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Abstract. Sequential ranking-and-selection procedures deliver Bayesian guarantees by re-
peatedly computing a posterior quantity of interest—for example, the posterior probability
of good selection or the posterior expected opportunity cost—and terminating when this
quantity crosses some threshold. Computing these posterior quantities entails nontrivial nu-
merical computation. Thus, rather than exactly check such posterior-based stopping rules, it
is common practice to use cheaply computable bounds on the posterior quantity of interest,
for example, those based on Bonferroni’s or Slepian’s inequalities. The result is a conservative
procedure that samples more simulation replications than are necessary. We explore how
the time spent simulating these additional replications might be better spent computing the
posterior quantity of interest via numerical integration, with the potential for terminating the
procedure sooner. To this end, we develop several methods for improving the computation-
al efficiency of exactly checking the stopping rules. Simulation experiments demonstrate that
the proposed methods can, in some instances, significantly reduce a procedure’s total sample
size. We further show these savings can be attained with little added computational effort by
making effective use of a Monte Carlo estimate of the posterior quantity of interest.
Summary of Contribution: The widespread use of commercial simulation software in in-
dustry has made ranking-and-selection (R&S) algorithms an accessible simulation-
optimization tool for operations research practitioners. This paper addresses computational
aspects of R&S procedures delivering finite-time Bayesian statistical guarantees, primarily
the decision of when to terminate sampling. Checking stopping rules entails computing or
approximating posterior quantities of interest perceived as being computationally intensive
to evaluate. The main results of this paper show that these quantities can be efficiently com-
puted via numerical integration and can yield substantial savings in sampling relative to the
prevailing approach of using conservative bounds. In addition to enhancing the perfor-
mance of Bayesian R&S procedures, the results have the potential to advance other research
in this space, including the development of more efficient allocation rules.
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1. Introduction

Bayesian Ré&S procedures synthesize prior informa-

Within the statistics and simulation communities, rank-
ing and selection (R&S) refers to the problem of select-
ing the best from among a finite number of simulated
alternatives. The R&S problem has been extensively
studied from two differing statistical perspectives: fre-
quentist and Bayesian (see Kim and Nelson (2006) and
Chick (2006), respectively, for overviews). In both treat-
ments, considerable attention has been given to the
design of efficient procedures that offer finite-sample
statistical guarantees (Kim and Nelson 2001, Branke
et al. 2007, Chen et al. 2015, Hong et al. 2015).

1711

tion and data obtained from simulating the alternatives
to produce a posterior distribution on the unknown
problem instance. This posterior distribution can then
be used to evaluate selection decisions by computing
criteria such as the (posterior) probability of correct se-
lection (pPCS), probability of good selection (pPGS),
and expected opportunity cost (pEOC) of the selected
alternative. An R&S procedure straightforwardly de-
livers a Bayesian statistical guarantee by using the cor-
responding posterior quantity in a stopping rule. For
example, to deliver a guarantee on the pEOC of the
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selected alternative, it suffices for a procedure to termi-
nate whenever that quantity drops below a specified
threshold (Branke et al. 2007). The appeal of this ap-
proach is that repeatedly looking at the data does not
invalidate a Bayesian guarantee, as it might for a fre-
quentist one; consider the intricacies of continuously
monitoring A /B tests (Deng et al. 2016, Dmitriev et al.
2017, Johari et al. 2017). Aside from the theoretical con-
venience of proving guarantees, Bayesian R&S proce-
dures have become popular in recent years because of
their demonstrated sampling efficiency relative to fre-
quentist procedures (Branke et al. 2007). In particular,
Bayesian procedures actively learn about the unknown
problem instance and do not need to guard against
pathological, worst-case problem instances, as do R&S
procedures designed to deliver frequentist guarantees.

Bayesian R&S procedures are predominantly stud-
ied under a setting in which the sampling budget—
the number of simulation replications that a proce-
dure obtains—is fixed in advance (Chen et al. 2000;
Chick and Inoue 2001a, b; Peng et al. 2018a). In this
setting, procedures are designed to maximize the
pPCS or pPGS or minimize the pEOC of the selected
alternative upon exhausting the budget. This setup is
pertinent to decision-making situations in which ob-
taining replications of the simulation model is time-
consuming, to the point of being a limiting factor. We
instead study the setting in which the decision maker
specifies a desired statistical guarantee and runs an
R&S procedure until the guarantee can be delivered
(Branke et al. 2007). This setup is better suited to situa-
tions in which the decision maker can articulate his or
her risk and tolerance toward making a suboptimal
decision and desires this assurance.

Much research has also focused on the design of ef-
ficient rules for allocating replications among alterna-
tives, with recent interest in rules that are, in a certain
sense, asymptotically optimal (Peng et al. 2018b, Chen
and Ryzhov 2019, Russo 2020). We instead investigate
the underappreciated, but no less consequential, mat-
ter of how to check the stopping rule. Specifically, we
harbor reservations about the common practice of us-
ing conservative bounds—typically derived via Bon-
ferroni’s or Slepian’s inequality—on the posterior
quantity of interest in lieu of an exact calculation
(Branke et al. 2007, Chick et al. 2010, Gorder and Ko-
lonko 2019). Although these bounds are cheap to com-
pute, we show that under fairly standard assumptions
(normally distributed outputs, independent sampling,
and independent prior beliefs), numerically integrat-
ing the posterior quantity is not as computationally
onerous as may be suspected. We assess the quality of
these bounds, both in terms of how well they approxi-
mate the posterior quantity of interest and their effects
on extending the requisite sample sizes taken by Bay-
esian R&S procedures. Our numerical results indicate

that while using such bounds for the pPGS leads to
only a slight increase in a procedure’s total sample size,
using those for the pEOC can result in excessively inef-
ficient procedures.

Even though these savings are there for the taking,
so to speak, repeatedly computing the posterior quan-
tity of interest poses a tradeoff between simulation
time and computational time. We therefore examine
the choice of how accurately to check a stopping rule
and its impact on the overall run time of a procedure.
We present several methods for exactly evaluating
posterior quantities of interest and efficiently checking
stopping rules. The potential reduction in a proce-
dure’s total sample size—relative to using bounds—
can in fact be attained at little added computational
cost by using a Monte Carlo estimate to “precheck”
the stopping rule before applying our methods. For
situations in which these combined methods are too
computationally intensive, or in which our underlying
assumptions are not satisfied, we suggest using the
aforementioned Monte Carlo estimate to directly
check the stopping rule, even though doing so sacrifi-
ces a rigorous Bayesian guarantee. Our numerical ex-
periments indicate that the resulting deterioration in
the guarantee is modest.

We believe that Bayesian R&S procedures have key
statistical advantages over their frequentist counter-
parts, but that they lag in implementation because of
their perceived computational difficulty. The primary
goal of this paper is to allay some of these concerns,
thereby increasing the accessibility of Bayesian meth-
ods in R&S. To achieve this goal, we make the follow-
ing contributions:

e We review the difference between Bayesian and
frequentist R&S guarantees and discuss the relative
merits of the pPCS, pPGS, and pEOC guarantees. We
highlight how the popular pPCS guarantee will tend to
cause a procedure to incur long run-lengths for little
practical gain.

e We review the Stopping Rule Principle which
plays a central role in establishing the validity of stop-
ping rules in Bayesian R&S yet does not seem to be
well known or widely understood in the simulation re-
search community.

e We develop several approaches to numerically
compute integrals for the pPGS and pEOC and com-
ment on their relative efficiencies. (The quantity pPCS
is a special case of pPGS.)

e We provide empirical results showcasing the
“slack” in the bounds that are typically used to deter-
mine stopping rules and explain why the pEOC
bounds have more slack than the pPGS bounds.

e We develop structural results that can drastically
reduce the computation needed to determine whether
to stop; see Propositions 2 and 3. (The already well-
known Proposition 5 also contributes to this goal.)
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e We use numerical experiments to explore how the
computational effort of numerical integration scales
with the number of alternatives, k. For sufficiently large
k, numerical integration becomes slow and may encoun-
ter numerical difficulties, thereby becoming a barrier to
evaluating stopping rules in this way. Reasonable
ranges for k over which numerical integration is effec-
tive depend on the computational cost of simulation
replications, because if this is large, then the cost of nu-
merical integration is small by comparison. Our numeri-
cal results indicate that the pPGS can be computed for k
as large as 10,000 with reasonable computational effort
and little numerical error, but as k approaches this value
and goes beyond, one might prefer to check stopping
criteria less frequently for computational expedience.
For the pEOC, numerical integration is more challeng-
ing. A reasonable rule of thumb is that the pEOC can
be efficiently computed for k<1,000 and beyond that
threshold requires nonnegligible computation. In that
case, one can use Monte Carlo to determine when to
stop, as mentioned later.

e We discuss how to use Monte Carlo to approxi-
mately determine when to stop by sampling directly
from the posterior distribution and estimating the pos-
terior quantity of interest. This is very fast and compu-
tationally inexpensive, even for very large k. This
approach is natural but underused, perhaps because
it is assumed that the sampling error would lead to
premature stopping. We explain how posterior sam-
pling can be effectively combined with numerical in-
tegration to avoid premature stopping, essentially by
using posterior sampling as a “precheck” to deter-
mine whether it is worthwhile to numerically com-
pute integrals.

e In the situation where k is so large as to make the
computational cost of numerical integration prohibi-
tive, one can still use posterior sampling to approxi-
mately check stopping rules. Our numerical results
indicate that this strategy is unlikely to cause major
problems with premature stopping.

