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ABsTrRACT. Recall that B is PA relative to A if B computes a member of ev-
ery nonempty H?(A) class. This two-place relation is invariant under Turing
equivalence and so can be thought of as a binary relation on Turing degrees.
Miller and Soskova [23] introduced the notion of a H(l) class relative to an enu-
meration oracle A, which they called a II{{A) class. We study the induced
extension of the relation B is PA relative to A to enumeration oracles and
hence enumeration degrees. We isolate several classes of enumeration degrees
based on their behavior with respect to this relation: the PA bounded de-
grees, the degrees that have a universal class, the low for PA degrees, and the
(self)-PA degrees. We study the relationship between these classes and other
known classes of enumeration degrees. We also investigate a group of classes of
enumeration degrees that were introduced by Kalimullin and Puzarenko [14]
based on properties that are commonly studied in descriptive set theory. As
part of this investigation, we give characterizations of three of their classes
in terms of a special sub-collection of relativized H? classes—the separating
classes. These three can then be seen to be direct analogues of three of our
classes. We completely determine the relative position of all classes in question.

1. INTRODUCTION

Relativization is an important tool in computability theory. It allows us to lift
a computability-theoretic property of sets to a property that describes a relation
between two sets, the second treated as a Turing oracle. The algorithm is simple: we
replace every use of “computable” in the definition of the property by “computable
relative to the Turing oracle”. In many cases, this really means that we replace
“computably enumerable (c.e.)” by “c.e. relative to the Turing oracle”. For example,
the Turing jump of a set A is obtained by relativizing the halting set K, the uniform
join of all c.e. sets, to the set K, the uniform join of all A-c.e. sets. The usual proof
that K is not computable relativizes to show that K4 is not computable from A.
For a second example, recall that a set G is 1-generic if for every c.e. set of strings
W, there is an initial segment of G that is either in W or has no extension in W.
The existence of a A 1-generic set yields incomparable Turing degrees bounded
by 0/.. Following the algorithm, we relativize the notion of a 1-generic set to an
arbitrary oracle A: we say that G is 1-generic relative to the Turing oracle A if
for every A-c.e. set W < 2<% there is an initial segment of G that is either in W
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or has no extension in W. Relativizing the existence of AY 1-generic sets yields
incomparable Turing degrees in any interval of the form [a,a’].

Unlike Turing reducibility, the relation “c.e. in” is not transitive. The reason is
that the two sets that it relates are not treated in the same way: if A is c.e. in B,
then using finitary positive and negative information from the set B we can produce
positive facts about the set A. There are two ways to make the roles of the sets A
and B equal. If we require that B produces full information about A, we get Turing
reducibility. If we restrict the use of our oracle B, so that only positive information
is used, we obtain enumeration reducibility. This approach is especially useful
to model relative computation of partial functions and was considered in a short
period of time by several authors, including Friedberg and Rogers [10], Myhill [25],
Uspensky [29] and Selman [27]. The definition we give here is by Friedberg and
Rogers:

Definition 1.1. A set A € w is enumeration reducible to a set B € w, written
A <. B, if and only if there is a c.e. set I" such that

A= {z: (v)[{z,v)eT & D, < B]},

where D, is the finite set with canonical code v. In this case we write A = I'(B).
We call I' an enumeration operator and its elements azioms.

Selman [27] gave a characterization of enumeration reducibility that relies on the
notion of relativization. He showed that A <. B if and only if for all Turing oracles
X, if B is X-c.e. then A is also X-c.e. Note that Definition 1.1 can be seen as fixing
an algorithm by which an enumeration of B is transformed into an enumeration
of A. Selman’s result shows that the uniformity built into this definition is not
necessary.

We can easily express Turing reducibility via enumeration reducibility:

Proposition 1.2. A<y Be A@Aisce. inBe APA<.B®B.

Consider the degree structures that represent each reducibility: Dy is the partial
order of the Turing degrees and D, is the partial order of the enumeration degrees.
The relationship above gives rise to an embedding ¢: Dy — D, defined by

t(degp(A)) = deg (AD A).

This embedding preserves order and least upper bound. The range of this embed-
ding is a structure that is isomorphic to the Turing degrees. We call its elements
total enumeration degrees.

Definition 1.3. A set A is total if A <. A (or equivalently if A =, A® A). An
enumeration degree is called total if it contains a total set.

It is not difficult to see that the total enumeration degrees do not exhaust all
enumeration degrees. Medvedev [21] proved that there are quasiminimal degrees,
nonzero degrees that do not bound any nonzero total enumeration degree. In fact,
the enumeration degree of any 1-generic set has this property. Thus, the Turing
degrees are a proper substructure of the enumeration degrees.

Relativization with respect to a Turing oracle gives rise to relations on the total
degrees. In order to extend these relations to all enumeration oracles we need
to extend the method of relativization. Relativizing to an enumeration oracle A is
straightforward: simply replace “ A-c.e.” with “enumeration reducible to A” (i.e., <.
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A). From the perspective of Selman’s characterization of enumeration reducibility,
relativizing to an enumeration oracle can be viewed as relativizing to a set of Turing
oracles. We will use the notation (A) whenever we are thinking of A specifically as
an enumeration oracle.

Let us consider the two examples of relativization from above. A first attempt
to extend the Turing jump to enumeration oracles seems to not lead us to a useful
notion: if we define K<4 to be the uniform join of all sets that are enumeration
reducible to A, then we get a set equivalent to the original: K<* =, A. However,
looking back at the proof that K is not computable, we notice that the complement
of K plays an essential role. We could have defined the Turing jump of the degree
degp(A) to be the degree deg,(K4), it just happens that a set and its complement
have the same Turing degrees. This approach lends itself to a meaningful extension
of the Turing jump to all enumeration oracles: the skip of A is the set A° = K<4.
This definition is invariant under enumeration equivalence and gives rise to the
skip operator mapping an enumeration degree a to a®. For total degrees, the skip
operator agrees with the Turing jump operator: we have that t(a’) = ¢(a)®. The
skip was introduced and studied by Andrews et al. [1], who gave evidence that it
is the natural extension of the jump operator to enumeration oracles.!

Extending the second example above is more straightforward. A set G is (A)-
generic if for every set W < 2<% that is enumeration reducible to A, there is an
initial segment of G that is either in W or has no extension in W. Relativizing the
proof that 1-generic sets have quasiminimal degree gives us a strong quasiminimal
cover b for every enumeration degree a, i.e., every total degree bounded by b is
bounded by a.

In this paper, we study the natural extension of the relation “B is PA relative
to A” (or relatively-PA, for short) from Turing to enumeration oracles. Recall that
a Turing oracle B is PA if B computes a member of every nonempty II9 class.
We say that B is PA relative to A if B computes a member of every nonempty
IY(A) class. Note that this relation is invariant under Turing reducibility on both
arguments, and hence induces a relation on Turing degrees. In Section 2, we recall
the definition of a II{(A) class given by Miller and Soskova [23], which follows
the general scheme outlined above. We use this to extend the relation relatively-
PA from the Turing to the enumeration degrees. We also investigate three classes
of enumeration degrees—the continuous degrees, the (self)-PA degrees, and the
cototal degrees—that are interesting case studies for the extension of the relation
relatively-PA.

When we extend a relation on the Turing degrees to the enumeration degrees, it
is natural that some but not all properties are preserved. We can identify classes
of enumeration degrees depending on whether or not they break or preserve a
property. For example, the skip operator is always order preserving, but unlike the
jump, it does not always map a degree to a strictly higher degree. The class on
which this behavior of the jump is preserved is the cototal enumeration degrees,
studied in [1, 24, 20, 16]. In Section 3, we explore two specific properties of the
relation relatively-PA in the Turing context:

(1) If B is PA relative to A, then B > A.
(2) There is a single I19(A) class whose members are all PA relative to A.

LThe enumeration jump had already been defined slightly differently by Cooper [7].
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Enumeration degrees that preserve the first property are called PA bounded and
those that preserve the second property have a universal class. Ganchev et al. [11]
introduced these classes and proved several relationships between them and the
continuous, the cototal, and the (self)-PA degrees. We prove that the PA bounded
enumeration degrees are exactly the continuous degrees. The class of enumeration
oracles that have a universal class is more difficult to pin down. Nevertheless, we
develop a complete analysis of where this class sits in terms of other studied classes
of enumeration degrees. We introduce the low for PA enumeration degrees and
prove that they are disjoint from the continuous degrees, even though both possess
universal classes.

In Section 4, we discuss a collection of classes of enumeration oracles that were
introduced by Kalimullin and Puzarenko [14]. They grouped oracles into classes
based on whether or not the principal ideal (with respect to enumeration reducibil-
ity) that an oracle defines possesses a certain property coming from descriptive set
theory or from classical computability theory. In particular, they introduced the
classes of enumeration degrees with the reduction property, the separation property,
and the computable extension property, as well as the degrees with a universal func-
tion. They also determined how these classes relate to each other and to the total
and quasiminimal degrees. These relationships mirror those between the classes
that we have been discussing so far: the continuous degrees, the (self)-PA degrees,
the low for PA degrees, and the degrees with a universal class. There is a good
explanation for (most of) this coincidence; we show that three of the classes from
Kalimullin and Puzarenko are direct analogues of our classes, except with the T19(x)
classes in the definitions restricted to a special subcollection of IT{{x) classes, the
separating classes.

