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SMOOTHED ANALYSIS FOR THE CONDITION NUMBER

OF STRUCTURED REAL POLYNOMIAL SYSTEMS

ALPEREN A. ERGÜR, GRIGORIS PAOURIS, AND J. MAURICE ROJAS

Abstract. We consider the sensitivity of real zeros of structured polynomial
systems to pertubations of their coefficients. In particular, we provide explicit
estimates for condition numbers of structured random real polynomial systems
and extend these estimates to the smoothed analysis setting.

1. Introduction

Efficiently finding real roots of real polynomial systems is one of the main ob-
jectives of computational algebraic geometry. There are numerous algorithms for
this task, but the core steps of these algorithms are easy to outline: They are some
combination of algebraic manipulation, a discrete/polyhedral computation, and a
numerical iterative scheme.

From a computational complexity point of view, the cost of numerical iteration
is much less transparent than the cost of algebraic or discrete computation. This
paper constitutes a step toward understanding the complexity of numerically solving
structured real polynomial systems. Our main results are Theorems 1.14, 1.16, and
1.18 but we will first need to give some context for our results.

1.1. How to control accuracy and complexity of numerics in real algebraic

geometry? In the numerical linear algebra tradition, going back to von Neumann
and Turing, condition numbers play a central role in the measurement of speed and
the control of accuracy of algorithms (see, e.g., [2,3] for further background). Shub
and Smale initiated the use of condition numbers for polynomial system solving
over the field of complex numbers [26,27]. Subsequently, condition numbers played
a central role in the solution of Smale’s 17th problem [1, 3, 17].

The numerics of solving polynomial systems over the real numbers is more sub-
tle than complex case: small perturbations can cause the solution set to change
cardinality. One can even go from having no real zero to many real zeros by an
arbitrarily small change in the coefficients. This behaviour doesn’t appear over
the complex numbers as one has theorems (such as the Fundamental Theorem of
Algebra) proving that root counts are “generically” constant. Luckily, a condition
number theory that captures these subtleties was developed by Cucker [6]. Now we
set up the notation and present Cucker’s definition.

Received by the editor December 13, 2018, and, in revised form, July 26, 2019, February 17,
2020, and July 27, 2020.

2020 Mathematics Subject Classification. Primary 65Y20; Secondary 51F99.
The first author was partially supported by Einstein Foundation, Berlin and by Pravesh Kothari

of CMU. The second author was partially supported by Simons Foundation Collaboration grant
527498 and NSF grants DMS-1812240 and CCF-1900881. The third author was partially sup-
ported by NSF grants CCF-1409020, DMS-1460766, and CCF-1900881.

c©2021 American Mathematical Society

2161

Licensed to Texas A & M Univ. Prepared on Tue Sep 27 16:48:07 EDT 2022 for download from IP 165.91.13.222.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2162 ALPEREN A. ERGÜR ET AL.

Definition 1.1 (Bombieri-Weyl norm). We set xα := xα1
1 · · ·xαn

n where α :=
(α1, . . . , αn), and let P = (p1, . . . , pn−1) be a system of homogenous polynomi-
als with degree pattern d1, . . . , dn−1. Let ci,α denote the coefficient of xα in a pi.
We define the Bombieri-Weyl norms of pi and P to be, respectively,

‖pi‖W :=

√

√

√

√

∑

α1+···+αn=di

|ci,α|2
(

di

α

)

and

‖P‖W :=

√

√

√

√

n−1
∑

i=1

‖pi‖2W . ⋄

The following is Cucker’s condition number definition [6].

Definition 1.2 (Real condition number). For a system of homogenous polynomials
P = (p1, . . . , pn−1) with degree pattern (d1, . . . , dn−1), let ∆n−1 be the diagonal

matrix with entries
√
d1, . . . ,

√

dn−1 and let

DP (x)|TxSn−1 : TxS
n−1 −→ R

m

denote the linear map between tangent spaces induced by the Jacobian matrix of
the polynomial system P evaluated at the point x ∈ Sn−1.

The local condition number of P at a point x ∈ Sn−1 is

κ̃(P, x) :=
‖P‖W

√

∥

∥

∥DP (x)|−1
TxSn−1∆n−1

∥

∥

∥

−2

+ ‖P (x)‖22
and the global condition number is

κ̃(P ) := sup
x∈Sn−1

κ̃(P, x). ⋄

An important feature of Cucker’s real condition number is the following geomet-
ric fact[9].

Theorem 1.3 (Real condition number theorem). We use HD to denote the vector
space of homogenous polynomial systems with degree pattern (d1, . . . , dn−1), and
equip this space with the metric ρ(., .) induced by the Bombieri-Weyl norm. We
define the set of ill-posed problems to be:

Σ := {P ∈ HD : P has a singular zero in Sn−1}.
Then we have

κ̃(P ) =
‖P‖W
ρ(P,Σ)

.

Cucker’s condition number is used in the design and analysis of a numerical algo-
rithm for real zero counting [8–10], in the series of papers for computing homology
groups of semialgebraic sets [4, 5, 11], and more recently in the analysis of a well-
known algorithm for meshing curves and surfaces (the Plantinga-Vegter algorithm)
[7].

One important observation is that the complexity of a numerical algorithm over
the real numbers (imagine using bisection for finding real zeros of a given univariate
polynomial) varies depending on the geometry of the input, and not just the bit
complexity of its vector representation. Therefore it is more natural to go beyond
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SMOOTH ANALYSIS FOR CONDITION NUMBER OF POLYNOMIALS 2163

worst-case analysis and seek quantitative bounds for “typical” inputs. We now
explain the existing attempts toward mathematically modeling the intuitive phrase
“typical input”.

Random and adversarial random models. Worst-case complexity theory,
spearheaded by the P vs. NP question, has been a driving force behind many
algorithmic breakthroughs in the last five decades. However, it has become clear
that worst-case complexity theory fails to capture the practical performance of al-
gorithms. The unreasonable effectiveness of everyday statistical methods is a case
in point: the spotify app on cell phones solves instances of an NP-Hard problem all
the time!

Two dominant paradigms for going beyond the worst-case analysis of algorithms
are as follows: Assume an algorithm T operates on the input x ∈ R

k, with the
cost of output T(x) bounded from above by C(x). One then equips the input
space R

k with a probability measure µ and considers the average cost Ex∼µC(x),
or smoothed analysis of the cost with parameter δ > 0: supx∈Rk Ey∼µC(x+δ ‖x‖ y).
Clearly, as δ → 0, smoothed complexity recovers worst-case complexity, and when
δ −→ ∞ we recover average-case complexity. It is also clear that to have a realistic
complexity analysis, one should have a probability measure µ that somehow reflects
one’s context, and use theorems that allow a broad class of measures µ. The idea
of smoothed analysis originated in work of Spielman and Teng [28].

1.2. Existing results for average and smoothed analysis. Existing results for
the average analysis of real condition number from [10] can be roughly summarized
as follows.

Theorem 1.4 (Cucker, Krick, Malajovich, Wschebor). Suppose

pi(x) :=
∑

α1+...+αn=di

c(i)α xα , i = 1, . . . , n− 1

are random polynomials where c
(i)
α are centered Gaussian random variables with

variances
(

di

α

)

. Then, for the random polynomial system P = (p1, . . . , pn−1) and
for all t ≥ 1, we have

P

{

κ̃(P ) ≥ t 8d
n+4
2 n5/2N1/2

}

≤ (1 + log(t))
1
2

t
,

where d = maxi di and N =
∑n−1

i=1

(

n+di−1
di

)

.

Recall the following smoothed analysis type result from [9]:

Theorem 1.5 (Cucker, Krick, Malajovich, Wschebore). Let Q be an arbitrary
polynomial system with degree pattern (d1, . . . , dn−1), let P = (p1, . . . , pn−1) be a
random polynomial system as defined above. Now for a parameter 0 < δ < 1 we
define a random perturbation of Q with (P, δ) as follows: G := Q+δ ‖Q‖W P . Then
we have

P

{

κ̃(G) ≥ t
13n2d2n+2N

δ

}

≤ 1

t
.

Remark 1.6. The randomness model considered in these seminal results has the
following restriction: the induced probability measure is invariant under the action
of the orthogonal group O(n) on the space of polynomials. The proof techniques
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2164 ALPEREN A. ERGÜR ET AL.

used in the papers seem to be only applicable when one has this group invari-
ance property. This creates an obstruction against anaylsis on spaces of structured
polynomials; spaces of structured polynomials are not necessarily closed under the
action of O(n), and hence do not support an O(n)-invariant probability measure.