Additionally, we prove a pair of new bounds—
under an assumption of normality—that may be of in-
dependent interest:

e Proposition 1: a Slepian bound on the pPGS of al-
ternatives with posterior means that are “good” rela-
tive to the best, for unknown sampling variances; and

e Equation (3): a Slepian bound on the pEOC of the
alternative with the highest posterior mean.

All our results apply to the setting in which a
decision maker is interested in comparing the mean
performances of alternatives. In principle, one could
develop selection rules and stopping criteria for other
distributional quantities, such as quantiles, exploiting
conjugate prior distributions to simplify calculations.
The details of how to do this appear to us to be nontri-
vial and differ greatly from the presentation in this

paper. Accordingly, we do not pursue that line of in-
vestigation here.

The remainder of this paper is outlined as follows.
Section 2 introduces the mathematical notation and
distributional assumptions, while defining the pPCS,
pPGS, and pEOC under the Bayesian framework. Sec-
tions 3 and 4 highlight the computational challenges
associated with checking the pPGS and pEOC stop-
ping rules, respectively, and present formulae for effi-
ciently computing the posterior quantities of interest.
The proposed improvements are evaluated via simu-
lation experiments in Section 5. In Section 6, we dem-
onstrate further efficiency gains from using a Monte
Carlo estimate of the posterior quantity of interest to
“precheck” the stopping rule. Section 7 summarizes
our findings and lays out directions for future research.

2. Posterior-Based Guarantees and
Stopping Rules

2.1. Bayesian R&S Guarantees

Suppose there are k alternatives under consideration
and that the (expected) performance of Alternative i is
denoted by a scalar W;, for i=1,...,k. We refer to the
vector of performances W = (Wj,..., W) as the (ran-
dom) problem instance or configuration and use the
notation Wj;; to refer to the ith smallest performance
where ties in indexing are broken arbitrarily; that is,
the ordered performances satisfy the relationship
Wiy <--- < Wy Without loss of generality, we assume
that larger performances are better; hence, Alterna-
tive [k] is (one of) the best. In the Bayesian treatment,
the identity of the unknown (best) alternative is not
fixed, but rather depends on the realization of the
performances.

The decision maker assumes a prior distribution
over the space of problem instances based on previ-
ously gathered data or the opinions of subject matter
experts. In the absence of such information, the prior
distribution can instead reflect a general uncertainty
about the problem instance (i.e., a noninformative pri-
or). After taking replications from the alternatives, a
Bayesian R&S procedure applies Bayes’ rule to obtain
a posterior distribution on the problem instance. The
posterior distribution reflects the decision maker’s re-
maining uncertainty about the performances of the al-
ternatives after observing the data and incorporating
any prior beliefs. It can be used to define different
Bayesian decision criteria with respect to any fixed Al-
ternative i:

o Posterior PCS of Alternative i:

pPCS, :=P(W; = Wiy | &),
o Posterior PGS of Alternative i:

pPGS; :=P(W; > W —06|&), and
e Posterior EOC of Alternative i:

pEOCi = ]E[W[k] - Wi | 5]
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The previous probabilities and expectations are
with respect to the posterior distribution given the ev-
idence (observed simulation outputs)—denoted by
£—and the prior distribution. In contrast to their
frequentist counterparts, these Bayesian criteria are
functions of the evidence and thus can be calculated
within a procedure; we discuss ways to bound, calcu-
late, and estimate them in this paper.

For a given Alternative i, pPCS, is the probability
under the posterior distribution that the random prob-
lem instance is one for which Alternative i is (one of)
the best. Similarly, pPGS,; is the posterior probability
that the random problem instance is one for which Al-
ternative i is 6-optimal. From these definitions, pPCS,
corresponds to pPGS,; for the case 6 = 0. Last, pEOC, is
the expected optimality gap associated with selecting
Alternative i over all problem instances weighted ac-
cording to the posterior distribution.

Under the Bayesian framework, the index of the se-
lected alternative, denoted by d, is determined by the
(fixed) observed data and the prior distribution. We as-
sume for simplicity that Bayesian R&S procedures do
not use randomized selection rules; that is, given the ob-
served data, d is deterministic. In the event of ties in pos-
terior quantities, we will assume that there is a ranking
of the alternatives” indices—fixed a priori—that is used
to break ties. The three Bayesian criteria lend themselves
to guarantees with respect to the selected alternative:

e pPCS Guarantee: pPCS,; > 1 —-a,

e pPGS Guarantee: pPGS, > 1 —a, and

e pEOC Guarantee: pEOC; < B.

For these guarantees, the decision maker specifies
the values of 1—a and 0, or of B, in advance. The
threshold 1 -« reflects the decision maker’s desired
degree of confidence in making a correct or good se-
lection. The values of 6 and f have clear interpreta-
tions in terms of the largest or average difference in
performance to which the decision maker is indiffer-
ent. A reasonable choice of § is the good-selection pa-
rameter, 0, times the allowable probability of making
a bad selection, a (Chen et al. 2015).

2.2. Issues with the pPCS Guarantee

The pPCS guarantee stipulates that the decision maker
insists on selecting the best alternative with high proba-
bility and will not be satisfied with selecting a subopti-
mal alternative, no matter how close its performance is
to the best. By this reasoning, extremely small differ-
ences in performances are worth detecting, even at great
computational expense. Consequently, when the differ-
ence between the performances of the best and second-
best alternatives is small, a Bayesian Ré&S procedure will
take many replications before the pPCS of any alterna-
tive rises above 1 —a. It is hard to justify expending so
much computational effort to detect differences that are

of less-than-practical significance. This insistence on
finding the optimal solution to the R&S problem also
ignores the fact that there is inherently some degree of
model error associated with the simulation model. In
contrast, the pPGS guarantee takes a more lenient ap-
proach, allowing the decision maker to specify a toler-
ance in performance to which he or she is indifferent.

Related concerns with the pPCS guarantee arise in
the event that multiple alternatives are tied for the best.
Although it would be convenient to assume that practi-
cal problems do not have multiple alternatives with
tied performances, some do, if not properly formulated.
For example, the prototypical buffer-allocation problem
of Pichitlamken et al. (2006) has multiple optimal solu-
tions because of symmetries in the tandem-queuing sys-
tem; see Ni et al. (2017) for a detailed description.

The Bayesian resolution to this issue is that for
continuous posterior distributions, for example, multi-
variate normal, the probability that the realized per-
formances of two or more alternatives are tied is zero.
In the situation where two or more alternatives are tied
for the best, the posterior distributions will concentrate
around the true (tied) means but not coalesce on a point
mass in finite time. Computationally there is no differ-
ence with the situation where multiple alternatives are
nearly tied for the best, so here too the pPGS guarantee
does not lead to excessive sampling. See section 3.3.2 of
Eckman (2019) for further discussion.

If it was known in advance that certain alternatives
had the same performances, perhaps because of sym-
metry, that information could be incorporated into the
prior distribution. The drawback of this approach,
however, is the loss of conjugacy; as a consequence,
updating the posterior distribution becomes computa-
tionally intensive. Moreover, establishing that two
alternatives have the same performance or that a
problem has a unique optimal solution is nontrivial,
especially when there are many alternatives. Given
these challenges, and the fact that ties are rather neatly
handled when one uses continuous posterior distribu-
tions, we do not pursue such an approach.

Notwithstanding these concerns, many Bayesian
R&S procedures designed for the fixed-budget setting
use pPCS to allocate replications across alternatives
(Chen et al. 2000) and as an overall performance crite-
rion (Branke et al. 2007, Peng et al. 2016, Russo 2020).
This raises an important question that we do not ad-
dress in this paper: Does allocating replications based
on pPCS have a deleterious effect on the quality of the
selected alternative, especially on problem instances
with multiple near-optimal alternatives?

