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ABSTRACT. We study the relative computational power of structures related
to the ordered field of reals, specifically using the notion of generic Muchnik
reducibility. We show that any expansion of the reals by a continuous function
has no more computing power than the reals, answering a question of Igusa,
Knight, and Schweber [7]. On the other hand, we show that there is a certain
Borel expansion of the reals that is strictly more powerful than the reals and
such that any Borel quotient of the reals reduces to it.

1. INTRODUCTION

We would like to compare the computational power of algebraic structures. For
countable structures, Muchnik reducibility provides a useful way to do this: if A and
B are countable structures (in computable languages), then A is Muchnik reducible
to B (A <, B) provided that every copy of B computes a copy of A. Schweber, in
[9], introduced a generalization of this reducibility that allows us to compare the
computational power of structures of arbitrary cardinality.

Definition 1.1 (Generic Muchnik reducibility). For a pair of structures A and B
(not necessarily countable) in V', we say that A is generically Muchnik reducible
to B, and we write A <¥* B, if for any generic extension V[G] of the set-theoretic
universe V' in which both structures are countable, we have V[G] E A <, B.

In other words, we collapse cardinals so that the structures A and B become
countable, and then we apply the standard tools of computability theory to study
them. It follows from Shoenfield’s absoluteness theorem [18] that generic Muchnik
reducibility is set-theoretically robust:

Lemma 1.2 (Schweber [9]). If A <% B, then A <,, B in every forcing extension
that makes A and B countable.

After the initial paper [9], there have been several further papers in which generic
Muchnik reducibility is used to compare the computational power of structures
related to the real numbers. Here are some of these structures.
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e Cantor space: This is represented in [9] by W = (P(w) u w, P(w),w, S, €),
where S is the successor function on w. Another representation, possibly
more natural, is C = (2¥, (R, )new ), where for a € 2¥, « € R,, if and only if
a(n) = 1. Clearly, W =% C.

o The ordered field of reals: Thisis R = (R, +, x, <).

e The non-standard reals: R* is an w-saturated extension of R. Note that
this structure is not unique, although it becomes unique after collapse of
cardinals.

e Baire space: This is the structure B = (w*, (Rpn,m)n.mew), Where f € Ry,
if and only if f(n) = m.

The structures listed above all fall into one of two generic Muchnik degrees. In [9],
it is shown that W < R. Igusa and Knight [6] showed, using a result of Macintyre
and Marker [11], that R* =* W. Downey, Greenberg, and Miller [3] showed that
R =¥ B. Thus, we have that

C=fw=kR*<¥ R=EB.
Finally, we know from [3] and [6] that the above inequality <¥ is strict, so
C=r W=l R* <} R=}B.

In the present paper, we investigate structures of the form Ry = (R, f), the
ordered field of reals expanded by a function f. Igusa, Knight, and Schweber [7]
showed that if f is analytic, then Ry =} R. They asked whether this remains
true for arbitrary continuous functions f. They believed that the answer should be
negative, witnessed possibly by something like Brownian motion, with complicated
level sets as studied in Allen, Bienvenu, and Slaman [1]. Here, we show that the
answer to the question is actually positive.

Theorem 1.3. If f is a continuous function (of any arity) on R, then Ry <% R.

Below, we give a brief outline of the proof of Theorem 1.3. Recall that for a
countable family of sets S S P(w), an enumeration is a relation E € w? such that
the sets E,, = {x : (n,x) € E} are exactly those in S. For a countable family of
functions F € w®, an enumeration is a function P : w? — w such that the functions
P,(xz) = P(n,x) are exactly those in F.

Definition 1.4 (Turing ideal, jump ideal).
(1) A Turing ideal is a family of sets S € P(w) that is closed under disjoint
union and Turing reducibility.
(2) A jump ideal is a Turing ideal that is closed under Turing jump.

After collapse, the old P(w) becomes a countable jump ideal S, and the family
F of functions f € w*“ that are present in the old w* is the family of functions
computable from elements of S. Downey, Greenberg, and Miller [3] give an important
characterization of the two generic Muchnik degrees discussed above, that of C and
that of R. After collapse, computing a copy of C is equivalent to computing an
enumeration of S, while computing a copy of R is equivalent to computing an
enumeration of F'. The first step in the proof of our main theorem is to explore
what computational power is given by an enumeration of F, but not given by an
enumeration of S.

Let S be a countable jump ideal, and let E be an enumeration of S. We may
think of F as a function taking each index n to the set E,. We consider the
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companion function J taking n to the set (Fo®...® F,)’. More formally, J will
be an enumeration of a subfamily of S, with specified indices.

Definition 1.5 (Running jump). Let E be an enumeration of a jump ideal S.
The running jump for E is the relation J € w? such that (n,x) € J if and only if
T e (E()@@En)l

In Section 2, we prove the following result, which we believe is of independent
interest.

Theorem 1.6. Let S € P(w) be a countable jump ideal, and let F' < w® be the
family of all functions computable from sets in S. From an arbitrary enumeration

P of F, we can compute an enumeration E of S together with the running jump for
E.

After collapse, let S be the family of sets in the old P(w), and let F' < w® be the
family of functions computable from sets in S. From a copy of R (now a countable
structure), we can compute an enumeration P of F' (this is immediate from the fact
that R =* B). Applying Theorem 1.6, we get an enumeration F of S together with
the running jump J for E. In Section 3, we show that the combination of E and
the running jump J provides the information needed to build a copy of Ry.

Theorem 1.7. Suppose f : RF — R is continuous. After collapse, let E be an
enumeration of the sets in the old P(w), let J be the running jump for E, and let
Ry = (R, f). Then there is a copy of Ry computable from E@® J.

We further show that continuous expansions of Cantor space also have generic
Muchnik degree bounded by the degree of R. Denote by Cy the expansion of C by
a function f on Cantor space. The following is a direct consequence of the more
generally phrased Theorem 3.2.

Theorem 1.8. If f is a continuous function (of any arity) on C, then C; <} R.

In Section 3, we also give examples of continuous functions f such that C; =% R.
An interesting question arises: are there generic Muchnik degrees strictly between
the degree of C and the degree of R and if so, can they be obtained as continuous
expansions of C? This problem is treated in detail in the upcoming paper by
Andrews, Miller, Schweber, and M. Soskova [2]. They show that there is a degree
strictly between C and R. Later Gura! exhibited a whole hierarchy of such degrees.
On the other hand, Andrews, Miller, Schweber, and M. Soskova [2] show a dichotomy
result for expansions of C by closed predicates: they lie either in the degree of C or
in the degree of R. Recall that continuous functions have closed graphs, hence this
answers our original questions.

