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Text. For any fixed field K ∈ {Q2, Q3, Q5, . . .}, we prove 
that all univariate polynomials f with exactly 3 (resp. 2) 
monomial terms, degree d, and all coefficients in {±1, . . . ,
±H}, can be solved over K within deterministic time 
log4+o(1)(dH) log3 d (resp. log2+o(1)(dH)) in the classical Tur-
ing model: Our underlying algorithm correctly counts the 
number of roots of f in K, and for each such root generates an 
approximation in Q with logarithmic height O(log2(dH) log d)

that converges at a rate of O
(

(1/p)2i
)

after i steps of New-

ton iteration. We also prove significant speed-ups in certain 
settings, a minimal spacing bound of p−O(p log2

p(dH) log d) for 
distinct roots in Cp, and even stronger root repulsion when 
there are nonzero degenerate roots in Cp: p-adic distance 
p−O(logp(dH)). On the other hand, we prove that there is an 
explicit family of tetranomials with distinct nonzero roots in 
Zp indistinguishable in their first Ω(d logp H) most signifi-
cant base-p digits. So speed-ups for t-nomials with t ≥ 4 will 
require evasion or amortization of such worst-case instances.
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1. Introduction

Solving polynomial equations over the p-adic rational numbers Qp underlies many 

important computational questions in number theory (see, e.g., [25,9,23,51]) and is close 

to applications in coding theory (see, e.g., [11]). Furthermore, the complexity of solving 

structured equations — such as those with a fixed number of monomial terms, or invari-

ance with respect to a group action — arises naturally in many computational geometric 

applications and is closely related to a deeper understanding of circuit complexity (see, 

e.g., [38]). So we will study how sparsity affects the complexity of separating and ap-

proximating roots in Qp. Unless stated otherwise, all O-constants and Ω-constants are 

effective and absolute.

Recall that thanks to 17th century work of Descartes, and 20th century work of 

Lenstra [40] and Poonen [46], it is known that univariate polynomials with exactly t

monomial terms have at most tOK(1) roots in a local field K only when K is R or a 

finite algebraic extension of Qp for some prime p ∈ N. (For instance, C is ruled out 

because xd − 1 has just 2 monomial terms but d distinct complex roots.) We’ll use | · |p
(resp. | · |) for the absolute value on the p-adic complex numbers Cp normalized so that 

|p|p = 1
p (resp. the standard absolute value on C). Recall also that for any function f
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analytic on K, the corresponding Newton endomorphism is Nf (z) := z − f(z)
f ′(z) , and the 

corresponding sequence of Newton iterates of a start-point z0 ∈ K is the sequence (zi)
∞
i=0

where zi+1 := Nf (zi) for all i ≥ 0.

Our first main result is that we can efficiently count the roots of univariate trinomials 

in Qp, and find succinct start-points in Q under which Newton iteration converges 

quickly to all the roots in Qp. We use #S for the cardinality of a set S.

Theorem 1.1. For any prime p and a trinomial f ∈ Z[x] with degree d and all its coef-

ficients in {±1, . . . , ±H}, we can find in deterministic time p3+o(1) log4+o(1)(dH) log3
p d

a set { α1

β1
, . . . , αm

βm
} ⊂Q of cardinality m = m(p, f) such that:

(1) For all j we have αj �= 0 =⇒ log |αj |, log |βj | = O
(

p log2
p(dH) log d

)

.

(2) z0 := αj/βj =⇒ f has a root ζj ∈ Qp with sequence of Newton iterates satisfying 

|zi − ζj |p ≤ (1/p)2i |z0 − ζj |p for all i, j ≥ 1.

(3) m = #{ζ1, . . . , ζm} and m is exactly the number of roots of f in Qp.

We prove Theorem 1.1 in Section 6.3 via Algorithm 6.12 there. The main idea behind 

Algorithm 6.12 is conceptually simple: solving for enough of the most significant base-p

digits of the roots to guarantee rapid convergence of Newton/Hensel Iteration. However, 

proving that this can be done efficiently hinges on recent root counts from arithmetic 

fewnomial theory [40,6,12,36] and some delicate root spacing estimates (Theorem 1.6

and Sections 3 and 5 below) that form the technical heart of this paper.

The dependence on p in our complexity bound can be lowered significantly in certain 

natural settings, e.g., restricting to roots of the form pj + O(pj+1), or making mild 

assumptions on the gcd of the exponents, or assuming the presence of nonzero degenerate 

roots in Cp: See Corollaries 1.4, 1.7, and 6.16 below. An analogue of Theorem 1.1 also 

holds for K = R and will be presented in a sequel to this paper [13]. We call a z0 ∈ Qp

satisfying the convergence condition from Theorem 1.1 an approximate root of f (in 

the sense of Smale1), with associated true root ζ. This type of convergence provides an 

efficient encoding of an approximation that can be quickly tuned to any desired accuracy.

Remark 1.2. Defining the input size of a univariate polynomial f(x) :=
∑t

i=1 cix
ai ∈

Z[x] as 
∑t

i=1 log((|ci| + 2)(|ai| + 2)) we see that Theorem 1.1 implies that one can 

solve univariatetrinomial equations, over Qp for any fixed prime p, in deterministic time 

polynomial in the input size. ⋄

Remark 1.3. Efficiently solving univariate t-nomial equations over K in the sense of 

Theorem 1.1 is easier for t ≤ 2: The case t = 1 is clearly trivial (with 0 the only possible 

root) while the case (K, t) = (R, 2) is implicit in work on computer arithmetic from the 

1970s (see, e.g., [14]). We review the case (K, t) = (Qp, 2) with p prime in Corollary 2.8

and Theorem 2.21 of Section 2 below. ⋄

1 This terminology has only been applied over C so far [57], so we take the opportunity here to extend it 
to the p-adic rationals. Note that we do not restrict ζ to be non-degenerate.



658 J.M. Rojas, Y. Zhu / Journal of Number Theory 241 (2022) 655–699

Despite much work on factoring univariate polynomials over Qp (see, e.g., [40,16,30,

10,11]), all known general algorithms for solving (or even just counting the solutions of) 

arbitrary degree d polynomial equations over Qp have complexity exponential in log d. 

So Theorem 1.1 presents a significant new speed-up, and greatly improves an earlier 

complexity bound (membership in NP, for detecting roots in Qp) from [3]. We’ll see 

in Sections 5 and 6 how our speed-up depends on p-adic Diophantine approximation 

[64,65]. Another key new ingredient in proving Theorem 1.1 is an efficient encoding of 

roots in Z/(pk) from [27,39], with important precursors in [61,11].

1.1. Dependence on p

While there are certainly number-theoretic algorithms with deterministic complexity 

having dependence (log p)O(1) on an input prime p, solving sparse polynomial equations 

in one variable over Qp might not have such tame dependence on p. There are 3 barriers 

(B1–B3 below) we must overcome before achieving such a speed-up:

B1. Whereas a binomial has at most 3 roots in R (e.g., x3 − x), a binomial can have as 

many as max{p, 3} roots in Qp (e.g., xmax{p,3} − x). Furthermore, trinomials have at 

most 5, 7, 9, or 3p − 2 roots in K, according as K is R, Q2 [40], Q3 [66], or Qp with 

p ≥ 5 [6,45], and each bound is sharp. ⋄
One might think that B1 is the nail in the coffin for dependence (log p)O(1). However, 

Hensel’s Lemma, and a tree from Section 2.5 below that encodes roots in Zp (see also 

[27]), reveal that the roots of a trinomial in Qp can in fact be encoded by a data structure 

of potentially much smaller size than a naive list of size Ω(p). (In essence, this means 

using an explicit collection binomials to encode a union of cosets of F∗
p .) This harkens 

back to an intriguing open problem from arithmetic fewnomial theory [20]: Is the zero 

set of a trinomial in Fp[x] always expressible as a union of O(log p) cosets of subgroups 

of F∗
p ? Currently, the best bound is O(

√
p) [36] and forms a key ingredient in proving 

one of our speed-ups: Corollary 1.4 below.

Observe now that the most natural p-adic analogue of a positive real number is a p-

adic rational number with most significant digit 1, i.e., a number of the form pj +O(pj+1). 

Restricting to such roots then cuts the root cardinality bounds of B1 down to 2, 6, 4, 

and 3 (respectively over R, Q2, Q3, or Qp with p ≥ 5), and yields a significant speed-up. 

Alternatively, rather than restricting digits of roots, one can observe that trinomials over 

Z with many roots in Qp have very particular exponents (see, e.g., [6]). This enables 

another significant speed-up to our main algorithm for “most” choices of exponents. We 

unite these two speed-ups as follows:

Corollary 1.4. Following the notation of Theorem 1.1, we can reduce its deterministic 

time complexity bound by a factor of p in either of following settings: (1) we only seek 

roots of the form pj + O(pj+1), or (2) we assume that the exponents are {0, a2, a3} with 

gcd(a2a3(a3 − a2), (p − 1)p) ≤ 2. In either case, the stated worst-case height bounds for 

the approximate roots remain the same.
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We prove Corollary 1.4 in Section 6.4, and leave average-case speed-ups (where one aver-

ages over coefficients) for future work. It follows from our framework that the speed-ups 

from Corollary 1.4 continue to hold (modulo a multiple of CO(1)) under softer assump-

tions like (a) restricting to roots with most significant digit in some cardinality C subset 

of {1, . . . , p − 1} or (b) assuming gcd(a2a3(a3 − a2), (p − 1)p) ≤ C. So our assumptions 

in Corollary 1.4 are more restrictive merely for the sake of simplifying our exposition.

Another barrier to more efficient dependence on p is explicitly extracting points from 

the cosets forming the zero set of a trinomial. For instance:

B2. Approximating square-roots of p-adic integers not divisible by p, within accuracy 1, 

implies finding square-roots in the finite field Fp. The latter problem is still not known 

to be doable in deterministic time polynomial in log p, even though the decision version 

is doable in deterministic time log2+o(1) p (see, e.g., [55,7,47]). Furthermore, it remains 

unknown how to find just a single dth root of a dth power in F∗
p in time (log(p) +log d)O(1), 

even if randomness is allowed (see, e.g., [1,18,21]). ⋄
We are then led naturally to yet another barrier to efficient dependence on p:

B3. Even if one only wants to approximate a single root in Qp of a trinomial, the minimal 

currently provable initial accuracy needed to make Newton iteration converge quickly 

appears to have quasi-linear dependence on p. ⋄
In particular, our key valuation bounds (see Section 5) currently hinge on estimates 

for linear forms in p-adic logarithms [8,64,65], and further improvements to the latter 

estimates appear to be unknown and difficult.

1.2. Repulsion, and the separation chasm at four terms

The p-adic rational roots of sparse polynomials can range from well-separated to 

tightly spaced, already with just 4 terms.

Theorem 1.5. Consider the family of tetranomials

fd,ε,j(x) := xd − ε−2jx2 + 2ε−(j+1)x − ε−2

with j ∈ N, j ≥ 3, ε ∈ Q nonzero, and d ∈ {4, . . . , ⌊eh⌋} even. Let H := max{ε±2j}. 

Then fd,ε,j has distinct nonzero roots ζ1, ζ2 in the open unit disk of K (centered at 0) with 

| log |ζ1 − ζ2|p| = Ω(d log H) or | log |ζ1 − ζ2|| = Ω(d log H), according as (K, ε) = (Qp, p)

or (K, ε) = (R, 1/2). In particular, while the coefficients of p2jfd,p,j all lie in Z and 

have O(logp H) base-p digits, we need Ω(d logp H) many base-p digits to distinguish the 

nonzero roots of f in Zp.

We prove Theorem 1.5 in Section 4, where we will also see in Remark 4.1 that the 

basin of attraction for a root of fd,p,j in Qp (under the Newton endomorphism Nfd,p,j
) 

can be exponentially small in log d as well. The special case K = R of Theorem 1.5

was derived earlier (in different notation) by Mignotte [42]. (See also [52].) The cases 
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K = Qp with p prime appear to be new, and our proof unifies the Archimedean and 

non-Archimedean cases via tropical geometry [4]. Approximating roots in Qp in average-

case time sub-linear in d for tetranomials (where one averages over the coefficients but 

fixes the exponents) is thus an intriguing open problem.

Mignotte used the tetranomial fd,1/2,j in [42] to show that an earlier root separation 

bound of Mahler [41], for arbitrary degree d polynomials in Z[x], is asymptotically near-

optimal. We recall the following paraphrased version:

Mahler’s Theorem. Suppose f ∈ Z[x] has degree d ≥ 2, all its coefficients lie in 

{±1, . . . , ±H}, and f is irreducible in Z[x]. Let ζ1, ζ2 ∈ C be distinct roots of f . Then 

|ζ1 − ζ2| >
√

3

(d+1)d+ 1
2 Hd−1

. In particular, | log |ζ1 − ζ2|| = O(d log(dH)). �

The very last statement is actually a small addendum, making use of the following classic 

fact: The complex roots of an f as above lie in an open disk, centered at the origin, of 

radius 2H (see, e.g., [48, Ch. 8] or Theorem 2.3 in Section 2.1 below). It is straightforward 

to prove an analogue of Mahler’s bound, of the same asymptotic order for | log |ζ1 − ζ|p|, 
for roots in Cp.

Our new algorithmic results are enabled by our third and final main result: Mahler’s 

bound can be dramatically improved for the roots of trinomials in Cp.

Theorem 1.6. Suppose p is prime and f ∈ Z[x] has exactly 3 monomial terms, degree 

d, and all its coefficients lie in {±1, . . . , ±H}. Let ζ1, ζ2 ∈ Cp be distinct roots of f . 

Then log H ≥ log |ζ1 − ζ2|p ≥ −O
(

p log2(dH) logp d
)

. Furthermore, if f has a nonzero 

degenerate root in Cp, then the last lower bound can be sharpened to −O(log(dH)).

The proof of Theorem 1.6 is split across Sections 3 and 5.1, due to the degenerate case 

being more technically difficult. In particular, Theorem 1.6 provides a p-adic analogue of 

a separation bound of Koiran for complex roots of trinomials [37], and the proofs of the 

non-degenerate (a.k.a. square-free) cases over Cp and C share much in common. However, 

the sharper bounds for the degenerate cases involve radically different techniques over 

Cp and C: Over C, there are refined analogues of Rolle’s Theorem that incorporate the 

multiplicity of roots. Over Cp, such a refinement is unavailable, so we resort to estimates 

on the valuation of discriminants of trinomials (see Lemma 5.4).

As to whether our root spacing bounds above are optimal, there are recent examples 

from [28] showing that log |ζ1 − ζ2|p = −Ω(log max{d, H}) can occur. However, we are 

unaware of any examples exhibiting log |ζ1 − ζ2|p = −Ω(pε) for some ε > 0. Asymptoti-

cally optimal separation bounds, over both Cp and C, are already known for binomials 

and we review these bounds in Section 2.2.

The presence of degenerate roots appears to not only increase the repulsion of roots 

for trinomials but also speed up their approximation:
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Corollary 1.7. Following the notation of Theorem 1.1, if f has a nonzero degenerate root 

in Cp, then we can find, in deterministic time p1+o(1)
(

p1/2 + log3+o(1)(dH)
)

, or Las 

Vegas randomized time p1+o(1) log3+o(1)(dH), a set of approximate roots in the sense of 

Smale, each in Q and with logarithmic height O(log(dH)), with distinct associated true 

roots having union the zero set of f in Qp.

We prove Corollary 1.7 in Remark 6.14 of Section 6.3 below. It is not yet clear whether 

significantly better bounds for root spacing and root approximation can hold in complete 

generality: the apparent improvements implied by the presence of degenerate roots could 

just be a side-effect of our underlying techniques. Curiously, a similar “repulsion from 

degeneracy” phenomenon also occurs in the (Archimedean) setting of roots in C: see [37, 

Proof of Thm. 18].

1.3. Previous complexity and sparsity results

Deciding the existence of roots over Qp for univariate polynomials with an arbitrary

number of monomial terms is already NP-hard with respect to randomized (ZPP, a.k.a. 

Las Vegas) reductions [3]. On the other hand, detecting roots over Qp for n-variate (n +1)-

nomials is known to be doable in NP [3]. Speeding this up to polynomial-time, even for 

n = 2 and fixed p, hinges upon detecting roots in (Z/(pk))2 for bivariate trinomials of 

degree d in time (k +log d)O(1). The latter problem remains open, but some progress has 

been made in author Zhu’s Ph.D. thesis [66].

On a related note, counting points on trinomial curves over prime fields Fp in time 

(log(pd))O(1) remains a challenging open question. Useful quantitative estimates in this 

direction were derived in [33,62] and revisited via real quadratic optimization in [5].

2. Background

Definitive sources for p-adic arithmetic and analysis include [54,53,49]. For algorithmic 

complexity we note that [44,2] are outstanding references. Let us now collect some basic 

terminology:

• For any ring R we let R∗ denote the multiplicatively invertible elements of R.

• The logarithmic height of a rational number a/b with gcd(a, b) = 1 is simply

h(a/b) := log max{|a|, |b|}, and we declare h(0) := 0.

• Over any algebraically closed field K, we define the multiplicity of a root ζ ∈ K of 

f ∈ K[x] as the greatest m with (x − ζ)m|f . (We will usually take K to be Cp or 

the algebraic closure Fp of Fp.)