This realization automatically translates into a series of implications between
the full collection of classes that we have been discussing. To complete the picture,
we need to prove separations between specific pairs of classes. Section 5 is devoted
to the forcing arguments that give us these separations, ultimately resulting in a
complete analysis of the relative position of all of the classes under consideration
(see Fig. 3 near the end of this paper). Finally, we end with a list of open problems
that arose from our work.

2. MAIN DEFINITION AND BASELINE CLASSES OF ENUMERATION DEGREES

Miller and Soskova [23] defined the notion of a I1{ class relative to an enumeration
oracle. They followed the simple template from the introduction, i.e., replace “c.e.
in” with <.:

Definition 2.1. For each 0 € 2<% let [0] = {X € 2¥: 0 < X}. For each W < 2<%,
let [W] = UUGW[U]'
(1) U c2¢is a BY(A) class if U = [W] for some W < 2<% such that W <. A.
(2) Vc2¥isall¥A) class if V = 2% \ U for some X(A) class U.

We think of the elements of a TI9(A) class as total objects. Intuitively, there is
no way in which we can distinguish between Os and 1s in the definition of a TI9(A)
class and so it seems unnatural to assume that we can only enumerate positive
information about them. Furthermore, when thinking about bounding members of
every I19(A) class, consider that we have a uniform procedure to pass between the



PA RELATIVE TO AN ENUMERATION ORACLE 5

9 A) class U and the T19¢(A) class UT°" = {X @ X: X € U}. This leads us to the
following natural extension of the relation relatively-PA to enumeration oracles:

Definition 2.2. (B) is PA relative to (A) if every nonempty I1{{A) class contains
a path X such that X@®X <. B. We refer to this binary relation as (relatively)-PA.

Note that this relation is invariant under enumeration equivalence, and hence it
induces a relation on the enumeration degrees. Furthermore, we have that B is PA
relative to A (in the Turing sense) if and only if <B ® §> is PA relative to <A &) Z>,
so (relatively )-PA extends the relation relatively-PA under the natural embedding
from the Turing degrees to the enumeration degrees.

The continuous degrees. The continuous degrees were introduced by Miller [22]
while answering an open question from computable analysis. Computable analy-
sis gives a framework by which we can associate discrete descriptions—names—to
other, often more complex, mathematical objects and thereby lift computability
theoretic notions to new settings. This association of a name to an object is not
bijective, as we can usually describe the same object in different ways. For example,
a name for a real number r is a function A,: N — Q such that for every natural
number n we have |r — A (n)| < 57. A name of least Turing degree for a specific
object can be thought of as a measure for the algorithmic content of that object.
For example, any name for a real r can compute the Turing degree of the set that
codes the Dedekind cut {¢g € Q: ¢ < r} ® {¢q € Q: ¢ > r} and vice versa, from
the Dedekind cut of a real r, we can compute a name for r. Miller answered the
following question: can we assign a least Turing degree to every continuous function
on the real numbers? Miller proved that it is equivalent to ask the same question
about members of [0, 1], the Hilbert cube. To each such element we can naturally

assign an enumeration degree:

Definition 2.3. For « € [0,1]“, let
Co=D{1€Q: g <a(n)}®{geQ: ¢> a(n)}).

new

An enumeration degree containing a set of the form C,, is called a continuous degree;
we view it as the degree of a.

Miller proved that total degrees are continuous. Further, a point in [0,1] has
a least Turing degree name if and only if its continuous enumeration degree is
total. Thus the original question can be restated as: are there non-total continuous
degrees? Miller proved that the answer is positive and that, furthermore, non-total
continuous degrees have a very interesting relationship to the relation relatively-PA.
Recall that a Scott set is a Turing ideal such that for every member a, the ideal
contains a degree b that is PA relative to a.

Theorem 2.4 (Miller [22]). There are non-total continuous degrees. Furthermore,

e The total degrees below a mon-total continuous degree form a Scott set.

e Fvery countable Scott set can be realized as the set of total degrees bounded
by the degree of some non-total continuous degree.

e X is PA relative to Y if and only if there is a non-total continuous degree

a such that deg, (Y ®Y) <. a <. deg, (X @ X).
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Andrews, Igusa, Miller, and Soskova [2] gave several characterizations of the
continuous degrees, one of which showed that the continuous degrees are first order
definable. Another of their characterizations will prove very useful for our purposes.

Definition 2.5. A set A is codable if there is a nonempty I19(A) class U such that
for every member X of U, A is uniformly c.e. in X.

Theorem 2.6 (Andrews, Igusa, Miller, and Soskova [2]). An enumeration degree
is continuous if and only if it contains a codable set.

Using this characterization, we can easily derive that the continuous degrees
behave well with respect to the extended relation (relatively)-PA. For instance,
Kreisel [17] proved that there is a nonempty I1{ class with no computable member.
Relativizing, we get that the relation relatively-PA is anti-reflexive. If A is codable
and we assume that (A) is PA relative to (A), then A would enumerate a member
X®X of the 19 A) class U that witnesses its codability. But then A =, X@®X and
hence X as a Turing oracle would be PA relative to itself, contradicting Kreisel’s
theorem. This shows that for any set A of continuous degree, (A) is not PA relative
to (A).

(self)-PA enumeration degrees. Nevertheless, this very property of the relation
relatively-PA is not preserved for all enumeration oracles.

Definition 2.7. A set A is (self )-PA if (A) is PA relative to (A).

Degrees that contain (self)-PA sets inherit the name. Miller and Soskova [23]
proved that (self )-PA degrees exist, and have properties that are surprisingly similar
to non-total continuous degrees.

Theorem 2.8 (Miller and Soskova [23]). There are (self y-PA enumeration degrees.

o The total degrees below a {self y-PA enumeration degree form a Scott set.

o Fuvery countable Scott set can be realized as the set of total degrees bounded
by some {self )-PA degree.

e X is PA relative to Y if and only if there is a {self)-PA set A such that
YOY <. A<. XDX.

Note that, in particular, no {self)-PA enumeration degree is quasiminimal. The
existence of low PA degrees yields the existence of low and hence AY (self)-PA sets.

Cototal enumeration degrees. We review one additional class that plays a key
role in our understanding of the enumeration degrees. The cototal enumeration
degrees were introduced by Andrews et al. [1] motivated by a question of Jeandel [12]
from symbolic dynamics.> Recall that a 1-dimensional subshift is a topologically
closed subset of Cantor space 2“ closed under the shift operator—the operator that
maps T = Tox1%z ... € 2% to s(x) = x122.... A subshift V is minimal if no proper
nonempty subset of V' is also a subshift. Jeandel proved that a Turing degree x
can compute a member of a fixed nonempty minimal subshift V' if and only if x
can enumerate the language of the subshift, Ly, which consists of all finite binary
sequences that appear as subwords of some member of V. Jeandel noticed that the
language of a minimal subshift Ly, has an additional property: Ly <. Ly .

20ther authors had studied cototal degrees without explicitly defining them as a class.
Solon [28] used the name cototal in a slightly different sense; this is explained in detail in [1].
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Definition 2.9. A set A is cototal if A <. A. A degree is cototal if it contains a
cototal set.

Cototal degrees have characterizations stemming from many different parts of
mathematics: they are the degrees of complements of maximal independent sets
in computable graphs (Andrews et al. [1]); the degrees of complements of maxi-
mal antichains in w<* (McCarthy [20]); the degrees of effectively Gs topological
spaces (Kihara, Ng, and Pauly [16]); the degrees of enumeration pointed binary
trees (McCarthy [20]); the degrees of sets with good approximations (Miller and
Soskova [24]); the degrees of languages of minimal subshifts (Jeandel [12] and Mc-
Carthy [20]). The characterization that we will use is a simple one. Recall that
K% = @, . T.(A), where T, is the e-th enumeration operator in a standard

ecw €
enumeration.

Theorem 2.10 (Andrews et al. [1]). A has cototal degree if and only if A <. K<4.

Andrews et al. [1] proved that the cototal enumeration degrees properly contain
the continuous degrees and that they are incomparable to the quasiminimal enu-
meration degrees. To complete the picture of the classes that we have defined so
far, we need to investigate how cototal degrees relate to (self)-PA degrees. Every
%9 enumeration degree is cototal [1] and hence, there are cototal (self »-PA degrees.
We exhibit a {self)-PA degree that is not cototal:

Theorem 2.11. There exists a (self )-PA set A that does not have cototal degree.

Proof. We use a forcing notion with conditions of the form p = (n, Xo, ..., Xp—1, D),
where n € w, X; € 2% and D is a finite set. We associate to every p the set
Ay, = (@, Xi) U D, where X; = F if i > n. So Xj is the i-th column of A,
modulo a finite set. We will say that ¢ = (m, Yo, ..., Y1, F) extends p if m = n,
for all i < n we have that X; = Y;, D € F, and if z € E ~ D then z € w>" ie.,
x = (k,z) for some k = n and z € w. We construct A as |J,., Ap., where {ps}sew
is a sequence of conditions such that ps1; extends ps.

We denote by P.(A) the 19 A) class 2¢ \ [[.(A)], where {I'.}ce, lists all enu-
meration operators. To ensure that A is (self)-PA, we satisfy the requirements:

Po: PAAY # & — (3X € PAD)[X DX <. A].