In Section 4, we investigate continuous expansions of Baire space B. We show
that, unlike with R, there is a way to continuously expand B to get a structure of
strictly higher complexity. Let (B,@®,”) be the structure of Baire space with adjoined
join and jump functions (appropriately defined for members of w*). We show that
this structure has a very powerful generic Muchnik degree.

Theorem 1.9. There is a continuous expansion of Baire space in the generic

Muchnik degree of (B,@®,").
(1) B,®/) >} B.

1Unpublished.
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(2) Every Borel expansion (even Borel quotient) of B is generic Muchnik re-
ducible to (B,®,).

We refer to the generic Muchnik degree of the structure (B,®,") as the Borel
complete degree. In Section 4, we show that as a consequence of this, Theorem 1.3
cannot be strengthened to Borel expansions of R—there are such expansions of R in
the Borel complete degree. As with C, it is natural to ask if continuous expansions
of B can lie strictly between B and the Borel complete degree. Assuming Al-Wadge
determinacy, Andrews, Miller, Schweber, and M. Soskova [2] prove a dichotomy
result for closed (equivalently, continuous) expansions of B: they have the same
generic Muchnik degree either as B or as the Borel complete degree. They also show
that there are generic Muchnik degrees strictly between these two.

2. RESULTS ON ENUMERATIONS
We turn to the proof of Theorem 1.6. Recall the statement.

Theorem 1.6. Let S € P(w) be a countable jump ideal, and let F < w* be the
family of functions computable from sets in S. From an arbitrary enumeration P of
F, we can compute an enumeration E of S together with the running jump for E.

Proof. We will compute an enumeration F in stages, so that at any stage we have
determined finitely many bits of E. At stage s, we will have instructions for each
column F,, with n < s. These instructions either will be to copy some element of P
(or rather a set associated to that element in a fixed way that will be made precise)
or will be an index for a computation that describes how we should complete the
column. In the former case, we will say that n is a copy column and in the latter
case, we will say that n is a fix column.

The difficulty in the construction, of course, comes from computing the relation J
that gives us the running jump for E. The core idea is that the jump ideal contains
sets computing the settling time functions for the running jumps. Recall that A’
has a standard representation as an A-c.e. set WA. A settling time function for

A’ is a function s: w — w such that n € A’ if and only if n € Wﬁs(n)

the stage s(n) approximation to the set W4 and references the oracle A only on
numbers less than n. If a jump ideal S contains A, then the least (with respect
to majorizing) settling time function s4s is computable from A’, hence it is in
F. To define J;, we make an initial guess towards a P-index for a settling time
function of (Eq @ --- @ E;)": we guess that Py is such a function. We then try to
compute (Eg @ --- @ E;)’ using our current guess of that function and the columns
Eoy, ..., F;. If the guess is incorrect, we will notice this after a finite amount of time.
We will see that the settling time function predicted that some natural number
x¢ (Eg®- - @ E;), but now, after computing more steps than our guess assured
us would be enough, we see that z € (Eg @ --- @ E;)’. At that point, we would like
to revise our guess at the settling time function by moving to the next possible
function in our enumeration P of F', until we eventually hit the right one.

We need a way to deal with the injury that happens when we discover that our
guess is incorrect. We will have already specified finitely many bits of E, and of
J. We have already announced that © ¢ (Fo @ --- @ F;)’, misled by the wrong
guess. This means that our assignment of copy columns and fix columns is no longer
consistent with J being the running jump of E. To remedy this problem, we ensure
during the construction that there is always a way to extend FE; that is compatible

, l.e. nis
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with J; and that we can compute such an extension. To achieve this, we use the
Low Basis Theorem by Jockusch and Soare [8]. We state it here in a relativized,
uniform manner.

Theorem 2.1 (The Low Basis Theorem). Let T < 2<% be an infinite X -computable
tree. There is an infinite path Y through T such that (X ®@Y) <r X'. Moreover,
an index for this reduction can be obtained uniformly in an index from the reduction
witnessing that T <p X.

As a result, J will remain correct. The trade-off is that this action interferes
with the requirement that E is an enumeration of S. In particular, we will have to
turn more columns into fix columns (whose role is simply to be filled in and keep J
consistent). Indeed, as a copy column, F,, was trying to enumerate some element
X of S, but after injury, we abandon this goal and instead let E,, fill in its column
in a way that preserves J. Our only option is to enumerate X at position F; for
some fresh j.

The approach described above ensures that we compute J correctly, and that if
every requirement copying some element X of S is injured only finitely often, then
F is an enumeration of S. Intuitively, the injury should only happen finitely often
because we eventually find the right settling time function. However, there is a
complication. Let us fix a set X and assume that all higher priority requirements are
no longer injured after stage s. At stage s, we find out that our guess towards the
settling time function for (Fo@®---@® F;) is incompatible with our assignment of E;
as a copy column and transition to the escape strategy explained above. We let Fj,
Eit1,...,E;_1 be fix columns and we begin filling them in with sets that are low
with respect to previous columns, i.e., F; is low over Eg@®---@® E; 1. Note that
this will make it easy to fill in the columns J;, ..., J;_1 as (Eo@--- @ E; 1) will be
computable from (Fq@®---@®F;_1)". We start copying X at position j > i, where j is
a column for which we have not yet defined any values. We now need to guess at the
settling time function for (Ey@®---@E;_1®X)’. This settling time function could be
vastly different from the one for (Eg@®-- - @ E;—1 ®X)’. Indeed, even though we were
able to select the fix columns so that we can control the corresponding running jump
columns, we cannot even guarantee that Eo®... F;_1 ®X =r Ey®@---QE,;_1 ® X.
An easy counterexample can be derived from the existence of two low sets whose
join is ¢¥’: it could be that both X and E;®---@ E;_1 are low over E¢y®--- @ F,;_;
but (E¢® - @E;_1®X) =r (Ex®---®E;,_1®X)". Thus, there is no guarantee
that we ever guess the settling time function correctly.

Luckily, there is an easy fix for this problem. Instead of guessing at the settling
time function for (Eo @ --- @ E;—1 @ X)" and then for (Eg @ --- ® E;—1 ® X)
after the first injury, as we were previously doing, we will guess at a function
that encodes the settling time function for all possible situations that we might
end up in. More precisely, we guess at a function g with the property that if
O((Eo® - ®E;_1)@®X))| = Z' for some set Z, then the e-th column gl¢! of g is
the settling time function for Z’. Since the Low Basis Theorem is uniform, we will
know an index e such that ®.((Eo® - - @ E;i—1) @ X)) = (Eo®---@®E,_1 0 X)".
If our current guess towards g is §, we modify the construction to use §l¢! as the
current guess at the settling time function, and if it turns out that gl¢! is incorrect,
then we give up on g completely and move on to the next guess for g.

