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ABSTRACT. In her 1990 thesis, Ahmad showed that there is a so-called “Ah-
mad pair”, i.e., there are incomparable Z‘g—enumeration degrees ap and a; such
that every enumeration degree x < ag is < aj. At the same time, she also
showed that there is no “symmetric Ahmad pair”, i.e., there are no incompa-
rable Eg—enumeration degrees ag and aj; such that every enumeration degree
xp < ag is < a; and such that every enumeration degree x; < aj is < ag.

In this paper, we first present a direct proof of Ahmad’s second result. We
then show that her first result cannot be extended to an “Ahmad triple”, i.e.,
there are no Eg—enumeration degrees ap, a; and ap such that both (ag,ar)
and (a1, az) are an Ahmad pair. On the other hand, there is a “weak Ahmad
triple”, i.e., there are pairwise incomparable Eg—enumeration degrees ap, a1
and ag such that every enumeration degree x < ag is also < a; or < ag;
however neither (ag,ai) nor (ag,a2) is an Ahmad pair.

1. INTRODUCTION

Enumeration reducibility is a positive reducibility between sets of natural num-
bers. It arises naturally as a notion of relative computability for partial functions
and has applications in effective mathematics, especially in computable topology,
in computable model theory and in group theory.

We associate an algebraic presentation of this reducibility as a degree structure.
The structure of the enumeration degrees is a partial order with least upper bound
and a jump operator (just like its more famous cousin, the structure of the Turing
degrees). In this article we focus on structural properties of its local substructure—
the degree structure of the enumeration degrees of the ¥.9-sets, which can be defined
also as those enumeration degrees below the degree 0,. Here, 0/, is the enumera-
tion degree of the complement K of the halting problem K = {e | @.(€) ] }. The
¥9-enumeration degrees can be viewed as the counterpart in enumeration reducibil-
ity of either the c.e. Turing degrees or the Turing degrees < 0’, i.e., the A9-Turing
degrees. Both analogies are imperfect, but reasonable in certain respects. We re-
fer the reader to [14] for more information on current trends in research on the
enumeration degrees.

One of the common questions about a degree structure viewed as a partial or-
der is that of the complexity of its first-order theory. For most degree structures
commonly being considered, the theory turns out to be as complicated as possible:
global structures like the Turing degrees or the enumeration degrees have theories
that are computably isomorphic to the theory of second-order arithmetic, while
local structures usually have theories that are equivalent to the theory of first-order
arithmetic. We then wonder about the fragments of the first-order theory, identified
by restricting sentences to a certain quantifier complexity. We find that decidability
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breaks down at level 3, i.e., the 3V3-fragment is not decidable. On the other hand
the 3- and often even the V3-fragment is decidable.

For the ¥9-enumeration degrees, the first of these questions has been com-
pletely settled: The full first-order theory was shown to be undecidable by Sla-
man and Woodin [13], and equivalent to full first-order arithmetic by Ganchev and
Soskova [4].

As for the second question, the 3-fragment is easily seen to be decidable, whereas
Kent [5] showed the Jv3-fragment to be undecidable. The decidability of the
V3-fragment remains open.

The decidability of the V3-fragment can be rephrased algebraically as (uniformly
effectively) deciding the following

Question 1.1. For any given finite partial orders P and Q; 2 P (for i < n), can
any embedding of P into the X3-enumeration degrees be extended to an embedding
of Q; for some i < n (where ¢ may depend on the particular embedding of P)?
(Without loss of generality, we will from now on assume that any finite partial
order is bounded, i.e., has a least element 0 and a greatest element 1.)

Two major subproblems of Question 1.1 have been shown to be decidable:

e Lempp, Slaman and Sorbi [8] showed that the above question is decidable
for n = 0, i.e., given any finite partial orders P C Q, it is decidable whether
any embedding of P into the ¥9-enumeration degrees can be extended to
an embedding of Q.

e Lempp and Sorbi [10] showed that all finite lattices can be embedded, even
preserving 0 and 1. (The lattice embeddings question can be seen as a
disjunction of extending embeddings to certain one-point extensions Q; of
a finite lattice P viewed as a partial order.)

As noted earlier, the ¥9-enumeration degrees are often compared to the c.e. Tur-
ing degrees. Both are dense structures with full first-order theories as complicated
as the theory of first-order arithmetic. For the c.e. Turing degrees this was proved
by Slaman and Woodin (unpublished, see Nies, Shore and Slaman [11]); for the
c.e. Turing degrees we have that in addition the 3-fragment is decidable, whereas
Lempp, Nies and Slaman [7] showed the 3V3-fragment to be undecidable. However,
the lattice embeddings problem for the c.e. Turing degrees remains one of the main
open problems dating back to the 1960’s (see Lempp, Lerman and Solomon [6]
for the most recent update), and thus the decidability of the ¥3-theory of the c.e.
Turing degrees remains wide open as well.

An important algebraic difference between the c.e. Turing degrees and the ¥9-enu-
meration degrees was discovered by Ahmad in her Ph.D. thesis [1] (see Ahmad and
Lachlan [2, Corollary 3.2]): There are incomparable YXJ-enumeration degrees ag
and a; (called an “Ahmad pair”) such that any degree x < ag is also < aj. (This
makes ag “non-splitting”, i.e., join-irreducible, and thus cannot happen in the c.e.
Turing degrees by the Sacks Splitting Theorem [12].) More interestingly even, Ah-
mad also showed (see Ahmad and Lachlan [2, Theorem 3.3]) that this phenomenon
is not symmetric: For any two incomparable ¥9-enumeration degrees ap and ay,
there is either a degree xy < ag which is ﬁ aj, or there is a degree x; < a; which
is ﬁ ap.

In the language of Question 1.1, Ahmad’s results can be rephrased as stating
that not every embedding of P = {0, ag, a1, 1} with incomparable ap and a; can be
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extended to an embedding of Qy = {0, g, ag, a1, 1} where 0 < 2y < ag and zg £ aq,
but that every embedding of P can be extended to an embedding of either Qy or
of Q1 ={0,a9,1,a1,1} where 0 < z1 < a; and z1 £ ay.

In this paper, we prove two extensions of Ahmad’s results in different directions,
thus adding to our toolbox toward our ultimate goal, deciding the V3-theory of the
¥:9-enumeration degrees. Again in the language of Question 1.1, our first result can
be rephrased as stating that every embedding of P = {0, ag, a1, ag, 1} with incompa-
rable ag, a; and as can be extended to an embedding of Qp = {0, zo, ag, a1,a2,1}
where 0 < x¢ < ap and zo % a1 or an embedding of Q; = {0,z1,a9,a1,a2,1}
where 0 < 21 < a1 and x; jé ay (leaving the relationship between zg and as,
and between x1 and ag, unspecified so as to not have too many cases); a similar
formulation can be found for our second result.

