etw

for anyw ∈ span
{
(E12, 0), (0, E12)

}
, using (A.3) and (A.6), we conclude that

e2tη4‖g.v‖�4 = 2e2tη4‖p1(g.v1)‖ · ‖p2(g.v2)‖�4

≤ 2e2t‖p+1 (ur g.v1)‖ · ‖p+2 (ur g.v2)‖
=

∥∥∥at
(
(p+1 (ur g.v1), 0) ∧ (0, p+2 (ur g.v2))

)∥∥∥ ≤ ‖atur g.v‖.

The claim thus holds with C18 = 20C ′. ��
Lemma A.2 Let the notation be as above. There exists C19 so that

C−1
19 ω(x)−1 ≤ inj(x)2 ≤ C19ω(x)−1

for all x ∈ X.

Proof Let g ∈ G and assume that inj(g�) < δ. Then

g�g−1 ∩ BG
Cδ �= {e}

where C is an absolute constant.
If δ is small enough, then g�g−1∩BG

Cδ consists only of unipotent elements.
Therefore, there exists some nilpotent element w ∈ gZ so that

‖gw‖ � δ,

where the implied constant is absolute.
Since all minimal Q-parabolic subgroups of G are conjugate to each other

by elements in G(Q), it follows from (A.1) that there exists some γ ∈ � and
some ξ ∈ � so that w ∈ γ−1ξ−1.Lie(N ). Therefore, we may write

w = γ−1ξ−1.
(
(b + c

√
β)E12, (b − c

√
β)E12

)

where b, c ∈ 1
M Z for some M depending on �.

Using the Iwasawa decomposition, we write gγ−1ξ−1 = kan where k ∈
SO(2) × SO(2), n ∈ N , and a = (at1, at2) is diagonal. Therefore,

et1+t2(b2 + c2β) � δ2,

where the implied constant is absolute.
Now since b, c ∈ 1

M Z are non-zero, we have b2 + c2β �M 1. Altogether,
we conclude that

‖gγ−1ξ−1.v‖ = 2‖p1(at1 .v1)‖‖p2(at2 .v2)‖
≤ 2

√
βet1+t2 ≤ 2

√
βĈδ2
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1222 E. Lindenstrauss, A. Mohammadi

where Ĉ depends on �. Since ω(g�)−1 ≤ ‖gγ−1ξ−1.v‖, the lower bound in
the lemma follows.

We now turn to the proof of the upper bound. Using the reduction theory
for arithmetic groups, see e.g. [50, Ch. 4], there exist t0, r0 > 0 so that

(
SO(2) × SO(2)

)
·
{
(at , at ′

)
: t + t ′ ≤ t0

}
· {n(r, s); |r |, |s| ≤ r0} · �

is a (generalized) fundamental domain for � in G.
In particular, using Lemma A.1(1), there exists t1 ≤ t0 so that if g =

k(at , at ′)n(r, s)ξ0γ0 for t + t ′ ≤ t1, then

ω(g�) = max
{
‖gγ ξ−1.v‖−1 : (ξ, γ ) ∈ � × �

}
= ‖gγ−1

0 ξ−1
0 .v‖−1

= ‖k(at , at ′)n(r, s).v‖−1 = e−t−t ′‖v‖−1.

Moreover, using (A.3) and (A.2)we conclude that gγ−1
0 ξ−1

0 (N∩�)ξ0γ0g−1

contains elements of size e(−t−t ′)/2. The upper bound estimate follows. ��
Proof of Proposition 3.1: Case 2 By Lemma A.2, t ≥ | log(η2 inj(g�))|+C7
implies 2t ≥ log(ω(g�)/η4) if we assume C7 is large enough.

