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Abstract. This paper introduces a major redesign of SimOpt, a testbed of simulation- 
optimization (SO) problems and solvers. The testbed promotes the empirical evaluation and 
comparison of solvers and aims to accelerate their development. Relative to previous ver
sions of SimOpt, the redesign ports the code to an object-oriented architecture in Python; uses 
an implementation of the MRG32k3a random number generator that supports streams, sub
streams, and subsubstreams; supports the automated use of common random numbers for 
ease and efficiency; includes a powerful suite of plotting tools for visualizing experiment 
results; uses bootstrapping to obtain error estimates; accommodates the use of data farming 
to explore simulation models and optimization solvers as their input parameters vary; and 
provides a graphical user interface. The SimOpt source code is available on a GitHub reposi
tory under a permissive open-source license and as a Python package.
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Supplemental Material: The software that supports the findings of this study is available within the paper 

and its Supplemental Information (https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023. 
1273) as well as from the IJOC GitHub software repository (https://github.com/INFORMSJoC/2022. 
0011) at (http://dx.doi.org/10.5281/zenodo.7468744). 
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1. Introduction and Motivation
A simulation-optimization (SO) problem is an optimiza
tion problem where the objective function or constraints 
are evaluated (approximately) through a stochastic simu
lation. A wide variety of problems can be formulated as 
SO problems, and although quite a few SO solvers exist, 
there is tremendous room for more development. SimOpt 
(Eckman et al. 2021) is a suite of SO problems and solvers 
that supports the testing and development of SO solvers, 
with many goals including highlighting the performance 
of solvers over practically relevant timescales, helping 
identify challenging problems that defy efficient solution 
with current solvers, facilitating solver comparisons, and 
providing a testbed to aid solver development and im
provements (see Eckman et al. (2023) for a fuller discus
sion of these goals). SimOpt has evolved over quite some 
time (Pasupathy and Henderson 2006), with the most 
recent version prior to this release built in MATLAB with 
a standardized interface and automated generation of a 
small number of plots (Eckman et al. 2019).

SimOpt has not yet achieved its primary goal of 
broad adoption by SO researchers. Certainly, it has 
been used to a modest extent by researchers seeking test 
problems, as evidenced by personal communications 

received by the authors, but widespread adoption of its 
solver-comparison capabilities has remained elusive. 
We believe the reasons are four-fold. First, the earliest 
instantiation of SimOpt did not have standardized prob
lem interfaces, making it difficult to test a range of pro
blems with a solver. That was resolved fairly recently 
(Eckman et al. 2019), with Dong et al. (2017) showcasing 
the potential unlocked by that standardization. Second, 
the use of the proprietary software MATLAB limited 
accessibility, which we resolve here by using Python. 
Third, the class of problems was not rich, which we have 
partially addressed in this new version through the sep
aration of models from problems, so that now many pro
blems can be built from the same simulation model. In 
addition, we can vary factors to create families of similar 
problems from a single base problem. Fourth, the set of 
people contributing to SimOpt was smaller than it is 
today; some initial momentum was needed, and we 
believe we now have that momentum.

This paper introduces a comprehensive reimagining 
and redesign of SimOpt that significantly enhances its 
functionality while increasing its ease of use. In addition 
to SimOpt’s original purpose of providing a testbed for 
benchmarking solvers and spurring their development, 
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the latest incarnation permits additional uses. These in
clude the following: 

1. Sensitivity analysis of simulation models through 
data farming;

2. Assisting with the tuning of input parameters of 
SO solvers;

3. Educational uses, offering a set of models for stu
dents to explore. Writing new problems or solvers for 
the library could be a suitable final project for a gradu
ate course in simulation or simulation optimization.

We highlight the following innovations in SimOpt: 
• An object-oriented architecture in Python that enables 

both open access and extensibility to new domains, for 
example, data farming.

• An implementation of the MRG32k3a random num
ber generator that supports streams, substreams, and 
subsubstreams.

• A schema for controlling random numbers that al
lows the use of common random numbers in a variety 
of ways with almost no effort on the part of the user.

• An expanded suite of plotting tools for visualizing 
experiment results.

• A bootstrapping approach to error estimation that 
permits a broad range of analyses.

• A data-farming capability that allows one to test 
how changes to parameters of simulation models or 
simulation-optimization solvers affect their outputs.

• A GUI that increases ease of use.
The result of these innovations is a powerful plat

form that we hope will become a standard medium for 
the study of SO problems and solvers.

This paper focuses on the use of SimOpt, highlighting 
those aspects of its design that are most important for a 
range of use cases from a casual SO user to researchers 
working on designing improved solvers. Eckman et al. 
(2023) define and explain the rationale behind the diag
nostic tools that are implemented in SimOpt. The 
papers overlap only slightly: Section 3 summarizes the 
metrics developed in Eckman et al. (2023). Otherwise, 
the papers are mostly complementary.

Our work is partly inspired by the recent development 
of PyMOSO (Cooper and Hunter 2020, 2021) for multi
objective SO problems. Neither SimOpt nor PyMOSO 
dominates the other in scope. Although PyMOSO has the 
ability to work with the single-objective SO problems that 
are our focus, it is primarily intended for multiobjective 
problems. Conversely, SimOpt latently supports multiob
jective SO problems but will require further development 
before this capability is fully implemented. We believe 
that many of the innovations we develop here will be of 
interest to users of PyMOSO, for example, the use of sim
ulation models that exist separately from simulation pro
blems. In any case, we view both PyMOSO and SimOpt to 
be important tools for the SO research community.

The remainder of this paper is organized as follows. 
Section 2 defines single-objective SO problems and 

delineates the classes of SO problems and solvers cur
rently supported by SimOpt. Section 3 discusses the infra
structure of SimOpt including how experiments may be 
designed and evaluated. Section 4 explores several use 
cases. Section 5 reviews the central aspects of the SimOpt 
code, which will be helpful to those wishing to contribute 
problems or solvers. It also provides a deeper under
standing of the code for those interested in advanced 
experiments. Section 6 describes SimOpt’s implementa
tion of MRG32k3a and how it enables the use of common 
random numbers in a variety of ways. Section 7 describes 
in detail how one can access and work with SimOpt, and 
Section 8 concludes. This paper is accompanied by a 
GitHub repository (Eckman et al. 2022) containing the 
source code for SimOpt.

