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Abstract
Suppose A = {a1, . . . , an+2} ⊂ Z

n has cardinality n + 2, with all the coordinates of
the a j having absolute value at most d, and the a j do not all lie in the same affine
hyperplane. Suppose F = ( f1, . . . , fn) is an n × n polynomial system with generic
integer coefficients at most H in absolute value, and A the union of the sets of exponent
vectors of the fi . We give the first algorithm that, for any fixed n, counts exactly the
number of real roots of F in time polynomial in log(dH). We also discuss a number-
theoretic hypothesis that would imply a further speed-up to time polynomial in n as
well.
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1 Introduction

Solving sparse polynomial systems remains a challenging problem, even 40 years after
the dawn of fewnomial theory [61, 62]. More recently, connections have emerged
between fewnomial theory over finite fields, cryptography, and number theory [26,
32, 37], and sparse polynomial systems over the real numbers continue to form the
foundation of applications including computational biology and biochemistry [18, 19,
42, 43] and circuit complexity [64]. However, efficiently counting the number of real
roots and even just finding a reasonably tight upper bound on the number of real roots
are still open problems. Here, we focus on the problem of exactly counting real roots
and roots in any given orthant. In what follows, all O-constants and o-constants are
absolute (and can be made explicit), time will refer to the number of (deterministic)
bit operations in the classical Turing model of computation, and we will use #S for
the cardinality of a set S.

Assuming A={a1, . . . , at }⊂Z
n , xa j := x

a1, j
1 · · · xan, j

n , and f (x)=∑t
j=1 c j x

a j ∈
Z

[
x±1
1 , . . . , x±1

n

]
, we define the support of f to be Supp( f ) := {a j | c j �= 0}.

We then call a system of the form F := ( f1, . . . , fn) ∈ Z

[
x±1
1 , . . . , x±1

n

]n
, with

fi (x) :=∑t
j=1 ci, j x

a j for all i and #
⋃n

i=1 Supp( fi ) = t , a t-nomial n × n system
(over Z) supported on A. We denote the positive orthant by R

n+, R
∗ := R \ {0} and

call a root of F in R
n+ a positive root.

If the a j do not all lie in the same affine hyperplane, then we clearly have t≥n+1.
It is natural to assume that the exponent vectors are non-coplanar in this sense, and we
will do so, for otherwise one could use a monomial change of variables to reduce F to
a system in fewer variables: See Remark 2.6 from Sect. 2. Our main theorem gives a
dramatic new speed-up for counting the exact number of real roots of F in the special
case t=n + 2.

Theorem 1.1 Following the notation above, assume further that t ≤ n + 2, A ⊂
{−d, . . . , d}n, and the coefficient matrix [ci, j ] lies in {−H , . . . , H}n×(n+2) and is
generic. Then, in time (n2 log(dH))(2+o(1))n, we can determine the number of roots of
F in R

n, (R∗)n, and R
n+. Furthermore, if t =n + 1, then we can do the same in time

n3.373 log1+o(1)(dH).

We prove Theorem 1.1 in Sect. 5.1, based mainly on Algorithms 4.1 and 4.3 from
Sect. 4. A key new ingredient is diophantine approximation over number fields.

Remark 1.2 We count roots without multiplicity. In particular, degenerate1 isolated
roots are not a problem and are counted correctly by our algorithms. �

A sufficient genericity condition for our faster counts in (R∗)n and R
n+ is the non-

singularity of the n × n sub-matrices of [ci, j ]. This condition is checkable in time
O
(
n4.373 log1+o(1)(nH)

)
: See Lemma 2.15 and Corollary 2.18 of Sect. 2.3. In partic-

ular, the fraction of coefficient matrices failing to satisfy this genericity condition is
no greater than n(n+2)(n+1)

4H+2 . A sufficient genericity condition for faster counting in R
n

1 Roots yielding a Jacobian with less than full rank.
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is detailed in Sect. 5 and also holds practically often: Probability 1 − ε when H has
�
(
n log(nd) + log 1

ε

)
bits (see Remark 5.8 of Sect. 5.1).

Root counting without genericity assumptions is rather non-trivial: Deciding finite-
ness for the number of real (or positive) roots in time (n log(dH))O(n) (i.e., roughly
as fast as our main algorithms), when t =n + 2 and f2 = · · ·= fn identically, is still
an open problem [15, 22]. Furthermore, for any fixed ε>0, deciding whether the non-
generic system F = ( f1, . . . , f1) has any real (or positive) roots is NP-hard already
for t=n+ nε [22]: With our underlying measure of size being nt(log(H)+ n log(d))

(which has asymptotically the same order as the number of bits needed to write
down all the monomial terms of F), the existence of an algorithm with complexity
(n log(dH))O(1), for just one ε>0, would imply P=NP.

Other than an algorithm for the very special case (n, t) = (1, 3) from [22], the
best previous deterministic complexity bound for t = n + 2 appears to have been
(nn log ndn)O(log2 n) arithmetic operations [9], via an algorithm solving the harder prob-
lem of computing roadmaps (see, e.g., [8, Ch. 15]) for arbitrary real algebraic sets.
One can also speed up to a (d log H)O(n) arithmetic complexity bound via [85] if one
assumes the complex zero set is finite. (All of these works build upon the seminal
works [12, 33, 38, 89]. See also [95] for more recent speed-ups via randomization.)
There have also been important recent advances from the point of view of numerical
conditioning (e.g., [40, 41]), even enabling practical computation of homology of real
projective sets, but work in this direction has not yet focused on speed-ups like The-
orem 1.1: With few exceptions, earlier work on solving polynomial systems over the
real numbers focused on coarser complexity bounds that ignored the finer monomial
term structure.

Example 1.3 Consider the 7-nomial 5 × 5 system F=( f1, . . . , f5) defined by

(
2x361 x1942 x503 x824 x605 + x761 x2402 x414 x5 + x741 x1792 x253 x575 + x251 x2032 x443 x4

+x201 x1672 x643 x124 x685 − 37137cx581 x1942 x243 x364 x255 − 9

2
x1663 x684 x3435 ,

x361 x1942 x503 x824 x605 + 2x761 x2402 x414 x5 + x741 x1792 x253 x575 + x251 x2032 x443 x4

+x201 x1672 x643 x124 x685 − 24849cx581 x1942 x243 x364 x255 − 21

4
x1663 x684 x3435 ,

x361 x1942 x503 x824 x605 + x761 x2402 x414 x5 + 2x741 x1792 x253 x575 + x251 x2032 x443 x4

+x201 x1672 x643 x124 x685 − 21009cx581 x1942 x243 x364 x255 − 21

4
x1663 x684 x3435 ,

x361 x1942 x503 x824 x605 + x761 x2402 x414 x5 + x741 x1792 x253 x575 + 2x251 x2032 x443 x4

+x201 x1672 x643 x124 x685 − 20769cx581 x1942 x243 x364 x255 − 21

4
x1663 x684 x3435 ,

x361 x1942 x503 x824 x605 + x761 x2402 x414 x5 + x741 x1792 x253 x575 + x251 x2032 x443 x4

+2x201 x1672 x643 x124 x685 − 20754cx581 x1942 x243 x364 x255 − 21

4
x1663 x684 x3435

)
.
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Then, Algorithm 4.3 from Sect. 4 (simulated in a few lines of Maple code2) tells
us in under a second that F has exactly 2, 6, 6, 2, 2, or 0 positive roots, respectively,
when c is 1

20731 ,
1

20730 ,
1

14392 ,
1

14391 ,
1

13059 , or
1

13058 . (All roots in (R∗)5 of these F
happen to lie in R

5+.) One can also easily check that each these F has infinitely many
roots in R

5, since they each vanish identically on the 3-plane {x1 = x4 = 0}. We will
return to this family in Sect. 2.3, and see another example there as well. It is interesting
to observe that Maple’s Solve command (which employs Gröbner bases) gives no
useful information about any of these systems, even after 3 hours.2 Bertini (a
state-of-the-art homotopy solver, Version 1.4 [11]), on each of the preceding systems,
immediately returns a message stating

“ERROR: The system is numerically zero 0! Please input
a non- degenerate system. Bertini will now exit due to
this error.”

This is partially because each such F has3 over 245 million roots in (C∗)5, and older
polynomial system solving techniques have complexity super-linear, or worse, in the
number of complex roots. �

The main intent of Theorem 1.1 is to set the stage (building on the framework of
[48, 49, 83]) for more practical improvements in real-solving such as complexity sub-
exponential in n, in the average-case/smoothed analysis setting, for sparse systems.
In particular, just as binomial systems are a building block for polyhedral homotopy
algorithms for arbitrary n × n systems [58, 69, 102], (n + 2)-nomial n × n systems
are a building block behind recent optimization techniques such as SONC/SAGE-
optimization (see, e.g., [35, 44, 84]). While tackling the remaining exceptional cases
(e.g., infinitely many real roots in (R∗)n) is important, such cases are provably rare
for random coefficients.

1.1 Connection to Fewnomial Bounds OverR

There has been growing interest in generalizing Descartes’ Rule of Signs (see, e.g.,
[53, 100]) from univariate polynomials to n × n polynomial systems. This began
with Khovanski’s seminal Theorem on Real Fewnomials [62] which, in our notation,
asserted an upper bound of 2(

t
2)(n + 1)t for the number of non-degenerate positive

roots of any t-nomial n×n system. It was then shown in [71] that Khovanski’s bounds
could be greatly improved for various structured systems, e.g., the correct tight upper
bound on the number of isolated4 positive roots for 2 × 2 systems of trinomials is 5
— far less than the best previous bound of 248832. Sharper upper bounds for new
families of systems, including a tight upper bound of n + 1 (resp. (n + 1)2n) non-
degenerate roots in R

n+ (resp. (R∗)n) for the case t = n + 2 were then derived in

2 Using Maple 2019 on a Dell XPS 13 laptop with an Intel core i7-5500u microprocessor, 8 Gb RAM,
and a 256Gb solid state hard-drive, running Ubuntu 19.10. Maple code available on request.
3 Via Kushnirenko’s Theorem [67, 91], Ioannis Emiris’ MixVol code [47], and a simple check that the
underlying facial systems have no roots in (C∗)5.
4 Even allowing degenerate isolated roots.
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[14]. Explicit families of systems attaining these bounds for each n were then given
in [86] (see also [15, 21]). Khovanski’s general upper bound was vastly improved to
e2+3
4 2(

t−n−1
2 )nt−n−1 positive roots in [23], and a remarkable (sometimesmuch sharper)

bound for curve intersections was derived later in [63]. More recently, an elegant and
near-optimal average-case upper bound of 1

2n−1 · t !
n!(t−n)! for the number of positive

roots was proved in [31], using independent real Gaussians for the coefficients.
Fewnomial bounds so far have not made significant use of the signs of the coeffi-

cients (much less their values) when n ≥ 2, and such refined bounds remain elusive:
see, e.g., [10, Thm. 2.1] and [16, 17, 20]. The latterworks, particularly [17], culminated
in a refined characterization of the maximal number of positive roots — incorporating
the signs of n × n sub-determinants of the coefficient matrix [ci, j ] and the matroidal
structure ofA—in the case t=n+2. Nevertheless, no algorithm for exactly counting
the real or positive roots, faster than combining more general results on rational uni-
variate reduction (see, e.g., [66, 90, 94]) with the computation of real dimension (see,
e.g., [7]) or real root isolation (see, e.g., [96]), appears to have been known before
Theorem 1.1.

Exactly counting the real or positive roots of F , and even formulating a reasonable
generalization of Descartes’ Rule, appears to be much harder for t ≥ n + 3. This is
why there is much recent attention on the case t =n + 2 to develop further intuition.
An even harder open question is the complexity of actually approximating the real
roots of such F and we hope to address this in future work. For instance, finding real
approximate roots (in the sense of Smale [24]) in deterministic time (log(dH))O(1),
just for the special case (n, t)=(1, 3), is still an open problem [27, 59, 92].

Our main tools are reduction to a canonical form (a special case of Gale Dual
Form from [23]) and a careful application of diophantine approximation to the critical
values of this reduction. In particular, the locus of F with degenerate roots forms a
discriminant varietywhich partitions the coefficient space into connected open regions
we call chambers (see, e.g., [52, Ch. 11]). Classical topological results, such asHardt’s
Triviality Theorem [55], tell us that counting the real roots of F is tantamount to
identifying the chamber in which F lies. Such a calculation is challenging, since the
theory ofA-discriminants [52] does not directly provide a tractable description of our
chambers. However, applying Rolle’s Theorem to the resulting Gale Dual Form allows
one to replace chamber identification by the determination of signs of the critical values
and poles of a single univariate rational function.

A new obstacle is that the usual univariate root-finding algorithms, combined with
classical height bounds on polynomial roots, do not yield a useful complexity bound.
Indeed, the degree of the resulting univariate reduction can be so high that a naive use
of real root isolation would lead to complexity super-linear in nn/2dn . So we leverage
the special structure of the derivative of our univariate reduction to apply a powerful
theorem from diophantine approximation: A refinement of an estimate of Baker and
Wustholtz on linear forms in logarithms of algebraic numbers (see, e.g., [4, 6, 30, 77]).
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1.2 Linking Diophantine Approximation and Algorithmic Complexity

A nice warm-up to the Baker–Wustholtz Theorem is the following problem:
Rational Binomial Sign Problem (RBSP). Given positive rational numbers
α1, . . . , αm with numerators and denominators no greater than A , and integers
b1, . . . , bm with absolute value at most B,what is the sign (+,−, or 0) of the binomial(∏m

i=1 α
bi
i

)
− 1?

While the RBSP is a fundamental real algebraic question, there is a still an expo-
nential gap between its best current lower and upper complexity bounds. [22] applied
the theory of A-discriminants [52] to show that determining the isotopy type of the
real zero set of a single n-variate (n + 2)-nomial over Z is (under mild assumptions)
equivalent to the RBSP. A consequence of this connection between the RBSP and real
zero sets was then the first polynomial-time algorithm to decide non-emptiness for the
real zero sets of (single) n-variate (n + 2)-nomials with n fixed [22].