Construction. Our requirements are as follows. We have an ambient requirement:
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e Q: forallz;iew,ze J;ifandonlyifx e (Eg® - - @ E;),
and we have countably many copy requirements:
e R;: for every i € w there exists a j € w such that E; = P; = {n: Pi(n) = 1}.

The ambient requirement @ will not be subject to injury, and the requirements R;
are given a priority order of order type w.

The construction will proceed in stages. At stage s, we will construct E[s] and
J[s] such that, ultimately, £ = | J,_, E[s] and J = {J,_,, J[s]. We will omit [s]
in the construction; unless explicitly mentioned, all objects being constructed are
evaluated at the current stage.

For every ¢ € w, we have a module M; that is building J; and a module N; that is
building F;. They share two parameters: ¢; € wu {fix} and ¢; € w. If ¢; € w, then we
are in the case that ¢ is currently a copy column; our current guess for the function g
described above is Py, and ¢; indicates that M; is currently copying Pc If ¢; = fix,
then we are in the case that Fj; is a fix column and ¢; is an index for a computation;
we will endeavor to make (Eg®--- @ E;) = ., (Eo®---® F;_1)"). At any stage,
let m; < i be greatest such that ¢,,, # fix. If there is no such natural number m,,
then we let m; = —1, and we let J_; = ¢f’. We have access to ¢, having fixed an
index for it in the enumeration P. Then by composing the computations P, i1
through ®.,, we see how we intend to compute J; from J,,,, baring further injury.

At stage s, we attempt to determine the value of J(m) for every m = {i,j) with
i < sand j <s. We first call My on input x for every = < s, then M; on input x
for every z < s and so forth.

The M-module. We describe the module M; on input z, that is, we describe how we
determine the value of J;(x). Whenever we call the module M; on input z, we first
recursively call M;_; on every input < z. (Note that both N and M modules may
call an M module on numbers larger than s, so this instruction is not redundant.
It ensures that if there is a mistake in our guess at an earlier column, then that
mistake gets discovered. This will ultimately allow us to prove that every stage
of the construction terminates in finite time.) If J;(z) is already defined, we do
nothing further. Otherwise, we have two cases to consider:

Case 1. Suppose that ¢; € w. That is, the i-th column is currently a copy column.
Then using the indices ¢y, for k € (m;, i), we can find a computation which (assuming
no injury) will describe the columns E,,;, 11, .., F;_1 from (Eg@®---® E,,,)’, which
(again assuming no injury) equals J,,,,. Thus we can find an index e so that (again
assuming no injury) we will have (Eg @ -+ @ F;) = ®.((Jm, ® E;)’). We then let
t = P,,({e,z)). If the requirement’s guess is correct about g;, then this ¢ bounds
the settling time function for (Ey@®--- @ E;)" at . We thus call the modules Ny on
input 2’ for each k < ¢ and 2’ < t. Once these all return, we will know the values of
Ei(2') for each k < i and 2’ < t. We then run the enumeration of (Eqg®---® E;)’
(as a set ce. in Eg @ --- @ E;) for t stages to see if it enumerates = in this time.
This determines whether we want to set J;(x) to be 0 or 1. We are almost ready to
declare that J;(x) is this value, but before we can do this, we have to ask permission
of every previous column; we will describe the process of asking for permission below.
If they all give permission, then we declare J;(x) to be the value determined above.

Case 2. Suppose that ¢; = fix. Then the i-th column is a fix column, and ¢;
gives a parameter for a computation of J; from J;_;. Thus, we simply call M;_; for
every x for which J;_; is undefined until we see a computation giving @ig‘*l () |.
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Define a computable increasing function « so that for all sets A, B, we have z € B
if and only if a(z) € (A® B)’. We say that z is a coding number if and only if
x = a(z) for some z. Note that if = a(z) is a coding number for z then whether
x enters (A @ B)’ when this set is enumerated computably in A @ B will depend
solely on whether z € B. If <I>c] ~!(x) = 0, we ask for permission from every previous
column to make J;(z) = 0. If @gf’l(x) =1 and z = a(z) is a coding number, then
we ask for permission to set F;(z) = 1 and J;(z) = 1. If @;’f’l(x) =1land zis
not a coding number, then we search for a confirmation set. This means that we
call the modules Ny, ..., N; on increasing inputs until we have assigned enough of
Ey® - @ E; so that the previous columns give permission to define J;(z) to be 1.

The N-module. We now describe the modules N; on input z. Our goal is to determine
whether E;(z) is 0 or 1.

Case 1. Suppose that ¢; € w. Then the goal of E; is to copy 175C We ask
permission to set E;(z) = P;(z) and do so if every previous column gives permission.

Case 2. F; is a fix column. Call M;(a(z)). If this assigns J;(a(z)) = 0, then
assign E;(z) = 0. (The fact that previous columns gave permission to assign
Ji(a(z)) = 0 will imply that they also give permission to make F;(z) = 0.) Note
that if M;(a(z)) assigns J;(a(z)) = 1, then it also assigns F;(z) = 1.

Permissions. We now describe the process of asking for permission from previous
columns. We either want to assign J;(z) for some ¢ and z, or F;(z) for some ¢ and z
(or both) and we need permission from each previous column. Let m be the largest
so that g, is defined. We describe how the k-th column determines whether to
give permission. Let opy1,...,0,, be the fragments of Ex1,..., Fy, determined so
far including the requested assignment, and let 7411,..., 7 be the fragments of
Ji+1y- .-, Jm determined so far including the requested assignment.

Let T be the tree of possible ways to complete k.1, ...,0, so that for every j, x
with j € (k,m] and 7;(z) = 0, we do not put x into the running jump. The k-th
column wants to give permission if and only if:

e For every pair j, z with j € (k,m] and 7;(z) = 1,z € (E¢®- - - PErD0p11D
---@o0;). Here Ey, ..., Ej are not just the partial fragments determined
so far, rather they are the sets as they would be determined assuming all
our guesses are correct. In other words, over the first k columns, the o’s
have enough information already encoded to put = into the correct running
jump.

e T has an infinite path.

Note that these two conditions are true if and only if two bits in the set (Eo @
- @ Ey)" have fixed specific values—the first condition is equivalent to a fixed bit
being 1 and the second to a fixed bit being 0. Thus, in order to determine whether
or not to give permission, we call the module My on these bits. If these modules
both return the correct value confirming the condition, then we give permission.
Otherwise, if the first condition is incorrect (the module returns 0 to show that the
first condition fails), then we simply deny permission but do not declare injury.