2. SO Problems and Solvers
The prototypical SO problem we consider is

min
x

f (x, w) � Ef (x, w, ξ)

s=t g(x, w) � Eg(x, w, ξ) ≤ 0

h(x, w) ≤ 0

x ∈ D(w):

In this formulation, the vector w consists of input para
meters that are not decision variables but provide addi
tional “settings” for the problem that the user may 
wish to modify. The vector x of decision variables takes 
values in a domain D(w) that could, for example, 
restrict x to be integer-valued and could depend on w. 
Collectively we refer to (x, w) as factors to align with the 
design-of-experiments literature. Factors can be contin
uous or integer-ordered scalars or vectors or even cate
gorical in nature. In a single problem the factors w can 
be viewed as fixed constants, but in, for example, data 
farming, they could be varied. In the data-farming set
ting, we refer to x and w as decision factors and noise 
factors, respectively (Sanchez 2020).

The explicit dependence on the noise factors, w, is not 
typical in the notation of SO problems. We adopt this 
notation because SimOpt has been structured to allow 
almost any parameter of a model to be varied. This 
design choice is intended to make the code as flexible 
as possible for user (re)specification. For example, this 
allows the definition of multiple problems that all rely on 
the same underlying simulation model and code. Vary
ing the values of the factors w will usually lead to only 
modest changes in the structure of the problem but could 
lead to more substantial changes in properties like conti
nuity, convexity, and smoothness. In addition, varying w 
can change both the feasible region and the optimal solu
tion of the problem.

The random object ξ represents all random variables 
required to generate a single replication. The expectation 
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operator E potentially depends on x and w, in that 
these factors may change the distribution of the ran
dom object ξ, but that dependence is suppressed. The 
functions f (·, · , ·) and g(·, · , ·) represent the simulation 
logic used to generate the objective function and left- 
hand side of any stochastic constraints, respectively, so 
that f (·, · , ·) is real-valued and g(·, · , ·) is potentially 
vector-valued. The potentially vector-valued function 
h(·, ·) provides the left-hand side of any deterministic 
constraints. Some constraints could be expressed either 
through the function h or through the domain D(w). In 
such cases, the choice of which to use is a matter of taste 
and convenience.

This formulation is not completely general. It ex
cludes, for example, objective functions associated with 
quantiles or nonlinear functions of means. It includes, 
for example, unconstrained problems where g and h 
are vacuous and D is the domain of f (·, w) with w fixed, 
problems with box constraints where D or h restricts 
the decision variables to a hyper-rectangle aligned with 
the coordinate axes, and so forth. It includes problems 
where all decision variables are continuous and pro
blems where some or all decision variables take integer 
values. When g is vacuous and h is not, we say the prob
lem has deterministic constraints. If g is nonvacuous 
then we say the problem has stochastic constraints.

Relative to the taxonomy of constraints developed in 
Digabel and Wild (2015), we primarily assume Q**K 
constraints, in that both g(·, ·) and h(·, ·) are Quantifiable 
and Known, but depending on the problem setting one 
may or may not be able to relax (the first *) these con
straints. Within the structure of that taxonomy, the 
h(·, ·) constraints are A priori constraints, whereas the 
g(·, ·) constraints are Simulation constraints (explaining 
the second *). The domain D(w) could permit devia
tions from the Q**K classification, although we prefer 
quantifiable, known constraints because we believe 
them to be more tractable.

We differentiate between the model that appears in 
an SO problem and the problem itself. This allows us to 
formulate multiple problems associated with a single 
model. Moreover, models can be studied in isolation; 
for instance, data farming can be employed to under
stand how changes to the inputs of a simulation model 
affect its outputs. Given that the code of a simulation 
model is usually more complex than that of a problem, 
this one-to-many relationship helps us rapidly expand 
the collection of problems in SimOpt.

Example 1. The SimOpt model FacilitySize simu
lates operations at a set of n facilities with each repli
cation representing a day’s worth of operations. Each 
facility has a capacity κi for i � 1, 2, : : : , n and the 
demand across all centers is distributed as a truncated 
Gaussian with mean vector µ ∈ Rn and variance- 
covariance matrix Σ ∈ Rn×n. If the demand at a facility 

exceeds its capacity, the facility is said to be stocked 
out. This model has four factors: n, κ :� (κ1,κ2, : : : ,κn), 
µ, and Σ, demonstrating that factors can be scalars, vec
tors, or matrices. A replication of the model returns three 
responses: S, an indicator of whether any facility stocked 
out; N, the number of facilities that stocked out; and U, 
the total amount of unsatisfied demand.

The FacilitySize model can be used to formulate 
several SO problems, for example,

min
κ∈Rk

+

c⊤κ such that Pr(N � 0) ≥ 1 � ɛ and (1) 

max
κ∈Rk

+

Pr(N � 0) such that c⊤κ ≤ b, (2) 

where ci ∈ R is the cost of installing a unit of capacity at 
center i, ɛ ∈ (0, 1) is an allowable threshold for the prob
ability of stocking out, and b ∈ R is a total budget for 
installation costs. The parameters c � (c1, c2, : : : , cn), ɛ, 
and b are regarded as factors of the problems and can 
be varied. In Problem (1), the objective is to minimize 
the total installation costs subject to a stochastic con
straint that the probability of not stocking out any
where is sufficiently high. In Problem (2), the objective 
is to minimize the probability of not stocking out at any 
facility subject to a deterministic constraint on the total 
cost of installing capacity at the facilities. Both pro
blems designate the capacities as the decision variables, 
that is, x � κ, while treating the other factors as fixed, 
that is, w � {n, µ,Σ, c, b, ɛ}.

SimOpt does not include artificial problems that result 
from adding noise to a deterministic test function such 
as the Rosenbrock function. Such problems have serious 
deficiencies that can arise, for example, when using com
mon random numbers across different solutions. In such 
cases, the entire deterministic function is shifted verti
cally by a single random noise realization at all solutions 
x, as has been noted elsewhere (Eckman et al. 2023).

In SimOpt, problems are solved by solvers, which are 
implementations of SO algorithms. Like models and 
problems, solvers have their own set of factors that can 
be varied. These can be virtually anything, but repre
sentative examples include (1) nothing; (2) coefficients 
of a step-size sequence; (3) the number of replications 
to take at each simulated solution; or (4) a categorical 
variable indicating whether to use a first- or second- 
order metamodel around the incumbent solution.

We classify solvers according to the kinds of pro
blems they can tackle using the same terminology we 
use to describe problems. Thus, for example, a solver 
designed for continuous-variable problems cannot be 
used on a problem with integer variables, and a solver 
designed for unconstrained problems cannot be used 
on a problem with stochastic constraints. Problems and 
solvers in the library are categorized using a four-letter- 
abbreviation coding system detailed in Table 1; for 
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example, SBCG encodes single-objective, box-constrained, 
continuous problems with direct gradient estimates. Solver 
classes represented in the library include random/direct 
search, model-based search, simplex/pattern-based search, 
and gradient-search. For a complete list of problems and 
solvers, see https://simopt.readthedocs.io/en/latest.