We first present, in Section 2, a direct proof of Ahmad’s result that there is no
symmetric Ahmad pair. (Currently, the only published proof in the literature is
indirect and hard to modify.) In Section 3, we show that there is no Ahmad triple,
i.e., there are no %9-degrees ag, a; and ag such that both (ag,a;) and (a1, ag) form
an Ahmad pair. On the other hand, in Section 4, we also show that there is a weak
Ahmad triple, i.e., there are pairwise incomparable AS-enumeration degrees ag, a;
and as such that every enumeration degree x < ag is also < a; or < ay; however,
neither (ag,a;) nor (ag,az) forms an Ahmad pair. We should add here that Kent
(personal communication around 2006) identified the existence of an Ahmad triple
and of a “cupping Ahmad pair” (i.e., an Ahmad pair whose join is 0.) as the
two main initial obstacles toward a decision procedure for the V3-theory of the
¥9-enumeration degrees.

It is worth pointing out that the first two results are specific to the X9-enu-
meration degrees. Lempp, Slaman, and Soskova [9] have shown that every finite
distributive lattice L can be embedded as an interval of I13-enumeration degrees
[a, b] so that for every enumeration degree x < b we have that x € [a, b] or x < a.
Embedding the diamond in such a way shows that symmetric Ahmad pairs are
possible in general.

2. A DIRECT PROOF THAT THERE IS NO SYMMETRIC AHMAD PAIR

In this section, we will present a direct proof of the following

Theorem 2.1 (Ahmad [1] (see Ahmad and Lachlan [2, Corollary 3.2])). There
is mo symmetric Ahmad pair in the ¥9-enumeration degrees, i.e., there are no
incomparable ¥.9-degrees ag and a; such that every enumeration degree xo < ag is
< ay, and every enumeration degree x1 < aj is < ag.

To show that the degrees of a pair of sets Ag and A; is not an Ahmad pair,
we need to build a set Xy <. A such that X, £, A;. Cooper’s density proof [3]
builds precisely such a set Xy assuming that in addition A; <. Ag. Under this
additional assumption, we can build Xy = ®(A4y) as follows: We satisfy two types
of requirements. The first type ensures that for every e, we have Xg # (A1) by
threatening to code Ay into the e-th column of Xy. The second type of requirement
ensures that for every i, we have Ag # I';(Xo) by threatening to make I';(Xy) =
FZ-(X(gSi] UNP), which (assuming X([)Si] is computable) is a c.e. set. Here X7 =
{{m,z) | m <n}and X" = {(m,z) | m > n}. To make this idea work, the
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construction uses a good approximation to the set Ao, i.e., a uniformly computable
sequence of finite sets {Ap s }s<w such that

(1) for every n, there is a stage s such that Ay [ n C Ag s C Ap; and
(2) for every n, there is a stage s such that for every ¢ > s, if Ag; C Ao then
Ao [n C Apy.

Stages at which Ay s C Aj are called good. The sets reducible to Ag, namely, X,
A1, Te(A1), and T';(Xy), are approximated with correct approximations—good ap-
proximations whose good stages include all good stages for the approximation of Ayg.
If we restrict our attention to good stages for Ag, then two sets with correct approx-
imations are the same if and only the length of agreement between them measured
at such stages is unbounded. So, if we enumerate elements into Xy . only by enu-
merating axioms of the form (z, Ay s) into @, then we ensure that X, gains new
elements only at good stages for Ay, and this allows us to limit the activity of each
requirement to a finite set.

If Ay is not bounded by Ag, then this construction fails: It can be that there
are infinitely many good stages for Ay that are bad for A, causing us to falsely
assume that a requirement of the first type requires attention again and again and
forcing it to contribute an infinite set to Xy. This, in turn, is in critical conflict
with the second type of requirements, which depend on the assumption that each
column in Xy is finite. The problem we see should not surprise us, because Ahmad
pairs do exist. Ahmad’s original proof of Theorem 2.1 uses the Gutteridge operator
to show that if Ay and A; form an Ahmad pair, then Ay and all sets bounded
by Ao have eventually correct approximations with respect to the approximation
to A1, and so we can build X; <. A; with X, jée Ay using essentially the same
construction as the one described above. The proof is ingenious, though difficult
to modify. We give a direct construction, using the priority method and a tree of
strategies. The main idea is to build the sets Xy and X; in a more entangled way
so that our failure to prove that X; <. Ag allows us to switch off unwanted axioms
enumerated into Xy and avoid the problem described above.

Assume that Ag and A; are incomparable X9-sets. (If Ag and A; are comparable,
then their enumeration degrees do not form an Ahmad pair by definition.)

We fix approximations for Ay and A; so that {Ag s ® A1 s}s<w is a good approx-
imation to Ag @ A;. So even though we cannot ensure that good stages for A, are
good for A; or vice versa, we may at least ensure that there are infinitely many
common good stages.

2.1. Requirements. The construction builds an enumeration operator &, at-
tempting to satisfy the following requirements for each enumeration operator I'y
and each enumeration operator Ay:

RFI : (I)l(Al) 7é FI(AO)
Sa, 1 A1 £ A (P1(Ay)).

If some Rr, requirement fails then we will construct an enumeration opera-
tor @ satisfying the following subrequirements for each of the enumeration opera-
tors I'g and Ag:

Rr,rp : ®o(Ag) =To(A1) = Ag = ¥(4;) (for a ¥ built by us)
Sty 1 Ao # Ao(Po(Ao)).
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Clearly, satisfying either group of requirements, namely, all Rr,- and all Sa,-
requirements, or, for some fixed I'y, all Rr, r,- and all Sr, a,-requirements, will
suffice since Ay £, A;.

We will denote ®,;(A;) by X; (for i < 2) whenever the operator ®; is clear from
the context.

2.2. Tree of strategies. Order each of the types of requirements and subrequire-
ments in a priority of order type w. We have four types of strategies: an Rr,-strat-
egy o, an Rr, r,-strategy 3, an Sa,-strategy ~, and an Sr, a,-strategy 6.

The root of the tree of strategies T is ), an Rr,-strategy working on the highest-
priority Rr,-requirement. An Rr,-strategy has only one outcome (0) and is imme-
diately followed by an Rr, r,-strategy, working on the highest-priority Rr, r,-re-
quirement.

