MATHEMATICS OF COMPUTATION

Volume 90, Number 331, September 2021, Pages 2161-2184
https://doi.org/10.1090/mcom/3647

Article electronically published on June 18, 2021

SMOOTHED ANALYSIS FOR THE CONDITION NUMBER
OF STRUCTURED REAL POLYNOMIAL SYSTEMS

ALPEREN A. ERGUR, GRIGORIS PAOURIS, AND J. MAURICE ROJAS

ABSTRACT. We consider the sensitivity of real zeros of structured polynomial
systems to pertubations of their coefficients. In particular, we provide explicit
estimates for condition numbers of structured random real polynomial systems
and extend these estimates to the smoothed analysis setting.

1. INTRODUCTION

Efficiently finding real roots of real polynomial systems is one of the main ob-
jectives of computational algebraic geometry. There are numerous algorithms for
this task, but the core steps of these algorithms are easy to outline: They are some
combination of algebraic manipulation, a discrete/polyhedral computation, and a
numerical iterative scheme.

From a computational complexity point of view, the cost of numerical iteration
is much less transparent than the cost of algebraic or discrete computation. This
paper constitutes a step toward understanding the complexity of numerically solving
structured real polynomial systems. Our main results are Theorems 1.14, 1.16, and
1.18 but we will first need to give some context for our results.

1.1. How to control accuracy and complexity of numerics in real algebraic
geometry? In the numerical linear algebra tradition, going back to von Neumann
and Turing, condition numbers play a central role in the measurement of speed and
the control of accuracy of algorithms (see, e.g., [2,3] for further background). Shub
and Smale initiated the use of condition numbers for polynomial system solving
over the field of complex numbers [26,27]. Subsequently, condition numbers played
a central role in the solution of Smale’s 17th problem [1,3,17].

The numerics of solving polynomial systems over the real numbers is more sub-
tle than complex case: small perturbations can cause the solution set to change
cardinality. One can even go from having no real zero to many real zeros by an
arbitrarily small change in the coefficients. This behaviour doesn’t appear over
the complex numbers as one has theorems (such as the Fundamental Theorem of
Algebra) proving that root counts are “generically” constant. Luckily, a condition
number theory that captures these subtleties was developed by Cucker [6]. Now we
set up the notation and present Cucker’s definition.
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2162 ALPEREN A. ERGUR ET AL.

Definition 1.1 (Bombieri-Weyl norm). We set z® := z{* - 2% where a :=
(a1,...,05), and let P = (p1,...,pn—1) be a system of homogenous polynomi-
als with degree pattern di,...,d,—1. Let ¢; o denote the coefficient of z* in a p;.

We define the Bombieri- Weyl norms of p; and P to be, respectively,

A 2
= ¥ 1

ay+-tan=d;

and

1Pllw =

n—1
Sl o
i=1

The following is Cucker’s condition number definition [6].

Definition 1.2 (Real condition number). For a system of homogenous polynomials
P = (p1,...,pn—1) with degree pattern (d,...,d,—1), let A,,_1 be the diagonal

matrix with entries v/dq,...,\/d,_1 and let
DP(z)|p,gn—1 : TSt — R™

denote the linear map between tangent spaces induced by the Jacobian matrix of
the polynomial system P evaluated at the point z € S™~ 1.

The local condition number of P at a point x € S*~ ! is

P
I IPly
_ - 2

\/ |PP@Iz g0 Auca]| + IP@)IS

and the global condition number is

R(P):= sup R(P,z).
zesSn—1

An important feature of Cucker’s real condition number is the following geomet-
ric fact[9)].

Theorem 1.3 (Real condition number theorem). We use Hp to denote the vector
space of homogenous polynomial systems with degree pattern (dy,...,dn—1), and
equip this space with the metric p(.,.) induced by the Bombieri-Weyl norm. We
define the set of ill-posed problems to be:

¥ :={P € Hp : P has a singular zero in S" *}.
Then we have

T
P =)

Cucker’s condition number is used in the design and analysis of a numerical algo-
rithm for real zero counting [8-10], in the series of papers for computing homology
groups of semialgebraic sets [4,5,11], and more recently in the analysis of a well-
known algorithm for meshing curves and surfaces (the Plantinga-Vegter algorithm)
[7].

One important observation is that the complexity of a numerical algorithm over
the real numbers (imagine using bisection for finding real zeros of a given univariate
polynomial) varies depending on the geometry of the input, and not just the bit
complexity of its vector representation. Therefore it is more natural to go beyond
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worst-case analysis and seek quantitative bounds for “typical” inputs. We now
explain the existing attempts toward mathematically modeling the intuitive phrase
“typical input”.

Random and adversarial random models. Worst-case complexity theory,
spearheaded by the P vs. NP question, has been a driving force behind many
algorithmic breakthroughs in the last five decades. However, it has become clear
that worst-case complexity theory fails to capture the practical performance of al-
gorithms. The unreasonable effectiveness of everyday statistical methods is a case
in point: the spotify app on cell phones solves instances of an NP-Hard problem all
the time!

Two dominant paradigms for going beyond the worst-case analysis of algorithms
are as follows: Assume an algorithm T operates on the input z € R¥, with the
cost of output T(z) bounded from above by C(z). One then equips the input
space R¥ with a probability measure y and considers the average cost E,n,,C(z),
or smoothed analysis of the cost with parameter § > 0: sup,cpr Ey~,Cla+4 ||z] v).
Clearly, as § — 0, smoothed complexity recovers worst-case complexity, and when
§ — 0o we recover average-case complexity. It is also clear that to have a realistic
complexity analysis, one should have a probability measure p that somehow reflects
one’s context, and use theorems that allow a broad class of measures p. The idea
of smoothed analysis originated in work of Spielman and Teng [28].

1.2. Existing results for average and smoothed analysis. Existing results for
the average analysis of real condition number from [10] can be roughly summarized
as follows.

Theorem 1.4 (Cucker, Krick, Malajovich, Wschebor). Suppose

pi(z) = Z g™ i=1,....n—1
ai+...ta,=d;

are random polynomials where cgf) are centered Gaussian random variables with
variances (’i‘) Then, for the random polynomial system P = (p1,...,pn—1) and

for allt > 1, we have

" 1+1 3
P{&(P) > 8d#n5/2N1/2} < (L log(®) ig(t))z,

where d = max; di and N = 3377 ("),

Recall the following smoothed analysis type result from [9]:

Theorem 1.5 (Cucker, Krick, Malajovich, Wschebore). Let Q be an arbitrary
polynomial system with degree pattern (dy,...,dn—1), let P = (p1,...,pn-1) be a
random polynomial system as defined above. Now for a parameter 0 < § < 1 we
define a random perturbation of Q with (P,0) as follows: G := Q+06 ||Q|y, P. Then
we have

13 2d2n+2N 1

P {F;(G) > tni} <2
1 t

Remark 1.6. The randomness model considered in these seminal results has the
following restriction: the induced probability measure is invariant under the action

of the orthogonal group O(n) on the space of polynomials. The proof techniques
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used in the papers seem to be only applicable when one has this group invari-
ance property. This creates an obstruction against anaylsis on spaces of structured
polynomials; spaces of structured polynomials are not necessarily closed under the
action of O(n), and hence do not support an O(n)-invariant probability measure.