Note that the RBSP is clearly equivalent to deciding the sign of the linear combi-
nation of logarithms �(α, b) :=∑m

i=1 bi logαi . Indeed, since simply evaluating the
binomial can lead to numbers with huge bit-length, it makes sense to solve the RBSP
by instead approximating the linear combination of logarithms �(α, b) to sufficient
accuracy. However, this is feasible only if we know a sufficiently good (and explicit!)
lower bound on the minimum of |�(α, b)| over all such αi and bi . Alan Baker won a
Fields medal in 1970, due in large part to finding such a bound—over arbitrary number
fields—and deriving numerous landmark results in number theory as a consequence
[4]: The most recent refinements of his bound [77, 80], in the special case of Q, can
be coarsely summarized as follows.

�(α, b) �=0 	⇒ log |�(α, b)|>−[O(logA )]m log B (Coarse Baker′s Bound)(1)

Combined with classical results on quickly approximating logarithms [13, 28, 29, 97],
Bound (1) readily implies that the RBSP can be solved in time [O(logA )]m log B
[22], and thus polynomial-time if m is fixed.

Remark 1.4 It is perhaps surprising that efficiently distinguishing between�(α, b)=0
and �(α, b) �= 0 (neglecting positivity or negativity) has already been known for
decades: This simplification of the RBSP can be solved in time (m log(A B))O(1) via
gcd-free bases (see, e.g., [23, Ch. 4] and [22]). �

Sadly, little is known about the true asymptotics of log |�(α, b)|. However, around
1978, Lang and Waldschmidt conjectured that a much sharper bound of the shape

�(α, b) �=0 	⇒ log |�(α, b)|>−O(m log(A B))

(Lang − Waldschmidt Conjecture) (2)

should hold [68, Pg. 213] and this conjecture remains open. Later, Baker proved [5]
that a bound of the form

�(α, b) �=0 	⇒ log |�(α, b)|>−O(m log(A ) log B)
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(Consequence of Refined abc) (3)

follows from a refined version [5] of the famousMasser-Oesterle abc-Conjecture [76,
81, 82]. Unfortunately, the latter refinement also appears out of reach.

Such conjectures are important not just in diophantine geometry but also in real
algebraic geometry:

Theorem 1.5 [50] 5 The truth of either of the Lang–WaldschmidtConjecture orBaker’s
refined abc-Conjecture implies that we can decide non-emptiness for the positive zero

set of any f ∈ Z

[
x±1
1 , . . . , x±1

n

]
—with coefficients in {−H , . . . , H}, and support of

cardinality n + 2 lying in {−d, . . . , d}n not contained in any affine hyperplane—in
time (n log(dH))O(1). �


Our framework here implies an even deeper conditional speed-up: Sufficiently sharp
lower bounds for linear forms in logarithms of real algebraic numbers imply that root
counting in R

n , for the (n + 2)-nomial n × n systems from Theorem 1.1, can be sped
up to time polynomial in n as well. We formalize this through a conjecture, and a
theorem, below:

Real Algebraic Log Conjecture (RALC) Suppose K is a real, degree d algebraic exten-
sion of Q, α1, . . . , αm ∈ K , b1, . . . , bm ∈ Z \ {0}, logA is the maximum of the
logarithmic heights6 of the αi , and B :=maxi |bi |. Then, there are constants x0,C>0
such that �(α, b) �=0 	⇒ log |�(α, b)|>−(dm log(A B))C for all d,m,A , B≥ x0.

Note that the latest refinement of the Baker–Wustholtz Theorem byMatveev [77, Cor.
2.3] (stated as Theorem 2.25 in Sect. 2.4) can be coarsely summarized as

�(α, b) �=0 	⇒ log |�(α, b)|>−d2 log(d)[O(logA )]m log B.

Note also that the special case d=1 of the RALC (with C≤2) is implied by the truth
of either of the Lang–Waldschmidt Conjecture or Baker’s Refined abc-Conjecture.

The special case d = 1 case of the RALC (with any C > 0) is an even weaker
hypothesis that still implies the speed-up for fewnomial hypersurfaces from Theorem
1.5 above. If we have the RALC true in full, thenwe also obtain the following speed-up
for fewnomial systems:

Theorem 1.6 If the RALC is true then the complexity bound from Theorem 1.1, for
counting roots in R

n, (R∗)n, and R
n+, in the hardest case t =n + 2, can be replaced

by (n log(dH))O(1).

We prove Theorem 1.6 in Sect. 6. It is tantalizing to speculate that some kind of
converse may hold, i.e., sufficiently fast real root counting for sparse polynomial
systemsmay imply a strengthenings of Baker’s Theoremon linear forms in logarithms.
Such an implication is still not clear, and it seems natural that information like the

5 [50] in fact proves a stronger theorem by using a weaker hypothesis that we will clarify below.
6 See Sect. 2.4 for the definition of heights for algebraic numbers.
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underlying real root-spacing is also needed. It would indeed be worthwhile to prove
new root-spacing bounds for (n + 2)-nomial n × n systems, in order to apply them to
improving Baker’s Theorem. However, the current state of the art goes in the opposite
direction: [65, 93] prove new root-spacing bounds in the case n=1 over C (and even
Cp), but heavily use Baker’s Theorem (and its p-adic cousin, Yu’s Theorem [103]).

What is clearer (and true) is the contrapositive of Theorem 1.6: If counting real
roots for generic (n + 2)-nomial n × n systems (as in Theorem 1.1) is not doable in
time (n log(dH))O(1), then the RALC is false. Similarly, if deciding non-emptiness
for real zero sets of n-variate (n+ 2)-nomials (as in Theorem 1.5) is sufficiently hard,
then we can falsify both the Lang–Waldschmidt Conjecture and Baker’s Refined abc-
Conjecture. These are curious examples of how proving complexity lower bounds in
real algebraic geometry is as hard as falsifying conjectures from diophantine approx-
imation.

The hardness of proving new diophantine approximation bounds is one reason that
new average-case speed-ups, using geometric numerical conditioning techniques (e.g.,
[48, 49]) instead of diophantine approximation,may arrive sooner than newworst-case
speed-ups.

2 Background

2.1 The Complexity of Linear Algebra OverZ

Let ω denote the well-known matrix multiplication exponent, i.e., the infimum over
all ω such that there exists an algorithm that can multiply an arbitrary pair of n × n
matrices, in any field K , using O(nω) field operations in K . The best current upper
bound is ω<2.3728596 [2, 70]. Recall the notions of reduced row echelon form and
leading entries of a matrix, from basic linear algebra (see, e.g., [87]). For any nonzero
rational number p

q with p, q ∈Z and gcd(p, q)=1, its (absolute) logarithmic height
is h(p/q) :=max{log |p|, log |q|}. (We set h(0) := 0.) We will first need a result on
the bit complexity of row reduction for matrices:

Lemma 2.1 [101, Pg. 17 & Cor. 2.12] 7 Suppose M ∈ Z
n×t has rank r and all the

entries of M have absolute value at most H. Then, in deterministic time

O
(
ntr [rω−2 log log(r log(r H)) + log(r) log2(r log(r H))] log(r H)

)

we can find the reduced row echelon form R∈Q
n×t of M. Furthermore, every nonzero

entry of R has logarithmic height O(r log(r H)). �

An illuminating alternative discussion of the bit complexity of linear algebra can be
found in [24, Ch. 15, Sec. 15.5].

Via Cramer’s Rule and Hadamard’s classical inequality on the absolute values of
determinants [78, Thm. 1], we can easily obtain the following related bound:

7 Our stated bound assumes that we use an O(h log h)-time algorithm for h-bit integer multiplication, e.g.,
[56].
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Lemma 2.2 If A ∈ Z
n×(n+1) has rank n and all the entries of the i th row of A have

absolute value at most di , then any generator (b1, . . . , bn+1)
� ∈ Z

(n+1)×1 of the

right-null space ofA, with gcd(b1, . . . , bn+1)=1, satisfies |b j |≤nn/2
n∏

i=1
di for all j .

�

Definition 2.3 [57, 98] We call a matrix U ∈Z

n×n with determinant ±1 unimodular.
Given any matrix M ∈ Z

n×t , we then call any identity of the form UM = R, with
U ∈ Z

n×n unimodular and R upper-triangular with all leading entries positive, a
Hermite factorization. Finally, we call any identity of the form UMV = S, with
U ∈ Z

n×n and V ∈ Z
t×t both unimodular, and S with diagonal entries s1, . . . , sn

satisfying s1|s2, . . . , sn−1|sn , a Smith factorization of M . �
We will also need the following complexity bound on Smith factorization:

Theorem 2.4 [101, Ch. 8, Prop. 8.10] Suppose M ∈Z
n×t has rank r and all its entries

having absolute value at most d. Then, a Smith factorization UMV = S for M can be
found in deterministic time

O
(
ntr [rω−2 log log(r log(rd)) + log2(r log(rd))] log(nt) log(rd)

)

with all the entries of U , V , S having logarithmic height O(r log(rd)). �

The bound above also assumes that we use an O(h log h)-time algorithm for h-bit
integer multiplication, e.g., [56].

2.2 Binomial and (n + 1)-Nomial Systems Over (R∗)n

A simple, folkloric algebraic/analytic fact we will need is the following:

Proposition 2.5 Suppose A,B∈Z
n×n and x = (x1, . . . , xn) is a vector of indetermi-

nates. Let us define xA to be the vector ofmonomials
(
x
a1,1
1 · · · xan,1

n , . . . , x
a1,n
1 · · · xan,n

n

)
,

whereA=[ai, j ]. Then, (xA)B= xAB and, ifA is unimodular, the function defined by
x �→ xA defines an analytic group automorphism of (C∗)n that restricts to an analytic
group automorphism of R

n+. �


Remark 2.6 A simple consequence of Proposition 2.5 is that if f ∈R

[
x±1
1 , . . . , x±1

n

]

is an n-variate t-nomial with support A, and d is the dimension of the smallest affine
subspace containing A, then there is a monomial change of variables x= yU (with U

unimodular), and a monomial yb ∈ R

[
y±1
1 , . . . , y±1

d

]
, such that g(y) := yb f

(
yU
) ∈

R

[
y±1
1 , . . . , y±1

d

]
is a d-variate t-nomial, and the zero set of f in (R∗)n is analytically

isomorphic to the Cartesian product of (R∗)n−d and the zero set of g in (R∗)d . So A in
an affine hyperplane implies that the zero set of f in (R∗)n can be easily characterized
by the zero set of another t-nomial in fewer variables. �
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Another consequence of Lemma2.1 is thatwe can almost trivially count the positive
roots of binomial systems, provided the exponent vectors are in general position.

Proposition 2.7 Suppose c = (c1, . . . , cn) ∈ (R∗)n, a1, . . . , an ∈ Z
n, A is the n × n

matrix with j th column a j for all j , UAV = S is a Smith factorization ofA, and c′ :=(
c′
1, . . . , c

′
n

) :=cV . Let s j be the ( j, j) entry of S. Then, G :=(xa1 −c1, . . . , xan −cn)
and

(
ys11 − c′

1, . . . , y
sn
n − c′

n

)
have the same number of roots in R

n+ (resp. (R∗)n,
(C∗)n). In particular, G has exactly 0, 1, or infinitely many roots in R

n+ under the

following respective conditions: 0 : Some ci is negative or [Rank(A)= j<n
and c′

i �=1 for some i ∈{ j + 1, . . . , n}].
1 : c∈R

n+ and detA �=0.
∞ : c∈R

n+, Rank(A)= j <n, and c′
j+1= · · · =c′

n =1. �

Proposition 2.7 follows directly from Proposition 2.5. Both facts are folkloric in the
toric geometry/Lie group literature (see, e.g., [58] and [25, Ch. 3]). A more in-depth
discussion of binomial systems can be found in [34, 36, 83].

Counting roots in (R∗)n is slightly more complicated but still admits efficient for-
mulae.

Proposition 2.8 Following the notation of Proposition 2.7, assume the exponent vec-
tors a1, . . . , an are linearly independent. Let r denote the rank, over the field F2, of
the mod 2 reduction ofA. Then, the map m : (R∗)n −→ (R∗)n defined by m(x) := xA
is 2n−r -to-1, and the i th coordinate of the range of mV is R

∗ (resp. R+) if and only if
i≤r (resp. i≥r + 1). In particular, F has exactly 0 (resp. 2n−r ) roots in (R∗)n if and
only if c′

i <0 for some (resp. no) i ≥r + 1.

Proof First note that by the definition of Smith factorization, we have that the diagonal
entries si of S are such that s1, . . . , sr are odd and sr+1, . . . , sn are even. ByProposition
2.5, exponentiating by U or V induces a permutation of the open orthants of R

n . In
particular, we see that the range of x �→ x S is exactly (R∗)r ×R

n−r+ . So the pre-image
assertion on m is proved.

Now, note that the range of m must be
(
(R∗)r × R

n−r+
)V−1

thanks to Proposition
2.5. So now we know the range of m.

The final remaining assertion follows from our earlier definition c′ := cV and our
earlier assumption that c∈(R∗)n . �


We can now state more explicitly how we deal with positive root counting for
t-nomial systems in the case t=n + 1.

Lemma 2.9 If F=( f1, . . . , fn)∈Z

[
x±1
1 , . . . , x±1

n

]n
is an (n+1)-nomial n×n system,

with union of supports A={a1, . . . , an+1} not lying in an affine hyperplane, and the
coefficient matrix of F has rank n, then the number of positive roots of F is either 0
or 1. Furthermore, if all the coefficients of all the fi have absolute value at most H,
then we can determine the number of positive roots of F in time n3.373 log1+o(1)(nH).

Remark 2.10 The reader disturbed by the complexity bound being independent of A
may be reassured to know that (a) checking the hyperplane condition takes time depen-
dent on A and (b) the analogue of our lemma for counting roots in (R∗)n (Corollary
2.11) has complexity depending on A. �
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Proof of Lemma 2.9: By our assumption on the coefficient matrix, we may reorder
monomials so that the left-most n × n minor of the coefficient matrix has nonzero
determinant. So we may divide every fi by xan+1 without changing the roots of F in
(C∗)n , and assume a1, . . . , an are linearly independent and an+1=O.