SEW

To ensure that A is not cototal, we satisfy the requirements:
N, 0 A # T (K@),

Start with pg = (0, J). At stage s = 2e, we satisfy the requirement P.. Fix ps; =
(n, X0, X1,...Xn—1,D). We ask if p; has an extension ¢ = (n, Xg,...,Xn_1, F)
such that P.{A,) = & and if so then let ps4+1 = ¢ for some such ¢. Otherwise, it fol-
lows by compactness that P = P.(4,, U w!>")is anonempty (X @ @ X,,_1)
class that will be a subclass of P.(A) no matter how the construction of A continues.
Let X,, be some path in P and let p,y1 = (n + 2, Xo, ..., X, X, D).

At stage s = 2e+1, we deal with the requirement A,. Let z, be the least element
in wl™ whose membership in A is not determined by ps = (n, Xo, ..., Xn_1,D),
ie., xe is least in wl™ \ D. We first ask if p, has some extension ¢ such that ¢
forces x. € To(K<4): there is some axiom (x, F') € I', such that for every member
{u,zy € F and every r extending g we have that z ¢ I',(A,). If there is some
such extension ¢, then there is one that also forces x. out of A, because the fewer
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elements in A, the more elements in K<4. The extension ¢ = (m,Yy,...Y,, 1, E)
forces z. out of A if m > n and x. ¢ A,. We let p,11 = ¢ for some such gq.

If there is no such extension, then for every extension ¢ of ps and every axiom
(xe, Fy € T, there is some member {u,z) € F' and some r extending ¢ such that
z € T'y(4,). Note that if A, = A, then this axiom for z. is not valid with respect
to the oracle K<4. In this case we say that N, is persistent. We then extend to
ps+1 = (n, Xo,...,Xn_1, F) where E is a finite set defined so that z, € E and so
that for every persistent NV;, with i < e, we ensure that the first s many axioms for
x; in T'; are invalidated. (This will be the outcome at infinitely many odd stages,
so if A; is persistent, then z; will be in A\ T;(K4) and N; will be satisfied.) O

3. TWO PROPERTIES OF THE RELATION RELATIVELY-PA
THAT DO NOT PERSIST UNDER THE EXTENSION

Ganchev, Kalimullin, Miller, and Soskova [11] studied the relation {relatively)-
PA and identified two more classes of enumeration degrees. To define the first class,
recall that for any Turing oracle X, we have that {X} is a nonempty I19(X) class.
Hence, if Y is PA relative to X, then X <7 Y.

Definition 3.1. We say that A € w is PA bounded if whenever (B) is PA relative
to (A) we have that A <. B.

For the second class, consider the I19(X) class DNC5* consisting of all {0,1}-
valued diagonally noncomputable functions relative to the Turing oracle X. If P
is a nonempty I19(X) class and o € 2<% has an extension in P, then a DNCs<
function allows us to compute, uniformly in an index for P and o, a bit ¢ such that
i also has an extension in P. Thus every member of DNC5* is PA relative to X.

Definition 3.2. We say that A € w has universal class P if P is a nonempty
I9{A) class such that, for every nonempty I19(A) class Q, there is a fixed Turing
functional ® such that ®X € @ for all X € P.

We note that this definition is slightly more demanding than the one originally
given in [11]. There we merely required that (X @ X ) is PA relative to (A) for every
X € P. Here we have decided to ask for some additional uniformity. The change is
motivated by the next section, in which we compare oracles with a universal class
to oracles with a universal function. Note that we could have asked for even more
uniformity: we could have asked that an index for ® can be computed uniformly
from an index for ). It remains unclear if these choices lead to different classes of
oracles (see the last section for open questions).

Both properties clearly hold for total oracles. Ganchev et al. [11] proved:

Theorem 3.3 (Ganchev, Kalimullin, Miller, and Soskova [11]).

(1) Ewery PA bounded degree is cototal.

(2) The continuous degrees are exactly the enumeration degrees that are both
PA bounded and have a universal class.

(3) The (self)-PA degrees do not have universal classes.

To avoid any uncertainty that could arise from our slight change in the definition
of a universal class, we reprove the fact that every continuous degree has a universal
class. To add some value to this proof, we will observe one additional property:
the universal class that we associate to a continuous degree has a specific form, one
that will play an important role in the next section.
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Definition 3.4. A T{(A) class P is called a separating class if there are sets
X,Y <. Asuchthat P={Z: X € Z & Y < Z}. Elements of P are called separa-
tors. The collection of all I19{A) separating classes will be denoted by Sep (A).

Theorem 3.5. If A has continuous degree, then there is a universal IIY{A) class
that is a separating class.

Proof. Recall that every continuous degree contains a codable set (Theorem 2.6).
So let A be codable and fix a nonempty II{(A) class S and a uniform procedure
that enumerates A from every member of S. We define a I1{{A) separating class as
follows. For i = 0,1, define {e,o) to be in U; if and only if (VX € S) ®X (o) | = i.
Trivially, Uy and U; are disjoint. Note that Uy, U; <. A by compactness. Let U be
the separating class for Uy and Uj.

We must show that U is universal. Let P be a I19(A) class and let W <, A
be a set of strings such that P = 2« ~\ [W] . We define a uniform procedure to
compute a path in P from a separator for Uy and U;. First, define ®X as follows.
As long as X € S, we can uniformly enumerate A from X, and then from that we
can uniformly enumerate W. Using this enumeration of W, let ®X (o) | = i if and
only if at some stage we see that o4 has no extensions in P but o(1—1¢) still appears
to have an extension. (We apply the same procedure to all X, whether or not they
are in S, accepting that the results for X ¢ S have no particular meaning.)

Now let Z be a separator of Uy and U; and assume that o is extendible in P.
If {e,0) € Z, then {e,0) ¢ U;. Hence there is some X € S such that ®X (o)1
or ®X ()| = 0. In either case, since o is extendible in P, it follows that o1 is
extendible in P. Similarly, if {e,o) ¢ Z, then o0 is extendible in P. Therefore, we
have a uniform procedure to compute an element of P from any Z € U, so U is a
universal T19(A) class. O

Note that in the proof, from an index for P we could uniformly find e, and
hence uniformly find the index for the functional that computes elements of P from
elements of U. In other words, U is not only universal in the sense of Definition 3.2,
but in the more uniform sense discussed after the definition.

Continuous is the same as PA bounded. Ganchev, Kalimullin, Miller, and
Soskova [11] left the following questions open: Are there cototal degrees that are
not PA bounded? Can a (self)-PA degree be PA bounded? Franklin, Lempp,
Miller, Schweber, and Soskova answered both questions by showing that the PA
bounded degrees are exactly the continuous degrees. As their result is not published
anywhere else, with their permission, we give it below.

Theorem 3.6. The PA bounded enumeration degrees are the continuous degrees.

Proof. One direction in this theorem was already shown to be true in [11]: every
continuous degree is PA bounded. Here we prove that if A is not of continuous
degree, then A is not PA bounded. So fix A that is not of continuous degree,
hence by Theorem 2.6, not codable. We will build a sequence of nonempty IT9{A)
classes {Qs}sew S0 that Qs 2 Qs11. A nested intersection of nonempty compact
sets is nonempty, so (), Qs will be nonempty. The construction will ensure that if
Z € (), Qs then (Z) is PA relative to (A) and A €. Z. It follows that A is not PA
bounded.

We start with Qo = (2¥)“. In other words, Qg is the full I1{ class, but we think
of it as a sequence of countably many copies of the full class. Each @, will be
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thought of as a countable sequence of TI9(A) classes such that all but finitely many

of them are 2. We will denote by Qg] the i-th member of this sequence and call

it the i-th column of Q). We will keep track of an index k, such that for all ¢ > ks,
E] = 2%. Under this arrangement kg = 0.

Suppose we have constructed Q, and identified ks. Consider the IT){A) class Q
defined so that for all i < k, we have that Q1 = Qg’] and for all ¢ > ks we have
QU = {w}. In other words, @ is the subclass of Q, such that if Y € Q and i > k,,
then Yl = w. Now since 4 is not codable, we can fix Y € Q such that T,(Y) # A4,
where Iy is the s-th enumeration operator. Note that codability is defined in terms
of c.e. operators, but of course, an enumeration operator is a c.e. operator. Let y
be the least difference between I';(Y) and A. We have two possibilities:

Case 1. If y e T5(Y) N A, let D € Y be a finite set such that y € I'y(D). We
restrict Qs to the largest possible II(A) subclass R so that D is a subset of
every member of R. Note that R is nonempty because it contains Y. Since D
is finite the class R also has the desired form, i.e., there is some number k > k,
such that Rl = 2« for all i > k. Let k be the least such number. Furthermore,
if Z is a member of R then y € I's(2).

Case 2. If y € ANT4(Y), then we trim the first ks many columns of Qs to get
a IY{A) class R so that if Z € R, then y ¢ I's(Z). In more detail, we let
ROV .. RlF<=11 be defined so that if Z is a member of the class with columns
RIOV . RIF=11 L) {w}, ..., then y ¢ T',(Z). We leave the remaining columns
of R full: RU = 2% for all i > k,. Once again, Y € R guarantees that R is
nonempty. Furthermore, for all Z € R we have that if i > k,, then Zl! <
w = Yld; hence by the monotonicity of enumeration operators, y ¢ I's(Z). Let
k= ks.