At present, few SimOpt test problems return esti
mates of the gradient of f (·, ·), so any gradient-based 
solvers need to indirectly construct the gradient esti
mates they require. However, we continue to develop 
the list of problems in the library and add gradient esti
mators where we can. An exciting potential research 
direction is to use automatic differentiation to obtain 
infinitesimal-perturbation-analysis gradient estimators 
for all problems (Ford et al. 2022), although those esti
mators will exhibit problem-specific degrees of bias 
(Eckman and Henderson 2020).

SimOpt currently only supports fixed-budget solvers, 
that is, solvers that are constrained to use up to a fixed 
number of simulation replications over the entire course 
of the search for optimal solutions. SimOpt is not designed 
to directly support fixed-precision solvers, where the search 
continues until a stopping condition is met so that the 
expended budget is random. Perhaps the most prominent 
class of these yet unsupported solvers are ranking-and- 
selection algorithms that enumerate a finite list of potential 
solutions and provide a statistical guarantee on the se
lected system. Some solvers, that we call budget-specific sol
vers, explicitly use knowledge of the overall budget of 
simulation replications in setting key parameters (Nemir
ovski et al. 2009), whereas budget-agnostic solvers do not. 
Most SimOpt metrics are intended for budget-agnostic 
solvers, although SimOpt provides additional terminal 
plots to enable the comparison of budget-specific solvers 
and budget-agnostic solvers (see Section 3).

Some solvers require nontrivial computing overhead 
beyond that needed to generate simulation replications. 
Such overhead does not appear in the metrics that 
SimOpt produces, although the overall computing time 
for each macroreplication is logged and can be accessed 
(see Section 3).

Parallelization is not yet supported but is planned 
through the parallel execution of macroreplications. 
Solvers can exploit parallel computing, but the metrics 
that SimOpt produces are most easily interpreted in the 
context of a serial model of computation.

The metrics that SimOpt produces are not customized 
in any way for SO problems with stochastic constraints, 
although this is planned. Multiobjective SO problems 
are not supported, but some preparations have been 
made for future extensibility.

3. Solver Performance
From its inception, SimOpt has sought to answer the 
question “How do we know if a solver is working well?” 
SimOpt is designed to help both a researcher who might 
appreciate testing a solver’s ability to rapidly and reliably 
solve practical problems and a practitioner who would 
primarily be interested in solving a particular problem of 
interest. In this section, we describe how SimOpt runs an 
SO solver on a problem and reports useful metrics and 
plots for evaluating and comparing performance.

Unlike with deterministic-optimization solvers, the per
formance of an SO solver on a given problem varies from 
run to run due to the random error associated with esti
mating the objective function or stochastic constraints, 
as well as any intrinsic randomness of the solver, for 
example, picking a random search direction. This nec
essitates performing multiple runs of a solver on a prob
lem, hereafter referred to as macroreplications. For a given 
problem p and solver s, the solver’s performance on a par
ticular macroreplication is assessed by fixing a problem- 
specific simulation budget T—measured in simulation 
replications—and tracking the solutions recommended 
over time. In particular, the mth macroreplication gener
ates a stochastic process {Xp,s

m (t) : 0 ≤ t ≤ 1}, where Xp,s
m (t)

is the solution recommended by Solver s on Problem 
p after a fraction t ∈ [0, 1] of the budget has been ex
pended. When there is no ambiguity, we suppress p and s 
from the notation. The recommended solutions are then 
re-evaluated in a postprocessing stage to obtain unbiased 
objective function estimates and the results can be scaled 
to obtain the solver’s relative progress toward optimality. 
Effectively, SimOpt estimates a solver’s progress via two- 
level simulation, with an outer level consisting of macrore
plications and an inner level consisting of postreplications. 
This experimental setup for a given problem-solver pair is 
outlined here. 

Step 1. Run M ≥ 1 independent macroreplications of 
Solver s on Problem p to generate {Xm(t) : 0 ≤ t ≤ 1} for 
m � 1, 2, : : : , M.

Table 1. Abbreviations Used to Categorize Problems and Solvers to Recognize Their 
Compatibility

Objective Constraint Variable
Direct gradient 

observations

Single (S) Unconstrained (U) Discrete (D) Available (G)
Multiple (M) Box (B) Continuous (C) Not Available (N)

Deterministic (D) Mixed (M)
Stochastic (S)
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Step 2. Take N independent postreplications of the 
model at each distinct recommended solution in {Xm(t) :

0 ≤ t ≤ 1} for m � 1, 2, : : : , M. The objective function value 
associated with a recommended solution Xm(t) is estimated 
by the sample average of the N postreplications, denoted as 
fN(Xm(t)). (The left-hand sides of any stochastic constraints 
can be estimated similarly as gN(Xm(t)).)

Step 3. Optionally, for each solution recommended 
in macroreplication m, normalize its estimated objec
tive function value using the (estimated) objective func
tion values at an initial solution x0 and an optimal 
solution x∗ for reference:

νm(t) �
fN(Xm(t)) � fL(x0)

fL(x∗) � fL(x0)
:

The objective function values of x0 and x∗ are estimated 
based on L postreplications, where typically L ≥ N. 
We call the normalized value νm(t) the estimated 

progress at time t on macroreplication m and we call 
νm(·) the estimated progress curve. A progress curve typ
ically takes values between zero and one, although this 
is not guaranteed due to sampling variability or other 
causes. When a problem’s true optimal solution is 
unknown, as is often the case, a known optimal value 
f (x∗) or a lower (upper) bound on the optimal value for 
minimization (maximization) objectives may be pro
vided and used in place of fL(x∗). If these quantities are 
not provided, SimOpt empirically identifies a proxy 
optimal solution by using the recommended solution 
with the best estimated objective function value based 
on the N postreplications.

Estimates of many measures of solver performance 
can be extracted from the estimated progress curves 
and plotted. We summarize five types of comparative 
plots introduced in Eckman et al. (2023) here and show 
four examples in Figure 1. The first two plots in Figure 1
measure the performance of multiple solvers on a single 

Figure 1. (Color online) Plots Produced by SimOpt for Comparing Solvers on One or More Problems 

Notes. (a) Mean progress curves. (b) Terminal progress violin plots. (c) Area-under-progress-curve scatter plots. (d) Solvability profiles.
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problem and the final two plots depict the performance 
of multiple solvers on multiple problems. SimOpt uses a 
two-level bootstrapping procedure to obtain error esti
mates for these metrics, as outlined in appendix B of 
Eckman et al. (2023). Pointwise 95% bootstrap confi
dence intervals are indicated in the plots with shading.

• Aggregated Progress Curves. The estimated progress 
curves ν1(·),ν2(·), : : : ,νM(·) can be aggregated to pro
duce a mean progress curve and a quantile progress 
curve. These curves depict the solver’s average pro
gress over time and how reliable this progress is, 
respectively. Solvers for which the aggregated progress 
curves approach zero more quickly are those that make 
more rapid progress.