From Lemma 2.1 (and the fact that ω < 2.373 [2]), it is then clear that we can
reduce the coefficient matrix of F , [ci, j ]∈Z

n×(n+1), to a reduced row echelon form in
Q

n×(n+1), in time n3.373 log1+o(1)(nH). The underlying linear combinations of rows
can then be applied to the equations fi =0 so that F=O can be reduced to a binomial
system of the form xA = γ where γ = (γ1, . . . , γn), A∈ Z

n×n , and the solutions of
xA=γ in (C∗)n are the same as the roots of F in (C∗)n .

Clearly then, γi ≤ 0 for any i implies that F has no positive roots. In which
case, we simply report that F has 0 positive roots and conclude, having taken time
n3.373 log1+o(1)(nH).

Otherwise, γ ∈ R
n+ implies that F has exactly 1 positive root by Proposition 2.7,

and we are done. �

A simple consequence of our development so far is a method to efficiently count

roots in (R∗)n for generic (n + 1)-nomial systems.

Corollary 2.11 Following the notation and assumptions of Lemma 2.9 and its proof,
the number of roots of F in (R∗)n is either 0 or 2n−r , where r is the rank, over the
field F2, of the mod 2 reduction of A. In particular, we can determine the number of
roots of F in (R∗)n in time n3.373 log1+o(1)(ndH), where d is the maximum absolute
value of any entry of A.

Proof Continuing from the proof of Lemma 2.9 (and having already reduced our input
(n+1)-nomial n×n system to a binomial system), it is clear that Proposition 2.8 tells
us that we can easily count the roots of F in (R∗)n : We merely need to check the signs
of γ ′

r+1, . . . , γ
′
n where γ ′ := γ V and UAV = S is a Smith factorization of A. More

precisely, instead of computing γ V , we compute sign(γ )(V mod 2). Computing themod
2 reduction of V takes time O(n2) and then computing the resulting vector of signs
clearly takes time justO(n2). So the only remainingwork (after applyingLemma2.1 to
the coefficientmatrix of F) is extracting the Smith factorization ofA via, say, Theorem
2.4. So our final complexity bound is n3.373 log1+o(1)(nH) + n3.373 log1+o(1)(nd),
which is no greater than our stated bound. �


2.3 Circuits, (n + 2)-Nomial Systems, and Gale Dual Formwith Heights

We now show how to reduce root counting in (R∗)n for F to root counting in cer-
tain sub-intervals of R for a linear combination of logarithms in one variable. This
reduction dates back to [23], if not earlier, but our statement here includes height and
computational complexity bounds that appear to be new. Before proving our reduction,
however, let us recall the combinatorial/geometric notion of a circuit8:

8 ...not to be confused with the circuits from complexity theory (which are layered directed graphs with
specially labeled nodes having additional structure).
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Definition 2.12 Given any subset A = {a1, . . . , am+2} ⊂ Q
n with #A = m + 2, we

define Â∈Z
(n+1)×(m+2) to be the unique matrix with j th column

[
1
a j

]

for all j . We

then call A a circuit if and only if Â has right nullspace of dimension one. In which
case, we call any generator b∈Z

(m+2)×1 \ {O} for the right nullspace of Â, with 1 for
its gcd of coordinates, a (minimal) circuit relation of A. We also call A a degenerate
circuit if and only if b has at least one zero coordinate. �
Note that m ≤ n if A as above is a circuit, since m ≥ n + 1 would imply Â has a
right nullspace of dimension at least 2. Note also that all circuit relations for a fixed
circuit (other than the trivial relation O) have zero entries occuring at the same set of
coordinates. More precisely, the following proposition is elementary.

Proposition 2.13 Any circuit A = {a1, . . . , am+2} ⊂ Z
n has a unique subset � =

{ai1 , . . . , ai	+2} with � a non-degenerate circuit of cardinality 	 + 2. In particular,
{i1, . . . , i	+2} is exactly the set of indices of the nonzero coordinates of any (non-
trivial) circuit relation for A. Furthermore, if J ⊆ {i1, . . . , i	+2} and ∑ j∈J a j =O,
then J ={i1, . . . , i	+2}. �


We call � the unique non-degenerate sub-circuit of A. Note that any A =
{a1, . . . , an+2}⊂Z

n with cardinality n + 2, and A not lying in any affine hyperplane,
is a circuit.

Example 2.14 It is easily checked that A=

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

2
0
0
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
⊂

R
4 is a degenerate circuit, and that letting� consist of the first 3 points of A yields the

unique non-degenerate sub-circuit of A. In particular, � has the same minimal circuit
relation (up to sign) as the non-degenerate circuit {0, 1, 2} in R

1. �

Lemma 2.15 Suppose F = ( f1, . . . , fn) ∈ Z

[
x±1
1 , . . . , x±1

n

]n
is an (n + 2)-nomial

n × n system supported on a circuit A = {a1, . . . , an+2} ⊂ {−d, . . . , d}n for some
d ∈ N. Suppose also that F has coefficient matrix [ci, j ] ∈ {−H , . . . , H}n×(n+2)

with all of its n × n sub-matrices non-singular. Then in time n3.373 log1+o(1)(ndH),
we can give either a true declaration that F has no positive roots, or find
γ1,0, γ1,1, . . . , γn+1,0, γn+1,1∈Q and b1, . . . , bn+1∈Z such that:

1. The number of roots of the function L(u) := ∑n+1
i=1 bi log |γi,1u + γi,0| in the

open interval I :={u∈R | γi,1u + γi,0>0 for all i ∈{1, . . . , n + 1}} is finite and
exactly the number of positive roots of F.

2. I is non-empty and, for each i ∈{1, . . . , n + 1}, we have max{γi,1, γi,0}>0.
3. L is a non-constant real analytic function on I .
4. We have height bounds h(bi )=O(n log(nd)) and h(γi, j )=O(n log(nH)) for all

i and j .

Example 2.16 Returning to Example 1.3, one can easily apply Gauss-Jordan elimi-
nation to the underlying linear combinations of monomials, and then divide every
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equation by the last monomial x1663 x684 x3435 , to reduce F=O to the following system
having the same roots in (R∗)5:

x361 x1942 x−116
3 x144 x−283

5 = 16384cx581 x1942 x−142
3 x−32

4 x−318
5 + 1

4
x761 x2402 x−166

3 x−27
4 x−342

5 = 4096cx581 x1942 x−142
3 x−32

4 x−318
5 + 1

x741 x1792 x−141
3 x−68

4 x−286
5 = 256cx581 x1942 x−142

3 x−32
4 x−318

5 + 1

x251 x2032 x−122
3 x−67

4 x−343
5 = 16cx581 x1942 x−142

3 x−32
4 x−318

5 + 1

x201 x1672 x−102
3 x−56

4 x−275
5 = cx581 x1942 x−142

3 x−32
4 x−318

5 + 1

Note that this new system reveals why all the roots of F in (R∗)5 (for our earlier
chosen values of c) must in fact lie in R

5+: The right-hand sides are all positive on
(R∗)5. The underlying circuit relation for the exponent vectors above is the same as
the circuit relation for the exponent vectors of F : b= (−2, 2,−2, 2,−2, 1, 1)�. Part
of the proof of Lemma 2.15, applied to our example here, will imply that the resulting
linear combination of logarithms L(u) can be easily read from b and the right-hand
sides of our reduced system:

−2 log

∣
∣
∣
∣16384cu + 1

4

∣
∣
∣
∣+ 2 log |4096cu + 1| − 2 log |256cu + 1| + 2 log |16cu + 1| − 2 log |cu + 1| + log |u|.

In particular, for any c>0, the number of roots of L in I =R+ is the same as the number
of roots of F in R

5+. Our family of examples here is in fact an obfuscated version of
a family derived in [86], thus accounting for the nice coefficients and high number of
positive roots (6) for c∈[ 1

20730 ,
1

14392

]
. A more realistic example of coefficient growth

can be found in Example 2.21 (see also Example 3.2 from Sect. 3). �
Example 2.17 Even if�= A (so thatm=n), we still need enough non-singular minors
to guarantee that F has just finitely many roots inR

n+. For instance, the 4-nomial 2×2
system

x1 − 1 = 0

x1x2 − x2 = 0,

has

[
c1,1 c1,2
c2,1 c2,2

]

and

[
c1,3 c1,4
c2,3 c2,4

]

non-singular (among other 2 × 2 sub-matrices),

but has infinitely many positive solutions: (1, t) for all t > 0. In particular, we are

missing the non-singularity of

[
c1,2 c1,3
c2,2 c2,3

]

. �

Proof of Lemma 2.15: First let b∈Z
(n+2)×1 be the unique (up to sign) minimal circuit

relation of A. By identifying the nonzero entries of b, we can then reorder the ai
so that the unique non-degenerate circuit in A is � = {a1, . . . , am, an+1, an+2}. (So
� has cardinality m + 2 and bm+1, . . . , bn are the only 0 entries of b.) Note that
the coordinates of b are of logarithmic height O(n log(nd)), and the computation of
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b takes time n3.373 log1+o(1)(nd), thanks to Lemmata 2.1 and 2.2 (and the fact that
ω<2.373 [2]).

We can then divide f1, . . . , fn by xan+2 without affecting the positive roots of F .
So we may assume further that an+2=O and, since this at worst doubles our original
d, our O-estimates will be unaffected. We can then apply Lemma 2.1, thanks to our
assumption on the n×n sub-matrices of [ci, j ], to reduce F=O to a systemof equations
of the form G=O, having the same solutions in R

n as F , where G :=(g1, . . . , gn),

gi (x) = xai − γi,1x
an+1 − γi,0 for all i,

and the γi, j are rational with logarithmic height O(n log(nH)). This reduction takes
time just n3.373 log1+o(1)(nH), by Lemma 2.1 (and our earlier observations on ω).
To complete our notation, let us also set γn+1,1 := 1, γn+1,0 := 0, γn+2,1 := 0, and
γn+2,0 :=1.

Clearly, if there is an i such that both γi,0 and γi,1 are non-positive, then G
(and thus F) has no positive roots, and we can simply stop, having spent time just
n3.373 log1+o(1)(nH). So we may assume the following:

For each i ∈{1, . . . , n + 1} we have max{γi,1, γi,0}>0. (4)

We can easily check whether I is non-empty after sorting the (possibly infinite) num-
bers−γi,0/γi,1, using just O(n log n) comparisons of integers with O(n log(nH)) bits
(via, say, merge sort [39]). If I is empty, then we can conclude that F has no positive
roots and stop (having spent time just n3.373(log1+o(1)(nd) + log1+o(1)(nH))). So we
may also assume the following:

I is non-empty. (5)

We now establish Assertions (1)–(4) via G and �: Observe that any root ζ ∈(R∗)n
of G must satisfy

1 = (ζ a1)b1 · · · (ζ am )bm (ζ an+1)bn+1

= (γ1,1ζ
an+1 + γ1,0)

b1 · · · (γm,1ζ
an+1 + γm,0)

bm (ζ an+1)bn+11bn+2 , (6)

So let P(u) :=(γ1,1u + γ1,0)
b1 · · · (γm,1u + γm,0)

bmubn+1 − 1. Note that n=1 	⇒
(γ1,1, γ1,0) = (−c2/c1,−c3/c1) ∈ (R∗)2 and thus P is a non-constant real rational
function when n = 1. So L(u) is a non-constant real analytic function on I when
n=1. Let us then assume n≥2. By Cramer’s Rule, and our assumption on the n × n
sub-matrices of [ci, j ], we have γi,0 �=0 and γi,1 �=0 for all i . P is then a non-constant
real rational function since bn+1 �=0 (thanks to � being a non-degenerate circuit and
Proposition 2.13), and there is thus no way to cancel the ubn+1 factor in the product
term of P . So L(u) is a non-constant real analytic function on I .

Now observe that any root ζ ∈R
n+ of F yields ζ an+1 ∈ I as a root of P by Equation

(6). Moreover, by Proposition 2.5, any root ζ ′ ∈ R
n+ of F with (ζ ′)an+1 = ζ an+1 must

satisfy ζ ′ = ζ , since G reduces to a binomial system with a unique positive root
once the value of xan+1 is fixed. (This is because the vectors a1, . . . , an are linearly
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independent, thanks to {an+1,O} ⊂ � and A being a circuit.) So P has at least as
many roots in I as F has in R

n+.
Conversely, Proposition 2.5 tells us that any root u∈ I of P yields a unique ζ ∈R

n+
satisfying (ζ a1, . . . , ζ an )=(γ1,1u+γ1,0, . . . , γn,1u+γn,0). Recall thatbn+1 �=0. Sowe

also obtain ζ an+1 = (
(γ1,1u + γ1,0)

−b1 · · · (γm,1u + γm,0)
−bm

)1/bn+1 =ubn+1/bn+1 =u
by the definition of P . So ζ is in fact a root ofG. Similarly, a root u′ ∈ I of P with u′ �=u
would yield a positive root of

(
(ζ ′)a1 , . . . , (ζ ′)an

)=(γ1,1u′ + γ1,0, . . . , γn,1u′ + γn,0)

with (ζ ′)an+1 �= ζ an+1 and thus a root ζ ′ �= ζ of F . So F has at least as many roots in
R
n+ as P has in I .
Observing that P(u)=0 ⇐⇒ L(u)=0 (for u∈ I ), and recalling Assumptions (4)

and (5), we thus obtain Assertions (1)–(4). Noting that m≤n, we are done. �

Our sub-matrix condition from Lemma 2.15 in fact holds for a large fraction of

integer coefficients:

Corollary 2.18 The fraction of matrices [ci, j ] ∈ {−H , . . . , H}n×(n+2) with all n × n

sub-matrices of [ci, j ] non-singular is at least 1 − n(n+2)(n+1)
4H+2 . Also, the fraction of

matrices [ci, j ] ∈ {−H , . . . , H}n×(n+1) with leftmost n × n sub-matrix of [ci, j ] non-
singular is at least 1 − n

2H+1 .