• The most significant (base-p) digit of 
∑∞

j=s ajpj ∈ Qp is as, assuming the aj ∈
{0, . . . , p − 1} and as �= 0.

• We denote the standard p-adic valuation on Cp (normalized so that ordp p = 1) by 

ordp : Cp −→ Q.
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Recall that the famous Ultrametric Inequality states that for any α, β ∈ Cp we have 

ordp(α ± β) ≥ min{ordp α, ordp β}. (Equivalently: |α ± β|p ≤ max{|α|p, |β|p}.) We will 

frequently use (without further mention) this inequality, along with its natural implica-

tion ordp α < ordp β =⇒ ordp(α±β) = ordp α. We also recall that the metrics | ·| and | ·|p
are respectively called Archimedean and non-Archimedean because as n −→ ∞ we have 

|n| −→ ∞, while the sequence |n|p remains inside the bounded set {1, 1/p, 1/p2, . . .}.

Let us also recall that a polynomial-time Las Vegas randomized algorithm is a 

polynomia-time algorithm that uses polynomially random bits in the input size, errs 

with probability at worst 1/2, but always reports if it errs. Such an algorithm can be run 

k times to boost the success probability to at least 1 − 1
2k , and this type of randomization 

is standard in many number-theoretic algorithms such as the fastest current algorithms 

for factoring polynomials over finite fields or primality checking (see, e.g., [34,19]). In 

our setting, errors (for a Las Vegas speed-up) consist of reporting too few roots in Qp, 

but such errors can be detected and reported at no extra cost.

2.1. Newton polygons and Newton iteration: Archimedean and non-Archimedean

The notion of Newton polygon goes back to 17th century work of Newton on Puiseux 

series solutions to polynomial equations [59, pp. 126–127]. We will need variants of this 

notion over Cp and C. (See, e.g., [63] for the p-adic case and [43,4] for the complex case.)

Definition 2.1. Suppose f(x) :=
∑t

i=1 cix
ai ∈ Z[x] with ci �= 0 for all i and a1 < · · · < at. 

We then define the p-adic Newton polygon, Newtp(f) (resp. Archimedean Newton poly-

gon, Newt∞(f)) to be the convex hull of the set of points {(ai, ordp ci) | i ∈ {1, . . . , t}}
(resp. the convex hull of {(ai, − log |ci|) | i ∈ {1, . . . , t}}). We call an edge E of a poly-

gon in R2 lower if and only if E has an inner normal with positive last coordinate. We 

also define the horizontal length of a line segment E connecting (r, s) and (u, v) to be 

λ(E) := |u − r|. ⋄

Example 2.2. Consider gε(x) := x5 − ε−6x2 + 2ε−4x − ε−2. We illustrate Newtp (gp) (for 

p odd) and Newt∞(g1/2) below:

Note that the p-adic Newton polygon on the left has exactly 2 lower edges (with 

horizontal lengths 2 and 3), while the Archimedean Newton polygon on the right has 

exactly 3 lower edges (with horizontal lengths 1, 1, and 3). ⋄
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Theorem 2.3. Following the notation above, the number of roots of f in Cp of valuation 

v (counting multiplicity) is exactly the horizontal length of the face of Newtp(f) with 

inner normal (v, 1). Furthermore, if Newt∞(f) has a lower edge E with slope v, and no 

other lower edges with slope in the open interval (v − log 3, v + log 3), then the number 

of roots ζ ∈ C of f with log |ζ| ∈ (v − log 3, v + log 3), counting multiplicity, is exactly 

λ(E). �

The first portion of Theorem 2.3 goes back to work of Dumas around 1906 [26], while the 

second portion is an immediate consequence of [4, Thm. 1.5] (with an important precursor 

by Ostrowski around 1940 [43]). The set of slopes of the lower edges of Newtp(f) (or of 

Newt∞(f)) is an example of a tropical variety [4].

We will also use the following version of Hensel’s famous criterion for the rapid con-

vergence of Newton’s method over Cp:

Hensel’s Lemma. (See, e.g., [22, Thm. 4.1 & Inequality (5.7)].) Suppose p is prime, f ∈
Z[x], j ≥ 1, ζ ∈ Zp, ℓ = ordp f ′(ζ) < ∞, and f(ζ) ≡ 0 mod p2ℓ+j. Let ζ ′ := ζ − f(ζ)

f ′(ζ) . 

Then f(ζ ′) = 0 mod p2ℓ+2j, ordp f ′(ζ ′) = ℓ, and ζ = ζ ′ mod pℓ+2j. �

2.2. Separating roots of binomials

When f ∈ Z[x] is a binomial, all of its roots in C are multiples of roots of unity 

that are evenly spaced on a circle. The same turns out to be true over Cp, but the root 

spacing then depends more subtly on p and much less on the degree. For convenience, 

we will sometimes write | · |∞ instead of | · | for the standard norm on C. Rather than 

stating lower bounds on |ζ1 − ζ2|p, we will instead state upper bounds on | log |ζ1 − ζ2|p|: 
the latter clearly includes both a lower and upper bound on |ζ1 − ζ2|p. In summary, we 

have the following:

Proposition 2.4. Suppose f(x) := c1 + c2xd ∈ Z[x], d ≥ 2, c1c2 �= 0, and |c1|, |c2| ≤ H. 

Then for any distinct roots ζ1, ζ2 ∈ C of f , we have | log |ζ1 − ζ2|| ≤ log(d) + 1
d log H. 

Also, for any distinct roots ζ1, ζ2 ∈ Cp of f , we have that | log |ζ1 − ζ2|p| is at most 
1
d log H or log p

p−1 + 1
d log H, according as d > pordp d or d = pordp d ≥ p.

Put another way, if one fixes H ≥ 1 and the prime p, and lets d −→ ∞, then the minimal 

root distance tends to 0 in the Archimedean case. However, in the non-Archimedean case, 

the minimal root distance is never less than 1
H1/dp1/(p−1) (≥ 1

2H ).

Proof of Proposition 2.4. The case p = ∞ follows from an estimate for the distance 

between the vertices of a regular d-gon. In particular, the minimal spacing between dis-

tinct complex roots can easily be expressed explicitly as |c1/c2|1/d
√

2(1 − cos 2π
d ), which 

is clearly bounded from below by H−1/d
√

2(1 − cos 2π
d ). From the elementary inequality 

1 −cos x ≥ x2
(

1
2 − π2

48

)

we easily get 
∣

∣

1
2 log

(

1 − cos 2π
d

)∣

∣ ≤ log(d) − 1
2 log

(

4π2 − π2

6

)

for 
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all d ≥ 6. Observing that |1
2 log(1 − cos 2π

d )| ≤ log 2 for d ∈ {2, . . . , 5} we get our stated 

bound via the Triangle Inequality applied to 
∣

∣

∣
log

(

H−1/d
√

2(1 − cos 2π
d )
)∣

∣

∣
.

The case of prime p follows easily from the Ultrametric Inequality and classical facts 

on the spacing of p-adic roots of unity (see, e.g., [49, Cor. 1, Pg. 105, Sec. 4.3 & Thm. 

Pg. 107, Sec. 4.4]). In particular, when gcd(d, p −1) = 1, distinct dth roots of unity in Cp

are all at unit distance. At the opposite extreme of d = pj for j ≥ 1, the set of distances 

between distinct dth roots of unity is exactly 
{

1
p1/(p−1) , 1

p1/(p1(p−1))
, . . . , 1

p1/(pj−1(p−1))

}

. So 

the minimum distance is 1/p1/(p−1) for d a non-trivial pth power. In complete generality, 

we see that there are distinct dth roots of unity at distance 1 if and only if d is divisible 

by a prime other than p. Observing that |x1/d|p = p− 1
d ordp x and ordp H ≤ logp H for 

x ∈ C∗
p and H ∈ N, we then see that | log |H±1/d|p| ≤ 1

d log H and our bound follows 

from the multiplicativity of norms. �

2.3. Characterizing roots of binomials over Q∗
p

Counting roots of binomials over Qp is more involved than counting their roots over 

R, but is still quite efficiently doable. The first step is reducing the problem to Z/(pk)

for k linear in the bit-size of the degree of the binomial.

Lemma 2.5. Suppose p is an odd prime and f(x) := c1 + c2xd ∈ Z[x] with |c1|, |c2| ≤ H, 

c1c2 �= 0, and ℓ := ordp d. Then the number of roots of f in Qp is either 0 or gcd(d, p −1). 

In particular, f has roots in Qp if and only if both of the following conditions hold:

(1) d| ordp(c1/c2) and

(2)

(

−c1

c2
pordp(c2/c1)

)pℓ(p−1)/ gcd(d,p−1)

= 1 mod p2ℓ+1. �

Lemma 2.5 is classical and follows from basic group theory (the fact that the multiplica-

tive group (Z/(pk))∗ is cyclic, of order pk−1(p − 1), for p odd) and Hensel’s Lemma.

Recall that the only roots of unity in Q2 are {±1} (see, e.g., [49]). The following 

lemma is then a simple consequence of the multiplicative group (Z/(2k))∗ being exactly 

the product {±1} ×
{

1, 5, . . . , 52k−3

mod 2k
}

(having cardinality 2k−1) when k ≥ 3 (see, 

e.g., [7, Thm. 5.6.2, pg. 109]), and Hensel’s Lemma.

Lemma 2.6. Suppose f(x) := c1 + c2xd ∈ Z[x] with |c1|, |c2| ≤ H, and c1c2 �= 0. Then 

the number of roots of the binomial f in Q2 is either 0 or gcd(d, 2). In particular, if 

ℓ := ord2 d and u := ord2(c2/c1), then f has roots in Q2 if and only if both of the 

following conditions hold: (1) d|u and (2) either (i) d is odd or (ii) both c1

c2
2u = −1 mod 

8 and 
(

− c1

c2
2u
)2ℓ−1

= 1 mod 22ℓ+1. �
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2.4. Bit complexity basics and counting roots of binomials

The following bit-complexity estimates for finite ring arithmetic will be fundamental 

for our main algorithmic results, and follow directly from the development of [60, Ch. 4 

& 11] (particularly [60, Cor. 11.13, pg. 327]) assuming one uses the recent fast integer 

multiplication algorithm of Harvey and van der Hoeven [32]. See also [58] for an excellent 

exposition on most of the bounds below. We use log∗ x to denote the minimal k such 

that k compositions of log applied to x yield a real number ≤ 1.

Theorem 2.7. For any prime p ∈ N and j, m, n ∈ N, we have the following bit-complexity 

bounds (in the Turing model) involving A, a, b, c ∈ N with A, a, b ≤ 2n − 1, A ≥ 2n−1, 

c ≤ 2m − 1 with m = O(log n), r, s ∈ {0, . . . , pj − 1} with p ∤ r, and f, g ∈ Fp[x] both 

having degree ≤d:

Operation Best Current O-bound (as of December 2021)

a + b O(n)

a · b O(n log n)

a mod b O(n log n)

A mod c O(nm)

r · s mod pj O(j log(p) log(j log p))

1/r mod pj O(j log(p) log2(j log p))

rs mod pj O(j2 log2(p) log(j log p))

f · g O
(

d log(p) log(d log(p))4log∗(d log p)
)

gcd(f, g) O(d log(p) log2(d) log(log d) log log p)

�

We note that the penultimate bound comes directly from [31]. The very last bound is 

actually a simple combination of the Half-gcd algorithm from [60, Thm. 11.1, Ch. 11]

with the fast polynomial multiplication algorithm from [17], and can likely be improved 

slightly via the techniques of [31].

Corollary 2.8. Following the notation of Lemmata 2.5 and 2.6, one can count exactly the 

number of roots of f in Qp in time log2+o(1)(dpH). Furthermore, for any root ζ ∈ Q∗
p

there is an x0 ∈ Z 
/(

p2ℓ+1
)

that is a root of the mod p2ℓ+1 reduction of c1

pordp c1
+ c2

pordp c2
xd, 

and with z0 := pordp(c2/c1)/dx0 ∈ Q an approximate root of f with associated true root 

ζ. In particular, the logarithmic height of z0 is O
(

log
(

pH1/d
))

.

Proof: (Case of odd p). First note that (Z/p2ℓ+1)∗ is cyclic and Lemma 2.5 tells us that 

we can reduce deciding the feasibility of c1 +c2xd = 0 over Q∗
p to checking d 

?

| ordp(c1/c2)

and (−c1/c2)r ?
=1 mod p2ℓ+1 with r = pℓ(p − 1)/ gcd(d, p − 1).

The p-adic valuation can be computed easily by bisection, ultimately resulting 

in O(log H) divisions involving integers with O(max{log p, log H}) = O(log(pH))
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bits. Checking divisibility by d involves dividing an integer with O(log log H) bits 

by an integer with O(log d) bits. By Theorem 2.7 these initial steps take time 

O(log(H) log(pH) log log(pH)) + O(m log m), where m = max{log log H, log d}. By The-

orem 2.7, the rth power can be computed in time O(ℓ2 log2(p) log(ℓ log p)). So our overall 

complexity bound is

O(ℓ2 log2(p) log(ℓ log p) + log(H) log(pH) log log(pH) + log(d) log log d).

Since ℓ ≤ logp d our final bound becomes

O(log2(d) log(log d) + log(H) log(pH) log log(pH)).

A simple over-estimate then yields our stated complexity bound. The remainder of the 

lemma then follows easily from Hensel’s Lemma and Proposition 2.4. �

(Case of p = 2) The proof is almost identical to the odd p case, save that we use 

Lemma 2.6 in place of Lemma 2.5. In particular, the case ℓ = 0 remains unchanged.

As for the case ℓ ≥ 1, the only change is an extra congruence condition (mod 8) to 

check whether c1

c2
2u is a square mod 22ℓ+1 (see, e.g., [7, Ex. 38, pg. 192]). However, this 

additional complexity is negligible compared to the other steps, so we are done. �

2.5. Trees and roots in Z/(pk) and Zp

Recall that for any field K, a root ζ ∈ K of f is degenerate if and only if f(ζ) =

f ′(ζ) = 0. The p-adic analogue of bisecting an isolating interval containing a real root 

is to approximate the next base-p digit of an approximate root in Qp. Shifting from 

bisecting intervals to extracting digits is crucial since Qp is not an ordered field. We will 

write f ′ for the derivative of f and f (i) for the ith order derivative of f .

Definition 2.9. [39] For any f ∈ Z[x] let f̃ denote the mod p reduction of f . Assume f̃ is 

not identically 0. Then, for any degenerate root ζ0 ∈ {0, . . . , p − 1} of f̃ , we then define 

s(f, ζ0) := mini≥0

{

i + ordp
f(i)(ζ0)

i!

}

. ⋄

Example 2.10. If f(x) = x10 − 10x + 738 and p = 3 then f̃(x) = x(x − 1)9 mod 3, 1 is a 

degenerate root of f̃ in F3, and one can check that s(f, 1) = 4. Note that s(f, 1) here is 

strictly less than 9, which is the multiplicity of the factor x − 1 of f̃ . ⋄

The quantity s(f, ζ0), combined with our definition below, will enable us to reduce 

finding the base-p digits of a root of f in Z/(pk) to solving several simpler equations 

over Z/(p).

Definition 2.11. [39] Fixing k ∈ N, for i ≥ 1, let us inductively define a set Tp,k(f) of 

pairs (fi−1,µ, ki−1,µ) ∈ Z[x] × N: We set (f0,0, k0,0) := (f, k). Then for any i ≥ 1 with 
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(fi−1,µ, ki−1,µ) ∈ Tp,k(f), and any degenerate root ζi−1 ∈ Fp of f̃i−1,µ with si−1 :=

s(fi−1,µ, ζi−1) ∈ {2, . . . , ki−1,µ − 1}, we define ζ := µ + ζi−1pi−1, ki,ζ := ki−1,µ − si−1, 

fi,ζ(x) := p−s(fi−1,µ,ζi−1)fi−1,µ(ζi−1 +px) mod pki,ζ , and then include append (fi,ζ , ki,ζ)

to Tp,k(f). ⋄

Example 2.12. Continuing Example 2.10, f1,1 has degree 10, and 10 monomial terms, 

but f̃1,1(x) = x3 + 2x2 which has roots 0 and 1. Observe in particular that f has roots 

1 + 0 · 3 and 1 + 1 · 3 in Z/(32), and the degenerate root 1 of f̃ in Z/(3) can not be lifted 

to either of these roots via the classical Hensel’s Lemma. ⋄

The collection of pairs (fi,ζ , ki,ζ) admits a tree structure that will give us a way to 

extend Hensel lifting to degenerate roots.

Definition 2.13. [39] The set Tp,k(f) naturally admits the structure of a labeled, rooted, 

directed tree as follows2

(i) We set f0,0 := f , k0,0 := k, and let (f0,0, k0,0) be the label of the root node of 

Tp,k(f).

(ii) The non-root nodes of Tp,k(f) are labeled by the (fi,ζ , ki,ζ) ∈ Tp,k(f) with i ≥ 1.