2.3. Stopping Rule Principle
In Bayesian statistics, the Stopping Rule Principle
states that given observed evidence, inference about
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an unknown parameter of interest should not depend
on the rule used to terminate an experiment (Berger
1993). In other words, an experimenter can ignore the
stopping rule when carrying out a statistical analysis
after an experiment. The sequential tests supported by
the Stopping Rule Principle have the upside of taking
only as many samples as necessary, in contrast to
fixed-sample-size tests. The Stopping Rule Principle is
a natural consequence of the Likelihood Principle, a
foundational argument in Bayesian statistics claiming
that all experimental information about the unknown
parameter of interest is reflected in the likelihood
function. Perhaps in light of its simplifying appeal,
the Stopping Rule Principle is the subject of some con-
troversy among statisticians; we direct the interested
reader to an illuminating discussion in section 7.7 of
Berger (1993).

The Stopping Rule Principle has several remarkable
consequences. First, the rule used to terminate a pro-
cedure does not affect the calculation of any posterior
quantity, meaning that the pPCS, pPGS, and pEOC
can appear in stopping rules (Chick and Inoue 2001b,
Chick 2006, Chen et al. 2015):

e pPCS Stopping Rule: Terminate when pPCS; >
1-aforanyi=1,...,kand select Alternative 7;

e pPGS Stopping Rule: Terminate when pPGS; >
1-aforanyi=1,...,kand select Alternative 7; and

e pEOC Stopping Rule: Terminate when pEOC,; <
foranyi=1,...,k and select Alternative i.

Put succinctly, the aforementioned Bayesian guar-
antees are attained by terminating a sequential R&S
procedure when the posterior quantity of interest
crosses some threshold.

Chick et al. (2010) refer to these kinds of stopping
rules as adaptive stopping rules because they depend
on the replications collected, as opposed to the rule of
stopping when a fixed budget has been exhausted.
We choose to call them posterior-based stopping rules
to emphasize that they involve quantities calculated
from the posterior distribution of the problem in-
stance. We cannot understate the significance of being
able to compute (and recompute) posterior quantities
in the stopping rules and still deliver Bayesian guar-
antees. Unless special care is taken, repeatedly looking
at the data in this way can invalidate frequentist guar-
antees; sequential analysis methods are a notable ex-
ception (Wald 1973).

A second important consequence of the Stopping
Rule Principle is that because Bayesian R&S guaran-
tees follow from the stopping rule, the user has
complete flexibility in allocating replications across al-
ternatives. These stopping rules can therefore be used
in conjunction with popular allocation rules: for exam-
ple, value-of-information (VIP), optimal computing
budget allocation (OCBA), Thompson sampling (TS),

and knowledge-gradient (KG). Allocation rules are
also allowed to use posterior quantities; for example,
OCBA and TS rules use the pPCS of alternatives
(Chen et al. 2000, Russo 2020) and some VIP rules use
the pEOC of alternatives, or approximations thereof
(Chick and Inoue 2001b).

2.4. Distributional Assumptions
Thus far, we defined Bayesian criteria and guarantees
without imposing any distributional assumptions on
the simulated outputs of the alternatives” performan-
ces or the decision maker’s beliefs. We now make
several standard assumptions so that we can derive
specific results for checking stopping rules involving
the pPCS, pPGS, and pEOC.

Let X degote the jth observation from Alternative i

and define X; ={X;,Xp,...} fori=1,...,k.

Assumption 1. For eachi=1,...,k and j > 1, Xj; is nor-

mally distributed with mean w; and variance o2.

Assumption 1 is commonly made in the simulation
community and can be partially justified by batching
replications because the batch means will be approxi-
mately normally distributed. The R&S problem has
also been studied for Bernoulli-distributed outputs
(Even-Dar et al. 2006, Russo 2020) and from a large-
deviations perspective (Glynn and Juneja 2004, Hunt-
er and Pasupathy 2010, Glynn and Juneja 2018).

N

Assumption 2. Foreachi=1,...,k, the sequence X; con-
sists of independent outputs.

Assumption 2 implies that the outputs are ex-
changeable—a standard assumption for the derivation

of the posterior distribution.
. - — —
Assumption 3. The sequences Xi,Xp,...,Xx are

independent.

Assumption 3 rules out the use of common random
numbers (CRN) in generating replications. Although
CRN are helpful in comparing the performances of alter-
natives, their use complicates the statistical analysis of
Bayesian R&S procedures because of two notable chal-
lenges concerning the number of replications taken from
each alternative. First, when an allocation rule produces
a monotone missing pattern with unequal sample sizes,
updating the posterior distribution requires careful atten-
tion and accounting (Gorder and Kolonko 2019). Second,
under the reference prior, at least k replications must be
taken from each alternative to ensure that the sample co-
variance matrix is invertible (Chick and Inoue 2001a).

Assumption 4. The decision maker has independent prior
beliefs about the performances of alternatives, Wy, ..., Wy.

Assumption 4 is another standard assumption in
the literature, although the setting of correlated beliefs
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and the use of CRN have also been studied (Frazier
et al. 2009, Xie et al. 2016). Assumptions 3 and 4 are
typically made for analytical convenience as together,
they imply that the posterior distribution of W is the
product of the marginal posterior distributions of W;
for i=1,...,k. We later exploit this property when
performing numerical integration. Enforcing indepen-
dent beliefs in the prior distribution entails discarding
any available structural information about the optimi-
zation problem, for example, convexity or symmetry.
In doing so, the decision maker sacrifices prior knowl-
edge about the relationships among alternatives for
computational convenience.

Our purpose for making Assumptions 14 is to pro-
vide theoretical results that lay the groundwork for our
more general arguments about checking posterior-
based stopping rules. If the assumptions do not all
hold, many of the methods presented in this paper will
not directly apply. For instance, the results dealing with
Slepian’s bound and the quasi-Pareto relationship of
pPGS (Proposition 3) almost certainly do not hold if
Assumption 1 is not satisfied. Furthermore, without
Assumptions 3 and 4, the integral equations we pro-
vide for exactly calculating the pPGS and pEOC no
longer hold. In such cases, using a Monte Carlo esti-
mator to precheck a stopping rule, as developed in
Section 6, remains an option. We expect that many of
our main conclusions will still hold when these distri-
butional assumptions are relaxed, for example, the
potential for a sizable loss in efficiency from using
conservative bounds on posterior quantities to check
stopping rules.

Given Assumptions 1-4, we now mathematically
describe the marginal posterior distributions of W;
when using the conjugate (normal-gamma) reference
prior for the mean and precision of Alternative i. After
observing X1, ..., Xy, from Alternative i, the marginal
posterior distribution of the performance of Alterna-
tive i is given by

Wi ~ tni—l(kizslg/ni) =t (1 p?),

where si2 is the sample variance of xj,..., X, and
t,(u, p?) denotes the distribution of a three-parameter
t-distributed random variable Z = p + pT,, where T, is
a t-distributed random variable with v degrees of free-
dom (Chick and Inoue 2001b). When the variances o2
are known, the marginal posterior distribution for the
performance of Alternative 7 is

Wi ~ N (%, 07 /ni) = N(u,, pP).

We will refer to p, and p? as the posterior mean and
variance of the performance of Alternative i and
use subscript (-) to denote the ordered indices of
the posterior means; that is, ) < ;) <<, and

Alternative (k) is the best-looking alternative. More
complete derivations of the marginal posterior distri-
butions and their parameters can be found in DeGroot
(2004), Branke et al. (2007), and Eckman (2019). As can
be seen from the previous formulae, using conjugate
prior distributions greatly simplifies the task of updat-
ing the posterior distribution. When conjugate prior
distributions are not used, the pPCS, pPGS, and
pEOC can still be estimated via Markov chain Monte
Carlo.

3. Checking the pPCS and pPGS

Stopping Rules

3.1. Computational Considerations

When running a Bayesian R&S procedure, two critical
decisions are how frequently and how accurately to
check the stopping rule, as these choices affect the run
time. At one extreme, one could allocate replications
one at a time and precisely calculate the posterior
quantity of interest of every alternative after every rep-
lication. Although this approach would ensure that
the procedure takes no unnecessary replications, it
would likely be expensive in terms of the computa-
tional overhead. At the other extreme, one could allo-
cate replications in large batches and calculate a cheap
bound for the posterior quantity of interest of, say, only
the best-looking alternative. This approach would be
cheaper in terms of overhead but would necessitate
more simulation time. Within the Bayesian framework,
these decisions can even be made adaptively, based on
the data collected thus far. In studying these tradeoffs,
we assume that the time required to run a simulation
replication is long enough—perhaps on the order of
seconds or tens of seconds—to justify expending some
nontrivial amount of time checking the stopping rule.