In each case, we have ensured that if Z € R then I's(Z) # A. (Note in the next
paragraph that Q.11 € R.)

Now let P,(A) be the s-th TI{(A) class. If P,(A) is empty, let Q,41 = R and
ksi1 = k. Otherwise, let Q4,1 be defined by setting QSZJ]FI = RI for all i # k and

Qgﬂl ={Z®Z: Z € P(A)}. We will have that ksy1 = k + 1. In this case, we
have ensured that if Z € Q441, then the k-th column of Z codes the positive and
negative information about a member of P;{(A).

As required, if Z € (), Qs, then (Z) is PA relative to (A) but does not enumerate
A. Tt follows that A is not PA bounded. O

Using the above theorem, we observe that there are cototal degrees that are not
PA bounded. This follows from the fact that there are cototal degrees that are not
continuous: Take, for example, a AY 1-generic set, which is quasiminimal (hence
not continuous) and %9 (hence cototal [1]).

To show that no (self)-PA degree can be PA bounded, recall that no continuous
degree is (self)-PA (see the discussion after Theorem 2.6).

Another way to have a universal class: the low for PA enumeration
degrees. Theorem 3.6 brings our focus to the class of enumeration oracles that
have a universal class. Could that also be a characterization of the continuous
degrees? In this section, we will see that this is not the case. In fact, in terms of
category, most oracles have a universal class.
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Definition 3.7. An enumeration oracle (A) is low for PA if whenever X has PA
degree and P is a nonempty I19(A) class, then there is a Y € P such that X > Y.
(In other words, every set of PA degree is PA relative to (A).)

If an enumeration oracle is low for PA, it actually satisfies an apparently stronger
property. In the proof below we will use the universal II{-class of all {0, 1}-valued
diagonally non-computable functions, denoted as DNC,. Recall, that a function f
is diagonally non-computable if for every e we have f(e) # p.(e).

Theorem 3.8. An enumeration oracle (A) is low for PA if and only if whenever
P is a nonempty IIY{A) class, there is a nonempty 11§ class Q < P.

Proof. (<) This is obvious: if X has PA degree and a I1){A) class P has a nonempty
I19 subclass @, then X computes a member of Q and hence of P.

(=) Let P be a nonempty I19(A) class. We first claim that there is a nonempty
19 class U and a Turing reduction @, such that if X € U, then ®X € P. Assume
not. We build a sequence Uy 2 U; 2 Uy 2 -+ - of nonempty 19 classes as follows.
Let Uy = DNCy . Say that U, has been defined. By assumption, there is an
X € U, such that ®X is not an element of P. This means that either ®X is
partial or that ®X = Y and Y ¢ P. In the first case, suppose ®X(n)1. Let
Uer1 = {Z € U.: @Z(n) 1}. In the second case, fix o < X such that no extension
of ®7 isin P and let U, = {Z € U,: 0 < Z}. In both cases, U4 is a nonempty
19 subclass of U, and if Z € U.,1, then ®Z is not an element of P. Finally, take
Z € (oew Ue- Then Z has PA degree but does not compute any element of P,
which contradicts our assumption that (A) is low for PA. This proves the claim.

So fix a nonempty I1{ class U and an e such that X € U implies that ®X € P.
Let @ = {Y: (3X € U) & = Y}. Note that Q is a nonempty subclass of P. We
claim that @, which is the computable image of a I1{ class, is also a II{ class. This
is standard: Assume that U = [T'], where T is a II{ tree in 2<“. Let

S ={oce2%: (In)(Vre2™) 7 ¢ T or ®] is incompatible with 7}.

Then 2<% \ S is a II{ tree and, by compactness, @ = [2<% \. S]. Therefore, Q is a
119 class. O

Given the characterization above, the following are easy observations.

Proposition 3.9. Assume that an enumeration oracle (A) is low for PA.

(1) A is c.e. or has quasiminimal enumeration degree.
(2) The class of {0,1}-valued diagonally non-computable functions DNCy is a
universal TI9(A) class.

Proof. For (1), assume that A >, Z ® Z, where Z is not computable. Then {Z}
is a II{(A) class. Take any PA degree X that does not compute Z; this exists by
Jockusch and Soare [13, Theorem 2.5]. Then X does not compute any member of
{Z}, so (A) is not low for PA.

To see (2), recall that there is a single Turing functional that lets a DNCy Turing
oracle compute a path in any nonempty II{ class uniformly from its index, so if P
is a nonempty I119(A) class and Q < P is a nonempty II{ class then an index for Q
gives a fixed functional as required in the definition. O

Note that in Theorem 3.8, we do not uniformly get an index for @ from an index
of P as a I19(A) class. So we have only proved the mild uniformity required by the
definition of a universal class. (See the discussion after Definition 3.2.)
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We will show that not every quasiminimal degree is low for PA; however, two
significant classes of quasiminimal degrees do have this property. We have already
mentioned that the enumeration degrees of 1-generic sets have quasiminimal degree.
There is a slightly different notion of genericity that plays better with enumeration
reducibility.

Definition 3.10. A set G is enumeration 1-generic if for every c.e. set W of finite
sets there is a finite set D such that either D € G and D € W, or D < GG and
DnE # & for every E€ W.

Enumeration 1-genericity was introduced by Badillo and Harris [3] and further
studied by Badillo, Harris, and Soskova [4]. It is straightforward to check that every
1-generic set is enumeration 1-generic. Badillo and Harris [3] observed that the
enumeration degree of every non-c.e. enumeration 1-generic set has quasiminimal
degree.

Proposition 3.11. If A is enumeration 1-generic, then (A) is low for PA.

Proof. Assume that A is enumeration 1-generic and let P{A) be a nonempty I1{(A)
class. Recall that a I19(A) class is defined in terms of an enumeration operator that
is applied to the oracle (A). We can hence view P as an operator that maps any
oracle (X ) to a IIY{X) class. We claim that there is a prefix ¢ < A such that P{c1%)
is nonempty. If so, then Q = P{c1*) is a nonempty II{ class and Q = P{A); as
observed in Theorem 3.8, this means that (A) is low for PA. So let us prove the
claim. Consider the c.e. set of finite sets W = {D: P(D) = ¢J}. Because P{A) is
nonempty, there is no subset of A in W. By enumeration 1-genericity, we can fix
F C A such that F intersects every member of W. Let ¢ be the initial segment of
A of length max(F) + 1. Then @ = P{c1“) is nonempty because no member of W
is a subset of the set with characteristic function o1%. O

The second class of degrees was introduced by Kalimullin [15].

Definition 3.12. A pair of sets {A, B} is called a Kalimullin pair (K-pair) if there
is a ce. set W < w? such that A x B < W and A x B < W. A pair of degrees
{a, b} is a K-pair if there are sets A € a and B € b, such that {A, B} is a K-pair.

K-pairs have many applications in first order definability results. Kalimullin [15]
proved that they have a natural structural definition as minimal pairs relative to
any other enumeration degree. He then used this to prove the definability of the
enumeration jump operator. Later, Cai et al. [6] showed that the nonzero total
enumeration degrees are the joins of maximal K-pairs, thereby defining totality.

If {A, B} is a nontrivial K-pair, i.e., A and B are both not c.e., then the degrees
of A and B are both quasiminimal. We show that such degrees are, in fact, low for
PA as well.

Proposition 3.13. If A is half of a nontrivial K-pair, then (A) is low for PA.

Proof. Fix a set B and a c.e. set W such that A and B are a nontrivial K-pair as
witnessed by W. So we have Ax B <€ W and Ax B <€ W. Let P{(A) be a nonempty
I19¢A) class. Consider the c.e. set

V ={b: (3F S w) F is finite, F' x {b} € W, and P{F) = &}.

Say that b € V' as witnessed by F. Since P{F) = &, we know that ' &€ A. Fix
ce F~ A Since (¢,b) € W, it must be the case that b € B. So we have that
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V <€ B. But we assumed that A and B form a nontrivial KC-pair, hence B is not
c.e. Therefore, we can fixade B\ V.

Now consider the c.e. set U = {a: {a,dy e W}. Since de B and A x B W, we
have A € U. Therefore, Q = P{U) is a I1{ subclass of P{A). All that remains is to
prove that @ is nonempty. But if Q) were empty, there would be some finite FF < U
such that P(F') = ¢J. By the definition of U, we would also have F' x {d} < W.
But then it would be the case that d € V, contradicting our choice of d. O

As we promised above, we will now show that not every quasiminimal enumer-
ation degree is low for PA. The fact that every (enumeration) 1-generic set has
quasiminimal enumeration degree tells us that the collection of quasiminimal ora-
cles is comeager, i.e., large in the sense of category. This collection is also large in
the sense of measure: Lagemann [19] showed that almost every enumeration oracle
has quasiminimal degree. We show below that almost every enumeration oracle is
not low for PA. Hence the collection of oracles (A) that are quasiminimal but not
low for PA has measure 1; such oracles are far from exceptional.

Recall that A is Martin-Léf random
if it passes every Martin-Lof test. Here

a Martin-Léf test is a uniformly c.e. se-
nonzero
low for PA

quence of XY classes {U.}. such that, for
all e, the e-th class U, has measure at most
27¢. A set A passes this test if A ¢ (), Ue.
It is easy to see that almost every set is
Martin-Lo6f random.