(iii) There is an edge from node (fi−1,µ, ki−1,µ) to node (fi,ζ , ki,ζ) if and only if there is 

a degenerate root ζi−1 ∈ Fp of f̃i−1,µ with s(fi−1,µ, ζi−1) ∈ {2, . . . , ki−1,µ − 1} and 

ζ = µ + ζi−1pi−1 ∈ Z/(pi). ⋄

We call each fi,ζ with (fi,ζ , ki,ζ) ∈ Tp,k(f) a nodal polynomial of Tp,k(f). It is in fact 

possible to list all the roots of f in Z/(pk) from the data contained Tp,k(f) [39,27]. We 

will ultimately use Tp,k(f), with k determined by a root separation/valuation condition 

(see Corollary 6.6 below), to efficiently count the roots of f in Zp, and then in Qp by 

rescaling.

Example 2.14. Tp,k(x2) is a chain of length 
⌊

k−1
2

⌋

for any p, k. ⋄

Example 2.15. Let f(x) = 1 − x397. Then T17,k(f), for any k ≥ 1, consists of a single 

node, labeled (1 − x397, k), since f̃ has no degenerate roots in F17. In particular, f has 

1 as its only root in Q17. ⋄

Example 2.16. Let f(x) = 1 − x340. Then, when k ∈ {1, 2}, the tree T17,k(f) consists 

of a single root node, labeled (1 − x340, k). However, when k ≥ 3, the tree T17,k(f) has 

depth 1, and consists of the aforementioned root node and exactly 4 child nodes, labeled

(f1,ζ0
, k − 2) where the f̃1,ζ0

are, respectively, 14x, 12x + 10, 5x + 15, and 3x + 3. Note 

that f̃ has exactly 4 roots ζ0 ∈ F17 (1, 4, 13, and 16), each of which is degenerate, and 

2 This definition differs slightly from the original in [39]: the edges are unlabeled here.
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the roots ζ1 ∈ F17 of the f̃1,ζ0
encode the “next” base-17 digits (0, 2, 14, and 16) of the 

roots of f in Z/(172). In particular, the roots of f in Q17 are 1 +0 ·17 +· · · , 4 +2 ·17 +· · · , 

13 + 14 · 17 + · · · , and 16 + 16 · 17 + · · · and are all non-degenerate. ⋄

Nodal polynomials — originally defined for efficient root counting over Z/(pk) — thus 

encode individual base-p digits of roots of f in Zp. Their degree also decays in a manner 

depending on root multiplicity.

Lemma 2.17. [39, Lem. 2.2 & 3.6] Suppose f ∈ Z[x] \pZ[x] has degree d, f0,0 := f , i ≥ 1, 

µ := ζ0 + · · · + pi−2ζi−2 is a root of the mod pi−1 reduction of f , ζ ′ := µ + pi−1ζi−1, the 

pairs (fi−1,µ, ki−1,µ) and (fi,ζ′ , ki,ζ′) both lie in Tp,k(f), and ζi−1 has multiplicity m as 

a root of f̃i−1,µ in Fp. Then:

(1) Tp,k(f) has depth ≤⌊(k − 1)/2⌋ and at most ⌊d/2⌋ nodes at depth i ≥ 1.

(2) deg f̃i,ζ′ ≤ s(fi−1,µ, ζi−1) ≤ min{ki−1,µ − 1, m}.

(3) fi,ζ′(x) = p−sf(ζ0+ζ1p +· · ·+ζi−1pi−1+pix) where s :=
∑i−1

j=0 s(fj,ζ0+···+ζj−1pj−1 , ζj)

≥ 2i.

(4) f(ζ0 + ζ1p + · · · + ζi−1pi−1) = 0 mod ps.

(5) f ′(ζ0 + ζ1p + · · · + ζi−1pi−1) = 0 mod pi. �

Note that Assertion (1) of Lemma 2.17 gives us an upper bound on the depth of Tp,k(f)

as a function of k. We will also need to consider lower bounds on k that guarantee that 

Tp,k(f) has enough depth to be useful for approximating roots in Zp.

Let np(f) denote the number of non-degenerate roots in Fp of the mod p reduction of 

f . We will need to show that the roots of f in Zp can be embedded into a collection of 

series indexed by the non-degenerate roots of the nodal polynomials of Tp,k(f) in Fp for 

k sufficiently large.

Lemma 2.18. Suppose f ∈ Z[x], ζ =
∑∞

j=0 ζjpj ∈ Zp is a non-degenerate root of f , and 

let D be the maximum of ordp(ζ − ξ) over all distinct non-degenerate roots ζ, ξ ∈ Zp

of f (if f has at least 2 non-degenerate roots in Zp) or 0 (if f has 1 or fewer non-

degenerate roots in Zp). Then for all k sufficiently large, Tp,k(f) has a nodal polynomial 

fj,ζ′ such that j ≤ ⌊(k − 1)/2⌋ and ζ ′ + pjζj = ζ mod pj+1 for some non-degenerate 

root ζj of f̃j,ζ′ . Furthermore, for k sufficiently large we also have that Tp,k(f) has depth 

≥ D, the set {(g, j) ∈ Tp,k(f) | np(g) > 0} remains fixed and finite, and f has exactly 
∑

(g,j)∈Tp,k(f)

np(g) non-degenerate roots in Zp.

Proof. First note that f(ζ0 + · · · + ζip
i) = 0 mod pi+1 for all i ≥ 0. By Definitions 2.9

and 2.13, s0 := s(f, ζ0) ∈ {1, . . . , m}, where m is the multiplicity of ζ0 as a root of f̃

(thanks to Lemma 2.17). Should m = 1 then s0 = 1, leaving f0,0 = f as our desired 

nodal polynomial (with ζ0 a non-degenerate root of f̃0,0) for all k ≥ 1. Otherwise, 

s0 ≥ 2 (by the definition of s(·, ·)), in which case k ≥ 1 + s0 =⇒ Tp,k(f) will have 
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f1,ζ0
(x) = p−s0f(ζ0 + px) as a nodal polynomial. However, we need to check if ζ1 is a 

non-degenerate root for f̃1,ζ0
or not.

Proceeding inductively, note that if i ≥ 1, ζ ′ := ζ0 + ζ1p + · · · + ζi−1pi−1, si :=

s(fi,ζ′ , ζi), and s′ := s0 + · · · + si, then si ∈ {1, . . . , m} where m is now the multiplicity 

of ζi as a root of f̃i,ζ′ . As before, m = 1 implies that fi,ζ′ is our desired nodal polynomial 

(with ζi a non-degenerate root of f̃i,ζ′) for all k ≥ 1 + s′. Otherwise, si ≥ 2, in which 

case k ≥ 1 + s′ =⇒ Tp,k(f) will have fi+1,ζ′+piζi
(x) = p−s′

f(ζ ′ + piζi + pi+1x) as a nodal 

polynomial, and then we check if ζi+1 is a non-degenerate root for f̃i+1,ζ′+piζi
or not.

Our induction must end, in finitely many steps, with our desired fj,ζ′ . To see why, first 

observe that nodal polynomials always have integer coefficients and, if d′ := ordp f ′(ζ), 

then d′ < ∞ since ζ is a non-degenerate root and thus f ′(ζ) = αpd′

mod pd′+1 for 

some α ∈ Zp \ pZp. So if our induction reaches fi,ζ′ with i ≥ d′, then ζ ′ = ζ0 + · · · +

pd′−1ζd′−1 =⇒ f ′
d′,ζ′(ζd′) = αp2d′−(s0+···+sd′

−1). We thus obtain 2d′ ≥ s0 + · · · + sd′−1

and, for all i ∈ N with fi,ζ′ belonging to a node of Tp,k(f) with a child, the definition of 

si tells us that si ≥ 2. Since ordp f ′(ζ0 + · · ·+piζi) = d′ for all i ≥ d′, we must eventually 

encounter a j ≥ d′ with sj = 1, meaning no child for fj,ζ′ . So our induction ends with a 

nodal polynomial fj,ζ′ with no degenerate roots. Moreover, we must have f̃j,ζ′(ζj) = 0

mod p (by definition of ζ and fj,ζ′) and thus ζj must be a non-degenerate root of f̃j,ζ′ . 

Also, our upper bound on j is immediate from Lemma 2.17.

To prove that Tp,k(f) has depth for D for k large enough, note that an f with no

non-degenerate roots in Zp can not have a tree Tp,k(f) having nodal polynomials with 

non-degenerate roots in Fp. This is because of the equality

fi,ζ′(x) = p−sf(ζ0 + ζ1p + · · · + ζi−1pi−1 + pix)

from Lemma 2.17: f̃i,ζ′ having a non-degenerate root in Fp would imply by Hensel’s 

Lemma that f has a root ζ ∈ Zp with ordp f ′(ζ) < ∞. So in this case, the stated set 

of (g, j) is empty for all k ≥ 1 and the stated sum is 0. In particular, Tp,k(f) always at 

least has its root node (by definition) and thus D ≥ 0.

Similarly, an f with just one non-degenerate root in Zp can not have a tree Tp,k(f)

having two distinct nodal polynomials having non-degenerate roots mod p. (Likewise, 

Tp,k(f) having a single nodal polynomial with two distinct non-degenerate roots mod p

is impossible.) So in this case, the stated set of (g, j) has cardinality 1 (with np(g) = 1

for exactly one pair (g, j)) for all k as specified in the first assertion of our lemma, which 

we’ve already proved. So the remaining assertions follow.

So let us now assume f has at least 2 distinct non-degenerate roots in Zp. There 

are clearly no more than deg f such roots, so our first assertion implies that, for k

sufficiently large, every non-degenerate root ζ ∈ Zp of f has an associated node in 

Tp,k(f) encoding ζ, i.e., Tp,k(f) has depth at least D for k sufficiently large. Clearly 

then, the set {(g, j) ∈ Tp,k(f) | np(g) > 0} is finite and will not change as k increases: 

This is because the set can not lose elements as k increases, and any new element would 

introduce a new non-degenerate root for f via Hensel’s Lemma.



670 J.M. Rojas, Y. Zhu / Journal of Number Theory 241 (2022) 655–699

So we now only need to prove that the stated sum counts roots correctly. Toward this 

end, note by construction that every non-degenerate root ζ ∈ Zp of f is associated to a 

unique sequence of the form (ζ0, . . . , ζi) ∈ F i+1 with ζ0, . . . , ζi−1 all degenerate roots for 

previously defined nodal polynomials, but with ζi a non-degenerate root of f̃i,ζ′ . So the 

number of non-degenerate roots of f in Zp is no greater than the stated sum.

To conclude, note that Hensel’s Lemma (and our earlier observation that nodal poly-

nomials are rescaled shifts of f) implies that each non-degenerate root in Fp of a nodal 

polynomial lifts to a unique root of f in Zp. Furthermore, since the derivatives of nodal 

polynomials are rescaled shifts of f ′, each such lifted root is a non-degenerate root. So 

the number of non-degenerate roots of f in Zp is at least as large as the stated sum, and 

we are done. �

2.6. Trees and extracting digits of radicals

We prove the following crucial lemma in Remark 6.5 of Section 6, but state it now so 

can apply it in our first algorithm for solving binomials:

Lemma 2.19. Suppose f(x) = c1 + c2xd ∈ Z[x] with c1c2 �= 0 mod p and ℓ := ordp d. 

Then every non-root nodal polynomial fi,ζ of Tp,k(f) satisfies deg f̃i,ζ ≤ 2 or deg f̃i,ζ ≤ 1, 

according as p = 2 or p ≥ 3. In particular, f(ζ0) = 0 mod p for some ζ0 ∈ {0, . . . , p −
1} =⇒ s(f, ζ0) ≤ ℓ + 1. �

Remark 2.20. It is a simple exercise to prove, from Lemma 2.19 and Definition 2.13, that 

Tp,k(f) always has depth ≤1 for f ∈ Z[x] a binomial with f(0) �= 0 mod p. The family 

of examples xp2 − 1 (for any k ≥ 4) shows that this depth can be attained for any prime 

p. ⋄

With our tree-based encoding of p-adic roots in place, we can now prove that it is 

easy to find approximate roots in Qp for binomials when p is fixed.

Theorem 2.21. Suppose f ∈ Z[x] is a binomial of degree d with coefficients of absolute 

value at most H, f(0) �= 0, γ = gcd(d, max{2, p −1}), and {ζ1, . . . , ζγ} is the set of roots 

of f in Qp. Then in time

(

p

γ
+ γ + log d

)

log1+o(1)(dp) + log2+o(1)(pH),

we can find, for each j ∈ {1, . . . , γ}, a z
(j)
0 ∈ Q of logarithmic height O

(

log
(

dH1/d
))

that is an approximate root with associated true root ζj.

An algorithm that proves Theorem 2.21 when p is odd is outlined below.
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Algorithm 2.22. (Solving binomial equations over Q∗

pQ∗

pQ∗

p for odd p) 
Input. An odd prime p and c1, c2, d ∈ Z \ {0} with |ci| ≤ H for all i.
Output. A true declaration that f(x) :=c1+c2xd has no roots in Qp, or z1, . . . , zγ ∈ Q with

logarithmic height O
(

log
(

dH1/d
))

such that γ = gcd(d, p − 1), zj is an approximate

root with associated true root ζj ∈ Qp for all j, and the ζj are pair-wise distinct.
Description.
1: If ordp c1 �= ordp c2 mod d then say “No roots in Qp!” and STOP.

2: Let ℓ := ordp d and replace f with f(x) := c′

1 + c′

2xd where c′

i := ci

pordp ci
for all i.

3: If
(

−
c′

1

c′

2

)pℓ(p−1)/γ
�= 1 mod p2ℓ+1 then say “No roots in Qp!” and STOP.

4: Let δ := 1. If d ≤ −1 then set δ := −1 and respectively replace d by |d| and f(x) by xdf(1/x).

5: Let g be any generator for F∗

p , r := (d/γ)−1 mod p − 1, c′ := (−c′

1/c′

2)r mod p, and h̃(x) := xγ − c′.

6: Find a root x1 ∈
{

g0, . . . , g
p−1

γ
−1
}

of h̃ via brute-force search.

7: For all j ∈ {2, . . . , γ} let xj := xj−1g(p−1)/γ mod p.

8: If ℓ ≥ 1 then, for each j ∈ {1, . . . , γ}, replace xj by xj −
f(xj)/pℓ

f ′(xj)/pℓ ∈ Z/(p2).

9: Output

{

(x1pordp(c1/c2)/d)δ, . . . , (xγpordp(c1/c2)/d)δ
}

.

Remark 2.23. Step 6 above is designed for simplicity rather than practicality, and can 

be sped up considerably if one avails to more sophisticated algorithms with complexity 

quasi-linear in gcd(d, p − 1) + log(pd): See, e.g., [1,18,21]. ⋄

The following algorithm proves the p = 2 case of Theorem 2.21.

Algorithm 2.24. (Solving binomial equations over Q∗

2Q∗

2Q∗

2) 
Input. c1, c2, d ∈ Z \ {0} with |ci| ≤ H for all i.
Output. A true declaration that f(x) :=c1+c2xd has no roots in Q2, or z1, . . . , zγ ∈ Q with

logarithmic height O
(

log
(

dH1/d
))

such that γ = gcd(d, 2), zj is an approximate

root of f with associated true root ζj ∈ Qp for all j, and the ζj are pair-wise distinct.
Description.
1: If ord2 c1 �= ord2 c2 mod d then say “No roots in Qp!” and STOP.

2: Let ℓ := ord2 d and replace f with f(x) := c′

1 + c′

2xd where c′

i := ci

2ord2 ci
for all i.

3: If c′

1 �= −c′

2 mod 8 or
(

−
c′

1

c′

2

)2ℓ−1

�= 1 mod 22ℓ+1 then say “No roots in Q2!” and STOP.

4: Let δ := 1. If d ≤ −1 then set δ := −1 and respectively replace d by |d| and f(x) by xdf(1/x).
5: Let x1 := 1. If γ = 1 then GOTO Step 7.
6: Let x2 := 3.

7: Output

{

x12ord2(c1/c2)/d, . . . , xγ2ord2(c1/c2)/d
}

.

Remark 2.25. Our correctness proof below shows that, for binomials, knowing the 2 most 

significant base-p digits of a root in Qp is enough to yield an approximate root in the 

sense of Smale, independent of d and H. Note, however, that each subsequent application 

of Newton’s method to refine an approximation has complexity depending on log(dH)

as well as log p. ⋄
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Remark 2.26. We point out that the approximate roots output by our two algorithms 

above require the use of Newton iteration applied to f1,ζ0
(instead of f) when p|d. This 

is clarified in our correctness proof below. ⋄

Proof of Theorem 2.21. It clearly suffices to prove the correctness of Algorithms 2.22

and 2.24, and then analyze their complexity.

Correctness: (Case of odd p) Theorem 2.3 implies that Step 1 merely checks whether the 

valuations of the roots of f in C∗
p in fact lie in Z, which is necessary for f to have roots 

in Q∗
p. Steps 2 and 4 allow us to reduce our search for approximate roots to (Z/(p2ℓ+1))∗

and assume positive degree d.

Lemma 2.5 implies that Step 3 simply check that the coset of roots of f in C∗
p intersects 

Z∗
p.

Step 5 is the application of an automorphism of F∗
p so we can reduce the degree of 

our binomial to γ, which is possibly much smaller than both p − 1 and d.