An Rr, p,-strategy § has outcomes (2k), (2k + 1,0ld), (2k + 1, off), and (2k +
1,new) for all k € w, ordered as follows:

(0) <, (1,0ld) <, (1,0ff) <p, (1,new) <, (2) <p, ---

For every k < w, the nodes 3°(2k) and 8°(2k + 1, off) are Sr, a,-strategies working
on the highest-priority Sr, a,-requirement that is not assigned to any of 3’s prede-
cessors. The nodes 57(2k+1,0ld) and 87(2k+1, new) are Sa, -strategies working on
the highest-priority Sa,-requirement that is not assigned to any of 3’s predecessors.

An Sa,-strategy v has outcomes (k), where k € w is ordered by the standard
ordering on w. Each such immediate successor of this strategy is a main Rr,-strat-
egy, working on the highest-priority Rr,-requirement that is not assigned to any of
its predecessors.

Similarly, an Sr, a,-strategy 0 has outcomes (k), where k € w is ordered by
the standard ordering on w. Each such immediate successor of this strategy is
an Rr, r,-strategy, working on the highest-priority Rr, r,-requirement (for the
same 'y as §) that is not assigned to any of its predecessors.

2.3. Construction. At stage 0, all strategies are in initial state: All operators
associated with these strategies are empty, all parameters are undefined. At stage
s > 0, we build a path f, of length < s. The intention is that there will be a true
path defined by
f(n) = liminf f;(n)

that correctly describes the outcomes of each strategy. The construction consists of
substages t for ¢t < s, where we act for some strategy fs [ ¢ of length ¢ depending on
the current outcome of the strategy which acted at the previous substage starting
at the root. When a strategy is activated at stage s, it first ensures that it is
not missing any good stages by adjusting the approximations to Ay and Ay: If s~
is the previous stage at which this strategy was active, then it replaces A; s by
ﬂue[s,ﬁ] A; , for i < 2. We describe further actions of each strategy depending on
its type below.

At the end of stage s, we initialize all strategies of lower priority than f, i.e.,
strategies extending or to the right of the strategies which acted at stage s.

Each Rr, r,-strategy 8 and each Sr, a,-strategy § works with the version of ®g
and Xy determined by the longest Rr,-strategy o < 3,9 (we say that 8 and 6 work
for a); this version of @ is the set of ®y-axioms enumerated by all the Rr, r,- and
Sr,,a,-strategies working for the same Rr,-strategy o.
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2.3.1. Sa,. We begin with the S-strategies, as they are directly lifted from the
density construction. So, let v be an Sa,-strategy. The first time a strategy is
visited after initialization, the strategy receives a unique number s,, the stage
of first visit after initialization. To keep this assignment of stages injective, we
interrupt the stage s construction if s is the first stage when -y is visited: We set
fs =, sy = s, and move on to stage s + 1. If s, < s is already defined, then we
consider the length [, ; < s of the common initial segment of A; ; and Aq (X1 5)

up to s. For every number n <[, ,, if n € ALS(XL?”] U N[Z%])’ we search for the
axiom (n, F) € Ay that has been valid the longest and enumerate each element of
the form (r,z) € F, where r > s, into the set X ; via the axiom ((r, z), A; ;). The
outcome of the strategy is (k), where k is the standard code of the finite set Dy
of all numbers for which + has enumerated an axiom that looks valid at stage s.
The only thing we assume about the coding of finite sets, in addition to its effective
properties, is that Dy, C Dy, implies k1 < ko.

We will be able to argue that if v is on the true path, then v enumerates only
a finite set D into X7, as the sequence {l, s}s is gooa must be bounded. At suffi-
ciently large stages in the approximation to A, the outcome we select will always
correspond to a superset of D. At stages that are also good (i.e., stages s such
that A; s C A;), we will be able to correctly identify the code of D as the correct

outcome. In other words, the code of the set D will be 4’s true outcome.

2.3.2. Sr, A,- An Sp, a,-strategy 0 works similarly to the Sa,-strategy. It also
receives a unique number sg, the stage of first visit after initialization, and interrupts
the stage s construction if s is the first stage when § is visited. Otherwise, we
consider the length /5, < s of the common initial segment of Ay s and Ag s(Xo,s)

up to s. For every number n <ls,, if n € AO’S(X([)ZS‘S} U N[ZSa]), we search for the
axiom (n, F) € Ay that has been valid the longest and enumerate each element of
the form (r,xz) € F, where r > s; is in the set X ; via the axiom ((r,z), Ao s). The
outcome of the strategy is (k), where k is the standard code of the finite set Dy of
all numbers for which § has enumerated an axiom that looks valid at stage s.

2.3.3. Rr,. The Rr,-strategy does nothing, has only one outcome (0), and deter-
mines the version of ® and Xy that all the Rr, r,- and Sr, a,-strategies working
for the Rr,-strategy use.

2.34. Rr,r,- The Rp, r,-strategy 8 attempts to construct an enumeration op-
erator ¥ such that A9 = ¥(A;) by enumerating axioms into ®; and its version
of ‘130.

At the first stage after initialization, the Rr, r,-strategy [ is assigned the pa-
rameter sg. Note that we can assume that sg is larger than max(Dy,) for any k such
that a higher-priority S-strategy A (which can be either an Sa,- or an Sp, a,-strat-
egy) has Ak < . Until its next initialization, # will only contribute numbers to
the sg-th columns of Xy and X;. To every element a, we assign the coding location
xq, = (sg,a) targeted for Xy. The coding locations m, that we associate with a
given number a but are targeted for X; will change more dynamically during the
construction. Initially, we assign m, = (sg,a) as well.
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At a stage s > sg, 8 does the following. It orders the elements of Ag s U (A1s)
by age: For each a € Ay s U V(A1 ), we define its age (at stage s) as follows.

ageg(a) = 2k + 1 for k = min(s + 1, utVu € [t,s](a € Apu))
agel(a) = 2k for k = min(s + 1, utVu € [t, s](a € ¥(A;,,)[u] via the same axiom))
age®(a) = min{ageg(a), age7(a)}.

Without loss of generality, we will assume that at most one element enters the
approximation to Ag or U(A;) at a fixed stage s. (We can ensure this by artificially
delaying the approximations if necessary.) And so, for every stage ¢t < s, there may
be at most one element with age®(a) = t. Furthermore, if a € Ag s \ Us(A41,5), then
age®(a) is odd, and if a € U4(A; ) \ Ao,s, then age®(a) is even. At stage s, we will
say that b is older than a if age®(b) < age®(a).

If Ags = U4(A1s), then we exit this strategy with outcome (2(s + 1)) (this
is an outcome that has not been visited so far). Since Ag is infinite, this will
only be a temporary situation. Otherwise, we pick the oldest number a such that
Aps(a) # ¥s(Ars)(a). Let k = age®(a). We must ensure that §’s effect on X3
is computable, and so the strategy will dump into X; all elements of the form
(sg,n) € (mg,s] and assign new markers m, = (sg,n) > s to all elements o’ with
age®(a’) > k. (Here, to dump an element m into X; means to enumerate the axiom
(m, D) into ®1.) We have two cases depending on the parity of k.