1.3. What about structured polynomials? Let Hdi
be the vector space of

homogenous polynomials with n variables, and let HD be the vector space of poly-
nomial systems with degree pattern D = (d1, . . . , dn−1). Let Ei ⊂ Hdi

be linear
subspaces for i = 1, . . . , n − 1, and let E = (E1, . . . , En−1) be the corresponding
vector space of polynomial systems.

For virtually any application of real root finding algorithms, the user has a
polynomial system with a particular structure rather than a generic polynomial
system with N =

∑

i=1

(

n+di−1
di

)

many coefficients. Suppose a user has identified
the linear structure E that is present in the target equations, and would like to
know about how much precision is expected for round-off errors in the space E. One
could induce a probability measure µ on E and use EP∼µ log (κ̃(P )) to determine
the expected loss of precision in the numerical solutions. What could go wrong?

Example 1.7. Let u, v ∈ Sn−1 be two vectors with u⊥v, and define the following
subspaces:

Ei := {p ∈ Hdi
: p(u) = 〈∇p(u), v〉 = 0} , i = 1, . . . , n− 1,

where ∇p(u) denotes the the gradient of p evaluated at u. Ei are codimension 2 lin-
ear subspaces of Hdi

. Now consider the space of polynomials E := (E1, . . . , En−1);
any polynomial system in the space E has a singular real zero at u. Hence, for all
P ∈ E the condition number κ̃(P ) is infinite.

The preceding example illustrates that, for certain linear spaces E, the prob-
abilistic analysis of condition numbers is meaningless: It is possible for certain
spaces E that all inhabitants have infinite condition number. We will rule out
these degenerate cases as follows.

Definition 1.8 (Non-degenerate linear space). We call a linear space Ei ⊂ Hdi

non-degenerate if for all v ∈ Sn−1, there exists an element pi ∈ Ei with pi(v) �= 0.
In other words, Ei is non-degenerate if there is no base point v ∈ Sn−1 where
all the elements of Ei vanish all together. We call a space of polynomial systems
E = (E1, . . . , En−1) non-degenerate if all Ei are non-degenerate for i = 1, . . . , n−1.
⋄

An easy corollary of Theorem 1.14 shows that the expected precision is finite for
any non-degenerate space E.

Corollary 1.9. Let E ⊂ HD be a non-degenerate linear space of polynomials. Let
µ be a probability measure supported on the space E that satisfies the assumptions
listed in Section 1.5. Then EP∼µ log (κ̃(P )) is finite.

This is clearly not the end of the story: a non-degenerate linear structure E may
still be close to being degenerate, and this would make every element in the space
E ill-conditioned. So we need to somehow quantify the numerical conditioning of a
linear structure E. Next, we introduce the notion of dispersion as a rough measure
of conditioning of a linear structure.
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1.4. The dispersion constant of a linear space. Suppose a linear subspace
F ⊂ Hd is given for some d > 1 together with an orthonormal basis uj(x) , j =
1, . . . ,m with respect to Bombieri-Weyl norm. Now suppose for a particular point
v0 ∈ Sn−1 all the basis elements satisfy |uj(v0)| < ε where ε > 0 is small. What
kind of behavior one would expect from elements of F at the point v0? This point
v0 would behave like a base point (like if all elements of F vanishes at v0) unless
one employs rather high precision. This motivates Definition 1.10.

Definition 1.10 (Dispersion constant of a linear space of polynomials). Let F ⊂
Hd is given for some d > 1, and let uj(x) , j = 1, . . . ,m be an orthonormal basis
of F with respect to Bombieri-Weyl norm. We define the following two quantities

σmin(F ) := min
v∈Sn−1





∑

j

uj(v)
2





1
2

, σmax(F ) := max
v∈Sn−1





∑

j

uj(v)
2





1
2

and the dispersion constant σ(F ) is their ratio:

σ(F ) :=
σmax(F )

σmin(F )
. ⋄

The quantity σmax is introduced to make things scale invariant. We generalize
the definition to polynomial systems in a straight-forward manner.

Definition 1.11 (Dispersion constant of a linear space of polynomial systems).
Let Ei ⊂ Hdi

be linear spaces for i = 1, . . . , n− 1, and let E = (E1, . . . , En−1). We
define the dispersion constant σ(E) as follows: σ(E) := maxi σ(Ei). ⋄

Our estimates replace the dimension N in earlier results with the (potentially
much smaller) dimension of E, at the expense of involving the new quantity σ(E).
So if a user has a fixed structure E with small dimension and tame dispersion
constant, then the expected conditioning on E admits a much better bound than
what earlier results suggest. On the other hand, if one has a sparse but highly
sensitive structure, the resulting average-case conditioning could be a lot worse
than the average over the entire space HD.

How big is the dispersion constant? To better understand the dispersion con-
stant, let us consider two examples at opposite extremes.

Example 1.12 (A subspace with minimal dispersion constant). Consider sub-
spaces of polynomials Fi ⊂ Pn,2di

defined as the span of

u
(i)
kl = (x2

1 + · · ·+ x2
n)

di−1xkxl for 1 ≤ k, l ≤ n

and let F = (F1, . . . , Fn). It is easy to show that σ(F ) = 1.

Example 1.13 (A sparse but highly sensitive structure). Let E ⊂ Pn,d be the
subspace of polynomials spanned by the monomials xd

1, . . . , x
d
n. Then, we have

σ(E) = n
d−1
2 .

One may wonder how big the dispersion constant for a “typical” linear space E
is, for say, E of dimension around n2 log d. Would a typical low-dimensional space
look like the second example or the first example? We address this question in the
Appendix. For our main theorems, we will allow E to be arbitrary and give bounds
depending explicitly on the the dispersion constant σ(E).
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2166 ALPEREN A. ERGÜR ET AL.

1.5. A general model of randomness for structured polynomial systems.

In our precursor paper [13] we obtained probabilistic condition number estimates
for general measures (without any group invariance assumption). In this paper we
present probabilistic results for the same general family of measures, but this time
supported on a structured space E instead of HD. Note that here the structured
space E will be fixed by the user, and our results will give estimates for a random
element from E. First, we introduce our general model of randomness.

We say a random vector X ∈ R
n satisfies the Centering, sub-Gaussian, and

Small Ball properties, with constants K and c0, if the following hold true:
1. (Centering) For any θ ∈ Sn−1 we have E〈X, θ〉 = 0.1

2. (Sub-Gaussian) There is a K > 0 such that for every θ ∈ Sn−1 we have

Prob (|〈X, θ〉| ≥ t) ≤ 2e−t2/K2

for all t > 0.

3. (Small Ball) There is a c0 > 0 such that for every vector a ∈ R
n we have

Prob (|〈a,X〉| ≤ ε ‖a‖2) ≤ c0ε for all ε > 0.

We note that these three assumptions directly yield a relation between K and c0:
We in fact have Kc0 ≥ 1

4 (see [13] just before Section 3.2). Moreover, for a random
variable X that satisfies above assumptions with constants K and co, and a scalar
λ > 0, the random varible λX satisfies the above assumptions with constants λK
and λ−1c0. In other words Kc0 is invariant under scaling, hence one can hope for
a universal lower bound of 1

4 .
Random vectors that satisfy these three properties form a large family of dis-

tributions, including standard Gaussian vectors and uniform measures on a large
family of convex bodies called Ψ2-bodies (such as uniform measures on lp-balls for
all p ≥ 2). We refer the reader to the book of Vershynin [30] for more details.
Discrete sub-Gaussian distributions, such as the Bernoulli distribution, also satisfy
an inequality similar to the Small Ball inequality in our assumptions. However, the
Small Ball type inequality satisfied by such discrete distributions depends not only
on the norm of the deterministic vector a but also on the arithmetic structure of a.
It is possible that our methods, combined with the work of Rudelson and Veshynin
on the Littlewood-Offord problem [22], can extend our main results to discrete dis-
tributions such as the Bernoulli distribution. In this work, we will content ourselves
with continuous distributions.