1.3. What about structured polynomials? Let H,, be the vector space of
homogenous polynomials with n variables, and let Hp be the vector space of poly-
nomial systems with degree pattern D = (dy,...,d,—1). Let E; C Hg, be linear
subspaces for i = 1,...,n — 1, and let F = (Fy,...,E,_1) be the corresponding
vector space of polynomial systems.

For virtually any application of real root finding algorithms, the user has a
polynomial system with a particular structure rather than a generic polynomial
system with N =37, | (”Jrjf*l) many coefficients. Suppose a user has identified
the linear structure E that is present in the target equations, and would like to
know about how much precision is expected for round-off errors in the space E. One
could induce a probability measure 1 on E and use Ep., log ((P)) to determine
the expected loss of precision in the numerical solutions. What could go wrong?

Example 1.7. Let u,v € S ! be two vectors with u_Lv, and define the following
subspaces:

E;,:={pe Hy, :p(u) =(Vp(u),v)=0},i=1,...,n—1,

where Vp(u) denotes the the gradient of p evaluated at u. F; are codimension 2 lin-
ear subspaces of Hy,. Now consider the space of polynomials E := (E1,...,E,_1);
any polynomial system in the space F has a singular real zero at u. Hence, for all
P € E the condition number #(P) is infinite.

The preceding example illustrates that, for certain linear spaces E, the prob-
abilistic analysis of condition numbers is meaningless: It is possible for certain
spaces E that all inhabitants have infinite condition number. We will rule out
these degenerate cases as follows.

Definition 1.8 (Non-degenerate linear space). We call a linear space E; C Hy,
non-degenerate if for all v € S"~1, there exists an element p; € E; with p;(v) # 0.
In other words, F; is non-degenerate if there is no base point v € S"~! where
all the elements of E; vanish all together. We call a space of polynomial systems
E = (Ey,...,E,_1) non-degenerate if all F; are non-degenerate fori =1,...,n—1.
o

An easy corollary of Theorem 1.14 shows that the expected precision is finite for
any non-degenerate space F.

Corollary 1.9. Let E C Hp be a non-degenerate linear space of polynomials. Let
u be a probability measure supported on the space E that satisfies the assumptions
listed in Section 1.5. Then Ep., log (R(P)) is finite.

This is clearly not the end of the story: a non-degenerate linear structure £ may
still be close to being degenerate, and this would make every element in the space
F ill-conditioned. So we need to somehow quantify the numerical conditioning of a
linear structure E. Next, we introduce the notion of dispersion as a rough measure
of conditioning of a linear structure.
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1.4. The dispersion constant of a linear space. Suppose a linear subspace
F C Hyg is given for some d > 1 together with an orthonormal basis u;(z) , j =
1,...,m with respect to Bombieri-Weyl norm. Now suppose for a particular point
vp € S"! all the basis elements satisfy |u;(vg)| < € where € > 0 is small. What
kind of behavior one would expect from elements of F' at the point vg? This point
vo would behave like a base point (like if all elements of F' vanishes at vg) unless
one employs rather high precision. This motivates Definition 1.10.

Definition 1.10 (Dispersion constant of a linear space of polynomials). Let F' C
Hyg is given for some d > 1, and let u;(z), j = 1,...,m be an orthonormal basis
of F with respect to Bombieri-Weyl norm. We define the following two quantities

2 2
i (F) = mi (v)? , F):= ma i(v)?
Tmin(F) vensl,{}ll ;uj (v) Omaz(F) yénsnjgl Zj:uj (v)
and the dispersion constant o(F") is their ratio:
Uma;v(F)
F)yi=——"+=.9
U( ) Umzn(F)

The quantity o4, is introduced to make things scale invariant. We generalize
the definition to polynomial systems in a straight-forward manner.

Definition 1.11 (Dispersion constant of a linear space of polynomial systems).
Let FE; C Hy, be linear spaces fori =1,...,n—1,and let £ = (E,...,E,_1). We
define the dispersion constant o(E) as follows: o(FE) := max; o(E;). ¢

Our estimates replace the dimension N in earlier results with the (potentially
much smaller) dimension of F, at the expense of involving the new quantity o(FE).
So if a user has a fixed structure F with small dimension and tame dispersion
constant, then the expected conditioning on E admits a much better bound than
what earlier results suggest. On the other hand, if one has a sparse but highly
sensitive structure, the resulting average-case conditioning could be a lot worse
than the average over the entire space Hp.

How big is the dispersion constant? To better understand the dispersion con-
stant, let us consider two examples at opposite extremes.

Example 1.12 (A subspace with minimal dispersion constant). Consider sub-
spaces of polynomials F; C P, 24, defined as the span of

u,(;l) =@+t a?)i g for 1 < k1 <n
and let F' = (F,...,F,). It is easy to show that o(F) = 1.

Example 1.13 (A sparse but highly sensitive structure). Let E C P, 4 be the
subspace of polynomials spanned by the monomials x¢,...,2%. Then, we have
o(E) = n'z.

One may wonder how big the dispersion constant for a “typical” linear space E
is, for say, E of dimension around n?logd. Would a typical low-dimensional space
look like the second example or the first example? We address this question in the
Appendix. For our main theorems, we will allow E to be arbitrary and give bounds
depending explicitly on the the dispersion constant o(E).
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1.5. A general model of randomness for structured polynomial systems.
In our precursor paper [13] we obtained probabilistic condition number estimates
for general measures (without any group invariance assumption). In this paper we
present probabilistic results for the same general family of measures, but this time
supported on a structured space E instead of Hp. Note that here the structured
space F will be fixed by the user, and our results will give estimates for a random
element from E. First, we introduce our general model of randomness.

We say a random vector X € R"™ satisfies the Centering, sub-Gaussian, and
Small Ball properties, with constants K and cg, if the following hold true:

1. (Centering) For any 6 € S"~! we have E(X,0) = 0.!

2. (Sub-Gaussian) There is a K > 0 such that for every § € S"~! we have

Prob (|(X,0)| > ¢) < 2¢"/K" for all ¢ > 0.
3. (Small Ball) There is a ¢g > 0 such that for every vector a € R™ we have
Prob (|(a, X)| < e lally) < coe for all € > 0.

We note that these three assumptions directly yield a relation between K and cg:
1

We in fact have Kcg > 7 (see [13] just before Section 3.2). Moreover, for a random
variable X that satisfies above assumptions with constants K and c,, and a scalar
A > 0, the random varible AX satisfies the above assumptions with constants AK
and A '¢y. In other words Kcg is invariant under scaling, hence one can hope for
a universal lower bound of %.

