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Abstract. We study the relative computational power of structures related
to the ordered field of reals, specifically using the notion of generic Muchnik
reducibility. We show that any expansion of the reals by a continuous function
has no more computing power than the reals, answering a question of Igusa,
Knight, and Schweber [7]. On the other hand, we show that there is a certain
Borel expansion of the reals that is strictly more powerful than the reals and
such that any Borel quotient of the reals reduces to it.

1. Introduction

We would like to compare the computational power of algebraic structures. For
countable structures, Muchnik reducibility provides a useful way to do this: if A and
B are countable structures (in computable languages), then A is Muchnik reducible
to B (A ďw B) provided that every copy of B computes a copy of A. Schweber, in
[9], introduced a generalization of this reducibility that allows us to compare the
computational power of structures of arbitrary cardinality.

Definition 1.1 (Generic Muchnik reducibility). For a pair of structures A and B
(not necessarily countable) in V , we say that A is generically Muchnik reducible
to B, and we write A ď˚w B, if for any generic extension V rGs of the set-theoretic
universe V in which both structures are countable, we have V rGs |ù A ďw B.

In other words, we collapse cardinals so that the structures A and B become
countable, and then we apply the standard tools of computability theory to study
them. It follows from Shoenfield’s absoluteness theorem [18] that generic Muchnik
reducibility is set-theoretically robust:

Lemma 1.2 (Schweber [9]). If A ď˚w B, then A ďw B in every forcing extension
that makes A and B countable.

After the initial paper [9], there have been several further papers in which generic
Muchnik reducibility is used to compare the computational power of structures
related to the real numbers. Here are some of these structures.
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‚ Cantor space: This is represented in [9] by W “ pPpωq Y ω,Ppωq, ω, S, Pq,
where S is the successor function on ω. Another representation, possibly
more natural, is C “ p2ω, pRnqnPωq, where for α P 2ω, α P Rn if and only if
αpnq “ 1. Clearly, W ”˚w C.

‚ The ordered field of reals: This is R “ pR,`,ˆ,ăq.
‚ The non-standard reals: R˚ is an ω-saturated extension of R. Note that
this structure is not unique, although it becomes unique after collapse of
cardinals.

‚ Baire space: This is the structure B “ pωω, pRn,mqn,mPωq, where f P Rn,m
if and only if fpnq “ m.

The structures listed above all fall into one of two generic Muchnik degrees. In [9],
it is shown that W ď˚w R. Igusa and Knight [6] showed, using a result of Macintyre
and Marker [11], that R˚ ”˚w W. Downey, Greenberg, and Miller [3] showed that
R ”˚w B. Thus, we have that

C ”˚w W ”˚w R˚ ď˚w R ”˚w B.
Finally, we know from [3] and [6] that the above inequality ď˚w is strict, so

C ”˚w W ”˚w R˚ ă˚w R ”˚w B.
In the present paper, we investigate structures of the form Rf “ pR, fq, the

ordered field of reals expanded by a function f . Igusa, Knight, and Schweber [7]
showed that if f is analytic, then Rf ”

˚
w R. They asked whether this remains

true for arbitrary continuous functions f . They believed that the answer should be
negative, witnessed possibly by something like Brownian motion, with complicated
level sets as studied in Allen, Bienvenu, and Slaman [1]. Here, we show that the
answer to the question is actually positive.

Theorem 1.3. If f is a continuous function (of any arity) on R, then Rf ď
˚
w R.

Below, we give a brief outline of the proof of Theorem 1.3. Recall that for a
countable family of sets S Ď Ppωq, an enumeration is a relation E Ď ω2 such that
the sets En “ tx : pn, xq P Eu are exactly those in S. For a countable family of
functions F Ď ωω, an enumeration is a function P : ω2 Ñ ω such that the functions
Pnpxq “ P pn, xq are exactly those in F .

Definition 1.4 (Turing ideal, jump ideal).
(1) A Turing ideal is a family of sets S Ď Ppωq that is closed under disjoint

union and Turing reducibility.
(2) A jump ideal is a Turing ideal that is closed under Turing jump.

After collapse, the old Ppωq becomes a countable jump ideal S, and the family
F of functions f P ωω that are present in the old ωω is the family of functions
computable from elements of S. Downey, Greenberg, and Miller [3] give an important
characterization of the two generic Muchnik degrees discussed above, that of C and
that of R. After collapse, computing a copy of C is equivalent to computing an
enumeration of S, while computing a copy of R is equivalent to computing an
enumeration of F . The first step in the proof of our main theorem is to explore
what computational power is given by an enumeration of F , but not given by an
enumeration of S.

Let S be a countable jump ideal, and let E be an enumeration of S. We may
think of E as a function taking each index n to the set En. We consider the
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companion function J taking n to the set pE0 ‘ . . .‘ Enq
1. More formally, J will

be an enumeration of a subfamily of S, with specified indices.
Definition 1.5 (Running jump). Let E be an enumeration of a jump ideal S.
The running jump for E is the relation J Ď ω2 such that pn, xq P J if and only if
x P pE0 ‘ . . .‘ Enq

1.
In Section 2, we prove the following result, which we believe is of independent

interest.
Theorem 1.6. Let S Ď Ppωq be a countable jump ideal, and let F Ď ωω be the
family of all functions computable from sets in S. From an arbitrary enumeration
P of F , we can compute an enumeration E of S together with the running jump for
E.

After collapse, let S be the family of sets in the old Ppωq, and let F Ď ωω be the
family of functions computable from sets in S. From a copy of R (now a countable
structure), we can compute an enumeration P of F (this is immediate from the fact
that R ”˚w B). Applying Theorem 1.6, we get an enumeration E of S together with
the running jump J for E. In Section 3, we show that the combination of E and
the running jump J provides the information needed to build a copy of Rf .

Theorem 1.7. Suppose f : Rk Ñ R is continuous. After collapse, let E be an
enumeration of the sets in the old Ppωq, let J be the running jump for E, and let
Rf “ pR, fq. Then there is a copy of Rf computable from E ‘ J .

We further show that continuous expansions of Cantor space also have generic
Muchnik degree bounded by the degree of R. Denote by Cf the expansion of C by
a function f on Cantor space. The following is a direct consequence of the more
generally phrased Theorem 3.2.
Theorem 1.8. If f is a continuous function (of any arity) on C, then Cf ď˚w R.

In Section 3, we also give examples of continuous functions f such that Cf ”˚w R.
An interesting question arises: are there generic Muchnik degrees strictly between
the degree of C and the degree of R and if so, can they be obtained as continuous
expansions of C? This problem is treated in detail in the upcoming paper by
Andrews, Miller, Schweber, and M. Soskova [2]. They show that there is a degree
strictly between C and R. Later Gura1 exhibited a whole hierarchy of such degrees.
On the other hand, Andrews, Miller, Schweber, and M. Soskova [2] show a dichotomy
result for expansions of C by closed predicates: they lie either in the degree of C or
in the degree of R. Recall that continuous functions have closed graphs, hence this
answers our original questions.