The preceding examples of random vectors do not necessarily have independent
coordinates. This provides important extra flexibility. There are also interest-
ing examples of random vectors with independent coordinates. In particular, if
X1, . . . , Xm are independent centered random variables that each satisfy both the
sub-Gaussian inequality with constant K and the Small Ball condition with c0,
then the random vector X = (X1, . . . , Xm) also satisfies the sub-Gaussian and
Small Ball inequalities with constants C1K and C2c0, where C1 and C2 are uni-
versal constants. This is a relatively new result of Rudelson and Vershynin [24].
The best possible universal constant C2 is discussed in [19, 21]. To create a ran-
dom variable satisfying the Small Ball and sub-Gaussian properties one can, for
instance, start by fixing any p ≥ 2 and then considering a random variable with
density function f(t) := cpe

−|t|p , for suitably chosen positive cp.

1Equivalently, EX=O.
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1.6. Our results. We present estimates for random structured polynomial sys-
tems, where the randomness model is the one introduced in the preceding section.

Average-case condition number estimates for structured polynomial sys-

tems.

Theorem 1.14. Let Ei ⊆ Hdi
be non-degenerate linear subspaces, and let E =

(E1, . . . , En−1). Assume dim(E) ≥ n log(ed) and n ≥ 3. Let pi ∈ Ei be in-
dependent random elements of Ei that satisfy the Centering Property, the sub-
Gaussian Property with constant K, and the Small Ball Property with constant
c0, each with respect to the Bombieri-Weyl inner product. We set d := maxi di
and M := nK

√

dim(E)(c0CKd2 log(ed)σ(E))2n−2, where C ≥ 4 is a universal
constant. Then for the random polynomial system P = (p1, . . . , pn−1), we have

Prob(κ̃(P ) ≥ tM) ≤
{

3t−
1
2 ; if 1 ≤ t ≤ e2n log (ed)

(e2 + 1)t−
1
2+

1
4 log(ed) ; if e2n log (ed) ≤ t.

Moreover, for 0 < q < 1
2 − 1

2 log(ed) , we have E(κ̃(P )q) ≤ Mq(1 + 4q log(ed)). In

particular, E log(κ̃(P )) ≤ 1 + logM .

Smoothed analysis for structured polynomial systems. For smoothed anal-
ysis we need to introduce a slightly stronger assumption on the random input. This
slightly stronger property is called the Anti-Concentration Property and it replaces
the Small Ball assumption in our model of randomness. We will need a bit of
terminology to define anti-concentration.

Definition 1.15 (Anti-Concentration Property). For any real-valued random vari-
able Z and t ≥ 0, the concentration function, F (Z, t), is defined as F (Z, t) :=
maxu∈R Prob{|Z −u| ≤ t}. Let 〈·, ·〉 denote the standard inner product on R

n. We
then say a random vector X ∈ R

n satisfies the Anti-Concentration Property with
constant c0 if we have F (〈X, θ〉, ε) ≤ c0ε for all θ ∈ Sn−1. ⋄

It is easy to check that if the random variable Z has bounded density f then
F (Z, t) ≤ ‖f‖∞t. Moreover, the Lebesgue Differentiation theorem states that upper
bounds for the function t−1F (Z, t) for all t imply upper bounds for ‖f‖∞. See [23]
for the details.

Theorem 1.16. Let E ⊆ HD be a non-degenerate linear subspace for D = (d1, . . . ,
dn−1). Assume dim(E) ≥ n log2(ed) and n ≥ 3. Let Q ∈ E be a fixed (determin-
istic) polynomial system let G ∈ E be a random polynomial system given by the
same model of randomness as in Theorem 1.14, but with the Small Ball Property
replaced by the Anti-Concentration Property. Set d := maxi di, and

M := nK
√

dim(E)
(

c0d
2CK log(ed)σ(E)

)2n−2
(

1 +
‖Q‖W√

nK log(ed)

)2n−1

,

where C ≥ 4 is a universal constant. Then for the randomly perturbed polynomial
system P = Q+G, we have

Prob(κ̃(P ) ≥ tM) ≤
{

3t−
1
2 ; if 1 ≤ t ≤ e2n log (ed)

(e2 + 1)t−
1
2+

1
4 log(ed) ; if e2n log (ed) ≤ t.
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2168 ALPEREN A. ERGÜR ET AL.

Moreover, for 0 < q < 1
2 − 1

2 log(ed) , we have

E(κ̃(P )q) ≤ Mq(1 + 4q log(ed)).

In particular, E log(κ̃(P )) ≤ 1 + logM .

We would like to consider a corollary to make the result easier to parse.

Corollary 1.17. Let E ⊆ HD be a non-degenerate linear subspace for D =
(d1, . . . , dn−1). Assume dim(E) ≥ n log(ed)2 and n ≥ 3. Let Q ∈ E be a fixed
(deterministic) polynomial system, and let G ∈ E be a random polynomial system
given by the model of randomness as in Theorem 1.16, but with fixed K = 1. Now
let 0 < δ < 1 be a parameter and consider the polynomial system

P := Q+ δ ‖Q‖W G.

We set d := maxi di, and

M := n
√

dim(E)
(

c0Cd2 log(ed)σ(E)
)2n−2

δ ‖Q‖W
(

1 +
1

δ
√
n log(ed)

)2n−1

,

where C ≥ 4 is a universal constant. Then, we have

Prob(κ̃(P ) ≥ tM) ≤
{

3t−
1
2 ; if 1 ≤ t ≤ e2n log (ed)

(e2 + 1)t−
1
2+

1
4 log(ed) ; if e2n log (ed) ≤ t.

An interesting consequence. As a corollary of the smoothed analysis estimate
in Theorem 1.16, we derive the following structural result.

Theorem 1.18. Let Ei ⊆ Hdi
be non-degenerate linear subspaces, let E = (E1, . . .

, En−1), and let Q ∈ E. Then, for every 0 < ε < 1, there is a polynomial system
Pε ∈ E with the following properties:

‖Pε −Q‖W ≤ ε ‖Q‖W

(

√

dim(E)

log(ed)
√
n

)

and

κ̃(Pε) ≤
√
n
√

dim(E)

(

d2C log(ed)σ(E)

ε

)2n−2

for a universal constant C.

One can view this result as a metric entropy statement as follows: Suppose we
are given a bounded set T ⊂ E with supP∈T ‖P‖W ≤ 1, and we would like to
cover T with balls of radius δ, i.e., T =

⋃

i B(pi, δ). Moreover, suppose we want
the ball-centers pi to have a controlled condition number. We can start with an

arbitrary δ
2 covering T =

⋃

i B(pi,
δ
2 ), and use Theorem 1.18 with ε = δ

√
n

2
√

dim(E)
to

find a pi with controlled condition number in each one of the balls B(pi,
δ
2 ). Then

T =
⋃

i B(pi, δ) gives a δ-covering of T where pi has controlled condition number.

2. Background and basic estimates

We first present a simple lemma for a single random polynomial.
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Lemma 2.1. Let F ⊂ Hd be non-degenerate linear subspace of degree d homogenous
polynomials. We equip F with Bombieri-Weyl norm. Suppose p ∈ F is a random
element that satisfies Centering Property, sub-Gaussian Property with constant K,
and small probability with constant co each with respect to Bombieri inner product.
Then for all w ∈ Sn−1 the following estimates hold:

Prob (|p(w)| ≥ tσmax(F )) ≤ exp

(

1− t2

K2

)

Prob (|p(w)| ≤ εσmin(F )) ≤ c0ε.

Proof. Suppose u1, . . . , um is an orthonormal basis of F with respect to Bombieri-
Weyl inner product. Let f ∈ F be a polynomial with f(x) =

∑

i fiui(x), then
for any v ∈ Sn−1, clearly f(v) =

∑

i aiui(v). In other words, if we set qv :=
∑

i ui(v)ui(x) then we have f(v) = 〈f, qv〉W . Also note since ui is an orthonormal

basis with respect to Bombieri norm, we have ‖qv‖W =
(
∑

i ui(v)
2
)

1
2 .

Now let p ∈ E′ be the random element described above. The reasoning in the
preceding paragraph gives us the following estimates for any fixed point v ∈ Sn−1:

Prob (|p(v)| ≥ t ‖qv‖W ) ≤ exp

(

1− t2

K2

)

Prob (|p(v)| ≤ ε ‖qv‖W ) ≤ c0ε.

By the definition of σmax(F ) and σmin(F ) these pointwise estimates yield the desired
result. �

The following is the generalization of Lemma 2.1 to systems of polynomials.