Proposition 3.14. If A is Martin-Léf
random, then (A) is not low for PA.

Proof. Fix an effective bijection between w
and 2<%. For example, associate o, € 2<%
with n € w if 1o, is the binary expansion
of n + 1. Now define a I19(B) class P{(B)
as follows: remove the neighborhood gen-
FIGURE 1. Summary of results outlined  erated by o, from P{B) if both 2n and
in Sections 2 and 3. The dashed implica- o,, +1 are in B.
tion is not proved to be strict until later. Let Q be the I1 class {B: P(B) # &}.
We calculate the measure of () by finding
the probability that P{(B) is nonempty, assuming that B is chosen at random. Let
pr. be the probability that the tree generating P{B) (i.e., the tree that avoids o, if
both 2n and 2n + 1 are in B) has a path of length at least k. Then py = 3/4 and
i1 = 3/4(1 — (1 — px)?)—the probability that the root is not removed and that at
least one of its children has a path of length at least k. It is not hard to see that
{Pk}rew 1s a decreasing sequence with limit 2/3, which is the only positive root of
p = 3/4(1 — (1 — p)?). Therefore, the measure of Q is /3.
Since A is Martin-Lof random and Q is a II{ class of positive measure, a result
of Kucera tells us that some tail of A4 is in @ [18, Proof of Lemma 3|. Call such a
tail B, so P(B) is a I1{(A) class.?

3In the sense of Diamondstone and Kjos-Hanssen [8], P{B) is the set of paths through a Martin-
Lof random Galton—Watson tree with survival parameter 3/4. In other words, it is a random closed
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Note that B is Martin-Lof random. By the randomness preservation basis theo-
rem [9, 26], there is an X of PA degree such that B is Martin-Lof random relative
to X. Assume, for a contradiction, that (A) is low for PA. So there must be a
Y € P{B) such that Y <7 X. Since B is Martin-Lof random relative to X, it must
be Martin-Lof random relative to Y. But this is clearly not the case; if 0, < Y,
then we know that either 2n ¢ B or 2n + 1 ¢ B. So in fact, B is not even Kurtz
random relative to Y: B is contained in a measure zero I19(Y) class. Therefore,
(A) is not low for PA. O

The story so far. In the next section, we will turn our attention to several other
classes of enumeration degrees. Before we do so, it is worth summarizing our results
up to this point; see Figure 1. Solid arrows represent strict implications, and most
implications that do not follow from the diagram have already been shown to be
false. We discuss the exceptions below.

We have not yet seen that there are non-cototal degrees with a universal class.
This is easily resolved. Andrews et al. [1] showed that there are both generic sets and
halves of non-trivial K-pairs that do not have cototal degree, so having a universal
class does not imply cototality.

We have also not yet proved that there are quasiminimal degrees without a
universal class. Although we proved that the enumeration degrees of random sets
are not low for PA, we do not know whether or not almost every enumeration oracle
admits a universal class. However, in Section 5, we give an explicit construction
of an oracle with quasiminimal degree (in fact, one with the computable extension
property) that does not have a universal class. This also shows the dashed arrow
to be a strict implication: it is not the case that only the (self)-PA degrees fail to
have a universal class because quasiminimal degrees cannot be (self)-PA.

4. COMBINATORIAL PRINCIPLES FROM DESCRIPTIVE SET THEORY

not separation
property

universal R
function quasiminimal

reduction
property

Kalimullin and Puzarenko [14] isolate a series of
enumeration oracles based on properties that are
satisfied by the ideal of sets enumeration reducible
to them. They study the oracles that have the re-
duction property, oracles that have the separation
property, oracles that have a universal function, and
oracles that have the computable extension property.
We will define each of these classes below in full
detail. Here we draw the reader’s attention to a
curious fact. Kalimullin and Puzarenko completely
identify the relative position of these classes along
with the total and the quasiminimal degrees. This
relationship, illustrated in Figure 2, matches exactly
the relationship that we have established between
the oracles with continuous degrees, (self)-PA or-
acles, oracles that have a universal class, and the
low for PA oracles in Figure 1. We will see that
there is a good explanation for this: all but one of

nonzero
computable
extension
property

ar the
set in the sense of Barmpalias, Brodhead, Cenzer, Dashti, and \7\}2{) JR 1]3 %hi]ug g different
choice of parameter. re
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the properties described above can be characterized
in terms of the relation (relatively)-PA restricted to
separation classes.

The reduction property. We start with the reduction property, which takes
the same position as the continuous degrees in our diagram, although there is no
analogy between the classes.

Definition 4.1. X € w has the reduction property if for all pairs of sets A, B <. X,
there are sets Ay, By <. X such that A9 € A, By <€ B, Agn By = &, and
A() U B() =AuU B.

Kalimullin and Puzarenko [14] prove that deg,(X) has the reduction property
if and only if deg,(X) has the wuniformization property: if R <. X is a binary
relation then there is a function f with graph G; <. X such that Gy < R and
dom(f) = dom(R) (i.e., the first projection of R).

It is straightforward to see that every total degree has the reduction property.
Kalimullin and Puzarenko build a nontotal degree that also has this property. There
is an easy example of a degree that has the reduction property and is not even
cototal: the degree of Kleene’s O—the set of all indices of computable well orderings
on w. To see that deg, (O) is not cototal, note that if A <. O then A is II], because
the definition of A as I'(O) for some e-operator I is easily seen to be IIj. Since
K© <, O, it follows that K<©> is 1. But if O <. K< then O would be
%1 as well, contradicting the fact that O is ITj-complete. Note that the II} sets
are exactly the sets that are enumeration reducible to O. Since II} sets have the
reduction property, it follows that deg,(O) does as well.

We can also observe that not every continuous degree has the reduction property.
Kalimullin and Puzarenko [14] prove that if A is nontotal and has the reduction
property, then the set of total degrees bounded by A is a jump ideal, i.e., an ideal
closed under the jump operator. The existence of low A9 continuous degrees implies
that the two classes are incomparable. Nevertheless, they relate to the property of
having a universal class in the same way.

Theorem 4.2. If X has the reduction property, then there is a universal 119(X)
class that is a separating class.

Proof. Fix X with the reduction property. Let A consist of all {e, o) such that ¢0
is not extendible in the e-th II{{X) class P.. Let B be defined similarly but for o1,
not 00. Note that A, B <. X by compactness. As defined,

P, =2\ [{00:{e,o) € A} U {ol:{e,0) € B}].

Note that if o is extendible in P,, then {e,o) ¢ A n B. So a “separator” for A and
B would let us choose either o0 or o1 still extendible in P.. But of course, A and
B are not disjoint. Apply the reduction property: let A9 € A and By € B be such
that Ag, By <. X, Agn By = &, and Ay u By = A u B. Let U be the separating
class for Ay and By, which is a nonempty I1{{X) class.

We claim that there is a uniform procedure to compute a path in the e-th TI{%(X)
class P,, assuming that it is nonempty, given a separator Z for Ay and By. If o is
extendible in P,, check if (e, o) lies in Z. If it does, we claim that o1 is extendible
in P.. Otherwise, {e,0) € B € Ay u By. Since {e,0)y € Z and Z n By = &, it
follows that {e,o) € Ag € A. So{e,0) € An B, which means that both ¢0 and o1
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are not extendible in P,. This contradicts our assumption that ¢ is extendible in
P,. Similarly, if {e, o) does not lie in Z, then o0 is extendible in P,. O

The separation property. The separation property takes the same position in
the diagram as (self)-PA (or rather their complements do).

Definition 4.3. X < w has the separation property if whenever A <. X and
B <. X are disjoint sets, there is a set C such that C®C <. X and A < C and
BcC.

As mentioned earlier, the set C' above is called a separator for A and B. We can
restate the definition of the separation property in terms of enumerating paths in
separating classes:

Proposition 4.4. A set X has the separation property if and only if every Sep (X
class contains a path' Y such that Y ®Y <. X. In particular, every (self )-PA oracle
has the separation property.

Proof. This is immediate from our definitions. For the second part, if X is {self)-
PA then every nonempty 9(X) class, and hence every Sep(X) class, contains a
path Y such that Y @Y <, X. O

We will see in the next section that the inclusion of the (self)-PA oracles into
the oracles with the separation property is strict.

The proposition above is trivial, but it holds the key to an analogy that will help
us characterize the remaining two properties.

The computable extension property. The computable extension property takes
the same place in the diagram as the low for PA oracles, and in fact is analogous.

Definition 4.5. X has the computable extension property if every partial function
¢ with G, <. X has a partial computable extension ¢ 2 ¢.

Following the same analogy as for the separation property, we would want: X has
the computable extension property if and only if (X) is low for PA but with respect
to Sep(X) classes, i.e., every PA Turing oracle computes a path in every Sep<{X)
class. We prove this below. Furthermore, we exhibit a characterization of the ora-
cles with the computable extension property that is similar to the characterization
from Theorem 3.8.

Theorem 4.6. The following are equivalent:

(1) X has the computable extension property.

(2) Every {0,1}-valued function with graph reducible to X has a partial com-
putable {0, 1}-valued extension.

(3) Every set Y with PA degree computes a member of every Sep{X) class.

(4) Every Sep(X) class has a subset that is a nonempty I1{ class.

(5) Every Sep{(X) class has a subset that is a 11 separating class.