Let �0 = 0.1C−1
18 . In view of Lemma A.1(2) we have

sup
{
‖atur gγ ξ−1.v‖ : r ∈ I

}
≥ �4

0 for all γ ∈ � and ξ ∈ �

so long as 2t ≥ | log(ω(g�)/η4)|.
Altogether, the conditions in [38, Thm. 4.1] are satisfied so long as t ≥

| log(η2 inj(g�))| +C7. Hence, similar to the previous case, the conclusion of
the proposition in this case also holds true in view of [38, Thm. 4.1]— in light
of Lemma A.1(1), the proof simplifies significantly. ��

We also record the following which is a special case of the results and
techniques developed in [22] and [20] tailored to our setup here.

Proposition A.3 Let 0 < α < 1 and let mα be as in (2.12). There exists some
B = B(X, α) ≥ 1 satisfying the following. For every x ∈ X and every n ∈ N

we have
∫

H
inj(hx)−α dν(n)(h) ≤ e−n inj−α(x) + B,

where ν(ϕ) = ∫ 1
0 ϕ(amαur ) dr for every ϕ ∈ Cc(H) and ν(n) denotes the

n-fold convolution of ν.
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Proof If X is compact, then inj : X → R is a bounded function and the result
is clear.

Therefore, we may assume X is not compact. If G = SL2(C), the claim in
the proposition is proved in [48].

We now consider G = SL2(R)×SL2(R) and consider separately the cases
where � is a reducible lattice and � is irreducible.

Case 1. Let use first assume that� is reducible. As was done before, passing
to a finite index subgroup, we may assume � = �1 × �2.

Let ω be defined as in (3.3). That is:

ω(x) = max{ω1(x1), ω2(x2)},

where x = (x1, x2).
By [48, Prop. 6.7] we have ω(x) � inj(x)−1. Therefore, it suffices to prove

the proposition with inj(x) replaced by ω(x). The result for ω1 and ω2 is
well-known, see e.g. [20,22,48].

The result for ω thus follows as ωα ≤ ωα
1 + ωα

2 ≤ 2ωα .
Case 2. Assume now that � is irreducible. We will use the notation which

we fixed in the beginning of this appendix. In particular, as was done in (A.4),
define

ω(g�) = max

{
2,max

{
‖gγ ξ.v‖−1 : ξ ∈ �−1, γ ∈ �

}}
.

In view of Lemma A.2, we have ω(x) � inj(x)−2 for all x ∈ X . Therefore,
it suffices to prove the claim for ω1/2 instead if inj.

Let us recall from (A.3) that

gv = −2(p1(g.v), 0) ∧ (0, p2(g.v))

= −2
√

β(g1E12, 0) ∧ (0, g2E12) (A.7)

for any g = (g1, g2).
Let x = g�. Fix γ ∈ � and ξ ∈ �−1; for all r ∈ [0, 1] and � ∈ N put

hr = a�urγ ξ . In view of the Cauchy-Schwarz inequality and (A.7), applied
with hr g, we have

(∫ 1

0
‖hr gv‖−α/2 dr

)2

≤ 2
√

β

∫ 1

0
‖hr1g1E12‖−α dr

∫ 1

0
‖hr2g2E12‖−α dr. (A.8)
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1224 E. Lindenstrauss, A. Mohammadi

Then for i = 1, 2, by choice of mα , we have

∫ 1

0
‖amαur giγiξi E12‖−α dr < e−1‖giγiξi E12‖−α,

see (2.12).
Using (A.7) in reverse order and (A.8), we conclude from the above two

estimates that

∫ 1

0
‖amαur gγ ξv‖−α/2 dr ≤ e−1‖gγ ξv‖−α/2. (A.9)

Let C(�) be as in Lemma A.1. Then there exists some B ′
mα

> 0 so that if
ω(g�) = ‖gγ ξv‖−1 ≥ C(�) · B ′

mα
, then

ω(amαur g�) = ‖amαur gγ ξv‖−1 ≥ C(�)

for all r ∈ [0, 1].
This and (A.9) imply that for all x ∈ X , we have

∫
ωα/2(hx) dν(h) =

∫ 1

0
ωα/2(amαur x) dr ≤ e−1ωα/2(x) + B ′′,

where B ′′ = max{ω(amαur g�) : r ∈ [0, 1], ω(g�) ≤ C(�) · B ′
mα

}.
Iterating this estimate and summing the geometric sum, we conclude that

∫
ωα/2(hx) dν(n)(h) ≤ e−nωα/2(x) + B (A.10)

for all n ∈ N where B = 2B ′′. The proof is complete. ��

Appendix B: Proof of Theorem 5.1

Recall that r ⊂ Lie(G) is identified with sl2(R) equipped with the adjoint
action of SL2(R).