Lemma 2.2. Let D = (d1, . . . , dn−1)∈N
n−1. For all i∈{1, . . . , n−1} let Ei ⊆ Hdi

be non-degenerate linear subspaces, and let E := (E1, . . . , En−1). For each i, let
pi be chosen from Ei via a distribution satisfying the Centering Property, the Sub-
Gaussian Property with constant K, and the Small Ball Property with constant
c0 (each with respect to the Bombieri-Weyl inner product). Then, for the random
polynomial system P = (p1, . . . , pn−1), and all v ∈ Sn−1, the following estimates
hold:

Prob
(

‖P (v)‖2 ≥ tσmax(E)
√
n− 1

)

≤ exp

(

1− a1t
2(n− 1)

K2

)

and Prob
(

‖P (v)‖2 ≤ εσmin(E)
√
n− 1

)

≤ (a2c0ε)
n−1,

where a1 and a2 are absolute constants.

For the proof of Lemma 2.2 we need to recall some theorems from probability
theory and some basic tools developed in our earlier work [13]. These basic lem-
mata will also be used throughout the paper. We start with a theorem which is
reminiscent of Hoeffding’s classical inequality [14].

Theorem 2.3 ([32, Prop. 5.10]). There is an absolute constant c̃1 > 0 with the
following property: If X1, . . . , Xn are centered, sub-Gaussian random variables with
constant K, a = (a1, . . . , an) ∈ R

n and t ≥ 0, then

Prob

(∣

∣

∣

∣

∣

∑

i

aiXi

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

(

−c̃1t
2

K2 ‖a‖22

)

. �

We will also need the following standard lemma (see, e.g., [22, Lemma 2.2]).
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Lemma 2.4. Assume Z1, . . . , Zn are independent random variables that have the
property that F (Zi, t)) ≤ c0t for all t > 0. Then for t > 0 we have F (W, t

√
n) ≤

(cc0t)
n, where W := ‖(Z1, . . . , Zn)‖2. Moreover, if ξ1, . . . , ξk are independent ran-

dom variables such that, for every ε > 0, we have Prob (|ξi| ≤ ε) ≤ c0ε. Then there
is a universal constant c̃ > 0 such that for every ε > 0 we have

Prob

(

√

ξ21 + · · ·+ ξ2k ≤ ε
√
k

)

≤ (c̃c0ε)
k
. �

Now that we have our basic probabilistic tools we proceed to deriving some
deterministic inequalities.

Lemma 2.5 was proved in our earlier paper [13], generalizing a classical The-
orem of Kellog [15]. To state the lemma we need a bit of terminology: For any
system of homogenous polynomials P := (p1, . . . , pn−1)∈ (R[x1, . . . , xn])

n−1 define

‖P‖∞ := supx∈Sn−1

√

∑n−1
i=1 pi(x)2. Let DP (x) denote the Jacobian matrix of the

polynomial system at point x, let DP (x)(u) denote the image of the vector u un-
der the linear operator DP (x), and set

∥

∥D(1)P
∥

∥

∞ := supx,u∈Sn−1 ‖DP (x)(u)‖2.
(Alternatively, the last quantity can be written supx,u∈Sn−1

√

∑n−1
i=1 〈∇pi(x), u〉2.)

Lemma 2.5. Let P := (p1, . . . , pn−1)∈ (R[x1, . . . , xn])
n−1 be a polynomial system

with pi homogenous of degree di for each i and set d :=maxi di. Then:

(1) We have
∥

∥D(1)P
∥

∥

∞ ≤ d2 ‖P‖∞ and, for any mutually orthogonal x, y ∈
Sn−1, we also have ‖DP (x)(y)‖2 ≤ d ‖P‖∞.

(2) If deg(pi) = d for all i ∈ {1, . . . , n − 1} then we also have
∥

∥D(1)P
∥

∥

∞ ≤
d ‖P‖∞. �

The final lemma we need is a discretization tool for homogenous polynomial sys-
tems that was developed in [13] based on Lemma 2.5. We need a bit of terminology
to state the lemma.

Definition 2.6. Let K be a compact set in a metric space (X, d), then a set A ⊆ K
with finitely many elements is called a δ-net if for every x ∈ K there exists y ∈ A
with d(x, y) ≤ δ. ⋄

For the unit sphere in R
n, equipped with the standard Euclidean metric, there

are known bounds for the size of a δ-net. We recall one such bound below.

Lemma 2.7. Let Sn−1 be the unit sphere in R
n with respect to standard Euclidean

metric. Then for every δ > 0, there exist a δ-net N ⊂ Sn−1 with size at most
2n(1 + 2

δ )
n−1.

Lemma 2.7 is almost folklore: a proof appears in Proposition 2.1 of [23].

Lemma 2.8. Let P = (p1, . . . , pn−1) be a system of homogenous polynomials pi
with n variables and deg(pi) = di. Let N be a δ-net on Sn−1. Let maxN (P ) =
supy∈N ‖P (y)‖2 and ‖P‖∞ = supx∈Sn−1 ‖P (x)‖2. Similarly let us define,

max
Nk+1

(D(k)P ) = sup
x,u1,...,uk∈N

∥

∥

∥D(k)P (x)(u1, . . . , uk)
∥

∥

∥

2

and
∥

∥

∥D(k)P
∥

∥

∥

∞
= sup

x,u1,...,uk∈Sn−1

∥

∥

∥D(k)P (x)(u1, . . . , uk)
∥

∥

∥

2
.
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Then

(1) When deg(pi) = d for all i ∈ {1, . . . ,m} we have ‖P‖∞ ≤ maxN (P )
1−dδ and

∥

∥D(k)P
∥

∥

∞ ≤ max
Nk+1 (D

(k)P )

1−δd
√
k+1

.

(2) When maxi{deg(pi)} ≤ d we have ‖P‖∞ ≤ maxN (P )
1−d2δ and

∥

∥D(k)P
∥

∥

∞ ≤ max
Nk+1 (D

(k)P )

1−δd2
√
k+1

. �

Proof of Lemma 2.2. We begin with the first claim. Using Lemma 2.1 and the fact
that σmax(E) ≥ σmax(Ei) for all i, we get the following estimate for any pi ∈ Ei

and w ∈ Sn−1:

Prob (|pi(w)| ≥ sσmax(E)) ≤ exp

(

1− s2

K2

)

.

Now let a = (a1, . . . , an−1) ∈ R
n−1 with ‖a‖2 = 1, and apply Lemma 2.3 to the

sub-Gaussian random variables pi(w)
σmax(E) and the vector a. We then get

Prob

(∣

∣

∣

∣

∣

∑

i

aipi(w)

∣

∣

∣

∣

∣

≥ sσmax(E)

)

≤ exp

(

1− c̃1s
2

K2

)

.

Observe that ‖P (w)‖2 = maxa∈Sn−2 |〈a, P (w)〉|. For any fixed point w ∈ Sn−1 and
a free variable a ∈ R

n, we have that 〈a, P (w)〉 is a linear polynomial on a. We then
use Lemma 2.8 on this linear polynomial, which gives us the following estimate:

Prob

(

‖P (w)‖2 ≥ sσmax(E)

1− δ

)

≤ |N | exp
(

1− c̃1s
2

K2

)

.

We then use Lemma 2.7 to control the cardinality of the δ-net and get

|N | ≤ 2n(1 +
2

δ
)n−1 ≤ e(n−1)c̃ log( 1

δ ),

for some absolute constant c̃. So we set t = 2s
√
n− 1, δ = 1

2 , and obtain the
following estimate for some universal constant a1:

Prob
(

‖P (w)‖2 ≥ tσmax(E)
√
n− 1

)

≤ exp

(

1− a1t
2(n− 1)

K2

)

.

We continue with the proof of the second claim. Using Lemma 2.1 and the fact
that σmin(E) ≤ σmin(Ei) for all i, we deduce the following estimate for all pi and
for any ε > 0:

Prob

(∣

∣

∣

∣

pi(w)

σmin(E)

∣

∣

∣

∣

≤ ε

)

≤ c0ε.

Using Lemma 2.4 on the random variables
∣

∣

∣

pi(w)
σmin(E)

∣

∣

∣ gives the following estimate:

Prob
(

‖P (w)‖2 ≤ εσmin(E)
√
n− 1

)

≤ (c̃2c0ε)
n−1.