Proof The DeMillo–Lipton–Schwartz–Zippel (DLSZ) Lemma [73, 99, 104] is a clas-
sic result that tells us that if f ∈C[z1, . . . , zn] has degree d and S⊂C is a set of finite
cardinality N , then f vanishes at no more than dNn−1 points of Sn . The condition
stated in our corollary is then equivalent to the non-vanishing of a product of

(n+2
2

)

many n × n sub-determinants of [ci, j ]. The resulting polynomial clearly has degree
n(n+2)(n−1)

2 . Taking S = {−H , . . . , H} (which has cardinality 2H + 1) and apply-
ing the DLSZ Lemma, we obtain our first bound. Our second bound follows almost
identically, just considering one determinant instead. �


Recall that a critical point of a function L : R −→ R is a root of the derivative L ′.

Proposition 2.19 Following the notation and assumptions of Lemma 2.15, let u0 :=
inf I , uk :=sup I , and suppose u1< · · · <uk−1 are the critical points of L in I (k=1
implying no critical points). Then, the number of positive roots of F is exactly the

number of i ∈{0, . . . , k − 1} such that
(
limu→u+

i
L(u)

) (
limu→u−

i+1
L(u)

)
<0, plus

the number of degenerate roots of L in I .

Proof It is clear that L is strictly monotonic on any open sub-interval (ui , ui+1) of I .
So the image of (ui , ui+1) under L is

Li :=
(

min

{

lim
u→u+

i

L(u), lim
u→u−

i+1

L(u)

}

,max

{

lim
u→u+

i

L(u), lim
u→u−

i+1

L(u)

})

,

and we see by the Intermediate Value Theorem that Li does not contain 0 ⇐⇒
[limu→u+

i
L(u) and limu→u−

i+1
L(u) are both non-positive or both non-negative]. So

by Lemma 2.15, we are done. �
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We can now state analogues of Lemma 2.15 and Proposition 2.19 for roots in (R∗)n .
Lemma 2.20 Following the notation and assumptions of Lemma 2.15, assume fur-
ther that bn+1 is odd, an+2 = O, and let A := [a1, . . . , an]. Let UAV = S be a
Smith factorization of A, and r the rank, over the field F2, of the mod 2 reduction

of A. Also, for any u ∈ R, let εi := sign(γi,1u + γi,0), �(u) :=
m∏

i=1
ε
bimod 2
i , and

(�′
1(u), . . . , �′

n(u)) :=(ε1, . . . , εn)
Vmod 2. Then, the number of roots of F in (R∗)n is

exactly 2n−r times the number of roots u∈R of L satisfying both �(u)=sign(u) and
�′
r+1(u), . . . , �′

n(u)>0.

Example 2.21 Consider the 6-nomial 4 × 4 system F=( f1, . . . , f4) defined by

(
−12x81 x

18
2 x164 − 5x41 x2x

3
3 x

8
4 + 17x111 x192 x3x

17
4 − 4x111 x92 x

14
3 + 2x182 x133 x174 + 3x51 x

14
3 x164 ,

−9x81 x
18
2 x164 + 14x41 x2x

3
3 x

8
4 − 8x111 x192 x3x

17
4 + 3x111 x92 x

14
3 + 12x182 x133 x174 − x51 x

14
3 x164 ,

5x81 x
18
2 x164 + 4x41 x2x

3
3 x

8
4 + 11x111 x192 x3x

17
4 − 16x111 x92 x

14
3 + 18x182 x133 x174 − 19x51 x

14
3 x164 ,

−x81 x
18
2 x164 + 2x41 x2x

3
3 x

8
4 + 11x111 x192 x3x

17
4 − 17x111 x92 x

14
3 − 14x182 x133 x174 − 6x51 x

14
3 x164

)
.

Proceeding as in Lemmata 2.15 and 2.20, we see that Gauss–Jordan elimination on the
coefficient matrix, and computing the circuit relation underlying the exponent vectors,
yields the following linear combination of logarithms:

L(u) = 54667 log

∣
∣
∣
∣
39898

27281
− 84556

27281
u

∣
∣
∣
∣− 16978 log

∣
∣
∣
∣
47210

27281
− 125680

27281
u

∣
∣
∣
∣

−43727 log

∣
∣
∣
∣
42139

27281
− 126754

27281
u

∣
∣
∣
∣+ 5123 log

∣
∣
∣
∣
20845

27281
− 114296

27281
u

∣
∣
∣
∣− 10129 log |u|.

In particular, L is an analytic function on

R \ {0, 0.182377..., 0.332447..., 0.375636..., 0.471852...}

whose roots encode the roots of F in (R∗)4: Observing that

�(u)=sign(39898 − 84556u) sign(42139 − 126754u) sign(20845 − 114296u) ,

we see that the only open intervals containing u satisfying �(u)=sign(u) are

(0, 0.182377...), (0.332447..., 0.375636...), (0.375636..., 0.471852...).

(The mod 2 reduction in our A here has full rank r = 4 and thus the condition
involving the �′

i (u) becomes vacuously true.) It is then easily checked that L is strictly
decreasing, with rangeR, on the first and third intervals; and L is positive on the second
interval. (See also Corollary 2.22.) So L has exactly 2 roots in R

∗ satisfying the sign
conditions9 of Lemmata 2.20, and thus F has exactly 2 roots in (R∗)4: The roots in

9 L also happens to be increasing, with range R, on (−∞, 0) and (0.182377..., 0.332447...), and thus L
has 2 more roots in R

∗ that do not satisfy the necessary sign conditions.
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(R∗)4 respectively lie in the + + ++ and + − ++ orthants. (It is also easily checked
that F has infinitelymany roots in R

4, since F vanishes on the entire subspace defined
by x1 = x2 = 0.) PHCpack (a state-of-the-art polyhedral homotopy solver [102])
confirms our root count for this F in about 15 minutes, along with a count of 70834
for the total number of roots in (C∗)4, as well as approximations of all these roots to
14 decimal places. Our Maple code counts the roots of F in (R∗)4 and R

4+ in under
one second. �
Proof of Lemma 2.20: Continuing the notation of the proof of Lemma 2.15, we need to
revisit the properties of the rational function P defined earlier. In particular, whereas
before we had a natural bijection between the roots of F in R

n+ and the roots of P in
a particular interval I , we now need to consider roots of F with negative coordinates
and roots of P throughout R. In particular, a key difference from our earlier lemma
is the following simple equivalence, valid for all u∈R: P(u)=0 ⇐⇒ [L(u)=0 and
�(u)=sign(u)]. (Indeed, we could encounter u with P(u)=−2 without the condition
involving �(u).) Note also that by construction, P(0) is either −1 or undefined.

So let ζ ∈(R∗)n be a root of F . By Relation (6), ζ an+1 must be a nonzero real root
of P and, by the definition of G and the γi, j (and Proposition 2.8), we must have
�′
r+1(ζ

an+1) , . . . , �′
n(ζ

an+1)>0. By Proposition 2.8, there must also be exactly 2n−r

many roots ζ ′ ∈ (R∗)n of F with (ζ ′)an+1 = ζ an+1 , because G reduces to a binomial
system once the value of ζ an+1 is fixed. So F has no more than 2n−r times as many
roots in (R∗)n as P has in R

∗.
Conversely, if u ∈ R

∗ is a root of P , then Proposition 2.8 tells us that
�′
r+1(u), . . . , �′

n(u) > 0 implies that there are exactly 2n−r many ζ ∈ (R∗)n satis-
fying

(ζ a1 , . . . , ζ an )=(γ1,1u + γ1,0, . . . , γn,1u + γn,0).

(Note also that γi,1u+γi,0 �=0 for all i since P(u) �=0 when γi,1u+γi,0=0.) We then
also obtain ζ bn+1an+1 = (γ1,1u + γ1,0)

−b1 · · · (γm,1u + γm,0)
−bm =ubn+1 by Relation

(6). Since bn+1 is odd, all our resulting ζ must satisfy ζ an+1 =u and therefore be roots
of G (and thus of F). Similarly, a real root u′ of P with u′ �=u would yield a collection
of 2n−r many ζ ′ ∈ (R∗)n that are roots of F but with (ζ ′)an+1 �= ζ an+1 , since bn+1 is
odd and u∈R

∗. So the number of roots of F in (R∗)n is at least 2n−r times the number
of roots of P in R

∗.
Our stated root count for F in (R∗)n is thus correct. �

The following variant of Proposition 2.19 can be proved almost the same as Propo-

sition 2.19, simply using Lemma 2.20 instead of Lemma 2.15:

Corollary 2.22 Following the notation and assumptions of Lemma 2.20, letw1< · · · <

w	−1 be the critical points andpoles of L inR, and setw0 :=−∞andw	 :=+∞. LetN
be the number of i ∈{0, . . . , 	−1} such that�(u)=sign(u) and�′

r+1(u), . . . , �′
n(u)>

0 for all u ∈ (wi , wi+1), and
(
limu→w+

i
L(u)

) (
limu→w−

i+1
L(u)

)
< 0. Then, the

number of roots of F in (R∗)n is exactly N plus the number of degenerate roots of L
in R. �
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2.4 Heights of Algebraic Numbers and Linear Forms in Logarithms

Recall that if β is in the algebraic closure Q of Q, with minimal polynomial m(x1) :=
c0 + · · · + cd xd1 ∈ Z[x1] satisfying gcd(c0, . . . , cd) = 1, then we may define the
(absolute) logarithmic height of β to be

h(β) := 1

d

(

log |cd | +
d∑

i=1

logmax{|βi |, 1}
)

,

where β1, . . . , βd (among them, β) are all the roots ofm. This definition in fact agrees
with our earlier definition for rational numbers. Since m must be irreducible we have
#{β1, . . . , βd}=d.

Proposition 2.23 (See, e.g., [25, Prop. 1.5.15, pg. 18].) If α1, . . . , αk ∈ Q, then

h

(
k∑

i=1
αi

)

is no greater than log(k) +
k∑

i=1
h(αi ). Also, h

(
k∏

i=1
αi

)

≤
k∑

i=1
h(αi ). �


Letting
∣
∣c0 + c1x1 + · · · + cd xd1

∣
∣
2 :=

√∑d
i=0 |ci |2, we recall the following classi-

cal inequality:

Landau’s Inequality [78] If β ∈ Q has minimal polynomial g ∈ Z[x1] with relatively

prime coefficients then h(β)≤ log |g|2
deg g

. �


It will also be useful to have a mildly refined version of Liouville’s classic bound
[72] on the separation between rational numbers and irrational algebraic numbers.

Theorem 2.24 Suppose β ∈ Q, with minimal polynomial m ∈ Z[x1] of degree d ≥ 2.
Then,

∣
∣
∣
∣β − p

q

∣
∣
∣
∣ < 1 	⇒

∣
∣
∣
∣β − p

q

∣
∣
∣
∣ ≥

(
|m′(β)| +

∣
∣
∣
m′′(β)
2!

∣
∣
∣+ · · · +

∣
∣
∣
m(d)(β)

d!
∣
∣
∣
)−1

qd

for all p, q∈Z with q>0.

Proof First note that the parenthesized expression in the numerator of the large fraction
above is positive since m is the minimal polynomial of β and thus m′(β) �=0.

Via Taylor expansion we then obtain the following:

|m(p/q)| =
∣
∣
∣
∣
∣
m(β) + m′(β)

(
p

q
− β

)

+ m′′(β)

2!
(
p

q
− β

)2

+ · · · + m(d)(β)

d!
(
p

q
− β

)d
∣
∣
∣
∣
∣

=
∣
∣
∣
∣β − p

q

∣
∣
∣
∣

∣
∣
∣
∣
∣
0 + m′(β) + m′′(β)

2!
(
p

q
− β

)

+ · · · + m(d)(β)

d!
(
p

q
− β

)d−1
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣β − p

q

∣
∣
∣
∣

(

|m′(β)| +
∣
∣
∣
∣
m′′(β)

2!
∣
∣
∣
∣

∣
∣
∣
∣
p

q
− β

∣
∣
∣
∣+ · · · +

∣
∣
∣
∣
∣

m(d)(β)

d!

∣
∣
∣
∣
∣

∣
∣
∣
∣
p

q
− β

∣
∣
∣
∣

d−1
)
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<

∣
∣
∣
∣β − p

q

∣
∣
∣
∣

(

|m′(β)| +
∣
∣
∣
∣
m′′(β)

2!
∣
∣
∣
∣+ · · · +

∣
∣
∣
∣
∣

m(d)(β)

d!

∣
∣
∣
∣
∣

)

.

Sincem is irreducible and of degree≥2,m has no rational roots, and thus qdm(p/q)

must be a nonzero integer. So we obtain qd |m(p/q)|≥ 1 and thus |m(p/q)|≥ 1/qd .
Combined with our last Taylor series inequalities, we are done. �


Finally, we recall the following paraphrase of a bound of Matveev [77, Cor. 2.3],
considerably strengthening earlier bounds of Baker and Wustholtz [6]. (See also [30,
Thm. 9.4].)

Theorem 2.25 Suppose K is a degree d real algebraic extension of Q, α1, . . . , αm ∈
K \ {0}, and b1, . . . , bm ∈ Z \ {0}. Let B := max{|b1|, . . . , |bm |} and logAi :=
max{dh(αi ), | logαi |, 0.16} for all i . Then,∑m

i=1 bi logαi �=0 implies that

log

∣
∣
∣
∣
∣

m∑

i=1

bi logαi

∣
∣
∣
∣
∣
> −1.4 · m4.530m+3d2(1 + log d)(1 + log B)

m∏

i=1

logAi .