Steps 6–7 then clearly find the correct coset of F∗
p that makes f vanish mod p. In 

particular, by Hensel’s Lemma, Step 9 clearly gives the correct output if ℓ = 0. (Recall 

that we have replaced each coefficient ci of f with c′
i.)

If ℓ ≥ 1 then let ζ0 be any xj from Step 8. We then have deg f̃1,ζ0
≤ 1 thanks to 

Lemma 2.19. Furthermore, Definition 2.11 tells us that the unique root ζ1 ∈ Fp of f̃1,ζ0

is exactly the next base-p digit of a unique root ζ ∈ Zp of f with ζ = ζ0. Also, deg f̃1,ζ0

must be 1 (for otherwise f̃ would not vanish on its coset of roots in F∗
p ) and s(f, ζ0) ≥ 2

since ℓ ≥ 1 forces ζ0 to be a degenerate root of f̃ . Lemma 2.17 then tells us that Hensel’s 

Lemma — applied to f1,ζ0
(x) = p−s(f,ζ0)f(ζ0 +px) and start point ζ1 ∈ Z/(p) — implies 

that ζ0 + ζ1p yields Newton iterates rapidly converging to a true root ζ ∈ Zp. So Step 

8 in fact refines x1 to the mod p2 quantity ζ0 + ζ1p, and thus Steps 7–9 indeed give us 

suitable approximants in Q to all the roots of f in Qp. So our algorithm is correct.

Note also that the outputs, being integers in {0, . . . , p2 − 1} rescaled by a factor of 

pordp(c1/c2)/d (or possibly the reciprocals of such quantities), clearly each have bit-length 

O
(

log(p) + | log(c1/c2)|
d log p log p

)

= O
(

log(p) + log H
d

)

= O
(

log
(

pH1/d
))

. �

(Case of p = 2) The proof is almost the same as the Correctness proof for odd p, 

save that we respectively replace Lemma 2.5 and Algorithm 2.22 by Lemma 2.6 and 

Algorithm 2.24. In particular, Steps 5–8 of Algorithm 2.22 collapse into Steps 5–6 of 

Algorithm 2.24.

So we must explain Steps 5–6 here: These steps give us the mod 4 reductions of the γ

many roots of f in Z2, since Steps 5 and 6 are executed only after Steps 1 and 3 certify 

that f indeed has roots in Z2. (Remember that γ ∈ {1, 2} for p = 2.) Furthermore, 

Hensel’s Lemma implies that the root 1 of f̃ lifts to the sole root of f in Z2 when ℓ = 0. 

So the case ℓ = 0 is done.

If ℓ ≥ 1 then there is one more complication: The nodal polynomial f̃1,1 is now 

quadratic. This is because Lemma 2.19 tells us that deg f̃1,1 ≤ 2. Furthermore, ℓ ≥ 1
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implies that γ = 2 (assuming there are roots in Z2 and the algorithm hasn’t terminated 

already) and thus f must have exactly 2 roots in Z2. Lemma 2.18 then tells us that 

deg f̃1,1 ≤ 1 would imply f has ≤1 root in Z2. Therefore, f̃1,1 must be quadratic.

Furthermore, f̃1,1 must also have 2 distinct roots: This is because f̃1,1 equal to x2

or 1 + x2 = (1 + x)2 mod 2 would imply that no nodal polynomial f̃i,ζ , for i ≥ 1, has 

a non-degenerate root. So, again by Lemma 2.18, we would not attain 2 roots in Z2. 

(Similarly, it is impossible for f̃1,1 to be irreducible.) Therefore, the mod 4 reductions of 

the two roots of f in Z2 must be 1 and 3. So Steps 5–6 are indeed correct.

Lemma 2.17 then tells us that Hensel’s Lemma — applied to f1,1(x) = 2−s(f,1)f(1 +2x)

and either start point 0 or 1 in Z/(2) — implies that 1 +0 ·2 and 1 +1 ·2 yield sequences 

of iterates rapidly converging to true roots in Z2. So Steps 5–7 indeed give us suitable 

approximants in Q to all the roots of f in Q2, and our algorithm is correct.

Note also that the outputs, being integers in {1, 3} rescaled by a factor of 2ord2(c1/c2)/d

(or possibly the reciprocals of such quantities), clearly each have bit-length

O
(

| log(c1/c2)|
d log 2 log 2

)

= O
(

log H
d

)

= O
(

log
(

H1/d
))

. �

Complexity Analysis: (Case of odd p) Via Corollary 2.8, [56], and Theorem 2.7, it is 

easily checked that Steps 1–5 of Algorithm 2.22 have respective complexity bounds

1. O(log(H) log(pH) log log(pH)) + O(log(d) log log d)

2. O(log(d) log(dp) log log(dp))

3. O(log2(d) log log d)

4. (time negligible compared to the preceding quantities)

5. O(p1/4 log(p) log log(p)) + O(log2(p) log log(p))

These add up to time no worse than

O(p1/4 log(p) log log(p) + log(H) log(pH) log log(pH) + log(d) log(dp) log log(dp))

so far. Steps 6–7 (whose complexity dominates the complexity of Steps 6–9), involve 
p−1

γ −1 multiplications in Fp and γ −1 multiplications in Z/(p2ℓ+1). Since ℓ log p ≤ log d, 

this takes time no worse than O( p
γ log(p) log log(p) +γ log(d) log log d), which is bounded 

from above by O
((

p
γ + γ

)

log(dp) log log(dp)
)

. Note also that p
γ + γ ≥ 2

√
p by the 

Arithmetic-Geometric Inequality. So our final complexity bound is bounded from above 

by

O

((

p

γ
+ γ + log d

)

log(dp) log log(dp) + log(H) log(pH) log log(pH)

)

. �

(Case of p = 2) We simply use the same techniques as for Algorithm 2.22, save for Steps 

5–8 there being collapsed into Steps 5–6 in Algorithm 2.24. �

3. Proving Theorem 1.6: trinomial roots never get too close

Let us first recall the following version of Yu’s Theorem:



674 J.M. Rojas, Y. Zhu / Journal of Number Theory 241 (2022) 655–699

Theorem 3.1. [65, Pg. 190] Suppose p is any prime, n ≥ 2, α1, . . . , αn ∈ Q with αi =

ri/si a reduced fraction for each i, and b1, . . . , bn ∈ Z are not all zero. Then αb1
1 · · · αbn

n �=
1 implies that αb1

1 · · · αbn
n − 1 has p-adic valuation strictly less than

log(2) logp(2n)n5/2(256e2)n+1p logp(B)

n
∏

i=1

max

{

log |ri|, log |si|,
1

16e2

}

,

where B := max{|b1|, . . . , |bn|, 3}. In particular, log(2)256e2 < 1312, 256e2 < 1892, and 
1

16e2 < 0.0085. �

We will prove the square-free case of Theorem 1.6 here, postponing the proof of the 

non-square-free case to Section 5.1. To prove that two distinct roots ζ1, ζ2 ∈ Cp of a 

square-free trinomial f can not be too close, we will prove that f ′ has a root τ ∈ Cp with 

three special properties: (i) |f(τ)|p is not too small, (ii) |ζ1 − ζ2|p ≥ p−1/(p−1)|ζ1 − τ |p, 

and (iii) |ζ1 − τ |p is not too small. Step (i) is where we avail to Yu’s Theorem, so let us 

now quantify our approach.

Proposition 3.2. Suppose f(x) = c1 + c2xa2 + c3xa3 ∈ Z[x] is a trinomial of degree 

d = a3 > a2 ≥ 1, with all its coefficients having absolute value at most H, and τ ∈ Cp is 

a root of f ′. Then τa3−a2 = −a2c2

a3c3
and f(τ) = c1 + c2τa2

(

1 − a2

a3

)

. �

Lemma 3.3. Following the notation above, assume further that f is square-free. Then 

|f(τ)|p ≥ exp
[

−O(p logp(d) log2(dH))
]

.

Proof. First note that if f is square-free then f has no repeated factors, and thus no 

degenerate roots in Cp. So f(τ) �= 0. Proposition 3.2 we then obtain that ordp f(τ) is

ordp(c1 + c2τa2(1 − a2/a3))

= ordp(c1) + ordp(−1) + ordp

(

−(a3 − a2)c2

a3c1

(

−a2c2

a3c3

)a2/(a3−a2)

− 1

)

. (1)

Clearly, ordp c1 ≤ log H
log p and ordp(−1) = 0. To bound the third summand on the 

right-hand side of Equality (1) above, let T := −(a3−a2)c2

a3c1

(

−a2c2

a3c3

)a2/(a3−a2)

and observe 

that T a3−a2 − 1 =
∏a3−a2

j=1 (T − ωj) for ω ∈ Cp a primitive (a3 − a2)-th root of unity. 

In particular, T a3−a2 �= 1 since f(τωj) �= 0 for all j ∈ {1, . . . , a3 − a2}, thanks to 

Proposition 3.2 and f not having any degenerate roots. So then M := ordp(T a3−a2 −1) =
∑a3−a2

j=1 ordp(T − ωj) < ∞, with the (a3 − a2)-th term of the sum exactly ordp(T −
ωa3−a2) = ordp(T − 1), i.e., the third summand from Equality (1).

Suppose ordp T < 0. Then for each i ∈ {1, . . . , a3 − a2} we have ordp(T − ωj) =

ordp T <0, since roots of unity always have p-adic valuation 0. We must then have
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ordp f(τ) = ordp(c1) + ordp(T − ωa3−a2) <
logp(dH)

1

(by Theorem 2.3) and we obtain our lemma.

On the other hand, should ordp T ≥ 0, we get ordp(T − ωj) ≥ j ordp(ω) = 0, for each 

j. So M ≥ ordp(T − 1) and we’ll be done if we find a sufficiently good upper bound on 

M .

By luck, M is boundable directly from Yu’s Theorem (Theorem 3.1 here) upon setting 

n = 2, α1 = − (a3−a2)c2

a3c1
, α2 = −a2c2

a3c3
, b1 = a3 − a2, and b2 = a2. In particular, we can 

assume |ri|, |si| ≤ dH for i ∈ {1, 2} and B = max{d, 3}, and move the log p factors in the 

denominator so that M < log(2)256e2 log(4)25/2(256e2)2p log max{d, 3}
(

max
{

logp(dH),

1
16e2 log p

})2

. For d = 2 we get f(τ) = c1

4c3
(4c1c3 − c2

2), which is a rational number 

that this an integer of absolute value at most H2 + 4H divided by an integer of abso-

lute value at most 4H. Such a rational number clearly has valuation no greater than 

logp(H2 +4H) = O(logp H) and thus |f(τ)|p ≥ e−O(log H) when d = 2. Since d ≥ 2 for an 

arbitrary trinomial, and H ≥ 1, we then obtain M < 36791093348p log(d) log2
p(dH) =

O(p log(d) log2
p(dH)). In other words, the third summand from (1) is bounded from 

above by the last O-bound, and thus ordp f(τ) = O(M) since log H
log p = O(M). Since 

|f(τ)|p = e− log(p) ordp f(τ), we are done. �

The Ultrametric Inequality directly yields the following:

Proposition 3.4. If f ∈ Z[x] and t ∈ Cp then |t|p ≤ 1 =⇒ |f ′(t)|p ≤ 1. �

Below is a rescaled p-adic version of Rolle’s Theorem, based on [49, Sec. 2.4, Thm., 

Pg. 316].

Theorem 3.5. Let f ∈ Cp[x] have two distinct roots ζ1, ζ2 ∈ Cp with |ζ1 − ζ2|p = cp1/(p−1)

for some c > 0. Then f ′ has a root τ ∈ Cp with |ζ1 − τ |p, |ζ2 − τ |p ≤ c. �

We can now prove part of one of our main results.

Proof of the square-free case of Theorem 1.6. Note that ζi �= 0 =⇒ | ordp ζi| ≤ logp H

thanks to Theorem 2.3. So then ordp(ζ1 − ζ2) ≥ − logp H for any pair of distinct roots 

ζ1, ζ2 ∈ Cp of f and, if ζ1ζ2 = 0, we also have ordp(ζ1 − ζ2) ≤ logp H. So log H ≥
log |ζ1 − ζ2|p and, if ζ1ζ2 = 0 then we also have log |ζ1 − ζ|p ≥ − log H. So we may 

assume ζ1ζ2 �= 0 �= f(0).

For convenience, let us abbreviate the first (larger) O-bound stated in our theorem 

by O(M ′).

Case 1: (Both roots are small: |ζ1|p , |ζ2|p ≤ 1|ζ1|p , |ζ2|p ≤ 1|ζ1|p , |ζ2|p ≤ 1.)

Suppose |ζ1 − ζ2|p > p−2/(p−1) (= e−2 log(p)/(p−1)). Since 2 log(p)/(p − 1) = O(M ′) we 

are done.
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Now assume that |ζ1 − ζ2|p ≤ p−2/(p−1). Then by Theorem 3.5 f ′ has a root τ ∈ Cp

with |ζi − τ |p ≤ p1/(p−1) |ζ1 − ζ2|p ≤ p−1/(p−1) for all i ∈ {1, 2}. Since f is square-free, 

Lemma 3.3 implies that |f(τ)|p ≥ e−O(M ′). Applying Theorem 3.5 to

g(x) := f(x) − f(τ) − f(ζ1)

τ − ζ1
x − τf(ζ1) − ζ1f(τ)

τ − ζ1

(which vanishes at τ and ζ1), we then see that there is a µ ∈ Cp with |µ − ζ1|p ≤ 1 such 

that g′(µ) = 0, i.e., f(τ) = f(τ) −f(ζ1) = f ′(µ)(τ −ζ1). Note that |µ|p ≤ 1 since |µ|p > 1

would imply that |µ|p > |ζ1|p and thus |µ − ζ1|p = |µ|p > 1, giving us a contradiction. 

As f(τ) �= 0 we get f ′(µ) �= 0 and τ �= ζ1. From Proposition 3.4 we have |f ′(µ)|p ≤ 1, 

so then |τ − ζ1|p =
|f(τ)|p

|f ′(µ)|p
≥ e−O(M ′). We thus get |ζ1 − ζ2|p ≥ p−1/(p−1) |τ − ζ1|p ≥

e−O(M ′)− log p
p−1 =e−O(M ′). �

Case 2: (Both roots are large: |ζ1|p , |ζ2|p > 1|ζ1|p , |ζ2|p > 1|ζ1|p , |ζ2|p > 1.) Simply observe that 1/ζ1 and 1/ζ2 are 

roots of the reciprocal polynomial f∗(x) := xdeg f f( 1
x ). In particular, we can apply Case 

1 to the trinomial f∗ since 
∣

∣

∣

1
ζ1

∣

∣

∣

p
, 
∣

∣

∣

1
ζ2

∣

∣

∣

p
< 1. We then obtain 

∣

∣

∣

1
ζ1

− 1
ζ2

∣

∣

∣

p
≥ e−O(M ′). Hence 

|ζ1 − ζ2|p = |ζ1|p |ζ2|p
∣

∣

∣

1
ζ1

− 1
ζ2

∣

∣

∣

p
≥
∣

∣

∣

1
ζ1

− 1
ζ2

∣

∣

∣

p
≥ e−O(M ′). �

Case 3: (Only one root has norm > 1> 1> 1.)

Without loss of generality, we may assume that |ζ1|p ≤ 1 < |ζ2|p. We then simply note 

that, as |ζ1|p �= |ζ2|p, we have |ζ1 − ζ2|p = max
{

|ζ1|p , |ζ2|p
}

> 1 and we are done. �

4. Proving Theorem 1.5: tetranomial roots can get too close

4.1. The case of prime p

Let g(x) = p2jf(x +pj−1) = p2j(x +pj−1)d −p2j
(

x+pj−1

pj − 1
p

)2

= p2j(x +pj−1)d −x2. 

Then g has the same roots as fd,p,j , save for a “small” shift by pj−1. Rescaling, we 

get G(x) := g(p(j−1)d/2+jx)
p(j−1)d+2j = p−(j−1)d−2j

[

p2j(p(j−1)d/2+jx + pj−1)d − p(j−1)d+2jx2
]

=
∑d

i=0

(

d
i

)

p(j−1)(di/2−i)+ijxi − x2 = 1 − x2 mod pd(j−1)/2+1, which is square-free for odd 

prime p. So if p is odd, then Hensel’s Lemma implies that there are roots ζ1, ζ2 ∈ Zp of 

G such that ζ1 ≡ 1 mod pd(j−1)/2+1 and ζ2 ≡ −1 mod pd(d−1)/2+1.

On the other hand, if p = 2, then, as j > 2, we have pd(j−1)/2+1 ≥ 8. So, since 

G(x) = 1 − x2 = (3 − x)(5 − x) mod 23, we obtain that G is square-free in Z2[x]. 

Hensel’s Lemma then implies that there are roots ζ1, ζ2 ∈ Zp of G such that ζ1 = 3 mod 

pd(j−1)/2+1 and ζ2 = 5 mod pd(j−1)/2+1.

So, whether p is odd or even, we obtain two roots x1, x2 ∈ Zp of G with |x1|p =

|x2|p = 1. For each i ∈ {1, 2}, yi = p(j−1)d/2+jxi is then the corresponding root of g. 

