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Text. For any fixed field K € {Q2,Q3,Qs5,...}, we prove
that all univariate polynomials f with exactly 3 (resp. 2)
monomial terms, degree d, and all coefficients in {£1,...,
+H}, can be solved over K within deterministic time
log*+°M (dH) log® d (resp. log?t°(Y) (dH)) in the classical Tur-
ing model: Our underlying algorithm correctly counts the
number of roots of f in K, and for each such root generates an
approximation in Q with logarithmic height O(log?(dH) log d)
that converges at a rate of O((l/p)zl) after ¢ steps of New-
ton iteration. We also prove significant speed-ups in certain
settings, a minimal spacing bound of p~°® log} (dH) logd) g,
distinct roots in €, and even stronger root repulsion when
there are nonzero degenerate roots in C,: p-adic distance
p~©OUog, (@) O the other hand, we prove that there is an
explicit family of tetranomials with distinct nonzero roots in
Z, indistinguishable in their first Q(dlog, H) most signifi-
cant base-p digits. So speed-ups for t-nomials with ¢ > 4 will
require evasion or amortization of such worst-case instances.
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1. Introduction

Solving polynomial equations over the p-adic rational numbers Q, underlies many
important computational questions in number theory (see, e.g., [25,9,23,51]) and is close
to applications in coding theory (see, e.g., [11]). Furthermore, the complexity of solving
structured equations — such as those with a fixed number of monomial terms, or invari-
ance with respect to a group action — arises naturally in many computational geometric
applications and is closely related to a deeper understanding of circuit complexity (see,
e.g., [38]). So we will study how sparsity affects the complexity of separating and ap-
proximating roots in Q,. Unless stated otherwise, all O-constants and {2-constants are
effective and absolute.

Recall that thanks to 17th century work of Descartes, and 20th century work of
Lenstra [40] and Poonen [46], it is known that univariate polynomials with exactly ¢
monomial terms have at most t°¥(1) roots in a local field K only when K is R or a
finite algebraic extension of Q, for some prime p € N. (For instance, C is ruled out
because ¢ — 1 has just 2 monomial terms but d distinct complex roots.) We'll use | - |,
(resp.
Iplp = % (resp. the standard absolute value on C). Recall also that for any function f

-|) for the absolute value on the p-adic complex numbers C, normalized so that
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analytic on K, the corresponding Newton endomorphism is Ny(z) =z — %, and the
corresponding sequence of Newton iterates of a start-point zo € K is the sequence (z;)52,
where z; 1 := Ny(z;) for all i > 0.

Our first main result is that we can efficiently count the roots of univariate trinomials
in Qp, and find succinct start-points in Q under which Newton iteration converges
quickly to all the roots in Q,. We use #5 for the cardinality of a set S.

Theorem 1.1. For any prime p and a trinomial f € Z[x] with degree d and all its coef-
ficients in {%1,...,£H}, we can find in deterministic time p>+°() log4+°(1)(dH) 1og2d
a set {%, o2l CQ of cardinality m = m(p, f) such that:

(1) For all j we have aj # 0 = log |a;|,log |3 = O(plogi(dH) logd).

(2) 20 := a;/Bj = f has a root (; € Q, with sequence of Newton iterates satisfying
|2i = Gilp < (1/p)% |20 = Gl for all i, j > 1.

(8) m=#{C1,...,¢n} and m is exactly the number of roots of f in Q,.

We prove Theorem 1.1 in Section 6.3 via Algorithm 6.12 there. The main idea behind
Algorithm 6.12 is conceptually simple: solving for enough of the most significant base-p
digits of the roots to guarantee rapid convergence of Newton/Hensel Iteration. However,
proving that this can be done efficiently hinges on recent root counts from arithmetic
fewnomial theory [40,6,12,36] and some delicate root spacing estimates (Theorem 1.6
and Sections 3 and 5 below) that form the technical heart of this paper.

The dependence on p in our complexity bound can be lowered significantly in certain
natural settings, e.g., restricting to roots of the form p/ + O(p?*!), or making mild
assumptions on the ged of the exponents, or assuming the presence of nonzero degenerate
roots in C,: See Corollaries 1.4, 1.7, and 6.16 below. An analogue of Theorem 1.1 also
holds for K = R and will be presented in a sequel to this paper [13]. We call a zp € Q,
satisfying the convergence condition from Theorem 1.1 an approzimate root of f (in
the sense of Smale' ), with associated true root (. This type of convergence provides an
efficient encoding of an approximation that can be quickly tuned to any desired accuracy.

Remark 1.2. Defining the input size of a univariate polynomial f(z) := 22:1 ciz® €
Z[z) as Y i_;log((|ei| + 2)(Jai| + 2)) we see that Theorem 1.1 implies that one can
solve univariatetrinomial equations, over Q,, for any fized prime p, in deterministic time
polynomial in the input size. ¢

Remark 1.3. Efficiently solving univariate t-nomial equations over K in the sense of
Theorem 1.1 is easier for ¢ < 2: The case t = 1 is clearly trivial (with 0 the only possible
root) while the case (K, t) = (R,2) is implicit in work on computer arithmetic from the
1970s (see, e.g., [14]). We review the case (K, t) = (Qy,2) with p prime in Corollary 2.8
and Theorem 2.21 of Section 2 below. ¢

! This terminology has only been applied over C so far [57], so we take the opportunity here to extend it
to the p-adic rationals. Note that we do not restrict { to be non-degenerate.
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Despite much work on factoring univariate polynomials over Q,, (see, e.g., [40,16,30,
10,11]), all known general algorithms for solving (or even just counting the solutions of)
arbitrary degree d polynomial equations over @, have complexity exponential in log d.
So Theorem 1.1 presents a significant new speed-up, and greatly improves an earlier
complexity bound (membership in NP, for detecting roots in Q,) from [3]. We'll see
in Sections 5 and 6 how our speed-up depends on p-adic Diophantine approximation
[64,65]. Another key new ingredient in proving Theorem 1.1 is an efficient encoding of
roots in Z/(p*) from [27,39], with important precursors in [61,11].

1.1. Dependence on p

While there are certainly number-theoretic algorithms with deterministic complexity
having dependence (log p)o(l) on an input prime p, solving sparse polynomial equations
in one variable over QQ,, might not have such tame dependence on p. There are 3 barriers
(B1-B3 below) we must overcome before achieving such a speed-up:

B1. Whereas a binomial has at most 3 roots in R (e.g., x3 — z), a binomial can have as
many as max{p,3} roots in Q, (e.g., z2@d{p:3Y _ 1) Purthermore, trinomials have at
most 5, 7, 9, or 3p — 2 roots in K, according as K is R, Qa2 [40], Qs [66], or Q, with
p>5 [06,45], and each bound is sharp. o

One might think that B1 is the nail in the coffin for dependence (log p)o(l). However,
Hensel’s Lemma, and a tree from Section 2.5 below that encodes roots in Z,, (see also
[27]), reveal that the roots of a trinomial in Q, can in fact be encoded by a data structure
of potentially much smaller size than a naive list of size Q(p). (In essence, this means
using an explicit collection binomials to encode a union of cosets of F.) This harkens
back to an intriguing open problem from arithmetic fewnomial theory [20]: Is the zero
set of a trinomial in F,[x] always expressible as a union of O(logp) cosets of subgroups
of F;? Currently, the best bound is O(,/p) [36] and forms a key ingredient in proving
one of our speed-ups: Corollary 1.4 below.

Observe now that the most natural p-adic analogue of a positive real number is a p-
adic rational number with most significant digit 1, i.e., a number of the form p’ +O(p’*1).
Restricting to such roots then cuts the root cardinality bounds of B1 down to 2, 6, 4,
and 3 (respectively over R, Qq, Q3, or Q, with p > 5), and yields a significant speed-up.
Alternatively, rather than restricting digits of roots, one can observe that trinomials over
Z with many roots in Q, have very particular exponents (see, e.g., [6]). This enables
another significant speed-up to our main algorithm for “most” choices of exponents. We
unite these two speed-ups as follows:

Corollary 1.4. Following the notation of Theorem 1.1, we can reduce its deterministic
time complexity bound by a factor of p in either of following settings: (1) we only seek
roots of the form p? + O(p'*1), or (2) we assume that the exponents are {0, az, a3} with
ged(azas(as — az), (p — 1)p) < 2. In either case, the stated worst-case height bounds for
the approximate roots remain the same.
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We prove Corollary 1.4 in Section 6.4, and leave average-case speed-ups (where one aver-
ages over coefficients) for future work. It follows from our framework that the speed-ups
from Corollary 1.4 continue to hold (modulo a multiple of Co(l)) under softer assump-
tions like (a) restricting to roots with most significant digit in some cardinality C' subset
of {1,...,p— 1} or (b) assuming gcd(azas(as — az2), (p — 1)p) < C. So our assumptions
in Corollary 1.4 are more restrictive merely for the sake of simplifying our exposition.

Another barrier to more efficient dependence on p is explicitly extracting points from
the cosets forming the zero set of a trinomial. For instance:

B2. Approzimating square-roots of p-adic integers not divisible by p, within accuracy 1,
implies finding square-roots in the finite field I,. The latter problem is still not known
to be doable in deterministic time polynomial in logp, even though the decision version
2to(1) (see, e.g., [55,7,47]). Furthermore, it remains
unknown how to find just a single dth root of a dth power inF); in time (log(p)+log d)°W,
even if randomness is allowed (see, e.g., [1,18,21]). ¢

is doable in deterministic time log

We are then led naturally to yet another barrier to efficient dependence on p:

B3. Even if one only wants to approzimate a single root in Q, of a trinomial, the minimal
currently provable initial accuracy needed to make Newton iteration converge quickly
appears to have quasi-linear dependence on p. <

In particular, our key valuation bounds (see Section 5) currently hinge on estimates
for linear forms in p-adic logarithms [8,64,65], and further improvements to the latter
estimates appear to be unknown and difficult.

1.2. Repulsion, and the separation chasm at four terms

The p-adic rational roots of sparse polynomials can range from well-separated to
tightly spaced, already with just 4 terms.

Theorem 1.5. Consider the family of tetranomials
faej(@) = gt — W% 42Uty 72

with j € N, j >3, ¢ € Q nonzero, and d € {4,...,|e"|} even. Let H := max{eT%}.
Then fqc,; has distinct nonzero roots (1, (o in the open unit disk of K (centered at 0) with
log |1 — Galyl = Qdlog H) or log |G — G| = (dlog H), acconding as (K, €) = (Qy,p)
or (K,e) = (R,1/2). In particular, while the coefficients of p* fap.; all lie in Z and
have O(log, H) base-p digits, we need Q(dlog, H) many base-p digits to distinguish the
nonzero roots of f in Zp.

We prove Theorem 1.5 in Section 4, where we will also see in Remark 4.1 that the
basin of attraction for a root of fg, ; in Q, (under the Newton endomorphism Ny, )
can be exponentially small in logd as well. The special case K = R of Theorem 1.5
was derived earlier (in different notation) by Mignotte [42]. (See also [52].) The cases
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K = Q, with p prime appear to be new, and our proof unifies the Archimedean and
non-Archimedean cases via tropical geometry [4]. Approximating roots in Q,, in average-
case time sub-linear in d for tetranomials (where one averages over the coefficients but
fixes the exponents) is thus an intriguing open problem.

Mignotte used the tetranomial fz /o ; in [42] to show that an earlier root separation
bound of Mahler [41], for arbitrary degree d polynomials in Z[z], is asymptotically near-
optimal. We recall the following paraphrased version:

Mabhler’s Theorem. Suppose f € Z[x] has degree d > 2, all its coefficients lie in
{£1,...,x£H}, and f is irreducible in Z[z]. Let (1,(a € C be distinct roots of f. Then

11— o] > W%. In particular, |log|(1 — (|| = O(dlog(dH)). M

The very last statement is actually a small addendum, making use of the following classic
fact: The complex roots of an f as above lie in an open disk, centered at the origin, of
radius 2H (see, e.g., [48, Ch. 8] or Theorem 2.3 in Section 2.1 below). It is straightforward
to prove an analogue of Mahler’s bound, of the same asymptotic order for |log |1 — (|,
for roots in C,,.

Our new algorithmic results are enabled by our third and final main result: Mahler’s
bound can be dramatically improved for the roots of ¢rinomials in C,,.

Theorem 1.6. Suppose p is prime and f € Z[z] has exactly 3 monomial terms, degree
d, and all its coefficients lie in {£1,...,2£H}. Let (1,(2 € C, be distinct roots of f.
Then log H > log|(1 — Cafp > —O(plogQ(dH) log,, d). Furthermore, if f has a nonzero
degenerate root in C,,, then the last lower bound can be sharpened to —O(log(dH)).

The proof of Theorem 1.6 is split across Sections 3 and 5.1, due to the degenerate case
being more technically difficult. In particular, Theorem 1.6 provides a p-adic analogue of
a separation bound of Koiran for complex roots of trinomials [37], and the proofs of the
non-degenerate (a.k.a. square-free) cases over C, and C share much in common. However,
the sharper bounds for the degenerate cases involve radically different techniques over
Cp, and C: Over C, there are refined analogues of Rolle’s Theorem that incorporate the
multiplicity of roots. Over C,, such a refinement is unavailable, so we resort to estimates
on the valuation of discriminants of trinomials (see Lemma 5.4).

As to whether our root spacing bounds above are optimal, there are recent examples
from [28] showing that log|(1 — (2|, = —Q(log max{d, H}) can occur. However, we are
unaware of any examples exhibiting log|(1 — (2|, = —$2(p®) for some € > 0. Asymptoti-
cally optimal separation bounds, over both C, and C, are already known for binomials
and we review these bounds in Section 2.2.

The presence of degenerate roots appears to not only increase the repulsion of roots
for trinomials but also speed up their approximation:
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Corollary 1.7. Following the notation of Theorem 1.1, if f has a nonzero degenerate root
in C,, then we can find, in deterministic time p'**+°() (p1/2 +10g3+°(1)(dH)>, or Las

Vegas randomized time p'*+o() 1og3+0(1)(dH), a set of approximate roots in the sense of
Smale, each in Q and with logarithmic height O(log(dH)), with distinct associated true
roots having union the zero set of f in Q.

We prove Corollary 1.7 in Remark 6.14 of Section 6.3 below. It is not yet clear whether
significantly better bounds for root spacing and root approximation can hold in complete
generality: the apparent improvements implied by the presence of degenerate roots could
just be a side-effect of our underlying techniques. Curiously, a similar “repulsion from
degeneracy” phenomenon also occurs in the (Archimedean) setting of roots in C: see [37,
Proof of Thm. 18].

1.8. Previous complexity and sparsity results

Deciding the existence of roots over QQ, for univariate polynomials with an arbitrary
number of monomial terms is already NP-hard with respect to randomized (ZPP, a.k.a.
Las Vegas) reductions [3]. On the other hand, detecting roots over Q,, for n-variate (n+1)-
nomials is known to be doable in NP [3]. Speeding this up to polynomial-time, even for
n = 2 and fixed p, hinges upon detecting roots in (Z/(p*))? for bivariate trinomials of
degree d in time (k +log d)o(l). The latter problem remains open, but some progress has
been made in author Zhu’s Ph.D. thesis [66].