�


2.5 Bounds on Coefficients, Roots, and Derivatives of Univariate Polynomials

Letting
∣
∣c0 + c1x1 + · · · + cd xd1

∣
∣∞ := maxi |ci |, recall the following classic bounds

on the size and minimal spacing of roots of polynomials:

Proposition 2.26 (See, e.g., [88, Thm. 8.1.4 & Thm. 8.1.7, (i), (8.1.3)].) If f ∈Z[x1]
satisfies | f |∞ ≤H and ζ ∈C is a nonzero root of f , then 1

1+H < |ζ |<1 + H. �

Mahler’s Theorem [74]Suppose f ∈Z[x1] is square-free, has degree d, and | f |∞ ≤H.
Then, any two distinct complex roots ζ1, ζ2 of f satisfy

|ζ1 − ζ2|>
√
3(d + 1)−(2d+1)/2H−(d−1).

In particular, | log |ζ1 − ζ2||=O(d log(dH)). �

Letting

∣
∣c0 + c1x1 + · · · + cd xd1

∣
∣
1 :=∑d

i=0 |ci |, recall also the following nice bound
on the coefficients of divisors of polynomials:

Lemma 2.27 [78, Thm. 4] Suppose f , g∈C[x1] have respective leading coefficients
c and γ , and g| f . Then, |g|1≤2deg g

∣
∣ γ
c

∣
∣ | f |2. �


Recall that the content of a polynomial r(x) :=c0 +· · ·+ cd xd ∈Z[x1] is con(r) :=
gcd(c0, . . . , cd), and that we call such an r primitive if and only if con(r)=1. We will
need the following consequence of the classical Gauss’ Lemma for polynomials (see,
e.g., [46, Ex. 3.4, pg. 109]):

Lemma 2.28 If f , h∈Z[x1] with h primitive, g∈Q[x1], and f =gh identically, then
g∈Z[x1]. �
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We can now prove the following extension of Mahler’s bound to the case of poly-
nomials with degenerate roots.

Corollary 2.29 Suppose f ∈Z[x1] has degree d and | f |∞ ≤H. Then, any two distinct
complex roots ζ1, ζ2 of f satisfy | log |ζ1 − ζ2||=O(d2 + d log H).

Proof Let g := gcd( f , f ′), where we compute the gcd of two polynomials in Q[x1]
via the Euclidean Algorithm. (So g ∈ Q[x1] and g is monic.) In particular, since
γ g is primitive for some minimal γ ∈ N, Lemma 2.28 tells us that f /(γ g) ∈ Z[x1].
Moreover, since g is monic, γ must divide the leading coefficient of f and thus γ ≤H .

Recall that the square-free part of f is p := f / gcd( f , f ′). It is then elementary
that p has the same roots in C as f , p is square-free, and p ∈ Q[x1]. In particular,
from the last paragraph, we see that p ∈ Z[x1], with the same leading coefficient
as that of f since g is monic. Lemma 2.27 then tells us that |p|1 ≤ 2d | f |2. So then,
|p|∞ ≤2d

√
d| f |∞ ≤√

dH2d . ApplyingMahler’s Theorem,we see that log |ζ1−ζ2|=
O(d log(d

√
dH2d))=O(d[log(d) + d + log H ])=O(d2 + d log H). �


We will also need the following bound on the coefficients of products of polyno-
mials:

Lemma 2.30 If f1, . . . , fk ∈ Z[x1] then
∣
∣
∣
∣

k∏

i=1
fi

∣
∣
∣
∣
∞

≤
k∏

i=1
(1 + deg fi )| fi |∞.

Proof Via direct expansion (and the Triangle Inequality) it is clear that the 1-norm for

polynomials is sub-multiplicative, i.e.,

∣
∣
∣
∣

k∏

i=1
fi

∣
∣
∣
∣
1

≤
k∏

i=1
| fi |1. It is also immediate that

| f |∞ ≤| f |1 and | f |1≤(1 + deg f )| f |∞ for any polynomial. So we obtain

∣
∣
∣
∣
∣

k∏

i=1

fi

∣
∣
∣
∣
∣
∞

≤
∣
∣
∣
∣
∣

k∏

i=1

fi

∣
∣
∣
∣
∣
1

≤
k∏

i=1

| fi |1 ≤
k∏

i=1

(1 + deg fi )| fi |∞.

�

Finally, we will need the following bound on higher derivatives of polynomials,

dating back to work of Duffin and Schaeffer [45], based on a classic bound of A. A.
Markov [75]:

Corollary 2.31 Suppose f ∈C[x1] has degree d and t>0. Then,

max−t≤x1≤t

∣
∣
∣ f ( j)(x1)

∣
∣
∣ ≤ d2(d2 − 12) · · · (d2 − ( j − 1)2)

1 · 3 · · · (2 j − 1)
·

max−t≤x1≤t
| f (x1)|
t j

.

�

After rescaling the variable so it ranges over [−1, 1], the statement above follows
immediately from [88, Thm. 15.2.6 & Cor. 15.2.7, Sec. 15.2]. The latter results in fact
include conditions for equality in the bound above.
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3 Critical Values of Linear Forms in Logarithms and Their Signs

Weare now ready to prove two key lemmata 3.1 and 3.4 that enable our new complexity
bounds.

Lemma 3.1 Suppose m ≥ 2, bi ∈ Z \ {0} and γi,1, γi,0 ∈ Q with h(γi, j ) ≤ log H
(for some integer H ≥ 3) for all i ∈ {1, . . . ,m}, B := maxi |bi |, and L(u) :=∑m

i=1 bi log |γi,1u + γi,0| is non-constant and differentiable on some non-empty open
interval. Then, the critical points of L in R are exactly the real roots of a polyno-
mial g ∈ Z[u] of degree at most m − 1 with |g|∞ ≤ m2m−1BH2m. In particular,
log |g|∞ = O(log(B) + m log H), L has at most m roots in any open interval I not
containing a pole of L, and L has at most 2m real roots.

Example 3.2 Example 2.21 is more representative (than Example 2.16) of the coeffi-
cient growth one encounters when converting F into a univariate linear combination
of logarithms L: There we saw an input 6-nomial 4 × 4 system F with coefficients
and exponents having at most 2 digits, resulting in an L with coefficients having 6 or
fewer digits. In particular, the polynomial encoding the critical points of L is

g(u) := −85015812446550320118784u4 + 160578806134338659719072u3

−78932164016242868100268u2

+13833463598904597755876u − 837930167824219163155,

which has coefficients with at most 24 digits, and 2 real roots, neither of which lies
in the sub-intervals of R contributing to the root count of F in (R∗)4. So in Example
2.21, it is the signs of the poles of L , instead of the signs of the critical values that
determine the number of roots of F in (R∗)4. �
Example 3.3 Returning to Example 2.16, which had L(u) being

−2 log

∣
∣
∣
∣16384cu + 1

4

∣
∣
∣
∣+ 2 log |4096cu + 1| − 2 log |256cu + 1|

+2 log |16cu + 1| − 2 log |cu + 1| + log |u|,

it is easily checked via Maple that this L has exactly 5 critical values, alternating in
sign, and the underlying critical points interlace the 6 positive roots of L . �

Proof of Lemma 3.1: First observe that L ′(u) =
m∑

i=1

biγi,1
γi,1u+γi,0

. Thanks to our non-

constancy assumption, L ′ has at mostm distinct poles. Letting νi be the least common
multiple of the denominators of γi,1 and γi,0, and setting

gi (u) :=
⎛

⎝biγi,1νi

m∏

j=1

(γ j,1u + γ j,0)ν j

⎞

⎠ /((γi,1u + γi,0)νi ),
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let us define g(u) :=∑m
i=1 gi (u). Clearly, gi ∈ Z[u] for all i , g ∈ Z[u], and g(u) is

nothing more than L ′(u)
∏m

j=1(γ j,1u + γ j,0)ν j . So we clearly obtain the statement
on the real critical points of L being the real roots of g, and it is clear that deg g ≤
m − 1. Lemma 2.30 implies that |gi |∞ ≤ BH2

(
2m−1H2(m−1)

)
. Clearly then, |g|∞ ≤

m2m−1BH2m . That L has at most m roots in I is immediate from Rolle’s Theorem,
since deg g≤m − 1. We similarly obtain at most 2m roots in R since L has no more
than m poles (as well as no more than m − 1 critical points). �


Recall that a critical value of a function L : R −→ R is the value of L at a critical
point of L .

Lemma 3.4 Following the notation and assumptions of Lemma 3.1, let I be any open
interval defined by consecutive real poles of L, let ε denote any nonzero critical value
of L, and let δ (resp. η) be the minimum of |ζ1 − ζ2| over all distinct roots ζ1, ζ2∈ I of
L (resp. the derivative L ′). Finally, let � denote the minimum of |ζ − μ| as ζ (resp.
μ) ranges over the critical points (resp. poles) of L. Then:

1. log η > −O(m log(B) + m2 log H).

2. log |ε| > −O
(
61m logm+1

(√
BH2m−1

))
.

3. log� > −O
(
m log(B) + m2 log H

)
.

4. log δ > −O
(
61m logm+1

(√
BH2m−1

))
.

Proof If L has no critical points then, by Rolle’s Theorem, L has at most 1 root
in I and Assertions (1)–(3) are vacuously true. So let us assume L has exactly
k − 1 critical points (with k ≥ 2) in the open interval I , u0 := inf I , uk := sup I ,
and suppose u1 < · · · < uk−1 are the critical points of L in I . Also let g
denote the polynomial from Lemma 3.1. Below, we illustrate a coarse approxima-
tion of what the graph of L can look like, along with some of our notation:

�

u0

�

u1�

η

ε

u2
�

u5�

u7
�

Assertion (1) then follows immediately by applying Corollary 2.29 to g, thanks to
Lemma 3.1. In particular, we get | log η|=O((m−1)2+ (m−1) log(m2m−1BH2m))

=O(m2 + m[log(m) + m + log(B) + m log H ]),

which clearly reduces to the stated bound.
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Assertion (2) then follows routinely from Theorem 2.25 upon observing that |ε|
is nothing more than the absolute value of a linear combination of logarithms of
real algebraic numbers. In particular, the arguments of the logarithms constituting
L(u j ) at a critical point u j ∈ I (for some j ∈ {1, . . . , k − 1}) all lie in the same real
algebraic extension: Q(u j ). Noting that the minimal polynomial, p, of u j has degree

≤m − 1, Lemmata 2.27 and 3.1 then tell us that |p|∞ ≤2m−1
(

γp
γg

)
|g|2 (since p|g),

where γp and γg are, respectively, the leading coefficients of p and g. Moreover, since
p, g∈Z[u], we have that γp|γg and thus

|p|∞ ≤ 2m−1 · 1 · (
√
m(mB2m−1H2m)) = m3/24m−1BH2m . (7)

So log |p|2≤ log
(√

m · m3/24m−1BH2m
)
, and thus Landau’s Inequality tells us that

deg(p)h(u j ) ≤ log
(
m24m−1BH2m

)
. (8)

Proposition 2.26 and Lemma 3.1 then tell us that |u j | < 1+|g|∞ ≤ 1+m2m−1BH2m .
Also, h(γi,1u j + γi,0)≤ log(2) + (h(γi,1) + h(u j )) + h(γi,0), thanks to Proposition
2.23. So then, by Inequality (8),

deg(p)h(γi,1u j + γi,0)

≤ (m − 1) log(2) + (m − 1) log(H) + log
(
m24m−1BH2m

)
+ (m − 1) log H

≤ log
(
m28m−1BH4m−2

)
.

Theorem 2.25 then tells us that

log |ε| > −1.4 · 30m+3m4.5(m − 1)2(1 + log(m − 1))(1 + log B)
(
log
(
m28m−1BH4m−2))m

> −1.4 · 303 · 30mm6.5(1 + logm)(1 + log B) logm
(
m28m−1BH4m−2)

= −O
(
30mm6.5 log(m) log(B) logm

(
m28m−1BH4m−2)

)
. (9)

Now observe that m6.5 logm = O((1 + θ1)
m) for any θ1 > 0, and m28m−1 ≤

(BH4m−2)θ2 when H ≥ 8.08
1

4θ2 , m ≥ 1467, and θ2 > 0. So then, if we pick θ1 =
θ2=√

30.5/30− 1=0.00829... we obtain: log |ε| > −O
(
30m(1+ θ1)

m log(B) logm
((

BH4m−2
)1+θ2

) )

= −O
(
(30(1 + θ1)(1 + θ2))

m logm+1
((

BH4m−2
)))

= −O
(
30.5m2m+1 logm+1

(√
BH2m−1

))

= −O
(
61m logm+1

(√
BH2m−1

))
,

thus proving Assertion (2).
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ToproveAssertion (3), observe that�=min{u1−u0, uk−uk−1}, i.e.,�=|u j ′−u	|
for some j ′ ∈{1, k − 1} and 	∈{0, k}, by our earlier definitions. If �=∞, then there
is nothing to prove, so let us assume � < ∞. If u j ′ ∈ Q, then Assertion (3) follows
easily from Proposition 2.23, since u	 has logarithmic height no greater than 2 log H
and u j ′ must have logarithmic height no greater than O(log(B) + m log H). So we
may assume that u j ′ is algebraic of degree at least 2 over Q.

We can then apply Theorem 2.24 and Lemma 3.1 to obtain that�must be bounded
from below by

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(

|p′(u j ′)| +
∣
∣
∣
∣
p′′(u j ′ )

2!

∣
∣
∣
∣+ · · · +

∣
∣
∣
∣
p(m−1)(u j ′ )

(m−1)!

∣
∣
∣
∣

)−1

H2(m−1)
, 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (10)

We know that |u j ′ | < 1 + m2m−1BH2m by Proposition 2.26, so it is enough
to minimize the preceding sum of derivative norms over the interval J :=[−1 − m2m−1BH2m, 1 + m2m−1BH2m

]
.