(6) If A <. X and B <. X are disjoint then there are disjoint c.e. sets C and
D such that A< C and B < D.

Proof. To see that (1) = (2), we note that if ¢ is a partial computable extension
of a {0, 1}-valued function ¢ then the partial computable function

(a) = {o if ()| =0

v 1 if ()] #0
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is {0, 1}-valued and extends .

For (2) = (1), we use a proof from [14]. Suppose that G, <. X is the graph of a
partial function. Consider the function ¢*({z,y)) = 1 if p(x) = y and p*((z,y)) =
0 if there is some z # y such that ¢(z) = z. This is a {0,1}-valued function
whose graph is reducible to X, with the additional property that if p(z) = y then
©*((x, 2)) | for all z. If ¢* is a partial computable extension of ¢*, then the function
¥ defined by ¥ (z) = py [¢v*({z,y)) = 1] is a partial computable extension of .

(2) = (3): Suppose that Y has PA degree. Consider a nonempty Sep(X) class
Q(A, B) of all separators for A, B <, X. Since A and B are disjoint, A x {1} U B x
{0} <. X is the graph of a partial function. By (2), let ¢ be a partial computable
{0, 1}-valued extension. The class of all total {0, 1}-valued extensions of ¢ is a
nonempty I1{ class, hence a set Y of PA degree computes a member f of that set.
The set C' with characteristic function f is a separator for A and B.

(3) = (4) follows from the proof of Theorem 3.8. Fix a separating class Q(A, B)
relative to (X). Since every PA degree computes a member of Q(A, B), there
is a nonempty Iy class U and a Turing reduction ®. such that if X € U, then
®X € Q(A,B). Then Q = {Y: (3X € U) ®X = Y} is a nonempty II{ class that is
contained in Q(A, B).

For (4) = (2), suppose that G, <. X for some {0, 1}-valued partial function .
Let A ={z: p(x) =1} and B = {x: p(z) = 0}. Let Q(A, B) be the class of all sets
separating A and B. By (4), let P € Q(A, B) be a nonempty I1Y class. We define
the {0, 1}-valued function ¥ by () =i if Y(x) = i for all Y € P. By compactness,
1 is a partial computable extension of ¢.

(5) is clearly a rewording of (6). In one direction, given a Sep(X) class Q(A, B),
the sets A and B must be disjoint and reducible to X. If C' and D are disjoint c.e.
sets such that A € C and B < D, then the II{ class of all separators of C and D
is a subset of Q(A, B). Conversely, given disjoint sets A, B <. X, the class of all
separators of A and B form a Sep(X) class Q(A, B). If P(C,D) < Q(A,B) is a
I19 separating subclass, then C and D are disjoint c.e. sets such that A € C and
BcD.

(2) = (6): If A and B are reducible to X and disjoint, then A x {1} U B x {0}
is the graph of a partial {0,1}-valued function . If ¢ is a partial computable
extension of ¢, then C = {z: ¢¥(z) =1} 2 A and D = {z: ¢(x) = 0} 2 B are
disjoint c.e. sets.

Finally, (5) clearly implies (4). O

From this characterization, we can easily conclude that every low for PA oracle
has the computable extension property (part (3) is immediate from the definition
of low for PA). In the next section we will see that—in contrast to the low for PA
oracles—not every oracle with the computable extension property has a universal
class. This, of course, implies that the low for PA oracles form a strict subclass of
the oracles with the computable extension property.

Having a universal function. The final class of oracles that we consider takes
the same place in the diagram as having a universal class.

Definition 4.7. X < w has a universal function if there is a partial function U
with Gy <. X such that if ¢ is a partial function with G, <. X then for some e
we have ¢ = Az.Ul(e, x).
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How does having a universal function relate to having a universal class? First
note that it is not difficult to prove that continuous oracles have a universal function
using the class that witnesses codability and a compactness argument. An essential
component in this proof is uniformity: the existence of a single c.e. functional
relative to which we have an enumeration of the coded set from every member of
the coding class. For a similar reason, to show that every enumeration oracle with a
universal class has a universal function, we again require some uniformity—exactly
the uniformity that we built into our definition of a universal class. With this
uniformity, our analogy persists: having a universal function is the same as having
a 9 X) class (or even a Sep(X) class) which is universal for Sep (X) classes.

Theorem 4.8. The following are equivalent:

(1) X has a universal function;

(2) There is a {0,1}-valued partial function U with Gy <. X such that if ¢
is a {0, 1}-valued partial function with G, <. X, then for some e we have
that ¢ = Ax.U(e, x);

(3) There is a separating I9(X) class P such that for every separating IIY{X)
class Q there is a Turing functional ® such that for all'Y € P we have that
®Y is a path in Q.

(4) There is a 19X ) class P such that for every separating 119(X) class Q
there is a Turing functional ® such that for all Y € P we have that ®Y is
a path in Q).

Proof. The implication (1) = (2) is easy: if I' is an enumeration operator such that
I'(X) is the graph of a universal function for X, then define

A = {{&,0),D): (z,0),D)e T} u {(z,1),D): (In > 0)[{z,n), D) e T']}.

One can check that A(X) is the graph of a universal function for the {0, 1}-valued
partial functions whose graphs are enumeration reducible to X.

For (2) = (1), we use a familiar trick: Every function ¢: w — w can be repre-
sented by a {0, 1}-valued function ¢: w? — {0, 1} defined by ¥ (x,y) = 1 if p(z) =y
and Y(z,y) = 0if p(z) | # y. If U is universal for the {0, 1}-valued functions, de-
fine the function U by U(e, z) = y if and only if U(e,{(x,y)) = 1 and for all z < y,
U(e,{(x,z)) = 0. Then U is universal and Gp <c Gu.

For (2) = (3), suppose that U is a universal {0, 1}-valued function for X and
Gu < X. For every {0, 1}-valued ¢ with G, <. X, the set of all total {0, 1}-valued
extensions of ¢ is a nonempty I19(X) class. Using U we can interweave all such
classes into one class P. Formally, define P to be the I19(X) separating class for
the disjoint sets {{e,z): U(e,x) = 1} and {{e,z): U(e,z) = 0}. Now if Q(B,C) is
a I19(X) separating class, then B x {1} u C x {0} is the graph of a {0, 1}-valued
function whose graph is e-reducible to X. Fix some e such that this function is
A\z.U(e,z). Then for any Y € P, the column Y¢ is an extension of Az.U (e, z), and
hence a separator for B and C. Note that once we have e, the reduction is uniform.

The implication (3) = (4) is immediate.

Finally, to see that (4) = (2) is true, let I' be an enumeration operator such
that P = 2¢ < [[(X)] is a I19{X) class that is universal for Sep(X) classes. We
define a universal {0, 1}-valued function U as follows: for every pair (e, i), we set
U(<e,i>,x) =y if

M ys<t,
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(2) {z,y)eT(X), and
(3) there is a finite set D < T'(X) and an n such that if o € 2" \ [D], then
7 (z) | =y

Here, I'. is the e-th enumeration operator, and ®; is the i-th Turing functional.
Clearly, U is a {0, 1}-valued function with graph that is e-reducible to X. It is also
universal, because if ¢ is a {0, 1}-valued function such that G, = I'.(X), we may
consider the Sep (X) class of all sets which separate the disjoint sets B = {n: ¢(n) =
1} and C = {n: ¢(n) = 0}. Let i be the index of the Turing functional via which
every member of P computes a separator for B and C. Then Az.U({e,i),x) =
. Indeed, the second condition ensures that if U({e,i),xz) = y, then p(z) = y.
Conversely, if ¢(x) = y, then compactness and our choice of ¢ implies that the third
condition holds, so U({e, iy, z) = y. O

Corollary 4.9. FEvery enumeration degree that has a universal class also has a
universal function.

5. FORCING SEPARATIONS

In this section, we consider a forcing notion that produces an enumeration oracle
that has the computable extension property, but does not have a universal class
(and hence, is not low for PA). By modifying this forcing notion using ideas from
Theorem 2.11, we will also produce an oracle that has the separation property but
is not (self)-PA.

Our forcing notion P is as follows: Let f(n) = 2™ and define f<“ to be the set of
sequences o € w<* such that o(n) < 2" for all n < |o|. Our forcing conditions are
of the form (T, ), where T is a finite subtree of f<“ and € € (0, 1) is rational. We
denote the height of T by |T'|. Let f<I7! be the set of sequences o € f<“ of length
less than |T'|. We define the forcing partial order by (S, d) < (T, ¢) if and only if

e T'=S5 f |T|7
e ) <eg, and
o for every o € S with |T| < |o| < |S], at least [(1 —¢) - 2/°!] of its immediate
successors lie in S.
We call S an e-extension of T if it satisfies the first and third conditions.

Let F be a filter in P. Then the corresponding tree is G = U<T’E>E 7 T'. Very
little genericity is required to ensure that G is infinite. The enumeration oracle
that we are building is Ag = f<“ . G, which of course we can view as a subset
of w by fixing a computable bijection between w and f<“. Observe that the set of
infinite paths through G is a II9{Ag) subclass of f“, where as expected, f* is the
set of all g € w* such that g(n) < 2™ for all n € w. Given a condition (T, &), we
let Ap = f<ITI T, the natural approximation to Ag given by the condition. It
follows that if (S,0) < (T, e) then Ar € Ag S Ag.