Case 1: If k is even, i.e., if a € U4(A4;1 ) \ Ao,s, then we will be able to argue that
x4 = (s8,a) € To(A1) \ Xo. The strategy selects outcome (k). While a maintains
its age, we will design axioms for younger elements enumerated into Xy by 8 so
that their use includes a. Thus, if this is s true outcome, they will be invalid and
hence 8 contributes finitely much to Xj.

Case 2: If kis odd, i.e., if a € Ag s\ ¥s(A1,s), then we would like to add an axiom
for @ into ¥, but to do this we need some preparation. We will identify an axiom
(xa, Fa) in Tg(A1) and use it. Let s be the previous stage when g considered k:

(1) If some b with age®*(b) < k has my, ¢ I'1(Ao:) at some stage t € [sy, 3],
then, since b is older than a, we may assume that we have identified F
for b and that F;, C A; 5. (Otherwise, b would be our choice for the oldest
disagreement.) We can therefore enumerate the axiom (my, Fp) € ®1 so
that mp € X1,5 \I'1(Ao,s). The outcome is (k,old). If this is the true
outcome, then we do not care what happens to X as strategies below this
outcome will be working with new versions of this set.

(2) Otherwise, for every b with age®(b) < k, we can associate a set Gy, the use
of the oldest valid axiom for m; in the set I'y. We enumerate into ®¢  the
axiom

(wa, |J GrU{b]| age’(h) <k}).
ages (b)<k
Next, we check whether z, € T'g(A41). If z, ¢ I'o(A1s), then we have
evidence that this requirement may be satisfied by z, € Xo \ I'9(41). Un-
fortunately, we have no evidence that the effect of 8 on X is finite, so we
use the marker m,. We will always only enumerate axioms of the form
(mg, F,) into @1, where F, is the use of a I'p-axiom for x,. The case we
are in suggests that m, ¢ Xi.
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(a) If mq ¢ T1(Ao,) at some stage t € [sg,s], then we can guarantee
that under this outcome, (’s effect on Xy is finite. This is because
we include the use of a I'1-axiom for m, in the use of every axiom we
enumerate into @ for numbers o’ with age larger than k. (This is true
as long as a maintains its age.) We set the outcome to be (k, off).

(b) Otherwise, m, € I'1(Ao.) at all stages ¢ € [sg,s], so we have evi-
dence that m, € T'1(Ap) \ X1. We end with outcome (k,new) and let
strategies below forget about this version of Xj.

(3) Finally, if z, € T'g(A1,) at all stages ¢t € [sg, s] (by the same axiom at all
stages since the last visit), then let (x,, F,) € Ty be the axiom that has
been valid the longest. Enumerate (a, Fy,) into ¥5. We have eliminated a
as a difference, and so we may proceed to pick the oldest difference once
again.

2.4. Verification. We define the true path f in the tree of strategies as the leftmost
path of strategies visited infinitely often. If A"o < f, then we will say that A has true
outcome o. If s is a stage at which A is visited, then we say that s is A-true. We need
to prove that f is well defined and strategies along it satisfy their requirements.
We do so by showing the following properties of the construction by simultaneous
induction.

Lemma 2.2. The true path f is infinite, furthermore:

A. If B is an Rr, r,-strategy and 8 < f, then:
(1) There is a leftmost outcome o that B wvisits at infinitely many stages.
(2) There are finitely many values of the parameter sz, and for each such

value, X{SB] s a computable set.
(8) If o € {(2k), (2k + 1,0ff) | k € w}, then Rp, r, is satisfied, and for
every value of sg, the set X([)Sﬁ] is finite.
(4) If o € {(2k + 1,0ld), (2k + 1,new) | k € w}, then Ry, is satisfied.
B. If v is an Sa, -strategy and v < f, then:
(1) There is a leftmost outcome o that ~ visits at infinitely many stages.
(2) The set D, consists of all numbers that v contributes to X;.
(3) The requirement Sa, s satisfied.
C. If 6 is an Sr, A, -strategy and § = f, then:
(1) There is a leftmost outcome o that § visits at infinitely many stages.
(2) The set D, consists of all numbers that vy contributes to Xg.
(8) The requirement Sr, a, is satisfied.

Proof. We will prove the statements above in turn, assuming that all statements are
true for higher-priority strategies along the true path. We first note that R, -strate-
gies along the true path have only one possible outcome, visited at every true stage,
hence cannot cause f to be finite.

A. Let 8 = f be an Rr, r,-strategy. It follows from the definition of the true path
that g is visited at infinitely many stages and initialized finitely often. There is a
stage at which f is first visited after its last initialization. At this stage, sg receives
its final value, and by construction, we interrupt this stage so that no other strategy
has the same parameter at any point during the construction. By construction, no
strategy has so far enumerated any element into the sg-th column of Xy or X;:
Lower-priority strategies o are initialized at stage sg, so their parameter s, (if
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defined) will have higher value than sg. Higher-priority strategies A will not add
elements to the sg-th column of Xy or X;, either. To see this, note that they
are either not visited at further stages, hence do not act any longer; they are
Rr, r,-strategies with sy < sg and hence enumerate elements into smaller columns
of Xy or Xi; or they are S-strategies whose true outcome is extended by S and
hence by B(2) and C(2), they will not enumerate any more valid axioms into either
operator ®g or ®;. Thus 3 is the unique strategy that adds elements into the sg-th
column of Xy or X;. If t < sg is a previous value of the parameter sg, then
our analysis shows that no strategy can add valid axioms for numbers in the t-th
columns of Xy and X after stage sg.

Let ¥ = |J U, be the enumeration operator constructed by 8. By assumption,
Ag %e A1, hence W(A;) # Ag. Let a be the oldest disagreement, where the age of
the disagreement is defined as in the construction. This means that there is some
stage s, such that at all stages t > s,, we have that if age!(b) < age’(a), then
be Ao+ NV(A; ) with a fixed marker my. The age ¢ of a remains constant, and at
stages t > s,, the strategy § will not visit any outcome left of the c-outcomes (which
depend on the parity of ¢), so the marker m, will remain fixed. Furthermore, the
way [ adjusts the approximation to Ay and A; when visited ensures that there are
infinitely many stages t > s, at which we visit 3, and «a is the oldest disagreement
at stage t. At such stages, 8 will visit a c-outcome, and since there are finitely
many c-outcomes (only one c-outcome {c) if ¢ is even, and three c-outcomes (c, old),
(c,off), and (c,new) if ¢ is odd), there is a leftmost outcome visited at infinitely
many stages, proving (1). Note that if 8 reaches Case 2.3 infinitely often, then
also ends in Case 2.2 infinitely often because if t is such that a ¢ ¥(A4;,), but
a € U(A;;-), where t~ is the previous f-true stage, then our convention ensures
that z, ¢ T'o(A1,). All numbers greater than m, in the sg-th column of X; will
be dumped into X7, hence the sg-th column of X; is cofinite, proving (2).