Theorem B.1 Let 0 < α ≤ 1, and let 0 < b0 < b1 < 1. Let E ⊂ Br(0, b1)
be a finite set, and let ρ denote the uniform measure on E. Assume that

ρ(Br(w, b)) ≤ ϒ · (b/b1)α for all w and all b ≥ b0, (B.1)

where ϒ ≥ 1.
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Let 0 < ε < 0.01α, and let J ⊂ [0, 1] be an interval with |J | ≥ 10−6. For
every b ≥ b0, there exists a subset Jb ⊂ J with |J \ Jb| ≤ Cε(b/b1)ε so that
the following holds. Let r ∈ Jb, then there exists a subset Eb,r ⊂ E with

ρ(E \ Eb,r ) ≤ Cε(b/b1)
ε

such that for all w ∈ Eb,r , we have

ρ
(
{w′ ∈ E : |ξr (w′) − ξr (w)| ≤ b}

)
≤ Cε(b/b1)

α−7ε

where Cε � ε−�ϒ� (implied constants are absolute) and

ξr (w) = (Ad(ur )w)12 = −w21r
2 − 2w11r + w12.

We need some more notation for the proof. First note that the assumption
and the conclusion in the theorem are invariant under scaling. Thus replacing
E by b−1

1 · E and b0 by b0/b1, we may assume b1 = 1. We prove the theorem
for J = [0, 1], the proof in general is similar.

Let

�(w) =
{
(r, ξr (w)) : r ∈ [0, 1]

}

for every w ∈ E , and let � = ⋃
w �(w).

For every b > 0 and every w ∈ E , let

�b(w) =
{
(q1, q2) ∈ [0, 1] × R : |q2 − ξq1(w)| ≤ b

}
.

Finally, for all q ∈ R
2 and b > 0, define

mb
ρ(q) := ρ

(
{w′ ∈ r : q ∈ �b(w′)}

)
. (B.2)

The assertion in the theorem may be rewritten in terms of the multiplicity
function mb

ρ as follows. We seek the set Jb ⊂ [0, 1], and for every r ∈ Jb, the
set Eb,r ⊂ E so that

mb
ρ

(
(r, ξr (w))

)
≤ Cεb

α−7ε for all w ∈ Eb,r . (B.3)

The following lemma plays a crucial role in the proof of Theorem B.1. This
is a more detailed version of [56, Lemma 8] in the setting at hand, see also
[65, Lemma 1.4] and [66, Lemma 2.1]. Indeed, Lemma B.2 is a restatement
of [33, Lemma 5.1] for a family of parabolas; similar to loc. cit., the regularity
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1226 E. Lindenstrauss, A. Mohammadi

of the measure ρ, (B.1), is used as a replacement for the assumption in [56,
Lemma 8] that the family has separated radii.

Lemma B.2 Let the notation be as in Theorem B.1 with b1 = 1. In particular,
E ⊂ Br(0, 1) and (B.1) is satisfied. For every 0 < ε ≤ 0.01α, there exists
0 < D � ε−�ϒ� (implied constants are absolute) so that the following holds.
Let b ≥ b0. Then there exists a subset Ê = Êb ⊂ E with #(E \ Ê) ≤ bε · (#E)

so that for every w ∈ Ê , we have

∣∣∣�b(w) ∩
{
q ∈ R

2 : mb
ρ(q) ≥ Dbα−7ε

}∣∣∣ ≤ b2ε/α|�b(w)|.

The proof of this lemma is mutatis mutandis of the argument in [33, Lemma
5.1] where one replaces the use of [65, Lemma 1.4] with [66, Lemma 5.18].
We explicate the notation and the main steps for the convenience of the reader.