If the module returns a value signifying that 7" does not have a path, then we
declare injury which means that for all j € [i,m], we set g; to be fix. Let S be
the tree of possible ways to complete the columns E;, ..., E,, so that for every j, x
with j € (k,m] and J;(x) = 0, we do not put z into the running jump. Since the
(i — 1)st column gave permission to the current configuration, there is some y such
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that J;_1(y) = 0 and this confirms that S has a path. Thus, by the effectiveness
of the Low Basis Theorem, we can set ¢;,..., ¢, to be so that there is some path
through S so which would make ¢C]j ~' = J; for each j € [i,m]. We then complete

the stage (though we may have not succeeded in the goal of assigning any value of
J).

Lastly, whether we declared injury or not during the stage, before finishing the
stage, we take the least m so that g, is undefined and the least ¢ so that currently
no column has ¢; = ¢ and define ¢, to be i. If this is the [-th time that we define
some c; to be i since we last assigned some c¢;s to be 7 — 1, then we assign g; to be [.
This completes the construction.

Verification. We say that the i-th column is correct at stage s if for all j < i, the
parameters ¢; and c; will never be changed at a stage t > s.

Lemma 2.2. Suppose that the i-th column is correct at stage s. Define the sets
A;, Bj for j < i inductively as follows: A_y = & and B_y = &'. If the j-th column
has parameters q;, c; with q; = fix, then define Bj as ®.,(B;_1). Define z € A; if
and only if a(z) € B;. If qj € w, then define A; = ]50], and Bj = (Ag@--- @ A;)".
Then for each j < i, E; = Aj and J; = B;. In particular, J; = (Ec®--- @ E;)’.

Proof. We prove the result by induction on j. It is clearly true for j = —1. If
g; = fix, then since J;_1 = Bj_1 = (Ao @ --- @ A;_1)’, it follows that when we
determined the final value of the parameter c;, we were looking at a tree S that
was accurately determined by previous columns (which do not get injured again or
else ¢; would be modified) to be infinite. Thus, by the Low Basis Theorem, S has
an infinite low path and the sequence of Turing functionals we determined, one of
which is @, is correct. Note that when we ask for permission to define J;(x) or
E;(z), it cannot end in injury by our assumption that the j-th column is already
correct. When we run the N; module on z, if we want to make E;(z) = 1, then that
permission will be given because changing a bit in E cannot result in a failure of the
permission for the first reason (i.e., it can only cause injury). If we want to make
E;(z) = 0, then we do not even ask for permission. When we run the M; module
on z, ®.; will eventually converge on z. If M; wants to define J;(z) = 0, it will
be given permission (or else j is not correct). If M; wants to make J;(x) = 1 and
x = a(z) then we will get permission to enumerate z in E; and that is all we need
as a confirmation set, hence M; will be granted permission to define J;(x). If x is
not a coding number then we are assured that eventually we will find a confirmation
set by the correctness of ®., and all previous columns and the fact that N; always
gets permission to define F;, as we just argued. Thus, we will build F; = A; and
J; = Bj for some sets A; and B; so that (Ao @ ---@® A;)’ = B,.

If g; € w, then since the column is correct, it follows that E; = f’cj = A;. Note
that since, in Case 1 of the M; module, we only ever request to place J;(z) = 1 if we
already see enough of Ey@®- - -@F; defined, it follows that when we ask for permission
to assign J;(z), we either get permission or some column declares injury. Since the
columns are all correct by assumption, the latter case is impossible. Thus J; defines
a sequence in 2¢. Since g; is correct, it is never injured, so (Ao @ --- @ A;_1 D A;)’
cannot contain an x so that J;(x) = 0. Thus J; 2 (Ao ®--- D A;)". Similarly, since
we only ever put J;(z) = 1 after we have already seen a fragment ¢ < E; such that
T € (AO @ s @Aj—l @U)/, it follows that Jj = (AO @ e @Aj)/ = Bj. O
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Lemma 2.3. Ifi — 1 is correct at stage s and q; = fix, then i is also correct at
stage s.

Proof. Let t be the stage when ¢; was last redefined. It follows that the first 4
columns were correct at the stage ¢t. Hence, the tree S that we considered at that
stage was determined correctly and the Low Basis Theorem allowed us to compute
the functional ®., such that ®.,(Eo® - - @ E;—1))=B=(Ec®--- @E;_1®A)
for some set A, and the fragment of F; that has already been determined agrees with
A. By Lemma 2.2, if i is correct at stage t then eventually E; = A (and J; = B).
Using the same proof as above, we can argue that unless ¢ is injured, whenever it
defines a value for F;(z) from now on, it agrees with A. The only reason for ¢ not
being correct at stage s is that a request for permission ends in injury. This request
can only come from M; and only for a bit J;(z) to be given value 0, given the
assumption that s is correct for ¢ — 1. (As we argued in the previous proof, requests
for J;(x) to be given value 1 do not end in a failure of the second kind and so do not
cause injury.) On the other hand, M; will only ask for such a permission if it has
already seen that ®.~*(z) = 0. The tree T' of possible extensions of ¢ < E; that
make J;(z) = 0 contains an infinite path, namely A. So injury will not occur. O

Lemma 2.4. FEvery stage terminates.

Proof. Note that when we call M; on input x, we may have to call Ny, for k < j,
and when we call IV; on input x, we may call M, for £ < j. One fear is that we
may call M; from N; and N; from M;. The only reason that we call M; from N;
is if j is a fix column. In this case, N; calls an instance M; on input x where z is a
coding number, so this instance of M; does not call IN;. Thus there are no loops in
the module calls.

The other fear is in Mj calls for fix columns j. This makes a sequence of M;_1)-
calls and waits to see a computation converge. Notice that if the sequence of
M;_1)-calls were infinite, then we would determine the full j — 1 first columns
during this stage. Thus, the stage ends if 7 — 1 is not correct at stage s. If j — 1 is
correct at stage s, then Lemma 2.3 shows that j is correct at stage s, and Lemma
2.2 shows that we eventually assign the appropriate values of J;, and thus the stage
ends. O

Lemma 2.5. For every i, there is a stage s so that the i-th column is correct at
stage s.

Proof. Let sp > i be a stage such that ¢ — 1 is correct. Thus, at stage ¢ > s¢, each
of the columns j < 7 successfully determines J;(z) for every x < ¢. By the definition
of correctness, if the i-th column is not correct at stage sg, then there is a t > s
at which ¢; becomes redefined to fix. But then by Lemma 2.3, the i-th column is
correct at stage t. (I

Lemma 2.6. For every n there is a stage s and a column © so that the i-th column
is correct at stage s, q; € w, and ¢; = n at stage S.