• Solvability Curves. One can specify a value α ∈ (0, 1)

that indicates the relative remaining optimality gap 
required for a problem to be deemed “solved”. The cor
responding crossing time of each estimated progress 
curve νm(·) is referred to as the α-solve time. The empiri
cal cumulative distribution function of the α-solve times 
from multiple macroreplications is called a solvability 
curve and shows how rapidly a solver makes sufficient 
progress.

• Area-Under-Progress-Curve Scatter Plots. For each 
problem, the sample mean and standard deviation of the 
area under a solver’s estimated progress curves can be 
plotted in a scatter plot using these summary statistics as 
(x, y) coordinate pairs. Solvers whose point clouds are 
concentrated in the lower-left corner of the scatter plot 
are those that either find better solutions or exhibit faster 
convergence with greater reliability.

• Solvability Profiles and Difference Profiles. The α-solve 
times of a solver can also be aggregated across problems 
to yield a solvability profile, which has close ties to data 
profiles (Moré and Wild 2009). Solvers with solvability 
profiles closer to 1 demonstrate better performance at 
solving a larger fraction of the tested problems. Com
parisons between a set of solvers and that of a bench
mark solver s0 can be further highlighted by plotting the 
difference of solvability profiles, called difference pro
files (not shown). The values of a difference profile 
range between �1 and 1 with positive values indicating 
a solver outperforming the benchmark.

• Terminal Progress Comparative Violin Plots and Scatter 
Plots. The progress of solvers once the budget T is 
exhausted is of particular interest, partly to enable the 
direct comparison of budget-specific and budget-agnostic 
solvers. Violin plots, one per solver, depict the distribution 
of the terminal progress ν(1), whereas the mean and stan
dard deviation of ν(1) for each problem-solver pair can be 
plotted in a scatter plot.

These metrics and plots have limitations that direct 
our future endeavors for SimOpt. First, they are not 
designed for problems with stochastic constraints, or at 
least do not depict the (in)feasibility of recommended 

solutions. Second, they are not designed for multiobjec
tive SO problems, which have their own unique aspects 
when it comes to measuring a solver’s performance. 
Third, they do not show the computational effort a 
solver requires beyond that needed to run simulation 
replications, which can be considerable for some solvers. 
Presently, we log the computation times for each macro
replication of each problem-solver pair, which can be 
analyzed manually; we do not provide diagnostic plots 
for these computation times partly because they depend 
so heavily on the computing platform that is used. Last, 
the computational effort required to construct estimated 
progress curves, and associated metrics, grows with the 
number of solutions recommended by a solver. In these 
cases, estimating the progress on a regular grid of times 
can alleviate this burden while still conveying the gen
eral performance of a solver; this alternative construc
tion is not yet implemented.

4. Use Cases
The performance metrics and plots discussed previously 
provide a wealth of information on the performance of 
solvers on problems. Here we discuss how that informa
tion can be used in a variety of settings that encompass 
both practitioners attempting to solve one or more pro
blems and researchers attempting to develop solvers and 
compare them. 

1. How well can Problem p be solved? In practice, we 
often seek a good solution to a given problem. The 
experiment consists of the singleton problem set P �

{p} together with a collection of candidate solvers S. 
Progress and solvability curves are both of interest, but 
a challenge is that the optimal value, or a proxy thereof, 
is likely unknown. In that event, unnormalized pro
gress curves may be of primary interest and these are 
easily produced in SimOpt by simply setting an option 
in the call to generate the progress curves.

2. Is Solver s able to solve Problem p? Here a solver 
developer is interested in whether Solver s can α-solve 
Problem p for some given α. Because the goal here is 
solver design rather than problem solution, an optimal 
value or a proxy may be known. Accordingly, an 
experiment with a singleton problem set P � {p} and a 
singleton solver set S � {s} might be run to produce 
progress and solvability curves.

3. Does Solver s solve Problem p faster or more reliably 
than Solver s′? A solver developer may want to know 
how their solver, s, compares with another benchmark 
solver, s′, on a particular problem. We can run an ex
periment with P � {p} and S � {s, s′}. Mean and me
dian progress curves can provide the typical rate of 
progress and other (than the median) quantile progress 
curves can provide information about solver reliability. 
Here s and s′ might be the same solver with different 
factors, thereby facilitating the tuning of solvers, or two 
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entirely different solvers. In this and the next two use 
cases, the number of solvers being compared can be 
more than two. For instance, if one wishes to explore 
variants of the solver s, as expressed through choices of 
solver factors v1, v2, : : : , vr, say, then one would use the 
solver set S � {s(v1), s(v2), : : : , s(vr)}.

4. Is Solver s more robust than Solver s’ in solving problems 
of the form p? Many applications involve the repeated 
solution of problems that are very similar. We can 
explore which solvers are especially adept at solving a 
class of problems by taking P � {p(w1), p(w2), : : : , p(wr)}, 
where w1, w2, : : : , wr are choices of factors. If we take 
these factor settings to be the initial solution, then we can 
explore the global convergence properties of solvers. If 
we take these factor settings to reflect the size, noise-to- 
signal ratio, or other specifics of Problem p, we can see 
how the two solvers compare in solving this class of pro
blems. Less consistency in a solver’s performance here 
implies less robustness. Area-under-progress-curve scat
ter plots, solvability profiles, and difference profiles are 
all of interest.

5. Is Solver s better than Solver s′? When the user is inter
ested in an overall assessment of one solver vs. another, 
it would be appropriate to perform an experiment with 
a comprehensive problem set P � {p1, p2, : : : , pr} that 
includes many problem instances encompassing a wide 
range of structural properties and noisy behaviors. Alter
natively, the user can choose P to contain only problems 
that are hard to solve by current solvers and include an 
existing high-functioning solver as a benchmark for dif
ference profiles. Or a user might be interested in a com
parison of only low (high) dimensional problems. This 
use case, as well as Use Cases 3 and 4, can help a solver 
developer test specific internal changes to an existing 
solver. What it means for a solver to be “better” is subjec
tive and dependent on the needs of the user; speed and 
reliability are important and can be explored in the plots 
and log files. If the number of problems in P is reason
ably large, solvability and difference profiles will clarify 
whether one solver is capable of solving a higher percent
age of problems than the other. Area-under-progress- 
curve scatter plots are also beneficial in showing on 
which problem instances each solver performs poorly.