The pPCS and pPGS stopping rules give rise to com-
putational challenges similar to those of the pEOC stop-
ping rule, but differing in important ways. We choose
to consider them separately. Throughout this section
and the next, we maintain Assumptions 1-4 and as-
sume that the conjugate prior is used. Hereafter, we fo-
cus our discussion on the pPGS stopping rule and treat
the pPCS stopping rule as a special case.

At first glance, computing pPGS, appears to involve
evaluating a k-dimensional integral of the joint poste-
rior distribution of Wy, ..., Wy over a polyhedron de-
scribed by the k — 1 inequalities W; > W; =6 for j #i. It
can alternatively be expressed as a (k — 1)-dimensional
integral with respect to the positively correlated ran-
dom variables W; — W; for j # i. When the number of
alternatives is small (fewer than 25, say), these inte-
grals can be evaluated numerically using quadrature,
for example, MATLAB’s mvncdf function if the true
variances are known. As the number of alternatives
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increases, this approach quickly becomes computa-
tionally impracticable.

Checking the pPGS stopping rule entails frequently
computing the pPGS of one or more alternatives; there-
fore, for problems with even a modest number of
alternatives, other methods for evaluating pPGS; are
necessary. We compare two: cheaply computable lower
bounds and an equivalent one-dimensional integral.

3.2. Cheap Lower Bounds
One approach that avoids calculating pPGS,; is to in-
stead compute a cheap lower bound and terminate
the procedure when it exceeds 1—a—doing so will
still yield the desired Bayesian guarantee. This ap-
proach lowers the computational cost of checking the
stopping rule, but any slack in the bound will likely
cause the procedure to take additional replications rel-
ative to the approach of exactly calculating pPGS,.
One such lower bound follows from Bonferroni’s
inequality: for any Alternative i,

pPGS,; = P(W; > W; -6 for all j #i | E)

>1- > P(W; < W,;-5]|€) = pPGSP™.
i

When the true variances are unknown, the term
P(W; < W; =06 €) involves the cumulative distribution
function (cdf) of the difference of two t-distributed
random variables with possibly different degrees of
freedom. Chick and Inoue (2001b) apply the approxi-
mation of Welch (1938) to this term to simplify the
computation of pPGSPo™.

Another cheap bound on pPGS; can be derived from
Slepian’s inequality (Slepian 1962). Although Slepian’s
inequality concerns normal random variables—which
Wy,...,W, would be if the true variances were
known—applying the result when the variances are un-
known is less straightforward. For this setting, Branke
et al. (2007) proposed a Slepian-type bound on the pPGS
of the alternative with the highest posterior mean, Alter-
native (k), yet offered limited justification. We rigorously
show in Proposition 1 that with the help of an inequality
from Tamhane and Bechhofer (1977) (see Lemma 2 in
Appendix A in the online appendix), Slepian’s inequality
can indeed be applied to the case of unknown variances.
Proposition 1 also generalizes the Slepian-type bound of
Branke et al. (2007) by extending the bounds on pPGS;
to alternatives with 6-optimal posterior means; see Ap-
pendix A in the online appendix for a proof.

Proposition 1. Under Assumptions 1-4, for any Alterna-
tive i with posterior mean i, satisfying y, > iy — 0,

pPGS; =P(W; > W; -6 forallj#i| &)

> [ [BW; = W, -5 €) = pPGS; .
#i

Whereas the expression for pPGS; deals with the

maximum of the k — 1 positively correlated random

variables W; — W; for j # i, the expression for pl"GS?lep

resembles the maximum of k — 1 independent random
variables. In this way, Slepian’s inequality ignores the
positive correlations and treats the terms in the pPGS,
expression as independent, thereby replacing a joint
probability statement with a product of marginal
ones. Peng et al. (2018a) claim that these ignored cor-
relations are unimportant in a high-confidence setting,
when 1 -« is close to one but are more likely to make
a difference in a low-confidence setting. Our experi-
mental results below bear this out.

Unlike the pPGS®P bound, which requires a multi-

variate normal posterior distribution, the pPGS®™™

bound holds even when Assumptions 1-4 do not. In
particular, the bound is still valid when Wj, ..., Wj are
not independent under the posterior distribution, for
example, when CRN are used. Although pPGS, is

harder to compute in such instances, the pPGSBorlf
bound remains one of few resources available.

Various Bayesian allocation rules use the pPGSP*™
(Chen et al. 2000) or pPGSSlE’p (Chick and Inoue 2001b)
bounds (with 6 = 0). Other procedures have used
these bounds as stopping rules; for example, the
procedure of Gorder and Kolonko (2019) for CRN ter-
minates when pPGSES“f first exceeds 1—a, and the
procedures of Branke et al. (2005, 2007) terminate
when pPGS(S,i;?p first exceeds 1 —a.

We examine the potential slack in the pPGS®™ and

pPGS®*F bounds, by which we mean the gap between
the approximations and the exact pPGS. Consider a
slippage configuration of posterior means, that is,
W= gy — A for all j # (k) for some A >0, with a com-

mon posterior variance p2. For this configuration,
pPGSy =1-aif A= hpA2p? = 6 (provided 6 is small
enough so that A is positive), where hjp is a constant
depending on 1 —a and k (Kim and Nelson 2006). To
be precise, hg is the 1 — a quantile of the maximum of
a (k—1)-dimensional multivariate normal vector with
Zero means, unit variances, and common pairwise cor-
relations of 1/2. It can be checked that for this config-

uration, pPGS™ =1 (k—1)®(-hy) and pPGS;® =

®(hp)*, irrespective of p? and 6. Figure 1 shows these
bounds when pPGS(k) =1-a=0.90,0.95, and 0.99 for
this configuration for different numbers of alterna-

tives. Several trends are evident: First, both pPGSZ:)’“f

and pPGSf’gp become less tight as the number of alter-

natives increases. Second, the slack in both bounds is
greater—in an absolute sense—for values of 1—a
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Figure 1. (Color online) Values of pPGS[S"™ and pPGS;” in
a Slippage Configuration of Posterior Means in Which

pPGS(k) =1-aforl—a=0.90,0.95,and 0.99
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farther from one; for 1-a=0.99, the bounds are

roughly equivalent. Third, pPGSEk‘;“f appears to be a

looser bound than pPGS(S,l';p, with the difference in the

bounds growing with the number of alternatives.

3.3. Numerical Integration

Given the potential slack in the pPGS*™ and pPGS®'*P
bounds, we return to the challenge of calculating
pPGS, in a way that is cheap and scales well with the
number of alternatives. The approach we take relies
on the observation of Peng et al. (2016) and Russo
(2020) that pPGS; can be expressed as a one-
dimensional integral by conditioning on the perfor-
mance of Alternative i:

pPGS; =P(W; > W; -0 forall j#i|&)
=E[P(W; > W; -0 forall j#i| W;,E) | €]
=E[[ [PW; < Wi +5|W;,€) | €
#i

-

where fy,e(-) and Fyy,c(-) are the posterior marginal
probability density function (pdf) of W; and cdf of W,
respectively. The third equality in Equation (1) makes
use of the product form of the posterior joint distribu-
tion under Assumptions 3 and 4. The integrand in
Equation (1) is the product of k — 1 cdfs and a pdf, all
of which under our assumptions are either for normal
or t-distributed random variables. Equation (1) there-
by avoids the need to approximate the difference
of two t-distributed random variables with different

l—[ FWj|g(w + 6)

i

fwje(w) dw, 1)

degrees of freedom, as was the case for the pPGS®™

and pPGS®P bounds.

To give a sense of the computational time associat-
ed with numerically integrating Equation (1), we use
MATLAPB'’s integral function for values of k ranging
from 10 to 100,000. MATLAB’s integral function per-
forms global adaptive quadrature with a 7-point
Gauss formula and 15-point Kronrod extension
(Shampine 2008). All experiments were run on a high-
performance computing cluster using eight cores on a
compute node with 256 GB of RAM. Source code for
all experiments is available at https://github.com/
daveckman/posterior-stopping-rules. For each value
of k, we generate 100 random posterior distributions
according to p; ~ N(0,25) and p? ~ ChiSquared(4), in-
dependent for all i=1,...,k, and compute pPGS(k),
without loss of generality, for both known and un-
known variances. Table 1 reports the average times as
well the 10th and 90th percentiles. Times for unknown
variances are about 6 to 20 times slower than those
for known variances, because of the need to evalu-
ate gamma and incomplete-beta functions when
evaluating the pdfs and cdfs of t-distributed ran-
dom variables. The results suggest that, even for
fairly large numbers of alternatives, pPGS, can be
quickly computed.