On a related note, counting points on trinomial curves over prime fields F,, in time
(log(pd))°™ remains a challenging open question. Useful quantitative estimates in this
direction were derived in [33,62] and revisited via real quadratic optimization in [5].

2. Background

Definitive sources for p-adic arithmetic and analysis include [54,53,49]. For algorithmic
complexity we note that [44,2] are outstanding references. Let us now collect some basic
terminology:

e For any ring R we let R* denote the multiplicatively invertible elements of R.

o The logarithmic height of a rational number a/b with ged(a,b) = 1 is simply
h(a/b) := log max{|al, |b|}, and we declare h(0) := 0.

e Over any algebraically closed field K, we define the multiplicity of a root ( € K of
f € K[z] as the greatest m with (x — {)™|f. (We will usually take K to be C, or
the algebraic closure F, of F),.)

e The most significant (base-p) digit of Z;’;S ajp’ € Q, is a,, assuming the a; €
{0,...,p—1} and as # 0.

o We denote the standard p-adic valuation on C, (normalized so that ord,p = 1) by
ord, : C, — Q.
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Recall that the famous Ultrametric Inequality states that for any o, 8 € C, we have
ord,(a £ 8) > min{ord, o, ord, 5}. (Equivalently: |a £ 8], < max{|alp,|B|p}.) We will
frequently use (without further mention) this inequality, along with its natural implica-
tion ord, o < ord, f = ord, (%) = ord, a. We also recall that the metrics |-| and |-|,
are respectively called Archimedean and non-Archimedean because as n — oo we have
In| — oo, while the sequence |n|, remains inside the bounded set {1,1/p,1/p?,...}.

Let us also recall that a polynomial-time Las Vegas randomized algorithm is a
polynomia-time algorithm that uses polynomially random bits in the input size, errs
with probability at worst 1/2, but always reports if it errs. Such an algorithm can be run
k times to boost the success probability to at least 1— 2%, and this type of randomization
is standard in many number-theoretic algorithms such as the fastest current algorithms
for factoring polynomials over finite fields or primality checking (see, e.g., [34,19]). In
our setting, errors (for a Las Vegas speed-up) consist of reporting too few roots in Q,,
but such errors can be detected and reported at no extra cost.

2.1. Newton polygons and Newton iteration: Archimedean and non-Archimedean

The notion of Newton polygon goes back to 17th century work of Newton on Puiseux
series solutions to polynomial equations [59, pp. 126-127]. We will need variants of this
notion over C, and C. (See, e.g., [63] for the p-adic case and [43,4] for the complex case.)

Definition 2.1. Suppose f(z) := Y/_, ciz® € Z[z] with ¢;# 0 for all i and a; < --- < ay.
We then define the p-adic Newton polygon, Newt,(f) (resp. Archimedean Newton poly-
gon, Newto(f)) to be the convex hull of the set of points {(a;,ord,¢;) | ¢ € {1,...,t}}
(resp. the convex hull of {(a;,—log|c;|) | i € {1,...,t}}). We call an edge E of a poly-
gon in R? Jower if and only if F has an inner normal with positive last coordinate. We
also define the horizontal length of a line segment E connecting (r,s) and (u,v) to be
ME)=lu—r]. ©

Example 2.2. Consider g.(z) := 2° — e %22 + 2e 74z — e 2. We illustrate Newt,, (g,) (for
p odd) and Newt(g1/2) below:

Note that the p-adic Newton polygon on the left has exactly 2 lower edges (with
horizontal lengths 2 and 3), while the Archimedean Newton polygon on the right has
exactly 3 lower edges (with horizontal lengths 1, 1, and 3). ¢
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Theorem 2.3. Following the notation above, the number of roots of f in C, of valuation
v (counting multiplicity) is exactly the horizontal length of the face of Newt,(f) with
inner normal (v,1). Furthermore, if Newto (f) has a lower edge E with slope v, and no
other lower edges with slope in the open interval (v —log3,v + log3), then the number
of roots ¢ € C of f with log|¢| € (v —log3,v + log3), counting multiplicity, is exactly
AME). 1

The first portion of Theorem 2.3 goes back to work of Dumas around 1906 [26], while the
second portion is an immediate consequence of [4, Thm. 1.5] (with an important precursor
by Ostrowski around 1940 [43]). The set of slopes of the lower edges of Newt,(f) (or of
Newtoo(f)) is an example of a tropical variety [4].

We will also use the following version of Hensel’s famous criterion for the rapid con-
vergence of Newton’s method over C,:

Hensel’s Lemma. (See, e.g., [22, Thm. 4.1 & Inequality (5.7)].) Suppose p is prime, f €
Z[Qﬂf ] > 17 C S Zp, ! = Ordp f’(é') < 00, and f(C) =0 mod p25+j‘ Let CI — C* J{/((CC))
Then f(C/) =0 mod p2€+2j7 Ol"dp f/(C/) ={, and C — C/ mod pf+2j. ]

2.2. Separating roots of binomials

When f € Zz] is a binomial, all of its roots in C are multiples of roots of unity
that are evenly spaced on a circle. The same turns out to be true over C,, but the root
spacing then depends more subtly on p and much less on the degree. For convenience,
we will sometimes write | - |, instead of | - | for the standard norm on C. Rather than
stating lower bounds on |(; — (2|, we will instead state upper bounds on |log |1 — alpl:
the latter clearly includes both a lower and upper bound on [(; — (2|p. In summary, we
have the following:

Proposition 2.4. Suppose f(x) = c1 + cox? € Z[x], d > 2, c1co # 0, and |cy), |co| < H.
Then for any distinct roots (1,02 € C of f, we have |log|(1 — (|| < log(d) + élog H.
Also, for any distinct roots (1,(2 € C, of f, we have that |log|(1 — Ca|p| is at most
élogH or fff + %log H, according as d > p°*%» ¢ or d = p°*d»d > p.

Put another way, if one fixes H > 1 and the prime p, and lets d — 0o, then the minimal
root distance tends to 0 in the Archimedean case. However, in the non-Archimedean case,
the minimal root distance is never less than W (> 55).

Proof of Proposition 2.4. The case p = oo follows from an estimate for the distance
between the vertices of a regular d-gon. In particular, the minimal spacing between dis-
tinct complex roots can easily be expressed explicitly as |c; /co|'/?/2(1 — cos 27, which

-1/d

is clearly bounded from below by H \/2(1 = cos 27). From the elementary inequality

1—cosx > 2?2 (% - Z—;) we easily get |2 log (1 — cos &F )‘ < log(d) — 3 log ( T — _) for
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all d > 6. Observing that | log(1 — cos ZF)| < log?2 for d € {2,...,5} we get our stated
bound via the Triangle Inequality applied to ‘log (H‘l/‘ﬂ /2(1 — cos 2—”)) ‘

The case of prime p follows easily from the Ultrametric Inequality and classical facts
on the spacing of p-adic roots of unity (see, e.g., [49, Cor. 1, Pg. 105, Sec. 4.3 & Thm.
Pg. 107, Sec. 4.4]). In particular, when ged(d, p—1) = 1, distinct dth roots of unity in C,,
are all at unit distance. At the opposite extreme of d = p for j > 1, the set of distances

! }So

1 1
pl/=1 p1/pI(p=1)7 """ /I~ 1(p-1) [~

between distinct dth roots of unity is exactly

the minimum distance is 1/ p'/ =1 for d a non-trivial pth power. In complete generality,
we see that there are distinct dth roots of unity at distance 1 if and only if d is divisible
by a prime other than p. Observing that \xl/d|p = pfiordﬂ and ord, H < log, H for
r € C; and H € N, we then see that |log |H*1/4|,| < Llog H and our bound follows
from the multiplicativity of norms. M

2.5. Characterizing roots of binomials over Qj

Counting roots of binomials over Q,, is more involved than counting their roots over
R, but is still quite efficiently doable. The first step is reducing the problem to Z/(p*)
for k linear in the bit-size of the degree of the binomial.

Lemma 2.5. Suppose p is an odd prime and f(x) := c1 + cox?® € Z]x] with |c1, |c2| < H,
c1c2 # 0, and £ := ord, d. Then the number of roots of f in Q, is either 0 or ged(d,p—1).
In particular, f has roots in Q, if and only if both of the following conditions hold:

(1) d|ordp(ci/ca) and

20+1 .

p*(p—1)/ ged(d,p—1)
) =1 mod p

(2) _C_lpordp(CQ/Cl)
C2

Lemma 2.5 is classical and follows from basic group theory (the fact that the multiplica-
tive group (Z/(p*))* is cyclic, of order p*~!(p — 1), for p odd) and Hensel’s Lemma.
Recall that the only roots of unity in Q2 are {£1} (see, e.g., [49]). The following
lemma is then a simple consequence of the multiplicative group (Z/(2%))* being exactly
3

the product {£1} x {1, 5,...,5% % mod 2’“} (having cardinality 2¥~!) when k > 3 (see,
e.g., [7, Thm. 5.6.2, pg. 109]), and Hensel’s Lemma.

Lemma 2.6. Suppose f(z) := c¢1 + cox? € Z[x] with |c1|,|c2| < H, and cico # 0. Then
the number of roots of the binomial f in Qo is either 0 or ged(d,2). In particular, if
¢ := ordad and u := orda(ca/c1), then f has roots in Qs if and only if both of the
following conditions hold: (1) d|u and (2) either (i) d is odd or (ii) both £:2* = —1 mod

£—1

8 and (—5—;2“) =1 mod 22+, m
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2.4. Bit complexity basics and counting roots of binomials

The following bit-complexity estimates for finite ring arithmetic will be fundamental
for our main algorithmic results, and follow directly from the development of [60, Ch. 4
& 11] (particularly [60, Cor. 11.13, pg. 327]) assuming one uses the recent fast integer
multiplication algorithm of Harvey and van der Hoeven [32]. See also [58] for an excellent
exposition on most of the bounds below. We use log* z to denote the minimal k such
that k compositions of log applied to z yield a real number < 1.

Theorem 2.7. For any prime p € N and j,m,n € N, we have the following bit-complexity
bounds (in the Turing model) involving A,a,b,c € N with A,a,b < 2" —1, A > 271,
c < 2™ —1 with m = O(logn), r,s € {0,...,p7 — 1} with ptr, and f,g € Fy[z] both
having degree <d.:

Operation Best Current O-bound (as of December 2021)
a+b O(n)

a-b O(nlogn)

a mod b O(nlogn)

A mod ¢ O(nm) -
75 mod p’ O(jlog(p) log(j log p))

1/r mod p? O(j log(p) log?(j log p))

r* mod p’ O(42 log®(p) log(j log p))

fg O(dlog(p) log(dlog(p))ﬁlk’g*(dlogp))

ged(f, 9) O(dlog(p) log* (d) log(log d) log log p)

We note that the penultimate bound comes directly from [31]. The very last bound is
actually a simple combination of the Half-gcd algorithm from [60, Thm. 11.1, Ch. 11]
with the fast polynomial multiplication algorithm from [17], and can likely be improved
slightly via the techniques of [31].

Corollary 2.8. Following the notation of Lemmata 2.5 and 2.6, one can count exactly the
number of roots of f in Qp in time 10g2+°(1)(de). Furthermore, for any root ¢ € Qp
there is anxg € Z / (p***1) that is a root of the mod p** 1 reduction ofporﬁﬁ+ﬁzd,
and with zy = p°rde(c2/c1)/dy e Q an approzimate root of f with associated true root

C. In particular, the logarithmic height of zy is O (log (le/d)).

Proof: (Case of odd p). First note that (Z/p**1)* is cyclic and Lemma 2.5 tells us that

we can reduce demdmg the feasibility of ¢; +cox? = 0 over Q,, to checking d | ord,(c1/ca)
and (—cy /)" 21 mod p2+! with r = p'(p— 1)/ ged(d,p —1).

The p-adic valuation can be computed easily by bisection, ultimately resulting
in O(log H) divisions involving integers with O(max{logp,log H}) = O(log(pH))
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bits. Checking divisibility by d involves dividing an integer with O(loglog H) bits
by an integer with O(logd) bits. By Theorem 2.7 these initial steps take time
O(log(H)log(pH)loglog(pH)) + O(mlog m), where m = max{loglog H,logd}. By The-
orem 2.7, the th power can be computed in time O(£2 log?(p) log(£log p)). So our overall
complexity bound is

O(£*1og?(p) log(¢log p) + log(H) log(pH) log log(pH) + log(d) log log d).
Since £< log,, d our final bound becomes
O(log?(d) log(log d) + log(H)log(pH) log log(pH)).

A simple over-estimate then yields our stated complexity bound. The remainder of the
lemma then follows easily from Hensel’s Lemma and Proposition 2.4. H

(Case of p = 2) The proof is almost identical to the odd p case, save that we use
Lemma 2.6 in place of Lemma 2.5. In particular, the case ¢ = 0 remains unchanged.

As for the case ¢ > 1, the only change is an extra congruence condition (mod 8) to
check whether £12* is a square mod 22641 (see, e.g., [7, Ex. 38, pg. 192]). However, this
additional complexity is negligible compared to the other steps, so we are done. W

2.5. Trees and roots in Z/(p*) and Z,

Recall that for any field K, a root ( € K of f is degenerate if and only if f(¢) =
f'(¢) = 0. The p-adic analogue of bisecting an isolating interval containing a real root
is to approximate the next base-p digit of an approximate root in Q,. Shifting from
bisecting intervals to extracting digits is crucial since Q, is not an ordered field. We will
write f’ for the derivative of f and f( for the ith order derivative of f.

Definition 2.9. [39] For any f € Z[z] let f denote the mod p reduction of f. Assume f is
not identically 0. Then, for any degenerate root (y € {0,...,p — 1} of f, we then define

()
S(f7 CO) = minizo {z—}—ordpr—ECU)} o

Example 2.10. If f(z) = 2'® — 10z + 738 and p = 3 then f(z) = z(x — 1)° mod 3, 1 is a
degenerate root of f in Fs, and one can check that s(f,1) = 4. Note that s(f,1) here is
strictly less than 9, which is the multiplicity of the factor z — 1 of f. o

The quantity s(f,¢p), combined with our definition below, will enable us to reduce
finding the base-p digits of a root of f in Z/(p*) to solving several simpler equations
over Z/(p).