So ζ1 := y1 + pj−1 and ζ2 := y2 + pj−1 are two roots of f in Zp such that |ζ1 − ζ2|p =
∣

∣(y1 + pj−1) − (y2 + pj−1)
∣

∣

p
= |y1 − y2|p ≤ max

{

|y1|p , |y2|p
}

= p−(j−1)d/2−j = p−Ω(dj). 

�
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Remark 4.1. From our proof, we see that fd,p,j has two roots of the form

ζi = pj−1 + εip
(j−1)d/2 + O(p1+(j−1)d/2)

with i ∈ {1, 2} and {ε1, ε2} equal to {±1} or {3, 5}, according as p is odd or even. In 

particular, by direct evaluation, it is easily checked that ordp f ′
d,p,j(ζi) = ordp(d) + (j −

1)(d − 1). In other words, we can need as many as Ω(d log H) of the most significant 

base-p digits of a root of a tetranomial in order to use it as a start point for Newton 

iteration. We will see in Section 5 that Op(log3(max{d, H}) log(d)) base-p digits suffice 

for trinomials. ⋄

4.2. The case p = ∞

Shifting by 1
2j−1 , we get g(x) := fd, 1

2 ,j(x + 21−j) = (x + 21−j)d − 22jx2 = 2d(1−j) +

d2(d−1)(1−j)x +
(

(

d
2

)

2(d−2)(1−j) − 22j
)

x2 +
(

d
3

)

2(d−3)(1−j)x3 + · · · + xd. We will see mo-

mentarily that, unlike Newt∞(f) (which has 3 lower edges), Newt∞(g) will have just 2

lower edges. (See the right-hand illustration in Example 2.2.) This will force (via Theo-

rem 2.3) the existence of two distinct roots of small norm for g, thus yielding two nearby 

roots of f after undoing our earlier shift.

Toward this end, note that the three lowest order terms of g contribute the points

p0 := (0, d(j − 1) log 2), p1 := (1, (d − 1)(j − 1) log 2 − log d), and p2 =
(

2, − log
(

4j −
(d

2)
2(d−2)(j−1)

))

as potential vertices of Newt∞(g). Observe that 
(d

2)
2(d−2)(j−1) < 0.059 for all 

j ≥ 3 and d ≥ 4, and thus p2 is the only point of Newt∞(f) with negative y-coordinate. 

So p2 is a vertex of Newt∞(f), and all edges with vertices to the right of p2 have 

positive slope. Furthermore, the slopes of the line segments p0p1 and p0p2 are respectively 

−(j − 1) log(2) − log d and a number less than −1
2 log(4j − 0.059) − 1

2d(j − 1) log 2.

Since 2j−1 <
√

4j − 0.059 and log d < 1
2d(j − 1) log 2 for all d ≥ 4 and j ≥ 3, we thus 

see that the slope of p0p2 is more negative. So the leftmost lower edge of Newt∞(g) has 

vertices p0 and p2. It is easily checked that the slope of this edge is less than −10.3, 

which is in turn clearly < −2 log 3. So by Theorem 2.3, there are two roots z1, z2 of g

such that

log |zi| ≤ 1

2

[

− log

(

22j −
(

d

2

)

2(d−2)(1−j)

)

− d(j − 1) log 2

]

.

These two roots thus satisfy |zi| = 2−Ω(dj). Now, for i ∈ {1, 2}, ζi = zi + 21−j yields 

roots of fd, 1
2 ,j with |ζ1 − ζ2| = |z1 + 21−j − (z2 + 21−j)| ≤ |z1| + |z2| < 2−Ω(dj). �

5. Valuation bounds from discriminants and repulsion from degeneracy

While we were able to prove a special case of our bound for the minimal root spacing 

of trinomials, we will need to examine the roots in C∗
p more carefully for trinomials that 
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have degenerate roots in C∗
p . We will see that the roots appear to repel more strongly in 

the degenerate case, and a key tool to prove this is the trinomial discriminant.

Definition 5.1. [29] Suppose f(x) = c1 + c2xa2 + c3xa3 ∈ Z[x] is a trinomial with a3 >

a2 ≥ 1, r := gcd(a2, a3), and āi := ai

r for all i. We then define the trinomial discriminant

to be

∆tri(f) := āā3
3 cā3−ā2

1 cā2
3 − āā2

2 (ā3 − ā2)ā3−ā2(−c2)ā3 . ⋄

Up to a sign factor, our definition agrees with the definition of the {0, a2, a3}-discriminant

from [29, Ch. 9, pp. 274–275, Prop. 1.8] when gcd(a2, a3) = 1. We will also need to recall 

the following facts:

Lemma 5.2. [3, Lemma 40] Following the notation of Definition 5.1:

(1) If c1c3 �= 0 then ∆tri(f) �= 0 ⇐⇒ f has no degenerate roots in Cp. Furthermore, 

p ∤ c1c3 gcd(a2, a3) also implies the equivalence ∆tri

(

f̃
)

�= 0 mod p ⇐⇒ f̃ has node-

generate roots in Fp.

(2) If ∆tri(f) �= 0 then ∆tri(f) =
(

c3

c1

)ā2−1
∏

ξ∈Cp : f̄(ξ)=0

f̄ ′(ξ) = (−1)ā3(ā3−ā2) ×
∏

ξ∈Cp : f̄(ξ)=0

(ā2c2 + ā3c3ξā3−ā2) where f̄ ∈ Z[x] is the unique polynomial satisfying 

f(x) = f̄(xr) identically. �

Remark 5.3. The second sentence of Assertion (1) appears not to be well-known but does 

follow easily from the development of [29, Ch. 9], upon observing that p ∤ gcd(a2, a3) =⇒
the matrix 

[

1 1 1
0 a2 a3

]

has rank 2. Should p| gcd(a2, a3) then it is easily checked that every 

root in F∗
p of the trinomial f̃ above is degenerate. ⋄

Recall that the classical degree d discriminant of a polynomial g(x) = c0 + · · ·+cdxd ∈
Cp[x] is ∆d(g) :=

Resd,d−1(f,f ′)
cd

where Resd1,d2
(g1, g2) denotes the well-known resultant of 

two univariate polynomials, g1 and g2, having respective degrees ≤d1 and ≤d2 (see, e.g., 

[29, Ch. 12]). We will also need some deeper facts about the discriminants of trinomials, 

and thereby prove repulsion from degenerate roots along the way:

Lemma 5.4. Suppose f(x) = c1 + c2xa2 + c3xa3 ∈ Z[x] has degree d = a3 > a2 ≥ 1, 

c1c2c3 �= 0, and |ci| ≤ H for all i. Assume further that f has a degenerate root τ ∈ Cp, 

r := gcd(a2, a3), and āi := ai

r for all i. Finally, let

Q(x) := (ā3 − ā2)
(

1 + 2x + 3x2 + · · · + (ā2 − 1)xā2−2
)

+ā2

(

(ā3 − ā2)xā2−1 + (ā3 − ā2 − 1)xā2 + · · · + 1 · xā3−2
)

and q(x) := (ā3 − ā2) − ā3xā2 + ā2xā3 . Then:
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(1) Any degenerate root τ ∈ Cp of f satisfies τ r ∈ Q∗ and (τa2 , τa3) = c1

a3−a2

(

−a3

c2
, a2

c3

)

. 

Furthermore, if p ∤ (a3 −a2)c1, then any degenerate root τ̃ ∈ Fp of f̃ satisfies (c2τ̃a2 ,

c3τ̃a3) = c1

a3−a2
(−a3, a2) and, if p ∤ c2c3 in addition, then τ̃ r ∈ F∗

p .

(2) The polynomial q has 1 as its unique degenerate root in Cp and q(x) = Q(x)(x − 1)2

identically.

(3) We have Q(1) = ā2ā3(ā3 − ā2)/2 and, for ā3 ≥ 4, ∆ā3−2(Q) = ā3(ā2ā3(ā3 −
ā2))ā3−4J , where J = O(ā2

2ā3
3(ā3 − ā2)2) is a nonzero integer.

(4) For ā3 ≥ 4 we have ∆ā3−2(Q) = āā3−4
2

∏

µ∈Cp : Q(µ)=0

Q′(µ).

(5) | ordp(ζ − τ)| ≤ logp
(d−r)d3H

8r4 < 4 logp
dH1/4

r for any non-degenerate root ζ ∈ Cp

of f .

Proof of Lemma 5.4. Assertions (1)–(3) are immediate upon applying [3, Lemma 40] to 

the polynomial f̄ from Lemma 5.2 (which satisfies f(x) = f̄(xr)). Assertion (4) follows 

similarly from [29, Product Formula, Pg. 398], which is a product formula for resultants. 

Assertion (5) will follow routinely upon proving that the roots of Q can’t be too close to 

1, and that the same holds for the (1/r)-th powers of the roots of Q as well. In particular, 

we’ll soon see that the rth powers of the non-degenerate roots of f are mild rescalings 

of the roots of Q.

Assertion (5): To simplify matters, we will first reduce to the case r = 1. Since the 

polynomial f̄ from Lemma 5.2 is an instance of the case r = 1, and the roots of f̄ are the 

rth powers of the roots of f , we can perform our reduction by showing that a sufficiently 

good upper bound on | ordp(ζr − τ r)| implies our desired upper bound on | ordp(ζ − τ)|. 
So first note that if ordp ζ �= ordp τ then ordp(ζ −τ) = min{ordp ζ, ordp τ}. In particular, 

since a3 = rā3, and a2 and a3 − a2 are positive multiples of r, Theorem 2.3 implies:

Any root of f in Cp must have valuation in the closed interval

[

ordp(c2/c3)

r
,

ordp(c1/c2)

r

]

(2)

or have valuation exactly
ordp(c1/c3)

rā3
, according as ordp

c2
2

c1c3
≤0 or not.

So | ordp(ζ − τ)| ≤ logp H

r < logp
(d−r)d3H

8r4 , and the last inequality clearly holds when 

d
r ≥ 2. We may thus assume ordp ζ = ordp τ .

Now, if r > 1, then we can observe that

ordp(ζr − τ r) = r ordp(ζ) + ordp

(

1 −
(

τ

ζ

)r)

. (3)

Letting ω ∈ Cp be any primitive rth root of unity, we then obtain ordp

(

1 −
(

τ
ζ

)r)

=
∑r−1

j=0 ordp

(

1 − τωj

ζ

)

. Since each term in the preceding sum is clearly nonnegative we 
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must then have ordp

(

1 − τ
ζ

)

≤ ordp

(

1 −
(

τ
ζ

)r)

. So if we have ordp(ζr − τ r) ≤ M for 

some M ≥ r ordp ζ then Equality (3) implies 
∣

∣

∣
ordp

(

1 − τ
ζ

)∣

∣

∣
≤ M − r ordp ζ. Fact (2)

then implies

| ordp(ζ − τ)| =

∣

∣

∣

∣

ordp(ζ) + ordp

(

1 − τ

ζ

)∣

∣

∣

∣

≤ M − (r − 1) ordp ζ ≤ M +
r − 1

r
logp H.

Since 1
r + r−1

r = 1, we will clearly establish Assertion (5) if we can prove ordp (ζr − τ r) ≤
logp

(d−r)d3H1/r

8r4 . Since every root of f̄ is the rth power of a root of f (and vice-versa), 

and since deg f̄ = d
r and gcd(ā2, ̄a3) = 1, Fact (2) implies that it suffices to prove the 

following half of the r = 1 case of Assertion (5): ordp(ζ −τ) ≤ logp
(d−1)d3H

8 . (Our stated 

bound is implied by the preceding bound since ordp ζ = ordp τ =⇒ ordp(ζ − τ) ≥ 0.) We 

will thus assume gcd(a2, a3) = 1 henceforth .

(The Case d ∈ {2, 3}) Note that d ≥ 2 because f is a trinomial. The case d = 2 is then 

vacuously true since a quadratic with a degenerate root has no non-degenerate roots.

For d = 3, Assertion (2) of our lemma tells us that there is only one non-degenerate 

root ζ and it is rational. So, evaluating the factorization of f at 0, we must have τ2ζ =

− c1

c3
. Assertion (1) of our lemma tells us that τ3 = c1a2

(3−a2)c3
and thus ζ

τ = −3−a2

a2
. So we 

obtain ordp(τ − ζ) = ordp(τ) + ordp(1 − ζ
τ ) =

ordp((c2a2)/(3c3))
3−a2

+ ordp

(

3−a2

a2

)

, where the 

last equality follows from Theorem 2.3 applied to f ′. Since |c2a2| ≤ 2H and 3 − a2 ≤ 2, 

it easily follows that ordp(τ − ζ) ≤ logp(4H) < logp
(d−1)d3H

8 . Our assertion thus holds 

when d ≤ 3. �

(The Case d ≥ 4) We will first prove an upper bound on ordp(1 − µ) for all roots 

µ ∈ Cp \ {1} of q. Observe that Assertion (2) and the classical theory of discriminants 

[29, Ch. 12] imply that Q has exactly a3 − 2 distinct roots in C∗
p and ∆a3−2(Q) �= 0. 

The first half of Assertion (3) then tells us that 
∏

µ∈Cp : Q(µ)=0

(1 − µ) = Q(1)
a2

= a3(a3−a2)
2 , 

since the leading coefficient of Q is a2. So then

∑

µ∈Cp : Q(µ)=0

ordp(1 − µ) = ordp

(

a3(a3 − a2)

2

)

≤ logp

(

a3(a3 − a2)

2

)

≤ logp

(

d

2

)

.

(4)

Thanks to Theorem 2.3, ordp a2 = 0 (i.e., the leading coefficient of Q not being 

divisible by p) implies that all the roots µ ∈ Cp of Q have nonnegative valuation. So 

then ordp(1 − µ) ≥ 0 and, thanks to Bound (4), we obtain ordp(1 − µ) ≤ logp

(

d
2

)

<

logp
(d−1)d3·d

8 . (Note that the coefficients of q have absolute value at most d = a3.) So 

we may assume σ := ordp a2 > 0 henceforth.

Since gcd(a2, a3) = 1 we must have ordp a3 = 0 = ordp(a3 − a2). Theorem 2.3 applied 

to q then tells us that Q has exactly a3 − a2 roots in Cp of p-adic valuation − σ
a3−a2

, and 
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exactly a2 −2 roots µ ∈ Cp of p-adic valuation 0, since q(x) = Q(x)(x −1)2. In particular, 

ordp(1 − µ) = − σ
a3−a2

≥ − logp(d − 1) on the set of roots with negative valuation, and 

ordp(1 − µ) ≥ 0 at the roots µ ∈ Cp with ordp µ = 0.

Equality (4) then implies that each of the a3 − 2 roots µ ∈ Cp of Q with ordp µ = 0

must satisfy ordp(1 − µ) = (a3 − a2) σ
a3−a2

+ ordp

(

a3(a3−a2)
2

)

= ordp

(

a2a3(a3−a2)
2

)

≤

logp

(

a3a2(a3−a2)
2

)

. By the Arithmetic Geometric Inequality, a2(a3 − a2) ≤ a2
3/4, so we 

arrive at ordp(1 − µ) ≤ logp(d3/8) < logp((d − 1)d3 · d/8) and we have proved Assertion 

(5) in the special case f(x) = q(x).

A direct computation via Assertion (1) of our lemma then yields f(x) = c1

(a3−a2)τ2 q(x/τ)

identically. So the roots of f are simply scalings of the roots of q by a factor τ . Since 

f ′(τ) = 0, Theorem 2.3 implies that ordp τ =
ordp(a2c2)−ordp(a3c3)

a3−a2
, which clearly lies in 

the closed interval [− logp(dH), logp((d −1)H)]. So then ordp(τ −ζ) = ordp τ +ordp(1 −µ)

for some root µ ∈ Cp of Q. In other words, ord(τ − ζ) ≤ logp((d − 1)Hd3/8) =

logp((d − 1)d3H/8). �

Assertion (1) of Lemma 5.4 tells us that degenerate roots in C∗
p of trinomials satisfy 

binomial equations with well-bounded coefficients. Our earlier Algorithms 2.22 and 2.24

(for solving binomial equations) thus imply that degenerate roots of trinomials are easy 

to approximate. Our final step in proving Theorem 1.6 will be estimating the spacing of 

non-degenerate roots in Cp for trinomials having degenerate roots in Cp.

5.1. Completing the proof of Theorem 1.6: root spacing in the face of degeneracy

First note that we may assume ζ1ζ2 �= 0 �= f(0), since this initial reduction to nonzero 

roots (from the proof of the square-free case in Section 3) does not require f to be 

square-free. Note also that Proposition 2.4 and Assertion (5) of Lemma 5.4 tells us that 

our sharper lower bound holds if at least one ζi is a degenerate root. So we may assume 

that ζ1 and ζ2 are both non-degenerate roots. Furthermore, letting r := gcd(a2, a3), we 

can reduce to special case r = 1 via the same argument as from the proof of Assertion 

(5) of Lemma 5.4. So we will also assume gcd(a2, a3) = 1.