Proof. Let sg be the first stage at which the lemma is true for every m < n. Let
X = P,. Let i be the largest such that g; € w is defined at stage so. By the final
action for every stage, all ¢ > sg end with some column k(¢) having g € w and
¢ = n. If this k(t) is constant from some stage onward, then we have that this
column must be correct and we are done. Thus, we need to see why k cannot change
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infinitely often. Suppose this were the case. Then let ¢ be a stage where gy, ;) is the
P-index of a function g such that for every e, if ®.((Eo® - @ E;) @ X)) =7’
for some set Z, then the e-th column ¢l¢! of g bounds the settling time function for
7.

Since every column between ¢ and k(t) is a fix column, we know that the (k(t)—1)st
column is correct at stage ¢. Also, for every stage greater than ¢ where we call My,
on any input, we will get the correct response because g bounds the appropriate
settling time function. Hence the k()-th column is not injured, so it is also correct
at stage t. ([l

Lemma 2.7. The set E gives an enumeration of S, and J is the running jump of

E.

Proof. By Lemma 2.6, every set in S is enumerated in E. By Lemma 2.5, every
column is eventually correct. By Lemma 2.2, this means that the columns up to the
i-th column each either copy elements of S or are low over elements of .S, thus are
in S. Similarly, Lemma 2.2 shows that the i-th column of J is the running jump of
the first ¢ columns of F. |

This completes the proof of Theorem 1.6. O

Note that we did not build an injective enumeration in the previous proposition,
but any enumeration E for which we can compute the running jump can easily
be turned into an enumeration E* without repetitions, using the running jump.
Furthermore, we do not lose the running jump, because we also have an index
telling us how to compute J;* from J;x, where ¢* is the least j such that Ey,..., E;
contains 7 different elements.

Finally, let us remark that it is essential that we started with an enumeration of
the functions, but ended up with an enumeration of the sets. We cannot strengthen
Theorem 1.6 by assuming that we are only given an enumeration of the sets in
S; this follows from Lemma 3.3 and the fact mentioned above that C <¥ B. On
the other hand, we cannot strengthen Theorem 1.6 to give us an enumeration of
the functions computable from elements of S, along with the running jump of this
enumeration; this follows by Proposition 4.6 and Theorem 4.15.

3. CONTINUOUS EXPANSIONS OF THE REALS

We will now show that continuous expansions of R are generic Muchnik reducible
to Baire space.

Theorem 1.7. Suppose f : RF — R is continuous. After collapse, let E be an
enumeration of the sets in the old P(w), let J be the running jump for E, and let
Ry = (R, f). Then there is a copy of Ry computable from E and J.

Proof. We need a good way of representing the elements in our copy of Ry. We
may think of each element as the sum of an integer z and a remainder e in the
interval [0, 1], where e has a binary expansion corresponding to some E;. (Here, we
identify F; with xg,.) Recall that a dyadic rational? is one of form 57, where z € Z
and k € w. Let D be the set of dyadic rationals. If e is a dyadic rational in the
interval [0, 1], then e has two binary expansions. Even fixing the binary expansion,
our enumeration may have more than one index i for the same set F;. To resolve

2We do not restrict to the interval [0, 1].
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this issue we note the following obvious claim and use the properties of the running
jump.

Claim 1: Using oracle F;, and fixing z, we can apply a uniformly effective procedure
to enumerate the true statements ¢ < z+ F;, z+ F; < q, where ¢ is a dyadic rational.

Using F and J, we can effectively say whether z + E; = ¢, where ¢ is a dyadic
rational. We can also effectively say whether z + E; = 2’ + E;. Thus, we can
effectively build a structure (R, <, {q}4ep) with the ordering, plus constants ¢ for
the dyadic rationals, and with the elements we want. The constants are dense in the
ordering, and we have a many-one function F', computable from E and J, taking
each pair {z,7) to the appropriate r € R such that the statements from Claim 1 are
true.

Claim 2: Using E and J, we can effectively expand the structure (R, <, {q}qen),
adding +, x, and f.

We prove Claim 2 as follows. Recall that the set 7= Th(Ry) is one of the columns
in E, so we can fix it as a parameter. Using T, we can enumerate the sentences
of T saying that f maps I into I’, where I is a k-fold product of closed intervals
with dyadic rational endpoints and I’ is a closed interval with dyadic rational
endpoints. Using a tuple ¥ = {(z; + E;, : i < k), we can enumerate the set S of
k-fold products of closed intervals with dyadic rational endpoints which contain 7.
We want f(7) = F(z' + E,,), where 2’ + E,;, lies in all of the intervals I’ with dyadic
rational endpoints that, according to the theory T, contain f(I) for some I € S.
For the given 7, the set of I’ is c.e. in T" and the E;;. Given E,,, and the jump of
INSIS! j<n Ei; ® Epm, we can determine whether a given 2’ + E,, is an appropriate
F-pre-image of f(7). Thus, using E and J, we can effectively compute f(7) from .

Similarly, since the operations + and x are also continuous, we can effectively
compute r + 7’ and r x 7’ from r and r’. O

In the same way, we can prove that (R,{fn}new) <& R, where {fn}neo is a
countable family of continuous functions on R.

Theorem 3.1. Let f1, fa,... be continuous functions (of any arities) on R. Then
(R, {fn}new) =0 R.

In Downey, Greenberg, and Miller [3] and Igusa, Knight, and Schweber [7], it
is shown that (R, +, <) and (R, {¢}eq, <) are both generic Muchnik equivalent to
R. Using the techniques given above, and the fact that both of these structures
are generic Muchnik above B, it is now straightforward to show that (R, +, <)
and (R, {¢}4eq, <) expanded with a countable number of continuous functions are
equivalent to the original structures. In particular, (R, +, <) =¥ (R, {¢}4eq, <) =2
R now follows directly, because x and + are continuous.

Recall that two other structures that have been studied are Cantor space C and
Baire B space and for them we know that C = R*, and Baire space B =% R. We
may consider expanding either structure by continuous functions. Let us start with

C.

Theorem 3.2. Let fi1, fa,... be continuous functions (of any arities) on 2¥. Then

(C, {fz}zew) <:, B.
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Proof. After collapse, given a copy of B, we can compute an enumeration E of
the family of sets in the old P(w), together with the associated running jump
enumeration J by Theorem 1.6. Given F, we immediately compute a copy A of
C. Computable in F and J, we have a many-one function I taking all indices ¢ for
sets E; to elements a € C such that if E; = Ej;, then I(i) = I(j). We let R, (a)
hold if and only if n € F; for any and all ¢ such that I(i) = a. For simplicity,
consider a single continuous function f on C, of a single variable z. The fact that
f is continuous means that Th(C, f) includes sentences ¢, -, saying, for certain
0,7 € 2<% that f maps the sequences extending o to sequences extending 7. For
a € A, we say that a extends o if, for all k € dom(c), o(k) = 1 implies Ri(a) and
o(k) = 0 implies —Rg(a).