Definition 2.11. [39] Fixing k € N, for ¢ > 1, let us inductively define a set T, ,(f) of
pairs (fi—1,u,ki—1,u) € Z[z] x N: We set (fo,0,k0,0) := (f, k). Then for any i > 1 with
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(ficipskic1,.) € Tpi(f), and any degenerate root (;—1 € Fp, of fi,l’# with s;_1 :=
S(ficipGio1) € {2,... ki1, — 1}, we define ¢ == p + Q,lpi’l,kM = ki—1 — Si—1,
ficlz) = p*5<fi*1’w@*1>f¢71,u(@,1 +pz) mod pFi< and then include append (f; ¢, ki ¢)
to Tpr(f). ©

Example 2.12. Continuing Example 2.10, f; 1 has degree 10, and 10 monomial terms,
but fl’l(x) = 23 + 222 which has roots 0 and 1. Observe in particular that f has roots
1+0-3and 141-3in Z/(3?), and the degenerate root 1 of f in Z/(3) can not be lifted
to either of these roots via the classical Hensel’s Lemma. ¢

The collection of pairs (f;c,k; ) admits a tree structure that will give us a way to
extend Hensel lifting to degenerate roots.

Definition 2.13. [39] The set 7, »(f) naturally admits the structure of a labeled, rooted,
directed tree as follows”

(i) We set fo.o == f, koo := k, and let (fo,0,k0,0) be the label of the root node of
Tor(f).
(ii) The non-root nodes of 7, x(f) are labeled by the (f; ¢, ki¢) € Tpr(f) with ¢ > 1.
(ili) There is an edge from node (fi—1,u, ki—1,,) to node (fi ¢, ki¢) if and only if there is
a degenerate root (;_1 € F;, of fi_l,u with s(fi—1,,,Ci-1) € {2,...,ki—1,, — 1} and
C=p+Gap~teZ/(p). o

We call each f; ¢ with (fi¢, ki) € Tpr(f) a nodal polynomial of Ty (f). It is in fact
possible to list all the roots of f in Z/(p*) from the data contained T, x(f) [39,27]. We
will ultimately use 7, x(f), with k determined by a root separation/valuation condition
(see Corollary 6.6 below), to efficiently count the roots of f in Z,, and then in Q, by
rescaling.

Example 2.14. 7, (z?) is a chain of length L%J for any p, k. ©

Example 2.15. Let f(x) = 1 — 2397, Then Ti7x(f), for any k > 1, consists of a single
node, labeled (1 — 2397 k), since f has no degenerate roots in Fi7. In particular, f has
1 as its only root in Q7. ¢

Example 2.16. Let f(z) = 1 — 230, Then, when k € {1,2}, the tree Ti7(f) consists
of a single root node, labeled (1 — 2319 k). However, when k > 3, the tree Ti7,(f) has
depth 1, and consists of the aforementioned root node and exactly 4 child nodes, labeled
(fi,cor k —2) where the fl,Co are, respectively, 14z, 12x + 10, 5z + 15, and 3z + 3. Note
that f has exactly 4 roots ¢y € Fi7 (1, 4, 13, and 16), each of which is degenerate, and

2 This definition differs slightly from the original in [39]: the edges are unlabeled here.
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the roots (3 € Fy7 of the fl,(o encode the “next” base-17 digits (0, 2, 14, and 16) of the
roots of f in Z/(17?). In particular, the roots of f in Q7 are 1+0-17+--+, 44217+,
134 14-17+---,and 16 + 16 - 17+ - - - and are all non-degenerate. <

Nodal polynomials — originally defined for efficient root counting over Z/(p*) — thus
encode individual base-p digits of roots of f in Z,. Their degree also decays in a manner
depending on root multiplicity.

Lemma 2.17. [39, Lem. 2.2 & 3.6] Suppose f € Z[x]\pZ[z] has degree d, foo:= f,i>1,
pi=Co4 -+ p""2¢_y is a root of the mod p'~' reduction of f, ¢ == pu+p'~1¢_1, the
pairs (fi—1 s ki—1.u) and (ficr, kicr) both lie in Tp(f), and (;—1 has multiplicity m as
a root of fi,L# inIF,. Then:

(1) Tp(f) has depth <|(k—1)/2] and at most |d/2]| nodes at depth i > 1.

(2) deg ficr < s(fic1Gim1) < min{k; 1, —1,m}. '

(3) fic(x)=p s f(Cot+Cipt- - +Cim1p' t+p'x) where s := Z;;E S(ficott; 1pi-1+Gs)
> 2i.

(4) f(Go+Gp+ -+ Gap'™") = 0 mod p*.

(5) f'(Go+Cp+---+ Ci_1p1_1) =0modp". N

Note that Assertion (1) of Lemma 2.17 gives us an upper bound on the depth of 7, 1 (f)
as a function of k. We will also need to consider lower bounds on k that guarantee that
Tp.1:(f) has enough depth to be useful for approximating roots in Z,,.

Let n,(f) denote the number of non-degenerate roots in F,, of the mod p reduction of
f. We will need to show that the roots of f in Z, can be embedded into a collection of
series indexed by the non-degenerate roots of the nodal polynomials of 7, x(f) in F, for
k sufficiently large.

Lemma 2.18. Suppose f € Z[x], ¢ = Z;io ¢ip’ € Zy is a non-degenerate root of f, and
let D be the mazimum of ord,(¢ — &) over all distinct non-degenerate roots (,§ € Z,
of f (if f has at least 2 non-degenerate roots in Z,) or 0 (if f has 1 or fewer non-
degenerate roots in Z,). Then for all k sufficiently large, T, x(f) has a nodal polynomial
fic such that j < |(k—1)/2] and ¢’ + p’¢; = ¢ mod p’™' for some non-degenerate
root (; of ]2@. Furthermore, for k sufficiently large we also have that T, ,(f) has depth
> D, the set {(g,j) € Tpe(f) | np(g) > 0} remains fixed and finite, and f has ezxactly

> n,(g) non-degenerate roots in Z,.
(9:)€Tp.x(f)

Proof. First note that f((o + -+ + ¢;p*) = 0 mod p**! for all i > 0. By Definitions 2.9
and 2.13, so := s(f, (o) € {1,...,m}, where m is the multiplicity of ¢y as a root of f
(thanks to Lemma 2.17). Should m = 1 then sy = 1, leaving foo = f as our desired
nodal polynomial (with {p, a non-degenerate root of fo,o) for all £k > 1. Otherwise,
so > 2 (by the definition of s(-,-)), in which case k > 1+ so = T, x(f) will have
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fieo(@) = p~% f(Co + px) as a nodal polynomial. However, we need to check if ¢; is a
non-degenerate root for JELCo or not.

Proceeding inductively, note that if i > 1, ¢’ := (o + CGp+ -+ + G_1p* ™', 85 :=
s(ficr,Gi), and 8" := so + -+ + s;, then s; € {1,...,m} where m is now the multiplicity
of (; as a root of fi,C“ As before, m = 1 implies that f; ¢ is our desired nodal polynomial
(with ¢; a non-degenerate root of fm/) for all £ > 1+ s’. Otherwise, s; > 2, in which
case k > 145" = T, (f) will have f;11 ¢ ppic,(z) = p~* f(' + ¢ +p™H'x) as a nodal
polynomial, and then we check if ;1 is a non-degenerate root for fi+1’</+p'i<i or not.

Our induction must end, in finitely many steps, with our desired f; ¢/. To see why, first
observe that nodal polynomials always have integer coefficients and, if d’ := ord, f'(¢),
then d < oo since ¢ is a non-degenerate root and thus f/(¢) = ap? mod p?+! for
some o € Z, \ pZ,. So if our induction reaches f; ¢ with i > d’, then ¢/ = (o +--- +
p? "y = for o (Car) = ap?@ —(sot+sa1) We thus obtain 2d’ > sg + - + Sar—1
and, for all i € N with f; o belonging to a node of T, (f) with a child, the definition of
s; tells us that s; > 2. Since ord,, f/(Co+- - +p'¢;) = d for all i > d’, we must eventually
encounter a j > d’ with s; = 1, meaning no child for f; . So our induction ends with a
nodal polynomial f; with no degenerate roots. Moreover, we must have fj,gf(g‘j) =0
mod p (by definition of ¢ and f; (/) and thus ¢; must be a non-degenerate root of ijg/.
Also, our upper bound on j is immediate from Lemma 2.17.

To prove that 7T, r(f) has depth for D for k large enough, note that an f with no
non-degenerate roots in Z, can not have a tree 7, ;(f) having nodal polynomials with
non-degenerate roots in I,,. This is because of the equality

fic(@)=p 5 f(lo+Cp+-+Go1p' ™' +p'a)

from Lemma 2.17: fi,(’ having a non-degenerate root in I, would imply by Hensel’s
Lemma that f has a root ¢ € Z, with ord, f'({) < co. So in this case, the stated set
of (g,7) is empty for all k¥ > 1 and the stated sum is 0. In particular, 7, ,(f) always at
least has its root node (by definition) and thus D > 0.

Similarly, an f with just one non-degenerate root in Z, can not have a tree 7T, 1 (f)
having two distinct nodal polynomials having non-degenerate roots mod p. (Likewise,
Tp.x(f) having a single nodal polynomial with two distinct non-degenerate roots mod p
is impossible.) So in this case, the stated set of (g, j) has cardinality 1 (with n,(g) =1
for exactly one pair (g, j)) for all k as specified in the first assertion of our lemma, which
we’ve already proved. So the remaining assertions follow.

So let us now assume f has at least 2 distinct non-degenerate roots in Z,. There
are clearly no more than deg f such roots, so our first assertion implies that, for k
sufficiently large, every non-degenerate root ( € Z, of f has an associated node in
Tp.i(f) encoding ¢, ie., T, ,(f) has depth at least D for k sufficiently large. Clearly
then, the set {(g,j) € Tpx(f) | np(g) > 0} is finite and will not change as k increases:
This is because the set can not lose elements as k increases, and any new element would
introduce a new non-degenerate root for f via Hensel’s Lemma.
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So we now only need to prove that the stated sum counts roots correctly. Toward this
end, note by construction that every non-degenerate root ¢ € Z, of f is associated to a
unique sequence of the form ((p,...,¢) € F*! with (o, ..., {1 all degenerate roots for
previously defined nodal polynomials, but with (; a non-degenerate root of fmu So the
number of non-degenerate roots of f in Z, is no greater than the stated sum.

To conclude, note that Hensel’s Lemma (and our earlier observation that nodal poly-
nomials are rescaled shifts of f) implies that each non-degenerate root in F, of a nodal
polynomial lifts to a unique root of f in Z,. Furthermore, since the derivatives of nodal
polynomials are rescaled shifts of f’, each such lifted root is a non-degenerate root. So
the number of non-degenerate roots of f in Z,, is at least as large as the stated sum, and
we are done. W

2.6. Trees and extracting digits of radicals

We prove the following crucial lemma in Remark 6.5 of Section 6, but state it now so
can apply it in our first algorithm for solving binomials:

Lemma 2.19. Suppose f(x) = c¢1 + cox? € Z[x] with cica # 0 mod p and £ := ord, d.
Then every non-root nodal polynomial f; ¢ of Tp.i(f) satisfies deg fi,g < 2 ordeg fM <1,
according as p = 2 or p > 3. In particular, f({o) = 0 mod p for some (o € {0,...,p —
1} =s(f,¢)<¢+1. N

Remark 2.20. It is a simple exercise to prove, from Lemma 2.19 and Definition 2.13, that
Tp.x(f) always has depth <1 for f € Z[z] a binomial with f(0) # 0 mod p. The family
of examples 27° — 1 (for any k > 4) shows that this depth can be attained for any prime

p. ©

With our tree-based encoding of p-adic roots in place, we can now prove that it is
easy to find approximate roots in Q, for binomials when p is fixed.

Theorem 2.21. Suppose f € Z[x] is a binomial of degree d with coefficients of absolute

value at most H, f(0) # 0, v = ged(d, max{2,p—1}), and {¢1,...,{,} is the set of roots
of f in Qp. Then in time

(% +v+log d> log" ™M) (dp) + log?™M) (pH),

we can find, for each j € {1,...,7}, a z((Jj) € Q of logarithmic height O(log (dHl/d))
that is an approrimate root with associated true root (;.

An algorithm that proves Theorem 2.21 when p is odd is outlined below.
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Algorithm 2.22. (Solving binomial equations over Qg for odd p)

Input. An odd prime p and c1,¢2,d € Z \ {0} with |¢;| < H for all 4.

Output. A true declaration that f(z):=c1 +c22? has no roots in Qp, or 21, ...,2y € Q with
logarithmic height O (log <dHl/d)> such that v = ged(d,p — 1), 2; is an approximate

root with associated true root (; € Q, for all j, and the (; are pair-wise distinct.
Description.
1: If ord, c1 # ord, c2 mod d then say "No roots in Q,!" and STOP.
2: Let £ := ord, d and replace f with f(z) := ¢} + chz? where ¢} := —dee; for all i.

3. If (—%)p[(p_l)gl mod p***! then say "No roots in Qp!" and STOP.

4:Let 6 := 1. If d < —1 then set § := —1 and respectively replace d by |d| and f(z) by z¢f(1/z).
5: Let g be any generator for F}, r:= (d/) ™" mod p— 1, ¢ := (—c} /ch)" mod p, and h(z) := a7 — ¢’
6: Find a root =1 € {go, . ,gpv;l_l of h via brute-force search.

7:Forall j € {2,...,7} let z; == 2;_19g®"~Y/7 mod p.

8: If £> 1 then, for each j € {1,...,7}, replace z; by z; — f,(&’]))//il €Z/(p?).

9: Output {(wlpordf’(cl/CQ)/d)‘s, ceey (z.ypordf‘(cl/CQ)/d)‘s}.

Remark 2.23. Step 6 above is designed for simplicity rather than practicality, and can

be sped up considerably if one avails to more sophisticated algorithms with complexity

quasi-linear in ged(d,p — 1) + log(pd): See, e.g., [1,18,21]. ©

The following algorithm proves the p = 2 case of Theorem 2.21.

Algorithm 2.24. (Solving binomial equations over Q3 )

Input. c1,c2,d € Z \ {0} with |¢;| < H for all 4.

Output. A true declaration that f(z):=c1 +c22? has no roots in Qa, or z1, ..., 2y € Q with
logarithmic height O <log (dH v d)) such that v = ged(d, 2), z; is an approximate
root of f with associated true root (; € Q, for all j, and the (; are pair-wise distinct.

Description.

1: If orda ¢1 # ordz c2 mod d then say "No roots in Q,!" and STOP.

2: Let £ := ordy d and replace f with f(z) := ¢} + cha? where ¢} := soage; for all 4.
-1

If ¢} # —ch mod 8 or (—2—}) #1 mod 22*! then say "No roots in Qo!" and STOP.
2

:Let §:= 1. If d < —1 then set § := —1 and respectively replace d by |d| and f(z) by z¢f(1/z).
: Let 1 := 1. If v = 1 then GOTO Step 7.

: Let 29 := 3.

: Output {x120rd2(61/02)/d’ L 7m’y20rd2(c1/cQ)/d}.

N O U W

Remark 2.25. Our correctness proof below shows that, for binomials, knowing the 2 most
significant base-p digits of a root in Q, is enough to yield an approximate root in the

sense of Smale, independent of d and H. Note, however, that each subsequent application

of Newton’s method to refine an approximation has complexity depending on log(dH)
as well as logp. ©
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Remark 2.26. We point out that the approximate roots output by our two algorithms
above require the use of Newton iteration applied to fi ¢, (instead of f) when p|d. This
is clarified in our correctness proof below. <

Proof of Theorem 2.21. It clearly suffices to prove the correctness of Algorithms 2.22
and 2.24, and then analyze their complexity.