6. What choices of factors of Solver s work best on a prob
lem or a set of problems? Similar to Use Case 3, a user 
may want to explore the factors v of Solver s, looking 
for the (parameterized) solver s(v) with the best perfor
mance. For example, data farming (Sanchez 2020) can 
be used to design a space-filling set of factor combina
tions V � {v1, v2, : : : , vr}. The output data from such an 
experiment can then be used to form response surfaces 
based on the various performance measures listed in 
Section 3. A user might seek, for example, the setting of 
the solver’s factors that minimizes some functional of 
the area under the progress curves. In this way, one 

might establish some rules of thumb for tuning a solver 
to a particular problem or class of problems.

7. Can the relationship between the inputs and outputs of 
a simulation model be understood? Here there is no opti
mization problem to be solved. Rather, one wishes to 
explore the effects that a given simulation model’s fac
tors have on its responses. The necessary simulations 
can be run in SimOpt; however, the statistical analysis 
of the results needed to, for instance, generate a res
ponse surface must be performed externally.

5. Code Design
Previous versions of SimOpt were coded in MATLAB— 
a choice that was partially an artifact of how the library’s 
first problems and solvers were coded. Our major rede
sign of SimOpt presented an opportunity to revisit the 
choice of programming language. Feedback from the 
simulation community indicated that Python would be 
an ideal choice for other researchers to use and contrib
ute code. Python is an open-source programming lan
guage that has arguably become the de facto choice for 
scientific computing. Like MATLAB, Python supports 
object-oriented programming—a central tenet of the re
design. The decision to convert the SimOpt library to 
Python was also influenced by the existence of another 
SO library written in Python: PyMOSO (Cooper and 
Hunter 2020). The PyMOSO library provides a Python 
implementation of the MRG32k3a pseudorandom-number 
generator (L’Ecuyer 1999, L’Ecuyer et al. 2002), which we 
further adapted for our purposes (see Section 6.1).

We decided to rebuild SimOpt with an object-oriented 
design after seeing a similar architecture in the PyMOSO 
library. In libraries like these, specific problems or solvers 
are naturally encoded as subclasses of more general 
Problem and Solver classes. The overall object-oriented 
design of SimOpt was developed by considering the 
kinds of experiments we intended to support and identi
fying the main entities and how they interact. There is a 
base design that reflects SimOpt’s role as a library of pro
blems and solvers with classes including Model, Prob
lem, Solver, and Solution. Around this base design is 
another layer aligned with SimOpt’s role as a testbed for 
running experiments; classes at this level include Proble
mSolver and ProblemsSolvers. Woven throughout the 
design are pseudorandom-number generators that are 
used for a variety of purposes. We overview the base 
design and experimental layer in Sections 5.1 and 5.2, 
respectively, and discuss pseudorandom-number gener
ation in Section 6.

Remark 1. The object-oriented programming para
digm is well suited for coding discrete-event simula
tions, which feature entities interacting stochastically 
over time. However, our discussion of object-oriented 
design in this paper pertains to the architecture of 
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SimOpt. Individual models in SimOpt, many of which 
are discrete-event simulations, may be written as pro
cedural or object-oriented programs.

5.1. Models, Problems, Solvers, and Solutions
The SimOpt Model object represents a simulation model, 
that is, a multivalued function that takes deterministic 
inputs (factors) and returns one or more stochastic out
puts (responses). Stochastic outputs are produced be
cause a Model is equipped with one or more mechanisms 
for generating random primitives. A SimOpt Problem ob
ject enfolds an underlying Model and specifies which 
inputs of the model are decision variables and which out
puts appear in the objective or constraints, as described in 
Section 2. These mappings are central to how we define 
classes for solutions and solvers.

An instance of the Solution class is associated with a 
vector of decision variables, x. When instantiating a 
Solution object, a Problem object is also provided; thus, 
the mappings of model factors to decision variables and 
responses to objectives and constraints are impressed on 
the Solution object. A Solution object is equipped with 
a set of random number generators to be used for simu
lating replications of the model as specified by x (for 
further detail, see Section 6). Each time a solution is sim
ulated, its summary statistics are updated. These include 
the sample mean and variance of the objective function 
values and left-hand sides of any stochastic constraints, 
as posed in Section 2. The individual observations of the 
objective function (as well as those of any stochastic con
straints’ left-hand sides and any available gradients) are 
also recorded.

Remark 2. A Solution object has differing concepts of 
feasibility and simulatability. Feasibility refers to whether 
the solution satisfies the constraints of the optimization 
problem, that is, whether it lies in the feasible region. 
Simulatability refers to the ability to run a replication of 
the model when the problem’s decision factors are set as 
x. For example, if a decision variable reflects the variance 
of a normal distribution and is negative, then a replica
tion cannot be simulated. For a well-posed problem, all 
feasible solutions will be simulatable, but the converse 
need not hold. Both feasibility and simulatability can be 
checked in the code for exception handling.

The Solver class represents algorithms designed to 
solve SO problems. Solvers are classified in terms of the 
number of objectives they can handle (one or multiple), 
the hardest type of constraints they can handle (uncon
strained, box, deterministic, or stochastic, in that order), 
the types of decision variables they can handle (discrete, 
continuous, or mixed), and whether they require gradi
ent estimates. A Solver object is also equipped with two 
sets of pseudorandom-number generators: one for its 
internal purposes and the other for simulating solutions. 

The Solver class has a method called solve() that runs 
one macroreplication of the solver on a given problem. 
On a macroreplication, a solver explores solutions, run
ning replications of solutions as it deems appropriate 
until it has exhausted the problem’s specified budget. 
Part of this process entails creating new instances of the 
Solution class when the solver visits solutions that have 
yet to be simulated.

To define a particular model, problem, or solver in 
SimOpt, one creates a subclass of the corresponding 
parent class (Model, Problem, or Solver), thereby in
heriting the common attributes and methods.

5.2. Experiments with Multiple Problems 
and Solvers

Above the library of models, problems, and solvers, 
there is a level to the architecture that supports experi
ments that entail running multiple macroreplications of 
one or more solvers on one or more problems. A pairing 
of one solver with one problem is represented by the 
ProblemSolver class. A specified number of macrorepli
cations are run and their results postprocessed as des
cribed in Section 3. Furthermore, one can postnormalize 
results from ProblemSolver objects corresponding to mul
tiple solvers run on the same problem. The specifics of the 
postprocessing and postnormalization stages, namely the 
number of postreplications and the use of CRN, are re
corded to the ProblemSolver object for future reference 
when bootstrapping. After postnormalization, the results 
can be plotted.

Multiple ProblemSolver objects can be bound to
gether using the ProblemsSolvers class. An object of 
this class is defined by a list of problems and a list of sol
vers and consists of the ProblemSolver objects formed 
by taking all pairings of the problems and solvers. The 
ProblemsSolvers class facilitates running a large-scale 
experiment to compare the performances of solvers on a 
set of problems. The ProblemSolver objects that com
prise a ProblemsSolvers object can be collectively post
replicated and postnormalized and their results plotted.