We let f(a) = b where for all sentences ¢, in Th(C, f), if a extends o, then
b extends 7. For each a € A, let T, be the set of 7 such that for some sentence
¢or € Th(C, f), a extends 0. Assuming that Ej is the theory and I(i) = a, we can
effectively enumerate T, using F; and E;. For any s > 4, j, we can use J; to see if
there is k < s with I(k) = b such that b extends 7 for all 7 € T,. For sufficiently
large s, we will find an appropriate k and b. We let f(a) = b. O

Recall that C itself is not equivalent to B, so not all continuous expansions of
C are equivalent to B. However, some simple-looking expansions of C turn out to
be equivalent to B. In particular, let @: 2% x 2“ — 2“ denote the join operator
and o: 2¥ — 2¥ denote the shift, i.e., c(bgb1babs - --) = bybabs - - . Both are natural
continuous functions on Cantor space. We show that Cantor space with join, and
Cantor space with shift, are both equivalent to Baire space.

Lemma 3.3. If X can compute an enumeration E of the sets in a jump ideal I,
and the set Fing = {n : E,, is finite} is c.e. in X, then X computes an enumeration
P of the functions in I.

Proof. First, we show that X computes an enumeration F' of the infinite sets in I.
The construction of F is straightforward: F,, initially copies F,, and if at any stage
s we see that FE,, is finite, because n enters the c.e. in X set Fing, we make F),
cofinite by adding all elements > s.

If A is an infinite set, then let f4 be the function such that f4(n) is one less
than the distance between the (n + 1)-st and (n + 2)-nd element of A; in other
words, fa(n) =pa(n+1)—pa(n) — 1, where p4 is the principal function of A. Tt
is straightforward to check that the functions computable from sets in I are exactly
the functions of the form f4 where A is an infinite set in /. We can compute an
enumeration P of these functions from the enumeration F. O

Proposition 3.4. (C,®) =* (C,0) =X B.

Proof. That (C,®) <* B and (C,0) <* B follows directly from Theorem 3.2. For
the other direction, we claim that, after collapse, every copy of (C,®) or (C,0)
computes an enumeration F of the sets in the old P(w) and enumerates the set
Fing of the indices of finite sets in £. By Lemma 3.3 and the characterization given
in Downey, Greenberg, and Miller [3] this shows that (C,®) =¥ B and (C,0) =% B.

For the structure (C,o), the claim follows from the fact that a set A is finite
if and only if ™ (A) = 0% for some n € w. For (C,®), the claim follows from the
fact that every finite set can be generated by taking joins of 0¥ = (0000---) and
10¢ = (1000---). We show by induction on n that for any o of length 2", the
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sequence o(0“ can be obtained from applying the operation join to 0 and 10“. For
o of length 1 the statement is obviously true. Suppose the statement is true for
all 7 with |7| = 2. Let o be a string of length 2"*!. Let 79 be the string with
length 2", such that 79(k) = 0(2k) and 71 be the string with length 2", such that
71(k) = 0(2k +1). Note that 700“ ®710¥ = 00%, so if F; and E» are the expressions
for 790¢ and 7,0%, then (E;) @ (F>) is the expression for o0%. O

Another interesting relationship between Cantor space and Baire space is given
by the notion of the jump of a structure. There have been several approaches to this
notion: A. Soskova and Soskov [19, 20] use Moschovakis extensions [15] and a coding
of the forcing relation for IT; formulas, Puzarenko [16] and Stukachev [23] proposed
a definition that works well with X-reducibility, and Montalban investigated a
definition that expands the original structure by a complete set of relations defined
by computable infinitary II; formulas [12]. The relationships among these three
approaches are discussed by Montalban in [13]. In [13], Montalbédn uses relations
defined by computable infinitary ¥; formulas. This is the approach that we use,
lifting it to uncountable structures.

Definition 3.5 (Jump of a structure). Let A be a structure in a computable
language. The jump of A is the structure A’ = (A, Py, Py, ...), where {P,}, <, is a
listing of the relations on A defined by computable infinitary ¥; formulas (without
parameters). (Note that we have a computable list of the formulas that define these
relations.)

Proposition 3.6. C' =% B.

Proof. We know that after collapse, every copy of B computes an enumeration E of
the family of sets that is the old powerset of w, together with the running jump. We
claim that this computes a copy A’ of C’. We assign constants a effectively to indices
for the distinct sets F;. Note that equality can be determined using the running jump
(although we could even have assumed that our original enumeration were injective).
Also using the running jump, we can determine the truth of a given computable 3,
formula ¢(a) = \/;(3u;) a;(a, u;) (where oy is finitary quantifier-free). To see this,
we note that the elementary first-order theory of C is computably axiomatizable,
with effective elimination of quantifiers. So we have an effective procedure, using
the sets a, for deciding whether a given disjunct (3z;) o (a, ;) is true. With the
running jump, we can say whether there is some disjunct that is true.

After collapse, a copy A of C' with universe w computes an enumeration E of
the sets in the old P(w). In particular, for the n-th element z,, of A, we enumerate
the set E,, so that x,, = x(E,). Further, the jump has predicates P which define
the computable 3; formula which says that z(m) = 1 for some m > k. We can
thus enumerate from A the indices n so that for some k, A = —P;(z,). Thus,
computable in A, we have an enumeration of all the sets in the old P(w) and Fing is
c.e. in A. Thus by Lemma 3.3 and the characterization given in Downey, Greenberg,
Miller [3], this shows that C' =¥ B. O

4. THE BOREL COMPLETE DEGREE

We have seen that B =¥ R is generic Muchnik above every continuous expansion
of R or C. In this section we prove that continuous expansions of Baire space can
be strictly more complicated. This can be seen as a consequence of the fact that
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the projections of closed subsets of Baire space can be quite complicated—indeed,
they are exactly the X7 classes. The upper bound of all continuous expansions of
B is an interesting generic Muchnik degree in its own right. We call it the Borel
complete degree because, as we will see, it bounds all Borel structures (in fact, all
Borel quotients).

We consider structures with universe equal to Baire space, although we could
equally well consider structures with universe equal to Cantor space or R. For
Baire space, we have the topology generated by the basic open neighborhoods
N, ={few*: f 20}, where o0 € w=¥. The Borel subsets of Baire space are the
members of the o-algebra generated by these basic open neighborhoods.