Correctness: (Case of odd p) Theorem 2.3 implies that Step 1 merely checks whether the
valuations of the roots of f in C in fact lie in Z, which is necessary for f to have roots
in Q. Steps 2 and 4 allow us to reduce our search for approximate roots to (Z)(p*F1))*
and assume positive degree d.

Lemma 2.5 implies that Step 3 simply check that the coset of roots of f in C} intersects
Zy.

Step 5 is the application of an automorphism of F; so we can reduce the degree of
our binomial to v, which is possibly much smaller than both p — 1 and d.

Steps 6-7 then clearly find the correct coset of ) that makes f vanish mod p. In
particular, by Hensel’s Lemma, Step 9 clearly gives the correct output if £ = 0. (Recall
that we have replaced each coefficient ¢; of f with ¢}.)

If ¢ > 1 then let (o be any z; from Step 8. We then have deg fLCo < 1 thanks to
Lemma 2.19. Furthermore, Definition 2.11 tells us that the unique root ¢; € F,, of fLCO
is exactly the next base-p digit of a unique root ¢ € Z,, of f with { = (y. Also, deg fLCO
must be 1 (for otherwise f would not vanish on its coset of roots in F,) and s(f, o) > 2
since £ > 1 forces (y to be a degenerate root of f. Lemma 2.17 then tells us that Hensel’s
Lemma — applied to f1 ¢, (z) = p~*(/%0) f({y+pa) and start point ¢; € Z/(p) — implies
that (o + (1p yields Newton iterates rapidly converging to a true root ¢ € Z,. So Step
8 in fact refines 1 to the mod p? quantity (o + (1p, and thus Steps 7-9 indeed give us
suitable approximants in Q to all the roots of f in Q,. So our algorithm is correct.

Note also that the outputs, being integers in {0,...,p? — 1} rescaled by a factor of
pordelei/c2)/d (or possibly the reciprocals of such quantities), clearly each have bit-length

O(10g(p) + 52l 10g p) = O(l0g(p) + 5™ ) = O(log(pH'/%)). W

(Case of p = 2) The proof is almost the same as the Correctness proof for odd p,
save that we respectively replace Lemma 2.5 and Algorithm 2.22 by Lemma 2.6 and
Algorithm 2.24. In particular, Steps 58 of Algorithm 2.22 collapse into Steps 5—6 of
Algorithm 2.24.

So we must explain Steps 5—6 here: These steps give us the mod 4 reductions of the ~y
many roots of f in Zs, since Steps 5 and 6 are executed only after Steps 1 and 3 certify
that f indeed has roots in Zs. (Remember that v € {1,2} for p = 2.) Furthermore,
Hensel’s Lemma implies that the root 1 of f lifts to the sole root of f in Zs when ¢ = 0.
So the case ¢ = 0 is done.

If £ > 1 then there is one more complication: The nodal polynomial f1,1 is now
quadratic. This is because Lemma 2.19 tells us that deg fl,l < 2. Furthermore, ¢ > 1
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implies that v = 2 (assuming there are roots in Zs and the algorithm hasn’t terminated
already) and thus f must have exactly 2 roots in Zs. Lemma 2.18 then tells us that
deg f1 1 <1 would imply f has <1 root in Zs. Therefore, f1 1 must be quadratic.

Furthermore, f1 1 must also have 2 distinct roots: This is because f1 1 equal to z2
or 1+ 22 = (1+2)? mod 2 would imply that no nodal polynomial fzﬁg, for ¢ > 1, has
a non-degenerate root. So, again by Lemma 2.18, we would not attain 2 roots in Zs.
(Similarly, it is impossible for fl,l to be irreducible.) Therefore, the mod 4 reductions of
the two roots of f in Z5 must be 1 and 3. So Steps 56 are indeed correct.

Lemma 2.17 then tells us that Hensel’s Lemma — applied to f; 1(z) = 275(/'1 f(1+422)
and egther start point 0 or 1 in Z/(2) — implies that 14+0-2 and 1+ 1-2 yield sequences
of iterates rapidly converging to true roots in Zs. So Steps 5-7 indeed give us suitable
approximants in Q to all the roots of f in Q2, and our algorithm is correct.

Note also that the outputs, being integers in {1, 3} rescaled by a factor of gorda(e1/e2)/d
(or possibly the reciprocals of such quantities), clearly each have bit-length

O(estallog2) — O(5) = O(log(H/)). ™
Complexity Analysis: (Case of odd p) Via Corollary 2.8, [56], and Theorem 2.7, it is
easily checked that Steps 1-5 of Algorithm 2.22 have respective complexity bounds
1. O(log(H) log(pH) loglog(pH)) + O(log(d) log log d)
2. O(log(d) log(dp) log log(dp))
3. O(log?(d) log log d)
4. (time negligible compared to the preceding quantities)
5. O(p"/*1og(p) log log(p)) + O(log?(p) log log(p))
These add up to time no worse than

O(p"/*log(p) loglog(p) + log(H) log(pH ) loglog(pH) + log(d) log(dp) log log(dp))

so far. Steps 6-7 (whose complexity dominates the complexity of Steps 6-9), involve

p,y;l — 1 multiplications in F,, and v — 1 multiplications in Z/(p***). Since £logp < logd,
this takes time no worse than O(% log(p) loglog(p) + log(d) log log d), which is bounded

from above by O((% +7) log(dp) log log(dp)). Note also that % +7v > 2,/p by the
Arithmetic-Geometric Inequality. So our final complexity bound is bounded from above
by

O < (g + v+ log d) log(dp) log log(dp) + log(H ) log(pH) log log(pH)> .

(Case of p = 2) We simply use the same techniques as for Algorithm 2.22, save for Steps
5-8 there being collapsed into Steps 5—6 in Algorithm 2.24. H

3. Proving Theorem 1.6: trinomial roots never get too close

Let us first recall the following version of Yu’s Theorem:
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Theorem 3.1. /65, Pg. 190] Suppose p is any prime, n > 2, aq,...,0, € Q with a; =

r;/8; a reduced fraction for each i, and by, ..., b, € Z are not all zero. Then al{I ool £

brn

o — 1 has p-adic valuation strictly less than

1 implies that ozlil Ry

5 = 1
log(2) logp(2n)no/2(256@2)n+1p log,(B) H max {log |ri],log | s, 1662} ,
i=1

where B := max{|b1], ..., |bn|,3}. In particular, log(2)256e* < 1312, 256e? < 1892, and
oz < 0.0085. W

We will prove the square-free case of Theorem 1.6 here, postponing the proof of the
non-square-free case to Section 5.1. To prove that two distinct roots (;,(> € C, of a
square-free trinomial f can not be too close, we will prove that f’ has a root 7 € C,, with
three special properties: (i) |f(7)|, is not too small, (i) |¢1 — G|, > p~ /P V|¢G — 7],
and (iii) |¢1 — 7], is not too small. Step (i) is where we avail to Yu’s Theorem, so let us
now quantify our approach.

Proposition 3.2. Suppose f(x) = ¢1 + cox® + c32® € Z[z] is a trinomial of degree
d = a3z > ay > 1, with all its coefficients having absolute value at most H, and 7 € C,, is
a root of f'. Then 7#37%2 = —222 gnd f(1) = ¢y + coT*? (1 - “—2). [ |

ascs as

Lemma 3.3. Following the notation above, assume further that f is square-free. Then
£(7)],, > exp[—O(plog,(d) log?(dH))].

Proof. First note that if f is square-free then f has no repeated factors, and thus no
degenerate roots in Cp,. So f(7) # 0. Proposition 3.2 we then obtain that ord, f(7) is

ordy(c1 + 27 (1 — az/ag))

_ _ az/(as—az)
= ordp(c1) + ord,(—1) + ord, < (a3a3cf2)c2 <Z§zz) - 1> . (1)

Clearly, ord,c; < lﬁ)gglg and ord,(—1) = 0. To bound the third summand on the

as/(az—az)
right-hand side of Equality (1) above, let T := —(¢2=a2)c2 (—M) M and observe

azer ascs
that 7%~ —1 = [[}2,"(T — «’) for w € C, a primitive (a3 — az)-th root of unity.
In particular, 79379 # 1 since f(rw/) # 0 for all j € {1,...,a3 — as}, thanks to
Proposition 3.2 and f not having any degenerate roots. So then M := ord,(T*~*>—1) =
Y52 " ordy (T — w?) < oo, with the (a3 — ag)-th term of the sum exactly ord,(T —
w*~%) = ord,(T — 1), i.e., the third summand from Equality (1).

Suppose ord, T < 0. Then for each i € {1,...,a3 — az} we have ord,(T — w/) =

ord, T'<0, since roots of unity always have p-adic valuation 0. We must then have
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- log,,(dH)

ord,, (1) = ordy(c1) + ord, (T — w® ) 1

(by Theorem 2.3) and we obtain our lemma.
On the other hand, should ord, T' > 0, we get ord, (T — w’) > jord,(w) = 0, for each
j. So M > ord,(T — 1) and we’ll be done if we find a sufficiently good upper bound on
M.
By luck, M is boundable directly from Yu’s Theorem (Theorem 3.1 here) upon setting
_ (as—a2)02 _ __a2¢c2 — _ — .
Tane o (2 —a, b1 = a3z — as, and by = as. In particular, we can

assume |r;,|s;| < dH for i € {1,2} and B = max{d, 3}, and move the log p factors in the
denominator so that M < log(2)256¢? log(4)2%/2(256¢2)?plog max{d, 3} (max{logp(dH),

n=2 a =

m})% For d = 2 we get f(r) = 46713(46103 — ¢2), which is a rational number
that this an integer of absolute value at most H? + 4H divided by an integer of abso-
lute value at most 4H. Such a rational number clearly has valuation no greater than
log,(H?+4H) = O(log, H) and thus | f(7)|, > e~OUog ) when d = 2. Since d > 2 for an
arbitrary trinomial, and H > 1, we then obtain M < 36791093348p log(d) logi(dH) =
O(plog(d) logi(dH)). In other words, the third summand from (1) is bounded from
above by the last O-bound, and thus ord, f(7) = O(M) since &2 — O(M). Since

logp
|f(T)]p, = e~ lee@ordn f(7) e are done. M

The Ultrametric Inequality directly yields the following:
Proposition 3.4. If f € Z[z| and t € C, then [t|, <1 == [f'(¥)|,<1. W

Below is a rescaled p-adic version of Rolle’s Theorem, based on [49, Sec. 2.4, Thm.,
Pg. 316].

Theorem 3.5. Let f € C,[z] have two distinct roots (1, (2 € Cp with |1 — G|, = cpt/P=1)
for some ¢ > 0. Then f' has a root 7 € C,, with |(1 — T|p, |G —Tlp <c. W

We can now prove part of one of our main results.

Proof of the square-free case of Theorem 1.6. Note that (; # 0 = |ord, ¢;| < log, H
thanks to Theorem 2.3. So then ord, ({1 — ¢2) > — log,, H for any pair of distinct roots
(1,62 € Cp of f and, if (1¢2 = 0, we also have ord,(¢1 — ¢2) < log, H. So log H >
log [¢1 — Ca|p and, if (3¢ = 0 then we also have log|¢i — ¢|, > —log H. So we may
assume (1Cy # 0 # £(0).

For convenience, let us abbreviate the first (larger) O-bound stated in our theorem
by O(M’).

Case 1: (Both roots are small: |(1],,, (2], < 1.)
Suppose [¢1 — (|, > p~2/(P=1) (= ¢=2108(P)/(P=1)) Since 2log(p)/(p — 1) = O(M’) we
are done.
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Now assume that |3 — C2|p < p~2/(=1) Then by Theorem 3.5 f’ has a root 7 € C,
with [¢; — 7], < pt/ P — Gal, < p~ /(=1 for all 4 € {1,2}. Since f is square-free,
Lemma 3.3 implies that |f(7)], > e~ OM')  Applying Theorem 3.5 to

f(r) = f(&)  7f(G) = Gf(r)

g(z) = f(z) — — x —

(which vanishes at 7 and (1), we then see that there is a y € C,, with [u — (1], < 1 such

that ¢ (1) = 0, i.e., £(7) = F(r)— () = F/()(r —C1). Note that |y, < 1 since [, > 1
would imply that |u|, > |(1]p, and thus |p — (1], = |plp > 1, giving us a contradiction.

As f(7) # 0 we get f'(n) # 0 and 7 # (1. From Proposition 3.4 we have |f'(u)[, < 1,

f(r - ’ _ _
so then |7 — (i, = % > e 9 We thus get ¢ —Gl, 2 p 1/p=1) T =G, >
cTOWMN=25E _ —oM') @

Case 2: (Both roots are large: |(1,,,|¢2], > 1.) Simply observe that 1/¢; and 1/(, are
roots of the reciprocal polynomial f*(x) := zde8/ f (%) In particular, we can apply Case

Ll < 1. We then obtain |+ — L| > e~ OM') Hence

1 to the trinomial f* since |+
¢ » »

p G G &
G = Gl, =G, ¢, g_ll_ép_ é—épze—()““. L

Case 3: (Only one root has norm > 1.)
Without loss of generality, we may assume that |(1|, < 1 < |(2|p. We then simply note

that, as [C1], # |C2],, we have |(1 — (2], = max {|C1|p ) |C2|p} > 1 and we are done. W
4. Proving Theorem 1.5: tetranomial roots can get too close

4.1. The case of prime p

Let g(z) = 2 f(a+p/ ) = (o +p ) =% (B2~ 1) = a2,
Then g has the same roots as fq, ;, save for a “small” shift by p/~!. Rescaling, we
get G(z) = % = p=Dd=2] [ (pi=Dd/2+ig 4 pi=1yd _ p(i=Dd+2i32] =
Z?:O (?)p(j’l)(di/Q’i)Jrijxi — 22 =1—2% mod p¥i—1/2+1 which is square-free for odd
prime p. So if p is odd, then Hensel’s Lemma implies that there are roots ¢;,(2 € Z,, of
G such that ¢; =1 mod p?@—1/2+1 and ¢, = —1 mod pHd—1/2+1,

On the other hand, if p = 2, then, as j > 2, we have p#i—1/2+1 > 8 So, since
Gx) =1—-2%2 = (3 —12)(5 —z) mod 2%, we obtain that G is square-free in Zs[x].
Hensel’s Lemma then implies that there are roots (i, (2 € Z,, of G such that ¢; = 3 mod
pid=1)/2+1 and ¢y = 5 mod pi—1)/2+1

So, whether p is odd or even, we obtain two roots z1,z2 € Z, of G with |$1|p =
72|, = 1. For each i € {1,2}, y; = pl=1d/2+i 3, is then the corresponding root of g.
So (1 :=y1 +p' 7 and (2 := yo + p’ ! are two roots of f in Z, such that |(; — CGal, =
(1 + 1) = (32 +pj—1)’p — ly1 — pol, < max {\y1|p ) |y2|p} — p-=Dd/2—5 — p=dj),
|
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Remark 4.1. From our proof, we see that f4, ; has two roots of the form
G = pjfl _|_€ip(j71)d/2 + O(p1+(j—1)d/2)

with ¢ € {1,2} and {e1,e2} equal to {£1} or {3,5}, according as p is odd or even. In
particular, by direct evaluation, it is easily checked that ord,, f; , ;(¢;) = ordy(d) + (j —
1)(d — 1). In other words, we can need as many as (dlog H) of the most significant
base-p digits of a root of a tetranomial in order to use it as a start point for Newton
iteration. We will see in Section 5 that O, (log®(max{d, H})log(d)) base-p digits suffice
for trinomials. ¢

4.2. The case p = co

Shifting by 5-+, we get g(z) = fa1 @+ 2177) = (x4 2177)d — 2%p2 = 24(0—7) 4
dotd-10-3) g 4 ((g)gw—z)(l—j) _ 22]») 2?2 4 (4)20@-30-023 4 ... 4 2. We will see mo-
mentarily that, unlike Newto (f) (which has 3 lower edges), Newtoo(g) will have just 2
lower edges. (See the right-hand illustration in Example 2.2.) This will force (via Theo-
rem 2.3) the existence of two distinct roots of small norm for g, thus yielding two nearby
roots of f after undoing our earlier shift.