If a ¢ Ag, then the age of a after stage s, is ¢ = 2k, where k is the stage such that
at all t > k, we have that a € ¥(A; ;) via the same axiom (a, Fy,), say. As we argued
above, (2k) is 3’s true outcome. We prove that z, € I'g(41) \ Xo: That z, ¢ X is
clear, as by construction, any axiom that 8 enumerates into ®( for x, contains a
in its use, and as we already argued, no other strategy enumerates valid axioms
for x4 = (sg,a). On the other hand, § enumerated the valid axiom (a, F,) into ¥
because it saw that (z,, F,) € T'g, and since F,, C Ay, it follows that x, € T'g(A1).
Up until stage s,, there are only finitely many axioms enumerated into ®q by 3.
After stage s,, any axiom enumerated by [ into ®( will include a in its use because
the age of a remains constant. It follows that all such axioms are invalid, and so 8
contributes a finite set to X",

Suppose a € Ag. Then ¢ = 2k + 1, and we have several cases, depending on
the leftmost outcome visited infinitely often. If this is (2k + 1, 0ld), then infinitely
often after stage s,, we visit 8, and it stops at Case 2.1 of the construction, because
some b with age®(b) < k has my ¢ I'1(Ao ) at some stage ¢ since we last considered a.
There are finitely many such b, and hence the described scenario happens infinitely
often with some fixed such b. As pointed out in the construction, since b is older
than a, we know that b € W(A;,) at such stages via the same axiom (b, F3),
and so the construction ensures that m;, € X; using this axiom. It follows that
mp € X1 \FI(AO)
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Otherwise, there is a stage s, > s, such that at all g-true stages ¢t > s, at
which a is the oldest disagreement, Case 2.1 does not apply. This means that for
every older b, there is a fixed valid axiom (m;, Gy,) € I';. This means that the axiom
that we enumerate into ®¢ for z, is valid, and so z, € Xy. On the other hand,
since infinitely often we are in Case 2.2, z, ¢ I'g(A1), and so Rr,.r, is satisfied.

If 5’s true outcome is (2k + 1,off), then m, ¢ T'1(A4p). In this case, we already
know that Rp, r, is satisfied. After stage s;, any axiom enumerated by 3 into ®
will include some G, in its use, where (m,, G,) € I'1. It follows that all such axioms
are invalid, and so § contributes a finite set to X(gsﬁ ). This ensures that (3) is true.

Otherwise, there is a stage s. > s; after which Case 2.2.a does not apply. The
true outcome is (2k + 1,new), and m, € I'1(Ap,) at all stages ¢ > s, by the same
axiom. It follows that m, € T'1(Ap). To complete the proof, we will show that
mg ¢ X1. Any ®j-axiom enumerated for m, has the form (mg,, F,). Such an
axiom can only be enumerated after the axiom (a, F,) is enumerated into ¥. Since
a ¢ U(Ay), it follows that m, ¢ X;. We conclude that Rr, is satisfied, proving (4).

B. Let v < f be an Sa,-strategy. It follows from the definition of the true path
that ~ is visited at infinitely many stages and initialized finitely often. There is
a first stage at which ~ is visited after its last initialization. This is the stage at
which s, receives its final value, and by construction, we interrupt this stage so
that no other strategy has the same parameter at any point during the construc-

tion. Lower-priority strategies ¢ have s, > s,. Higher-priority strategies are the

only ones that can enumerate elements into X FSW], so by induction, X £<S”} is a

computable set. If s is a good stage in the approximation to A;, then A; ¢ C A
and A1(X; ) € Ay(X1). Suppose that {ly s}, ,ca, is unbounded. Then we can
argue that A1 = A;(X1): If a € Ay, then pick a good stage s at which a € A; 5
and I, s > a. It follows that a € A1(X;,,) € Ay(Xy). Similarly, if a € A(X7),
then we can pick a good stage s at which a € A;(X;,5) and ly,s > a. It follows that
a € Al,s C A,

Furthermore, if {l, s}, ,ca, is unbounded then we can also argue that A;(X;) =
Ay (X UNEsT). One inclusion follows from the fact that X; C X[~ UN[Zs-1,

For the reverse inclusion, fix n € Al(X1[<s”] UNI[Zs]). Let (n, F) be the oldest

valid axiom. (Note that the age of this axiom depends only on X£<s”].) Pick a

good stage s > s, that is greater than the age of this axiom and at which [, ¢ > n.
At this stage, we enumerate all (r,z) € F, where r > s, into the set X; ; via the
axiom ((r,z), A1,s). Since s is good, these are valid axioms, and hence n € Aq(X7).

It follows that A; = Al(XFS”] U N[ZSW]), contradicting the fact that Ay is not c.e.
(otherwise it would be comparable with Ag).

Thus [, s is bounded by some number [, say, at all good stages in the construc-
tion. At good stages, the strategy v enumerates axioms only in response to finitely
many n. For each such n, we know by the fact that we are looking at a good
stage that n € A;(A4;). Eventually, the oldest valid axiom will emerge, and so =y
will keep selecting the same axiom (n, F') for this element, and thus ultimately ~
will enumerate only finitely many elements into X7, and all these elements will be
enumerated at good stages. Let D = Dy, be the set of these elements. Let si be a
stage such that at all ¢ > s, we have that D C X;. At all v-true stages t > s, the
strategy 7 will have outcome (m), where Dy C D,,. By our choice of coding, we
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have that (k) < (m). By the adjustment that v makes to the approximation of Ay,
we know that ~ is visited at infinitely many good stages for the approximation
to A;. At such stages, v will have outcome (k). This proves (1) and (2).

To see that the requirement is satisfied, we prove that there is some element
n < Iy such that A;(n) # A1(X1)(n). Assume that this is not the case. Pick a
stage s such that all elements n < [, that are in A; are in A, 5 and s is good. There
are infinitely many such stages, and we visit v at such stages. At such a 7-true
stage t, we have that [, > [, contradicting our choice of [,.

C. The case where 6 < f is an Sr, a,-strategy is proved similarly to Case B. O

Lemma 2.3. Either all requirements Rr, and Sa, are satisfied, or there is some
requirement Ry, such that all requirements Rr, r, and Sr, A, are satisfied.