Remark 1. Under the default tolerance settings for
MATLAB's integral function, the absolute error be-
tween the returned value and the true value of an in-
tegral is estimated to be less than the larger of 107! or
107° times the returned value. For our pPGS; calcula-
tions, this translates to a bound of 107° on the absolute
error. For our pEOC, calculations in Section 4, which
feature sums of integrals or double integrals, a very
conservative bound on the absolute error is 107°. The
numerical integration results are therefore sufficiently
accurate for our purpose of checking stopping rules.

3.4. Which Alternatives to Evaluate
In cases where repeatedly computing the pPGS of all
alternatives is computationally prohibitive, it is
worthwhile to reduce the number of alternatives for
which the pPGS must be evaluated to check the stop-
ping rule. This motivates two important questions:
Which alternatives can have the highest pPGS? Can
the highest pPGS of these alternatives exceed 1 —a?
To answer these questions, we first make use of a
simple upper bound on the pPGS of alternatives
whose posterior means are at least 6 below the highest
posterior mean.

Proposition 2. Under Assumptions 1 and 2, for any Al-
ternative i with posterior mean y; satisfying p; < iy =0,
pPGS,; <1/2.


https://github.com/daveckman/posterior-stopping-rules
https://github.com/daveckman/posterior-stopping-rules
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Table 1. Average and 10th/90th Percentiles of Time (Seconds) to Numerically Integrate Equation (1) with Known/
Unknown Variances for Different Numbers of Alternatives (k) Based on 100 Randomly Generated Problem Instances

k 10 100 1,000 10,000 100,000
Average (known) 0.006 0.007 0.031 0.14 0.60
Percentiles (known) [0.004,0.007] [0.007,0.008] [0.025,0.037] [0.13,0.16] [0.53,0.69]
Average (unknown) 0.036 0.062 0.17 1.52 12.5
Percentiles (unknown) [0.029,0.043] [0.049,0.071] [0.16,0.18] [1.41,1.65] [11.3,14.0]

Proof of Proposition 2. For any Alternative i satisfy-
ing ;< gy =9,

pPGS; =P(W; > W; -6 forallj#i| &)
SP(W,’ZW(k)—6|5)=P(W(k)—WjS6|5)
<1/2,

where the last inequality comes from the fact that
Wiy — Wi is symmetrically distributed with mean

b= ;>0 O

Proposition 2 implies that only alternatives whose
posterior means are within 6 of y, can satisfy the

pPGS stopping rule when 1—a >1/2. Hence the fact

that Proposition 1 defines the pPGS®F bound for only
these alternatives is not necessarily a limitation. Simi-
larly, only the alternative with the highest posterior
mean can satisfy the pPCS stopping rule in this high-
confidence setting. Proposition 2 holds even when
Assumptions 3 or 4 do not, because Wy — W; is still
symmetrically distributed under the conjugate prior
assumption.

We further reduce the number of alternatives for
which we need to calculate the pPGS by identifying
sufficient conditions under which the pPGS of an al-
ternative is greater than that of another. The motivat-
ing idea is to use the posterior means and variances to
form a partial order on the set of alternatives. Thus,
there is no need to calculate the pPGS of any dominat-
ed alternative because any alternative that dominates
it has a higher pPGS.

Peng et al. (2016) show that if the posterior means of
all alternatives are equal, the alternative with the
highest posterior variance has the highest pPCS; see
proposition A.2 therein. When trying to select the alter-
native with the highest pPCS, the authors also suggest
that one should favor alternatives that have high poste-
rior means and variances. Proposition 3 formalizes this
assertion and extends it to the pPGS criterion; its proof
appears in Appendix B in the online appendix.

Proposition 3. Under Assumptions 1-4, suppose that
the true variances are known. For any pair of Alternatives
i and j with posterior means y; and y; and posterior

variances p7 and p? satisfying u, < p,—06/2 and p; < p?,
pPGS, < pPCS,

The 6/2 term in Proposition 3 is tight in a sense
made precise in Proposition 4; its proof appears in Ap-
pendix C in the online appendix.

Proposition 4. Under Assumptions 1-4, for any k > 3 and
any pair of Alternatives i and j with posterior means (1, and
w; for which y; =y, — 6/2+y where y >0, there exist pos-
terior means y, for € # i,j and posterior variances p? for
€=1,...,ksuch that p} < p? and pPGS, > pPGS,.

When the true variances are unknown, the result of
Proposition 3 is unlikely to hold in general since the ¢
distributions arising from unequal sample sizes do
not satisfy the stochastic dominance relationship used
in the proof. Proposition 3, however, can still be used
as a heuristic for determining for which alternatives i to
compute pPGS,. If a procedure fails to compute the
pPGS of the alternative with the highest pPGS, it might
miss an opportunity to terminate when the pPGS stop-
ping rule is first satisfied, but the procedure’s Bayesian
guarantee would not be invalidated. Moreover, because
the alternative with the highest posterior mean would
always remain in consideration, this approach would
entail taking no more observations than the approach
of tracking a lower bound on pPGS .

We exploit Propositions 2 and 3 to develop a frame-
work for exactly checking the pPGS stopping rule—
outlined in Procedure 1—and demonstrate its poten-
tial savings in Section 5.

Procedure 1

1. Take 1y initial replications from each alternative.

2. LetS={1,...,k}.

3. For each Alternative i € S, remove Alternative i
from Sif p; < iy — 0.

4. For each Alternative i € S, remove Alternative i
from Sif y; < p; — 6/2 and p? < p]? forsomej€S.

5. For each Alternative i € S, calculate pPGS; as in
Equation (1).

6. If pPGS; >1—a for some Alternative i € S, stop.
Otherwise take additional replications and return
to Step 2.
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4. Checking the pEOC Stopping Rule

Like pPGS;, pEOC; can be computed as a k-dimensional
integral. For even a modest number of alternatives,
computing pEOC,; in this way is too time consuming.
We present a sequence of ideas—similar to those in Sec-
tion 3—for efficiently checking the pEOC stopping rule:
identifying the alternative with the lowest pEOC and
examining different approaches for evaluating its
pEOC.

In contrast to the analysis of the pPGS stopping
rule, determining which alternative has the lowest
pEOC is straightforward. Recall that (k) is the index of
the alternative with the highest posterior mean. Prop-
osition 5 states a well-known result regarding the
pEOC of Alternative (k).

Proposition 5. Alternative (k) € arg min; <;pEOC..

Proof of Proposition 5. For an arbitrary Alternative i,
pEOCl = E[W[k] - Wi | 5] = IE[Vv[k] | 5] - E[Wi | g]/

where [k] is the index of the alternative with the high-
est performance. Because the term E[W[y | £] is inde-
pendent of i, the alternative with the highest posterior
mean, Alternative (k), has the lowest pEOC. O

Proposition 5 implies that to check the pEOC stop-
ping rule, a procedure needs to compute the pEOC of
only Alternative (k). It holds regardless of the form of
the posterior distribution, for example, even when As-
sumptions 1-4 are not satisfied.

4.1. Cheap Upper Bounds

Computing a cheap upper bound on pEOC;, and ter-
minating when it drops below p will ensure that a
procedure delivers the pEOC guarantee. Chick and
Inoue (2001b) provide one such bound, though their
name for it is somewhat of a misnomer:

<E

7

pEOC, =E max (W -W)" €
] 1

D (Wi=W)T| €
#i

= D E[(W; - W) | €] = pEOCI™.
Jj#
When the true variances are unknown, the terms
summed in pEOCP™ can be approximated (Branke
et al. 2005). The pEOCP*™ bound holds even when As-
sumptions 14 do not, meaning that it can be applied
when CRN are used.

We present another upper bound on pEOC ;,—one
derived from Slepian’s inequality—that is, to the best
of our knowledge, the first of its kind. Our approach
makes use of the fact that the expected value of the
nonnegative random variable Wy — W; can be written

as an integral over its complementary cdf:
pEOCl. = E[W[k] - W; | 5]
_ / P(Wiy — Wi > 6| €)do
0

:/ P(W; < W; =06 for some j #i| &) do
0

=/ [1-B(W, > W, -5 forall j # | £)|do
0

- /O “[1-pPGS | 5, @)

where pPGS,; is implicitly a function of 6. Proposition 1
implies that pPGS,, > pPGS,.¥ for all &> 0, hence for

(k) (k)
Alternative (k),

pEOC,, < / |1 - pPGST |do
0

)
-J

_ Slej
= pEOCG. ®)

1- l—[P(W(k) ZVV}—(‘HS)
Jj#(k)

do

The integrand in pEOC(SIl)ep features a product of k — 1

cdfs and should therefore take roughly as long to nu-
merically integrate as Equation (1). One minor

difference is that the cdfs in pEOC(S,:;ep deal with the
difference of two normal or t-distributed random
variables, necessitating some form of analytical or nu-
merical approximation when the true variances are
unknown and the sample sizes are unequal.