Noting the easy inequality max−t≤x1≤t
| f (x1)| ≤ | f |1 max

{
1, |t |d

}
for any f ∈R[x1]

of degree d and t ∈R, we then have:

max
x1∈J

|g(x1)| ≤ |g|1 max
{
1, (1 + m2m−1BH2m)m−1

}

≤ m|g|∞
(
1 + m2m−1BH2m

)m−1
,

≤ m · m2m−1BH2m
(
1 + m2m−1BH2m

)m−1
, (11)

and Corollary 2.31 then implies

|p(r)(u j ′)| ≤ max
x1∈J

∣
∣
∣p(r)(x1)

∣
∣
∣

≤ (m − 1)2((m − 1)2 − 12) · · · ((m − 1)2 − (r − 1)2)

1 · 3 · · · (2r − 1)
· |p|1

·
(
1 + m2m−1BH2m

)m−1
,

since p has degree≤m−1. Since |p|1≤m|p|∞, Inequality (7) tells us that
∣
∣p(r)(u j ′)

∣
∣

is bounded from above by

(m − 1)2((m − 1)2 − 12) · · · ((m − 1)2 − (r − 1)2)

1 · 3 · · · (2r − 1)
· m ·

(
m3/24m−1BH2m

)

(
1 + m2m−1BH2m

)m−1
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≤
(

(m − 1)2

r

)

m ·
(
m3/24m−1BH2m

) (
1 + m2m−1BH2m

)m−1

≤
(

(m − 1)2e

r

)r

m5/24m−1BH2m
(
1 + m2m−1BH2m

)m−1
,

where the last inequality follows easily from Stirling’s classical estimate for the fac-

torial function. So then, |p′(u j ′)| +
∣
∣
∣
∣
p′′(u j ′ )

2!

∣
∣
∣
∣+ · · · +

∣
∣
∣
∣
p(m−1)(u j ′ )

(m−1)!

∣
∣
∣
∣ is strictly less than

[

(m − 1)2e + ((m − 1)2e/2)2

2! + · · · + ((m − 1)2e/(m − 1))m−1

(m − 1)!
]

m5/24m−1BH2m
(
1 + m2m−1BH2m

)m−1
.

Now, by the Maclaurin series for ex , the bracketed factor above is strictly less than

e(m−1)2e. So then, |p′(u j ′)| +
∣
∣
∣
∣
p′′(u j ′ )

2!

∣
∣
∣
∣+ · · · +

∣
∣
∣
∣
p(m−1)(u j ′ )

(m−1)!

∣
∣
∣
∣ is strictly less than

e(m−1)2em5/24m−1BH2m
(
1 + m2m−1BH2m

)m−1

≤ em(m−1)em5/24m−1BH2m
(
1 + m2m−1BH2m

)m−1

= O
((
ee+θ3

)m(m−1)
BH2m

(
2(1+θ4)(m−1)BH2m

)m)

= O

((
21+θ4ee+θ3

)m(m−1)
Bm+1H2m2+2m

)

,

for any θ3, θ4 > 0. Observing that 2ee < 30.31, we can then clearly pick θ3 and θ4 to
obtain

|p′(u j ′)| +
∣
∣
∣
∣
p′′(u j ′)

2!
∣
∣
∣
∣+ · · · +

∣
∣
∣
∣
∣

p(m−1)(u j ′)

(m − 1)!

∣
∣
∣
∣
∣
= O

(
31m(m−1)Bm+1H2m2+2m

)
,

and thus, combining with Inequality (10), 1
�

= O
(
31m(m−1)Bm+1H2m2+4m−2

)
, and

we obtain Assertion (3) by taking logarithms.
To prove Assertion (4), we merely use the mean value theorem. First, let δ′ be the

minimum distance between any critical point u j of L (with nonzero critical value)
and ζ ′, where ζ ′ is any root of L . Clearly, δ≥2δ′ >0 (thanks to Rolle’s Theorem), so
it is enough to prove a sufficiently good lower bound on δ′. Note in particular that if
δ′ >�/2, then we are done, thanks to Assertion (3). So let us assume δ′ ≤�/2.

Recall that from the proof of Lemma 3.1, we have L ′(u)=g(u)/
m∏

i=1
(γi,1u+γi,0)νi

where νi is the least common multiple of the denominators of γi,1 and γi,0.
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Clearly, if γi,1 �=0, then |(γi,1u+γi,0)νi |=
∣
∣
∣u − −γi,0

γi,1

∣
∣
∣ |γi,1νi |> |γi,1νi |�/2≥�/2

for all u∈[u j − δ′, u j + δ′], since ζ ′ ∈ I , −γi,0
γi,1

is a pole of L , and γi,1νi is a nonzero
integer. On the other hand, if γi,1=0, then |(γi,1u + γi,0)νi |=|γi,0νi |≥1 since γi,0νi
is a nonzero integer. So then,

m∏

i=1

(γi,1u + γi,0)νi > �m/2m for all u∈[u j − δ′, u j + δ′] . (12)

By the mean value theorem, we must have |L ′(ξ)| = ∣
∣ ε
δ′
∣
∣ for some ξ ∈

(
u j − δ′, u j + δ′). So then, thanks to Inequalities (11) and (12), we obtain

|L ′(ξ)| =
∣
∣
∣
∣
∣
g(ξ)

/ m∏

i=1

(γi,1ξ + γi,0)νi

∣
∣
∣
∣
∣

< m22m−1BH2m (1 + m2m−1BH2m)m−1 2m

�m

≤ m222m−1BH2m (1 + m2m−1BH2m)m−1
O
(
31m(m−1)Bm+1H2m2+4m−2

)m

(13)

Since δ′ = |ε/L ′(ξ)| we thus obtain that log δ′ = log |ε| − log |L ′(ξ)|, which is then
bounded from

below by − O
(
61m logm+1

(√
BH2m−1

))

−O
(
log(m) + m + log(B) + m log(H) + m log

(
m2m−1BH2m

))

−mO
(
m2 log(31) + m log(B) + m2 log H

)
,

which reduces to −O
(
61m logm+1

(√
BH2m−1

))
. �


3.1 The Complexity of Approximating Logarithms and Real Roots of Polynomials

Any real number can be expressed in binary. Since 2�log2 x� ≤ x ≤21+�log2 x� for any
x ∈R+, it is easy to check that 1 + ⌊

log2 x
⌋
is the number of bits for the integer part

of x . It then makes sense to call the binary expansion of
⌊
2	−1−�log2 x�x

⌋
the 	 most

significant bits of an x ∈R+. Clearly, knowing the 	 most significant bits of x means
that one knows x within a multiple of (1 + 2−	)±1.

Let us recall the following classical fact on approximating logarithms via
arithmetic–geometric Iteration:

Theorem 3.5 [13, Sec. 5] Given any positive x ∈Q of logarithmic height h, and 	∈N

with 	 ≥ h, we can compute
⌊
log2 max{1, log |x |}⌋ and the 	 most significant bits of

log x in time O(	 log2 	). �
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The underlying technique dates back to Gauss and was refined for computer use in
the 1970s by many researchers (see, e.g., [28, 29, 97]). We note that in the complexity
bound above, we are applying the recent O(n log n) algorithm of Harvey and van der
Hoeven for multiplying two n-bit integers [56]. Should we use a more practical (but
asymptotically slower) integer multiplication algorithm, then the time can still be kept
at O

(
	1.585

)
or lower.

Recall that bisection is the ancient technique of approximating a root of a continuous
function f : [r1, r2] −→ R by the following trick: If sign( f (r1) f (r2)) < 0, then f
must have a root in the open interval (r1, r2), and this root lies in the left half-interval(
r1,

r1+r2
2

)
if and only if sign

(
f (r1) f

( r1+r2
2

))
<0. Bisection thus allows one to extract

an extra bit of precision for a root of f at the cost of one more evaluation of f . Put
another way, bisection allows one to halve the size of an isolating interval at the cost
of one more evaluation of f .

We will also need the following result on the bit complexity of approximating the
real roots of a polynomial in Z[x1] by rational numbers.

Lemma 3.6 Suppose f ∈ Z[x1] has degree d, | f |∞ ≤ H, and 	 ∈ N with 	 ≥ 2. Let
δ( f ) denote the minimum of |ζ1 − ζ2| over all distinct real roots ζ1, ζ2 of f . Then, in
time

O
(
d4[log2(H) + 	(	 + d2 + d log H) log(d	 log H)]

)
,

we can find a collection of disjoint non-empty open intervals {Ji }ki=1 with the following
properties:

(a) k is the number of real roots of f .
(b) Each Ji contains exactly one root of f .
(c) The endpoints of all the Ji are rational numbers with logarithmic height O(	 +

d2 + d log H).
(d) All the Ji have width no greater than 2−	δ( f ).

Proof The case 	 = 0 is well-known in the computational algebra community and is
elegantly described in [96]. (In fact, [96] even allows polynomialswith real coefficients
known only up to a given tolerance.) In particular, we merely apply the real root iso-
lation algorithm from Theorem 24 of [96] to the square-free part, p := f / gcd( f , f ′),
of f : From the proof of Corollary 2.29, we know that p ∈ Z[x1]. Also, by [51,
Cor. 11.20] and fast integer multiplication [56] (and the development of [51, Ch. 6]),
gcd( f , f ′) can be computed within time O(d2 log2(d) log(dH) log2(d log(dH))),
and this dominates the complexity of the division needed to compute f / gcd( f , f ′).
Moreover, the coefficients of p have logarithmic height log H ′ =O(d+log H), thanks
to Lemma 2.27. So an overall complexity bound of O(d4(d + log H)2) holds, via the
O(d4 log2 H ′) bit-complexity bound (in our notation) from [96, Thm. 24].

The case of arbitrary 	≥2 can be derived simply by applying bisection after using
the 	 = 0 case to start with isolating intervals that are likely larger than desired,
but correct in number, for the real roots of f : One first observes that if α ∈ Q has
logarithmic height L , then Proposition 2.23 implies that f (α) has heightO(d log(H)+
d2L). So we can correctly find the sign of f (α) by, say, Horner’s Rule [51], using
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O(d log(H) + d2L) bits of accuracy in all intermediate calculations. Since there are
at most d roots, and each application of Horner’s Rule takes O(d) multiplications and
additions, we see that the complexity of one step of bisection, applied to all of our
initial isolating intervals (to halve the size of each interval), is dominated by O(d2)
many multiplications of integers of height O(d log(H)+ d2L). Assuming we use the
fast multiplication algorithm of [56], this will take time

O(d2 · (d log(H) + d2L) · log(d log(H) + d2L))

= O(d3(log(H) + dL) · log(d log(H) + d2L)). (14)

Corollary 2.29 then tells us that | log δ( f )| = O(d2 + d log H). This means that
our bisection must start with at least L = O(d2 + d log H) bits of accuracy, and this
accuracy will successively increase to L + 	 bits when we finish. So then, by Equality
(14), getting 	 additional bits of accuracy beyond the minimum root separation will
require time

∑	
i=0 O

(
d3(log(H) + d(L + i)) log(d log H + d2(L + i))

)
. (15)

Note that log(H) + d(L + i)= O(d3 + d2 log(H) + di)= O(d3(log(H) + i)) and
thus log(d(log(H) + d(L + i))) = O(log(id log H)). So each term of the sum (15)
admits an upper bound of

O([d6 + d5 log(H) + d4	] log(	d log H)).

So our final bound is O(d4(d+log H)2)+	·O(d4(d2+d log(H)+	) log(d	 log H)).
Cancelling dominant terms, we get our stated bound. �

Remark 3.7 Wehave opted for a streamlined proof at the expense of a larger complexity
estimate. In particular, the exponent of d in our bound can likely be lowered slightly if
one uses more sophisticated techniques, some of which are discussed further in [96]
and the references therein. �

4 Our Main Algorithms and Their Complexity

Our central algorithm for counting roots in (R∗)n is conceptually simple but ultimately
somewhat laborious: Reduce to computing the signs of a linear combination of m
logarithms, evaluated at its critical points and poles. To compute the signs at the critical
points, we approximate the input to each logarithm, and each resulting summand, to
extremely high accuracy. The devil is in the level of accuracy, but thanks to our
earlier development, the required accuracy canbe estimated explicitly, and the resulting
complexity bound is quadratic in (n2 log(dH))(1+o(1))n . We will see an even better
conditional speed-up in Sect. 6, but let us first explore what is provable with current
technology.
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Algorithm 4.1 Input Integers b1, . . . , bm, rational numbers γ1,1, γ1,0, . . . , γm,1,

γm,0, u0, u∞, with m≥2, γi,1u + γi,0>0 for all u∈(u0, u∞) and i ∈{1, . . . ,m}, and
L(u)=

m∑

i=1

bi log
∣
∣γi,1u + γi,0

∣
∣ non-constant and differentiable on some non-empty

open interval.
Output The signs of L at all its critical points in (u0, u∞).
Description

0. Let B :=maxi |bi |, log H :=max
{
1,maxi, j h

(
γi, j
)}
, A := m28m−1BH4m−2,

E := 1.4 · m6.530m+3(1 + logm)(1 + log B) logm A ,

D := m2e + (m + 2) log
(
8 + m2m+2BH2m

)
,

and ρ :=1.443(D + log(12m) + E).

1. Compute thepolynomial g(u) :=
m∑

i=1

biγi,1νi

m∏

j=1

(γ j,1u + γ j,0)ν j/((γi,1u + γi,0)νi ),

where νi denotes the least common multiple of the denominators of γi,1 and γi,0.
2. Via Lemma 3.6, find respective isolating intervals J1, . . . , Jk−1 to the roots u1 <

· · · <uk−1 of g in (u0, u∞) such that each Ji has width no greater than 2−ρ .
3. For all i ∈{1, . . . , k − 1} do:
4. Let ūi := sup Ji+inf Ji

2 .
5. For all j ∈{1, . . . ,m} do:
6. Compute, via Theorem 3.5, a rational number L j agreeing with log |γ j,1ūi +γ j,0|

in its first
⌈
1.443E + log2(6m)

⌉
most significant bits.

7. End For

8. Let Li :=
m∑

j=1
b j L j andθi :=sign(Li ).

9. If |Li |> 1
22

−1.443E then
10. Output “The sign of L at ui is θi .”
11. Else
12. Output “L(ui )=0.”
13. End If
14. End For

Lemma 4.2 Algorithm 4.1 is correct and runs in time

O
(
901m(log(B) + m log H)2m log2(B) log2(log(B) + m log H)

)
.