In Section 4, we investigate continuous expansions of Baire space B. We show
that, unlike with R, there is a way to continuously expand B to get a structure of
strictly higher complexity. Let pB,‘,1 q be the structure of Baire space with adjoined
join and jump functions (appropriately defined for members of ωω). We show that
this structure has a very powerful generic Muchnik degree.
Theorem 1.9. There is a continuous expansion of Baire space in the generic
Muchnik degree of pB,‘,1 q.

(1) pB,‘,1 q ą˚w B.

1Unpublished.
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(2) Every Borel expansion (even Borel quotient) of B is generic Muchnik re-
ducible to pB,‘,1 q.

We refer to the generic Muchnik degree of the structure pB,‘,1 q as the Borel
complete degree. In Section 4, we show that as a consequence of this, Theorem 1.3
cannot be strengthened to Borel expansions of R—there are such expansions of R in
the Borel complete degree. As with C, it is natural to ask if continuous expansions
of B can lie strictly between B and the Borel complete degree. Assuming ∆1

2-Wadge
determinacy, Andrews, Miller, Schweber, and M. Soskova [2] prove a dichotomy
result for closed (equivalently, continuous) expansions of B: they have the same
generic Muchnik degree either as B or as the Borel complete degree. They also show
that there are generic Muchnik degrees strictly between these two.

2. Results on enumerations

We turn to the proof of Theorem 1.6. Recall the statement.
Theorem 1.6. Let S Ď Ppωq be a countable jump ideal, and let F Ď ωω be the
family of functions computable from sets in S. From an arbitrary enumeration P of
F , we can compute an enumeration E of S together with the running jump for E.
Proof. We will compute an enumeration E in stages, so that at any stage we have
determined finitely many bits of E. At stage s, we will have instructions for each
column En with n ă s. These instructions either will be to copy some element of P
(or rather a set associated to that element in a fixed way that will be made precise)
or will be an index for a computation that describes how we should complete the
column. In the former case, we will say that n is a copy column and in the latter
case, we will say that n is a fix column.

The difficulty in the construction, of course, comes from computing the relation J
that gives us the running jump for E. The core idea is that the jump ideal contains
sets computing the settling time functions for the running jumps. Recall that A1
has a standard representation as an A-c.e. set WA. A settling time function for
A1 is a function s : ω Ñ ω such that n P A1 if and only if n P WAæspnq

spnq , i.e. n is
the stage spnq approximation to the set WA and references the oracle A only on
numbers less than n. If a jump ideal S contains A, then the least (with respect
to majorizing) settling time function sA1 is computable from A1, hence it is in
F . To define Ji, we make an initial guess towards a P -index for a settling time
function of pE0 ‘ ¨ ¨ ¨ ‘ Eiq

1: we guess that P0 is such a function. We then try to
compute pE0 ‘ ¨ ¨ ¨ ‘ Eiq

1 using our current guess of that function and the columns
E0, . . . , Ei. If the guess is incorrect, we will notice this after a finite amount of time.
We will see that the settling time function predicted that some natural number
x R pE0 ‘ ¨ ¨ ¨ ‘ Eiq

1, but now, after computing more steps than our guess assured
us would be enough, we see that x P pE0 ‘ ¨ ¨ ¨ ‘ Eiq

1. At that point, we would like
to revise our guess at the settling time function by moving to the next possible
function in our enumeration P of F , until we eventually hit the right one.

We need a way to deal with the injury that happens when we discover that our
guess is incorrect. We will have already specified finitely many bits of E, and of
J . We have already announced that x R pE0 ‘ ¨ ¨ ¨ ‘ Eiq

1, misled by the wrong
guess. This means that our assignment of copy columns and fix columns is no longer
consistent with J being the running jump of E. To remedy this problem, we ensure
during the construction that there is always a way to extend Ei that is compatible
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with Ji and that we can compute such an extension. To achieve this, we use the
Low Basis Theorem by Jockusch and Soare [8]. We state it here in a relativized,
uniform manner.

Theorem 2.1 (The Low Basis Theorem). Let T Ď 2ăω be an infinite X-computable
tree. There is an infinite path Y through T such that pX ‘ Y q1 ďT X 1. Moreover,
an index for this reduction can be obtained uniformly in an index from the reduction
witnessing that T ďT X.

As a result, J will remain correct. The trade-off is that this action interferes
with the requirement that E is an enumeration of S. In particular, we will have to
turn more columns into fix columns (whose role is simply to be filled in and keep J
consistent). Indeed, as a copy column, En was trying to enumerate some element
X of S, but after injury, we abandon this goal and instead let En fill in its column
in a way that preserves J . Our only option is to enumerate X at position Ej for
some fresh j.

The approach described above ensures that we compute J correctly, and that if
every requirement copying some element X of S is injured only finitely often, then
E is an enumeration of S. Intuitively, the injury should only happen finitely often
because we eventually find the right settling time function. However, there is a
complication. Let us fix a set X and assume that all higher priority requirements are
no longer injured after stage s. At stage s, we find out that our guess towards the
settling time function for pE0‘ ¨ ¨ ¨ ‘Eiq

1 is incompatible with our assignment of Ei
as a copy column and transition to the escape strategy explained above. We let Ei,
Ei`1, . . . , Ej´1 be fix columns and we begin filling them in with sets that are low
with respect to previous columns, i.e., Ei`k is low over E0‘¨ ¨ ¨‘Ei`k´1. Note that
this will make it easy to fill in the columns Ji, . . . , Jj´1 as pE0‘ ¨ ¨ ¨ ‘Ei`kq

1 will be
computable from pE0‘¨ ¨ ¨‘Ei´1q

1. We start copying X at position j ą i, where j is
a column for which we have not yet defined any values. We now need to guess at the
settling time function for pE0‘¨ ¨ ¨‘Ej´1‘Xq

1. This settling time function could be
vastly different from the one for pE0‘¨ ¨ ¨‘Ei´1‘Xq

1. Indeed, even though we were
able to select the fix columns so that we can control the corresponding running jump
columns, we cannot even guarantee that E0‘ . . . Ei´1‘X ”T E0‘ ¨ ¨ ¨‘Ej´1‘X.
An easy counterexample can be derived from the existence of two low sets whose
join is H1: it could be that both X and Ei‘ ¨ ¨ ¨‘Ej´1 are low over E0‘ ¨ ¨ ¨‘Ei´1
but pE0‘ ¨ ¨ ¨ ‘Ej´1‘Xq

1 ”T pE0‘ ¨ ¨ ¨ ‘Ei´1‘Xq
2. Thus, there is no guarantee

that we ever guess the settling time function correctly.
Luckily, there is an easy fix for this problem. Instead of guessing at the settling

time function for pE0 ‘ ¨ ¨ ¨ ‘ Ei´1 ‘ Xq1 and then for pE0 ‘ ¨ ¨ ¨ ‘ Ej´1 ‘ Xq1

after the first injury, as we were previously doing, we will guess at a function
that encodes the settling time function for all possible situations that we might
end up in. More precisely, we guess at a function g with the property that if
ΦepppE0‘¨ ¨ ¨‘Ei´1q

1‘Xq1qÓ “ Z 1 for some set Z, then the e-th column gres of g is
the settling time function for Z 1. Since the Low Basis Theorem is uniform, we will
know an index e such that ΦepppE0 ‘ ¨ ¨ ¨ ‘Ei´1q

1 ‘Xq1q “ pE0 ‘ ¨ ¨ ¨ ‘Ej´1 ‘Xq
1.