Our proof then follows almost exactly the format of the square-free case, with just 

two small changes: (a) We replace f by the polynomial F (x) := f(x)
(x−τ)2 , where τ ∈ Q

is the unique degenerate root of f . (That f has exactly one degenerate root, and it 

has multiplicity 2, follows from Assertions (1) and (2) of Lemma 5.4.) (b) We replace 

Lemma 3.3 by a direct proof that |F (τ)|p ≥ e−O(log(dH)).

To prove the last bound, observe that F (τ) = c1

(a3−a2)τ2 Q(1). Since ordp τ =
ordp(a2c2/(a3c3))

a3−a2
, Assertion (3) of Lemma 5.4 then tells us that

ordp F (τ) ≤ logp(H) + logp(dH) + logp O(a2
2a3

3(a3 − a2)2) = O(logp(dH)). �
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6. Solving trinomials over Qp

Unlike the binomial case (see Remark 2.20), the tree Tp,k(f) can have depth 

Ω(logp(dH)) or greater for a trinomial f ∈ Z[x] with p ∤ f(0) and k sufficiently large 

[28]. However, Lemma 6.1 below will show that the structure of Tp,k(f) is still simple: 

No subtree of Tp,k(f) emanating from a vertex of depth ≥ 1 has more than 2 vertices 

of out-degree more than 2. Corollary 6.6 below will establish how large k must be so 

that Tp,k(f) is deep enough to encode (via Lemma 2.18) all the non-degenerate roots 

of f in Zp, and do so with sufficient accuracy for Newton iteration to converge quickly. 

Our estimates on k will enable us to approximate all the roots of f in Qp in time 

p3+o(1) log4+o(1)(dH) log3
p d. Mild assumptions on the exponents of f can also guarantee 

that the root node of Tp,k(f) has O(
√

p) or even fewer children, and the presence of de-

generate roots in Q∗
p for f enables even tighter estimates for k. Each of these restrictions 

leads to speed-ups we will describe.

6.1. Trees and trinomials

Lemma 6.1. Suppose f(x) = c1 + c2xa2 + c3xa3 ∈ Z[x] is a trinomial of degree d = a3 >

a2 ≥ 1, with all its coefficients having absolute value at most H. Then every non-root 

nodal polynomial fi,ζ of Tp,k(f) with ζ �= 0 mod p satisfies deg f̃i,ζ ≤ 4, deg f̃i,ζ ≤ 3, or 

deg f̃i,ζ ≤ 2, according as p = 2, p = 3, or p ≥ 5.

Example 6.2. One can check that for f(x) := x10+11x2−12, the tree T2,8(f) is isomorphic 

to In particular, this f has exactly 6 roots in Q∗
2:

0 + 1 · 2 + 0 · 22 + 1 · 23 + O(24), 0 + 1 · 2 + 1 · 22 + O(25),

1 + 0 · 2 + 0 · 22 + · · · , 1 + 0 · 2 + 1 · 22 + O(25), 1 + 1 · 2 + 0 · 22 + 23 + O(24), and 

1 + 1 · 2 + 1 · 22 + O(23). This is because f̃2,2 = f̃2,1 = f̃2,1+2 = x2 + x and each of these 

(terminal) nodal polynomials has exactly 2 non-degenerate roots in F2, each of which 

lifts to a unique root in Z2. Note that f̃1,1(x) = x4 + x2 has degree 4, and corresponds 

to the unique depth 1 vertex with 2 children. ⋄

Example 6.3. Composing Example 2.12 with x2, let us take f(x) := x20 − 10x2 + 738. 

One then sees that the tree T3,7(f) is isomorphic to In particular, this f has exactly 

8 roots in Q∗
3, each arising as a Hensel lift of a non-degenerate root in F3 of some nodal 

polynomial: f̃1,0, f̃1,1, f̃2,1, f̃1,2, and f̃2,8 respectively contribute 2, 1, 2, 1, and 2 roots. 

Note that f̃1,2(x) = x3 + 2x2 + x has degree 3. ⋄

To prove Lemma 6.1 we will need a powerful result of Lenstra [40] on the Newton 

polygons of shifted sparse polynomials. First, let us define dm(r) to be the least common 

multiple of all integers that can be written as the product of at most m pairwise distinct 

positive integers that are at most r, and set dm(r) := 1 if mr = 0.
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Theorem 6.4. [40, Sec. 3] Suppose f ∈ Q[x] is a t-nomial, g(x) = f(1 + px), and r is the 

largest nonnegative integer such that r − ordp dt−1(r) ≤ max
0≤j≤t−1

{j − ordp(j!)}. Then any 

lower edge of Newtp(g) with inner normal (v, 1) with v ≥ 1 lies in the strip [0, r] × R. 

�

We point out that the vector of parameters (t, r, v) from our statement above would be 

(k + 1, m, ν(x − 1)) in the notation of [40], and the parameter r there is set to 1 in our 

application here.

Proof of Lemma 6.1. First note that replacing x by cx, for any c ∈ {1, . . . , p − 1}, pre-

serves the number of roots of f in Zp and (up to relabeling the ζ in the subscripts of the 

fi,ζ) the tree Tp,k(f). So to study f̃1,ζ0
with ζ0 ∈ {1, . . . , p − 1}, it suffices to study f̃1,1.

Note that the lower hull of any Newton polygon can be identified with a piecewise 

linear convex function on an interval. In particular, f1,1(x) = p−s(f,1)f(1 + px) and 

thus the lower hull of Newtp(f1,1) can be identified with the sum of the lower hull of 

Newtp(f(1 + x)) and the function x − s(f, 1). Note also that by the definition of Newtp, 

the minimal y-coordinate of a point of Newtp(f(1 + px)) is exactly s(f, 1).

Theorem 6.4 then tells us that all lower edges of Newtp(f1,1) of non-positive slope lie 

in the strip [0, r] × R, where r is the largest nonnegative integer such that

r − ordp d2(r) ≤ εp, (⋆)

where ε2 = 1 and εp = 2 for all p ≥ 3. In particular, the definition of Newtp(f1,1) tells 

us that p divides the coefficient of xj in f1,1 for all j ≥ r + 1 and thus deg f̃1,1 ≤ r.

By Lemma 2.17, all other non-root nodal polynomials fi,ζ with ζ �= 0 mod p satisfy 

deg f̃i,ζ ≤ deg f̃1,1. So it suffices to prove that r satisfies the stated bounds of our lemma. 

This is easily verified by first observing that d2(0) = d2(1) = 1 and d2(2) = 2. So 

Inequality (⋆) certainly holds for r ∈ {0, 1, 2}, regardless of p. Observing that d2(3) = 6

and d2(4) = 24, we then see that Inequality (⋆) holds at r = 4 (resp. r = 3) when p = 2

(resp. p = 3).

So it is enough to show that: (i) r − ord2 d2(r) ≥ 2 for r ≥ 5, (ii) r − ord3 d2(r) ≥ 3

for r ≥ 4, and (iii) r − ordp d2(r) ≥ 3 for r ≥ 3 and p ≥ 5. From [40, Prop. 2.4], 

we have ordp d2(r) ≤ 2 log r
log p . Note that, for any fixed p, the quantity r − 2 log r

log p is an 

increasing function of r for r ≥ 2
log p . Furthermore, 

⌈

7 − 2 log 7
log p

⌉

≥ 2 for all p ≥ 2 and 
⌈

5 − 2 log 5
log p

⌉

≥ 3 for all p ≥ 3. Noting that d2(5) = 120 and d2(6) = 360, it is then easily 

checked that (i)–(iii) all hold. �

Remark 6.5. Lemma 2.19, on binomials, can now be proved by modifying the proof above 

slightly: We replace Inequality (⋆) by r − ordp d1(r) ≤ 1, replace d2(r) with d1(r), and 

let εp = 1 for all p. In particular, the definition of s(f, ζ0) tells us that

s(f, ζ0) ≤ 1 + ordp f ′(ζ0) = 1 + ordp d = 1 + ℓ. ⋄
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It seems harder to get an upper bound on s(f, ζ0) for trinomials than binomials. 

Nevertheless, we can derive a bound quadratic in log d and linear in log H, and thereby 

estimate how large k must be for our tree Tp,k(f) to be deep enough for trinomial root 

approximation.

Corollary 6.6. Suppose f(x) = c1 +c2xa2 +c3xa3 ∈ Z[x] has degree d, 0 < a2 < a3, p ∤ c1, 

c2c3 �= 0, and |ci| ≤ H for all i. Let r := gcd(a2, a3), define S0 to be the maximum of 

s(f, ζ0) (see Definition 2.9) for any ζ0 ∈ {1, . . . , p −1} satisfying f(ζ0) = f ′(ζ0) = 0 mod 

p, and set S0 := 0 should there be no such ζ0. Also let D be the maximum of ordp(ζ − ξ)

over all distinct non-degenerate roots ζ, ξ ∈ Zp of f (if f has at least 2 non-degenerate 

roots in Zp) or 0 (if f has 1 or fewer non-degenerate roots in Zp); and define Mp to be 

4, 3, or 2, according as p is 2, 3, or ≥5. Then:

1. k ≥ 1 + S0 min{1, D} + Mp max{D − 1, 0} =⇒ the depth of Tp,k(f) is at least D.

2. a2 = 1 =⇒ S0 < logp(p2d2H2).

3. d ≥ 3 =⇒ S0 = O
(

p log
(

d
r

)

logp

(

dH
r

))

.

4. f has a degenerate root in Cp =⇒ S0 ≤ logp(p2dr).

5. The lower bound for k from Assertion (1) can be attained for k = O(p log2
p(dH) log d)

or k = O(logp(dH)), according as f has no degenerate roots in Cp, or at least one 

such root.

Remark 6.7. Note that d ≥ 2 for any trinomial, and d = 2 implies a2 = 1 above. One 

should also remember that Theorem 1.6 provides an explicit upper bound for D. ⋄

Proof of Corollary 6.6. Assertion (1): Tp,k(f) always includes a root node by definition, 

so the case D = 0 is trivial and we assume D ≥ 1.

Our lower bound on k then follows easily from Lemma 6.1: Since f has distinct non-

degenerate roots ζ, ξ ∈ Zp with ord(ζ − ξ) ≥ 1 by assumption, this means that ζ = ξ

mod p and thus f̃ must have a degenerate root ζ ′
0 ∈ {1, . . . , p − 1} (since p ∤ c1). Having 

k ≥ 1 + S0 then simply allows the root node to have maximally many child nodes 

(and thus depth ≥ 1), thanks to Definition 2.9. Furthermore, thanks to Lemma 6.1, the 

summand Mp max{D − 1, 0} simply guarantees that Tp,k has depth D and that Tp,k(f)

has maximally many nodes at depth ≤D. (Note that for any nodal polynomial fi,ζ′ with 

i ≥ 1, we have that s(fi,ζ′ , ζi) is bounded from above by 4, 3, or 2, according as p is 2, 

3, or ≥ 5, thanks to Lemma 2.17.) In particular, wesee that any k satisfying our lower 

bound yields a k satisfying all the assumptions of Lemma 2.18. �

Assertion (2): Immediate from s(f, ζ0) ≤ 2 +ordp
f ′′(ζ0)

2 (thanks to the definition of s(·, ·)
as a minimum), f ′′(ζ0) = d(d − 1)c3ζd−2

0 , and ordp ζ0 = 0. �

Note. We now temporarily assume that gcd(a2, a3) = 1 , to simplify the proofs of As-

sertions (3) and (4), and show later how to reduce the case gcd(a2, a3) > 1 to the case 

gcd(a2, a3) = 1. ⋄
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Assertion (3): First note that we must have p ∤ c2 or p ∤ c3 in order for f̃ to have a root 

in F∗
p .

Since f ′(ζ0) = a2c2ζa2−1
0 + a3c3ζa3−1

0 = 0 mod p, and gcd(a2, a3) = 1, we see that 

p|a2 =⇒ordp c3 = ordp a2 > 0 and p ∤ a3c2. In which case, ordp f ′(ζ0) = ordp(a2c2) +

ordp

(

1 − −a3c3

a2c2
ζa3−a2

0

)

, and then we can bound ordp f ′(ζ0) from above by the n = 2

case of Yu’s Theorem if the second valuation is not ∞. Should this valuation be ∞, then 

we can instead apply the n = 2 case of Yu’s Theorem to ordp f ′′(ζ0) = ordp(a2(a2 −
1)c2) + ordp

(

1 − −a3(a3−1)c3

a2(a2−1)c2
ζa3−a2

0

)

, since a3−1
a2−1 �= 1. So we obtain a bound of S0 <

2 +2 ordp(r) +logp

(

d
r

(

d
r − 1

)

H
)

+log(2) log(4)257/2e6p log
(

d
r − 1

)

logp

(

d
r

(

d
r − 1

)

H
)

di-

rectly from Theorem 3.1, and the fact that s(f, ζ0) ≤ min{1 +ordp f ′(ζ0), 2 +ordp f ′′(ζ0)}.

Similarly, p|a3 =⇒ ordp c2 = ordp a3 > 0 and p ∤ a2c3. In which case, ordp f ′(ζ0) =

ordp(a3c3) + ordp

(

1 − −a2c2

a3c3
ζa2−a3

0

)

, and we proceed in the same way as the last para-

graph.

So let us now assume p ∤ a2a3. Then f ′(ζ0) = 0 mod p =⇒ p ∤ c2c3, since ordp ζ0 = 0

and p can not divide both c2 and c3. So then we again attain the same bound as in the 

last two paragraphs. �

Assertion (4): Note that p ∤ c1 implies that any degenerate root τ ∈ Cp of f must be 

nonzero. Lemma 5.4 then tells us that τ is the only degenerate root of f in Cp and τ ∈ Q∗
p. 

Moreover, from the proof of Lemma 5.4, we have f(τx) = c1

(a3−a2)τ2 q(x) identically and 

ordp τ =
ordp(a2c2)−ordp(a3c3)

a3−a2
. (Recall that q(x) = (a3 − a2) − a3xa2 + a2xa3 has 1 as its 

unique degenerate root in Cp.)

Now, we must have p ∤ c2 or p ∤ c3 in order for there to be any roots at all for f̃ .

Sub-Case p ∤ c2. If τ has negative valuation, then we must have p|c3 by Theorem 2.3. 

Also, f ′(ζ0) = ζa2−1
0 (c2a2 + c3a3ζa3−a2

0 ) = 0 mod p =⇒ p|a2 since p ∤ c2. Since ordp τ =
ordp(a2c2)−ordp(a3c3)

a3−a2
< 0 by assumption, we must have ordp(a3c3) > ordp(a2c2) and thus 

ordp f ′(ζ0) = ordp(c2a2) = ordp(a2). In other words, ordp τ < 0 =⇒ S0 ≤ 1 + ordp(a2).

So let us now assume ordp τ = 0. Then by our identity f(τx) = c1

(a3−a2)τ2 q(x), and the 

fact that τ ∈ Q∗ (via Assertion (1) of Lemma 5.4), the vector of coefficient valuations 

for f and the vector of coefficient valuations for q differ by a multiple of (1, 1, 1). So our 

assumptions that p ∤ c1c2 and gcd(a2, a3) = 1 imply that p ∤ (a3 −a2)a3. So then, a3 −a2

is invertible mod p and, by the rescaling between f and q, we have that f̃ and q̃ share 

the same value of S0 (as well as the same number of degenerate roots in {1, . . . , p − 1}). 

So let us now work with q instead, and assume for the remainder of this sub-case that 

ζ0 is a degenerate root of q̃ mod p.

If p|a2 then ordp q′(ζ0) = ordp(a2) + ordp

(

−1 + ζa3−a2
0

)

(since p ∤ a3). Also, 

ordp q′′(ζ0) = ordp(a2) + ordp(−a2 + a3ζa3−a2
0 − (−1 + ζa3−a2

0 )). Since p|a2 and p ∤ a3, we 

see thatordp(−1 + ζa3−a2) > 0 implies that ordp q′′(ζ0) = ordp a2. On the other hand, if 

ordp(−1 +ζa3−a2) = 0, then ordp q′(ζ0) = ordp a2 from our earlier formula for ordp q′(ζ0). 

So by the definition of s(·, ·), we obtain S0 ≤ 2 + ordp a2.
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To conclude, p ∤ a2, combined with our earlier conclusion that p ∤ (a3 − a2)a3, implies 

that ζ0 = 1, thanks to Assertion (1) of Lemma 5.4. In which case, q′(1) = 0 but q′′(1) =

a2a3((a3 − 1) − (a2 − 1)) = a2a3(a3 − a2) and thus S0 ≤ 2.

Sub-Case p ∤ c3. Here, we must have ordp τ = 0 and thus ordp(a2c2) = ordp(a3c3) by our 

earlier formula for ordp τ . In particular, we must have ordp(a2c2) = ordp a3 since p ∤ c3. 

Note also that p|a2 thus implies p|a3, which would contradict gcd(a2, a3) = 1. So we 

must also have p ∤ a2 and thus ordp c2 = ordp a3. Since we already proved the Sub-Case 

p ∤ c2, let us now assume p|c2 (and thus p|a3).