Random vectors that satisfy these three properties form a large family of dis-
tributions, including standard Gaussian vectors and uniform measures on a large
family of convex bodies called Wo-bodies (such as uniform measures on l,-balls for
all p > 2). We refer the reader to the book of Vershynin [30] for more details.
Discrete sub-Gaussian distributions, such as the Bernoulli distribution, also satisfy
an inequality similar to the Small Ball inequality in our assumptions. However, the
Small Ball type inequality satisfied by such discrete distributions depends not only
on the norm of the deterministic vector a but also on the arithmetic structure of a.
It is possible that our methods, combined with the work of Rudelson and Veshynin
on the Littlewood-Offord problem [22], can extend our main results to discrete dis-
tributions such as the Bernoulli distribution. In this work, we will content ourselves
with continuous distributions.

The preceding examples of random vectors do not necessarily have independent
coordinates. This provides important extra flexibility. There are also interest-
ing examples of random vectors with independent coordinates. In particular, if
X1,...,X,, are independent centered random variables that each satisfy both the
sub-Gaussian inequality with constant K and the Small Ball condition with cg,
then the random vector X = (Xi,...,X,,) also satisfies the sub-Gaussian and
Small Ball inequalities with constants C; K and Cscy, where Cy and Cy are uni-
versal constants. This is a relatively new result of Rudelson and Vershynin [24].
The best possible universal constant Cy is discussed in [19,21]. To create a ran-
dom variable satisfying the Small Ball and sub-Gaussian properties one can, for
instance, start by fixing any p > 2 and then considering a random variable with
density function f(t) := cpe*‘”p, for suitably chosen positive cp.

1Equivalently, EX =O.
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1.6. Our results. We present estimates for random structured polynomial sys-
tems, where the randomness model is the one introduced in the preceding section.

Average-case condition number estimates for structured polynomial sys-
tems.

Theorem 1.14. Let E; C Hy, be non-degenerate linear subspaces, and let E =
(E1,...,En_1). Assume dim(E) > nlog(ed) and n > 3. Let p; € E; be in-
dependent random elements of E; that satisfy the Centering Property, the sub-
Gaussian Property with constant K, and the Small Ball Property with constant

co, each with respect to the Bombieri-Weyl inner product. We set d := max; d;
and M := nK.\/dim(E)(coCKd?log(ed)o(E))*"=2, where C > 4 is a universal
constant. Then for the random polynomial system P = (p1,...,Pn—1), we have

3t_% ;if 1<t< e2n10g(ed)

P > <
PI‘Ob(fi(P) = tM) = {(62 + 1)t*%+m ,Zf einog (ed) <t

Moreover, for 0 < ¢ < & — m, we have E(R(P)?) < M9(1 + 4qlog(ed)). In

particular, Elog(R(P)) < 1+ log M.

Smoothed analysis for structured polynomial systems. For smoothed anal-
ysis we need to introduce a slightly stronger assumption on the random input. This
slightly stronger property is called the Anti-Concentration Property and it replaces
the Small Ball assumption in our model of randomness. We will need a bit of
terminology to define anti-concentration.

Definition 1.15 (Anti-Concentration Property). For any real-valued random vari-
able Z and t > 0, the concentration function, F(Z,t), is defined as F(Z,t) =
maxyer Prob{|Z —u| < t}. Let (-, -) denote the standard inner product on R™. We
then say a random vector X € R"™ satisfies the Anti-Concentration Property with
constant cq if we have F((X,0),e) < coe for all § € S"71. o

It is easy to check that if the random variable Z has bounded density f then
F(Z,t) < | flloot- Moreover, the Lebesgue Differentiation theorem states that upper
bounds for the function ¢t~ F(Z,t) for all ¢ imply upper bounds for || f||~. See [23]
for the details.

Theorem 1.16. Let E C Hp be a non-degenerate linear subspace for D = (dy, ...,
dn_1). Assume dim(E) > nlog*(ed) and n > 3. Let Q € E be a fived (determin-
istic) polynomial system let G € E be a random polynomial system given by the
same model of randomness as in Theorem 1.14, but with the Small Ball Property
replaced by the Anti-Concentration Property. Set d := max; d;, and

M := nK+/dim(E) (cod*CK log(ed)a(E))*" (1+ %) o

where C' > 4 is a universal constant. Then for the randomly perturbed polynomial
system P = Q + G, we have
3t7% : Zf 1<t< e2nlog (ed)

- > < .,
Prob(/(P) > tM) < {(62 + 1)t—%+m ;ifeznlog(Ed) <t.
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Moreover, for 0 < g < % — we have

E(&(P)?) < M?(1 + 4qlog(ed)).
In particular, Elog(&(P)) < 1+log M.
We would like to consider a corollary to make the result easier to parse.

Corollary 1.17. Let E C Hp be a non-degenerate linear subspace for D =
(di,...,dn_1). Assume dim(E) > nlog(ed)? and n > 3. Let Q € E be a fized
(deterministic) polynomial system, and let G € E be a random polynomial system
given by the model of randomness as in Theorem 1.16, but with fited K = 1. Now
let 0 < d <1 be a parameter and consider the polynomial system

Pi=Q+dQly G.

We set d := max; d;, and

2n—1
M := n\/dim(E) (ceCd>log(ed)a (E))*" > 5|Q] vy (1 + m> ,

where C > 4 is a universal constant. Then, we have

3t7% ,Zf 1<t< e2nlog (ed)

Prob(R(P) 2 tM) < {(62 + 1)t_%+_410g1(e_d) sif e2nlog(ed) < ¢

An interesting consequence. As a corollary of the smoothed analysis estimate
in Theorem 1.16, we derive the following structural result.

Theorem 1.18. Let E; C Hy, be non-degenerate linear subspaces, let E = (Eq,. ..
yEn_1), and let Q € E. Then, for every 0 < € < 1, there is a polynomial system
P. € E with the following properties:

dim(E
1P~ Qlly §5||Q|W< im )>

log(ed)y/n

and

2 og(ed)o 2n—2
R(P.) < v/ny/dim(E) (M)

3

for a universal constant C'.

One can view this result as a metric entropy statement as follows: Suppose we
are given a bounded set T C E with suppcy ||Plly, < 1, and we would like to
cover T with balls of radius 6, i.e., T = |J, B(ps,0). Moreover, suppose we want
the ball-centers p; to have a controlled condition number. We can start with an

arbitrary § covering T = J; B(pi, 5), and use Theorem 1.18 with £ = oA to

find a p; with controlled condition number in each one of the balls B(p;, %) Then
T =, B(pi, 9) gives a d-covering of T where p; has controlled condition number.