If our current guess towards g is g̃, we modify the construction to use g̃res as the
current guess at the settling time function, and if it turns out that g̃res is incorrect,
then we give up on g̃ completely and move on to the next guess for g.

Construction. Our requirements are as follows. We have an ambient requirement:
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‚ Q: for all x, i P ω, x P Ji if and only if x P pE0 ‘ ¨ ¨ ¨ ‘ Eiq
1,

and we have countably many copy requirements:
‚ Ri: for every i P ω there exists a j P ω such that Ej “ P̂i “ tn : Pipnq “ 1u.

The ambient requirement Q will not be subject to injury, and the requirements Ri
are given a priority order of order type ω.

The construction will proceed in stages. At stage s, we will construct Erss and
Jrss such that, ultimately, E “

Ť

săω Erss and J “
Ť

săω Jrss. We will omit rss
in the construction; unless explicitly mentioned, all objects being constructed are
evaluated at the current stage.

For every i P ω, we have a module Mi that is building Ji and a module Ni that is
building Ei. They share two parameters: qi P ωYtfixu and ci P ω. If qi P ω, then we
are in the case that i is currently a copy column; our current guess for the function g
described above is Pqi , and ci indicates that Mi is currently copying P̂ci . If qi “ fix,
then we are in the case that Ei is a fix column and ci is an index for a computation;
we will endeavor to make pE0 ‘ ¨ ¨ ¨ ‘ Eiq

1 “ Φci
ppE0 ‘ ¨ ¨ ¨ ‘ Ei´1q

1q. At any stage,
let mi ă i be greatest such that qmi

‰ fix. If there is no such natural number mi,
then we let mi “ ´1, and we let J´1 “ H

1. We have access to H1, having fixed an
index for it in the enumeration P . Then by composing the computations Φcmi`1

through Φci , we see how we intend to compute Ji from Jmi , baring further injury.
At stage s, we attempt to determine the value of Jpmq for every m “ xi, jy with

i ď s and j ď s. We first call M0 on input x for every x ď s, then M1 on input x
for every x ď s and so forth.

The M -module. We describe the module Mi on input x, that is, we describe how we
determine the value of Jipxq. Whenever we call the module Mi on input x, we first
recursively call Mi´1 on every input ď x. (Note that both N and M modules may
call an M module on numbers larger than s, so this instruction is not redundant.
It ensures that if there is a mistake in our guess at an earlier column, then that
mistake gets discovered. This will ultimately allow us to prove that every stage
of the construction terminates in finite time.) If Jipxq is already defined, we do
nothing further. Otherwise, we have two cases to consider:

Case 1. Suppose that qi P ω. That is, the i-th column is currently a copy column.
Then using the indices ck for k P pmi, iq, we can find a computation which (assuming
no injury) will describe the columns Emi`1, . . . , Ei´1 from pE0‘ ¨ ¨ ¨ ‘Emi

q1, which
(again assuming no injury) equals Jmi

. Thus we can find an index e so that (again
assuming no injury) we will have pE0 ‘ ¨ ¨ ¨ ‘ Eiq

1 “ ΦeppJmi
‘ Eiq

1q. We then let
t “ Pqipxe, xyq. If the requirement’s guess is correct about qi, then this t bounds
the settling time function for pE0 ‘ ¨ ¨ ¨ ‘Eiq

1 at x. We thus call the modules Nk on
input x1 for each k ď i and x1 ď t. Once these all return, we will know the values of
Ekpx

1q for each k ď i and x1 ď t. We then run the enumeration of pE0 ‘ ¨ ¨ ¨ ‘ Eiq
1

(as a set c.e. in E0 ‘ ¨ ¨ ¨ ‘ Ei) for t stages to see if it enumerates x in this time.
This determines whether we want to set Jipxq to be 0 or 1. We are almost ready to
declare that Jipxq is this value, but before we can do this, we have to ask permission
of every previous column; we will describe the process of asking for permission below.
If they all give permission, then we declare Jipxq to be the value determined above.

Case 2. Suppose that qi “ fix. Then the i-th column is a fix column, and ci
gives a parameter for a computation of Ji from Ji´1. Thus, we simply call Mi´1 for
every x for which Ji´1 is undefined until we see a computation giving ΦJi´1

ci pxq Ó.
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Define a computable increasing function α so that for all sets A,B, we have z P B
if and only if αpzq P pA ‘ Bq1. We say that x is a coding number if and only if
x “ αpzq for some z. Note that if x “ αpzq is a coding number for z then whether
x enters pA‘ Bq1 when this set is enumerated computably in A‘ B will depend
solely on whether z P B. If ΦJi´1

ci pxq “ 0, we ask for permission from every previous
column to make Jipxq “ 0. If ΦJi´1

ci pxq “ 1 and x “ αpzq is a coding number, then
we ask for permission to set Eipzq “ 1 and Jipxq “ 1. If ΦJi´1

ci pxq “ 1 and x is
not a coding number, then we search for a confirmation set. This means that we
call the modules N0, . . . , Ni on increasing inputs until we have assigned enough of
E0 ‘ ¨ ¨ ¨ ‘ Ei so that the previous columns give permission to define Jipxq to be 1.
The N -module. We now describe the modules Ni on input z. Our goal is to determine
whether Eipzq is 0 or 1.

Case 1. Suppose that qi P ω. Then the goal of Ei is to copy P̂ci
. We ask

permission to set Eipzq “ P̂ipzq and do so if every previous column gives permission.
Case 2. Ei is a fix column. Call Mipαpzqq. If this assigns Jipαpzqq “ 0, then

assign Eipzq “ 0. (The fact that previous columns gave permission to assign
Jipαpzqq “ 0 will imply that they also give permission to make Eipzq “ 0.) Note
that if Mipαpzqq assigns Jipαpzqq “ 1, then it also assigns Eipzq “ 1.
Permissions. We now describe the process of asking for permission from previous
columns. We either want to assign Jipxq for some i and x, or Eipzq for some i and z
(or both) and we need permission from each previous column. Let m be the largest
so that qm is defined. We describe how the k-th column determines whether to
give permission. Let σk`1, . . . , σm be the fragments of Ek`1, . . . , Em determined so
far including the requested assignment, and let τk`1, . . . , τm be the fragments of
Jk`1, . . . , Jm determined so far including the requested assignment.

Let T be the tree of possible ways to complete σk`1, . . . , σm so that for every j, x
with j P pk,ms and τjpxq “ 0, we do not put x into the running jump. The k-th
column wants to give permission if and only if:

‚ For every pair j, x with j P pk,ms and τjpxq “ 1, x P pE0‘¨ ¨ ¨‘Ek‘σk`1‘
¨ ¨ ¨ ‘ σjq

1. Here E0, . . . , Ek are not just the partial fragments determined
so far, rather they are the sets as they would be determined assuming all
our guesses are correct. In other words, over the first k columns, the σ’s
have enough information already encoded to put x into the correct running
jump.