Definition 4.1 (Borel structure, congruence relation, Borel quotient).

(1) For a Polish space X, a Borel structure (on X ) has the form A = (D, (Rp)new)s
where D € X is a Borel set, and for all n, R, is a Borel relation on X.

(2) For a structure A = (D, (Ry)new), & binary relation E on D is a congruence
relation if it is an equivalence relation and for all n, if R, is k-ary and
a,b are k-tuples such that a; Eb; for i < k, then R,(a) iff R, (b). From a
congruence relation E on A, we get a well-defined quotient structure A/g
with universe equal to the set of equivalence classes D/g and relations R, /g
that hold of a k-tuple ag/g,...,ax—1/g iff R, holds of ag,...,ar_1.

(3) A Borel quotient is the quotient of a Borel structure A by a Borel congruence
relation.

Borel structures were first studied by H. Friedman in unpublished notes, see
Steinhorn [22]. More work on Borel structures can be found in Steinhorn [21] and
Louveau [10]. Some recent work can be found in Hjorth and Nies [5] and Montalbdn
and Nies [14], although they use the name Borel structure for what we call a Borel
quotient.

Examples of Borel structures include (B,®, '), (C,®, '), and R. An example of a
Borel quotient is the Turing degrees with @ and /. The Biichi automatic structures
are also Borel quotients [4]. Another class of examples consists of the automorphism
groups of countable structures that are algebraic in the sense that the language
consists just of operation symbols.

Definition 4.2. A structure A is Borel complete if it is a Borel structure that is
generic Muchnik above every other Borel structure. The generic Muchnik degree of
such a structre is also called Borel complete.

Below, we give an example of a continuous expansion of B that turns out to have
Borel complete degree. First, we know what the join and jump are, for sets; we
define these operations on functions as follows.

Definition 4.3 (Join and jump for functions).

(1) For functions f, g € w®, the join is the function h such that h(2n) = f(n)
and h(2n + 1) = g(n). We write f @ g for the join.

(2) For f € w®, we have a jump {e : ¢f(e) |}. We define the jump of the
function f to be the characteristic function of this set.

Example 4.4. Consider the following subclass of w®:

P={(f®g)®h: h is the settling time function for f’ and g = f'}.
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Note that it is TIY to verify that h is the settling time function for f’, and given h,
it is I to verify that g = f’. Therefore, P is a II) class in w*, hence closed. Let
F: B — B be a continuous function such that P = F~1(0¥). Because P is a I1{
class, we can even take F to be computable. The structure (B,®, F') is a continuous
expansion of B with strictly higher generic Muchnik degree. Towards proving this,
we need to understand what kind of computational power is present in copies of
(B,®, F) after we collapse the continuum.

Proposition 4.5. Let I be a countable jump ideal. Let (Br,®, F') be the restriction
of (B,®, F) to the funtions in I. Any copy of (Br,®, F) computes an enumeration
of the functions in I along with join and jump as functions on indices.

Proof. A copy A of (Br,®, F) gives us a natural enumeration {f, },ec, of the func-
tions in I such that @4 is exactly a function that takes two indices to the index of
the join. To find the jump of f,, search for m,j € w such that FA((n ®* m) ®* j)
is the index of 0“. Then f,, = f/. O

In Theorem 4.15, we will prove that for a sufficiently rich ideal I, it is strictly easier
to compute an enumeration of the functions in I than to compute an enumeration
of the functions in I along with join and jump as functions on indices. First, we
make some easy observations about the difficulty of the latter task, before defining
how rich we want our ideals to be.

Proposition 4.6. For a countable ideal I and a set X, the following are equivalent:

(1) X computes an enumeration of the sets, or the functions, in I, with join
and jump as functions on indices,

(2) X computes an enumeration of the sets, or the functions, in I, with running
jump as a function on indices,

(3) X computes an enumeration of the sets, or the functions, in I with the
corresponding running double jump function, not on indices,

(4) X computes an enumeration of the functions in I, with the running jump
function, not on indices.

Proof. We first show that (1) = (2) = (3) = (4) = (1) for functions. Suppose X
computes an enumeration E of the functions in I, with join and jump as functions
on indices. We can find an index for (Ey@®...® E,)’, so we have the running jump
as a function on indices. Having an index j for (Ey@®...® E,)’, we can find an
index k for (Ey ®...® E;)’, so we can compute E”. In particular, we can also
compute the running jump function. Finally, having the running jump function, and
two indices ¢ and j, we can search for an index k such that F; @ E; = Ej, which
we computably do using the running jump function; and given an index i, we can
search for indices j and k such that Ej is the jump of E; with settling time function
E;, which we can also do computably using the running jump function. Using the
same argument, we can show that (4) = (1) = (2) = (3) holds with (1), (2) and
(3) for sets.

Finally, we show that (3) for sets is equivalent to (3) for functions. Clearly,
the version for functions implies the version for sets. Suppose that X computes
an enumeration E of the sets in I along with the running double jump. From
an infinite set A, we obtain a natural function fa(n) = pa(n + 1) —pa(n) — 1,
where p 4 is the principal function of A as we did in the proof of Lemma 3.3. Once
again we note that every function f: w — w is of the form f4 for some infinite
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set A. Using the running double jump we can effectively determine whether F; is
infinite. If E; is infinite, then we let F; = fg,, and if E; is finite, we let F; be the
identity function. Now, note that (Eq@® --- @ E;)” can compute an index e such
that . (Egy® - D E;) = (Fo®---@®F;), so (Eg ®--- @ F;)” can also compute
(Fo®---@F;)". Thus, we can compute the running double jump on the enumeration
F of the functions. O

Corollary 4.7. (B,®,’) = (C,®, ).

Now it is not hard to show, using the standard encoding of Cantor space in the
real numbers, that there is also a Borel expansion of R in the same generic Muchnik
degree as (B,®, ).

Proposition 4.6 also allows us to easily adapt the proof of Proposition 3.6 to give
an additional example of a structure in the Borel complete degree.

Corollary 4.8. (B,®,’) =* B'.

We turn toward the second main result of the paper, which says that adding
further Borel relations to (B,®, ') does not increase the generic Muchnik degree.

Theorem 4.9. If B* is a Borel expansion of B, then B* <* (B,®, ).

To extend this result from Borel expansions of B to arbitrary Borel structures,
we use the following general observation about quotients.

Observation 4.10. For any structure A and any congruence relation E on A,
A/p <% (A, E). That is, from a copy of A, with the congruence relation added, we
can compute a copy of the quotient structure.

Hence, we get the following.