2. BACKGROUND AND BASIC ESTIMATES

We first present a simple lemma for a single random polynomial.
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Lemma 2.1. Let F C Hy be non-degenerate linear subspace of degree d homogenous
polynomials. We equip F with Bombieri-Weyl norm. Suppose p € F is a random
element that satisfies Centering Property, sub-Gaussian Property with constant K,
and small probability with constant c, each with respect to Bombieri inner product.
Then for all w € S™~! the following estimates hold:

2
Prob ([p(w)] > tomax(F)) < exp (1 - %)
Prob (|p(w)| < eomin(F)) < cpe.

Proof. Suppose u1, ..., U, is an orthonormal basis of F' with respect to Bombieri-

Weyl inner product. Let f € F be a polynomial with f(z) = >, fiu;(x), then

for any v € S"7!, clearly f(v) = >, a;ui(v). In other words, if we set g, =

> ui(v)ui(x) then we have f(v) = (f,q,)w. Also note since u; is an orthonormal
1

basis with respect to Bombieri norm, we have [|g, ||y, = (3, ui(v)?) 2.

Now let p € E’ be the random element described above. The reasoning in the
preceding paragraph gives us the following estimates for any fixed point v € S"~1:

t2
Prob (p(0)] = tllaulhy) < o0 (1~ 45
Prob (Ip(u)] < ¢ lully) < coc.

By the definition of oyax(F') and omin(F) these pointwise estimates yield the desired
result. [ |

The following is the generalization of Lemma 2.1 to systems of polynomials.

Lemma 2.2. Let D = (dq,...,d,—1) EN""L. Forallie{l,...,n—1} let E; C Hy,
be non-degenerate linear subspaces, and let E := (Ey,...,E,_1). For each i, let
p; be chosen from E; via a distribution satisfying the Centering Property, the Sub-
Gaussian Property with constant K, and the Small Ball Property with constant
co (each with respect to the Bombieri-Weyl inner product). Then, for the random
polynomial system P = (p1,...,pn_1), and all v € S~ the following estimates
hold:

K2
and  Prob (|[P(v)|ly < e0min(E)vVn — 1) < (azeoe)™
where a1 and as are absolute constants.

Prob (| P(v) ]y > tomax(E)v/n — 1) < exp (1 _at?(n-1) )

For the proof of Lemma 2.2 we need to recall some theorems from probability
theory and some basic tools developed in our earlier work [13]. These basic lem-
mata will also be used throughout the paper. We start with a theorem which is
reminiscent of Hoeffding’s classical inequality [14].

Theorem 2.3 ([32, Prop. 5.10]). There is an absolute constant ¢ > 0 with the
following property: If X1, ..., X, are centered, sub-Gaussian random variables with
constant K, a = (ay,...,a,) € R and t > 0, then

—cpt?
Prob a; X;| >t] <2exp| —= | . |
<Z o ) <K2|a||§>

We will also need the following standard lemma (see, e.g., [22, Lemma 2.2]).
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2170 ALPEREN A. ERGUR ET AL.

Lemma 2.4. Assume Z1,...,Z, are independent random variables that have the
property that F(Z;,t)) < cot for all t > 0. Then for t > 0 we have F(W,t\/n) <
(ccot)™, where W = |[(Zy, ..., Zy)||2. Moreover, if &1, ...,&, are independent ran-

dom variables such that, for every e > 0, we have Prob (|¢;| <€) < cpe. Then there
is a universal constant ¢ > 0 such that for every € > 0 we have

Prob <\/§f+~-~+§,3§5\/g) < (Gcoe)" . [ ]

Now that we have our basic probabilistic tools we proceed to deriving some
deterministic inequalities.

Lemma 2.5 was proved in our earlier paper [13], generalizing a classical The-
orem of Kellog [15]. To state the lemma we need a bit of terminology: For any
system of homogenous polynomials P := (p1,...,pp—1) € (R[z1,...,2,])" " define

| Pl = supgegn-1 Z?;ll pi(x)2. Let DP(x) denote the Jacobian matrix of the
polynomial system at point x, let DP(z)(u) denote the image of the vector u un-
der the linear operator DP(x), and set ||D(1)PHOo = sup, yegn-1 [[DP()(u)|l,-

(Alternatively, the last quantity can be written sup,, ,cgn-1 \/Z;:ll (Vpi(x),u)2.)

Lemma 2.5. Let P:= (p1,...,pn_1) € (R[x1,...,2,])" ! be a polynomial system
with p; homogenous of degree d; for each i and set d:=max; d;. Then:
(1) We have ||D(1)PHOo < d*||P||, and, for any mutually orthogonal x,y €
Sn=1 we also have | DP(z)(y)||l, < d||P]| .-
(2) If deg(p;) = d for all i € {1,...,n — 1} then we also have ||D(1)P||Oo <
d||P| - |

The final lemma we need is a discretization tool for homogenous polynomial sys-
tems that was developed in [13] based on Lemma 2.5. We need a bit of terminology
to state the lemma.

Definition 2.6. Let K be a compact set in a metric space (X, d), then a set A C K
with finitely many elements is called a §-net if for every x € K there exists y € A
with d(z,y) < 9. ¢

For the unit sphere in R™, equipped with the standard Euclidean metric, there
are known bounds for the size of a §-net. We recall one such bound below.

Lemma 2.7. Let S™~! be the unit sphere in R™ with respect to standard Euclidean
metric. Then for every § > 0, there exist a §-net N' C S™~ ! with size at most
2n(1+ 2)" 1

Lemma 2.7 is almost folklore: a proof appears in Proposition 2.1 of [23].

Lemma 2.8. Let P = (p1,...,pn—1) be a system of homogenous polynomials p;
with n variables and deg(p;) = d;. Let N be a 6-net on S"~1. Let maxpy(P) =
sup,en |PW)lly and || Pl = sup,egn—1 [|[P(x)[|y. Similarly let us define,

max (D) P) = sup HD(k)P(l’)(UL e 7Uk)H

NE+1 T,UY ey ukGN 2

and HD(k)PH = sup D(k)P(aj)(ul,...,uk)H
oo T

UL, U €STTL 2
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Then

(1) When deg(p;) = d for all i € {1,...,m} we have |P| < mﬁ;,\&gp) and
k max, k41 (DUC)P)
ID®P|, < =550
(2) When max;{deg(p;)} < d we have ||P|, < mi‘f;’zl’z(éj) and
k max, k41 (DUC)P)
ID®P|, < =525 e -
Proof of Lemma 2.2. We begin with the first claim. Using Lemma 2.1 and the fact
that omax(E) > omax(E;) for all ¢, we get the following estimate for any p; € E;
and w € S"L:

2
Prob (|p;(w)| > somax(E)) < exp (1 - ﬁ) .

Now let a = (a1,...,a,-1) € R"! with ||al|, = 1, and apply Lemma 2.3 to the

sub-Gaussian random variables i(ifl)ﬂ)

-2
Prob ( Zaipi(w) > samaX(E)> < exp (1 - C;{—Z) :

Observe that || P(w)||, = max,egn—2 |{a, P(w)})|. For any fixed point w € S~ and
a free variable a € R™, we have that (a, P(w)) is a linear polynomial on a. We then
use Lemma 2.8 on this linear polynomial, which gives us the following estimate:

~ o2
prob (12wl > 222 < ey (1- 5.