Proof. If there are infinitely many Rr,-strategies along the true path f, then by the
construction of the tree, it follows that there are infinitely many Sa,-requirements
assigned to nodes on the true path, as only such strategies have immediate succes-
sors that are Rr,-strategies. Thus all Sa,-requirements are assigned to nodes on
the true path and hence by Lemma 2.2 are satisfied. Consider any Rr,-strategy
a < f. Let v < f be the next Sa,-strategy along the true path. By the construction
of the tree, 7’s immediate predecessor is an Rr, r,-strategy 8 with true outcome
(2k 4+ 1,0ld) or (2k + 1,new) for some k. It follows from Lemma 2.2 that Rr, is
satisfied, thus all requirements Rr, are satisfied.

If there are finitely many Rp,-strategies along f, then fix the longest such a.
Every immediate successor of o along the true path is either an Rr, r,-strategy
with true outcome (2k) or (2k + 1,0ff) or an Sr, a,-strategy. Hence there are
infinitely many of each, and by Lemma 2.2, they are all successful. By the design
of the tree, it follows that all requirements Rr, r, and Sr, a, are satisfied. [l

3. No AHMAD TRIPLE

In this section, we extend the ideas introduced in the previous section to prove
our main result:

Theorem 3.1. There is no Ahmad triple in the X9-enumeration degrees, i.e., there
are no X9-degrees ag, ai, and ag such that ag f_ a; but every enumeration degree
Xg < ag is < ay, and such that ay %_ ay but every enumeration degree x1 < ap is
S as.

3.1. Requirements. Suppose Ag, A; and Ay are ¥9-sets. The construction builds
an enumeration operator ®g, attempting to satisfy the following requirements for
each of the enumeration operators I'g and Ag:

RFU . CI)()(A()) 75 Fo(Al),
SAO : AO 7& AQ((I)()(A()))

If some Rr,-requirement fails, then we will construct an enumeration operator ®;
satisfying the following subrequirements for each of the enumeration operators I'y
and Ali

Rryr, @ 1(A1) # T'1(A2)
SFO,Al . A1 # Al(q)l(Al))
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If some Rr, r,-requirement fails, then we will construct an enumeration oper-
ator @, satisfying the following subsubrequirements for each of the enumeration
operators 'y and As:

Rrgry.Ts : Po(Ag) =T2(A1) = Ag = Po(A4;1) or A; = Uy (Ay)
(for ¥y and ¥y built by us)
Sro,r1,0, 0 Ao # Da(P2(Ao)).

We will denote ®o(Aop) by Xo, ®1(A1) by X1, and $3(Ag) by X2 whenever the
operator ®; is clear from the context.

3.2. Overview. We first give a high-level overview of how the overall construction
works, without going into the specifics of the priority tree layout and the arrange-
ment of different outcomes. At each node a of the priority tree, there will be an
active version of X; and X5 (where Xy is, of course, maintained globally). Each
version of X; and X is built in some cone; X is built in a cone with an Rr,-require-
ment at the top of the cone, while X5 is built in a cone with an Rr r,-requirement
at the top. These cones are nested in the sense that each node where a partic-
ular set X is active is also a node where a set X is active; but a cone for Xy
can contain many different Xs-cones. The setup here is typical of a non-uniform
argument; the situation in our construction is perhaps slightly more complicated
than a typical non-uniform argument due to having to keep track of three levels of
non-uniformity. However, the overall spirit is the same: The set X is maintained
globally, and there will only be one version of it, i.e., every node in the tree is in the
one Xg-cone. Inside each Xs-cone, we will have the active sets Xy and X;. Inside
this Xo-cone, we actively try and satisfy the Rr, r, r,- and the S, r, a,-strategies,
while leveraging on the assumption that the Rr, r,- and Rp,-strategies at the top
of the Xs- and X;-cones are unsuccessful. While this assumption is not violated, we
stay in the Xs-cone and only consider the Rr, r, r,- and the Sr, r, a,-strategies.

If we ever detect that the Rp, r,-strategy is successful, we will exit the X5-cone
and immediately place the next Sr, a,-strategy before starting a new X,-cone below
it. Similarly, if we ever detect that the Rr,-strategy is successful, we will end the
current X;- and Xs-cones and immediately place the next Sa,-strategy before
starting a new X;- and a new Xs-cone below. In this way, depending on how many
different X;- and Xs-cones the true path of the construction crosses, we will be
able to argue that along the true path, either all Rp,- and Sa,-requirements are
satisfied, or all Rr, r,- and Sr, r,-requirements are satisfied in some final X;-cone,
or all Rp, r, r,- and Sr, 1, A,-Tequirements are satisfied in some final X5-cone.

It remains to describe how a node « assigned to a requirement Rp,r,r, is
able to either detect the success of its parent Rr, r,-strategy, or the success of its
grandparent Rr,-strategy, or be able to leverage on the failure of both to ensure the
success of its own requirement. By our experience with the S-strategies thus far, it
is important to note that a must not be too liberal with enumerating true axioms
into @9, ®; and ®,; if we do not exit the current Xs-cone, we must make sure
that «’s contribution to X is finite or at least computable. If we do not exit the
current Xi-cone, then a’s contribution to X; must be finite, while a’s contribution
to Xo must be finite regardless of the true outcome. (If we do not ensure this, then
along the true path, when we have the next Sa,, Sry,A,- or Sry.r,,A,-node, we will
not be able to run the respective basic S-strategy.)
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With the foregoing comment in mind, consider a node « assigned to a require-
ment Rpr,r,r,- The obvious strategy is to associate each number a (targeted
for A;) with a number z, (targeted for X; = ®1(A41)) and try to maintain that
a € Ay iff x, € Xq. We build a reduction ¥; which will emulate I'y. Since
A; = Py(As2) cannot possibly hold, we must be able to find some z, where
Xi(zq) # I'1(A2)(z,), and hence Ry, r, will be satisfied. This naive strategy will
work to satisfy Rr,,r, in isolation; unfortunately, we may not be able to guarantee
that the effect on X is finite; as discussed above, if we satisfy Rr, r,, we stay in the
X;-cone, and we will need the strategy to enumerate only finitely many true axioms
for ®1(A;). Notice that if there is some z, € I'1(A43)\ X1, then this condition can be
ensured, since the strategy for a will only need to enumerate further axioms putting
some x, into ®1(As) if the length of agreement goes up; hence all newer axioms
in ®; will include the number a. However, if the disagreement is witnessed by some
zq € X1\ T'1(A2), then there is no way to prevent infinitely many elements z,
from being put into X; by the strategy. Note that the same problem applies even
if we try and diagonalize Xy and I'g(A4;), or X2 and T's(A1). The solution to this
problem is to ensure that under the problematic outcome where z, € X1 \ I'1(Az2),
all future axioms enumerated by « putting some z, into X; = ®1(A4;) must also
include the use of certain elements in I'g(A;) and I'a(A4;1). If we entangle the ax-
ioms for newer x, in this way correctly, then we will be able to argue that in the
end, either we will be able to diagonalize Xy and T'g(A4;), or we can diagonalize X5
and T'y(A;), or else we can force all newer x,/-axioms enumerated by « to become
invalid.