‚ T has an infinite path.
Note that these two conditions are true if and only if two bits in the set pE0 ‘

¨ ¨ ¨ ‘ Ekq
1 have fixed specific values—the first condition is equivalent to a fixed bit

being 1 and the second to a fixed bit being 0. Thus, in order to determine whether
or not to give permission, we call the module Mk on these bits. If these modules
both return the correct value confirming the condition, then we give permission.
Otherwise, if the first condition is incorrect (the module returns 0 to show that the
first condition fails), then we simply deny permission but do not declare injury.

If the module returns a value signifying that T does not have a path, then we
declare injury which means that for all j P ri,ms, we set qj to be fix. Let S be
the tree of possible ways to complete the columns Ei, . . . , Em so that for every j, x
with j P pk,ms and Jjpxq “ 0, we do not put x into the running jump. Since the
pi´ 1qst column gave permission to the current configuration, there is some y such
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that Ji´1pyq “ 0 and this confirms that S has a path. Thus, by the effectiveness
of the Low Basis Theorem, we can set ci, . . . , cm to be so that there is some path
through S so which would make ΦJj´1

cj “ Jj for each j P ri,ms. We then complete
the stage (though we may have not succeeded in the goal of assigning any value of
J).

Lastly, whether we declared injury or not during the stage, before finishing the
stage, we take the least m so that qm is undefined and the least i so that currently
no column has cj “ i and define cm to be i. If this is the l-th time that we define
some cj to be i since we last assigned some cj1 to be i´ 1, then we assign qj to be l.
This completes the construction.

Verification. We say that the i-th column is correct at stage s if for all j ď i, the
parameters qj and cj will never be changed at a stage t ą s.

Lemma 2.2. Suppose that the i-th column is correct at stage s. Define the sets
Aj , Bj for j ď i inductively as follows: A´1 “ H and B´1 “ H

1. If the j-th column
has parameters qj , cj with qj “ fix, then define Bj as Φcj

pBj´1q. Define z P Aj if
and only if αpzq P Bj. If qj P ω, then define Aj “ P̂cj

and Bj “ pA0 ‘ ¨ ¨ ¨ ‘ Ajq
1.

Then for each j ď i, Ej “ Aj and Jj “ Bj. In particular, Jj “ pE0 ‘ ¨ ¨ ¨ ‘ Ejq
1.

Proof. We prove the result by induction on j. It is clearly true for j “ ´1. If
qj “ fix, then since Jj´1 “ Bj´1 “ pA0 ‘ ¨ ¨ ¨ ‘ Aj´1q

1, it follows that when we
determined the final value of the parameter cj , we were looking at a tree S that
was accurately determined by previous columns (which do not get injured again or
else cj would be modified) to be infinite. Thus, by the Low Basis Theorem, S has
an infinite low path and the sequence of Turing functionals we determined, one of
which is Φcj

, is correct. Note that when we ask for permission to define Jjpxq or
Ejpzq, it cannot end in injury by our assumption that the j-th column is already
correct. When we run the Nj module on z, if we want to make Ejpzq “ 1, then that
permission will be given because changing a bit in E cannot result in a failure of the
permission for the first reason (i.e., it can only cause injury). If we want to make
Ejpzq “ 0, then we do not even ask for permission. When we run the Mj module
on x, Φcj

will eventually converge on x. If Mj wants to define Jjpxq “ 0, it will
be given permission (or else j is not correct). If Mj wants to make Jjpxq “ 1 and
x “ αpzq then we will get permission to enumerate z in Ej and that is all we need
as a confirmation set, hence Mj will be granted permission to define Jjpxq. If x is
not a coding number then we are assured that eventually we will find a confirmation
set by the correctness of Φcj

and all previous columns and the fact that Nj always
gets permission to define Ej , as we just argued. Thus, we will build Ej “ Aj and
Jj “ Bj for some sets Aj and Bj so that pA0 ‘ ¨ ¨ ¨ ‘ Ajq

1 “ Bj .
If qj P ω, then since the column is correct, it follows that Ej “ P̂cj “ Aj . Note

that since, in Case 1 of the Mj module, we only ever request to place Jjpxq “ 1 if we
already see enough of E0‘¨ ¨ ¨‘Ej defined, it follows that when we ask for permission
to assign Jjpxq, we either get permission or some column declares injury. Since the
columns are all correct by assumption, the latter case is impossible. Thus Jj defines
a sequence in 2ω. Since qj is correct, it is never injured, so pA0 ‘ ¨ ¨ ¨ ‘Aj´1 ‘Ajq

1

cannot contain an x so that Jjpxq “ 0. Thus Jj Ě pA0 ‘ ¨ ¨ ¨ ‘Ajq
1. Similarly, since

we only ever put Jjpxq “ 1 after we have already seen a fragment σ ĺ Ej such that
x P pA0 ‘ ¨ ¨ ¨ ‘ Aj´1 ‘ σq

1, it follows that Jj “ pA0 ‘ ¨ ¨ ¨ ‘ Ajq
1 “ Bj . �
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Lemma 2.3. If i ´ 1 is correct at stage s and qi “ fix, then i is also correct at
stage s.

Proof. Let t be the stage when ci was last redefined. It follows that the first i
columns were correct at the stage t. Hence, the tree S that we considered at that
stage was determined correctly and the Low Basis Theorem allowed us to compute
the functional Φci

such that Φci
ppE0 ‘ ¨ ¨ ¨ ‘ Ei´1q

1q “ B “ pE0 ‘ ¨ ¨ ¨ ‘ Ei´1 ‘Aq
1

for some set A, and the fragment of Ei that has already been determined agrees with
A. By Lemma 2.2, if i is correct at stage t then eventually Ei “ A (and Ji “ B).
Using the same proof as above, we can argue that unless i is injured, whenever it
defines a value for Eipzq from now on, it agrees with A. The only reason for i not
being correct at stage s is that a request for permission ends in injury. This request
can only come from Mi and only for a bit Jipxq to be given value 0, given the
assumption that s is correct for i´ 1. (As we argued in the previous proof, requests
for Jipxq to be given value 1 do not end in a failure of the second kind and so do not
cause injury.) On the other hand, Mi will only ask for such a permission if it has
already seen that ΦJi´1

ci pxq “ 0. The tree T of possible extensions of σ ĺ Ei that
make Jipxq “ 0 contains an infinite path, namely A. So injury will not occur. �

Lemma 2.4. Every stage terminates.

Proof. Note that when we call Mj on input x, we may have to call Nk for k ď j,
and when we call Nj on input x, we may call Mk for k ď j. One fear is that we
may call Mj from Nj and Nj from Mj . The only reason that we call Mj from Nj
is if j is a fix column. In this case, Nj calls an instance Mj on input x where x is a
coding number, so this instance of Mj does not call Nj . Thus there are no loops in
the module calls.

The other fear is in Mj calls for fix columns j. This makes a sequence of Mpj´1q-
calls and waits to see a computation converge. Notice that if the sequence of
Mpj´1q-calls were infinite, then we would determine the full j ´ 1 first columns
during this stage. Thus, the stage ends if j ´ 1 is not correct at stage s. If j ´ 1 is
correct at stage s, then Lemma 2.3 shows that j is correct at stage s, and Lemma
2.2 shows that we eventually assign the appropriate values of Jj , and thus the stage
ends. �

Lemma 2.5. For every i, there is a stage s so that the i-th column is correct at
stage s.