To illustrate the potential slack in the pEOCFk(;“f and

pEOC(S,:;Q'p bounds, we again take the approach of eval-
uating them for slippage configurations of posterior
means with a common posterior variance (p? = 1). We
use a line search to identify the spacing of posterior
means for which pEOC, =g for the settings of

=0.05, 0.1, and 0.25 and compute pEOCE™ and
p p (k)

pEOC(S,l;elo for the posterior distributions. Figure 2
shows that the tightness of both bounds deteriorates
as the number of alternatives increases, with the
pEOC?k‘;“f bound faring worse. The quality of the
bounds also appears to suffer for larger values of . In
many instances, the absolute error of these bounds is
several times larger than the true value of pEOC,,
suggesting that the use of these conservative bounds
as surrogates for pEOC;, may cause a procedure to
take significantly more replications than are necessary
to deliver the pEOC guarantee. This conjecture is
borne out in the experimental results of Section 5.
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Figure 2. (Color online) Values of pEOCES“f and pEOC(S;?p in

a Slippage Configuration of Posterior Means in Which
pEOC, = B for f = 0.05,0.10, and 0.25
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4.2. Numerical Integration

We turn our attention to the task of computing
pEOC;, without resorting to evaluating a k-dimen-
sional integral. The proof of Proposition 5 indicates
that one way is to calculate E[W | £] and then sub-
tract the posterior mean E[W; | £] = u,. Under the pos-
terior distribution, the marginal pdf of Wy is given
by fwe(w) = >k, fwie(@)IjiFwe(w). One can thus
calculate

00 k
E[Wyy | €] = / 0> e @) [ ] Fugje(aw) do

oo =1 #i
k  poo

22 w l—[Fws(w)lfWAe(w)dw- (4)
i=1 - j#i

Each of the k integrals in Equation (4) resembles
that of Equation (1) with 6 = 0 and an extra factor of
w in the integrand. We evaluate Equation (4) for the
same experimental setup of random problem instan-
ces as in Section 3.3 and report the timing results in
Table 2. Unsurprisingly, the computational times are
roughly equivalent to k times the computational times

in Table 1. For more than a modest number of alterna-
tives, numerically integrating Equation (4) becomes
too intensive for the purposes of checking the pEOC
stopping rule.

Another approach to computing pEOC, is to substi-
tute Equation (1) for pPGS; into Equation (2), yielding
a two-dimensional integral:

pEOC, = /:[1 _[: gpm‘g(w+6) fwxf(w)dWld(S
) /om/mll = [ [Fwje@ +06)|fwje(w) dwds.
e j#i
©)

Table 2 shows that the time required to evaluate
Equation (5) scales better with k than does evaluating
Equation (4), but for small numbers of alternatives it
is more intensive. This may be because in Equation
(5), the complexity of only the integrand increases
with k, whereas for Equation (4), the number of inte-
grals to evaluate also increases linearly in k. However,
the operation of computing the latter can be more eas-
ily parallelized. Based on these timings, one might
choose to evaluate Equation (4) for problems with k <
100 and evaluate Equation (5) for problems with k >
100. Although pEOC, is several orders of magnitude
more expensive to compute than pPGS;, we show in
Section 6 that the number of times a procedure needs
to compute pEOC; can be greatly reduced by using a
Monte Carlo estimate.

5. Experimental Results

In this section, we investigate the tradeoff between the
time spent checking the stopping rule and the total
number of simulation replications taken by a proce-
dure. Simulation experiments give a sense of the po-
tential reduction in the number of replications from us-
ing the proposed methods for exactly checking the
pPGS and pEOC stopping rules relative to using
bounds on these quantities. Overall savings in a proce-
dure’s run time can be worked out by comparing the
computational times reported in Sections 3 and 4—
along with the frequency with which the stopping rule

Table 2. Average and 10th/90th Percentiles of Time (Seconds) to Numerically Integrate Equations (4) and (5) for Known/
Unknown Variances and Different Numbers of Alternatives (k) Based on 100 Randomly Generated Problem Instances

Equation (4)

Equation (5)

k 10 100 1,000 10 100 1,000
Average (known) 0.07 0.90 23.0 0.99 1.66 5.45
Percentiles (known) [0.06,0.08] [0.90,1.30] [19.5,23.7] [0.85,1.23] [1.48,1.86] [4.56,6.29]
Average (unknown) 0.24 3.8 140 4.88 7.22 22.3
Percentiles (unknown) [0.20,0.28] [3.6,4.1] [132,147] [4.03,5.83] [6.44,8.35] [20.0,25.1]
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is checked—to the average time required to simulate a
replication and the number of replications taken.

We test the proposed methods on three allocation
rules: EA, TS, and OCBA. Our goal in these experi-
ments is not to compare the relative efficiency of allo-
cation rules, but rather to gain an understanding of
the potential savings from exactly checking the stop-
ping rule for various well-known allocation rules. The
EA rule allocates replications in batches of size k, with
one additional replication taken from each alternative.
Although EA can be inefficient—it continues to sam-
ple alternatives that are clearly inferior—it provides a
baseline for potential savings. We run the Thompson
sampling and OCBA rules fully sequentially, that is,
allocating one replication at a time, and check the
stopping rule after every replication. The TS rule ran-
domly allocates the next replication to Alternative i
with probability pPCS; for i=1,...,k (Russo 2020).
This is achieved by generating a random problem in-
stance from the posterior distribution and allocating
the next replication to the alternative with the highest
performance. We implement fully sequential versions
of the OCBA rule as presented in Branke et al. (2007).
Specifically, for the pPGS stopping rule, the OCBA
rule allocates the next replication to the alternative

that would yield the highest value of pPGS?,lfp if an

extra observation were taken from it and its posterior
mean were unchanged. Likewise, for the pEOC stop-
ping rule, the OCBA rule allocates the next replication
to the alternative that would yield the lowest value of

pEOC{™.

Let N, be the (random) number of replications taken
by a procedure using the proposed methods for exact-
ly checking a given stopping rule and let N, be the
number of replications taken by a procedure that ter-
minates when a bound for the posterior quantity first
crosses the specified threshold. For both the pPGS and
pEOC stopping rules, we implement the latter ap-
proach with the Bonferroni-type and Slepian-type
bounds, for a total of four variations: (1) terminate

when pPGS}" > 1~ a, (2) terminate when pPGS;s” >

1-a, (3) terminate when pEOCES“f <p, and (4) termi-

nate when pEOC(SgP < B. Branke et al. (2007) test the sec-
ond and third variations in their experiments. For any
given allocation rule and stopping rule, N, < N}, almost
surely because of the slack in the bounds. We focus on
the relative difference in the number of replications taken
by a procedure when using the aforementioned ap-
proaches, defining the fractional savings from exactly
checking the stopping rule as S = (N — N¢)/Np.

We use a conditional Monte Carlo method known
as splitting to speed up the experiments (Asmussen
and Glynn 2007). On each macroreplication, we record

the outputs obtained up until the exact stopping con-
dition is first met and then generate g realizations of
the remainder of the procedure that each run until a
given bound on the posterior quantity of Alternative
(k) crosses the specified threshold. In this way, one
macroreplication yields g observations of S for a given
allocation rule and bound. While this method is not
guaranteed to reduce the variance of the Monte Carlo
estimator of E[S], it allows us to quickly generate
identically distributed (albeit dependent) observations
of the fractional savings. Multiple independent macro-
replications then yield the desired estimator as a sam-
ple average over the macroreplication results. Because
the allocation rules are carried out independent of
how the stopping rule is checked, we further exploit
the splitting method to simultaneously test pairs of
bounds. More precisely, for a given allocation rule
and posterior quantity of interest, each macroreplica-
tion is split into g realizations that terminate based on
the corresponding Bonferroni-type bound and q real-
izations that terminate based on the corresponding
Slepian-type bound. As a consequence, some of the

observations of S for, say, OCBA with the pPGSSC‘)’nf

and pPGS(S;fp bounds are dependent.

We test the procedures on random problem instan-
ces generated in three settings, denoted by RPI-1,
RPI-2, and RPI-3. In each setting, —u,,..., — i, are in-
dependent and identically distributed (i.i.d.) from a
Weibull distribution with scale parameter a and shape
parameter b; that is, the density of —u; is given by

f(xa,b) = (b/a)(x/a)bile‘("/”)b. We fix b = 2 and vary a
across settings, taking a = 4 in RPI-1, 2 = 1.5 in RPI-2,
and a2 = 1 in RPI-3. The Weibull distribution is chosen
to produce problem instances for which most of the
alternatives have performances clustered below that
of the best alternative, with a tail of alternatives hav-
ing very poor performances. A smaller scale parame-
ter, a, causes the performances of the alternatives to
become more clustered, hence random problem in-
stances in RPI-3 have more good alternatives than
those in RPI-1. In all settings, the sampling variances
0?,i=1,...,k, are i.i.d. from a chi-squared distribu-
tion with four degrees of freedom, independent
of u;.