Define � : R
2 × R

2 → R by

�(x, y) = y2 + 2x1y1 + x2y
2
1 .

Given x0 ∈ R
2 and r0 ∈ R, the set {y ∈ R

2 : �(x0, y) = r0} is a special
example of a �-circle in [40,66].

Note that �(w) =
{
y ∈ R

2 : y1 ∈ [0, 1], �
(
(w11, w21), y

)
= w12

}
. The

family � satisfies the cinematic curvature conditions [66, Eq. (1.5) and (1.6)].
Indeed in the case at hand, these conditions follow from the following estimate

1
3 max{|x1|, |x2|} ≤ | ∂�

∂y1
| + | ∂2�

∂y21
| ≤ 3max{|x1|, |x2|}; (B.4)

we remark that when �(0, y) = y2, as is the case here, (B.4) (with 3 replaced
by a constant C) may be taken as the definition of the cinematic curvature
conditions, see [40, Eq. (21)].

Let w, w′ ∈ Br(0, 1); define

�(w − w′) =
∣∣∣det(w − w′)

∣∣∣.

The function � may be used to quantitatively measure the tangency of �(w)

and �(w′). Our choice of � is different from �Br(0,2) which is defined in [66,
Def. 2.2], however, in the case at hand � � �Br(0,2) — indeed, the (reduced)
discriminant of ξr (w) − ξr (w

′) equals − det(w − w′).

123



Polynomial effective density in quotients 1227

By [40, Lemma 3.1], for all 0 < δ < 0.1 and all w, w′ ∈ Br(0, 1), we have

diam
(
�δ(w) ∩ �δ(w′)

)
�

√
�(w − w′) + δ√‖w − w′‖ + δ

, (B.5a)

|�δ(w) ∩ �δ(w′)| � δ2√
(‖w − w′‖ + δ)(�(w − w′) + δ)

, (B.5b)

here and in the remaining parts of the argument, the implied constants are
absolute unless otherwise is stated explicitly.

LetW,B ⊂ Br(0, 1). We say (W,B) is t-bipartite if

max{diam(W), diam(B)} ≤ t ≤ d(W,B). (B.6)

Let 0 < δ ≤ t ≤ 1. A (δ, t)-rectangle R ⊂ R
2 is a δ-neighborhood of

a piece of a parabola �(w), w ∈ Br(0, 1), with length
√

δ/t . We say that
two (δ, t)-rectangles are C-comparable if there is a (Cδ, t)-rectangle which
contains both of them. Otherwise, they areC-incomparable. Letw ∈ Br(0, 1),
the parabola �(w) is C-tangent to a (δ, t)-rectangle R, if �Cδ(w) contains R.
Finally, fixing some large absolute constant Ĉ ≥ 1, we say that two rectangles
are comparable, if they are Ĉ-comparable. Similarly,�(w) is said to be tangent
to a rectangle R if �(w) is Ĉ-tangent to R.

Let 0 < δ ≤ t ≤ 1, and let (W,B) be t-bipartite. Let R be a (δ, t)-rectangle.
Put WR = {w ∈ W : �(w) is tangent to R}; define BR analogously. We say
R is of type (≥ μ,≥ ν) with respect to ρ,W , and B if

ρ(WR) ≥ μ and ρ(BR) ≥ ν.

We say R is of type (μ, ν) if μ ≤ ρ(WR) < 2μ and ν ≤ ρ(BR) < 2ν.
The following is an analogue of [65, Lemma 1.4] tailored to our setting

here; see also [66, Lemma 5.18] and [33, Lemma 4.4].

Lemma B.3 Let 0 < δ ≤ t ≤ 1, and let (W,B) be t-bipartite. Let ε > 0. Then
the number of pairwise incomparable (δ, t)-rectangles of type (≥ μ,≥ ν)with
respect to ρ,W , and B is at most

Dε(μνδ)−ε

((
ρ(W)ρ(B)

μν

)3/4

+ ρ(W)
μ

+ ρ(B)
ν

)

where Dε � ε−� and the implied constants are absolute.