Proof. Let s0 ą i be a stage such that i´ 1 is correct. Thus, at stage t ą s0, each
of the columns j ă i successfully determines Jjpxq for every x ď t. By the definition
of correctness, if the i-th column is not correct at stage s0, then there is a t ą s0
at which qi becomes redefined to fix. But then by Lemma 2.3, the i-th column is
correct at stage t. �

Lemma 2.6. For every n there is a stage s and a column i so that the i-th column
is correct at stage s, qi P ω, and ci “ n at stage s.

Proof. Let s0 be the first stage at which the lemma is true for every m ă n. Let
X “ P̂n. Let i be the largest such that qi P ω is defined at stage s0. By the final
action for every stage, all t ą s0 end with some column kptq having qk P ω and
ck “ n. If this kptq is constant from some stage onward, then we have that this
column must be correct and we are done. Thus, we need to see why k cannot change
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infinitely often. Suppose this were the case. Then let t be a stage where qkptq is the
P -index of a function g such that for every e, if ΦepppE0 ‘ ¨ ¨ ¨ ‘ Eiq

1 ‘Xq1qÓ “ Z 1

for some set Z, then the e-th column gres of g bounds the settling time function for
Z 1.

Since every column between i and kptq is a fix column, we know that the pkptq´1qst
column is correct at stage t. Also, for every stage greater than t where we call Mkptq

on any input, we will get the correct response because g bounds the appropriate
settling time function. Hence the kptq-th column is not injured, so it is also correct
at stage t. �

Lemma 2.7. The set E gives an enumeration of S, and J is the running jump of
E.

Proof. By Lemma 2.6, every set in S is enumerated in E. By Lemma 2.5, every
column is eventually correct. By Lemma 2.2, this means that the columns up to the
i-th column each either copy elements of S or are low over elements of S, thus are
in S. Similarly, Lemma 2.2 shows that the i-th column of J is the running jump of
the first i columns of E. �

This completes the proof of Theorem 1.6. �

Note that we did not build an injective enumeration in the previous proposition,
but any enumeration E for which we can compute the running jump can easily
be turned into an enumeration E˚ without repetitions, using the running jump.
Furthermore, we do not lose the running jump, because we also have an index
telling us how to compute J˚i from Ji˚ , where i˚ is the least j such that E0, . . . , Ej
contains i different elements.

Finally, let us remark that it is essential that we started with an enumeration of
the functions, but ended up with an enumeration of the sets. We cannot strengthen
Theorem 1.6 by assuming that we are only given an enumeration of the sets in
S; this follows from Lemma 3.3 and the fact mentioned above that C ă˚w B. On
the other hand, we cannot strengthen Theorem 1.6 to give us an enumeration of
the functions computable from elements of S, along with the running jump of this
enumeration; this follows by Proposition 4.6 and Theorem 4.15.

3. Continuous expansions of the reals

We will now show that continuous expansions of R are generic Muchnik reducible
to Baire space.

Theorem 1.7. Suppose f : Rk Ñ R is continuous. After collapse, let E be an
enumeration of the sets in the old Ppωq, let J be the running jump for E, and let
Rf “ pR, fq. Then there is a copy of Rf computable from E and J .

Proof. We need a good way of representing the elements in our copy of Rf . We
may think of each element as the sum of an integer z and a remainder e in the
interval r0, 1s, where e has a binary expansion corresponding to some Ei. (Here, we
identify Ei with χEi .) Recall that a dyadic rational2 is one of form z

2k , where z P Z
and k P ω. Let D be the set of dyadic rationals. If e is a dyadic rational in the
interval r0, 1s, then e has two binary expansions. Even fixing the binary expansion,
our enumeration may have more than one index i for the same set Ei. To resolve

2We do not restrict to the interval r0, 1s.
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this issue we note the following obvious claim and use the properties of the running
jump.

Claim 1: Using oracle Ei, and fixing z, we can apply a uniformly effective procedure
to enumerate the true statements q ă z`Ei, z`Ei ă q, where q is a dyadic rational.

Using E and J , we can effectively say whether z ` Ei “ q, where q is a dyadic
rational. We can also effectively say whether z ` Ei “ z1 ` Ej . Thus, we can
effectively build a structure pR,ă, tquqPDq with the ordering, plus constants q for
the dyadic rationals, and with the elements we want. The constants are dense in the
ordering, and we have a many-one function F , computable from E and J , taking
each pair xz, iy to the appropriate r P R such that the statements from Claim 1 are
true.

Claim 2: Using E and J , we can effectively expand the structure pR,ă, tquqPDq,
adding `, ˆ, and f .
We prove Claim 2 as follows. Recall that the set T “ ThpRf q is one of the columns
in E, so we can fix it as a parameter. Using T , we can enumerate the sentences
of T saying that f maps I into I 1, where I is a k-fold product of closed intervals
with dyadic rational endpoints and I 1 is a closed interval with dyadic rational
endpoints. Using a tuple r̄ “ xzj ` Eij : i ă ky, we can enumerate the set S of
k-fold products of closed intervals with dyadic rational endpoints which contain r̄.
We want fpr̄q “ F pz1`Emq, where z1`Em lies in all of the intervals I 1 with dyadic
rational endpoints that, according to the theory T , contain fpIq for some I P S.
For the given r̄, the set of I 1 is c.e. in T and the Eij . Given Em, and the jump of
T ‘

À

jănEij ‘ Em, we can determine whether a given z1 ` Em is an appropriate
F -pre-image of fpr̄q. Thus, using E and J , we can effectively compute fpr̄q from r̄.

Similarly, since the operations ` and ˆ are also continuous, we can effectively
compute r ` r1 and r ˆ r1 from r and r1. �

In the same way, we can prove that pR, tfnunPωq ď˚w R, where tfnunPω is a
countable family of continuous functions on R.

Theorem 3.1. Let f1, f2, . . . be continuous functions (of any arities) on R. Then
pR, tfnunPωq ”˚w R.

In Downey, Greenberg, and Miller [3] and Igusa, Knight, and Schweber [7], it
is shown that pR,`,ăq and pR, tquqPQ,ăq are both generic Muchnik equivalent to
R. Using the techniques given above, and the fact that both of these structures
are generic Muchnik above B, it is now straightforward to show that pR,`,ăq
and pR, tquqPQ,ăq expanded with a countable number of continuous functions are
equivalent to the original structures. In particular, pR,`,ăq ”˚w pR, tquqPQ,ăq ”˚w
R now follows directly, because ˆ and ` are continuous.

Recall that two other structures that have been studied are Cantor space C and
Baire B space and for them we know that C ”˚w R˚, and Baire space B ”˚w R. We
may consider expanding either structure by continuous functions. Let us start with
C.