and the vector a. We then get

1-9 K?
We then use Lemma 2.7 to control the cardinality of the d-net and get

)

|N| < 2n(1 + g)nfl < 6(nfl)élog(%)

for some absolute constant ¢. So we set t = 2sv/n—1, § = %, and obtain the
following estimate for some universal constant a;:

ait’(n —1)
Prob (||P(w)]|y > tomax(E)Vn — 1) <exp (1 - — )
We continue with the proof of the second claim. Using Lemma 2.1 and the fact
that omin(E) < omin(F;) for all i, we deduce the following estimate for all p; and

for any € > 0:
Prob < %‘ < 5) < ¢pe.
Using Lemma 2.4 on the random variables Up %(72,])3) ’ gives the following estimate:

Prob (|| P(w)]y < £0min(E)vVn — 1) < (éxc0e)" .
]

3. OPERATOR NORM TYPE ESTIMATES

In this section we will estimate the absolute maximum norm of a random poly-
nomial system on the sphere. Recall that for a homogenous polynomial system
P = (p1,...,pn—1) the sup-norm is defined as || P|| = sup,cgn-1 [|[P(2)]|,. Lemma
3.1 is our sup-norm estimate for a random polynomial system P.
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Lemma 3.1. Let D = (dy,...,d,—1) be a vector with positive integer coordinates,
let B; C Hy, be full linear subspaces, and let E = (Ey,...,E,_1). Let p; € E; be
independent random elements of E; that satisfy the Centering Property, the Sub-
Gaussian Property with constant K, and the Small Ball Property with constant cg,
each with respect to Bombieri- Weyl inner product. Let N be a 5-net on S?~1. Then
for P = (p1,...,pn-1) we have

Prob (s [P0l > toms ()Y ) < Wlenp (1- 7).

where a1 is a universal constant. In particular, for d = max; deg(p;), 6 = and

t = slog(ed) with s > 1 this gives us the following estimate

azs’*nlog(ed)?
K2 ’

1
3d2 )

Prob (||P|| o = somax(E)v/nlog(ed)) < exp <1 -

where az is a universal constant.

Proof. The first statement is proven by just taking a union bound over N and using
Lemma 2.2. The second part of the statement immediately follows by using the
first part and Lemma 2.8. |

4. SMALL BALL TYPE ESTIMATES

We define the following quantity for later convenience.

_ 2
Lz, y) = /|| AR DO P@)@)|2 + [ P@)IE
It follows directly that

P .
L — 1Py (Pa) 2 + [P = inf L)
yla
yesn1
So we set L(P,z) = ;!Z!;V) and L(P) = mingcgn-1 L(P,2). We then have the

following equalities:

_ _ IPllw
L(P,z) = 1nf L(z,y), k(P,x)= L(P.1)
yeS" B

and, finally

. 1Pl

P)=—".

In this section, we prove a Small Ball type estimate to control behavior of the

denominator L(p). We first need to recall a technical lemma from our earlier paper
[13], which builds on an idea of Nguyen [20].

Lemma 4.1. Let n > 2, let P := (p1,...,Pn-1) be a system of n-variate ho-
mogenous polynomials, and assume |P||, < v. Let z,y € S™' be mutually or-
thogonal vectors with L(z,y) < «, and let r € [=1,1]. Then for every w with
w =z + Bry + B2z for some z € BY, we have the following inequalities:
(1) If d == max; d; and 0 < 8 < d~* then |P(w)|[5 < 8(a® + (2 + e*)51d*~?).
(2) Ifdeg(p;) =d for alli € [n—1] and 0 < B < d~? then
IP(w)]l; < 8(a” + (24 ') 5*d*). u
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We also need to state and prove the following simple Lemma for the clarity of
succeeding proofs.

Lemma 4.2. Let n > 1 be an integer. Then for 0 < x < % we have (14 x)" <
14 3nz.

Proof. For every 0 < y < 1 we have 1 + 3y > €Y. This can be seen by setting
f(y) =1+ 3y — e, observing f (y) > 0 for all 0 < y < 1 and f(1) > 0, f(0) = 0.
With a similar reasoning one can prove e > 1+ z, and hence ™ > (1 + z)" for
all 0 < z < 1. Using y = nx completes the proof. |

Theorem 4.3. Let D = (dy,...,d,—1) be a vector with positive integer coordinates,
let E; C Hy, be full linear subspaces, and let E = (Ey,...,E,_1). Let p; € E; be
independent random elements of E; that satisfy the Centering Property, the Sub-
Gaussian Property with constant K, and the Small Ball Property with constant cq,
each with respect to Bombieri-Weyl inner product. Let v > 1, d := max; d;, and
assume o < min{d=8,n=1}. Then for P = (p1,...,pn_1) we have

) c d2’}/C n—1
Prob(L(P) < @) < Prob (|| Pl 2 7) + cav/n (ﬁm> ’

where C is a universal constant.

The proof of Theorem 4.3 is similar to a proof in our earlier paper [13]. We
reproduce the proof here due to the importance of Theorem 4.3 in the flow of our
current paper.

Proof. We assume the hypotheses of Assertion (1) in Lemma 4.1: Let o,y > 0 and
B<d™* Let B: ={P|||P|l <~} and let

L:={P|L(P) < a} = {P | There exist z,y€ S" " with x 1 y and L(z,y) < a}.

Let I := 8(a? + (2 + ¢*)p*d*y?) and let BY denote the unit fo-ball in R™.
Lemma 4.1 implies that if the event B N L occurs then there exists a non-empty
set

Viy ={weR" :w=ux+pry+pBz,x Ly, |r| <1,z Ly z€ By} \ By
such that ||P(w)||3 < T for every w in this set. Let V := Vol(V,,). Note that
for w € V., we have ||w||§ = Hx—|—522H; + ||By\|§ < 1+ 4p2%. Hence we have

lwl|l, <14 282 Since V., C (1 +28?)By \ By, we have showed that
BNLC{P|Vol({z e (1+28%)By\ By ||P(x)]3 <T}) >V}.

Using Markov’s Inequality, Fubini’s Theorem, and Lemma 2.2, we can estimate the
probability of this event. Indeed,

Prob (Vol({z € (1+28%)B3 \ By : |P(z)[l5 <T}) > V)

1
< VIEVOI({J: € (1426%)By \ By : |P(z)[j3 <T})
< = Prob (||P(a)[3 < T) da
V' Ja+2p2) By\Bp
Vol((1 + 26%)By \ By
< ol((1 +25%) By \ BY) max Prob (|[P(z)[53 <T).

1% x€(14282) B\ By
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Now recall that Vol(Bj) = = Then % < j— for some constant
¢ > 0. If we assume that that 62 then Lemma 4.2 implies (1 + 232)"

1 4 6n32, and we obtain
Vol((1 +28%) By \ BY) - Vol(BY) ((1428%)" —1)
4 T BB Vol(By T

for some absolute constant ¢ > 0. Note that here, for a lower bound on V', we used
the fact that V, , contains more than half of a cylinder with base having radius 3
and height 2.