�

3. Operator norm type estimates

In this section we will estimate the absolute maximum norm of a random poly-
nomial system on the sphere. Recall that for a homogenous polynomial system
P = (p1, . . . , pn−1) the sup-norm is defined as ‖P‖∞ = supx∈Sn−1 ‖P (x)‖2. Lemma
3.1 is our sup-norm estimate for a random polynomial system P .
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Lemma 3.1. Let D = (d1, . . . , dn−1) be a vector with positive integer coordinates,
let Ei ⊆ Hdi

be full linear subspaces, and let E = (E1, . . . , En−1). Let pi ∈ Ei be
independent random elements of Ei that satisfy the Centering Property, the Sub-
Gaussian Property with constant K, and the Small Ball Property with constant c0,
each with respect to Bombieri-Weyl inner product. Let N be a δ-net on Sn−1. Then
for P = (p1, . . . , pn−1) we have

Prob

(

max
x∈N

‖P (x)‖2 ≥ tσmax(E)
√
n

)

≤ |N | exp
(

1− a1t
2n

K2

)

,

where a1 is a universal constant. In particular, for d = maxi deg(pi), δ = 1
3d2 , and

t = s log(ed) with s ≥ 1 this gives us the following estimate

Prob
(

‖P‖∞ ≥ sσmax(E)
√
n log(ed)

)

≤ exp

(

1− a3s
2n log(ed)2

K2

)

,

where a3 is a universal constant.

Proof. The first statement is proven by just taking a union bound over N and using
Lemma 2.2. The second part of the statement immediately follows by using the
first part and Lemma 2.8. �

4. Small ball type estimates

We define the following quantity for later convenience.

L(x, y) :=
√

∥

∥∆−1
m D(1)P (x)(y)

∥

∥

2

2
+ ‖P (x)‖22.

It follows directly that

‖P‖W
κ̃(P, x)

=

√

‖P‖2W µ̃norm(P, x)−2 + ‖P (x)‖22 = inf
y⊥x

y∈Sn−1

L(x, y).

So we set L(P, x) =
‖P‖W

κ̃(P,x) and L(P ) = minx∈Sn−1 L(P, x). We then have the

following equalities:

L(P, x) = inf
y⊥x

y∈Sn−1

L(x, y) , κ̃(P, x) = ‖P‖W
L(P, x)

and, finally

κ̃(P ) =
‖P‖W
L(P )

.

In this section, we prove a Small Ball type estimate to control behavior of the
denominator L(p). We first need to recall a technical lemma from our earlier paper
[13], which builds on an idea of Nguyen [20].

Lemma 4.1. Let n ≥ 2, let P := (p1, . . . , pn−1) be a system of n-variate ho-
mogenous polynomials, and assume ‖P‖∞ ≤ γ. Let x, y ∈ Sn−1 be mutually or-
thogonal vectors with L(x, y) ≤ α, and let r ∈ [−1, 1]. Then for every w with
w = x+ βry + β2z for some z ∈ Bn

2 , we have the following inequalities:

(1) If d := maxi di and 0 < β ≤ d−4 then ‖P (w)‖22 ≤ 8(α2 + (2 + e4)β4d4γ2).
(2) If deg(pi) = d for all i ∈ [n− 1] and 0 < β ≤ d−2 then

‖P (w)‖22 ≤ 8(α2 + (2 + e4)β4d4γ2). �
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We also need to state and prove the following simple Lemma for the clarity of
succeeding proofs.

Lemma 4.2. Let n ≥ 1 be an integer. Then for 0 ≤ x ≤ 1
n we have (1 + x)n ≤

1 + 3nx.

Proof. For every 0 ≤ y ≤ 1 we have 1 + 3y ≥ ey. This can be seen by setting
f(y) = 1 + 3y − ey, observing f

′

(y) > 0 for all 0 ≤ y ≤ 1 and f(1) > 0, f(0) = 0.
With a similar reasoning one can prove ex ≥ 1 + x, and hence enx ≥ (1 + x)n for
all 0 ≤ x ≤ 1. Using y = nx completes the proof. �

Theorem 4.3. Let D = (d1, . . . , dn−1) be a vector with positive integer coordinates,
let Ei ⊆ Hdi

be full linear subspaces, and let E = (E1, . . . , En−1). Let pi ∈ Ei be
independent random elements of Ei that satisfy the Centering Property, the Sub-
Gaussian Property with constant K, and the Small Ball Property with constant c0,
each with respect to Bombieri-Weyl inner product. Let γ ≥ 1, d := maxi di, and
assume α ≤ min{d−8, n−1}. Then for P = (p1, . . . , pn−1) we have

Prob(L(P ) ≤ α) ≤ Prob (‖P‖∞ ≥ γ) + cα
1
2
√
n

(

c0d
2γC

σmin(E)
√
n

)n−1

,

where C is a universal constant.

The proof of Theorem 4.3 is similar to a proof in our earlier paper [13]. We
reproduce the proof here due to the importance of Theorem 4.3 in the flow of our
current paper.

Proof. We assume the hypotheses of Assertion (1) in Lemma 4.1: Let α, γ > 0 and
β ≤ d−4. Let B : = {P | ‖P‖∞ ≤ γ} and let

L := {P | L(P ) ≤ α} = {P | There exist x, y∈Sn−1 with x ⊥ y and L(x, y) ≤ α}.
Let Γ := 8(α2 + (2 + e4)β4d4γ2) and let Bn

2 denote the unit ℓ2-ball in R
n.

Lemma 4.1 implies that if the event B∩L occurs then there exists a non-empty
set

Vx,y := {w ∈ R
n : w = x+ βry + β2z, x ⊥ y, |r| ≤ 1, z ⊥ y, z ∈ Bn

2 } \Bn
2

such that ‖P (w)‖22 ≤ Γ for every w in this set. Let V := Vol(Vx,y). Note that

for w ∈ Vx,y we have ‖w‖22 =
∥

∥x+ β2z
∥

∥

2

2
+ ‖βy‖22 ≤ 1 + 4β2. Hence we have

‖w‖2 ≤ 1 + 2β2. Since Vx,y ⊆ (1 + 2β2)Bn
2 \Bn

2 , we have showed that

B ∩ L ⊆
{

P | Vol
(

{x ∈ (1 + 2β2)Bn
2 \Bn

2 | ‖P (x)‖22 ≤ Γ}
)

≥ V
}

.

Using Markov’s Inequality, Fubini’s Theorem, and Lemma 2.2, we can estimate the
probability of this event. Indeed,

Prob
(

Vol
(

{x ∈ (1 + 2β2)Bn
2 \Bn

2 : ‖P (x)‖22 ≤ Γ}
)

≥ V
)

≤ 1

V
EVol

(

{x ∈ (1 + 2β2)Bn
2 \Bn

2 : ‖P (x)‖22 ≤ Γ}
)

≤ 1

V

∫

(1+2β2)Bn
2 \Bn

2

Prob
(

‖P (x)‖22 ≤ Γ
)

dx

≤ Vol
(

(1 + 2β2)Bn
2 \Bn

2

)

V
max

x∈(1+2β2)Bn
2 \Bn

2

Prob
(

‖P (x)‖22 ≤ Γ
)

.
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Now recall that Vol(Bn
2 ) = πn/2

Γ(n
2 +1)

. Then
Vol(Bn

2 )

Vol(Bn−1
2 )

≤ c′√
n

for some constant

c′ > 0. If we assume that that β2 ≤ 1
2n , then Lemma 4.2 implies (1 + 2β2)n ≤

1 + 6nβ2, and we obtain

Vol((1 + 2β2)Bn
2 \Bn

2 )

V
≤ Vol(Bn

2 )
(

(1 + 2β2)n − 1
)

β(β2)n−1Vol(Bn−1
2 )

≤ c
√
nββ2−2n,

for some absolute constant c > 0. Note that here, for a lower bound on V , we used
the fact that Vx,y contains more than half of a cylinder with base having radius β2

and height 2β.
Writing x̃ := x

‖x‖2
for any x �= 0 we then obtain, for z /∈ Bn

2 , that

‖P (z)‖22 =

m
∑

j=1

|pj(z)|2 =

m
∑

j=1

|pj(z̃)|2‖z‖2dj

2 ≥
m
∑

j=1

|pj(z̃)|2 = ‖P (z̃)‖22.

This implies, via Lemma 2.2, that for every w∈(1 + 2β2)Bn
2 \Bn

2 we have

Prob
(

‖P (w)‖22 ≤ Γ
)

≤ Prob
(

‖P (w̃)‖22 ≤ Γ
)

≤
(

cc0

√

Γ

nσmin(E)2

)n−1

.