Theorem 3.2. Let f1, f2, . . . be continuous functions (of any arities) on 2ω. Then
pC, tfiuiPωq ď˚w B.
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Proof. After collapse, given a copy of B, we can compute an enumeration E of
the family of sets in the old Ppωq, together with the associated running jump
enumeration J by Theorem 1.6. Given E, we immediately compute a copy A of
C. Computable in E and J , we have a many-one function I taking all indices i for
sets Ei to elements a P C such that if Ei “ Ej , then Ipiq “ Ipjq. We let Rnpaq
hold if and only if n P Ei for any and all i such that Ipiq “ a. For simplicity,
consider a single continuous function f on C, of a single variable x. The fact that
f is continuous means that ThpC, fq includes sentences ϕσ,τ , saying, for certain
σ, τ P 2ăω, that f maps the sequences extending σ to sequences extending τ . For
a P A, we say that a extends σ if, for all k P dompσq, σpkq “ 1 implies Rkpaq and
σpkq “ 0 implies  Rkpaq.

We let fpaq “ b where for all sentences ϕσ,τ in ThpC, fq, if a extends σ, then
b extends τ . For each a P A, let Ta be the set of τ such that for some sentence
ϕσ,τ P ThpC, fq, a extends σ. Assuming that Ej is the theory and Ipiq “ a, we can
effectively enumerate Ta using Ei and Ej . For any s ą i, j, we can use Js to see if
there is k ď s with Ipkq “ b such that b extends τ for all τ P Ta. For sufficiently
large s, we will find an appropriate k and b. We let fpaq “ b. �

Recall that C itself is not equivalent to B, so not all continuous expansions of
C are equivalent to B. However, some simple-looking expansions of C turn out to
be equivalent to B. In particular, let ‘ : 2ω ˆ 2ω Ñ 2ω denote the join operator
and σ : 2ω Ñ 2ω denote the shift, i.e., σpb0b1b2b3 ¨ ¨ ¨ q “ b1b2b3 ¨ ¨ ¨ . Both are natural
continuous functions on Cantor space. We show that Cantor space with join, and
Cantor space with shift, are both equivalent to Baire space.

Lemma 3.3. If X can compute an enumeration E of the sets in a jump ideal I,
and the set FinE “ tn : En is finiteu is c.e. in X, then X computes an enumeration
P of the functions in I.

Proof. First, we show that X computes an enumeration F of the infinite sets in I.
The construction of F is straightforward: Fn initially copies En, and if at any stage
s we see that En is finite, because n enters the c.e. in X set FinE , we make Fn
cofinite by adding all elements ě s.

If A is an infinite set, then let fA be the function such that fApnq is one less
than the distance between the pn ` 1q-st and pn ` 2q-nd element of A; in other
words, fApnq “ pApn` 1q ´ pApnq ´ 1, where pA is the principal function of A. It
is straightforward to check that the functions computable from sets in I are exactly
the functions of the form fA where A is an infinite set in I. We can compute an
enumeration P of these functions from the enumeration F . �

Proposition 3.4. pC,‘q ”˚w pC, σq ”˚w B.

Proof. That pC,‘q ď˚w B and pC, σq ď˚w B follows directly from Theorem 3.2. For
the other direction, we claim that, after collapse, every copy of pC,‘q or pC, σq
computes an enumeration E of the sets in the old Ppωq and enumerates the set
FinE of the indices of finite sets in E. By Lemma 3.3 and the characterization given
in Downey, Greenberg, and Miller [3] this shows that pC,‘q ě˚w B and pC, σq ě˚w B.

For the structure pC, σq, the claim follows from the fact that a set A is finite
if and only if σnpAq “ 0ω for some n P ω. For pC,‘q, the claim follows from the
fact that every finite set can be generated by taking joins of 0ω “ p0000 ¨ ¨ ¨ q and
10ω “ p1000 ¨ ¨ ¨ q. We show by induction on n that for any σ of length 2n, the
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sequence σ0ω can be obtained from applying the operation join to 0ω and 10ω. For
σ of length 1 the statement is obviously true. Suppose the statement is true for
all τ with |τ | “ 2n. Let σ be a string of length 2n`1. Let τ0 be the string with
length 2n, such that τ0pkq “ σp2kq and τ1 be the string with length 2n, such that
τ1pkq “ σp2k`1q. Note that τ00ω‘τ10ω “ σ0ω, so if E1 and E2 are the expressions
for τ00ω and τ10ω, then pE1q ‘ pE2q is the expression for σ0ω. �

Another interesting relationship between Cantor space and Baire space is given
by the notion of the jump of a structure. There have been several approaches to this
notion: A. Soskova and Soskov [19, 20] use Moschovakis extensions [15] and a coding
of the forcing relation for Π1 formulas, Puzarenko [16] and Stukachev [23] proposed
a definition that works well with Σ-reducibility, and Montalbán investigated a
definition that expands the original structure by a complete set of relations defined
by computable infinitary Π1 formulas [12]. The relationships among these three
approaches are discussed by Montalbán in [13]. In [13], Montalbán uses relations
defined by computable infinitary Σ1 formulas. This is the approach that we use,
lifting it to uncountable structures.

Definition 3.5 (Jump of a structure). Let A be a structure in a computable
language. The jump of A is the structure A1 “ pA, P0, P1, . . . q, where tPnunăω is a
listing of the relations on A defined by computable infinitary Σ1 formulas (without
parameters). (Note that we have a computable list of the formulas that define these
relations.)

Proposition 3.6. C1 ”˚w B.

Proof. We know that after collapse, every copy of B computes an enumeration E of
the family of sets that is the old powerset of ω, together with the running jump. We
claim that this computes a copy A1 of C1. We assign constants a effectively to indices
for the distinct sets Ei. Note that equality can be determined using the running jump
(although we could even have assumed that our original enumeration were injective).
Also using the running jump, we can determine the truth of a given computable Σ1
formula ϕpāq “

Ž

jpDūjq αjpā, ūjq (where αj is finitary quantifier-free). To see this,
we note that the elementary first-order theory of C is computably axiomatizable,
with effective elimination of quantifiers. So we have an effective procedure, using
the sets ā, for deciding whether a given disjunct pDūjq αjpā, ūjq is true. With the
running jump, we can say whether there is some disjunct that is true.

After collapse, a copy A of C1 with universe ω computes an enumeration E of
the sets in the old Ppωq. In particular, for the n-th element xn of A, we enumerate
the set En so that xn “ χpEnq. Further, the jump has predicates Pk which define
the computable Σ1 formula which says that xpmq “ 1 for some m ą k. We can
thus enumerate from A the indices n so that for some k, A |ù  Pkpxnq. Thus,
computable in A, we have an enumeration of all the sets in the old Ppωq and FinE is
c.e. in A. Thus by Lemma 3.3 and the characterization given in Downey, Greenberg,
Miller [3], this shows that C1 ě˚w B. �

4. The Borel complete degree

We have seen that B ”˚w R is generic Muchnik above every continuous expansion
of R or C. In this section we prove that continuous expansions of Baire space can
be strictly more complicated. This can be seen as a consequence of the fact that
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the projections of closed subsets of Baire space can be quite complicated—indeed,
they are exactly the Σ1

1 classes. The upper bound of all continuous expansions of
B is an interesting generic Muchnik degree in its own right. We call it the Borel
complete degree because, as we will see, it bounds all Borel structures (in fact, all
Borel quotients).

We consider structures with universe equal to Baire space, although we could
equally well consider structures with universe equal to Cantor space or R. For
Baire space, we have the topology generated by the basic open neighborhoods
Nσ “ tf P ω

ω : f Ě σu, where σ P ωăω. The Borel subsets of Baire space are the
members of the σ-algebra generated by these basic open neighborhoods.