Writing Z := \;H for any  # 0 we then obtain, for z ¢ BY, that

2d; .
1P (2 ||2_Z|pj Z\py )|R(E= >leg = |P)]3-

This implies, via Lemma 2.2, that for every we (1 + 2B2)B§ \ By we have

— 2n’

< ev/nBp> ",

Prob (|| P(w)||3 < T) < Prob (| P(@)||3 <T) < ( %) '

NOmin

n—1
So we conclude that Prob(BNL) < c¢/np372" (cco1 / no#@?) . Since
Prob (L(P) < a) < Prob (||P||, > 7v) + Prob(B N L) we then have

n—1
Prob (L(P) < ) < Prob (||P|les > 7) + cv/nB3 72" | cco _ .
namin(E)z

Recall that T = 8(a? + (5 + e*)54d*y?). We set 32 := a. Our choice of 3 and the
assumption that v > 1 then imply that I' < Ca?y2d* for some constant C. So we
obtain

coCad?~y nt
Umin(E)\/ﬁ

2 n—1
Prob(L(P) < a) < Prob (|P|la > ) + ev/i(a)? <%)

and our proof is complete. |

Prob(L(P) < a) < Prob (| Plle = ) + ev/n(a)i " (

5. PROOF OF THEOREM 1.14

We first need to estimate Bombieri norm of a random polynomial system. Lemma
5.1 is more or less standard, and it follows from Lemma 2.3.

Lemma 5.1. Let D = (dy,...,d,—1) be a vector with positive integer coordinates,
let E; C Hy, be full linear subspaces, and let E = (En,...,E,_1). Let p; € E; be
random elements of E; that satisfy the Centering Property and the Sub-Gaussian
Property with constant K, each with respect to Bombieri- Weyl inner product. Then
for allt > 1, we have

2 33 )

KZ
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and for the random polynomial system P = (p1,...,pn—1) we have

2
Prob ( |P|lw > ty/dim(FE ) < exp ( td;(ﬁ) . N

Now we have all the necessary tools to prove our probabilistic condition number
theorem. We will prove the following statement:

Theorem 5.2. Let D = (dy,...,d,—1) be a vector with positive integer coordinates,
let E; C Hy, be non-degenerate linear subspaces, and let E = (Ey,...,FEy,_1). We
assume that dim(E) > nlog(ed) and n > 3. Let p; € E; be independent random
elements of E; that satisfy the Centering Property, the Sub-Gaussian Property with
constant K, and the Small Ball Property with constant cqy, each with respect to the
Bombieri-Weyl inner product. We set d := max; d;, and

M = nK+/dim(E)(cod®CK log(ed)c(E))*"2,

where C > 4 is a universal constant. Then for P = (p1,...,pn—1), we have
% ,Zf 1<t< e2n10g (ed)
PI’Ob(IZL(P) = tM) < e2+1 logt 2 ir ,2nlog (ed)
i (m) vife <t
For notational simplictiy we set m = dim(E). To start the proof we observe the

following:

Prob (#(P) > tM) < Prob (||P|ly, > sK+/m) + Prob (L(P) < 81;\%) .

The first probability on the right hand side will be controlled by Lemma 5.1, and

the second will be controlled by Theorem 4.3. Theorem 4.3 states that for any
v > 1 and for g{fﬂ < min{d~%,n"'}, we have

sKv/m sK coCryd® "
Prob (L(P) < t—J\\;_) < Prob (| P, > 7)+ ( M‘;_) NG (#Z?)\/ﬁ) .
To have SK‘/_ < min{d~®%,n~} is equivalent to tM min{d=8,n"1} > sK\/m. We
will check thlS condition at the end of the proof. Now, for v =uomax(E)v/nlog(ed) K
with u > 1, from Lemma 3.1 we have Prob (|| P, > uomax(E)y/nlog(ed)K) <
exp(1 — azu?nlog(ed)?). That is, for v = uomax(E)y/nlog(ed)K, we have the
following estimate:

sK\y/m
Prob ( L(P) <
ro ( (P) < i

> < exp(1 — azu®nlog(ed)?)
(257 e (e

Since o(E) = Z‘m—"((g)) and M = n\/nK(coClog(ed)d* Ko (E))?"~2, we have

1
Prob (L(P) < slt(T\/ﬁ> < exp(1 — azu’nlog(ed)) + (;) Sunl

Using Lemma 5.1 and the assumption that m > nlog(ed) we then obtain

1
Prob (#(P) > tM) < exp(1 — s’>nlog(ed)?) + exp(1 — azu’nlog(ed)) + (;) Sunl
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If t < e27log(ed) then setting s = u = 1 gives the desired inequality. If ¢t > 2" 1os(ed)

2= _loel) _ here g > ag > 0 is a constant greater than 1. We

then we set s = u~ = W’

then obtain

log(t) ) 1

2nlogled) )

Prob (#(P) > tM) < exp (2 - %log(t)> 4 ( :

Observe that exp (2 — %log t) = .. So we have

S

o HGS
Prob (i#(P) > tM) < (zrjlfg(zf)sd)) \;Lf .

To finalize our proof we need to check if tM min{d=%,n~1} > sK\/m. So we check
the following:

?
tKny/m(coClog(ed)d* Ko (E))** 2 min{d %,n"'} > MK\/E.

For n > 3 we have (d?log(ed))?"~2 > d®. Since K¢y > 1, C >4, and o(E) > 1, we
have

(coClog(ed)d* Ko (E))*"2 > db.
Hence, it suffices to check if ¢t > Lt)), which is clear.

2nlog(ed
We would like to complete the proof of Theorem 1.14 as it was stated in the

introduction, for which the following easy observation suffices.

5 1
Lemma 5.3. Fort > eQ”IOg(ed), we have (%) : < tAlog(ed) ,

Proof. Let t = ze?" log(ed) where x > 1. Then

& 2 — 1 + M 2 < 6411(‘)7?;((:)0") — I4logl(ed,)'
2nlog(ed) 2nlog(ed) -

Since x < t, we are done. [ |

We now state the resulting bounds on the expectation of the condition number.

Corollary 5.4. Under the assumptions of Theorem 5.2, 0 < g < %—m implies
that E(R(P)?7) < M9(1 4 4qlog(ed)). In particular, Elog(k(P)) <1+ log M.

Proof. Observe that
E(R(P)?) = M9 + qu/ P{&(P) > tM} t1~" dt.

t=1

For t > 62"1°g(ed), we have
P{i(P) > tM}9~1 < (T imsta 2 < ¢~ Tsted

For t < e¢2nlog(ed) we have even stronger tail bounds:

E(&(P)7) < M (1 +af

=1

oo

¢V Tostem dt) .
This proves the first claim. The second claim follows by sending ¢ — 0 and using

Jensen’s inequality. |
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6. PROOF OF THEOREM 1.16

Let E; C Hy, be non-degenerate linear spaces, and let £ = (Eq,...,FE,_1).
Suppose @ € E is a fixed polynomial system. Let g; € F; be independent random
elements of E; that satisfy the Centering Property, the Sub-Gaussian Property
with constant K, and the Anti-Concentration Property with constant ¢, each
with respect to the Bombieri-Weyl inner product. Let G := (g1,...,9n—1) be the
corresponding polynomial system. We define random perturbation of @) as follows:
P :=Q + G. We will use this notation for P, Q and G for the rest of this section.