So we conclude that Prob (B ∩ L) ≤ c
√
nβ3−2n

(

cc0
√

Γ
nσmin(E)2

)n−1

. Since

Prob (L(P ) ≤ α) ≤ Prob (‖P‖∞ ≥ γ) + Prob(B ∩ L) we then have

Prob (L(P ) ≤ α) ≤ Prob (‖P‖∞ ≥ γ) + c
√
nβ3−2n

(

cc0

√

Γ

nσmin(E)2

)n−1

.

Recall that Γ = 8(α2 + (5 + e4)β4d4γ2). We set β2 := α. Our choice of β and the
assumption that γ ≥ 1 then imply that Γ ≤ Cα2γ2d4 for some constant C. So we
obtain

Prob(L(P ) ≤ α) ≤ Prob (‖P‖∞ ≥ γ) + c
√
n(α)

3
2−n

(

c0Cαd2γ

σmin(E)
√
n

)n−1

Prob(L(P ) ≤ α) ≤ Prob (‖P‖∞ ≥ γ) + c
√
n(α)

1
2

(

c0d
2γC

σmin(E)
√
n

)n−1

and our proof is complete. �

5. Proof of Theorem 1.14

We first need to estimate Bombieri norm of a random polynomial system. Lemma
5.1 is more or less standard, and it follows from Lemma 2.3.

Lemma 5.1. Let D = (d1, . . . , dn−1) be a vector with positive integer coordinates,
let Ei ⊆ Hdi

be full linear subspaces, and let E = (E1, . . . , En−1). Let pi ∈ Ei be
random elements of Ei that satisfy the Centering Property and the Sub-Gaussian
Property with constant K, each with respect to Bombieri-Weyl inner product. Then
for all t ≥ 1, we have

Prob
(

‖pi‖W ≥ t
√

dim(Ei)
)

≤ exp

(

1− t2 dim(Ei)

K2

)
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and for the random polynomial system P = (p1, . . . , pn−1) we have

Prob
(

‖P‖W ≥ t
√

dim(E)
)

≤ exp

(

1− t2 dim(E)

K2

)

. �

Now we have all the necessary tools to prove our probabilistic condition number
theorem. We will prove the following statement:

Theorem 5.2. Let D = (d1, . . . , dn−1) be a vector with positive integer coordinates,
let Ei ⊆ Hdi

be non-degenerate linear subspaces, and let E = (E1, . . . , En−1). We
assume that dim(E) ≥ n log(ed) and n ≥ 3. Let pi ∈ Ei be independent random
elements of Ei that satisfy the Centering Property, the Sub-Gaussian Property with
constant K, and the Small Ball Property with constant c0, each with respect to the
Bombieri-Weyl inner product. We set d := maxi di, and

M := nK
√

dim(E)(c0d
2CK log(ed)2σ(E))2n−2,

where C ≥ 4 is a universal constant. Then for P = (p1, . . . , pn−1), we have

Prob(κ̃(P ) ≥ tM) ≤







3√
t

; if 1 ≤ t ≤ e2n log (ed)

e2+1√
t

(

log t
2n log (ed)

)
n
2

; if e2n log (ed) ≤ t.

For notational simplictiy we set m = dim(E). To start the proof we observe the
following:

Prob (κ̃(P ) ≥ tM) ≤ Prob
(

‖P‖W ≥ sK
√
m
)

+ Prob

(

L(P ) ≤ sK
√
m

tM

)

.

The first probability on the right hand side will be controlled by Lemma 5.1, and
the second will be controlled by Theorem 4.3. Theorem 4.3 states that for any

γ ≥ 1 and for sK
√
m

tM ≤ min{d−8, n−1}, we have

Prob

(

L(P ) ≤ sK
√
m

tM

)

≤ Prob (‖P‖∞ ≥ γ)+

(

sK
√
m

tM

)
1
2 √

n

(

c0Cγd2

σmin(E)
√
n

)n−1

.

To have sK
√
m

tM ≤ min{d−8, n−1} is equivalent to tM min{d−8, n−1} ≥ sK
√
m. We

will check this condition at the end of the proof. Now, for γ=uσmax(E)
√
n log(ed)K

with u ≥ 1, from Lemma 3.1 we have Prob (‖P‖∞ ≥ uσmax(E)
√
n log(ed)K) ≤

exp(1 − a3u
2n log(ed)2). That is, for γ = uσmax(E)

√
n log(ed)K, we have the

following estimate:

Prob

(

L(P ) ≤ sK
√
m

tM

)

≤ exp(1− a3u
2n log(ed)2)

+

(

sK
√
m

tM

)
1
2 √

n

(

c0Cuσmax(E) log(ed)d2K

σmin(E)

)n−1

.

Since σ(E) = σmax(E)
σmin(E) and M = n

√
nK(c0C log(ed)d2Kσ(E))2n−2, we have

Prob

(

L(P ) ≤ sK
√
m

tM

)

≤ exp(1− a3u
2n log(ed)) +

(s

t

)
1
2

un−1.

Using Lemma 5.1 and the assumption that m ≥ n log(ed) we then obtain

Prob (κ̃(P ) ≥ tM) ≤ exp(1− s2n log(ed)2) + exp(1− a3u
2n log(ed)) +

(s

t

)
1
2

un−1.
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If t ≤ e2n log(ed) then setting s = u = 1 gives the desired inequality. If t ≥ e2n log(ed)

then we set s = u2 = log(t)
2ãn log(ed) , where ã > a3 > 0 is a constant greater than 1. We

then obtain

Prob (κ̃(P ) ≥ tM) ≤ exp

(

2− 1

2
log(t)

)

+

(

log(t)

2n log(ed)

)
n
2 1√

t
.

Observe that exp
(

2− 1
2 log t

)

= e2√
t
. So we have

Prob (κ̃(P ) ≥ tM) ≤
(

log(t)

2n log(ed)

)
n
2 e2 + 1√

t
.

To finalize our proof we need to check if tM min{d−8, n−1} ≥ sK
√
m. So we check

the following:

tKn
√
m(c0C log(ed)d2Kσ(E))2n−2min{d−8, n−1}

?
≥ log(t)

2n log(ed)
K
√
m.

For n ≥ 3 we have (d2 log(ed))2n−2 > d8. Since Kc0 ≥ 1
4 , C ≥ 4, and σ(E) ≥ 1, we

have

(c0C log(ed)d2Kσ(E))2n−2 > d8.

Hence, it suffices to check if t ≥ log(t)
2n log(ed) , which is clear.

We would like to complete the proof of Theorem 1.14 as it was stated in the
introduction, for which the following easy observation suffices.

Lemma 5.3. For t ≥ e2n log(ed), we have
(

log(t)
2n log(ed)

)
n
2 ≤ t

1
4 log(ed) .

Proof. Let t = xe2n log(ed) where x ≥ 1. Then
(

log(t)

2n log(ed)

)
n
2

=

(

1 +
log(x)

2n log(ed)

)
n
2

≤ e
log(x)

4 log(ed) = x
1

4 log(ed) .

Since x ≤ t, we are done. �

We now state the resulting bounds on the expectation of the condition number.

Corollary 5.4. Under the assumptions of Theorem 5.2, 0 < q < 1
2− 1

2 log(ed) implies

that E(κ̃(P )q) ≤ Mq(1 + 4q log(ed)). In particular, E log(κ̃(P )) ≤ 1 + logM .

Proof. Observe that

E(κ̃(P )q) = Mq + qMq

∫ ∞

t=1

P{κ̃(P ) ≥ tM} tq−1 dt.

For t ≥ e2n log(ed), we have

P{κ̃(P ) ≥ tM}tq−1 ≤ tq+
1

4 log(ed)
− 3

2 ≤ t−1− 1
4 log(ed) .

For t ≤ e2n log(ed) we have even stronger tail bounds:

E(κ̃(P )q) ≤ Mq

(

1 + q

∫ ∞

t=1

t−1− 1
4 log(ed) dt

)

.

This proves the first claim. The second claim follows by sending q → 0 and using
Jensen’s inequality. �
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6. Proof of Theorem 1.16

Let Ei ⊆ Hdi
be non-degenerate linear spaces, and let E = (E1, . . . , En−1).