Definition 4.1 (Borel structure, congruence relation, Borel quotient).
(1) For a Polish spaceX, a Borel structure (on X) has the form A “ pD, pRnqnPωq,

where D Ď X is a Borel set, and for all n, Rn is a Borel relation on X.
(2) For a structure A “ pD, pRnqnPωq, a binary relation E on D is a congruence

relation if it is an equivalence relation and for all n, if Rn is k-ary and
ā, b̄ are k-tuples such that aiEbi for i ă k, then Rnpāq iff Rnpb̄q. From a
congruence relation E on A, we get a well-defined quotient structure A{E
with universe equal to the set of equivalence classes D{E and relations Rn{E
that hold of a k-tuple a0{E , . . . , ak´1{E iff Rn holds of a0, . . . , ak´1.

(3) A Borel quotient is the quotient of a Borel structure A by a Borel congruence
relation.

Borel structures were first studied by H. Friedman in unpublished notes, see
Steinhorn [22]. More work on Borel structures can be found in Steinhorn [21] and
Louveau [10]. Some recent work can be found in Hjorth and Nies [5] and Montalbán
and Nies [14], although they use the name Borel structure for what we call a Borel
quotient.

Examples of Borel structures include pB,‘, 1q, pC,‘, 1q, and R. An example of a
Borel quotient is the Turing degrees with ‘ and 1. The Büchi automatic structures
are also Borel quotients [4]. Another class of examples consists of the automorphism
groups of countable structures that are algebraic in the sense that the language
consists just of operation symbols.

Definition 4.2. A structure A is Borel complete if it is a Borel structure that is
generic Muchnik above every other Borel structure. The generic Muchnik degree of
such a structre is also called Borel complete.

Below, we give an example of a continuous expansion of B that turns out to have
Borel complete degree. First, we know what the join and jump are, for sets; we
define these operations on functions as follows.

Definition 4.3 (Join and jump for functions).
(1) For functions f, g P ωω, the join is the function h such that hp2nq “ fpnq

and hp2n` 1q “ gpnq. We write f ‘ g for the join.
(2) For f P ωω, we have a jump te : ϕfe peq Óu. We define the jump of the

function f to be the characteristic function of this set.

Example 4.4. Consider the following subclass of ωω:

P “ tpf ‘ gq ‘ h : h is the settling time function for f 1 and g “ f 1u.
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Note that it is Π0
1 to verify that h is the settling time function for f 1, and given h,

it is Π0
1 to verify that g “ f 1. Therefore, P is a Π0

1 class in ωω, hence closed. Let
F : B Ñ B be a continuous function such that P “ F´1p0ωq. Because P is a Π0

1
class, we can even take F to be computable. The structure pB,‘, F q is a continuous
expansion of B with strictly higher generic Muchnik degree. Towards proving this,
we need to understand what kind of computational power is present in copies of
pB,‘, F q after we collapse the continuum.

Proposition 4.5. Let I be a countable jump ideal. Let pBI ,‘, F q be the restriction
of pB,‘, F q to the funtions in I. Any copy of pBI ,‘, F q computes an enumeration
of the functions in I along with join and jump as functions on indices.

Proof. A copy A of pBI ,‘, F q gives us a natural enumeration tfnunPω of the func-
tions in I such that ‘A is exactly a function that takes two indices to the index of
the join. To find the jump of fn, search for m, j P ω such that FAppn‘A mq ‘A jq
is the index of 0ω. Then fm “ f 1n. �

In Theorem 4.15, we will prove that for a sufficiently rich ideal I, it is strictly easier
to compute an enumeration of the functions in I than to compute an enumeration
of the functions in I along with join and jump as functions on indices. First, we
make some easy observations about the difficulty of the latter task, before defining
how rich we want our ideals to be.

Proposition 4.6. For a countable ideal I and a set X, the following are equivalent:
(1) X computes an enumeration of the sets, or the functions, in I, with join

and jump as functions on indices,
(2) X computes an enumeration of the sets, or the functions, in I, with running

jump as a function on indices,
(3) X computes an enumeration of the sets, or the functions, in I with the

corresponding running double jump function, not on indices,
(4) X computes an enumeration of the functions in I, with the running jump

function, not on indices.

Proof. We first show that (1) ñ (2) ñ (3) ñ (4) ñ (1) for functions. Suppose X
computes an enumeration E of the functions in I, with join and jump as functions
on indices. We can find an index for pE0 ‘ . . .‘Enq

1, so we have the running jump
as a function on indices. Having an index j for pE0 ‘ . . . ‘ Enq

1, we can find an
index k for pE0 ‘ . . . ‘ Ejq

1, so we can compute E2n. In particular, we can also
compute the running jump function. Finally, having the running jump function, and
two indices i and j, we can search for an index k such that Ei ‘ Ej “ Ek, which
we computably do using the running jump function; and given an index i, we can
search for indices j and k such that Ek is the jump of Ei with settling time function
Ej , which we can also do computably using the running jump function. Using the
same argument, we can show that (4) ñ (1) ñ (2) ñ (3) holds with (1), (2) and
(3) for sets.

Finally, we show that (3) for sets is equivalent to (3) for functions. Clearly,
the version for functions implies the version for sets. Suppose that X computes
an enumeration E of the sets in I along with the running double jump. From
an infinite set A, we obtain a natural function fApnq “ pApn ` 1q ´ pApnq ´ 1,
where pA is the principal function of A as we did in the proof of Lemma 3.3. Once
again we note that every function f : ω Ñ ω is of the form fA for some infinite
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set A. Using the running double jump we can effectively determine whether Ei is
infinite. If Ei is infinite, then we let Fi “ fEi , and if Ei is finite, we let Fi be the
identity function. Now, note that pE0 ‘ ¨ ¨ ¨ ‘ Eiq

2 can compute an index e such
that ΦepE0 ‘ ¨ ¨ ¨ ‘ Eiq “ pF0 ‘ ¨ ¨ ¨ ‘ Fiq, so pE0 ‘ ¨ ¨ ¨ ‘ Eiq

2 can also compute
pF0‘¨ ¨ ¨‘Fiq

2. Thus, we can compute the running double jump on the enumeration
F of the functions. �

Corollary 4.7. pB,‘, 1q ”˚w pC,‘, 1q.

Now it is not hard to show, using the standard encoding of Cantor space in the
real numbers, that there is also a Borel expansion of R in the same generic Muchnik
degree as pB,‘, 1q.

Proposition 4.6 also allows us to easily adapt the proof of Proposition 3.6 to give
an additional example of a structure in the Borel complete degree.

Corollary 4.8. pB,‘, 1q ”˚w B1.

We turn toward the second main result of the paper, which says that adding
further Borel relations to pB,‘, 1q does not increase the generic Muchnik degree.

Theorem 4.9. If B˚ is a Borel expansion of B, then B˚ ď˚w pB,‘, 1q.

To extend this result from Borel expansions of B to arbitrary Borel structures,
we use the following general observation about quotients.

Observation 4.10. For any structure A and any congruence relation E on A,
A{E ď˚w pA, Eq. That is, from a copy of A, with the congruence relation added, we
can compute a copy of the quotient structure.