Toward this end, note that the three lowest order terms of g contribute the points
po = (0,d(j —1)log2), p1 := (1,(d—1)(j — 1)log2 — logd), and ps = (2,—log<4j —

d

M%)) as potential vertices of Newt(g). Observe that % < 0.059 for all
j >3 and d > 4, and thus p, is the only point of Newto,(f) with negative y-coordinate.
So po is a vertex of Newto(f), and all edges with vertices to the right of ps have
positive slope. Furthermore, the slopes of the line segments pop1 and pops are respectively
—(j — 1)log(2) — logd and a number less than —1 log(47 — 0.059) — 3d(j — 1) log 2.

Since 2971 < /49 — 0.059 and logd < %d(j —1)log?2 for all d > 4 and j > 3, we thus
see that the slope of pgps is more negative. So the leftmost lower edge of Newto,(g) has
vertices pg and ps. It is easily checked that the slope of this edge is less than —10.3,
which is in turn clearly < —2log3. So by Theorem 2.3, there are two roots z1, 29 of g
such that

1 . d ,
log|zi| < 5 { log <223 - (2>2(d2)(13)> —d(j — 1)10g2] .

These two roots thus satisfy |z;| = 2=4%). Now, for i € {1,2}, ¢ = 2z + 2'7 yields
roots of fy 1 ; with |1 — Co| = [z1 +2"77 — (22 + 2'77)[ < |21| + |20 < 279@). W

5. Valuation bounds from discriminants and repulsion from degeneracy

While we were able to prove a special case of our bound for the minimal root spacing
of trinomials, we will need to examine the roots in C; more carefully for trinomials that
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have degenerate roots in C;. We will see that the roots appear to repel more strongly in
the degenerate case, and a key tool to prove this is the trinomial discriminant.

Definition 5.1. [29] Suppose f(z) = ¢1 + cox® + c3z® € Z[z] is a trinomial with as >
as > 1, r:= ged(ag, a3), and a; := < for all 4. We then define the trinomial discriminant
to be

Awi(f) = a5°e* "2 c5? — a5 (a3 — ag) ™~ " (—cg)™. o

Up to a sign factor, our definition agrees with the definition of the {0, as, as}-discriminant
from [29, Ch. 9, pp. 274-275, Prop. 1.8] when gcd(asg, az) = 1. We will also need to recall
the following facts:

Lemma 5.2. [3, Lemma 40] Following the notation of Definition 5.1:

(1) If cics # 0 then Awi(f) # 0 <= f has no degenerate roots in Cp,. Furthermore,
ptecicsged(az, as) also implies the equivalence Atri(f) £ 0 mod p < f has node-

generate Toots in IF .
Gs—1 B -
(2) If Aui(f) # 0 then Awi(f) = (%) 11 F&) = (—1)aata—az) x
B £eCy, : f(£)=0
I1 (agco + azc3€®~2) where f € Z[z] is the unique polynomial satisfying
fe(cp : JF(QZO
f(x) = f(2") identically. M

Remark 5.3. The second sentence of Assertion (1) appears not to be well-known but does

follow easily from the development of [29, Ch. 9], upon observing that p { gcd(as, az) =
111
0 az as

the matrix [ } has rank 2. Should p| ged(az, as) then it is easily checked that every

root in [ of the trinomial f above is degenerate. o

Recall that the classical degree d discriminant of a polynomial g(z) = co+- - - +cqz? €
Cplz] is Aulg) := Rcs%dl(ff) where Resy, 4, (91, g2) denotes the well-known resultant of
two univariate polynomials, g; and gs, having respective degrees <d; and <ds (see, e.g.,
[29, Ch. 12]). We will also need some deeper facts about the discriminants of trinomials,

and thereby prove repulsion from degenerate roots along the way:

Lemma 5.4. Suppose f(x) = c¢1 + c2x® + c3x® € Z[zx] has degree d = a3 > as > 1,
cicacs # 0, and |¢;| < H for all i. Assume further that f has a degenerate root T € C,,
r = ged(ag, az), and a; := % for all i. Finally, let
Q(z) == (az — @) (1 + 2z + 3z + -+ + (az — 1)z 7?)

+(_12 ((C_Lg — C_L2)$6‘271 + (C_Lg — C_LQ — 1)1‘62 —+ -4 1- 1'64372)

and q(z) := (az — az) — azx® + asx®. Then:
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(1) Any degenerate root T € C, of f satisfies 77 € Q* and (7%2,7%3) = <4 (—“—3 a—2>

az—az C2 ) c3

Furthermore, if p1 (a3 —as)c1, then any degenerate root ¥ € F,, of f satisfies (ca72,
c1

c3Te8) = pp— (—as,az) and, if p{ cacy in addition, then 7" € .

(2) The polynomial q has 1 as its unique degenerate root in C, and q(z) = Q(x)(z —1)?
identically.

(3) We have Q(1) = agag(as — a2)/2 and, for as > 4, Ng,_2(Q) = as(agas(az —
a2))%~*J, where J = O(a3a3(as — az)?) is a nonzero integer.

(4) For az > 4 we have Az, _2(Q) = &3374 I1 Q' (1)-

pEC, + Q(pn)=0
3
(5) [ordy(¢ — 7)| < log, % < 4log, dHTlM for any non-degenerate root ¢ € C,

of f.

Proof of Lemma 5.4. Assertions (1)—(3) are immediate upon applying [3, Lemma 40] to
the polynomial f from Lemma 5.2 (which satisfies f(z) = f(2")). Assertion (4) follows
similarly from [29, Product Formula, Pg. 398], which is a product formula for resultants.
Assertion (5) will follow routinely upon proving that the roots of @ can’t be too close to
1, and that the same holds for the (1/r)-th powers of the roots of @ as well. In particular,
we’ll soon see that the rth powers of the non-degenerate roots of f are mild rescalings
of the roots of Q.

Assertion (5): To simplify matters, we will first reduce to the case r = 1. Since the
polynomial f from Lemma 5.2 is an instance of the case r = 1, and the roots of f are the
rth powers of the roots of f, we can perform our reduction by showing that a sufficiently
good upper bound on |ord,(¢" — 77)| implies our desired upper bound on |ord,({ — 7)|.
So first note that if ord, ¢ # ord, 7 then ord, (¢ —7) = min{ord, ¢, ord, 7}. In particular,
since ag = ras, and as and az — ay are positive multiples of r, Theorem 2.3 implies:

ordy(cz/c3) ordy(ei/cs)

Any root of f in C, must have valuation in the closed interval , (2)
r r
ord,(c1/c c3
or have valuation eractly M, according as ord, —2_<0 or not.
ras C1C3

So |ord, (¢ — 7)] < % < log, (dfsr%gH, and the last inequality clearly holds when

% > 2. We may thus | assume ord, ¢ = ord, T

Now, if 7 > 1, then we can observe that

ord, (¢ — 77) = rord, () + ord, (1 - (%)) . (3)

T
Letting w € C, be any primitive rth root of unity, we then obtain ord, (1 — (1) ) =

¢
Z;;(l) ord,, ( — %) Since each term in the preceding sum is clearly nonnegative we
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must then have ord, (1 — %) < ord, (1 — <%>T> So if we have ord,(¢" — 7") < M for

some M > rordy, ¢ then Equality (3) implies ‘ordp (1 — %)‘ < M —rord, (. Fact (2)
then implies

lord, (¢ — )| = logp H.

ord,(¢) + ord, <12>‘ <M —(r—1)ord, §<M+

Since £+ =1 =1, we will clearly establish Assertion (5) if we can prove ord,, ((" — 7") <
log,, %. Since every root of f is the rth power of a root of f (and vice-versa),
and since deg f = % and ged(ag,as) = 1, Fact (2) implies that it suffices to prove the
following half of the r = 1 case of Assertion (5): ord, (¢ —7) < log, M (Our stated

bound is implied by the preceding bound since ord, ( = ord, 7 = ord p(C—7)>0.) We

will thus | assume ged(ag,as) = 1 henceforth |

(The Case d € {2,3}) Note that d > 2 because f is a trinomial. The case d = 2 is then

vacuously true since a quadratic with a degenerate root has no non-degenerate roots.
For d = 3, Assertion (2) of our lemma tells us that there is only one non-degenerate

root ¢ and it is rational. So, evaluating the factorization of f at 0, we must have 72¢ =

— ¢, Assertion (1) of our lemma tells us that = = Goage, and thus % = —3a“2 So we
obtain ord, (T — ¢) = ord,(7) +ord,(1 — &) = % + ord,, (3 a"‘), where the

last equality follows from Theorem 2.3 applied to f’. Since |coas| < 2H and 3 — ag < 2,
it easily follows that ord, (7 — () < log,(4H) < log, (d— 1)d "
when d < 3. R

(The Case d > 4) We will first prove an upper bound on ord,(1 — p) for all roots

. Our assertion thus holds

€ Cp\ {1} of g. Observe that Assertion (2) and the classical theory of discriminants
[29, Ch. 12] imply that @ has exactly az — 2 distinct roots in C;; and A,, 2(Q) # 0.
The first half of Assertion (3) then tells us that IT (1—p) =920 — asleszas)

2
HEC, : Q(1)=0 “
since the leading coefficient of @ is as. So then

Y ordy(1—p) =ord, (M) <log, (M) <log, <‘2l>

prEC, : Q(n)=0
(4)

Thanks to Theorem 2.3, ord,as = 0 (i.e., the leading coefficient of @@ not being
divisible by p) implies that all the roots p € C, of @ have nonnegative valuation. So

then ord,(1 — u) > 0 and, thanks to Bound (4), we obtain ord,(1 — u) < log, (’21) <

3
log,, W. (Note that the coefficients of ¢ have absolute value at most d = ag.) So
we may assume o := ord, az > 0 henceforth.

Since ged(ag, ag) = 1 we must have ord, ag = 0 = ord,(as — az). Theorem 2.3 applied

to ¢ then tells us that () has exactly asz —as roots in C, of p-adic valuation ——Z . and

as—as’
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exactly az—2 roots u € C,, of p-adic valuation 0, since ¢(z) = Q(x)(z—1)2. In particular,
ordy(1 — p) = — =%~ > —log,(d — 1) on the set of roots with negative valuation, and

ord,(1 — p) > 0 at the roots u € C,, with ord, pn = 0.
Equality (4) then implies that each of the az — 2 roots y € C,, of Q with ord, p =0

must satisfy ord,(1 — u) = (a3 — a2) —Z— + ord, (7‘13(“3{“2)> = ord, (7’12“3(‘;37“2)) <

az—az -

log,, (W) By the Arithmetic Geometric Inequality, as(az — az) < a3/4, so we
arrive at ord,(1 — ) <log,(d*/8) < log,((d —1)d® - d/8) and we have proved Assertion
(5) in the special case f(z) = q(x).

A direct computation via Assertion (1) of our lemma then yields f(z)= Wq(m /7)
identically. So the roots of f are simply scalings of the roots of ¢ by a factor 7. Since
f'(r) = 0, Theorem 2.3 implies that ord, T = Ord”(a2cjz:zzd”(a3c3), which clearly lies in
the closed interval [ log,(dH),log,((d—1)H)]. So then ord, (7 —() = ord, 7+ord,(1—u)
for some root p € C, of Q. In other words, ord(r — ¢) < log,((d — 1)Hd*/8) =
log,((d—1)d*H/3). M

Assertion (1) of Lemma 5.4 tells us that degenerate roots in C; of trinomials satisfy
binomial equations with well-bounded coefficients. Our earlier Algorithms 2.22 and 2.24
(for solving binomial equations) thus imply that degenerate roots of trinomials are easy
to approximate. Our final step in proving Theorem 1.6 will be estimating the spacing of
non-degenerate roots in C,, for trinomials having degenerate roots in C,.

5.1. Completing the proof of Theorem 1.6: root spacing in the face of degeneracy

First note that we may assume (1(s # 0 # f(0), since this initial reduction to nonzero
roots (from the proof of the square-free case in Section 3) does not require f to be
square-free. Note also that Proposition 2.4 and Assertion (5) of Lemma 5.4 tells us that
our sharper lower bound holds if at least one (; is a degenerate root. So we may assume
that ¢; and (5 are both non-degenerate roots. Furthermore, letting r := ged(az, as), we
can reduce to special case r = 1 via the same argument as from the proof of Assertion
(5) of Lemma 5.4. So we will also assume ged(asg, ag) = 1.

Our proof then follows almost exactly the format of the square-free case, with just

two small changes: (a) We replace f by the polynomial F(z) := 0 gffﬁ))z, where 7 € Q

is the unique degenerate root of f. (That f has exactly one degenerate root, and it
has multiplicity 2, follows from Assertions (1) and (2) of Lemma 5.4.) (b) We replace
Lemma 3.3 by a direct proof that |F/()[, > e~ Olog(dH))

To prove the last bound, observe that F(r) = WQ(U Since ord,T =

%"W, Assertion (3) of Lemma 5.4 then tells us that

ord, F(7) < log,(H) + log,(dH) + log, O(a3a3(as — a2)*) = O(log,(dH)). W
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6. Solving trinomials over Q,

Unlike the binomial case (see Remark 2.20), the tree 7,i(f) can have depth
Q(log,(dH)) or greater for a trinomial f € Z[z] with p { f(0) and k sufficiently large
[28]. However, Lemma 6.1 below will show that the structure of 7, x(f) is still simple:
No subtree of 7, ,(f) emanating from a vertex of depth > 1 has more than 2 vertices
of out-degree more than 2. Corollary 6.6 below will establish how large k must be so
that 7, x(f) is deep enough to encode (via Lemma 2.18) all the non-degenerate roots
of f in Z,, and do so with sufficient accuracy for Newton iteration to converge quickly.
Our estimates on k will enable us to approximate all the roots of f in Q, in time
p3to) log4+°(1)(dH ) logz d. Mild assumptions on the exponents of f can also guarantee
that the root node of 7, x(f) has O(,/p) or even fewer children, and the presence of de-
generate roots in Q for f enables even tighter estimates for k. Each of these restrictions
leads to speed-ups we will describe.