Suppose Q ∈ E is a fixed polynomial system. Let gi ∈ Ei be independent random
elements of Ei that satisfy the Centering Property, the Sub-Gaussian Property
with constant K, and the Anti-Concentration Property with constant c0, each
with respect to the Bombieri-Weyl inner product. Let G := (g1, . . . , gn−1) be the
corresponding polynomial system. We define random perturbation of Q as follows:
P := Q+G. We will use this notation for P , Q and G for the rest of this section.

Lemma 6.1. Let Q ∈ E be a polynomial system, let G be a random polynomial
system in E that satisfies the Centering, sub-Gaussian, and Anti-Concentration
hypotheses, and let P = Q+G. Then we have

Prob
(

‖P‖∞ ≥ sσmax(E)
√
n log(ed) + ‖Q‖∞

)

≤ exp

(

1− a3s
2n log(ed)

K2

)

,

where a3 is an absolute constant.

Proof. The triangle inequality implies ‖P‖∞ ≤ ‖Q‖∞ + ‖G‖∞. We complete the
proof by using Lemma 3.1 for the random system G. �

Lemma 6.2. Let Q ∈ E be a polynomial system, let G be a random polynomial
system in E that satisfies the Centering, sub-Gaussian, and Anti-Concentration
hypotheses, and let P = Q+G. Then, for all ε > 0, and for any w ∈ Sn−1 we have

Prob
(

‖P (w)‖2 ≤ εσmin(E)
√
n− 1

)

≤ (a2c0ε)
n−1,

where a2 is an absolute constant.

Proof. By the Anti-Concentration Property, for all 1 ≤ i ≤ n− 1, we have

Prob{|gi(w) + qi(w)| ≤ c0εσmin(Ei)} ≤ c0ε.

We then use Lemma 2.4 with the random variables gi(w) + qi(w). �

Lemma 6.3. Let Q ∈ E be a polynomial system, let G be a random polynomial
system in E that satisfies the Centering, sub-Gaussian, and Anti-Concentration
hypotheses, and let P = Q+G. Then for all t ≥ 1, we have

Prob
(

‖P‖W ≥ tK
√

dim(E) + ‖Q‖W
)

≤ exp(1− t2m).

Proof. For all 1 ≤ i ≤ n − 1, by triangle inequality ‖pi‖W ≤ ‖qi‖W + ‖gCi
‖W . So

using the first claim of Lemma 5.1 gives

Prob
(

‖pi‖W ≥ t
√

dim(Ei) + ‖qi‖W
)

≤ exp

(

1− t2 dim(Ei)

K2

)

.

Note that ‖P‖W = max‖w‖2=1 abs〈w, (p1, . . . , pn−1). So proceding as in the proof
of Lemma 2.2 completes the proof. �

Theorem 6.4. Let Q ∈ E be a polynomial system, let G be a random polynomial
system in E that satisfies the Centering, sub-Gaussian, and Anti-Concentration
hypotheses, and let P = Q + G. Now let γ ≥ 1, d := maxi di, and assume α ≤
min{d−8, n−1}. Then

Prob(L(P ) ≤ α) ≤ Prob (‖P‖∞ ≥ γ) + cα
1
2
√
n

(

c0d
2γC

σmin(E)
√
n

)n−1

,

where C is a universal constant.

Licensed to Texas A & M Univ. Prepared on Tue Sep 27 16:48:07 EDT 2022 for download from IP 165.91.13.222.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2178 ALPEREN A. ERGÜR ET AL.

The proof of Theorem 6.4 is identical to Theorem 4.3, so we skip it. Now we are
ready to state main theorem of this section.

Theorem 6.5. Let Q ∈ E be a polynomial system, let G be a random polynomial
system in E that satisfies the Centering, sub-Gaussian, and Anti-Concentration
hypotheses, and let P = Q+G. Also let d := maxi di, and set

M = nK
√

dim(E)
(

c0d
2CK log(ed)σ(E)

)2n−2
(

1 +
‖Q‖W√

nK log(ed)

)2n−1

,

where C ≥ 4 is a universal constant. Assume also that dim(E) ≥ n log(ed)2 and
n ≥ 3. Then

Prob(κ̃(P ) ≥ tM) ≤







3√
t

; if 1 ≤ t ≤ e2n log (ed)

e2+1√
t

(

log t
2n log (ed)

)
n
2

; if e2n log (ed) ≤ t.

Proof. We need a quick observation before we start our proof: For any Q ∈ E and

w ∈ Sn−1, we have ‖Q(w)‖22 ≤ ∑n−1
i=1 ‖qi‖2W σmax(Ei)

2 ≤ ‖Q‖2W σmax(E)2. So we
have

‖Q‖∞ ≤ ‖Q‖W σmax(E).

Using this upper bound on ‖Q‖∞ and the assumption that dim(E) ≥ n log(ed)2,
we deduce

M ≥ nK
√

dim(E)
(

c0d
2CK log(ed)σ(E)

)2n−2

×
(

1 +
‖Q‖W

nK
√

dim(E)

)

(

1 +
‖Q‖∞√

n log(ed)Kσmax(E)

)2n−2

.

We will use this lower bound on M later in our proof. Now let m = dim(E). We
start our proof with the following observation:

Prob (κ̃(P ) ≥ tM) ≤ Prob
(

‖P‖W ≥ sK
√
m+ ‖Q‖W

)

+Prob

(

L(P ) ≤ sK
√
m+ ‖Q‖W
tM

)

.

Lemma 6.3 states that

Prob
(

‖P‖W ≥ sK
√
m+ ‖Q‖W

)

≤ exp(1− s2m).

Theorem 6.4 states that for
sK

√
m+‖Q‖W

tM ≤ min{d−8, n−1} we have

Prob

(

L(P ) ≤ sK
√
m+ ‖Q‖W
tM

)

≤ Prob (‖P‖∞ ≥ γ) + c(
sK

√
m+ ‖Q‖W
tM

)
1
2
√
n

(

c0d
2γC

σmin(E)
√
n

)n−1

.

We set γ = uσmax(E)
√
n log(ed)K + ‖Q‖∞. From Lemma 6.1, we have

Prob
(

‖P‖∞ ≥ uσmax(E)
√
n log(ed)K + ‖Q‖∞

)

≤ exp(1− a3u
2n log(ed)).

We also have
(

c0d
2γC

σmin(E)
√
n

)n−1

=
(

c0ud
2CK log(ed)σ(E)

)n−1
(

1+
‖Q‖∞

u
√
n log(ed)Kσmax(E)

)n−1

.
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Using u ≥ 1, s ≥ 1, m ≥ n log(ed)2, and the lower obtained on M , we obtain

Prob (κ̃(P ) ≥ tM) ≤ exp(1− s2n log(ed)) + exp(1− a3u
2n log(ed)) +

(s

t

)
1
2

un−1.

The rest of the proof is identical to the proof of Theorem 5.2. �

7. Proof of Theorem 1.18

Define a random polynomial system Fε = Q + G where G is Gaussian random

polynomial system with K =
ε‖Q‖W√
n log(ed)

and c0K = 1√
2π

. Using Lemma 5.1 with

t = 1, we have with probability at least 1− exp(1− dim(E)) that

‖Fε −Q‖W = ‖G‖W ≤ ε ‖Q‖W
√

dim(E)√
n log(ed)

.

For the condition estimate we will use Theorem 6.5: First note that with K =
ε‖Q‖W√
n log(ed)

and c0K = 1√
2π

, the quantity M in Theorem 6.5 is the following:

M =
ε
√
n
√

dim(E)

log(ed)

(

d2C log(ed)σ(E)√
2π

)2n−2(

1 +
1

ε

)2n−1

.

So we have M ≤ 2
√
n
√

dim(E)
(

2
ε

)2n−2
(

d2C log(ed)σ(E)√
2π

)2n−2

. Using Theorem 6.5

with t = 36 we deduce that with probability greater than 1
2 we have

κ̃(Fε) ≤ 2
√
n
√

dim(E)

(

d2C log(ed)σ(E)

ε

)2n−2

.

Since the union of the complement of these two events has measure less than 1
2 +

exp(1−dim(E)), their intersection has positive measure, and the proof is completed.
�

Remark 7.1. The proof of Theorem 6.4 actually works for

M = nK
√

dim(E)
(

c0d
2CK log(ed)σ(E)

)2n−2

× (1 + ‖Q‖W )

(

1 +
‖Q‖∞√

n log(ed)Kσmax(E)

)2n−2

,

which is often much more smaller than the M used in the theorem statement. ⋄

8. Appendix: The dispersion constants of random subspaces

of polynomial systems

Here we address the question how big the dispersion constant is for a “typical”
low-dimensional linear space. Imagine we have fixed a dimension m ∼ n log d and
wish to consider subspaces of dimension m inside Hd (the vector space homogenous
polynomials of degree d). How does the dispersion constant vary among these
subspaces? We know that some of these subspaces will be degenerate and have
infinite dispersion constant. Can we argue that high dispersion constants are rare?