Proof Replacing the use of [65, Lemma 1.4] with [66, Lemma 5.18], the
same proof as in [33, Lemma 4.4] applies here. The argument is standard:
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1228 E. Lindenstrauss, A. Mohammadi

given (W,B) and a collection R of incomparable (δ, t)-rectangles, one uses
a dyadic decomposition argument to find i, j ∈ N with

2i/ i2 ≤ δ−3μ−1 and 2 j/j2 ≤ δ−3ν−1,

a subset R′ ⊂ R with #R′ � ε−�(#R)δ6εμενε, and a t-bipartite (W ′,B′)
where W ′,B′ ⊂ Br(0, 1) are δ-separated with #W ′ � 2iρ(W) and #B′ �
2 jρ(B), so that every R ∈ R′ is of type

(≥ D′
ε2

iμ1+εδ3ε,≥ D′
ε2

jν1+εδ3ε)

with respect to the counting measure, W ′, and B′ for some D′
ε � ε−�. One

then applies [66, Lemma 5.18] to (W ′,B′) and R′ and obtains a bound for
#R′ which implies the desired bound for #R. We note that the definition of a
t-bipartite family in [66] requires the radii are δ-separated, [66, Def. 2.3]; this
assumption however is not used in the proof of [66, Lemma 5.18]. Indeed as
in [65, Lemma 1.4], one only needs δ-separation is the parameter space, i.e.
‖w − w′‖ ≥ δ in the case at hand.

The final estimate Dε � ε−� follows from D′
ε � ε−� and the fact that the

implied constant in [66, Lemma 5.18] is � ε−�. This follows from the proof
of [66, Lemma 5.18], see in particular [65, pp. 1252–1253]. ��
Proof of Lemma B.2 Throughout the argument, D will be assumed to be a
large constant which is allowed to depend (polynomially) on 1/ε and ϒ .

Let b ≥ b0 be the largest dyadic number where the lemma fails; taking
D large enough, we assume that b is small compared to absolute constants
whenever necessary. Let A = (Db−3ε)1/α and λ = b2ε/α . By the choice
of b, there exists μ ≥ Dbα−7ε = Aαλ−2αbα and a subset E ′ ⊂ E with
#E ′ > bε · (#E) = D1/3A−α/3 · (#E) so that for all w ∈ E ′, we have

∣∣∣�b(w) ∩
{
q ∈ R

2 : mb
ρ(q) ≥ μ

}∣∣∣ ≥ λ|�b(w)|.

For every w ∈ r and dyadic numbers t, δ ∈ (b, 1], define

Eδ,t (w) =
{
w′ ∈ E : �b(w) ∩ �b(w′) �= ∅,

t ≤ ‖w − w′‖ < 2t
δ ≤ �(w − w′) < 2δ

}
.

Define Eb,t (w) similarly, except in this case no lower bound is assumed for
�, that is, we only assume �(w − w′) < 2b.

For every F ⊂ E , define m •
ρ(q|F) = ρ

(
{w′ ∈ F : q ∈ �

•
(w′)}

)
. Replac-

ing the use of [33, Lemma 3.6] with (B.5a) and (B.5b), one may argue as in
the proof of [33, Eq. (5.4)] and conclude the following. There exist absolute
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constants C,C1 ≥ 1, Ē ⊂ E ′ with # Ē ≥ C−1| log b|−C · (#E ′), and some
dyadic number n ∈ {1, . . . , δ/b}, so that if we put

λδ = | log b|−C · λδ

Cnb
, Aδ = C | log b|C · Aδ

nb
, (B.7)

and μδ = | log b|−C · nμ
C , then for all w ∈ Ē we have

|�δ(w) ∩ {q ∈ R
2 : mC1δ

ρ (q|Eδ,t (w)) ≥ μδ}| ≥ 2λδ|�δ(w)|, (B.8)

see [33, Eq. (5.12)]. Note also that μδ � | log b|−�Aα
δ λ−2α

δ δα .
Fix a large dyadic number N ≥ 2, in particular, Nδ ≥ 2b. Now (B.8) and

the inductive hypothesis (recall the choice of b), imply that there exists a subset
Ē ′ ⊂ Ē with # Ē ′ � # Ē so that for all w ∈ Ē ′, we have