Lemma 6.1. Let Q € E be a polynomial system, let G be a random polynomial
system in E that satisfies the Centering, sub-Gaussian, and Anti-Concentration
hypotheses, and let P = Q + G. Then we have

2,
Prob (||P]l,, > somax(E)v/nlog(ed) + |Ql,.) < exp (1 _ w) ,

K2
where a3 is an absolute constant.

Proof. The triangle inequality implies ||P||, < ||Q/o + [|G|l.- We complete the
proof by using Lemma 3.1 for the random system G. |

Lemma 6.2. Let Q € E be a polynomial system, let G be a random polynomial
system in E that satisfies the Centering, sub-Gaussian, and Anti-Concentration
hypotheses, and let P = Q +G. Then, for all ¢ > 0, and for any w € S~ ' we have

Prob (||P(w)]|y < £0min(E)vn — 1) < (azcoe)™
where as is an absolute constant.
Proof. By the Anti-Concentration Property, for all 1 <¢ <n — 1, we have
Prob{|g;(w) + ¢;(w)| < cocomin(Ei)} < cpe.
We then use Lemma 2.4 with the random variables g;(w) + g;(w). |

Lemma 6.3. Let Q € E be a polynomial system, let G be a random polynomial
system in E that satisfies the Centering, sub-Gaussian, and Anti-Concentration
hypotheses, and let P = Q + G. Then for all t > 1, we have

Prob <||P|\W > 1K \/dim(E) + ||Q\|W) < exp(1 — £2m).

Proof. For all 1 <1i <n — 1, by triangle inequality ||p;|ly,y < l|aillw + l9c;|lw- So
using the first claim of Lemma 5.1 gives

Prob (||leW > ty/dim(E;) + qu||W) < exp (1 — %) .

Note that || P|lw = maxj|,=1 abs{w, (p1,...,pn-1). So proceding as in the proof
of Lemma 2.2 completes the proof. |

Theorem 6.4. Let Q € E be a polynomial system, let G be a random polynomial
system in E that satisfies the Centering, sub-Gaussian, and Anti-Concentration
hypotheses, and let P = Q + G. Now let v > 1, d := max; d;, and assume o <
min{d=8,n"1}. Then

2 n—1
Prob(L(P) < a) < Prob (|| P[|s > ) +Ca%\/ﬁ( cod*yC > ’

Omin (E) Vn

where C 1s a universal constant.
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The proof of Theorem 6.4 is identical to Theorem 4.3, so we skip it. Now we are
ready to state main theorem of this section.

Theorem 6.5. Let Q € E be a polynomial system, let G be a random polynomial
system in E that satisfies the Centering, sub-Gaussian, and Anti-Concentration
hypotheses, and let P = Q + G. Also let d :== max; d;, and set

2n—1
M = nK/dim(E) (cod®CK log(ed)o(E))>" (1 + %) ’

where C > 4 is a universal constant. Assume also that dim(E) > nlog(ed)? and

n > 3. Then
% ;if 1<t< e2n log (ed)
Prob(#(P) > tM) < { Y, o \ B
e\/+{1 (2n 1§§(ed)> ;if erlos(ed) < ¢

Proof. We need a quick observation before we start our proof: For any @) € E and
n— 2 n—1 2 2
w € S"71, we have [|Q(w)lly < 32157 4illiy omax(Ei)? < QI omax(E)?. So we
have
Qo < [IQllyy Tmax(E).

Using this upper bound on ||Q||,, and the assumption that dim(E) > nlog(ed)?,
we deduce

M > nK/dm(E) (cod*CK log(ed)o(E))*" "

el 12l
: (1 ! nK\/digw‘)) (1 " ﬁlog(ed)ffamaxw)) |

We will use this lower bound on M later in our proof. Now let m = dim(E). We
start our proof with the following observation:

Prob (#(P) > tM) < Prob (||P|ly, > sKv/m + [|Q]ly,)
+Prob (L(P) < %) .

Lemma 6.3 states that
Prob (||P|ly, > sKvm + [|Qly,) < exp(l — s*m).
Theorem 6.4 states that for % < min{d~% n~!} we have

sKy/m+ Q|
Prob <L(P) < TW>

2 n—1
< Prob (| Pl > 7) + (YT 1CQllw )y~ (M) .

tM Omin(E)v/n
We set v = uomax(E)y/nlog(ed) K + || Q|| .- From Lemma 6.1, we have

Prob (||P]|, = uomax(E)vnlog(ed)K + [|Q||.) < exp(l — azu’nlog(ed)).
We also have

cod?yC
Omin (E) \/ﬁ

PN Q..
) = (coud?*CK log(ed)o (E)) (1+u\/ﬁlog(ed)K0max(E)) '
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Using u > 1, s > 1, m > nlog(ed)?, and the lower obtained on M, we obtain

1
Prob (&(P) > tM) < exp(1 — s?nlog(ed)) + exp(1 — asu®nlog(ed)) + (;) Sunl

The rest of the proof is identical to the proof of Theorem 5.2. ]

7. PROOF OF THEOREM 1.18

Define a random polynomial system F. = @ + G where G is Gaussian random
polynomial system with K = % and cgK = \/% Using Lemma 5.1 with
t = 1, we have with probability at least 1 — exp(1l — dim(FE)) that

) < @y v/Tm(E)
1F: = Qlly = Gy < vnlog(ed)

For the condition estimate we will use Theorem 6.5: First note that with K =
clQllw _ and colX = ——, the quantity M in Theorem 6.5 is the following:

Vnlog(ed) Var’
v EV/dim(E) (d2c1og(ed)a(E))2”2 < L >2”1
~ log(ed) V2r € '

_ 2n—2
So we have M < 2y/ny/dim(F) (%)2" 2 (%\/%1)0(13)) . Using Theorem 6.5

with ¢ = 36 we deduce that with probability greater than % we have

2Clog(ed)o =2
) 2 ) (P DY

Since the union of the complement of these two events has measure less than % +
exp(1—dim(FE)), their intersection has positive measure, and the proof is completed.
|

Remark 7.1. The proof of Theorem 6.4 actually works for
M = nK/dim(E) (cod®CK log(ed)o(E)) ™"

2n—2
X (1 + HQ”W) (1 + \/ﬁlog(!gkogmax(E)> 7

which is often much more smaller than the M used in the theorem statement. ¢

8. APPENDIX: THE DISPERSION CONSTANTS OF RANDOM SUBSPACES
OF POLYNOMIAL SYSTEMS

Here we address the question how big the dispersion constant is for a “typical”
low-dimensional linear space. Imagine we have fixed a dimension m ~ nlogd and
wish to consider subspaces of dimension m inside Hy (the vector space homogenous
polynomials of degree d). How does the dispersion constant vary among these
subspaces? We know that some of these subspaces will be degenerate and have
infinite dispersion constant. Can we argue that high dispersion constants are rare?