Proof The correctness of our algorithm follows directly from Theorem 2.25 and Lem-
mata 3.1 and 3.4. First note that the classical inequality 1 − 1

x ≤ log x ≤ x − 1 (for
all x > 0), yields s

v+s ≤ log(v + s) − log v ≤ s
v
(for all v > 0 and s > −v), upon

setting x = v+s
v
. Setting v = γ j,1ū j + γ j,0 and s = γ j,1(u j − ū j ), and assuming

123



Foundations of Computational Mathematics

γ j,1u j + γ j,0, γ j,1ū j + γ j,0>0, we then obtain

(u j − ū j )γ j,1

γ j,1u j + γ j,0
≤ log(γ j,1u j + γ j,0) − log(γ j,1ū j + γ j,0) ≤ (u j − ū j )γ j,1

γ j,1ū j + γ j,0
.

(16)

The proof of Assertion (4) of Lemma 3.4 tells us that
|γ j,1u j+γ j,0|

|γ j,1| ≥ �/2. Since

1/ log 2<1.443, we have�>2−1.443D, thanks to the definition ofD. So the definition
of s tells us that |u j−ū j |≤ 1

22
−1.443D is sufficient to guarantee that

|γ j,1ū j+γ j,0|
|γ j,1| ≥�/2.

So, by Inequality (16), we obtain that |u j − ū j | ≤ 2−ρ guarantees | log(γi,1ui +
γi,0) − log(γi,1ūi + γi,0)| ≤ 1

6m 2
−1.443E . Should γi,1u + γi,0 < 0 we can repeat

our preceding argument, with a sign flip, to obtain that |u j − ū j | ≤ 2−ρ guarantees
| log |γi,1ui +γi,0|−log |γi,1ūi +γi,0||≤ 1

6m 2
−1.443E . So then, thanks to Step 6 and the

Triangle Inequality, we see that our algorithm computes, for each i ∈{1, . . . , k − 1},
a rational Li such that |L(ui ) − Li |≤ 1

32
−1.443E .

Theorem 2.25 then tells us that |L(ui )| is either 0 or strictly greater than 2−1.443E .
So the threshold on |Li | from Step 9 indeed correctly distinguishes between L(ui )
being nonzero or zero, and the signs of L(ui ) and Li also match when L(ui ) �= 0
thanks to our chosen accuracy. In other words, our algorithm is correct.

We now analyze the complexity of our algorithm. First note that H , A , E , D, and
ρ need not be computed exactly: it is sufficient to work with the ceilings of these
quantities, or even the smallest powers of 2 respectively greater than these quantities.
In particular, these parameters can easily be computed via standard efficient methods
for computing the exponential function [1] (along with Theorem 3.5) and thus the
complexity of Step 0 is negligible, and in fact asymptotically dominated by Steps 2
and beyond.

Likewise, Step 1 is easily seen to take time within O(m2(log2(B) + m log2 H)),
by combining the fast polynomial multiplication method from, say, [51, Sec. 8.4] with
the fast integer multiplication method of Harvey and van der Hoeven [56].

Lemma 3.1 tells us that the complexity of Step 2 can be estimated by replacing
(d, H , 	) in the statement of Lemma 3.6 by (m − 1,m2m−1BH2m, ρ). Noting that
ρ =O(E) and mr , logr B, logr H =O(E) for any m≥r >0, Lemma 3.6 then tells us
that Step 2 takes time

O(m4[log2(m2m−1BH2m) + ρ(ρ + m2 + m log(m22m−1BH2m))

log(ρm log(m · m2m−1B2m))])
= O(m4E2 log2 E). (17)

Thanks to Theorem 3.5, a simple over-estimate for the complexity of Step 6 is
O(E log2 E), so then the time spent in (each run of) Steps 4–7 in total is O(mE log2 E).
Since k − 1≤m − 1, Steps 3–14 then take time no greater than O(m2E log2 E).

We thus see, from comparison to Estimate (17), that Step 2 in fact dominates the
asymptotic complexity of our entire algorithm. Since mr = O((1 + ε)m) for any
fixed r , ε > 0, we have that E = O(log(B)(30 + ε)m(log(B) + m log H)m). Since
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log E = O(m log(log(B) + m log H)), we see similarly that the complexity of our
algorithm is

O
(
(900 + ε)m(log(B) + m log H)2m log2(B) log2(log(B) + m log H)

)

which is dominated by our stated bound. �

We can now state our algorithm for counting the positive roots of circuit systems:

Algorithm 4.3 Input Polynomials f1, . . . , fn ∈ Z

[
x±1
1 , . . . , x±1

n

]
with A :=

⋃
i Supp( fi ) a circuit and #A=n + 2.

Output The number of roots of F=( f1, . . . , fn) in R
n+.

Description

0. Find the unique (up to sign)minimal circuit relation b∈Z
(n+2)×1 of A, and re-index

the points of b and A so that bm+1= · · · =bn =0 and the unique non-degenerate
sub-circuit � of A is �={a1, . . . , am, an+1, an+2}. Then, translate a1, . . . , an+1
by −an+2, and set an+2 :=O.

1. Letting [ci, j ]be the coefficientmatrix of F, checkwhether all the n×n sub-matrices
of [ci, j ] are non-singular. If not, then output

“Your system might have infinitely many roots but I’m not sure: Please check if
there are any updates to this algorithm, addressing the cases of vanishingminors
for the coefficient matrix.”

and STOP.

2. Reduce F=O to a system of equations of the formG=O, where G :=(g1, . . . , gn)
and gi (x) := xai − γi,1xan+1 − γi,0 for all i .

3. Let L(u) :=bn+1 log |u| +
m∑

i=1

bi log |γi,1u + γi,0| and

I :={u∈R+ | γi,1u + γi,0>0 for all i ∈{1, . . . , n}}.

4. Via Algorithm 4.1 and Proposition 2.19, compute the number, N , of roots of L in
I , and output N .

Example 4.4 Depending on the coefficient matrix of F , the number of poles of L can
certainly be smaller than m + 1: For instance, one can directly build a 4 × 4 circuit
system F ∈(Z[x1, x2, x3, x4])4 yielding, say,

L(u)=2 log |u| + log |u + 1| + 2 log |2u + 2| + 3 log |9u + 9| − 5 log |7u + 7|

and b=[1, 2, 3,−5, 2,−3]�. This L clearly has just 2 poles: 0 and −1. �
Lemma 4.5 Algorithm 4.3 is correct and runs in time

O
(
(31n2 log(ndH))2n+2(log(nd) log(n log(dH)))2

)
,
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where d is the largest absolute value of an entry of A and H :=maxi | fi |∞.

Proof First note that Step 1 tests a natural genericity condition mentioned earlier, and
the algorithm proceeds to Step 2 if and only if the genericity condition holds. So let
us assume we have proceeded to Step 2.

Observe then that the sum L from Step 3 is non-constant and differentiable on a
non-empty open sub-interval J ⊆R+: By the sub-matrix non-singularity assumption
of Step 1, the γi, j must all be nonzero, and thus any cancellation between terms of L
can not affect the term bn+1 log |u|. So then J = R+ if γi, j > 0 for all i and j , and

J =
(

0, min
γi,1γi,0<0

{−γi,0/γi,1}
)

otherwise.

Letting u0 := inf I , u∞ := uk := sup I , and letting u1 < · · · < uk−1 be the critical
points of L in I as before, note that the sign of limu→u+

0
L(u) is either −sign(bn+1)

(if u0=0) or −sign

(
∑

u0=−γi,0/γi,1

bi

)

. Similarly, the sign of limu→u−
k
L(u) is simply

−sign

(
∑

uk=−γi,0/γi,1

bi

)

(resp. −sign(bn+2)) if uk <∞ (resp. uk =+∞). So the use

of Proposition 2.19 is clear.
The correctness of Algorithm 4.3 then follows directly from Lemmata 2.15, Propo-

sition 2.19, and Lemma 4.2. So we now analyze the complexity of our algorithm.
Thanks to Lemmata 2.1 and 2.2, it is clear that Steps 0–3 are doable in time

n3.373 log1+o(1)(nd) + n4.373 log1+o(1)(nH). This will not be the dominant part of
the algorithm: Observing that h(γi, j )=O(n log(nH)) and h(bi )=O(n log(nd)) for
all i, j (simply by Hadamard’s Inequality and Cramer’s Rule), the proof of Lemma
4.2 tells us that applying Algorithm 4.1 and Proposition 2.19 (with m≤n + 1) takes
time

O
(
(900 + ε)n+1(n log(nd) + n2 log(nH))2n+2(n log(nd))2 log2(n log(nd) + n2 log(nH))

)

(18)

for any fixed ε > 0. Note in particular that the underlined expressions are clearly
bounded from above by:

n2 + n2 log(d) + n2 log(nH)≤n2(1 + log(ndH)),

provided n, d, H ≥1. So the O-estimate from (18) is bounded from above by

O
(
((30 + ε′)(n2 log(ndH))2n+2 log2(nd) log2(n2 log(ndH))

)

for any ε′ > ε. Since n2 log(ndH) = n2 log(n) + n2 log(dH) ≤ n3 + n3 log3(dH) =
O((n log(dH))3), we are done. �


We are now ready to state the analogue of Lemma 4.5 for counting roots in (R∗)n :

123



Foundations of Computational Mathematics

Lemma 4.6 Given any (n + 2)-nomial n × n system F = ( f1, . . . , fn)∈Z

[
x±1
1 , . . . ,

x±1
n

]n
supported on a circuit A with cardinality n+2, we can count exactly the number

of roots of F in (R∗)n in time O
(
(31n2 log(ndH))2n+2(log(nd) log(n log(dH)))2

)
,

where d is the largest absolute value of an entry of A and H :=maxi | fi |∞.

Proof The proof is almost identical to that of Lemma 4.5, save that we apply Corollary
2.22 instead of Proposition 2.19, Lemma 2.20 instead of Lemma 2.15, and that we use
a modified version of Algorithm 4.3.

In particular, the modifications to Algorithm 4.3 are that (a) the output is now the
number of roots in (R∗)n , (b) we re-index so that bn+1 is odd and (c) we replace Step
4 by Step 4’ stated below: �


4’. Via Algorithm 4.1, compute the numberN from Corollary 2.22 and the number
of

degenerate roots of L in R. Output their sum.

Note in particular that b must have an odd coordinate since minimal circuit relations
are assumed to have relatively prime coordinates. Also, the left or right-handed limits
of L at a real (possibly infinite) pole are easy to compute via the sign of a suitable sum
of bi (if the pole is finite) or the sign of −bn+2 (if the pole is ±∞), as in the proof of
Lemma 4.5. The correctness of our modified algorithm is then immediate.

The complexity analysis for our modified algorithm is almost identical to that of
Algorithm 4.3, save that there is extra work taking time O(n ·n2) to compute the signs
of �(ui ) and the �′

j (ui ). This is negligible compared to the other steps, so our final
asymptotic complexity bound remains the same.

Remark 4.7 Reducing counting the roots of F in (R∗)n to counting the roots of L in
≤n + 2 sub-intervals of R (as in our proof above) is much more efficient than naively
applying Algorithm 4.3 to each of the 2n orthants of (R∗)n . In particular, our proof
helps enable the conditional speed-up to time (n log(dH))O(1) from Theorem 1.6. �

5 Affine Roots and Proving Theorem 1.1

Before finally proving our main theorem, we will need to establish some simple facts
on roots of over-determined systems on coordinate subspaces. Our first observation is
immediate from basic convexity (see, e.g., [54, Ch. 3–4]).

Proposition 5.1 If A⊂Z
n is a circuit (resp. the vertex set of a simplex), and X is any

coordinate subspace of R
n, then A ∩ X is either empty, the vertex set of a simplex, or

a circuit (resp. either empty or the vertex set of a simplex). Furthermore, for any given
circuit A, there is at most one coordinate subspace X with A ∩ X a non-degenerate
circuit. �


For any I ⊆{1, . . . , n} let CI :={(x1, . . . , xn)∈C
n | i ∈{1, . . . , n} \ I 	⇒ xi =0}

and C
∗
I := {(x1, . . . , xn)∈C

n | i ∈ {1, . . . , n} \ I ⇐⇒ xi = 0}. Note that C∅ =C
∗
∅ =

{O}, CI is a coordinate subspace of dimension #I , and C
∗
I is a dense open subset of
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CI that we will call a sub-orbit. We also define RI := CI ∩ R
n and R

∗
I := C

∗
I ∩ R

n .
Note that if I ⊆ J , then CI ⊆ CJ and CJ is the disjoint union of C

∗
I over all I ⊆ J .

The corresponding containments hold for RI , RJ , and R
∗
I as well. In particular, R

∗{i}
is the real xi -axis sans the origin.

Lemma 5.2 Suppose f ∈C

[
x±1
1 , . . . , x±1

n

]
, I ⊆{1, . . . , n}, and f is well-defined on

C
∗
I . Then, f vanishes on all of C

∗
I ⇐⇒ A ∩ RI =∅.