∣∣∣�δ(w) ∩
{
q ∈ R

2 : μδ ≤ mC1δ
ρ (q|Eδ,t (w)) ≤ mNδ

ρ (q) ≤ Mδ

}∣∣∣
≥ λδ

∣∣∣�δ(w)

∣∣∣, (B.9)

where Mδ = Aα
δ (λδ/CN )−2αδα � | log b|�μδ , see [33, Eq. (5.14)].

Let {Br(wi , 0.1t)} be a covering of Ē ′ chosen so that {Br(wi , 2.1t)}
has bounded multiplicity. Replacing Ē ′ with a subset whose ρ measure is
≥ 0.5ρ(Ē ′), we assume that ρ(Br(wi , 0.1t)∩ Ē ′) � t3ρ(Ē ′) for all wi ∈ Ē ′.

Let i0 be so that ρ(Br(wi0, 0.1t)∩ Ē ′)/ρ(Br(wi0, 2.1t)) is maximized. Put
W ′ := Br(wi0, 0.1t) ∩ Ē ′ and B := Br(wi0, 2.1t) \ Br(wi0, 0.9t).

Replacing W ′ by a subset W ⊂ W ′ with ρ(W) ≥ 0.5ρ(W ′), we may
assume that for all z ∈ W , there is a dyadic cube Q(z) of side-length δ which
contains z and ρ(Q(z)∩W) � (δ/t)3ρ(W) � | log b|−�A−α/3δ3. Note also
that since the covering {Br(wi0, 2.1t)} has bounded multiplicity, we have

ρ(W) ≥ 0.5ρ(W ′) � | log b|−�A−α/3ρ(B).

By the definition, (W,B) is t-bipartite, see (B.6). Moreover, for allw ∈ W ,
we have Eδ,t (w) ⊂ B. Hence,

mC1δ
ρ (q|Eδ,t (w) ∩ B) = mC1δ

ρ (q|Eδ,t (w)), (B.10)

for all w ∈ W and q ∈ R
2. We conclude from (B.10), (B.9), and (B.1) that

| log b|−�Aα
δ λ−2α

δ δα � μδ ≤ mC1δ
ρ (q|Eδ,t (w) ∩ B) ≤ ρ(B) � tα;

therefore, δ is much smaller than t if D is large enough, see (B.7) and recall
that A = (Db−3ε)1/α and 0 < λδ ≤ 1.
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SinceW ⊂ Ē ′, (B.9) and (B.10) imply that for all w ∈ W , we have

∣∣∣�δ(w) ∩
{
q ∈ R

2 : μδ ≤ mC1δ
ρ (q|Eδ,t (w) ∩ B) ≤ mNδ

ρ (q) ≤ Mδ

}∣∣∣
≥ λδ

∣∣∣�δ(w)

∣∣∣.
(B.11)

Assuming N is large enough, depending on C1, (B.11) implies that every
w ∈ W supplies � λδ

√
t/δ incomparable (δ, t)-rectangles each of which is

N/2-tangent to �(w) and has type ≥ μδ with respect to B where the type
refers to N -tangency. From this, we conclude that there are

� | log b|−�ρ(W)λδ

√
t/δ/νδ

incomparable (δ, t)-rectangles of type (≥ νδ,≥ μδ)with respect to ρ,W , and
B where b4 ≤ νδ ≤ Mδ is a dyadic number and type refers to N -tangency.
Comparing this bound with the bound given by Lemma B.3 yields a contra-
diction and finishes the proof, see [33, pp. 20–21].

The assertion D � ε−�ϒ−� follows from the above outline, together with
the fact Dε in Lemma B.3 is � ε−�. ��

We now turn to the proof of Theorem B.1. The argument is a slight modifi-
cation of the proof of [33, Thm. 7.2].