In all experiments, we randomly generate problem
instances with k = 100 alternatives. We choose an ini-
tial sample size of ng =5 for each alternative and val-
ues of 6 =1, 1-a=0.90 and = 0.50. For this choice
of 6, the proportions of good alternatives in RPI-1,
RPI-2, and RPI-3 are approximately 6%, 36%, and
63%, respectively. Problem instances like those in
RPI-1 may arise when randomly sampling alterna-
tives over a large feasible region, whereas problem in-
stances like those in RPI-2 and RPI-3 are more likely
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Figure 3. (Color online) ecdfs of Fractional Savings for the pPGS and pEOC Stopping Rules Relative to Bonferroni and Slepian

Bounds EA, TS, and OCBA Allocation Rules in RPI-1, RPI-2, and RPI-3
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in RPI-2. (d) pEOC in RPI-2. (¢) pPGS in RPI-3. (f) pEOC in RPI-3.

to arise when the alternatives are feasible solutions

For each pairing of an allocation rule and bound,
we generate 5,000 observations from m = 100 macrore-
plications with =50 splits. Figure 3 shows the

visited by a simulation-optimization search (Boesel
et al. 2003).
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empirical cdfs (ecdfs) of the fractional savings from
exactly checking the pPGS and pEOC stopping rules.
Curves that are further from the upper-left corner in-
dicate greater fractional savings. Average fractional
savings and error estimates are reported in Table 3.

For all allocation rules, posterior quantities, and
bounds, the fractional savings are greatest in RPI-3
and smallest in RPI-1. Our explanation for this is that
when the true performances are clustered closer to-
gether, the posterior means are more likely to be clus-
tered together, which in turn leads to more slack in
the Bonferroni- and Slepian-type bounds. In all cases,
the potential savings when using the EA rule are also
greater than those when using more efficient alloca-
tion rules. This can be partially explained by the fact
that failing to stop as soon as possible incurs a cost of
at least k additional replications under EA.

For the EA rule, the upper tails of the fractional sav-

ings relative to the pPGSBS“f and pPGS?,ifp bounds ex-
ceed 10% for a nontrivial proportion of the runs in all
settings. In contrast, the average fractional savings for
the TS and OCBA rules are minimal, though in RPI-2
and RPI-3, there is the potential for fractional savings
of up to 20%. Overall, the results suggest that when
using efficient allocation rules, there is limited upside
to exactly checking the pPGS stopping rule in realistic
problem instances. The results also support the conjec-
ture of Peng et al. (2018a) that in high-confidence set-

tings, the pPGS™®P bound will closely align with the
pPGS.
The fractional savings for the pEOC stopping rule

with the pEOCBS“f and pEOC(S]g’p bounds are much

greater than those for the pPGS bounds. This can be ex-

plained by the looseness of the pEOCES“f and pEQ(:(SgP

bounds, especially when the posterior means are clus-
tered together. Compared with the pEOCFk‘;“f bound

that appears in the literature, exactly checking the stop-
ping rule in RPI-2 and RPI-3 yields average fractional
savings of about 25-45% for the TS and OCBA alloca-
tion rules, with the potential for two- and three-fold

savings. Compared with the pEOC(S,f;lD bound we intro-

duce, exactly checking the stopping rule in RPI-2 and
RPI-3 yields average fractional savings of about 5-15%
for the TS and OCBA allocation rules.

6. Monte Carlo Precheck

The results in Section 5 demonstrate how exactly
checking the stopping rule can reduce the number of
replications taken until a procedure terminates. These
savings come at a cost, however, since frequently eval-
uating the posterior quantity of interest can amount to
a nontrivial computational time, even with the pro-
posed methods for accelerating these operations. Can

one achieve the best of both worlds: smaller sample
sizes with little extra computational effort?

We provide an affirmative answer by taking advan-
tage of the observation that when the posterior quanti-
ty of interest is far from its intended threshold, it is
not worth computing. Specifically, we explore the use
of a cheap Monte Carlo estimate of the posterior quan-
tity to “precheck” the stopping rule. By this we mean
that the posterior quantity is exactly evaluated and
compared with the threshold only when a Monte Car-
lo estimate of it crosses the threshold. In this way, the
relatively expensive operation of exactly computing
the posterior quantity is performed less frequently,
yet the statistical validity of the procedure’s Bayesian
guarantee is maintained.

Monte Carlo estimators of pPGS; and pEOC;, can

be attained by generating r independent random

problem instances wD, . WY from the posterior
distribution and computing

— 12
pPCS, =" yw = wij —o} ©6)
=1
and
EOC, =13 (Wit - W) @)
PR =5 2\ M ™ M)

where the index [k] in Equations (6) and (7) is defined

with respect to each W. The variances of these Mon-
te Carlo estimators can be further reduced by using
conditional Monte Carlo schemes that exploit proper-
ties of elliptical distributions (Ahn and Kim 2018, Jian
and Henderson 2020), though our empirical results
suggest that these crude estimators are adequate for at
least modest-sized problems. The finer precision of-
fered by such techniques should be weighed against
the added computational cost of implementing them.

Procedure 2 outlines the Monte Carlo precheck
method for the pEOC stopping rule.

Procedure 2

1. Take ny initial replications from each alternative.

2. Calculate pE6C (ky as in Equation (7).

3.1t pEOC ;) < B, calculate pEOC;, as in Equation (4)
or (5). Otherwise take additional replications and
return to Step 2.

4.1f pEOC;y <, stop. Otherwise take additional rep-
lications and return to Step 2.

To illustrate the effectiveness of the Monte Carlo
precheck method, we implement Procedure 2 with r =
10,000 for the TS allocation rule and RPI-2 using the
experimental setup from Section 5. We evaluate four
methods for checking the stopping rule: using the
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Table 3. Average Fractional Savings (with Error Estimates) Relative to Using Bounds for the EA, TS, and OCBA Allocation

Rules
Bound

Problem instance Allocation rule pPGS?k‘;“f pPGS(S,i)e}j pEOC?k‘;“f pEOCZfP

RPI-1 EA 0.04 = 0.02 0.04 = 0.01 0.26 = 0.03 0.14 = 0.02
TS 0.00 = 0.00 0.00 = 0.00 0.04 = 0.01 0.00 = 0.00
OCBA 0.00 = 0.00 0.00 = 0.00 0.06 = 0.01 0.00 = 0.00

RPI-2 EA 0.11 = 0.02 0.10 = 0.02 0.47 = 0.02 0.27 = 0.02
TS 0.00 = 0.00 0.00 = 0.00 0.29 = 0.02 0.05 = 0.01
OCBA 0.00 = 0.00 0.00 = 0.00 0.32 = 0.02 0.06 = 0.01

RPI-3 EA 0.12 = 0.02 0.10 = 0.02 0.56 = 0.02 0.34 = 0.02
TS 0.00 = 0.00 0.00 = 0.00 0.39 = 0.02 0.09 = 0.02
OCBA 0.00 = 0.00 0.00 = 0.00 0.46 = 0.02 0.13 £ 0.01

Note. Estimates of 0.00 = 0.00 denote small average fractional savings that round down to zero.

pEOC]Ek‘;“f bound, using the pEOC(SI:)ep bound, exactly

calculating pEOC ) via Equation (4), and Monte Carlo

prechecking. For each method, we track the total
number of replications taken, N, as well as the total
computational time spent determining whether to ter-
minate, denoted by T. Let N, and T, denote these
quantities for the Monte Carlo precheck method. On
each of M = 100 macroreplications, we couple the pro-
cedures by generating the replications determined by
the TS allocation rule, simultaneously collecting sam-
ple size and timing data for all four procedures and
terminating when the last procedure stops.

Because of the fixed initial sample size of ny =5 for
each alternative, 500 is a lower bound on N;, N,, and
Ny, as is evident in their ecdfs shown in Figure 4(a).
The ecdf of Ny, is virtually indistinguishable from that
of N,, demonstrating that the Monte Carlo precheck

method captures nearly all of the sample-size savings

relative to using the pEOCFk(;“f and pEOC(S,l';p bounds.