6.1. Trees and trinomials

Lemma 6.1. Suppose f(z) = c1 + cox®? + c32% € Z[x] is a trinomial of degree d = az >
as > 1, with all its coefficients having absolute value at most H. Then every non-root
nodal polynomial f; ¢ of Tpx(f) with ¢ # 0 mod p satisfies deg f; ¢ < 4, deg fi.c <3, or
deg f;-,C < 2, according as p =2, p=3, orp > 5.

Example 6.2. One can check that for f(z) := 2141122 —12, the tree T5 s (f) is isomorphic
to IAI\ In particular, this f has exactly 6 roots in Q3:

0+1-240-224+1-224+0(2Y, 04+1-2+1-22+0(2%),

140:240-22 4+, 140-24+1-224+0(25),1+1-2+0-22+4 2%+ 0(2%), and
1+1-2+1-22+0(2%). This is because f272 = fg’l = f2’1+2 = 22 + 2 and each of these
(terminal) nodal polynomials has exactly 2 non-degenerate roots in Fa, each of which
lifts to a unique root in Zsy. Note that fm(x) = z* + 22 has degree 4, and corresponds
to the unique depth 1 vertex with 2 children. ¢

Example 6.3. Composing Example 2.12 with 22, let us take f(x) := 220 — 1022 + 738.

One then sees that the tree T3 7(f) is isomorphic to /E\I In particular, this f has exactly
8 roots in Q3, each arising as a Hensel lift of a non-degenerate root in Fs of some nodal
polynomial: f1,07 fl,l, f271, f~1)2, and f~2)8 respectively contribute 2, 1, 2, 1, and 2 roots.
Note that fi o(x) = 2% + 222 + z has degree 3. ©

To prove Lemma 6.1 we will need a powerful result of Lenstra [40] on the Newton
polygons of shifted sparse polynomials. First, let us define d,,(r) to be the least common
multiple of all integers that can be written as the product of at most m pairwise distinct
positive integers that are at most 7, and set d,,,(r) := 1 if mr = 0.
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Theorem 6.4. [/0, Sec. 3] Suppose f € Q[x] is a t-nomial, g(x) = f(1+px), and r is the
largest nonnegative integer such that r —ord, d;—1(r) < o tnax 1{j —ord,(31)}. Then any
<t

lower edge of Newt,(g) with inner normal (v,1) with v > 1 lies in the strip [0,7] x R.
|

We point out that the vector of parameters (¢, r,v) from our statement above would be
(k+1,m,v(x — 1)) in the notation of [40], and the parameter r there is set to 1 in our
application here.

Proof of Lemma 6.1. First note that replacing = by cz, for any ¢ € {1,...,p — 1}, pre-
serves the number of roots of f in Z, and (up to relabeling the ¢ in the subscripts of the
fi,c) the tree Tp, 1 (f). So to study fl,co with ¢ € {1,...,p — 1}, it suffices to study fi ;.

Note that the lower hull of any Newton polygon can be identified with a piecewise
linear convex function on an interval. In particular, fi1(z) = p*UD f(1 + px) and
thus the lower hull of Newt,(f1,1) can be identified with the sum of the lower hull of
Newt,(f(1+ )) and the function x — s(f,1). Note also that by the definition of Newt,,
the minimal y-coordinate of a point of Newt,(f(1 + pz)) is exactly s(f,1).

Theorem 6.4 then tells us that all lower edges of Newt,(f1,1) of non-positive slope lie
in the strip [0,7] x R, where r is the largest nonnegative integer such that

r —ord, da(r) < gp, (%)

where €9 = 1 and ¢, = 2 for all p > 3. In particular, the definition of Newt,(f1,1) tells
us that p divides the coefficient of 27 in f; ; for all j > r + 1 and thus deg fl’l <r.

By Lemma 2.17, all other non-root nodal polynomials f; - with ¢ # 0 mod p satisfy
deg fi,g < deg fl,l- So it suffices to prove that r satisfies the stated bounds of our lemma.
This is easily verified by first observing that d2(0) = d2(1) = 1 and d2(2) = 2. So
Inequality (%) certainly holds for r € {0,1, 2}, regardless of p. Observing that d2(3) = 6
and d2(4) = 24, we then see that Inequality () holds at » =4 (resp. r = 3) when p = 2
(resp. p = 3).

So it is enough to show that: (i) r — orda da(r) > 2 for r > 5, (ii) r — ordz da(r) > 3
for r > 4, and (iii) r — ord, da(r) > 3 for r > 3 and p > 5. From [40, Prop. 2.4],

2logr
we have ord, da(r) < Toep

. Note that, for any fixed p, the quantity r —

increasing function of r for r > %. Furthermore, [7 — 21(1;?1)7—‘ > 2 for all p > 2 and

{5 — %—‘ > 3 for all p > 3. Noting that dy(5) = 120 and d2(6) = 360, it is then easily

checked that (i)—(iii) all hold. W

Remark 6.5. Lemma 2.19, on binomials, can now be proved by modifying the proof above
slightly: We replace Inequality () by r — ord, di(r) < 1, replace do(r) with di(r), and
let ¢, =1 for all p. In particular, the definition of s(f, (o) tells us that

s5(f,¢0) <1+ord, f'(¢o) =1+ordpd =1+ o
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It seems harder to get an upper bound on s(f,{y) for trinomials than binomials.
Nevertheless, we can derive a bound quadratic in logd and linear in log H, and thereby
estimate how large k must be for our tree 7, x(f) to be deep enough for trinomial root
approximation.

Corollary 6.6. Suppose f(x) = ¢1+cax? +c32% € Z[x] has degree d, 0 < as < a3, ptey,
cocs # 0, and |¢;| < H for all i. Let r := ged(ag, as), define Sy to be the mazimum of
s(f,Co) (see Definition 2.9) for any (o € {1,...,p—1} satisfying (o) = f'(¢o) = 0 mod
p, and set Sy := 0 should there be no such (. Also let D be the mazimum of ord,(¢ — &)
over all distinct non-degenerate roots (,& € Zp, of f (if f has at least 2 non-degenerate
roots in Zp) or 0 (if f has 1 or fewer non-degenerate roots in Zy); and define My, to be
4, 3, or 2, according as p is 2, 3, or >5. Then:

k>14 Somin{l, D} + M, max{D — 1,0} = the depth of T, 1(f) is at least D.

ag =1 =Sy <log,(p*d*H?).

d>3= 5= O(plog(%) logp(%)).

f has a degenerate root in C, = Sp < logp(der),

The lower bound for k from Assertion (1) can be attained for k = O(p logi(dH) log d)

or k = O(log,(dH)), according as f has no degenerate roots in Cp, or at least one

Cus Lo o~

such root.

Remark 6.7. Note that d > 2 for any trinomial, and d = 2 implies as = 1 above. One
should also remember that Theorem 1.6 provides an explicit upper bound for D. ¢

Proof of Corollary 6.6. Assertion (1): 7, (f) always includes a root node by definition,
so the case D = 0 is trivial and we assume D > 1.

Our lower bound on k then follows easily from Lemma 6.1: Since f has distinct non-
degenerate roots (,& € Z, with ord({ —§) > 1 by assumption, this means that ¢ = ¢
mod p and thus f must have a degenerate root ¢, e{l,...,p— 1} (since ptc1). Having
k > 1+ Sy then simply allows the root node to have maximally many child nodes
(and thus depth > 1), thanks to Definition 2.9. Furthermore, thanks to Lemma 6.1, the
summand M, max{D — 1,0} simply guarantees that 7, has depth D and that T, x(f)
has maximally many nodes at depth <D. (Note that for any nodal polynomial f; »» with
i > 1, we have that s(f; ¢/, (;) is bounded from above by 4, 3, or 2, according as p is 2,
3, or >5, thanks to Lemma 2.17.) In particular, wesee that any k satisfying our lower
bound yields a k satisfying all the assumptions of Lemma 2.18. W

Assertion (2): Immediate from s(f, {y) < 2+ord, @ (thanks to the definition of s(-, -)
as a minimum), f” () = d(d — 1)0345_2, and ord, (o =0. W

Note.| We now temporarily assume that ged(as,as) =1 |, to simplify the proofs of As-

sertions (3) and (4), and show later how to reduce the case ged(az,az) > 1 to the case
ged(az,a3) =1. o
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Assertion (3): First note that we must have p{ ¢y or pt ez in order for f to have a root
in F.

Since f'(¢o) = agcaCl? ™! + aze3¢* ™! = 0 mod p, and ged(ag,az) = 1, we see that
plas =>ord, cs = ordyas > 0 and p t agce. In which case, ord, f/(¢p) = ord,(azcz) +
ord, (1 — 22(* ), and then we can bound ord, f'(¢o) from above by the n = 2
case of Yu’s Theorem if the second valuation is not co. Should this valuation be oo, then
we can instead apply the n = 2 case of Yu’s Theorem to ord, f”({o) = ord,(az(as —

1)e2) + ord, (1 — %C% “2), since ¢i=y 1 - 1. So we obtain a bound of Sy <

2+2ordy(r)+log, (¢ (4 — 1) H)+log(2)log(4)2°7/2¢bplog (¢ — 1) log, (£ (¢ — 1) H) di-
rectly from Theorem 3.1, and the fact that s(f, (o) < min{l+4ord, f'({o),2+ord, f”(¢o)}-
Similarly, plag = ord, co = ord,ag > 0 and p { ascs. In which case, ord, f'(¢y) =
ord,(ascs) + ord, (1 — et a3) and we proceed in the same way as the last para-
graph.
So let us now assume p { azas. Then f'((p) = 0 mod p = p 1 cacs, since ord, (o =0
and p can not divide both ¢y and c3. So then we again attain the same bound as in the

last two paragraphs. W

Assertion (4): Note that p { ¢; implies that any degenerate root 7 € C, of f must be

nonzero. Lemma 5.4 then tells us that 7 is the only degenerate root of f in C, and 7 € Qj.

Moreover, from the proof of Lemma 5.4, we have f(rx) = —2~—q(z) identically and
(az—a2)T

ord, 7 = 2 (GQCjz_Z;dp(a“s). (Recall that q(x) = (a3 — az2) — a3z + azz has 1 as its

unique degenerate root in Cy.)

Now, we must have p{ ca or p 1 cs in order for there to be any roots at all for f

Sub-Case p { co. If 7 has negative valuation, then we must have p|cs by Theorem 2.3.
Also, f'(Co) = €52~ (caaa + c3a3¢3* ™) = 0 mod p = plas since p { co. Since ord, T =

ordp(ag co)—

e sz plat) < 0 by assumption, we must have ord,(ascs) > ord,(ascs) and thus
ord, f'(¢o) = ord,(caaz) = ord,(az). In other words, ord, 7 < 0 = Sy < 1 + ord,(az).

So let us now assume ord, 7 = 0. Then by our identity f(rz) = Wq(ax), and the
fact that 7 € Q* (via Assertion (1) of Lemma 5.4), the vector of coefficient valuations
for f and the vector of coeflicient valuations for ¢ differ by a multiple of (1,1,1). So our
assumptions that p { cico and ged(ag, az) = 1 imply that p { (a3 — az)as. So then, ag — as
is invertible mod p and, by the rescaling between f and ¢, we have that f and § share
the same value of Sy (as well as the same number of degenerate roots in {1,...,p—1}).
So let us now work with g instead, and assume for the remainder of this sub-case that
(o is a degenerate root of § mod p.

If plaz then ordy,q'(¢o) = ordy(az) + ord, (—1+ (™) (since p { as). Also,
ord, ¢ (¢o) = ordy(az) +ord,(—ag +aszly® " — (=14 (>~ “?)). Since plaz and p { a3, we
see thatord,(—1 + ¢**~2) > 0 implies that ord, ¢" (o) = ord, a2. On the other hand, if
ord,(—1+¢*~2) = 0, then ord, ¢'({y) = ord, as from our earlier formula for ord, ¢'({o)-
So by the definition of s(-,-), we obtain Sy < 2 + ord,, as.
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To conclude, p t az, combined with our earlier conclusion that p 1 (a3 — ag)as, implies
that (o = 1, thanks to Assertion (1) of Lemma 5.4. In which case, ¢(1) = 0 but ¢/ (1) =
azas((ag — 1) — (ag — 1)) = agas(as — az) and thus Sy < 2.

Sub-Case p t c3. Here, we must have ord, 7 = 0 and thus ord,(azcs) = ord,(ascs) by our
earlier formula for ord, 7. In particular, we must have ord,(asce) = ord, as since p 1 cs.
Note also that plas thus implies plaz, which would contradict ged(as,as) = 1. So we
must also have p { as and thus ord, co = ord, as. Since we already proved the Sub-Case
p 1 ca, let us now assume plca (and thus plas).

By our identity f(rx) = ((IS_CWQ(I), and the fact that 7 € Q* (via Assertion (1)
of Lemma 5.4), the vector of coefficient valuations for f and the vector of coefficient
valuations for ¢ differ by a multiple of (1,1,1). So our assumptions that p { ¢ic3 and
ged(az,az) = 1 imply that p 1 (a3 — ag)as. So then, ag — as is invertible mod p and, by
the rescaling between f and g, we have that f and G share the same value of Sy (as well
as the same number of degenerate roots in {1,...,p — 1}). So let us now work with ¢
instead, and assume now that (y is a degenerate root of ¢ mod p.

Observe then that ord, ¢'(¢o) = ordy(as) + ord, (=14 (§>~**) (since p 1 az). Also,
ord, ¢ (Co) = ordy,(as) + ordy(—as + as(g® ** — (=1 + ¢5*~*?)). Since plas and p { as,
we see that ord,(—1 + ¢(?37%) > 0 implies that ord, ¢”(¢p) = ord,as. On the other
hand, if ord,(—1 + ¢?37%) = 0, then ord, ¢’({y) = ord, a3 from our earlier formula for
ordy, ¢'(¢o). So by the definition of s(-,-), we obtain Sp <2+ ord,az. W

Extending to ged(az,as) > 1. To complete our proofs of Assertions (3) and (4) let us
assume 7 := gcd(az, az) > 1 and recall that f is the unique polynomial in Z[z] satisfying
f(z) = f(z") identically. Clearly then, deg f = @ and any root 7 € Cp, of f induces a
root 7" of f. Furthermore, f having a degenerate root {, € {1,...,p— 1} clearly implies
that the mod p reduction of f has p as a degenerate root, where o € {1,...,p—1} is the
mod p reduction of ¢§. The Chain Rule then implies ord, f'({y) = ord,(r)+ord, f'(uo) <
log,,(r) + ord, f' ().