Proof of Theorem B.1 Assume that the conclusion of the theorem fails for
some C . That is, there exists a subset J̄ ⊂ [0, 1] with | J̄ | > Cbε so that for
all r ∈ J̄ we have

ρ(E ′
r ) ≥ Cbε, (B.12)

where E ′
r =

{
w ∈ E : mb

ρ

(
(r, ξr (w))

)
> Cbα−7ε

}
. We will get a contradic-

tion if C is large enough.
Let Ê be as in Lemma B.2 applied with 8b, then ρ(Ê) ≥ 1 − (8b)ε. This

and (B.12) now imply that for every r ∈ J̄ , we have ρ(Ê ∩ E ′
r ) ≥ Cbε/2 so

long as C ≥ 16.
We conclude that

0.5C2b2ε ≤
∫

J̄
ρ(Ê ∩ E ′

r ) dr

≤
∫

Ê
|{r : mb

ρ(r, ξr (w)) > Cbα−7ε}| dρ.
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Therefore, there exists some w0 ∈ Ê so that
∣∣∣
{
r ∈ [0, 1] : mb

ρ

(
(r, ξr (w0))

)
> Cbα−7ε

}∣∣∣ ≥ 0.5C2b2ε. (B.13)

For every r ∈ [0, 1], let Lr := {(r, s) : s ∈ R} be a vertical line, and let
I ⊂ Lr be an interval of length b containing (r, ξr (w0)). Put

I+,b =
{
(q1, q2) ∈ [r − b, r + b] × R : ∃(r, s) ∈ I, |q2 − s| ≤ b

}
.

If (q1, q2) ∈ I+,b, then |q1 − r | ≤ b and |q2 − ξr (w0)| ≤ 2b. Therefore,

|q2 − ξq1(w0)| ≤ |q2 − ξr (w0)| + |ξr (w0) − ξq1(w0)| ≤ 8b.

We conclude that (q1, q2) ∈ �8b(w0). This and mb
ρ

(
(r, ξr (w0))

)
> Cbα−7ε

imply that for every q ∈ I+,b, we have

m8b
ρ (q) ≥ ρ

(
{w′ ∈ E : (r, ξr (w

′)) ∈ I }
)
≥ Cbα−7ε. (B.14)

Combining (B.13) and (B.14), we obtain that

∣∣∣�8b(w0) ∩ {q ∈ R
2 : m8b

ρ (q) ≥ Cbα−7ε}}
∣∣∣ � C2b1+2ε

� C2b2ε|�8b(w0)| > b2ε/α|�8b(w0)|,

where the implied constant is absolute, and we assume C is large enough so
that the final estimate holds — recall that 0 < α ≤ 1.

This contradicts the fact that w0 ∈ Ê and finishes the proof. ��
Proof of Theorem 5.1 Fix some κ . We may assume b’s are dyadic numbers,
in particular bi = 2−�i , for i = 0, 1. Let �2 be so that

∞∑
�=�2

Cκ2
−κ� < 0.1min{|J |, 1}.

Let J ′ = ⋂�0
�=�2

J2−� . Then the choice of �2 and Theorem B.1 imply that
|J ′| ≥ 0.9|J |.

For every r ∈ J ′, let Er = ⋂�0
�=�2

E2−�,r . Then by Theorem B.1, ρ(Er ) ≥
0.9. Moreover, for all w ∈ Er and all �2 ≤ � ≤ �0 we have

ρ({w′ ∈ E : |ξr (w′) − ξr (w)| ≤ 2−�}) ≤ Cκ2
(α−7κ)(�1−�).
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The above implies that Theorem 5.1 holds true with J ′ and Er if we increase
Cκ to account for all b ≥ 2−�2 . ��

Appendix C: Proof of Lemma 5.1

We will prove Lemma 5.1 in this section. As was mentioned before, the proof
is taken from [6, Lemma 5.2], see also [5]; we reproduce the argument to
explicate the stated bounds on b1.