(The unexpected crossing of the ecdf curves for NSIEP

and N, is likely because of the imprecision of the

Welch approximation in the pEOCng bound.) Fur-

thermore, the computational times associated with the
Monte Carlo precheck method are roughly 1/10th
those of exactly checking the stopping rule, as illustrat-
ed in Figure 4(b). Together, these plots demonstrate
how the Monte Carlo precheck method can further re-
duce the overall run time of a procedure. Although us-
ing bounds remains the cheapest approach in terms of
the computational time spent checking whether to ter-
minate, T, in many if not most practical settings, we
expect this to be outweighed by the excessive sample
sizes depicted in Figure 4(a).

These results further suggest that using a Monte Car-
lo estimator to directly check the stopping rule may
yield a procedure with sample sizes comparable to N,
and computational times comparable to TP and Tslep.
However, terminating a procedure based solely on

Figure 4. (Color online) ecdfs of the Total Sample Size and Time Spent Checking the pEOC Stopping Rule with the TS Allocation

for RPI-2
(a)
1 -
0.8
06t
VI
<
A, 04r
NbBonf
02 f ‘ —N;'
N.
Nine
0 ‘ , , , , ,
0 1000 2000 3000 4000 5000 6000

Sample Size (n)

(b)

1
0.8
0.6
VI
=
04
TbBunf
0.2 _ThSlep
T,
Tne
0 L L L 1
0 1000 2000 3000 4000

Computation Time (t) (seconds)

Notes. The height of each curve at any value of  or t is accurate to within *0.1 with 95% confidence. (a) Sample size. (b) Computation time.



Downloaded from informs.org by [132.174.252.179] on 12 May 2023, at 14:25 . For personal use only, all rights reserved.

Eckman and Henderson: Posterior-Based Stopping Rules

1726 INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1711-1728, © 2022 INFORMS

Figure 5. (Color online) Histogram of the Posterior EOC of
the Selected Alternative (pEOC,) upon Termination When
Using the Monte Carlo Estimator pEOC, to Directly
Check the Stopping Rule
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Note. The vertical dashed line indicates the nominal guarantee of
pEOC, <f=0.5.

when a Monte Carlo estimate crosses the specified
threshold would invalidate the Bayesian guarantee.
(Terminating a procedure based on Monte Carlo inte-
gration of Equations (1), (4), or (5), although appealing
when the number of alternatives is large, would like-
wise lead to invalidated guarantees.) This raises a criti-
cal question: how might one weigh this added compu-
tational efficiency against the loss of a rigorous
Bayesian guarantee?

Before answering, we stress that this is not purely a
hypothetical question. When Assumption 1—normal-
ly distributed observations—is not justified, Slepian-
type bounds are generally unavailable. Moreover,
when one uses common random numbers or a prior
distribution with correlated beliefs, Assumptions 3
and 4, respectively, are not satisfied and the posterior
distribution no longer has a product form. Consequent-
ly, the k-dimensional integrals for pPGS; and pEOC,
cannot be reduced to one- and two-dimensional inte-

grals. In short, the pPGS?,Snf and pEOC](Bk‘;nf bounds are
among the few computationally tractable means avail-
able for checking stopping rules while maintaining a
procedure’s statistical validity. From Figure 4, it is evi-
dent that using a Monte Carlo estimator to directly
check the pEOC stopping rule would yield an apprecia-

ble reduction in a procedure’s run time relative to using

nf
the pEOCES bound.

In such cases, we advocate for using a Monte Carlo
estimator to directly check a stopping rule, believing
that the substantial savings in a procedure’s run time
more than compensate for a slight deterioration in its

Bayesian guarantee. In support of this contention, we
track a fifth procedure within the previous experi-
ment—one that uses the Monte Carlo estimator

pE5C(k) to directly check the stopping rule. Figure 5

shows a histogram of the pEOC of the selected alter-
native upon termination. Indeed, on 72% of the mac-
roreplications, the pEOC guarantee is attained, and
when it is not, departures from the nominal f=0.5
are minimal. Alternatively, using a Monte Carlo up-
per confidence bound on pEOC;, to directly check the

stopping rule could make it more likely that
pEOC, < 0.5, although with slightly larger total sam-
ple sizes.

For those with reservations about sacrificing a rigor-
ous Bayesian guarantee, we point out that even in the
case where Assumption 1 holds, the Welch approxi-

. . Bonf Slep
mations commonly used in pPGS;™, pPGS()", and
pEOC?k‘;“f introduce an error that could compromise
the guarantee, and yet they receive no such scrutiny.

7. Conclusion

We study R&S procedures that deliver Bayesian guar-
antees by tracking a posterior quantity of interest—
such as the pPGS or pEOC—and terminating when it
crosses a threshold. For the pPGS stopping rule, we
devise several methods for restricting attention to a
small set of alternatives that could satisfy the stopping
rule. We also derive a new Slepian-type bound on the
pEOC of the alternative with the highest posterior
mean. We investigate ways to exactly compute the
pPGS and pEOC of an alternative and demonstrate
the looseness of cheap bounds on these quantities for
problems with large numbers of alternatives. Numeri-
cal experiments indicate that implementing these ex-
act methods can translate into savings in the number
of replications a procedure takes. Savings for the
pPGS stopping rule are limited, whereas those for the
pEOC stopping rule can be substantial, particularly in
problem instances in which the performances of alter-
natives are similar. In addition, potential savings rela-
tive to using Bonferroni-type bounds are greater than
those relative to using Slepian-type bounds. An inter-
esting, open question is how using the exact values
(as opposed to bounds) of the pPGS and pEOC of al-
ternatives within allocation rules could impact their
sampling efficiency.

We also examine how using a Monte Carlo estima-
tor to precheck a stopping rule can yield appreciable
computational savings while preserving a procedure’s
Bayesian guarantee. Using a Monte Carlo estimator to
directly check a stopping rule, without calculating the
exact posterior quantity, can further reduce the compu-
tational time, while slightly weakening the Bayesian
guarantee. This is an appealing approach for situations
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in which the posterior quantity cannot be conveniently
computed via numerical integration, for example, when
sampling or prior beliefs are correlated. Although these
Monte Carlo calculations did not represent a significant
computational hurdle in our experiments, further
efficiencies may be possible through the use of variance
reduction schemes or other strategies such as quasi-
Monte Carlo or randomized quasi-Monte Carlo.

It is hard to provide absolute recommendations
among the various methods because their relative effi-
ciencies depend on the costs of simulating replications
and checking the stopping rules. These costs can vary
from macroreplication to macroreplication and across
computing platforms. Using a Monte Carlo estimator
to directly check the stopping rule appears to have lit-
tle loss with regards to premature stopping, scales
well with the number of alternatives, and applies un-
der the most general conditions, requiring only the
ability to sample from the posterior distribution. For
users who want the assurance of a rigorous Bayesian
guarantee, the Monte Carlo precheck method per-
forms well on problems with up to at least 100 alterna-
tives. For larger problems, it may be advantageous to
check the stopping rule less frequently, for example,
by allocating replications in batches.

Our work also motivates further research on the
scalability of Bayesian selection procedures for prob-
lems with large numbers of alternatives. Important
concerns in this setting are the computational costs of
integrating or estimating posterior quantities of inter-
est and implementing allocation rules. Although fre-
quentist procedures have been developed to tackle
R&S problems with up to a million alternatives (Ni
et al. 2017, Pei et al. 2018), the limits of Bayesian selec-
tion procedures remain underexplored. Moreover, the
standard guarantees on pPGS; and pEOC,; may be ill-
suited objectives for large-scale problems.

R&S problems with many alternatives are well suit-
ed to parallel computation (Luo and Hong 2011, Luo
et al. 2015, Ni et al. 2017). How might parallel comput-
ing be exploited in the Bayesian setting beyond the
obvious use in running simulation replications of al-
ternatives in parallel? It would be straightforward to
use parallel computing for the proposed Monte Carlo
precheck, but that step is not computationally inten-
sive, so the advantage in doing so is not clear. But
what of numerical integration schemes? The adaptive
quadrature integration methods we use here adap-
tively choose points at which to compute the marginal
posterior densities and cdfs. These selections depend
heavily on the part of the support of fic where the
density takes nontrivial values—as in Equations (1),
(4), and (5)—and thus depend on the Alternative i un-
der consideration. Therefore, an effective use of paral-
lel computing to accelerate numerical integration is

not straightforward. However, it is conceivable that
some scheme could be engineered to precompute the
densities and cdfs on some grid of values using multi-
ple processors and then share those values across oth-
er processors dedicated to evaluating metrics like the
pPGS and pEOC of alternatives of interest. Such a
scheme would require careful coordination across dif-
ferent alternatives but might yield important speed-
ups in numerical evaluation. We leave this topic for
future research.
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