6. Pseudorandom-Number Design
Pseudorandom numbers pervade the design of SimOpt: 
Simulation models use random primitives within a rep
lication, solvers may be inherently stochastic, and boot
strapping is used to estimate errors for performance 
metrics. We present a schema that controls how random 
numbers are used throughout the testbed to run and 
postprocess experiments on multiple problems and sol
vers. This design enables the user to activate common 
random numbers (CRN) at various levels. For back
ground on CRN, see chapter 11 of Law (2015), and for 
insight into the value of streams and substreams, see 
Kelton (2006).
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6.1. Implementation of MRG32k3a
SimOpt uses the MRG32k3a pseudorandom-number gen
erator of L’Ecuyer (1999) and L’Ecuyer et al. (2002). The 
MRG32k3a generator has been shown to pass rigorous 
statistical tests, has a long period of approximately 2191, 
and facilitates random number streams. In particular, 
advancing to the start of an arbitrary stream is computa
tionally inexpensive. Our choice of generator is partly 
influenced by the Python implementation of MRG32k3a 
found in PyMOSO (Cooper and Hunter 2020), which 
allows the user to track streams and substreams. Given 
the many uses of random numbers in SimOpt, we extend 
this implementation to permit a third (lower) level of con
trol: subsubstreams. In our implementation, the period is 
split into approximately 250 streams of length 2141, each 
containing 247 substreams of length 294, each containing 
247 subsubstreams of length 247. Our implementation is 
separately packaged for use outside of SimOpt and can be 
downloaded at https://pypi.org/project/mrg32k3a or in
stalled from the terminal using the command pip install 
mrg32k3a.

Where random numbers are needed, SimOpt instantiates 
an MRG32k3a generator—an object of class MRG32k3a— 
and seeds it at the start of a specified stream-substream- 
subsubstream triplet that we denote here by (s, ss, sss) for 
Subsubstream sss of Substream ss of Stream s. (In this paper 
we index starting from one, but in Python, indexing starts 
at zero.) By creating multiple MRG32k3a objects with dif
ferent seeds, we control how random numbers are gener
ated. The schema is repeated for each problem-solver pair, 
that is, all ProblemSolver objects work with the same 
universe of random number streams, substreams, and sub
substreams, defined with respect to the same reference 
seed. The rationale for this choice is discussed in Section 6.2.

6.2. Schema for Running Experiments
We dedicate M + 1 streams to run every experiment of a 
given solver on a given problem. One stream is reserved 
for overhead (signified by “O”), namely, the solver’s 
internal randomness; future extensibility will allow for 
random initial solutions, random restart solutions, and 
random problem instances. Apart from the overhead 
stream, different streams are used for each of the M 
macroreplications. Within each of these streams, different 
substreams are used for the model’s sources of random
ness, and different subsubstreams are used for model 

replications. Thus, the random-number schema for run
ning multiple macroreplications is (s, ss, sss) � (m, i, r), 
where r is the replication number of the solution being 
visited by the solver (during the optimization) and i �

1, 2, : : : , I is the index of the source of randomness in the 
model. The term “source of randomness” refers to dis
tinct needs for uniform random numbers in a model. For 
example, a simple single-server queueing model might 
designate two sources of randomness: one that generates 
interarrival times and another that generates service 
times. (For more discussion on implementing sources of 
randomness, see Kelton 2006.) In this queueing example, 
I � 2 and (1, 1, 10) and (1, 2, 10) denote the sequences of 
random numbers used to generate the arrival times and 
service times, respectively, for the 10th replication of a 
given solution visited on the first macroreplication.

SimOpt’s design allows the user to flexibly control 
how random numbers are used according to their pre
ferences. In particular, the user can switch CRN on or 
off at various levels. We proceed to discuss these levels, 
working our way up from the lowest level of synchro
nization to the highest. Table 2 summarizes the differ
ent levels at which CRN are or can be activated, along 
with the default settings.

Remark 3. At what is perhaps the lowest level, repli
cations of a given simulation model return indepen
dent and identically distributed outputs. Specifically, 
after simulating a replication, all MRG32k3a objects 
used by the simulation model are advanced to the 
start of the next subsubstream. There is currently no 
support for variance-reduction techniques that induce 
dependent outputs across replications, for example, 
antithetic variates and stratified sampling.

6.2.1. CRN Across Solutions. The most prevalent use 
of CRN is synchronizing the random primitives used by 
a simulation model when run at different solutions. 
SimOpt supports this variance-reduction technique to a 
high degree. Each model specifies the number of sources 
of randomness needed to run a single replication. Ran
dom inputs for a given replication index are then syn
chronized across solutions using copies of the same 
MRG32k3a object, primed to start at the beginning of the 
subsubstream with the corresponding index. This form 
of CRN can help a solver determine the correct ordering 

Table 2. Summary of CRN Management and User Control

Stage Form of CRN Default Controllable

Running (optimization) Across solutions ✓ ✓

Across problem-solver pairs ✓

Postprocessing/bootstrapping (evaluation) Across solutions ✓ ✓

Across macroreplications ✓

Between x0 and x∗ ✓ ✓

Across problem-solver pairs ✓
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of performances of the solutions it simulates on a given 
macroreplication and thus better identify an optimal 
solution; if disabled, the solver obtains independent out
puts across solutions.

6.2.2. CRN Across Solvers on One Problem. Consider 
running two solvers on the same problem. The effect of 
CRN across the two solvers is most pronounced when 
the solvers also use CRN across solutions. In this case, if 
the solvers ever simulate the same solution, they observe 
the same sequence of outputs. Thus, solvers using a 
sample-average approximation effectively optimize the 
same sample-average functions on any given macrorepli
cation. This form of CRN also synchronizes the random 
numbers used by the solver for its internal purposes, 
such as picking random directions and breaking ties. 
This synchronization has limited upside for solvers that 
behave very differently. Still, for different versions of the 
same solver, it could lead to a variance reduction in the 
difference between their performances. This form of 
CRN also influences how the performances of solvers are 
compared in difference profiles and other metrics.

6.2.3. CRN Across Problem-Solver Pairs. We can take 
a broader view of the previous form of CRN by allowing 
the problem to vary as well. As previously mentioned, 
all problem-solver pairs work from the same universe of 
random numbers and the same reference seed. In other 
words, the same (s, ss, sss) schema is implemented when 
running experiments for any problem-solver pair. For 
pairings that feature different problems and different sol
vers, this form of CRN should neither harm nor benefit a 
comparative analysis. We implement this form of CRN 
for convenience since the experimental results are easily 
reproducible by using Stream 1 for Macroreplication 1, 
Stream 2 for Macroreplication 2, and so on, for all 
problem-solver pairs. Were distinct streams used for dif
ferent problem-solver pairs, the order in which we 
experiment on the pairs would influence the results.