Proof of Lemma 5.1 We identify rwith R
3. By a dyadic cube we mean a cube

[n1
2k

, n1+1
2k

) × [n2
2k

, n2+1
2k

) × [n3
2k

, n3+1
2k

)

for an integer k ≥ 0 and 0 ≤ ni < 2k .
Let ρ denote the uniformmeasure on F . Let b ≥ (#F)−(1+ε)/α andw ∈ R

3,
then

b−αρ
(
B(w, b)

)
≤ 1

#F

(
b−α +

∑
w′∈B(w,b),w′ �=w

‖w − w′‖−α

)

≤ 1

#F

(
b−α + D(#F)(1+ε)

)

≤ (D + 1) · (#F)ε.

(C.1)

We will absorb the constant D using the notation� and� in what follows.
Let b0 = (#F)−1. Using the Besicovitch covering lemma and the fact that ρ

is probability measure, we conclude from (C.1) that F contains a subset F̂ of
b0-separated points with

# F̂ � bε−α
0 ,

where the implied constant is absolute.
Arguing as in the proof [6, Lemma 5.2], see also [5], with F̂ and α − ε,

there exists some T , depending on ε, and a subset F1 ⊂ F̂ , with

#F1 ≥ Ĉb2ε−α
0 (C.2)

so that the following holds. Let k1 =  − log2(b0)/T !, then there exist integers
R1, . . . , Rk1 with 1 ≤ R� ≤ 23T so that every 2−�T -cube which intersects F1
contains exactly R�+1, 2−(�+1)T -cubes which intersect F1.

123



Polynomial effective density in quotients 1233

Since each remaining 2−k1T -cube contains exactly one point, we have

k1∑
�=1

log2 R� = log2(#F1) ≥ (α − 2ε)T (k1 − 2), (C.3)

where we assume T is large enough to account for the constant Ĉ .
For every k > �k1ε� =: k0, let

Mk = min
k<�≤k1

1

� − k

�∑
k+1

log2 Ri .

Let k2 be the smallest integer so that Mk2 ≥ (α − 20ε)T if such exists, else
let k2 = k1. We claim

εk1 ≤ k2 ≤ 3−α+5ε
3−α+20εk1. (C.4)

The lower bound follows from the definition of k2, we show the upper bound.
First note that if k2 = k0 + 1, there is nothing to prove; suppose thus that
k2 > k0 + 1. Then for every k0 < i < k2, there is some i < i ′ ≤ k1 so that∑i ′

�=i log2 R� ≤ (α − s + ε)T (i − i ′); thus there is k2 ≤ k ≤ k1, so that

k∑
�=k0+1

log2 R� ≤ (α − 20ε)T (k − k0).

This, (C.3), and the fact that log2 R� ≤ 3T for all � imply that

3T k0 + (α − 20ε)T (k − k0) + 3T (k1 − k) ≥ 3T k0 +
k∑

�=k0+1

log2 R�

+ 3T (k1 − k) ≥
k1∑

�=1

log2 R� ≥ (α − 2ε)T (k1 − 2);

we conclude that k(3− α + 20ε) ≤ k1
(
3− α + 5ε

)
. This finishes the proof

of (C.4) as k2 ≤ k.
Let now D be any 2−k2T -cube which intersects F1. Let k2 < � ≤ k1, and

let D′ ⊂ D be a 2−�T -cube. Then

#(D′ ∩ F1) ≤
(
#(D ∩ F1)

)
·

�∏
i=k2+1

R−1
i .
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Since
∑�

k2 log2 Ri ≥ (α − 20ε)T (� − k2), we conclude that

#(B(w,b)∩D∩F1)
#(D∩F1)

≤ C ′(b/2−T k2
)α−20ε

for all b ≥ (#F)−1 where C ′ � ε−� with absolute implied constants.
Let F ′ = D ∩ F1, and let w0 ∈ D ∩ F1. The lemma holds with w0,

b1 = 21−T k2 , and F ′ = D ∩ F1 ⊂ B(w0, b1). ��
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