Remark 5.1. Prior to this section, we restricted our attention to I1{ subclasses of
2¢  but now it will be convenient to consider subclasses of f“. Everything we
have done generalizes easily to this case, and more generally to computably bounded
classes. For example, it is not hard to see that Theorem 3.8 holds for subclasses of
f¢, a fact that we will use in Lemma 5.3.

For our proof of Theorem 5.7, we need to say a little more about what (self)-PA
means for subclasses of f¢. As usual, A is (self)-PA if every nonempty IT1{{A) class
@ contains a path that is enumeration below A, where the path is treated as a total
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object. If Q < f¥, we treat a path as a subset of f<“ instead of an element of
f¢ (i-e., as a set of prefixes). This makes it a total object. This does not change
the definition of (self)-PA: A is (self)-PA as defined in Section 2 if and only if it is
{self)-PA in this modified sense.

An oracle that has the computable extension property but no universal
class. We will show that if G is sufficiently generic, or more precisely, that if G
is the tree corresponding to a sufficiently generic filter F, then A satisfies the
computable extension property and does not have a universal class.

Lemma 5.2. If G is sufficiently generic with respect to P, then Ag has the com-
putable extension property.

Proof. We shall verify that Ag satisfies (6) in Theorem 4.6. Let (T,e) be an
arbitrary condition. Consider a pair of enumeration operators I'g and I';. If there
is a condition (S, §) extending (T, ¢) such that I'o(Ag) and I'1(As) intersect, then
we make that extension. This ensures that I'g(Ag) and I'1 (Ag) are not disjoint.

Now assume that we cannot force I'g(Ag) and I'1(Ag) to intersect. We want
to extend (T, ¢) to ensure that T'g(Ag) and T'1(Ag) are separated by disjoint c.e.
sets. We claim that (T',e/2) is such an extension. For i = 0,1, define C; to be the
set of all n for which there is some condition {S,d) extending (T,¢/2) such that
neTl;(Ag). It is straightforward to see that C; is c.e. and contains T';(Ag).

Furthermore, we claim that Cy and C; are disjoint. If not, fix n € w and
conditions {(Sp,doy and {Sy,d1) extending (T, e/2) that witness that n € Cy and
n € (4, respectively. Without loss of generality, we may assume that |[Sy| = |S1].
Consider the condition {(Sy N S, ¢€).

It is straightforward to see that (Sy N S1,&) extends (T,¢e). In fact, for every
o€ Son Sy with [T] < |o] < |So| (= [S1]), at least [(1 —£/2) - 2191 of its immediate
successors lie in Sy and at least [(1 —¢/2) - 2|"|] of its immediate successors lie in
Si. Therefore at least [(1 —¢) - 2‘”'] of its immediate successors lie in Sy N .S5.

The argument above also implies that |SonS1| = [So| = |S1]. So Ag,ns, contains
Ag,, meaning that n € T'g(Ag,~s,). Similarly, n € T'1(As,~s,). This contradicts
our assumption that there is no condition (S, §) extending (T, ) such that I'y(Ag)
and I';(Ag) intersect. Therefore, Cy and C; are disjoint c.e. sets covering I'o(Ag)
and I'1 (Ag), respectively. O

Our second goal is to prove that if G is sufficiently generic, then there is no
universal II9{Ag) class. This proof is somewhat involved, so it is worth pointing
out that it is easy to show a weaker result: that (Ag) is not low for PA.

Lemma 5.3. If G is sufficiently generic with respect to P, then (Ag) is not low
for PA.

Proof. To show that (Ag) is not low for PA, note that [G] is a nonempty I119(Ag)
class, where [G] € f“ is the set of infinite paths through G. We show that it has
no nonempty I1Y subclass. Indeed, let P € f* be a nonempty IIY class and let
(T,e) € P be an arbitrary condition. Since P is nonempty, there must be some
o € f=% of length n > max{|T|, —logy(¢) + 1} such that o has an extension in P.
For such a o, we can extend (T,¢) to {S,e), where S has height n and does not
contain o. Then (S, ¢) ensures that P is not a subclass of [G], and we have shown
that such conditions are dense. g
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Corollary 5.4. Low for PA strictly implies the computable extension property.

Proof. We pointed out after Theorem 4.6 that every low for PA oracle has the
computable extension property. Strictness follows from Lemmas 5.2 and 5.3. 0

We now turn to the result promised above.

Lemma 5.5. If G is sufficiently generic with respect to P, then Ag does not have
a universal class.

Proof. Consider an oracle I19(Ag) class P{Ag). We want to show that P{Ag) is
not a universal 119 Ag) class. Let (T,e) be an arbitrary condition. The easy win,
of course, is if there is an extension (S, d) of (T, &) such that P{Ag) is empty. Since
P{Ag) < P{As), this would force P{A¢) to be empty. So let us assume that this
is not true. In other words, we are assuming that

(T,e) |- P{Ag) is nonempty.

In this case, we will have to meet infinitely many dense sets to ensure that P{Ag)
is not universal.

First, let {(S,d) be an extension of (T, e) such that |S| > —log,(e) + 1, and
there is a 7 € S of length |S| — 1 such that every immediate successor of 7 is in S.
Obviously, such extensions are dense. Let o be an immediate successor of 7. Note
that we have set things up so that S \ {o} is an e-extension of T'. Furthermore, if
R is any J-extension of S, then R\ [0]~ is an e-extension of T. Here, [¢]~ € f<¥
is the set of all finite strings extending o. (Not to be confused with [o] € f¥.)

This implies that

(S,6) I- P{AG-[s]< ) is nonempty.

Also note that (S, 8) forces that [G] N [o] is a nonempty I19(Ag) class because
every leaf of S must have a full-height extension in every d-extension of S. Our
goal is to prove that

(8,0) - (3X € P(A¢)) X computes no member of [G] N [o].

The witness X will actually be in P{Ag.[,]< ), Which is a subset of P(A¢). This is
the key to the argument: any choice that we make when building G above o—i.e.,
any choice that affects [G] n [o]—has no effect on P{Ag [s1<)-

Now let (R,~) be an extension of {(S,d) and let Q = f* be a II? class such that

(R,7) I Q n P{Ag[s]< ) is nonempty.

Furthermore, let ® be a Turing functional. We will find an extension (R’,y’) of
(R,~) and a I1{ subclass Q' < @ such that

(R',7") IF Q" n P{Ag[s]< ) is nonempty and
(VX € Q n P{Ag[o1<)) ®* ¢[G] N [o].
Fix n > max{|R|, —log,(v) + 1}. Let
Q* = {X € Q: & I n is partial or does not extend o}.

(5.1)

If
(R, IFQ* n P<AG\[J]<> is nonempty,
then let (R',~") = (R,~) and Q' = Q*; this satisfies (5.1).
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Otherwise, let R* be a y-extension of R such that Q¥ n P{Agx_[s)< ) is empty.
In other words, for every X € @ n P<AR*\[U]<>, we know that ®X | n is total and
extends o. Note that we may assume that R* contains all extensions of ¢ up to
length |R*|. It will also be convenient to assume that |R*| = n.

For each 7 € f™ extending o, let @, = {X € @ n P<AR*\[U]<>: X In =17}
Note that @, is a I19 class by our choice of R*. Let 7/ = v/2". We claim that for
some T € f" that extends o we have

(5.2) (R*,7") I Q- n P{Ag[s1< ) is nonempty.

If this were not the case, then following the proof of Lemma 5.2, we intersect the
27=l7l same height 4’-extensions of R* that are chosen to force the emptiness of
Qrn P<AG\[U]<> for each 7 € f™ extending o. This gives us a vy-extension of R*
that witnesses the emptiness of @ N P<AG\[U]<>, which is a contradiction.

So fix a 7 € f™ that extends o such that (5.2) holds. Let R’ = R* < [7]~ and
note that (R’,~") extends (R, ), because of the choice of n, and that

(R',7") I+ Qr n P{Ag[+]< ) is nonempty.

This latter fact holds because, as we mentioned above, nothing we do to G above
o has any effect on P<AG\[U]<>. Finally, having removed 7 from R’, we have

(R, YIF (VX € Qr n P{Ag [o1<)) ®* ¢ [G] N [o].

Therefore, letting Q' = @, we have satisfied (5.1).
We are now ready to wrap up the proof that

{(8,8) I+ (3X € P{Ag)) X computes no member of [G] N [o].

Let F < PP be a sufficiently generic filter containing (S, d). Then by the argument
above, there is a sequence of conditions (S, 8y = (Ro,v0) = {(R1,71) = (Ra,v2) =
-+, all of which are in F, and a sequence of I classes f¥ = Qo 2Q1 2Q2 2 -
such that, for each 1,

(R;i,7i) - Qi n P{Ag[s]< ) is nonempty,

and for each i > 0,
(Riyyiy I (VX € Qi 0 P(Ag01<)) ®1 ¢[G] N [o].

Here, as you would expect, {®;};c. is an enumeration of the Turing functionals. So
take any X in ()., Qi N P<AG\[U]<>, which must be nonempty by compactness.
Then X computes no member of [G] N [o], as desired.