Should f'(¢p) vanish identically, then Assertion (1) of Lemma 5.4 easily implies that all
the degenerate roots of f have multiplicity 2 and thus f”({y) can not vanish. In which
case, via the Chain Rule again, ord, f”((o) = 2ord,(r) + ord, f”(uo) < 2log,(r) +
ord, f"”(po). So our general formula follows immediately from the case r = 1, which
we’ve already proved. W

Assertion (5): Immediate from Assertions (3) and (4), and Theorem 1.6. W
6.2. Building trees efficiently

It is easy to see that the only degenerate root the quadratic trinomial ¢; + coz + 2 €
Z|x] can have mod p is exactly —ca/2 when p > 3. (For p = 2 it is clear that the only
monic degenerate quadratics are 2 + 1 and z2, with respective degenerate roots 1 and
0.) It will be useful to have a similar statement for trinomials with (p, d) € {2,3} x {3,4}.
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Proposition 6.8. Suppose f(x) = co + c1@ + c2x? + c333 + cyx* € Z[x] has degree d > 2,
and |¢;| < H for all i. Then:

0. The discriminant of f can be evaluated in time O(log(max{p, H}) loglog max{p, H}).
1. When p < 3 we can find all the degenerate roots of f in F, (or correctly declare there
none) in time O(log H). In particular, f has at most 1 (resp. 2) degenerate root(s) in

Fp, according as d < 3 ord = 4.

2. For any prime p we can find all the non-degenerate roots of f (or correctly declare

there are none) in deterministic time O(p*/?log? p).

Proof. Assertion (0) follows from the definitions of the quartic, cubic, and quadratic
discriminants (see, e.g., [29, Ch. 12]), Theorem 2.7, and the fact that evaluating A4(f)
reduces to evaluating a 7 x 7, 5 x 5, or 3 x 3 determinant in the coefficients of f (followed
by division by the leading coefficient of f), after reducing the coefficients mod p.

For Assertion (1), first note that p < 3 implies that we can reduce the coefficients
of f and f" mod p in time O(log H) thanks to Theorem 2.7. We can then simply use
brute-force (over a search space with at most 3 elements!) to find all the degenerate roots
of f in time O(1). In particular, since any degenerate root must have multiplicity > 2,
the only way f can have more than 1 degenerate root is for d = 4, in which case there
can be no more than 2 degenerate roots. For instance, 2! + 22 + 1 (resp. z* + %) has
degenerate roots {£1} € F3 (resp. {0,1} € Fy).

Assertion (2) follows immediately from Shoup’s deterministic algorithm for factoring
arbitrary univariate polynomials over a finite field [55], upon specializing to degree <
4. 1

Lemma 6.9. For any trinomial f(x) = c1 + cox® + c32% € Z[z] of degree d, with p{ci,
0 < ag < az, and |¢;| <H for all i, let v denote the number of degenerate roots of f in
F, and let D denote the depth of Ty k(f). Then Tpx(f) has <1+ (2D — 1) v nodes; and
we can compute the mod p reductions of all the nodal polynomials f; ¢ of Tpr(f), as well
as all the values of the s(fi—1,,Ci—1), in deterministic time

(plog(d) + kvDlog(p) log(d) log H)' W) .

Proof. By Lemma 6.1, all non-root nodal polynomials have mod p reduction of degree
no greater than 4. Thus, the root node of 7, x(f) has <v (<p — 1) children, and any
node at depth >1 has no more than 2 children (since a polynomial of degree <4 has
< 2 degenerate roots). Lemma 2.17 also tells us that deg ﬁ7#+<i_1pi—l is at most the
multiplicity of (;—1 € F as a root of fi_l, - S0 any node v that has an ancestor at level
>1 with 2 children can have no more than 1 child. Thus, there can be no more than 2v
nodes at depth ¢ > 2. It is then clear that 7, x(f) has at most 1 4+ (2D — 1) v nodes.
We now check whether f has any degenerate roots in F,: By assumption, they must
lie in 7. Also, should ples, f would be a binomial and thus have degenerate roots in
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only if plas; in which case any root of fin [, is degenerate. We can then decide if there
are degenerate roots simply by checking whether (—61/02)(1”1)/ng(‘”’p’l) = 1 mod p,
which can be done in time O(log(dH ) log(log(dH)) + log?(p) log log p) via Theorem 2.7.
Should there be any degenerate roots, there will then be exactly ged(az,p — 1) many,
and we can then find them in time no worse than O((p + logd) log(dp) log(log(dp)) +
log(H) log(pH) loglog(pH)) via brute-force (much like our earlier complexity analysis of
Steps 57 of Algorithm 2.22).

So let us assume p t c3. Note that p| ged(ag, az) = every root of f in [} is degenerate,
in which case we can simply find all these roots first by reducing the coefficients (resp.
exponents) of f mod p (resp. mod p — 1) in time

O(log(max{d, p}) log(log max{d, p}) + log(max{p, H}) log log max{p, H})

and then applying brute-force search in time O(plog?(p)loglogp). So let us assume
p t ged(ag, as). Observe then that f has degenerate roots in Fy <= Aui(f) = 0
mod p, thanks to Assertion (1) of Lemma 5.2. In particular, by Theorem 2.7, Agi(f)
can be computed mod p in time O(log(max{d, p})log(log max{d,p}) + log(max{H, p})
log log max{H, p}) (to reduce the exponents of A;(f) mod p — 1 and the power bases
mod p) plus O(log?(p) loglog p) to compute the monomials of Ayi(f). If Ayi(f) # 0 mod
p then we know f has no degenerate roots and then 7, x(f) is simply a single root node.
Otherwise, let 7’ := ged(ag, az,p — 1) and apply the Extended Euclidean Algorithm (in
time O(log(p)log?logp) via Theorem 2.7) to ag mod p — 1 and asz mod p — 1 to find
a, B € Z with logarithmic height O(logp) such that a(as mod p—1)+5(a3 mod p—1) =
7. Assertion (1) of Lemma 5.4 then tells us that the degenerate roots of f in F, are

/ at+p « B
exactly the roots of g(z) := 2" — (—1)“ (asch) 'Z—s) (‘c’—;) in ;. Lemmata 2.5

and 2.6 and Theorem 2.7 then easily imply that deciding whether g has any roots in F;
takes time O(log?(p)loglog p), and there are exactly ' many degenerate roots in F, if
so. Just as in the last paragraph, we can then apply brute-force to g in time

O((p + log d) log(dp) log(log(dp)) 4 log(H ) log(pH ) log log(pH ))

to find all the degenerate roots of f in Fy.

Assuming f has degenerate roots in I, let us now see how to compute the child nodes
of the root node in 7, x(f): First note that the coefficient of 2% in the monomial term
expansion of ¢(pu+px)® mod p’ (for i < j) is simply ¢(¢) u*~"p’ mod p’. Also, Lemma 2.17
tells us that f; ¢(z) = p~* f(u+ p'xz) mod p’ for suitable (s, u, j). Putting this together,
this means we can compute s(f,(y) and fl,Co (for all degenerate roots (o € F; of f)
by evaluating ¢§? and (§° mod p*, (*?) and (“*) for i € {0,1,2} if p > 5, and O(1)
additional ring operations in Z/(p*). (We instead take i € {0,1,2,3} or {0,1,2,3,4}
according as p is 3 or 2.) Via Recursive Squaring (a.k.a. the Binary Method [7, pp.
102-103]), Theorem 2.7 tells us that we can compute the asnd and asrd powers of all the

degenerate roots (o € IF; in time O(v - log(d) - klog(p)log(klogp)), and the remaining
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operations are negligible in comparison. In particular, each s(f,(p) can be computed
by bisection and the resulting complexity is also negligible compared to the preceding
O-estimate.

So in summary, all computations necessary to find all child nodes of the root node
take time no greater than

O((plog(p) + log d) log(dp) log log(dp) + plog®(p) log(log p)
+log(H) log(dpH ) loglog(dpH) + vklog(d) log(p) log(k log p)).

Having computed all the mod p reductions of the nodal polynomials fl,(o at depth
1, we then proceed inductively, performing almost the same calculations as in the last
two paragraphs. The only difference, assuming p > 5, is then applying the quadratic
discriminant (instead of the trinomial discriminant) to detect and find the sole degenerate
root of f;_1, (for i € {2,...,k — 1}), should there be one. (Should p € {2,3} then we
simply apply Proposition 6.8 instead, and possibly have two degenerate roots in the
worst case when p = 2.) This eliminates the need for brute-force search, and gives us
an improved complexity bound of O(klog(p) log(klogp)log(d) + log H) to compute the
children (no more than two) of each f;_1 ..

Summing all the resulting complexity estimates over all O(vD) children, and over-
estimating slightly, we obtain our stated bound. MW

Corollary 6.10. Following the notation of Lemma 0.9, we have the following improved
complexity bounds for computing the mod p reductions of all the nodal polynomials of
Tp.i(f) and their respective s(-,-) values:

1. If we only wish to construct the sub-tree of Tpr(f) corresponding to (o = 1, and
correctlydeclare whether 1 is a degenerate root of f:

Deterministic time D(klog?(p) log(d) log H)1+0(1)_
2. If the exponents are {0, aq, a3z} with ged(azas(as — az), (p — 1)p) < 2:

Deterministic time p%JrO(l) + D(k? log(p) log(d) log H)Ho(l)

or Las Vegas randomized time D(klog®(p) log(d)log H) o),

Remark 6.11. While we state a randomized speed-up in Assertion (2) above, any asymp-
totic gains are unfortunately overwhelmed by the upper bounds on k£ and D for the
non-degenerate case from Corollary 6.6 and Theorem 1.6. Nevertheless, we state our
bounds in a refined way above, should better bounds on k& and D become available in
the future. <
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Proof of Corollary 6.10. In what follows, we keep in mind the template of the proof of
Lemma 6.9, and simply point out the key changes resulting in speed-ups.

Assertion (1): Here there is no need to search for roots of f: We merely evaluate f and

f' at 1 to see if 1 is a degenerate root. This amounts to time

O(log(max{d, p}) log(log max{d, p}) + log(max{p, H}) log(log max{p, H}))

to reduce exponents mod p—1 and coefficients mod p, and then time O(log2 (p) loglog(p))
for the evaluation. At this point, we also know if 1 fails to be a degenerate root of f.

We then need time O(max{klogp,log H}logmax{klogp,log H}) to reduce the co-
efficients of f mod p*, and then time O(log(d)k log(p) log(klogp)) to compute s(f,1)
and the child node of the root node. For the remaining descendants, Lemma 6.1 tells
us that there are at most 2 children, and any subsequent siblings can have no further
offspring with more than one child. Also, as observed earlier, we can find the degenerate
roots of the mod p reduction of any non-root nodal polynomial in time O(log H). So the
remaining child nodes take time D — 1 times O(klog(d) log(p) log(klogp) + log(H)) to
compute. W

Assertion (2): The ged assumption on the exponents implies there can be at most 2
degenerate roots for f in F, (and they are nonzero since we originally assumed p { ¢; in
Lemma 6.9): This follows from basic group theory if p|cs and via Lemma 5.4 if p { ¢3.
If p|cs then we can decide whether f has a degenerate root in F. by computing
g1 = ged(f, 2P~ — 1) and checking whether degg; > 1 or not: If degg; = 1 then we
can easily find the unique root of g; using <2 arithmetic operations in F,. If deg g; = 2
then we can find the roots either in deterministic time O(pl/ 2]og? p) via Shoup’s fast

2+o() 1, via the fast random-

deterministic factoring algorithm [55], or Las Vegas time log
ized factorization algorithm of Kedlaya-Umans [34]. Furthermore, g; can be computed
efficiently by first computing 2% mod 2P~! — 1 via Recursive Squaring (a.k.a. the Bi-
nary Method [7, pp. 102-103]), and then computing the rest of f mod zP~! — 1. This
entails O(log d) reductions (of exponents) mod p — 1, along with 3 arithmetic operations
in F,, meaning additional deterministic time O(log(d)log(max{d, p}) loglog max{d, p})
via Theorem 2.7.

If p 1 c3 then we can decide whether f has a degenerate root in . by first checking

Awi(f) 20 mod p, which takes time

O(log(max{d, p}) log(log max{d, p}) + log(max{H, p}) loglog max{H, p})
(as already observed in our last proof). If this discriminant indeed vanishes mod p then

we compute gy = ged(f, f') = ged(f, f'/x*~1). Like g1, the polynomial gy has degree
<2, and it can be computed efficiently, along with its roots (if any) in deterministic time

O(p'/?log”(p) + log(d) log(max{d, p}) log log max{d, p}),
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or Las Vegas time
O(log%o(l) (p) + log(d) log(max{d, p}) loglog max{d, p}).

We then proceed as in the proof of Assertion (1), with at worst twice as many chil-
dren. W

6.3. The algorithm that proves Theorem 1.1

Recall that a terminal node of a tree is a node with no children.

Algorithm 6.12. (Solving trinomial equations over Q)

Input. A prime p and c1, ¢2,¢3,a2,a3 € Z \ {0} with |¢;| < H for all i and 1 < a2 < az=:d.

Output. A true declaration that f(z) := c¢1 + 22 + ¢32 has no roots in Qp, or 2z1,...,2m € Q
with logarithmic height O(p logi(dH ) log d) such that m is the number of roots of f in Qp,
z; is an approximate root of f with associated true root (; € Q, for all j, and #{(;} = m.

Description.

1: If [ord, % >0 and ordy, ¢; # ordp c3 mod as] or

2
[ordy Cf; <0 and ordp ¢1 # ordp c2 mod a2 and ordy ¢ # ordp c3 mod az — az]

then say "No roots in Qp!" and STOP.
2: Rescale and invert roots if necessary, so that we may assume p 1t cic2 and ordp ¢z > 0.

3: Decide, via gcd-free bases, Am(f);o. If so, set § := 1. Otherwise, set § := 0.

4: If § = 1 then set v’ := ged(az,as,p — 1) and, via the Extended Euclidean Algorithm, find
a, B € Z with logarithmic height O(log p) such that a(a2 mod p—1)+3(as mod p—1) =r'.
Then, via Algorithm 2.22 (or its p = 2 version, Algorithm 2.24), output the 2 most

significant base-p digits of the roots of g(z):=z" —(—1)* (ﬁ)aﬂ; <(;_;>a (‘Z—i)ﬁ in Zp.

5: Set k to be the lower bound from Corollary 6.6 (employing the stated upper bound on So,
and the upper bound on D from Theorem 1.6, should Sp or D not be known), and compute
the mod p reductions fM of all the nodal polynomials of 7 1 (f).

6: By computing deg ged(f; ¢, 2P —x) for the non-root nodal polynomials of 7, (f), and brute-
force search over F, for f, determine which nodal polynomials have non-degenerate roots.