6.3. Schema for Postprocessing Experiments
Postprocessing entails re-evaluating the collection of 
recommended solutions returned by each macroreplica
tion of each problem-solver pair. A dedicated stream for 
postprocessing, signified by “P,” is used for generating 
random numbers within the model when simulating 
postreplications—the solver is not involved. As a conse
quence of working with a single stream, the substream 
level must now accommodate indexing over both macro
replications and sources of randomness, for example, 
postprocessing 50 macroreplications and five sources of 
randomness requires 250 substreams. Subsubstreams are 
still used for distinct replications, in this case, postreplica
tions. Hence, the random-number schema used in the 
postprocessing stage is (s, ss, sss) � (P, I × (m � 1) + i, n), 
where n is the postreplication number. For example, in 

the simple queueing model, (P, 3, 1) and (P, 4, 1) repre
sent the sequence of random numbers used for the arri
vals and service times, respectively, in the postprocessing 
of the solutions on the second macroreplication.

6.3.1. CRN Across Recommended Solutions on a Given 
Macroreplication. The same random numbers are used 
to take postreplications at each solution recommended 
by a solver on a given macroreplication, which helps in 
ranking the performance of recommended solutions.

6.3.2. CRN Across Macroreplications. Different sub
streams are used for the set of postreplications at solu
tions recommended on different macroreplications. We 
do not advise using CRN across macroreplications here 
because the results from different macroreplications 
are combined in some of the summary measures that 
SimOpt computes; dependence across macroreplica
tions would inflate the variance of estimators of many 
of those performance measures.

6.3.3. CRN Between Postreplications at x0 and x∗. A 
postnormalization step involves taking a fixed number 
of postreplications at the initial solution x0 and a proxy 
optimal solution x∗. CRN is used to take postreplica
tions at these solutions; this helps to correctly order 
their performances.

6.3.4. CRN Across Problem-Solver Pairs. As in the 
schema for running experiments, all problem-solver 
pairs are postprocessed using the same set of random 
numbers. This again is for convenience, not variance 
reduction, because the postprocessing results are easily 
reproducible under this setup.

When producing plots, a bootstrapping procedure is 
optionally run to estimate the error associated with the 
progress curves and other metrics. For a given problem- 
solver pair and a user-specified number of bootstraps, 
the bootstrapping procedure entails resampling with 
replacement from the outputs of the postreplications 
from different solutions recommended on different ma
croreplications. These resampled outputs are then used 
to construct bootstrapped progress curves. When re
sampling, CRN is used exactly as implemented in the 
postprocessing stage, but the random numbers come 
from yet another dedicated stream, signified by “B.” 
The default random-number schema used in bootstrap
ping is (s, ss, sss) � (B, b, j), where b is the index of the 
bootstrap instance, and j denotes the distinct subsub
streams used to resample macroreplication and postre
plication indexes. Further details are provided in the 
library’s documentation.

Remark 4. By meticulously accounting for which str
eams, substreams, and subsubstreams are used for 
different purposes, it is possible to instantiate multiple 
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MRG32k3a objects—initialized at the designated seeds— 
and then dispatch them to a set of processors running 
macroreplications (or problem-solver pairs) in parallel. 
This degree of parallelization is not yet implemented.

7. Deployment
This section discusses how users can access and interact 
with SimOpt.

7.1 Access
SimOpt is hosted in a GitHub repository (Eckman et al. 
2021). The master branch contains the Python version 
discussed in this paper; a separate branch contains the 
deprecated MATLAB code. Although SimOpt’s transi
tion to GitHub was part of a previous redesign described 
in Eckman et al. (2019), it is worth reiterating the advan
tages this offers. Automated version control allows users 
to access previous versions of the code and to indicate 
which version they used by referencing the repository’s 
commit hex code, for example, commit 86cd5fdbf610f6c 
d9b20564d974a734a29e7bfa9. Research experiments car
ried out in SimOpt are thus easily reproduced. GitHub 
also provides a more streamlined workflow for develop
ing the library and troubleshooting issues with external 
contributions through the pull-request feature.

The preferred way for users to interact with SimOpt is 
to fork the GitHub repository. Forking creates a copy of 
the repository on the user’s personal GitHub account 
that they can then use for running experiments. Any 
branching or commits on the forked repository will not 
directly affect the main repository. If the user wishes for 
their changes to be incorporated into the main reposi
tory, as might arise if they were to fix a bug or to contrib
ute a new model, problem, or solver, they can initiate a 
pull request. The pull request notifies the development 
team of the requested changes, which are then reviewed 
before being merged into the main repository. After 
forking the repository, users should clone it to their per
sonal computer and open the root directory within their 
preferred integrated development environment.

Remark 5. This setup requires users to have a GitHub 
account, which can be obtained free of charge. Many 
researchers already use GitHub repositories to main
tain source code for experiments featured in their 
published work.

SimOpt is also available as a package named simoptlib 
at https://pypi.org/project/simoptlib and can be installed 
from the terminal using the command pip install 
simoptlib. (The mrg32k3a package will be automatically 
installed when installing simoptlib.) Users who take this 
approach can then directly import models, problems, and 
solvers from the library within the Python environment, 
for example, from simopt.models.cntnv import CntNV 
imports the class for the continuous newsvendor model. 

This option may be more appealing for educational pur
poses, where users wish to experiment with the library, 
but not contribute.

Users who have either forked the repository or in
stalled the simoptlib package can then conduct experi
ments by running scripts from the command line or 
using the graphical user interface (GUI).

7.2. Scripts
The module experiment_base.py contains high-level 
functions for running and postprocessing SO experi
ments and plotting the results. Likewise, the module 
data_farming_base.py defines functions and classes 
for data-farming experiments that involve varying fac
tors of the models. Although users can read the docu
mentation for these functions and directly call them 
from within the Python environment, the demo folder 
in the GitHub repository contains a handful of Python 
scripts that interact with the source code at different 
levels. By modifying a few lines of code in these files, as 
directed in the comments, users can specify the model, 
problem and solver they wish to study and override 
the default values of any factors. These scripts provide 
a mechanism for testing without invoking higher-level 
wrappers. (Users who have installed the simoptlib 
package may download the scripts from the repository 
and modify them as needed.) 

• demo_model.py: Run multiple replications of a sim
ulation model and report its responses.

• demo_problem.py: Run multiple replications of a 
given solution for an SO problem and report its objec
tive function values, gradients (if available), and left- 
hand sides of stochastic constraints.