We have shown that for every oracle I19(A) class P{A), and every condition
(T,¢e), there is an extension of (T, e) that forces P(Ag) to not be a universal
Y{Ag) class (possibly by making it empty). Therefore, as long as G is sufficiently
generic, there is no universal I19{Ag) class. O

We have proved:

Corollary 5.6. There is an enumeration oracle with the computable extension
property that does not have a universal class.

In particular, since by [14] every oracle that has the computable extension prop-
erty has a universal function, it follows that having a universal class strictly implies
having a universal function.
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An oracle with the separation property that is not {self)-PA. Finally, we
prove that (self)-PA strictly implies having the separation property.

Theorem 5.7. There are degrees with the separation property that are not (self )-
PA.

Proof. We use a forcing notion that combines P and (a minor variant of) the forcing
notion used in the proof of Theorem 2.11. Our conditions have the form
p = (<T’,€>,7’l,)(17 N ~Xn—17D)7
where
(1) (Tyeye P, ie., T is a finite tree in =¥ and ¢ € (0, 1) is rational.
(2) (n,Xy,...Xp_1,D) are almost as in Theorem 2.11: n € w, X;,... X1 €
2¢ and D is a finite subset of w!>0.

We associate with a condition p the set
A, = (@ Yi> v D,
S
where Yy = fSITINT,Y; = X; for 0 <i<nand Y; = ¢ for i > n. A condition
q=(S,6),m,Y1,...Y,_1, E) extends p if:
e (S,0) extends (T, &) (in the sense of P);
em=nand Xy =Y, ..., X1 =Y,_1;
e DC F and E~ D cw>n,
We shall build a monotone sequence {ps}se., and let A = | J, A,_. To ensure that
A has the separation property we satisfy requirements:
Si;j:Ti(A)nTj(A) =2 > A0 (A cC&T;(A)cC &CDC <, Al
To ensure that A is not (self)-PA we satisfy requirements:
Ne: UI‘E(A) is not a path through [f<~ . Al%)].

(See Remark 5.1 for a discussion of paths through subclasses of f“.) Note that
[£<« ~ Al%] is a nonempty II9(A) class just as in the forcing notion P that we
introduced earlier in this section.
We start with pg = ((, 1,0, &). Suppose we have constructed
Ps = (<T,€>,’I’L,X1,. . 'Xn—laD)
and s = 2(4, j). To satisfy S; ;, we ask if p, has an extension of the form
q= (<Sa E>7n7X1a .. 'anlaE)

such that I';(A44) nT'j(Aq) # . If so, then let ps;1 be such an extension. In this
case, we can argue that S; ; is vacuously satisfied.

If there is no such extension, we define ps1 as follows. For k& = 4, j, let W) be
the set of all numbers x such that there is some

q= (<S, 6/2>7H,X1, e Xn—la E)
extending ((T,e/2),n, X1,... X,—1,D) such that = € T'y(A4,). We claim that W;
and W; are disjoint. If not, fix x € W; n W; and conditions
(<Si7€/2>7n7X17 s 7Xn—17Ei)
and (<Sj,€/2>,n,X1,...,anl,Ej)
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witnessing that z lies in W; and Wj, respectively. Without loss of generality, we
may assume that |\S;| = |S;|. Following the proof of Lemma 5.2, the condition

q = (<SZ M Sj,€>7’l’b, )(17 . 7X7L—17Ei ) EJ)

extends p, and satisfies x € I';(4,) N T';(4,), which is a contradiction. This proves
that W; and W; are disjoint.
Let C be an arbitrary separator for W; and W; and let

Ps+1 = (<T, 5/2>,n + Q,Xl A ,Xn_l,C,é,D).

We claim that for k& = ,j, we have I'y(A) € Wy. If z € T'y(A), there is some
condition ¢ = ({S,8),m, X1,...,Xm—1, F) extending ps+1 such that x € I'y(4,).
Fix a finite set ' < A, such that x € Ty(F). Define E' = D u (F n w>").
Then ¢’ = ((S,¢/2),n, X1,...,X,_1, E') extends ({T,e/2),n, X1,...,X,—1,D) and
x € T'x(Ay). This shows that x € Wy, proving the claim.

It follows that A can enumerate a separator (and its complement) for I';(A) and
T;(A), by enumerating A" @ A"+ (modulo some possible finite error).

If s = 2e¢ + 1, we ensure that N, is satisfied. We ask if there is a condition

q= (<S,€/2>7H,X1,...Xn_1,E)

that extends ({(T,e/2),n, X1,... Xn—1,D) (i.e., ps but with e replaced by £/2) and
puts some o into I'c(4,), where |o| > max{|T|,log,(2) + 1}.
If there is such a condition ¢ and such a string o, we may assume that |S| > |o].
Then let
Pst1 = (S~ A{r: 7 >0}, e/2),n, X4,... X1, E).

Since (S, £/2) extends (T, c/2) and |S| > |o| = max{|T|,log,(2) + 1}, this is a valid
extension of p,. Furthermore, it satisfies N.: we have 0 € Tc(A4,_,,) as Ap, ., 2 Ag,
yet no path in [f<“ \ AlY] extends o because o € Al

If there is no such ¢ and o, then we let
p5+1 = (<T, E/2>,n,X1, e anlv D)

In this case we can argue that N, is vacuously satisfied, as I'.(A4) does not contain
any string of length larger than max{|T|,log,(2) + 1}. O
6. OPEN QUESTIONS

The relationships between the classes we have studied is summarized in Figure 3.
All implications are strict and any implication not implied by the diagram has been
shown to fail. We list the questions that are left open in this final section.

The relation (relatively >-PA can be seen as an extension of the relation relatively-
PA from the total enumeration degrees to all enumeration degrees. We know that
(relatively)-PA restricted to total enumeration degrees is first order definable in the
enumeration degrees: by Miller [22], X is PA relative to Y if and only if there is a
set A of nontotal continuous degree such that Y @Y <. A <. X ® X; by Andrews
et al. [2], we know that the continuous degrees are first order definable; and by
Cai et al. [6], we know that totality and hence quasi-minimality are definable. A
natural question is therefore:

Question 1. Is the relation on enumeration degrees (relatively)-PA first order
definable in D.? Are any of the remaining classes in the diagram definable in D.7
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Recall that when we reintroduced the definition of a universal class, we added a
little uniformity. Ganchev, et al. [11] gave a definiton with no uniformity:

(1) There is a II9{X) class P such that every member of P computes a path
in any nonempty I19(X) class.
And as we discussed, we could have asked for even more uniformity:
(2) There is a II{{X) class P such that if @ is a nonempty I19{X) class, then
uniformly in an index for Q we can find an index of a Turing functional &
so that if X € P then &% € Q.

Clearly (2) implies having a universal class and having a universal class implies (1).
Question 2. Are either of these two implications strict?

In Proposition 3.14, we proved that Martin-Loéf random oracles are not low for
PA. It remains unclear how random oracles relate to universal classes.

Question 3. Does almost every enumeration oracle have a universal class?

The analogy that guided our work in Sec-
tion 4 was to replace “all TI9(X) classes” by
“all Sep (X)) classes”; this allowed us to char-
acterize all but one class from [14]. In the
definition of a universal class, there are two
possible places where we can make this sub-

@aelf) -PA
not bepdrdtlon
propu ty

/

stitution, and so we get three possible no- A%
tions: a K —_—
(1) There is a separating I1)(X) class P @asirninim@ ‘;ﬁ;v;trl@

there is a Turing functional ® such
that for all Y € P we have that ®Y
is a path in Q.

(2) There is a I19%(X) class P such that
for every separating I1{(X) class Q
there is a Turing functional ® such )
that for all Y € P we have that ®Y Gomero reduction p—

low for PA propCIty con 1nuo@

is a path in Q. N
(3) There is a separating I19{X) class P {(
tOtdl

computable
extension
property

universal
class

such that for every I{(X) class Q A T*

such that for every separating I19(X)
class @ there is a Turing functional ®

such that for all Y € P we have that
®Y is a path in Q. Ficure 3. Final summary of results.

In Theorem 4.8, we showed that (2) and (3) Analogous classes are paired.

are both equivalent to having a universal function. So (1), which obviously implies
having a universal class, properly implies (2) and (3). We were careful in our
analysis to point out situations in which we can prove that (1) holds of an oracle:
every continuous degree satisfies (1) by Theorem 3.5, every low for PA degree
clearly satisfies (1), and every oracle with the reduction property satisfies (1) by
Theorem 4.2. This leads us to the following natural question:

Question 4. Is having a universal class the same as (1)? In other words, can we
always take a universal II{{X) class to be a separating class?
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Finally, we describe a question that we were led to after a discussion with Julia
Knight. Recall that a pair of sets A and B is effectively inseparable if there is a
partial computable function v such that whenever x and y are such that A € W,
and B < W, are disjoint then ¢(z,y) | ¢ W, UW,. In other words, ¢ (z, y) witnesses
that W, # W,. We can introduce a corresponding enumeration oracle property:

Definition 6.1. X < w has the effective inseparability property if there are disjoint
sets A, B <., X that are not separated by any set C' such that C ® C <, X and
there is a function 1 with graph reducible to X that witnesses this fact: whenever
AcT,(X) and B < T'y(X) are disjoint, then (x,y) | ¢ I'x(X) v Ty(X).

Clearly if X has the effective inseparability property, then X does not have the
separation property. It is not clear, however, how this new property fits in with the
others.

Question 5. Does having a universal function imply being effectively inseparable?
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