Proof By symmetry, we can simply permute coordinates so that I ={1, . . . , r}. By the
Ideal-VarietyCorrespondence in the coordinate ring R :=C[x±1

1 , . . . , x±1
r , xr+1, . . . , xn]

(see, e.g., [60, Thm. 1.23]), f vanishing on all ofC
∗
I is equivalent to f lying in the ideal

of R generated by xr+1, . . . , xn . Equivalently, for each monomial xs := xs11 · · · xsnn of
f there must be an i ∈ {r + 1, . . . , n} with xi |xs . But then this is equivalent to each
monomial xs of f having si >0 for some i ∈{r+1, . . . , n}. In otherwords, (s1, . . . , sn)
can not lie in RI . �

Lemma 5.3 [52, Ch. 8] Suppose A={a1, . . . , at }⊂Z

n has cardinality t and does not
lie in any affine hyperplane, and F = ( f1, . . . , fn+1) with fi (x) =∑t

j=1 ci, j x
a j for

all i and the ci, j indeterminates. Then, there is an irreducible polynomial

RA∈Z
[
ci, j | (i, j)∈{1, . . . , n} × {1, . . . , t}] \ {0},

such that
[[ci, j ]∈C

n×t and RA(. . . , ci, j , . . .) �=0
] 	⇒ F has no roots in (C∗)n. In

particular, we can pick RA so that deg RA ≤ (n + 1) · n!V (where V is the volume of
the convex hull of A, normalized so that the unit n-cube has volume 1) and, if t=n+1,
then we can use RA=det[ci, j ]. �

Example 5.4 When t = n + 2 the polynomial RA can already be far more unwieldy
than an (n + 1) × (n + 1) determinant. For instance, with n = 1, A = {0, 1, d}, and
d ≥ 2, the corresponding over-determined circuit system yields RA being a 2d × 2d
determinant (a special case of the Sylvester resultant) having degree 2d. One can also
check via any reasonable computer algebra system that such an RA has exactly 3d +1
monomial terms, at least for d∈{2, . . . , 100}. �

The polynomial RA above is an example of a sparse resultant, and is one of many
ways to formulate the fact that (n + 1)-tuples of n-variate polynomials generically
have no roots in (C∗)n . The same of course holds for (n + k)-tuples of n-variate
polynomials for k≥2, but then the sufficient condition need not be determined by an
irreducible polynomial that is unique up to sign.

Example 5.5 Consider F=(c1 + c2x1, c3 + c4x1, c5 + c6x1). Then, the non-vanishing

of either of det

[
c1 c2
c3 c4

]

or det

[
c3 c4
c5 c6

]

suffices to make F have no roots in C
∗. Put

another way, the non-vanishing of the resultant of some sub-pair of the original triple
of polynomials suffices to obstruct roots in C for the triple. �

FromLemma 5.3 (and using resultants of suitable sub-(d+1)-tuples of F restricted
to d-dimensional coordinate subspaces), it is easy to see that if A ∩ X is non-empty
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for every coordinate subspace X ⊂R
n , then a generic n × n system F supported on A

can have no roots on the union of coordinate hyperplanes in C
n . We will need a more

explicit refinement of this fact.

Lemma 5.6 Suppose A = {a1, . . . , at } ⊂ Z
n has cardinality t ≤ n + 2 and does

not lie in any affine hyperplane, I := {i ∈ {1, . . . , n} | min
(a1,...,an)∈A

ai < 0}, and
F=( f1, . . . , fn)with fi (x)=∑t

j=1 ci, j x
a j ∈R

[
x±1
1 , . . . , x±1

n

]
for all i ∈{1, . . . , n}.

Suppose further that every square sub-matrix of [ci, j ] is non-singular and, if A ∩ Y
contains a non-degenerate sub-circuit for some proper coordinate subspace Y �R

n,
assume further that RA∩Y (G) �= 0 for some sub-tuple G := ( f	 | 	 ∈ M) of F with
#M=1+dim Y . Then, for all J ⊇ I we have that F iswell-definedonC

∗
J . Furthermore,

for I ⊆ J �={1, . . . , n}, we have that F either vanishes on all of R
∗
J or has no roots in

C
∗
J , with the latter occuring if and only if A ∩ RJ �=∅.

Example 5.7 The additional condition involving A ∩ Y is necessary when t = n + 2:
For instance, taking n=2 and I ={1}, the system F=(1+ x2 + 2x1 − 3x41 , 1+ 2x2 +
3x1 − 4x41 ) has all square sub-matrices of its coefficient matrix non-singular, but F
has a unique root in C

∗
1: (1, 0). The missing condition is in fact the non-vanishing of

the resultant of c1,1 + c1,3x1 + c1,4x41 and c2,1 + c2,3x1 + c2,4x41 . �
Proof of Lemma 5.6: The statement on F being well-defined on C

∗
J is immediate since

the only coordinate hyperplanes possibly containing poles for the f	 are {xi =0} with
i ∈ I .

Let us now assume that there is no subspace Y as stated. Then, the intersection of
A with each coordinate subspace of R

n is the vertex set of a simplex, and Lemma
5.3 combined with our sub-matrix assumption implies that F has no roots in C

∗
J if

A ∩ RJ �=∅. If A ∩ RJ =∅ then Lemma 5.2 implies that F vanishes on all of C
∗
J , and

thus on all of R
∗
J .

Should there instead be a subspace Y as stated, then Lemma 5.3 combined with our
augmented genericity assumption implies that F has no roots in C

∗
J if A ∩ RJ �=∅. If

A ∩ RJ =∅, then Lemma 5.2 implies that F vanishes on all of C
∗
J , and thus on all of

R
∗
J . �


5.1 The Proof of Theorem 1.1

For convenience, let us first name the genericity assumptions we defined above:

G∗+: Every n × n sub-matrix of [ci, j ] is non-singular. �
Gaff : Every square sub-matrix of [ci, j ] is non-singular and, if A ∩ Y contains
a non-degenerate sub-circuit for some proper coordinate subspace Y � R

n ,
assume further that RA∩Y (G) �= 0 for some sub-tuple G := ( f	 | 	 ∈ M) of F
with #M=1 + dim Y . �
The cases ofTheorem1.1 for root counting inR

n+ and (R∗)n then follow respectively
from Lemmata 4.5 and 4.6 when t=n + 2, under the genericity assumption G∗+. For
t = n + 1, we simply use Lemma 2.9 and Corollary 2.11 instead. Note in particular
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that a consequence of Corollaries 2.11 and 2.22 is that F generically has only finitely
many roots in (R∗)n .

Let Z∗ denote the zero set of F in (R∗)n . To count the roots of F in R
n , let us

switch our genericity assumption to Gaff , and count the roots of F in (R∗)n as in the
last paragraph, save for one small change: We assume our input is generic and skip
Step 1 when applying Algorithm 4.3, i.e., we no longer check if our system is generic
(since there are exponentially many determinants underlying Gaff ). Observe now that
Lemma 5.6 implies that the real zero set of F in R

n will either be (a) Z∗ ∪ {O}, (b) the
union of Z∗ with a real positive-dimensional sub-orbit, or (c) Z∗. So now we merely
need to distinguish these possibilities efficiently.

Thiswill reduce to indexing, with complexity negligible compared toAlgorithm4.3
and its variants. First, observe thatμ j := min

(a1,...,an)∈A
a j >0 for any j implies that x j | fi

for all i , which in turn implies F has infinitely many roots in R
n . Computing all these

minima takes time O(n). So we may assumeμ j ≤0 for all j , and let I :={ j | μ j <0}.
If I =∅ then F is well-defined on all of C

n , and thus F vanishes on all of RJ—for
some J ⊆ {1, . . . , n} with #J ≥ 1—if only if F vanishes on all of R

∗{ j} for some
j ∈ {1, . . . , n}. Lemma 5.6 then tells us this happens if and only if A ∩ { j}=∅. The
last condition is decided easily by checking if, for each 	∈{1, . . . , t}, a	 has a positive
i th coordinate for some i ∈ {1, . . . , n} \ { j}. This can clearly be done in time O(n2),
so let us now assume I �=∅.

Lemma 5.6 then implies that F has infinitely many roots in R
n if and only if there

is a J ⊇ I with J �= {1, . . . , n} and A ∩ RJ =∅. The last condition holds if and only

if A ∩ RI =∅ (since I ⊆ J 	⇒ RI ⊆RJ ). Checking A ∩ RI
?=∅ can be done in time

O(n3) simply by checking if, for each 	∈{1, . . . , t}, a	 has a positive i th coordinate
for some i ∈{1, . . . , n}\ I . So we are done, and we see that the complexity of counting
the roots of F on the union of real coordinate hyperplanes is well-dominated by the
complexity of counting the roots of F in (R∗)n , thanks to our genericity assumptions.

�


Remark 5.8 Note that conditionGaff involves the non-vanishing of each entry of [ci, j ],
as well as the determinants of each k × k sub-matrix of [ci, j ] for k ∈{2, . . . , n}. The
product of all these determinants clearly has degree D :=n(n+2)+2

(n
2

)(n+2
2

)+· · ·+
n
(n
n

)(n+2
n

)
. Since

∑n
k=0

(n
k

)2 = (2n
n

)
, it is then easy to see that D < n

(2n+4
n+2

)= 2O(n).

The resultant underlying condition Gaff has degree (nd)O(n), thanks to Lemma 5.3

and Hadamard’s Inequality. So then, the DLSZ Lemma implies that H ≥ 2�(n)+(nd)�(n)

ε

is enough to guarantee that at worst an ε-fraction of the [ci, j ]∈{−H , . . . , H}n×(n+2)

fail condition Gaff . This implies our earlier statement on the number of bits needed
for H to have Gaff hold with probability 1 − ε. �

Remark 5.9 Unlike our setting here—where we restrict the union of supports to be a
circuit of cardinality n+2—we conjecture that counting real affine roots for arbitrary
binomial systems is #P-hard, parallelling the complex case studied in [34]. Indeed,
n × n binomial systems can have union of supports with cardinality up to 2n, and this
complicates counting real roots on coordinate sub-spaces. �
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6 Conditionally Speeding Up to Time (n log(dH))O(1): Proving
Theorem 1.6

The key to proving our conditional speed-upwill be tomodify (a) two key bounds from
Lemma 3.4 and (b) the initial step of a key algorithm (Algorithm 4.1), by incorporating
the Diophantine improvements granted by the RALC should it be true.

Lemma 6.1 Following the notation of Lemma 3.4, if the RALC is true, then we can
respectively replace the bounds from Assertions (2) and (4) by:

2′. log |ε| > −O
(
(m2(log(B) + m log H))C

)
.

4′. log δ > −O
(
(m2(log(B) + m log H))C + m2(log(B) + m log H)

)
.

Proof The critical juncture is Bound (9), from our proof of Assertion (2) of Lemma
3.4: Replacing the use of the Baker–Wustholtz theorem there with the bound from the
RALC immediately yields Bound (2’).

Bound (4’) then follows easily from Bound (13) (near the end of the proof of
Lemma 3.4), and the line following that bound, where see that log δ ≥ log(2) +
log |ε|− log |L ′(ξ)| (in the notation of the proof of Lemma 3.4). So the last term (fully
expanded in the proof of Lemma 3.4) accounts for the final term in Bound (4’). �

Lemma 6.2 Suppose theRALC is true, b1, . . . , bm ∈Z,γ1,1, γ1,0, . . . , γm,1, γm,0, u0, u∞ ∈
Q, with m ≥ 2, γi,1u + γi,0 > 0 for all u ∈ (u0, u∞) and i ∈ {1, . . . ,m},
and L(u)=

m∑

i=1

bi log
∣
∣γi,1u + γi,0

∣
∣ is non-constant and differentiable on some non-

empty open interval. Also let B := maxi |bi | and log H := max
{
1,maxi, j h

(
γi, j

)}
.

Then, we can compute the signs of L at all its critical points in (u0, u∞) in time
O(m4+2max{1,C}(log(B) + m log H)2max{1,C} log(m log(BH))).

Proof We simply useAlgorithm 4.1with one crucial change:We replace the definition
of E in Step 0 by O

(
(m2(log(B) + m log H))C

)
. We then proceed as in the proof of

Lemma 4.2. In particular, Lemma 6.1 tells us that this modified version of Algorithm
4.1 is correct. As for complexity, instead of ρ =O(E) with the old value of E , the new
value of E yields

ρ =O
(
m[log(B) + m log H ] + (m2(log(B) + m log H))C

)
.

Bound (17) from the proof of Lemma 4.2, combined with our new values of E and ρ,
then easily yield complexity O(m4ρ2(log(m)+log log(B)+log log H)). This reduces
to our stated bound. �


We can now give our final remaining proof.

Proof of Theorem 1.6: To speed up root counting in R
n+, we use a modified version

of Algorithm 4.3: We use Lemma 6.2 in place of Algorithm 4.1 in Step 4. We then
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proceed as in the proof of Lemma 4.5. In particular, correctness is immediate. As
for complexity, Step 4 of our modified version of Algorithm 4.3 is the dominant
part. Our final bound then amounts to substituting (n + 1, n log(nd), n log(nH)) for
(m, log B, log H) into the bound fromLemma 6.2, easily yielding a complexity bound
of

O
(
n4+4max{1,C}(log(nd) + n log(nH))2max{1,C} log(n log(ndH))

)
,

which is clearly (n log(dH))O(1).
To speed up root counting in (Rn)∗, we further modify Algorithm 4.3: Lemma 4.6

gives a modification to Step 4 (called Step 4’) that enables counting in (R∗)n instead
of R

n+. We make one more modification: We replace the use of Algorithm 4.1 in Step
4’ with an application of Lemma 6.2. Continuing as in the proof of Lemma 4.6 then
gives us correctness. The complexity analysis is almost identical, save for an extra step
involving the quantities �(ui ) and �′

j (ui ) (with complexity still negligible compared
to the dominant steps). So our bound remains of the same asymptotic order.

To speed up root counting in R
n , the last three paragraphs of the proof of Theorem

1.1 from Sect. 5.1 tell us that we can count roots on the union of real coordinate
hyperplanes in R

n in time O(n3) simply by checking the intersection of the support A
against ≤n coordinate subspaces, thanks to Lemma 5.6 and our genericity condition
Gaff . So counting roots in (R∗)n dominates our complexity, and we are done. �


Farewell to a Friend

Tien-Yien Li passed away a few months into the COVID-19 pandemic. TY (as he was
known to his friends) was an immensely kind and generous man, and a dear friend,
in addition to being a great mathematician. Through hours-long grilling sessions in
October 1993, at the Centre de RecercaMatematica in Barcelona, he taught me lessons
on perseverance, curiosity, scholarship, and generosity that I would always remember.
It was there that I also got to know TY and his unique sense of humor. He always
faced the greatest difficulties with a smile. I admired him both as a person and a
mathematician. I truly miss him.
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