By our identity f(τx) = c1

(a3−a2)τ2 q(x), and the fact that τ ∈ Q∗ (via Assertion (1) 

of Lemma 5.4), the vector of coefficient valuations for f and the vector of coefficient 

valuations for q differ by a multiple of (1, 1, 1). So our assumptions that p ∤ c1c3 and 

gcd(a2, a3) = 1 imply that p ∤ (a3 − a2)a2. So then, a3 − a2 is invertible mod p and, by 

the rescaling between f and q, we have that f̃ and q̃ share the same value of S0 (as well 

as the same number of degenerate roots in {1, . . . , p − 1}). So let us now work with q

instead, and assume now that ζ0 is a degenerate root of q̃ mod p.

Observe then that ordp q′(ζ0) = ordp(a3) + ordp

(

−1 + ζa3−a2
0

)

(since p ∤ a2). Also, 

ordp q′′(ζ0) = ordp(a3) + ordp(−a2 + a3ζa3−a2
0 − (−1 + ζa3−a2

0 )). Since p|a3 and p ∤ a2, 

we see that ordp(−1 + ζa3−a2) > 0 implies that ordp q′′(ζ0) = ordp a3. On the other 

hand, if ordp(−1 + ζa3−a2) = 0, then ordp q′(ζ0) = ordp a3 from our earlier formula for 

ordp q′(ζ0). So by the definition of s(·, ·), we obtain S0 ≤ 2 + ordp a3. �

Extending to gcd(a2, a3) > 1gcd(a2, a3) > 1gcd(a2, a3) > 1. To complete our proofs of Assertions (3) and (4) let us 

assume r := gcd(a2, a3) > 1 and recall that f̄ is the unique polynomial in Z[x] satisfying 

f(x) = f̄(xr) identically. Clearly then, deg f̄ = deg f
r and any root τ ∈ Cp of f induces a 

root τ r of f̄ . Furthermore, f̃ having a degenerate root ζ0 ∈ {1, . . . , p − 1} clearly implies 

that the mod p reduction of f̄ has µ0 as a degenerate root, where µ0 ∈ {1, . . . , p −1} is the 

mod p reduction of ζr
0 . The Chain Rule then implies ordp f ′(ζ0) = ordp(r) +ordp f̄ ′(µ0) ≤

logp(r) + ordp f̄ ′(µ0).

Should f ′(ζ0) vanish identically, then Assertion (1) of Lemma 5.4 easily implies that all 

the degenerate roots of f have multiplicity 2 and thus f ′′(ζ0) can not vanish. In which 

case, via the Chain Rule again, ordp f ′′(ζ0) = 2 ordp(r) + ordp f̄ ′′(µ0) ≤ 2 logp(r) +

ordp f̄ ′′(µ0). So our general formula follows immediately from the case r = 1, which 

we’ve already proved. �

Assertion (5): Immediate from Assertions (3) and (4), and Theorem 1.6. �

6.2. Building trees efficiently

It is easy to see that the only degenerate root the quadratic trinomial c1 + c2x + x2 ∈
Z[x] can have mod p is exactly −c2/2 when p ≥ 3. (For p = 2 it is clear that the only 

monic degenerate quadratics are x2 + 1 and x2, with respective degenerate roots 1 and 

0.) It will be useful to have a similar statement for trinomials with (p, d) ∈ {2, 3} ×{3, 4}.
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Proposition 6.8. Suppose f(x) = c0 + c1x + c2x2 + c3x3 + c4x4 ∈ Z[x] has degree d ≥ 2, 

and |ci| ≤ H for all i. Then:

0. The discriminant of f can be evaluated in time O(log(max{p, H}) log log max{p, H}).

1. When p ≤ 3 we can find all the degenerate roots of f in Fp (or correctly declare there 

none) in time O(log H). In particular, f has at most 1 (resp. 2) degenerate root(s) in 

Fp, according as d ≤ 3 or d = 4.

2. For any prime p we can find all the non-degenerate roots of f (or correctly declare 

there are none) in deterministic time O(p1/2 log2 p).

Proof. Assertion (0) follows from the definitions of the quartic, cubic, and quadratic 

discriminants (see, e.g., [29, Ch. 12]), Theorem 2.7, and the fact that evaluating ∆d(f)

reduces to evaluating a 7 ×7, 5 ×5, or 3 ×3 determinant in the coefficients of f (followed 

by division by the leading coefficient of f), after reducing the coefficients mod p.

For Assertion (1), first note that p ≤ 3 implies that we can reduce the coefficients 

of f and f ′ mod p in time O(log H) thanks to Theorem 2.7. We can then simply use 

brute-force (over a search space with at most 3 elements!) to find all the degenerate roots 

of f in time O(1). In particular, since any degenerate root must have multiplicity ≥ 2, 

the only way f can have more than 1 degenerate root is for d = 4, in which case there 

can be no more than 2 degenerate roots. For instance, x4 + x2 + 1 (resp. x4 + x2) has 

degenerate roots {±1} ∈ F3 (resp. {0, 1} ∈ F2).

Assertion (2) follows immediately from Shoup’s deterministic algorithm for factoring 

arbitrary univariate polynomials over a finite field [55], upon specializing to degree ≤
4. �

Lemma 6.9. For any trinomial f(x) = c1 + c2xa2 + c3xa3 ∈ Z[x] of degree d, with p ∤ c1, 

0 < a2 < a3, and |ci| ≤ H for all i, let ν denote the number of degenerate roots of f̃ in 

F∗
p and let D denote the depth of Tp,k(f). Then Tp,k(f) has ≤1 + (2D − 1) ν nodes; and 

we can compute the mod p reductions of all the nodal polynomials fi,ζ of Tp,k(f), as well 

as all the values of the s(fi−1,µ, ζi−1), in deterministic time

(p log(d) + kνD log(p) log(d) log H)
1+o(1)

.

Proof. By Lemma 6.1, all non-root nodal polynomials have mod p reduction of degree 

no greater than 4. Thus, the root node of Tp,k(f) has ≤ ν (≤ p − 1) children, and any 

node at depth ≥ 1 has no more than 2 children (since a polynomial of degree ≤ 4 has 

≤ 2 degenerate roots). Lemma 2.17 also tells us that deg f̃i,µ+ζi−1pi−1 is at most the 

multiplicity of ζi−1 ∈ F∗
p as a root of f̃i−1,µ. So any node v that has an ancestor at level 

≥1 with 2 children can have no more than 1 child. Thus, there can be no more than 2ν

nodes at depth i ≥ 2. It is then clear that Tp,k(f) has at most 1 + (2D − 1) ν nodes.

We now check whether f̃ has any degenerate roots in Fp: By assumption, they must 

lie in F∗
p . Also, should p|c3, f̃ would be a binomial and thus have degenerate roots in F∗

p
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only if p|a2; in which case any root of f̃ in F∗
p is degenerate. We can then decide if there 

are degenerate roots simply by checking whether (−c1/c2)(p−1)/ gcd(a2,p−1) = 1 mod p, 

which can be done in time O(log(dH) log(log(dH)) + log2(p) log log p) via Theorem 2.7. 

Should there be any degenerate roots, there will then be exactly gcd(a2, p − 1) many, 

and we can then find them in time no worse than O((p + log d) log(dp) log(log(dp)) +

log(H) log(pH) log log(pH)) via brute-force (much like our earlier complexity analysis of 

Steps 5–7 of Algorithm 2.22).

So let us assume p ∤ c3. Note that p| gcd(a2, a3) =⇒ every root of f̃ in F∗
p is degenerate, 

in which case we can simply find all these roots first by reducing the coefficients (resp. 

exponents) of f̃ mod p (resp. mod p − 1) in time

O(log(max{d, p}) log(log max{d, p}) + log(max{p, H}) log log max{p, H})

and then applying brute-force search in time O(p log2(p) log log p). So let us assume 

p ∤ gcd(a2, a3). Observe then that f̃ has degenerate roots in F∗
p ⇐⇒ ∆tri(f̃) = 0

mod p, thanks to Assertion (1) of Lemma 5.2. In particular, by Theorem 2.7, ∆tri(f̃)

can be computed mod p in time O(log(max{d, p}) log(log max{d, p}) + log(max{H, p})

log log max{H, p}) (to reduce the exponents of ∆tri(f̃) mod p − 1 and the power bases 

mod p) plus O(log2(p) log log p) to compute the monomials of ∆tri(f̃). If ∆tri(f̃) �= 0 mod 

p then we know f̃ has no degenerate roots and then Tp,k(f) is simply a single root node. 

Otherwise, let r′ := gcd(a2, a3, p − 1) and apply the Extended Euclidean Algorithm (in 

time O(log(p) log2 log p) via Theorem 2.7) to a2 mod p − 1 and a3 mod p − 1 to find 

α, β ∈ Z with logarithmic height O(log p) such that α(a2 mod p −1) +β(a3 mod p −1) =

r′. Assertion (1) of Lemma 5.4 then tells us that the degenerate roots of f̃ in F∗
p are 

exactly the roots of g(x) := xr′ − (−1)α
(

c1

a3−a2

)α+β (
a3

c2

)α (
a2

c3

)β

in F∗
p . Lemmata 2.5

and 2.6 and Theorem 2.7 then easily imply that deciding whether g has any roots in F∗
p

takes time O(log2(p) log log p), and there are exactly r′ many degenerate roots in F∗
p if 

so. Just as in the last paragraph, we can then apply brute-force to g in time

O((p + log d) log(dp) log(log(dp)) + log(H) log(pH) log log(pH))

to find all the degenerate roots of f̃ in F∗
p .

Assuming f̃ has degenerate roots in F∗
p , let us now see how to compute the child nodes 

of the root node in Tp,k(f): First note that the coefficient of xi in the monomial term 

expansion of c(µ +px)a mod pj (for i ≤ j) is simply c
(

a
i

)

µa−ipi mod pj . Also, Lemma 2.17

tells us that fi,ζ(x) = p−sf(µ + pix) mod pj for suitable (s, µ, j). Putting this together, 

this means we can compute s(f, ζ0) and f̃1,ζ0
(for all degenerate roots ζ0 ∈ F∗

p of f̃) 

by evaluating ζa2
0 and ζa3

0 mod pk, 
(

a2

i

)

and 
(

a3

i

)

for i ∈ {0, 1, 2} if p ≥ 5, and O(1)

additional ring operations in Z/(pk). (We instead take i ∈ {0, 1, 2, 3} or {0, 1, 2, 3, 4}
according as p is 3 or 2.) Via Recursive Squaring (a.k.a. the Binary Method [7, pp. 

102–103]), Theorem 2.7 tells us that we can compute the a2nd and a3rd powers of all the 

degenerate roots ζ0 ∈ F∗
p in time O(v · log(d) · k log(p) log(k log p)), and the remaining 
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operations are negligible in comparison. In particular, each s(f, ζ0) can be computed 

by bisection and the resulting complexity is also negligible compared to the preceding 

O-estimate.

So in summary, all computations necessary to find all child nodes of the root node 

take time no greater than

O((p log(p) + log d) log(dp) log log(dp) + p log2(p) log(log p)

+ log(H) log(dpH) log log(dpH) + νk log(d) log(p) log(k log p)).

Having computed all the mod p reductions of the nodal polynomials f̃1,ζ0
at depth 

1, we then proceed inductively, performing almost the same calculations as in the last 

two paragraphs. The only difference, assuming p ≥ 5, is then applying the quadratic 

discriminant (instead of the trinomial discriminant) to detect and find the sole degenerate 

root of fi−1,µ (for i ∈ {2, . . . , k − 1}), should there be one. (Should p ∈ {2, 3} then we 

simply apply Proposition 6.8 instead, and possibly have two degenerate roots in the 

worst case when p = 2.) This eliminates the need for brute-force search, and gives us 

an improved complexity bound of O(k log(p) log(k log p) log(d) + log H) to compute the 

children (no more than two) of each fi−1,µ.

Summing all the resulting complexity estimates over all O(νD) children, and over-

estimating slightly, we obtain our stated bound. �

Corollary 6.10. Following the notation of Lemma 6.9, we have the following improved 

complexity bounds for computing the mod p reductions of all the nodal polynomials of 

Tp,k(f) and their respective s(·, ·) values:

1. If we only wish to construct the sub-tree of Tp,k(f) corresponding to ζ0 = 1, and 

correctlydeclare whether 1 is a degenerate root of f :

Deterministic time D(k log2(p) log(d) log H)1+o(1).

2. If the exponents are {0, a2, a3} with gcd(a2a3(a3 − a2), (p − 1)p) ≤ 2:

Deterministic time p
1
2 +o(1) + D(k2 log(p) log(d) log H)1+o(1)

or Las Vegas randomized time D(k log2(p) log(d) log H)1+o(1).

Remark 6.11. While we state a randomized speed-up in Assertion (2) above, any asymp-

totic gains are unfortunately overwhelmed by the upper bounds on k and D for the 

non-degenerate case from Corollary 6.6 and Theorem 1.6. Nevertheless, we state our 

bounds in a refined way above, should better bounds on k and D become available in 

the future. ⋄
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Proof of Corollary 6.10. In what follows, we keep in mind the template of the proof of 

Lemma 6.9, and simply point out the key changes resulting in speed-ups.

Assertion (1): Here there is no need to search for roots of f̃ : We merely evaluate f̃ and 

f̃ ′ at 1 to see if 1 is a degenerate root. This amounts to time

O(log(max{d, p}) log(log max{d, p}) + log(max{p, H}) log(log max{p, H}))

to reduce exponents mod p −1 and coefficients mod p, and then time O(log2(p) log log(p))

for the evaluation. At this point, we also know if 1 fails to be a degenerate root of f̃ .

We then need time O(max{k log p, log H} log max{k log p, log H}) to reduce the co-

efficients of f̃ mod pk, and then time O(log(d)k log(p) log(k log p)) to compute s(f, 1)

and the child node of the root node. For the remaining descendants, Lemma 6.1 tells 

us that there are at most 2 children, and any subsequent siblings can have no further 

offspring with more than one child. Also, as observed earlier, we can find the degenerate 

roots of the mod p reduction of any non-root nodal polynomial in time O(log H). So the 

remaining child nodes take time D − 1 times O(k log(d) log(p) log(k log p) + log(H)) to 

compute. �

Assertion (2): The gcd assumption on the exponents implies there can be at most 2

degenerate roots for f̃ in Fp (and they are nonzero since we originally assumed p ∤ c1 in 

Lemma 6.9): This follows from basic group theory if p|c3 and via Lemma 5.4 if p ∤ c3.

If p|c3 then we can decide whether f̃ has a degenerate root in F∗
p by computing 

g1 := gcd(f̃ , xp−1 − 1) and checking whether deg g1 ≥ 1 or not: If deg g1 = 1 then we 

can easily find the unique root of g1 using ≤2 arithmetic operations in Fp. If deg g1 = 2

then we can find the roots either in deterministic time O(p1/2 log2 p) via Shoup’s fast 

deterministic factoring algorithm [55], or Las Vegas time log2+o(1) p via the fast random-

ized factorization algorithm of Kedlaya-Umans [34]. Furthermore, g1 can be computed 

efficiently by first computing xa2 mod xp−1 − 1 via Recursive Squaring (a.k.a. the Bi-

nary Method [7, pp. 102–103]), and then computing the rest of f̃ mod xp−1 − 1. This 

entails O(log d) reductions (of exponents) mod p − 1, along with 3 arithmetic operations 

in Fp, meaning additional deterministic time O(log(d) log(max{d, p}) log log max{d, p})

via Theorem 2.7.

If p ∤ c3 then we can decide whether f̃ has a degenerate root in F∗
p by first checking 

∆tri(f̃) 
?
=0 mod p, which takes time

O(log(max{d, p}) log(log max{d, p}) + log(max{H, p}) log log max{H, p})

(as already observed in our last proof). If this discriminant indeed vanishes mod p then 

we compute g2 := gcd(f̃ , f̃ ′) = gcd(f̃ , f̃ ′/xa2−1). Like g1, the polynomial g2 has degree 

≤2, and it can be computed efficiently, along with its roots (if any) in deterministic time

O(p1/2 log2(p) + log(d) log(max{d, p}) log log max{d, p}),



J.M. Rojas, Y. Zhu / Journal of Number Theory 241 (2022) 655–699 691

or Las Vegas time

O(log2+o(1)(p) + log(d) log(max{d, p}) log log max{d, p}).

We then proceed as in the proof of Assertion (1), with at worst twice as many chil-

dren. �

6.3. The algorithm that proves Theorem 1.1

Recall that a terminal node of a tree is a node with no children.

Algorithm 6.12. (Solving trinomial equations over Q∗

pQ∗

pQ∗

p) 
Input. A prime p and c1, c2, c3, a2, a3 ∈ Z \ {0} with |ci| ≤ H for all i and 1 ≤ a2 < a3 =:d.
Output. A true declaration that f(x) := c1 + c2xa2 + c3xa3 has no roots in Qp, or z1, . . . , zm ∈ Q

with logarithmic height O
(

p log2
p(dH) log d

)

such that m is the number of roots of f in Qp,
zj is an approximate root of f with associated true root ζj ∈ Qp for all j, and #{ζj} = m.

Description.

1: If [ordp
c2

2

c1c3
≥0 and ordp c1 �= ordp c3 mod a3] or

[ordp
c2

2

c1c3
<0 and ordp c1 �= ordp c2 mod a2 and ordp c2 �= ordp c3 mod a3 − a2]

then say “No roots in Qp!” and STOP.
2: Rescale and invert roots if necessary, so that we may assume p ∤ c1c2 and ordp c3 ≥ 0.