To address this problem, we represent the space of m-dimensional linear sub-
spaces of Hy by the Grassmannian variety, Gr(m,dim(Hg)), which comes equipped
with a Haar measure. We will analyze the Haar measure of the set of subspaces in
Gr(m,dim(H,)) that yield high dispersion constant (see Corollary 8.4).

We will first need to introduce the following notion from high-dimensional prob-
ability.
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Definition 8.1 (Gaussian complexity). Let X C R™ be a set, then the Gaussian
complexity of X denoted by (X)) is defined as follows:

v(X) :=Esup [(G, )|,
zeX
where G is distributed according to standard normal distribution A/(0,T) on R™. ¢

The use of the term complezity in Definition 8.1 might look unorthodox to read-
ers with a computational complexity theory background. The rationale behind this
standard terminology in high-dimensional probability is that the Gaussian complex-
ity of a set X is known to control the complexity of stochastic processes indexed
on the set X (see, e.g., [30]).

A corollary of Lemma 2.1 and Lemma 2.8 is the following.

Corollary 8.2 (Gaussian complexity of the Veronese embedding). Let Hy be

the vector space of degree d homogenous polynomials in n variables. Let u; i =
+d-1

Lo, ("

Bombieri-Weyl norm. For every v € S~ we define the following polynomial q,:

qv(x) == Z wi(v)ui(x)

) be an orthonormal basis for the vector space Hy with respect to the

and the following set created out of qy:
Bg:={q,:ve 8"}
Then we have v(Bg) < cv/nlog(ed) for a universal constant c.
Proof of Corollary 8.2. We need to consider a Gaussian element G in the vector

space H,. Note that for G ~ N(0,1) in Hy we have <G, (i)xa> ~ N(0,1) since
W

(i) x® is an orthonormal basis with respect to the Bombieri-Weyl inner product.
This means Gaussian elements of Hy are included in our model of randomness for
the special case K = 1. Since oyax(Hy) = 1, Lemma 2.1 gives us the following
estimate for pointwise evaluations of the Gaussian element G ~ N(0,1) in Hy:

Prob{|G(v)| >t} < exp (1 - g) .

Note that |G|, = max,cgn—1 |G(v)| = maxg,en, |(G, ¢v)|. So to estimate Gauss-
ian complexity of the Veronese embedding By, we need to estimate E [|G|| . Let
N be a §-net on the sphere S"~1. Using a union bound, we then have

2
Prob{me&}\)/( |G(v)| >t} < |N|exp (1 — t—) :

2
Setting § = % and using Lemma 2.8 for t > a;+/nlog(ed) then gives the following:
2t2n log(ed
Prob{[|G|. > arty/nlog(ed)} < |N]exp <1 _ %Og(ev .

It is known that |N| < exp(agnlogd). So we have

t?nlog(ed
|N| exp (1 - %og(e)) < exp(1 — agt*nlog(ed))
for some constant as. So Prob{||G| ., > ait\/nlog(ed)} < exp(1l — ast®nlog(ed)).
Using this inequality one can routinely derive the estimate for E |G| . |
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Since Talagrand proved his celebrated “majorizing measure theorem” (see [29])
it has been observed that for a set X and a random k x n sub-Gaussian matrix A,
the deviation sup,¢x |||Az|2 — E||Az]|2| is controlled by the Gaussian complexity
v(X). We will use a variant established in [16] but not stated explicitly:

Theorem 8.3. Let F' be a random m dimensional subspace of R™ drawn from Haar
measure on Gr(m,n), and let Pr be orthogonal projection map on F. Let X C R™
be a set. Then there is a universal constant C' such that

sup [V | Pr(z)]| = vm||z]|] < Cty(X), t =1
(S

with probability greater than 1 — et

There is a series of papers that established several variants of the preceding
two deviation bounds—mainly in [16,25] and, more recently in [12,18]. Vershynin
devoted the 9th chapter of his recent book [30] on these results and their applica-
tions. Theorem 8.3 follows easily upon combining some statements and exercises
from [30, Ch. 9]. We include a sketch of the proof below for the interested reader.

Proof of Theorem 8.3. Let 2 € X and consider the random process W, := /n|| Pz]||
— +/m||z|]. By [[16], Lemma 4.2, [25]] we have that W, is a subgaussian process in
X, i.e.,
7()32
P (|| Pz]| — [[Pyll] = sllz —y[]) <27, s >0,
where ¢ > 0 is an absolute constant and x,y € X, or equivalently

[I1Pz]l = 1Pyllfl,, < cllz =yl

In [[16], Lemma 4.2], the above inequality is stated for z,y € S"~!. To extend it
for every z,y is straightforward, and we explain the idea below (see e.g. proof of
Lemma 9.1.4 in [30] or [18] for details). By scaling, without loss of generality we
may assume that ||z] = 1, |ly|| > 1. Set g = ﬁ Note that

Wy = Wl = lly = glllWylly, < Clly—7ll
for a universal constant C. Using all the above and the triangle inequality we get
that
[We = Wyl < C(llz =gl + [ly = 7l1) < V2C|lz - y].
Now that we have established that W, for z € X is a subgaussian process we

may apply [[12] Theorem 3.2] or [[29] Theorem 2.2.27] to conclude the proof. For
example the latter states that

P ( sup [Wy —W,| > C (v2(X, | -]) + sdiam(X))) <2,
z,yeX

Here diam(X) := max, yex ||z — y||2 and 72 is Talagrand’s functional (see [30],

Definition of 8.5.1 for details). By Talagrand’s majorizing measure theorem (see

e.g. [30], Theorem 8.6.1) it is known that (X, || - ||) >~ v(X). Using the triangle

inequality and the fact that diam(X) < 2v(X), we conclude that

P <sup |W,| > cs*y(X)) < 26782, s> 1.
reX
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A simple consequence of Theorem 8.3 is the following estimate on the dispersion
constant of a random subspace of polynomial systems:

Corollary 8.4. Let F be a random m dimensional subspace of Hyg drawn from the
Haar measure on Gr(m, dim(Hy)), where m > 16Cnlog(ed)?. Then

vm + Cty/nlog(ed)
o\F) < Gt Jaog(ed)

with probability greater than 1—67t2, where C' is the absolute constant from Theorem

8.3.

Proof of Corollary 8.4. Since ||q,||y;, = 1 for all v € S"~!, applying Theorem 8.3
to the set By implies that

(n—l—d—l

sup
x€By d

)5 IMLe(@)]| = Vi < Cty/ilog(ed)

with probability greater than 1—e =" for all £>1. Since Omin(F)=mingep, [|IIp(x)]|
and o4, (F) = maxgep, |[IIr(z)|, we have

vm — Cty/nlog(ed) <

< omin(F) < omax(F) < vm + Cty/nlog(ed)

1
+d—1\ 2 +d—1\ 2
(a7 (a7
with probability greater than 1 —e~t". [ |
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