7: Output every non-degenerate root (o € Fj, of f. Also output, for each non-root nodal
polynomial f; ¢ found in Step 6, the set {C +p'¢i | G €Fpand fi (&) =04 f{C(Cz)}

8: If p|cs then rescale and invert roots to compute approximants for the remaining roots of f
in Qp, by computing roots of valuation 0 for a rescaling of the reciprocal polynomial f*.

Remark 6.13. We point out that some of the approximate roots output by our algorithm
above require the use of Newton iteration applied to f; ¢ (instead of f). This is clarified
in our correctness proof below. ¢

Proof of Theorem 1.1. First note that the root 0 is trivially detected by checking
whether the constant term c¢; is 0. So we may assume ¢; # 0 and focus on roots in
Q;- Note also that the rescalings from Steps 2 and 8 (which are simply replacements of
f with p7t f(p’2z) for suitable ji,jo € Z) result in a possible increase in the bit-sizes our



692 J.M. Rojas, Y. Zhu / Journal of Number Theory 241 (2022) 655-699

outputs, but this increase is O(log H) thanks to Theorem 2.3. So we focus on roots in
Z,, of valuation 0, and assume p { ¢; and ord,(cz) ordy(c3) = 0.

Condition (1) (the logarithmic height bound for our approximate roots) then clearly
holds thanks to Step 5 of our algorithm, the definition of 7, x(f), Lemma 2.18, Theo-
rem 1.6, and Corollary 6.6.

Condition (2) (on the convergence of the Newton iterates) follows easily from the
definition of f; ,. In particular, Lemma 2.17 tells us that f; ,(z) = p~* f(u+p’z) mod p
for suitable (s, i, 7), and thus a non-degenerate root ¢; € F,, of JFLC yields a root p+ p'¢;
of f mod p*!. Moreover, by Hensel’s Lemma, zy := (; is an approximate root of f; ,,
meaning that the sequence (i +p'z,),en derived from the iterates (z,),en coming from

n—1
applying Newton iteration to (f; ., 20) satisfies |£—(u+p'z,)|p < (%) |€E—(u+p"20)|p,
where ¢ € Z,, is some true (non-degenerate) root of f. From Lemma 2.18 (and our choice
of k via Corollary 6.6) we know that all the non-degenerate roots of f can be recovered
this way, and uniquely so.

Condition (3) on correctly counting the roots of f in Q, follows immediately from
Steps 3-8. In particular, first note that Step 4 actually outputs approximations of all the
degenerate roots of f in Z,. This is because, as we already saw in the third paragraph
of the proof of Lemma 6.9, the binomial g vanishes exactly on the degenerate roots of
[ in F; and degg = r’ is exactly the number of these roots. Lemmata 2.5 and 2.6 and
Theorem 2.7 then easily imply that deciding whether g has any roots in [ takes time
O(log?(p)loglog p). So Step 4 correctly counts the degenerate roots in Q, thanks to
our earlier work on Algorithms 2.22 and 2.24. Also, Corollary 6.6 and Lemma 2.18 tell
us that the outputs from Step 7 are a collection of approximate roots that, en masse,
converge to the set of non-degenerate roots of f in Z, of valuation 0, with no overlap.
Step 8 then accounts for the remaining degenerate and non-degenerate roots in Q,,.

The time complexity estimates from our theorem will follow from our complexity anal-
ysis of Algorithm 6.12 below. First, however, let us prove correctness for our algorithm.

Correctness: Via Theorem 2.3, Step 1 guarantees that f has roots of integral valuation,
which is a necessary condition for their to be roots in Q,. Steps 2 and 8 involve substi-
tutions that only negligibly affect the heights of the coefficients, similar to the binomial
case (where the underlying rescalings are stated in finer detail).

Step 3 correctly detects degenerate roots in C; thanks to Lemma 5.2. As observed
above, Steps 4-7 correctly count the number of non-degenerate roots of f in Z, of
valuation 0. In particular, Step 4 is accomplished via Lemmata 5.2 and 5.4, and the
characterization of degenerate roots from the latter lemma implies that we can use
the Extended Euclidean Algorithm to find a binomial efficiently encoding the degen-
erate roots of f in Q, (as already detailed in the third paragraph of the proof of
Lemma 6.9). W

Complexity Analysis: Steps 1, 2, and 8 involve basic field arithmetic that will be domi-
nated by Steps 3-7. So we will focus on Steps 3—7 only.
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Step 3 can be accomplished in time O(log?(dH)) via [3, Thm. 39]. Note in particular
that detecting vanishing for Ay,;(f) is much easier than computing its valuation.

Step 4 takes time O((p + log(dH)) log(dpH ) loglog(dpH)) thanks to Theorem 2.21.

Letting v and D respectively denote the number of degenerate roots of f in F; and
the depth of T, x(f), Step 5 takes time O (vp? log*(dH) log> (d) log (plog(dH))) or

O((p +log d) log(dp) log log(dp) + plog® (p) log log(p)
+vlog?(dH)log(d) log, log(dH) + log(H ) log(dpH ) log log(dpH)) ,

according as 6 = 0 or 6 = 1. This follows immediately from an elementary calculation,
upon substituting the corresponding value of k from Corollary 6.6 into Lemma 6.9,
using the fact that the depth D is bounded from above by one of our two bounds from
Theorem 1.6.

The brute-force portion of Step 6 clearly takes time O(plog?(p)loglogp) via The-
orem 2.7. Lemma 6.9 tells us that 7, (f) has O(vD) nodes, and Lemma 6.1 tells us
that each non-root nodal polynomial has mod p reduction with degree < 4. So the
remaining multi-node ged computation takes time O(vD - log(p) loglogp) via Theo-
rem 2.7. So the overall time for Step 6 is O(p [v log?(dH) log,,(d) + log? p| loglogp) or
O([plog®(p) + vlog(dH)]loglog p), according as d is 0 or 1, thanks to Theorem 1.6.

As for Step 7, we already know the non-degenerate roots in I, of f from Step 6.
For the remaining nodes, observe that Lemma 6.1 tells us that the mod p reductions of
the non-root nodal polynomials have degree at most 4. Also, the root has v children,
each yielding a tree that is a chain with (at worst) one bifurcation. Furthermore, note
that the presence of a non-degenerate root in F, for ﬁ,g implies that ﬁ,g can have at
most 1 degenerate root in IF,, meaning that its child will have degree at most 2 by
Lemma 2.17. Finally, note that once a quadratic JFi,c has a non-degenerate root in [Fp, it
can no longer have any children. In other words, we have shown that there can be at most
O(v) nodes having fi’g possessing a non-degenerate root. Applying Shoup’s deterministic
factoring algorithm [55] to the non-root nodal polynomials, we then see that finding the
non-degenerate roots for our entire tree takes time O(v - p'/?log? p).

In summary, we see that Step 5 dominates our overall complexity when ¢ = 0, yielding

a bound of | O(vp®log*(dH)log}(d)log(plog(dH))) | When § = 1, Steps 4, 5, and 7

dominate together, yielding an overall complexity bound of Noting that v < p — 1, we

O((p + log(dH)) log(dpH) log log(dpH) + plog®(p) log log(p)
+v[p'/?log?(p) + log®(dH) log(d) log, log(dH)]).

are done after an elementary calculation. W
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Remark 6.14. A consequence of our proof is that it also contains a proof of the determin-
istic complexity bound of Corollary 1.7, since we included above the case where f has
a degenerate root. To get the Las Vegas randomized bound, we simply replace the fast
deterministic factoring algorithm from [55] in Step 7 with the fast randomized factoring
algorithm from [34]. ©

6.4. “Typical” exponents, Las Vegas, and a combined speed-up

For our final speed-ups we will make use of the fact that trinomials can only vanish
on a small number of cosets in F7: Building on earlier results from [15,12,35], Kelley
and Owen proved [36, Thm. 1.2] that ¢; + cox® + c3z? € Fy[x], with ¢ a prime power,

vanishes at no more than % +4/ q;,l cosets of the size r’ subgroup of F; (and nowhere

else), where ' = ged(ag, as,¢ — 1). In particular, this bound is optimal for F, an even
degree extension of a prime field. For g prime, there is even computational evidence (for
all ¢ < 292837) that the number of such cosets might in fact no greater than 2logq [20].

It is easy to see that, for any fixed prime p, ged(asas(as — a2),(p — 1)p) < 2 for
a positive density subset of (as,a3) € N2. (Simply pick as and a3 to avoid certain
arithmetic progressions depending on p and the divisors of p —1.) So one can argue that
a large fraction of trinomials over Z have O(,/p) roots in F), and, via Lemma 2.18, O(,/p)
roots in Q,. Apropos of this paucity of roots for “most” exponents, let us recall a useful
trick that will allow us to significantly reduce the degree of a large fraction of trinomials
over [F,: Via a fast algorithm for the Shortest Lattice Vector Problem in 72 (see, e.g.,
[24]), one can prove the following result:

Lemma 6.15. [12, Special Case of Lemma 1.11] Given any prime p, and as,as € N with
0 <az <az <p-—1andr = ged(az,as,(p — 1)p), one can find within logo(l)p bit
operations an integer e such that for oll i € {2,3}, ea; = m; mod p — 1 and |m;| <
rv2p—-1). N

Proof of Corollary 1.4. We follow the template of the proof of Theorem 1.1, save for some
key differences. The first difference is that, under our assumptions, we can compute the
tree 7, 1 (f) faster via Corollary 6.10 instead of Lemma 6.9. We then need to compute
the non-degenerate roots of all the nodal polynomials, so the next key difference is that
we can use the degree reduction of Lemma 6.15 to speed up this up at the root node.
(The remaining nodes receive no further speed-up unless randomization is used.)

So we merely need to recompute our complexity bounds. Recall that D denotes the
depth of the tree 7T, 1(f), and v is the number of children of the root node (which
for k sufficiently large, is the number of degenerate roots of f) We note the changes
to the complexity of Algorithm 6.12 below, in both the restricted root case (where we
only seek root of the form p/ + O(p’T!)) and the small ged case (where we assume

ged(azaz(az — az), (p — 1)p) < 2):



J.M. Rojas, Y. Zhu / Journal of Number Theory 241 (2022) 655-699 695

A. Step 4 can be sped up to deterministic time
O(log® (p) log log(p) + log(max{d, p}) log(log max{d, p})
+ log(max{p, H})log(log max{p, H}))
in the restricted root case; or deterministic time
O(p'/?log?(p) + log(max{d, p})log(log max{d, p})
+log(max{p, H}) log(log max{p, H})),
or Las Vegas randomized time
0] (log2+°(1) (p) + log(max{d, p}) loglog max{d, p})

+ log(max{H, p}) loglog max{H, p})
in the small ged case.

B. Step 5 can be sped up to deterministic time
O((p + log ) log(dp) log(log(dp)) + plog® (p) log log(p)
+ D[k log(p) log(klog p) log(d) + log H] + log(H ) log(dpH ) loglog(dpH)),
in both cases. If f has a degenerate root in C; then we can further speed up both
cases to Las Vegas randomized time
O(logi(dH) log(log(dH)) + log? (p) log(log p) + log(dpH ) loglog(dpH)).

C. We replace Step 6 of Algorithm 6.12 with the following:

6’: By computing deg gcd(fiyg, xP — ) for the non-root nodal polynomials of T, k(f), and
factoring a degree-reduced version of f (if needed), determine which nodal polynomials
have non-degenerate roots in IF,.

This modified step takes deterministic time O(D log(p) log log p) in the restricted root
case; or deterministic time O(plog?(p) + D log(p) loglogp) or Las Vegas randomized
time O(p3/4 logHo(l)(p) + Dlog(p) loglogp) in the small ged case.

D. Step 7 can be sped up to deterministic time p'/2 10g2+°(1) p or Las Vegas randomized

2+0(1)

time log p, in both cases.

We now explain Changes A-D.

A. In the restricted root case, we merely need to evaluate f and f’ at 1, so our first
bound is clear.

In the small ged case, the number of degenerate roots is at most 2 thanks to our ged
assumption and Lemma 5.4. So instead of employing Algorithms 2.22 or 2.24, we simply
find the degenerate roots by factoring, using either the fast deterministic algorithm from
[55] or the fast Las Vegas randomized factorization algorithm from [34].

B. The complexity bounds follows by applying Corollary 6.10 instead of Lemma 6.9,
ultimately yielding O(p?log*(dH) logz(d) log(plog(dH))) via Corollary 6.6 and Theo-
rem 1.6. As noted in Remark 6.11, our current bounds for k& and D obstruct any Las
Vegas speed-up for Step 5 (in the non-degenerate case).
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C. The deterministic speed-ups follow from the complexity analysis of Algorithm 6.12,
in the proof of Theorem 1.1, simply by setting v = 2 in the bound there. Note also that
in the restricted root case, there is no need to search for any roots of f since we only
care about most significant digit 1: We merely need to evaluate f and f "at 1.

To get our Las Vegas speed-up, we replace the brute-force search for degenerate
roots of f with a targeted factorization: First build a degree-reduced version of f via
Lemma 6.15 to apply the automorphism of F, defined by = ~ z° to replace f by
g(z) == f(xe), and compute €’ := 1/e mod p— 1, in deterministic time logo(l) p. This re-
duces deg f to deg g < 24/ 2(p — 1). To find the roots of fin [ we can then find the roots
of g in IF; by using the Kedlaya-Umans factorization algorithm [34], take the ¢’th powers

mod p of these roots, and then identify which of these roots of f is a degenerate root
found earlier. This takes time (21/2(p — 1))5 log! ™M (p) + 1og@M) p = p3/410g! oM p,

Since v < 2 in both cases, the remaining multinodal gcd computation takes additional
deterministic time O(D log(p) loglog p).

D. Since we already found the non-degenerate roots of f in F, in Step 6, we merely need
to speed up finding the non-degenerate roots in IF;,, of the remaining nodal polynomials:
We already observed in the proof of Theorem 1.1 that there are O(r) nodes having a
ﬁ-yg possessing a non-degenerate root. But v < 2 in both cases, so we only need to worry
about O(1) nodes. So our proof of Theorem 1.1 already implies a deterministic speed-
up to O(p/?log® p) (for O(1) applications of Shoup’s deterministic factoring algorithm
[55]), in both cases.

However, if we replace Shoup’s algorithm with the fast randomized factorization algo-
rithm from [34], then we can speed Step 7 up to Las Vegas randomized time log2+°(1) P
in both cases.

To conclude, we see that Step 5 dominates the deterministic complexity in both cases
(restricted root and small ged), and wipes out any Las Vegas speed-up unless better
boundsfor £ and D are available. Summing our complexity estimates, we obtain our
desired bounds. W

An immediate consequence of our last proof — if we can apply the sharper bounds for
D and k from the degenerate cases of Theorem 1.6 and Corollary 6.6 — is the following

combined speed-up:

Corollary 6.16. If the trinomial f € Z[x] has a nonzero degenerate root in C, then we
can speed up the Las Vegas complexity bound of Corollary 1.7 to

log® oM (p) + log® oM (dH) log,, d (in the restricted root case)
or

p**log W (p) + log? oM (dH) log, d (in the small ged case). W
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