3: Decide, via gcd-free bases, ∆tri(f) 
?
=0. If so, set δ := 1. Otherwise, set δ := 0.

4: If δ = 1 then set r′ := gcd(a2, a3, p − 1) and, via the Extended Euclidean Algorithm, find
α, β ∈ Z with logarithmic height O(log p) such that α(a2 mod p −1) +β(a3 mod p −1) = r′.
Then, via Algorithm 2.22 (or its p = 2 version, Algorithm 2.24), output the 2 most

significant base-p digits of the roots of g(x) :=xr′

−(−1)α
(

c1

a3−a2

)α+β(
a3

c2

)α(
a2

c3

)β
in Zp.

5: Set k to be the lower bound from Corollary 6.6 (employing the stated upper bound on S0,
and the upper bound on D from Theorem 1.6, should S0 or D not be known), and compute
the mod p reductions f̃i,ζ of all the nodal polynomials of Tp,k(f).

6: By computing deg gcd(f̃i,ζ , xp −x) for the non-root nodal polynomials of Tp,k(f), and brute-
force search over F∗

p for f̃ , determine which nodal polynomials have non-degenerate roots.
7: Output every non-degenerate root ζ0 ∈ Fp of f̃ . Also output, for each non-root nodal

polynomial fi,ζ found in Step 6, the set 
{

ζ + piζi | ζi ∈ Fp and f̃i,ζ(ζi) = 0 �= f̃ ′

i,ζ(ζi)
}

.
8: If p|c3 then rescale and invert roots to compute approximants for the remaining roots of f

in Qp, by computing roots of valuation 0 for a rescaling of the reciprocal polynomial f∗.

Remark 6.13. We point out that some of the approximate roots output by our algorithm 

above require the use of Newton iteration applied to fi,ζ (instead of f). This is clarified 

in our correctness proof below. ⋄

Proof of Theorem 1.1. First note that the root 0 is trivially detected by checking 

whether the constant term c1 is 0. So we may assume c1 �= 0 and focus on roots in 

Q∗
p. Note also that the rescalings from Steps 2 and 8 (which are simply replacements of 

f with pj1f(pj2x) for suitable j1, j2 ∈ Z) result in a possible increase in the bit-sizes our 
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outputs, but this increase is O(log H) thanks to Theorem 2.3. So we focus on roots in 

Zp of valuation 0, and assume p ∤ c1 and ordp(c2) ordp(c3) = 0.

Condition (1) (the logarithmic height bound for our approximate roots) then clearly 

holds thanks to Step 5 of our algorithm, the definition of Tp,k(f), Lemma 2.18, Theo-

rem 1.6, and Corollary 6.6.

Condition (2) (on the convergence of the Newton iterates) follows easily from the 

definition of fi,µ. In particular, Lemma 2.17 tells us that fi,µ(x) = p−sf(µ +pix) mod pj

for suitable (s, µ, j), and thus a non-degenerate root ζi ∈ Fp of f̃i,ζ yields a root µ + piζi

of f mod pi+1. Moreover, by Hensel’s Lemma, z0 := ζi is an approximate root of fi,µ, 

meaning that the sequence (µ +pizn)n∈N derived from the iterates (zn)n∈N coming from 

applying Newton iteration to (fi,µ, z0) satisfies |ξ−(µ +pizn)|p ≤
(

1
p

)2n−1

|ξ−(µ +piz0)|p, 

where ξ ∈ Zp is some true (non-degenerate) root of f . From Lemma 2.18 (and our choice 

of k via Corollary 6.6) we know that all the non-degenerate roots of f can be recovered 

this way, and uniquely so.

Condition (3) on correctly counting the roots of f in Qp follows immediately from 

Steps 3–8. In particular, first note that Step 4 actually outputs approximations of all the 

degenerate roots of f in Zp. This is because, as we already saw in the third paragraph 

of the proof of Lemma 6.9, the binomial g vanishes exactly on the degenerate roots of 

f in F∗
p and deg g = r′ is exactly the number of these roots. Lemmata 2.5 and 2.6 and 

Theorem 2.7 then easily imply that deciding whether g has any roots in F∗
p takes time 

O(log2(p) log log p). So Step 4 correctly counts the degenerate roots in Qp thanks to 

our earlier work on Algorithms 2.22 and 2.24. Also, Corollary 6.6 and Lemma 2.18 tell 

us that the outputs from Step 7 are a collection of approximate roots that, en masse, 

converge to the set of non-degenerate roots of f in Zp of valuation 0, with no overlap. 

Step 8 then accounts for the remaining degenerate and non-degenerate roots in Qp.

The time complexity estimates from our theorem will follow from our complexity anal-

ysis of Algorithm 6.12 below. First, however, let us prove correctness for our algorithm.

Correctness: Via Theorem 2.3, Step 1 guarantees that f has roots of integral valuation, 

which is a necessary condition for their to be roots in Qp. Steps 2 and 8 involve substi-

tutions that only negligibly affect the heights of the coefficients, similar to the binomial 

case (where the underlying rescalings are stated in finer detail).

Step 3 correctly detects degenerate roots in C∗
p thanks to Lemma 5.2. As observed 

above, Steps 4–7 correctly count the number of non-degenerate roots of f in Zp of 

valuation 0. In particular, Step 4 is accomplished via Lemmata 5.2 and 5.4, and the 

characterization of degenerate roots from the latter lemma implies that we can use 

the Extended Euclidean Algorithm to find a binomial efficiently encoding the degen-

erate roots of f in Qp (as already detailed in the third paragraph of the proof of

Lemma 6.9). �

Complexity Analysis: Steps 1, 2, and 8 involve basic field arithmetic that will be domi-

nated by Steps 3–7. So we will focus on Steps 3–7 only.
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Step 3 can be accomplished in time O(log2(dH)) via [3, Thm. 39]. Note in particular 

that detecting vanishing for ∆tri(f) is much easier than computing its valuation.

Step 4 takes time O((p + log(dH)) log(dpH) log log(dpH)) thanks to Theorem 2.21.

Letting ν and D respectively denote the number of degenerate roots of f̃ in F∗
p and 

the depth of Tp,k(f), Step 5 takes time O
(

νp2 log4(dH) log3
p(d) log (p log(dH))

)

or

O
(

(p + log d) log(dp) log log(dp) + p log2(p) log log(p)

+ν log2(dH) log(d) logp log(dH) + log(H) log(dpH) log log(dpH)
)

,

according as δ = 0 or δ = 1. This follows immediately from an elementary calculation, 

upon substituting the corresponding value of k from Corollary 6.6 into Lemma 6.9, 

using the fact that the depth D is bounded from above by one of our two bounds from 

Theorem 1.6.

The brute-force portion of Step 6 clearly takes time O(p log2(p) log log p) via The-

orem 2.7. Lemma 6.9 tells us that Tp,k(f) has O(νD) nodes, and Lemma 6.1 tells us 

that each non-root nodal polynomial has mod p reduction with degree ≤ 4. So the 

remaining multi-node gcd computation takes time O(νD · log(p) log log p) via Theo-

rem 2.7. So the overall time for Step 6 is O(p 
[

ν log2(dH) logp(d) + log2 p
]

log log p) or 

O([p log2(p) + ν log(dH)] log log p), according as δ is 0 or 1, thanks to Theorem 1.6.

As for Step 7, we already know the non-degenerate roots in Fp of f̃ from Step 6. 

For the remaining nodes, observe that Lemma 6.1 tells us that the mod p reductions of 

the non-root nodal polynomials have degree at most 4. Also, the root has ν children, 

each yielding a tree that is a chain with (at worst) one bifurcation. Furthermore, note 

that the presence of a non-degenerate root in Fp for f̃i,ζ implies that f̃i,ζ can have at 

most 1 degenerate root in Fp, meaning that its child will have degree at most 2 by 

Lemma 2.17. Finally, note that once a quadratic f̃i,ζ has a non-degenerate root in Fp, it 

can no longer have any children. In other words, we have shown that there can be at most 

O(ν) nodes having f̃i,ζ possessing a non-degenerate root. Applying Shoup’s deterministic 

factoring algorithm [55] to the non-root nodal polynomials, we then see that finding the 

non-degenerate roots for our entire tree takes time O(ν · p1/2 log2 p).

In summary, we see that Step 5 dominates our overall complexity when δ = 0, yielding 

a bound of O
(

νp2 log4(dH) log3
p(d) log(p log(dH))

)

. When δ = 1, Steps 4, 5, and 7 

dominate together, yielding an overall complexity bound of Noting that ν ≤ p − 1, we 

O
(

(p + log(dH)) log(dpH) log log(dpH) + p log2(p) log log(p)

+ν[p1/2 log2(p) + log2(dH) log(d) logp log(dH)]
)

.

are done after an elementary calculation. �
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Remark 6.14. A consequence of our proof is that it also contains a proof of the determin-

istic complexity bound of Corollary 1.7, since we included above the case where f has 

a degenerate root. To get the Las Vegas randomized bound, we simply replace the fast 

deterministic factoring algorithm from [55] in Step 7 with the fast randomized factoring 

algorithm from [34]. ⋄

6.4. “Typical” exponents, Las Vegas, and a combined speed-up

For our final speed-ups we will make use of the fact that trinomials can only vanish 

on a small number of cosets in F∗
q : Building on earlier results from [15,12,35], Kelley 

and Owen proved [36, Thm. 1.2] that c1 + c2xa2 + c3xa3 ∈ Fq[x], with q a prime power, 

vanishes at no more than 

⌊

1
2 +

√

q−1
r′

⌋

cosets of the size r′ subgroup of F∗
q (and nowhere 

else), where r′ = gcd(a2, a3, q − 1). In particular, this bound is optimal for Fq an even 

degree extension of a prime field. For q prime, there is even computational evidence (for 

all q ≤ 292837) that the number of such cosets might in fact no greater than 2 log q [20].

It is easy to see that, for any fixed prime p, gcd(a2a3(a3 − a2), (p − 1)p) ≤ 2 for 

a positive density subset of (a2, a3) ∈ N2. (Simply pick a2 and a3 to avoid certain 

arithmetic progressions depending on p and the divisors of p − 1.) So one can argue that 

a large fraction of trinomials over Z have O(
√

p) roots in Fp and, via Lemma 2.18, O(
√

p)

roots in Qp. Apropos of this paucity of roots for “most” exponents, let us recall a useful 

trick that will allow us to significantly reduce the degree of a large fraction of trinomials 

over Fp: Via a fast algorithm for the Shortest Lattice Vector Problem in Z2 (see, e.g., 

[24]), one can prove the following result:

Lemma 6.15. [12, Special Case of Lemma 1.11] Given any prime p, and a2, a3 ∈ N with 

0 < a2 < a3 < p − 1 and r′ := gcd(a2, a3, (p − 1)p), one can find within logO(1) p bit 

operations an integer e such that for all i ∈ {2, 3}, eai = mi mod p − 1 and |mi| ≤
r′√2(p − 1). �

Proof of Corollary 1.4. We follow the template of the proof of Theorem 1.1, save for some 

key differences. The first difference is that, under our assumptions, we can compute the 

tree Tp,k(f) faster via Corollary 6.10 instead of Lemma 6.9. We then need to compute 

the non-degenerate roots of all the nodal polynomials, so the next key difference is that 

we can use the degree reduction of Lemma 6.15 to speed up this up at the root node. 

(The remaining nodes receive no further speed-up unless randomization is used.)

So we merely need to recompute our complexity bounds. Recall that D denotes the 

depth of the tree Tp,k(f), and ν is the number of children of the root node (which 

for k sufficiently large, is the number of degenerate roots of f̃). We note the changes 

to the complexity of Algorithm 6.12 below, in both the restricted root case (where we 

only seek root of the form pj + O(pj+1)) and the small gcd case (where we assume 

gcd(a2a2(a3 − a2), (p − 1)p) ≤ 2):
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A. Step 4 can be sped up to deterministic time

O(log2(p) log log(p) + log(max{d, p}) log(log max{d, p})

+ log(max{p, H}) log(log max{p, H}))

in the restricted root case; or deterministic time

O(p1/2 log2(p) + log(max{d, p}) log(log max{d, p})

+ log(max{p, H}) log(log max{p, H})),

or Las Vegas randomized time

O
(

log2+o(1)(p) + log(max{d, p}) log log max{d, p})

+ log(max{H, p}) log log max{H, p}
)

in the small gcd case.

B. Step 5 can be sped up to deterministic time

O
(

(p + log d) log(dp) log(log(dp)) + p log2(p) log log(p)

+ D[k log(p) log(k log p) log(d) + log H] + log(H) log(dpH) log log(dpH)),

in both cases. If f has a degenerate root in C∗
p then we can further speed up both 

cases to Las Vegas randomized time

O(log2
p(dH) log(log(dH)) + log2(p) log(log p) + log(dpH) log log(dpH)).

C. We replace Step 6 of Algorithm 6.12 with the following:

6’: By computing deg gcd(f̃i,ζ , xp − x) for the non-root nodal polynomials of Tp,k(f), and

factoring a degree-reduced version of f̃ (if needed), determine which nodal polynomials

have non-degenerate roots in Fp.

This modified step takes deterministic time O(D log(p) log log p) in the restricted root 

case; or deterministic time O(p log2(p) + D log(p) log log p) or Las Vegas randomized 

time O(p3/4 log1+o(1)(p) + D log(p) log log p) in the small gcd case.

D. Step 7 can be sped up to deterministic time p1/2 log2+o(1) p or Las Vegas randomized 

time log2+o(1) p, in both cases.

We now explain Changes A–D.

A. In the restricted root case, we merely need to evaluate f and f ′ at 1, so our first 

bound is clear.

In the small gcd case, the number of degenerate roots is at most 2 thanks to our gcd 

assumption and Lemma 5.4. So instead of employing Algorithms 2.22 or 2.24, we simply 

find the degenerate roots by factoring, using either the fast deterministic algorithm from 

[55] or the fast Las Vegas randomized factorization algorithm from [34].

B. The complexity bounds follows by applying Corollary 6.10 instead of Lemma 6.9, 

ultimately yielding O(p2 log4(dH) log3
p(d) log(p log(dH))) via Corollary 6.6 and Theo-

rem 1.6. As noted in Remark 6.11, our current bounds for k and D obstruct any Las 

Vegas speed-up for Step 5 (in the non-degenerate case).
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C. The deterministic speed-ups follow from the complexity analysis of Algorithm 6.12, 

in the proof of Theorem 1.1, simply by setting ν = 2 in the bound there. Note also that 

in the restricted root case, there is no need to search for any roots of f̃ since we only 

care about most significant digit 1: We merely need to evaluate f̃ and f̃ ′ at 1.

To get our Las Vegas speed-up, we replace the brute-force search for degenerate 

roots of f̃ with a targeted factorization: First build a degree-reduced version of f̃ via 

Lemma 6.15 to apply the automorphism of F∗
p defined by x �→ xe to replace f̃ by 

g̃(x) := f̃(xe), and compute e′ := 1/e mod p −1, in deterministic time logO(1) p. This re-

duces deg f̃ to deg g̃ ≤ 2
√

2(p − 1). To find the roots of f̃ in F∗
p we can then find the roots 

of g̃ in F∗
p by using the Kedlaya-Umans factorization algorithm [34], take the e′th powers 

mod p of these roots, and then identify which of these roots of f̃ is a degenerate root 

found earlier. This takes time (2
√

2(p − 1))1.5 log1+o(1)(p) + logO(1) p = p3/4 log1+o(1) p.

Since ν ≤ 2 in both cases, the remaining multinodal gcd computation takes additional 

deterministic time O(D log(p) log log p).

D. Since we already found the non-degenerate roots of f̃ in Fp in Step 6’, we merely need 

to speed up finding the non-degenerate roots in Fp of the remaining nodal polynomials: 

We already observed in the proof of Theorem 1.1 that there are O(ν) nodes having a 

f̃i,ζ possessing a non-degenerate root. But ν ≤ 2 in both cases, so we only need to worry 

about O(1) nodes. So our proof of Theorem 1.1 already implies a deterministic speed-

up to O(p1/2 log2 p) (for O(1) applications of Shoup’s deterministic factoring algorithm 

[55]), in both cases.

However, if we replace Shoup’s algorithm with the fast randomized factorization algo-

rithm from [34], then we can speed Step 7 up to Las Vegas randomized time log2+o(1) p

in both cases.

To conclude, we see that Step 5 dominates the deterministic complexity in both cases 

(restricted root and small gcd), and wipes out any Las Vegas speed-up unless better 

boundsfor k and D are available. Summing our complexity estimates, we obtain our 

desired bounds. �

An immediate consequence of our last proof — if we can apply the sharper bounds for 

D and k from the degenerate cases of Theorem 1.6 and Corollary 6.6 — is the following 

combined speed-up:

Corollary 6.16. If the trinomial f ∈ Z[x] has a nonzero degenerate root in Cp then we 

can speed up the Las Vegas complexity bound of Corollary 1.7 to

log2+o(1)(p) + log2+o(1)(dH) logp d (in the restricted root case)

or

p3/4 log1+o(1)(p) + log2+o(1)(dH) logp d (in the small gcd case). �
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