To arrange for this entangling to work properly, we will need another setup.
Under the assumption that a € A; \ ¥1(A2) and z, € X; \ I'1(A3) hold, we will
need to start a backup Rr, r, r,-strategy, which we will name 3. Each time J sees
further proof that a € A; \ ¥1(42) and z, € X3 \ I'1(A42) hold, it will extend
the reduction Ag = Wy(A;) that it builds. The basic working of 8 is that it
associates each number b targeted for Ay with a number y, targeted for Xy =
®5(Ap) and a number my, targeted for Xg = ®¢(Ag). (For technical reasons, in the
construction, the association b — y; will be fixed while the association b — m; will
be dynamic, but we do not encumber ourselves with these details at this time.) The
plan will be to let ¥y emulate I's, so that the necessary disagreement between Ag
and ¥o(A;) must produce a corresponding disagreement between X5 and I'y(Ay).
Fix the element b so that we have either

(1) be Ay \ \Ilo(Al) and Y € X5 \FQ(Al) and my € Xy, or
(11) be \IJQ(Al) \ AQ and Yp € FQ(Al) \X2 and my ¢ Xop.

Since b will eventually be in one of the X9-sets involved above, almost every axiom
enumerated by the main strategy « putting some ./ into X; = ®1(A;) will be able
to observe and use the information provided by this number b.

Consider a future stage s when the strategy « is deciding whether or not to
enumerate an axiom putting some . into X; = ®1(A;). By our assumption on b,
we must see either y, € Xo[s] or yp € T'a(A1)[s]. If the strategy for a sees y, € Xa[s]
but y, € I'2(A1)][s], then it does not need to proceed with its strategy and does not
enumerate any axiom for z, into Xj since it currently looks like X5 # T'a(A;).
If, however, « sees yp € I'a(A1)[s] but mp & T'o(A1), then it also does not need to
enumerate an axiom for z, into X;. This is because either b € Ag, in which case
both y, € X5 and my, € Xy, or they are all three out of the respective sets, and so we
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must currently see Xy # I's(A;) or X # Ig(A1). Therefore, the only time when o
enumerates T,/ into X is when it sees both y, € T'2(A1)[s] and my € To(A1)[s], in
which case it will include the use of the latter two in the axiom for z, in Xj.

Now finally assume that (§ is along the true path of the construction. If the
first case (i) above applies to b, then almost every axiom z, enumerated by the
strategy for a will be invalid, since they will include the use of y;, € T's( A1), which
was exactly what we wanted to achieve. If the second case (ii) applies and m, is not
eventually in I'g(4;), then again almost every axiom z,, enumerated by the strategy
for a will be invalid, since they will include the use of my, € I'g(A;). Finally, assume
that the second case (ii) applies and mp € T'g(A;). Then in this case, it may be
possible that the strategy for o enumerates infinitely many elements into X7, but
then we would have m;, € T'g(A41) \ Xo, and we will exit the current X;-cone. In
this case, the current set X; will be irrelevant anyway.

3.3. Tree of strategies. Order each of the types of requirements, subrequirements
and subsubrequirements in a priority of order type w such that each Rr,-require-
ment precedes all the Rr, r,-subrequirements, and each Rr, r,-subrequirement pre-
cedes all the Rp, r, r,-subsubrequirements.

The root of the tree of strategies 7' is (), an Rr,-strategy working on the highest-
priority Rr,-requirement. An Rp,-strategy has only one outcome (0) and is imme-
diately followed by an Rr, r,-strategy, working on the highest-priority Rr, r,-re-
quirement. An Rr, r,-strategy has only one outcome (0) and is immediately fol-
lowed by an Rr, r, r,-strategy, working on the highest priority Rrp, r, r,-require-
ment.

An Rp, r, r,-strategy o has outcomes (2k), (2k + 1,0ld), (2k + 1,0ff), (2k +
1,new), and (2k + 1, backup) for all k € w, ordered as follows:

<0> <L <1,0ld> <L <1,0ﬂ> <L <1,new> <L (1,backup> <L <2> <L

For every k < w, the nodes a"(2k) are Sr, a,-strategies working on the highest-
priority Sr, a,-requirement that is not assigned to any of a’s predecessors. The
nodes a"(2k + 1,0ld) and " (2k + 1,0ff) are Sr, r, a,-strategies working on the
highest priority Sr, r, a,-requirement that is not assigned to any of a’s predeces-
sors. The nodes o (2k + 1,new) are Sa,-strategies working on the highest-priority
Sa,-requirement that is not assigned to any of a’s predecessors. Finally, the nodes
a"(2k+1, backup) are backup Rr, r, r,-strategies with their own outcomes (defined
below).

An S -strategy v has outcomes (k), where k € w ordered by the standard
ordering on w. Each such immediate successor of this strategy is a main Rp,-strat-
egy, working on the highest-priority Rr,-requirement that is not assigned to any
of its predecessors. The outcomes and immediate successors of the Sp, a,- and
Sr,.1,A,-strategies are defined analogously (Rr,,r, and Rr, r, r,, respectively).

Finally, a backup Rr, r, r,-strategy 8 has outcomes (2[, off), (2], new) and (21 +
1) for all | € w, ordered as follows:

(0,0ff) <1, (0,new) <, (1) < (2,0ff) <, ---
For every | < w, the nodes 8°(2l,off) and 8°(2l + 1) are Sp, a,-strategies working
on the highest-priority Sr, a,-requirement that is not assigned to any of 3’s prede-

cessors. The nodes 8°(2l,new) are Sa,-strategies working on the highest-priority
Sa,-requirement that is not assigned to any of 3’s predecessors.
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3.4. Construction. This construction has many properties that are similar to the
one in Section 2. At stage 0, all strategies are in initial state: All operators asso-
ciated with these strategies are empty, and all parameters are undefined. At stage
s > 0, we build a path f; of length < s with the intention of building a true path
defined by
f(n) =liminf fy(n).