• demo_problem_solver.py: Run multiple macrore
plications of a solver on a problem, save the outputs to 
a .pickle file in the experiments/outputs folder, save a 
log .txt file in the experiments/logs folder, and save 
plots of the results to .png files in the experiments/ 
plots folder.

• demo_problems_solvers.py: Run multiple macro
replications of multiple solvers on multiple problems 
and save the results.

• demo_data_farming_model.py: Create a design 
over model factors, run multiple replications at each 
design point, and save the results to a comma sepa
rated value (.csv) file in the data_farming_experi
ments folder.

Another script called demo_san-sscont-ironore
cont_experiment.py demonstrates how experiments 
with multiple solvers and multiple problems were run 
to produce the plots in Figure 1. These experiments 
took about two hours to run on a standard laptop.

The functions that run data-farming experiments call 
Ruby functions to produce a design over the factors, for 
example, a nearly orthogonal Latin hypercube (NOLH) 
design. For this code to run properly, the user must first 
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install a version of Ruby on their computer that can be 
executed from the command line and additionally 
install the datafarming gem using a command like gem 
install datafarming. A data-farming experiment pro
duces a table showing the model factors describing 
each design point and the associated observed res
ponses from each replication. These outputs are saved 
in a .csv file, which can be imported into the user’s pre
ferred statistical software package for further analysis.

7.3. GUI
SimOpt has a GUI that aids the user in running SO 
experiments—a GUI for data farming is under develop
ment. The GUI is opened by executing the command 
python3 -m simopt.GUI from the terminal, where the 
syntax python3 may vary from system to system. If clon
ing the repository, the previous command should be 
run after navigating to the root directory. A README 
file on the GitHub repository provides a step-by-step 
user guide for all GUI activities including the following: 

1. Adding/loading problem-solver pairs or groups,
2. Running/postprocessing problem-solver pairs or 

groups,
3. Postnormalizing problem-solver pairs that share 

the same problem, and
4. Producing plots of problem-solver pairs and groups 

with customizable settings.
Figure 2 shows the main form in which all activities 

are initiated. New problem-solver pairs can be added 

by choosing the problem and solver, with the option of 
modifying any of their factors, instance names or num
ber of macroreplications. The “Add Problem-Solver 
Pair” button adds the pair to a list under “Queue of 
Problem-Solver Pairs.” One can also load a problem- 
solver pair previously saved in a .pickle file. Alterna
tively, several problem-solver pairs can be grouped 
together either using the “Create a Problem-Solver 
Group” button and selecting compatible problems and 
solvers (with their default factors) or by first creating 
and selecting several problem-solver pairs (with their 
customized factors) before pushing “Create a Problem- 
Solver Group from Selected.” This approach completes 
the cross design of all problems and solvers in the 
selected pairs.

Once a problem-solver group is created, it appears in the 
“Queue of Problem-Solver Groups” tab. Pairs and groups 
can be viewed and edited before pressing the “Run” or 
“Post-Process” buttons. Running a problem-solver pair 
produces macroreplications and thus sequences of recom
mended solutions. Postprocessing the solutions yields the 
estimated objective function values at each solution using 
the default or user-modified CRN settings. All the postpro
cessed problem-solver pairs appear under the tab “Post- 
Normalize by Problem.” One can select multiple problem- 
solver pairs, as long as they share the same problem, and 
press the “Post-Normalize Selected” button. One can op
tionally modify the reference solution and the number of 
postreplications for these solutions. For problem-solver 

Figure 2. Main Form in the SimOpt GUI 
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groups, the “Post-Process and Post-Normalize” button 
performs both procedures for each pair in the group with 
one click, using the user-specified number of macrorepli
cations for all pairs. After completing postnormalization 
for either problem-solver pairs or problem-solver groups, 
the user can generate plots (Figure 3). One can select post
normalized problems and solvers and the plots of inter
est, with the option of changing plot parameters and 
error-estimation parameters. Pressing the “Add” button 
generates and saves the new plot and lists it under 
“Problem-Solver Pairs to Plots.” One can view each plot 
individually or all in one page through the GUI.

7.4. Contributing Code
Users can contribute models, problems, and solvers to 
the library. To help ensure that contributed code prop
erly interfaces with the current architecture, we recom
mend that users copy and modify code from similar 
models, problems, and solvers already present in the 
library. The demo scripts mentioned in Section 7.2 can 
also be used to help develop and debug contributed 
code.

For additional support, SimOpt uses automatic docu
mentation to provide up-to-date reference materials for 
the Python source code. This documentation is hosted 
at https://simopt.readthedocs.io/en/latest and updates 
with each pushed commit to the master branch of the 
library. Read the Docs (https://readthedocs.org) gener
ates restructured text (.rst) files by reading the docstrings 
in the commented code. Models and solvers also have 

dedicated .rst files that provide detailed descriptions 
and links to external references.

8. Conclusion
We present the latest version of the SimOpt testbed for 
SO and data-farming experiments. The transition to 
Python and top-to-bottom redesign are big steps toward 
making SimOpt the valuable resource for researchers 
and educators we aspire to provide. As with any active 
open-source project, SimOpt will continue to evolve as 
new experimental capabilities are added and commu
nity members contribute. This paper lays out formative 
principles of SimOpt’s design that we expect will persist 
for years to come. Specifically, the versatility achieved 
through ascribing factors of models, problems, and sol
vers and the careful control of pseudorandom numbers 
sets SimOpt apart from conventional code implementa
tions of SO solvers and problems and past versions of 
SimOpt.

Our near-term objective is to quickly populate the 
library with many problems and solvers that reflect the 
diversity of the SO field. We greatly welcome contribu
tions; these can be submitted through pull requests to 
the GitHub repository or correspondence with the 
development team. Python implementations of models 
and solvers are more easily integrated with the exist
ing architecture, but we will explore opportunities to 
“wrap” models and solvers written in other languages. 
After the library has reached a critical mass of pro
blems, one could imagine holding a competition to 

Figure 3. (Color online) Plotting Form in the SimOpt GUI 
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determine which solvers have best-in-class finite-time 
performance.

The next phase of SimOpt’s development will aim to 
further enhance its capabilities. Under the current design, 
problem-solver pairings (and macroreplications thereof) 
are readily parallelized, but we have not yet enabled 
experiments to be run in such a fashion. We plan to 
develop the infrastructure for generating random prob
lem instances by randomly generating model and prob
lem factors from specified distributions. We are also 
working to facilitate parameter tuning and sensitivity 
analysis by allowing for more elaborate data-farming 
designs formed over model, problem, and solver factors. 
Last, we intend to support the computation of stochas
tic gradients of performance measures, when available, 
either via analytical derivation (e.g., infinitesimal pertur
bation analysis (IPA) Glasserman 1991) or automatic dif
ferentiation software (Ford et al. 2022).
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