Corollary 4.11. If B* is a Borel expansion of B and E is a Borel congruence
relation on B*, then B¥* /g <¥ (B,®, ).

In other words, (B,@®, ) is Borel complete. Recall that we started this section
promising that the continuous expansion (B,®, F') of B has Borel complete degree.

Corollary 4.12. (B,®,’) = (B,®, F).

Proof. Since (B,®, F) is a Borel expansion of B, we have (B,®, F) <* (B,®,’).
On the other hand, (B,®, ") <! (B,®, F) by Proposition 4.5. |

Toward the proof of Theorem 4.9, we note that that the ideal of sets from the
ground model satisfies a very strong closure property, much stronger than we have
needed so far.

Definition 4.13 (Hyper-Scott ideal). We say that I is a hyper-Scott ideal if it is a
Turing ideal, and whenever T' € w<% is a tree in I, if T" has an infinite path, then it
has an infinite path computable from a set in 1.

Proposition 4.14. If I is the ideal sets from the ground model, then it is a hyper-
Scott ideal.

Proof. This is a very simple application of Shoenfield absoluteness [18]. Arguing
directly, if T' € w=¥ is a tree in the ground model with no path, then in the ground
model there is a rank function p: T' — w; witnessing that T" is well-founded. But p
also witnesses that T is well-founded in the extension. [
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Proof of Theorem 4.9. Let B* = (B, (Ry)new), where the R,’s are Borel relations.
These relations may have different arity. However, we can code a finite sequence
(fo,- .., fr) of functions by a single function f, where f;(k) = m iff f(r -k +1i) = m.
With this in mind, we may suppose that the relations R,, are all unary. Furthermore,
we can combine the relations R,, into one relation R such that R(nf) holds if and
only if R, (f) holds, where nf(k) = (n, f(k)). Thus, we may suppose that we have
just one unary Borel relation R € w®.

Let I be the ideal of sets from the ground model. After collapse, any copy of
(B,®, ') can compute an enumeration of the functions in I along with join and
jump as functions on indices of the enumeration. Since R is Borel in the ground
model, it is A}. Hence there are trees T, S € w=¥, both in I, such that

R(f) < (h) f@he[T] < (vh) f@h¢]S].
Note that f @ h € [T] and f @ h € [S] can be checked using (f ®h @ T) and
(f®h®S), which in turn can be uniformly computed from the indices of f, h,
and the functions computing 7" and S. Therefore, by searching for a function A in
I that witnesses either R(f) or its negation, we can effectively determine if R(f)
holds for any function f from our enumeration of the functions in /. Now it is
straightforward to compute a copy of B* = (B, R). O

Finally, we show that (B,®, ) is strictly stronger than B. Note that this does
not follow immediatly from the fact that B’ =¥ (B,®, ') because the jump of a
structure is not neccessarily strictly above the structure itself; both Montalban [12]
and Puzarenko [17] give fixed points for the jump operator on structures, the former
under an additional set theoretic assumption.

Theorem 4.15. Assume that I is a hyper-Scott ideal. Then there is an enumeration
of the functions in I that does not compute an enumeration of the functions in I
along with functions f: w? — w and g: w — w on indices of the enumeration that
interpret join and jump, respectively.

Proof. We produce an enumeration F of the functions in I by forcing. Our forcing
partial order consists of conditions g € (w*)<* that are sequences of functions from
I. We say that a condition p extends ¢ (written as p < ¢q) if p extends ¢ as a
sequence.

Consider Turing functionals &, f, and g. We want to diagonalize against £
being an enumeration of the functions in I such that f7: w? — w takes any two
indices of functions in £ to an index of their join, and g7 : w — w takes every
index of a function in £ to an index of its jump. Assume, for a contradiction, that
there is a condition ¢ that forces this outcome. Fix an index e such that e € (T @h)’
if and only if A is not a path through T, where T is treated as a tree under an
effective bijection between trees in w<* and elements of w*. We will use the symbol
4 to denote compatability. In particular, for o € (w<“)<* and a condition p, o £ p
if each component ¢, is an initial segment of the corresponding component p;,.

Claim: For any tree T in I, the following I1}[¢ @ T statement is equivalent to “T
has an infinite path”:

(vp 2 q)(¥n)[if (Vo £ p)[ £5 £ T ],

*) then (Im, k)3T L p)[ g7 (fT(n,m)) =k and E(e) =0]].
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(Here p is understood to range over extensions of ¢ in (w*)<“, though not necessarily
forcing conditions—the new functions that are listed need not be in I. Also, o and
7 are intended to be finite, hence they are essentially number quantifiers.)

Note that if we can prove this claim, then we have the necessary contradiction,
because it is ¥1[g]-complete to determine whether a g-computable tree T' S w=*
has an infinite path.

To prove the claim, let T be a tree in I. First, let us assume that (*) holds.
Let p < q force the specific location of T in the list £7, and let this location be n.
Therefore, it is true that (Vo £ p)[ €7 £ T ]. Otherwise, we could refute our choice
of p. Since (*) holds, we have

(3m, k)3T £p)[ g7 (f7(n,m)) = k and &{(e) = 0.

Let 7 < p extend 7. Then 7 forces that e ¢ (T @ &), so £ is a path on T.
Therefore, T has an infinite path.

Now assume that 7" has an infinite path. Because I is a hyper-Scott ideal, T has
a path h in I. Also, because [ is a hyper-Scott ideal, if () fails, it fails for a p € I.
So it is enough to consider p < ¢ and n € w such that (Vo £ p)[ £7 £ T ]. Note that
p forces £ to be T, because q forces it to be total and it cannot be incompatible
with T. Take r < p forcing the specific location of h in £7, and let this location
be m. Now take 7 £ r and k such that ¢"(f7(n,m)) |=k and £ (e) |. Such a 7
exists because ¢ forces g7, f7, and £ to be total. Our choice of r ensures that
Ef(e) = (T'@h)(e) =0, because h is a path on T. Therefore, (*) holds.

We have proved that any tree 7" in I has an infinite path if and only if (*) holds.
This is a contradiction, hence any condition can be extended to a condition that
diagonalizes against £, f, and g. (]

Theorem 4.16. (B,®, ') >* B.

Note that, as a function on either B or C, the jump ’ is of Baire class 1, i.e., a
pointwise limit of continuous functions. Indeed it is a pointwise limit of a computable
sequence of computable functions. In terms of the effective Borel hierarchy, the
graph of / is I19, in other words effective G's. So as mentioned above, there is an
expansion of the real numbers by continuous functions and a unary function of Baire
class 1 (or a II9 binary relation) which is in the Borel complete degree. This puts a
severe limitation on any potential strengthening of Theorem 1.7.
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