To address this problem, we represent the space of m-dimensional linear sub-
spaces of Hd by the Grassmannian variety, Gr(m, dim(Hd)), which comes equipped
with a Haar measure. We will analyze the Haar measure of the set of subspaces in
Gr(m, dim(Hd)) that yield high dispersion constant (see Corollary 8.4).

We will first need to introduce the following notion from high-dimensional prob-
ability.
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Definition 8.1 (Gaussian complexity). Let X ⊆ R
n be a set, then the Gaussian

complexity of X denoted by γ(X) is defined as follows:

γ(X) := E sup
x∈X

|〈G, x〉| ,

where G is distributed according to standard normal distribution N (0, I) on R
n. ⋄

The use of the term complexity in Definition 8.1 might look unorthodox to read-
ers with a computational complexity theory background. The rationale behind this
standard terminology in high-dimensional probability is that the Gaussian complex-
ity of a set X is known to control the complexity of stochastic processes indexed
on the set X (see, e.g., [30]).

A corollary of Lemma 2.1 and Lemma 2.8 is the following.

Corollary 8.2 (Gaussian complexity of the Veronese embedding). Let Hd be
the vector space of degree d homogenous polynomials in n variables. Let ui i =
1, . . . ,

(

n+d−1
d

)

be an orthonormal basis for the vector space Hd with respect to the

Bombieri-Weyl norm. For every v ∈ Sn−1, we define the following polynomial qv:

qv(x) :=
∑

i

ui(v)ui(x)

and the following set created out of qv:

Bd := {qv : v ∈ Sn−1}.
Then we have γ(Bd) ≤ c

√
n log(ed) for a universal constant c.

Proof of Corollary 8.2. We need to consider a Gaussian element G in the vector

spaceHd. Note that forG ∼ N (0, I) inHd we have

〈

G,
√

(

d
α

)

xα

〉

W

∼ N (0, 1) since
√

(

d
α

)

xα is an orthonormal basis with respect to the Bombieri-Weyl inner product.

This means Gaussian elements of Hd are included in our model of randomness for
the special case K = 1. Since σmax(Hd) = 1, Lemma 2.1 gives us the following
estimate for pointwise evaluations of the Gaussian element G ∼ N (0, I) in Hd:

Prob{|G(v)| ≥ t} ≤ exp

(

1− t2

2

)

.

Note that ‖G‖∞ = maxv∈Sn−1 |G(v)| = maxqv∈Bd
|〈G, qv〉|. So to estimate Gauss-

ian complexity of the Veronese embedding Bd, we need to estimate E ‖G‖∞. Let
N be a δ-net on the sphere Sn−1. Using a union bound, we then have

Prob{max
v∈N

|G(v)| ≥ t} ≤ |N | exp
(

1− t2

2

)

.

Setting δ = 1
d and using Lemma 2.8 for t ≥ a1

√
n log(ed) then gives the following:

Prob{‖G‖∞ ≥ a1t
√
n log(ed)} ≤ |N | exp

(

1− a21t
2n log(ed)

2

)

.

It is known that |N | ≤ exp(a0n log d). So we have

|N | exp
(

1− a21t
2n log(ed)

2

)

≤ exp(1− a2t
2n log(ed))

for some constant a2. So Prob{‖G‖∞ ≥ a1t
√
n log(ed)} ≤ exp(1 − a2t

2n log(ed)).
Using this inequality one can routinely derive the estimate for E ‖G‖∞. �
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Since Talagrand proved his celebrated “majorizing measure theorem” (see [29])
it has been observed that for a set X and a random k × n sub-Gaussian matrix A,
the deviation supx∈X |‖Ax‖2 − E‖Ax‖2| is controlled by the Gaussian complexity
γ(X). We will use a variant established in [16] but not stated explicitly:

Theorem 8.3. Let F be a random m dimensional subspace of Rn drawn from Haar
measure on Gr(m,n), and let PF be orthogonal projection map on F . Let X ⊆ R

n

be a set. Then there is a universal constant C such that

sup
x∈X

∣

∣

√
n ‖PF (x)‖ −

√
m ‖x‖

∣

∣ ≤ Ctγ(X), t ≥ 1

with probability greater than 1− e−t2 .

There is a series of papers that established several variants of the preceding
two deviation bounds—mainly in [16, 25] and, more recently in [12, 18]. Vershynin
devoted the 9th chapter of his recent book [30] on these results and their applica-
tions. Theorem 8.3 follows easily upon combining some statements and exercises
from [30, Ch. 9]. We include a sketch of the proof below for the interested reader.

Proof of Theorem 8.3. Let x ∈ X and consider the random process Wx :=
√
n‖Px‖

−√
m‖x‖. By [[16], Lemma 4.2, [25]] we have that Wx is a subgaussian process in

X, i.e.,

P (|‖Px‖ − ‖Py‖| ≥ s‖x− y‖) ≤ 2e−cs2 , s > 0,

where c > 0 is an absolute constant and x, y ∈ X, or equivalently
∥

∥‖Px‖ − ‖Py‖
∥

∥

ψ2
≤ c‖x− y‖.

In [[16], Lemma 4.2], the above inequality is stated for x, y ∈ Sn−1. To extend it
for every x, y is straightforward, and we explain the idea below (see e.g. proof of
Lemma 9.1.4 in [30] or [18] for details). By scaling, without loss of generality we
may assume that ‖x‖ = 1, ‖y‖ ≥ 1. Set ỹ = y

‖y‖ . Note that

‖Wy −Wȳ‖ = ‖y − ȳ‖‖Wȳ‖ψ2
≤ C‖y − ȳ‖

for a universal constant C. Using all the above and the triangle inequality we get
that

‖Wx −Wy‖ψ2
≤ C (‖x− ȳ‖+ ‖y − ȳ‖) ≤

√
2C‖x− y‖.

Now that we have established that Wx for x ∈ X is a subgaussian process we
may apply [[12] Theorem 3.2] or [[29] Theorem 2.2.27] to conclude the proof. For
example the latter states that

P

(

sup
x,y∈X

|Wx −Wy| ≥ C (γ2(X, ‖ · ‖) + sdiam(X))

)

≤ 2e−s2 .

Here diam(X) := maxx,y∈X ‖x − y‖2 and γ2 is Talagrand’s functional (see [30],
Definition of 8.5.1 for details). By Talagrand’s majorizing measure theorem (see
e.g. [30], Theorem 8.6.1) it is known that γ2(X, ‖ · ‖) ≃ γ(X). Using the triangle
inequality and the fact that diam(X) ≤ 2γ(X), we conclude that

P

(

sup
x∈X

|Wx| ≥ csγ(X)

)

≤ 2e−s2 , s ≥ 1.

�
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A simple consequence of Theorem 8.3 is the following estimate on the dispersion
constant of a random subspace of polynomial systems:

Corollary 8.4. Let F be a random m dimensional subspace of Hd drawn from the
Haar measure on Gr(m, dim(Hd)), where m ≥ 16Cn log(ed)2. Then

σ(F ) ≤
√
m+ Ct

√
n log(ed)√

m− Ct
√
n log(ed)

with probability greater than 1−e−t2 , where C is the absolute constant from Theorem
8.3.

Proof of Corollary 8.4. Since ‖qv‖W = 1 for all v ∈ Sn−1, applying Theorem 8.3
to the set Bd implies that

sup
x∈Bd

∣

∣

∣

∣

∣

(

n+ d− 1

d

)
1
2

‖ΠF (x)‖ −
√
m

∣

∣

∣

∣

∣

≤ Ct
√
n log(ed)

with probability greater than 1−e−t2 for all t≥1. Since σmin(F )=minx∈Bd
‖ΠF (x)‖

and σmax(F ) = maxx∈Bd
‖ΠF (x)‖, we have

√
m− Ct

√
n log(ed)

(

n+d−1
d

)

1
2

≤ σmin(F ) ≤ σmax(F ) ≤
√
m+ Ct

√
n log(ed)

(

n+d−1
d

)

1
2

with probability greater than 1− e−t2 . �
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