Hence, we get the following.

Corollary 4.11. If B˚ is a Borel expansion of B and E is a Borel congruence
relation on B˚, then B˚{E ď˚w pB,‘, 1q.

In other words, pB,‘, 1q is Borel complete. Recall that we started this section
promising that the continuous expansion pB,‘, F q of B has Borel complete degree.

Corollary 4.12. pB,‘, 1q ”˚w pB,‘, F q.

Proof. Since pB,‘, F q is a Borel expansion of B, we have pB,‘, F q ď˚w pB,‘, 1q.
On the other hand, pB,‘, 1q ď˚w pB,‘, F q by Proposition 4.5. �

Toward the proof of Theorem 4.9, we note that that the ideal of sets from the
ground model satisfies a very strong closure property, much stronger than we have
needed so far.

Definition 4.13 (Hyper-Scott ideal). We say that I is a hyper-Scott ideal if it is a
Turing ideal, and whenever T Ď ωăω is a tree in I, if T has an infinite path, then it
has an infinite path computable from a set in I.

Proposition 4.14. If I is the ideal sets from the ground model, then it is a hyper-
Scott ideal.

Proof. This is a very simple application of Shoenfield absoluteness [18]. Arguing
directly, if T Ď ωăω is a tree in the ground model with no path, then in the ground
model there is a rank function ρ : T Ñ ω1 witnessing that T is well-founded. But ρ
also witnesses that T is well-founded in the extension. �
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Proof of Theorem 4.9. Let B˚ “ pB, pRnqnPωq, where the Rn’s are Borel relations.
These relations may have different arity. However, we can code a finite sequence
pf0, . . . , frq of functions by a single function f , where fipkq “ m iff fpr ¨ k` iq “ m.
With this in mind, we may suppose that the relations Rn are all unary. Furthermore,
we can combine the relations Rn into one relation R such that Rpnfq holds if and
only if Rnpfq holds, where nfpkq “ xn, fpkqy. Thus, we may suppose that we have
just one unary Borel relation R Ď ωω.

Let I be the ideal of sets from the ground model. After collapse, any copy of
pB,‘, 1q can compute an enumeration of the functions in I along with join and
jump as functions on indices of the enumeration. Since R is Borel in the ground
model, it is ∆1

1. Hence there are trees T, S Ď ωăω, both in I, such that
Rpfq ðñ pDhq f ‘ h P rT s ðñ p@hq f ‘ h R rSs.

Note that f ‘ h P rT s and f ‘ h P rSs can be checked using pf ‘ h ‘ T q1 and
pf ‘ h ‘ Sq1, which in turn can be uniformly computed from the indices of f , h,
and the functions computing T and S. Therefore, by searching for a function h in
I that witnesses either Rpfq or its negation, we can effectively determine if Rpfq
holds for any function f from our enumeration of the functions in I. Now it is
straightforward to compute a copy of B˚ “ pB, Rq. �

Finally, we show that pB,‘, 1q is strictly stronger than B. Note that this does
not follow immediatly from the fact that B1 ”˚w pB,‘, 1q because the jump of a
structure is not neccessarily strictly above the structure itself; both Montalbán [12]
and Puzarenko [17] give fixed points for the jump operator on structures, the former
under an additional set theoretic assumption.

Theorem 4.15. Assume that I is a hyper-Scott ideal. Then there is an enumeration
of the functions in I that does not compute an enumeration of the functions in I
along with functions f : ω2 Ñ ω and g : ω Ñ ω on indices of the enumeration that
interpret join and jump, respectively.

Proof. We produce an enumeration F of the functions in I by forcing. Our forcing
partial order consists of conditions q P pωωqăω that are sequences of functions from
I. We say that a condition p extends q (written as p ĺ q) if p extends q as a
sequence.

Consider Turing functionals E , f , and g. We want to diagonalize against EF

being an enumeration of the functions in I such that fF : ω2 Ñ ω takes any two
indices of functions in EF to an index of their join, and gF : ω Ñ ω takes every
index of a function in EF to an index of its jump. Assume, for a contradiction, that
there is a condition q that forces this outcome. Fix an index e such that e P pT ‘hq1
if and only if h is not a path through T , where T is treated as a tree under an
effective bijection between trees in ωăω and elements of ωω. We will use the symbol
M to denote compatability. In particular, for σ P pωăωqăω and a condition p, σ M p
if each component σn is an initial segment of the corresponding component pn.

Claim: For any tree T in I, the following Π1
1rq ‘ T s statement is equivalent to “T

has an infinite path”:

p@p Ě qqp@nqr if p@σ M pqr Eσn M T s,

then pDm, kqpDτ M pqr gτ pfτ pn,mqq “ k and Eτk peq “ 0 s s.
(˚)
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(Here p is understood to range over extensions of q in pωωqăω, though not necessarily
forcing conditions—the new functions that are listed need not be in I. Also, σ and
τ are intended to be finite, hence they are essentially number quantifiers.)

Note that if we can prove this claim, then we have the necessary contradiction,
because it is Σ1

1rqs-complete to determine whether a q-computable tree T Ď ωăω

has an infinite path.
To prove the claim, let T be a tree in I. First, let us assume that (˚) holds.

Let p ĺ q force the specific location of T in the list EF , and let this location be n.
Therefore, it is true that p@σ M pqr Eσn M T s. Otherwise, we could refute our choice
of p. Since (˚) holds, we have

pDm, kqpDτ M pqr gτ pfτ pn,mqq “ k and Eτk peq “ 0 s.

Let r ĺ p extend τ . Then r forces that e R pT ‘ EF
mq
1, so EF

m is a path on T .
Therefore, T has an infinite path.

Now assume that T has an infinite path. Because I is a hyper-Scott ideal, T has
a path h in I. Also, because I is a hyper-Scott ideal, if (˚) fails, it fails for a p P I.
So it is enough to consider p ĺ q and n P ω such that p@σ M pqr Eσn M T s. Note that
p forces EF

n to be T , because q forces it to be total and it cannot be incompatible
with T . Take r ĺ p forcing the specific location of h in EF , and let this location
be m. Now take τ M r and k such that gτ pfτ pn,mqq Ó“ k and Eτk peq Ó. Such a τ
exists because q forces gF , fF , and EF to be total. Our choice of r ensures that
Eτk peq “ pT ‘ hq1peq “ 0, because h is a path on T . Therefore, (˚) holds.

We have proved that any tree T in I has an infinite path if and only if (˚) holds.
This is a contradiction, hence any condition can be extended to a condition that
diagonalizes against E , f , and g. �

Theorem 4.16. pB,‘, 1q ą˚w B.

Note that, as a function on either B or C, the jump 1 is of Baire class 1, i.e., a
pointwise limit of continuous functions. Indeed it is a pointwise limit of a computable
sequence of computable functions. In terms of the effective Borel hierarchy, the
graph of 1 is Π0

2, in other words effective Gδ. So as mentioned above, there is an
expansion of the real numbers by continuous functions and a unary function of Baire
class 1 (or a Π0

2 binary relation) which is in the Borel complete degree. This puts a
severe limitation on any potential strengthening of Theorem 1.7.
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