When a strategy is activated at stage s, it first adjusts the approximations to Ay,
Aq, and As: If s7 is the previous stage at which this strategy was active, then it
replaces A; s by mue[s*,s} A;q for i < 2. At the end of stage s, we initialize all
strategies of lower priority than f,, i.e., strategies extending or to the right of the
strategies which acted at stage s.

FEach strategy 8 works with the version of ®; and X; determined by the longest
Rr,-strategy o < 0 (we say that 5 works for «); this version of ®; is the set of
®,-axioms enumerated by all the Rp, r, r,-strategies and Sr, a,-strategies work-
ing for the same Rr,-strategy. Similarly, each strategy @ works with the ver-
sion of ®3 and X5 determined by the longest Rr, r,-strategy a < [3; this version
of @ is the set of ®5-axioms enumerated by all the backup Rr, r, r,-strategies and
Sry,T1,4,-Strategies working for the same Rr, r,-strategy.

3.4.1. Spn,, Sry,A.s Sry,ry,0,- The S-strategies work precisely as in the previous
construction. Let y be such a strategy. The first time + is visited after initialization,
it receives a unique number s, the stage of first visit after initialization, and stops
the construction of f, =  for this stage. If s, < s is already defined, then we
consider the length [, ; < s of the common initial segment up to s of the sets 4; ,
and A; 4(X;) that are named in the corresponding requirement: For Sa,, these
are Ag,s and Ag s(Xo s); for Spy A, , these are Ay s and Aq (X1 5); and for Sry r; A,,
e i€ A (X5 U
N[5y then we search for the axiom (n, F) € A; that has been valid the longest,
and we enumerate each element of the form (r,z) € F, where r > s, into the
set X, ¢ via the axiom ((r,x), A, s). Note that this action might enumerate some
number (r, z) into X; ; where (r,z) is already in X; ; via an axiom enumerated by
a different node.

The outcome of the strategy is (k), where k is the standard code of the finite
set Dy of all numbers for which v has enumerated an axiom that looks valid at
stage s. As before, we assume that Dy, C Dy, implies k; < ks.

these are Ag s and Ag 4(Xs ). For every number n < [

3.4.2. Rr,, Rr,r,.- The Rr,-strategy and the Rp, r,-strategy do nothing, have
only one outcome (0), and determine the version of ®; and X;, or ®5 and Xo,
respectively, that substrategies work with.

3.4.3. Rr,,ry,r,- The Rry r, r,-strategy o attempts to construct an enumeration
operator ¥y such that A; = ¥;(As) by enumerating axioms into ®;. (It will not
enumerate axioms into either ®y or ®9, only its backup strategies will.)

At the first stage after initialization, the Rr, r, r,-strategy o is assigned the
parameter s,. We can assume that s, is larger than max(Dy) for any k such that
a higher-priority S-strategy A has A’k < «. Until its next initialization, o will only
contribute numbers to the s,-th columns of X;. To every element a, we assign the
coding location x, = (s,, a) targeted for Xj.
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At stage s > sq, a does the following. It orders the elements of A1 U Wy 4(Aszs)
by age:

agef(a) = 2k + 1 for k = min(s + 1, utVu € [t, s](a € A1)
ages(a) = 2k for k = min(s + 1, utVu € [t, s](a € ¥1(Az,)[u] via the same axiom))
age®(a) = min{agej(a), age5(a)}.

Once again, we assume the age is defined injectively, i.e., for every stage t < s,
there may be at most one element with age®(a) =t. Also, if a € A1 ¢\ Uy 5(A2,5),
then age®(a) is odd, and if @ € ¥y 4(Az25) \ 41,5, then age®(a) is even.

If A) s = Wy s(Asz,s), then we exit this strategy with outcome (2(s + 1)). Oth-
erwise, we pick the oldest number a such that A;s(a) # ¥1(Aszs)(a). Let
k = age®(a). We have two cases depending on the parity of k.

Case 1: If k is even, i.e., if a € Uy 4(A25) \ A1 5, then we will be able to argue that
ZTa = (Sa,a) € T1(As) \ X;. The strategy selects outcome (k). While a maintains
its age, we will design axioms for younger elements enumerated into X; by « so
that their use includes a. Thus if this is a’s true outcome, they will be invalid,
and hence «a contributes finitely much to X;. Under this outcome, we do not care
about Xs.

Case 2: If kis odd, i.e., ifa € A1 s\ V1 (A2 ), then we would like to add an axiom
for a into ¥;. We will follow a similar scheme as in the previous construction: We
will add an axiom for z, into ®;, wait until z, shows up in I';(As), and use the
(currently) valid axiom (z,, F,) to define an axiom for a in ¥;. We entangle the
axiom for z, with axioms from both I'y and I'y. First, we consider all z € X3 5 such
that the age of z in X (i.e., the least ¢t < s such that z € Xy, for all u € [¢, s]) is
less than k. Let s; be the previous stage when « considered k:

(1) If some such z € X5, is not in I's(A; ;) via the same axiom for all stages
t € [sk, s], then we have evidence that z € X5\ '3(A;), and so we exit with
outcome (k,old). If b is younger than a, then o will always include the use
of an axiom for z being in T'2(As) in the use of the axiom for x; being in
®1(A1), so if this is the true outcome, then Ry, r,,r, is satisfied and a’s
effect on X is finitary.

(2) Otherwise, for every z € X , that is older than a, we can associate a set G,
the use of the oldest valid axiom for z being in I's(A;). Next, we consider
every backup strategy S (an immediate successor of «) that is not in initial
state, every number yf = (sg,b) € I's s(A;1 5) such that the age of yf (i.e.,
the least ¢ < s such that at all u € [t,s], we have yg € Iy (A1) via
the same axiom) is less than k, and for each such yf , the coding locations
mbB < k that are associated with b by 5. (Note that we do not restrict 3 to
the ones that extend an older outcome than k. There will only be finitely
many such backup strategies being considered due to the restriction on the
age of yf 2

If for some such ybﬁ € I'y (A1), there is an mbﬁ < k such that mf ¢
I'o(A1,¢) at some stage t € [sg, s], then we have two cases:

(a) If b ¢ Ay, at some stage t € [sg, s], then we have evidence that yf €

Iy(A1) \ X2. We exit with outcome (k, off) and argue that if this is

the true outcome, then Rr, r, 1, is satisfied and « enumerates finitely
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many valid axioms into ®; because they all must include the use of a
T'p-axiom for all such m’g .
(b) If b € Aoy at all t € [sg, s], then the outcome is (k,new). We have

evidence that mf € Xy as it was either dumped there (i.e., we enu-

merated the axiom <mbﬁ ,0) into ®¢) or its axiom has use {b}. If this
is the true outcome, then we aim to show that Rr, is satisfied by
mf € Xo\I'0(A1). In this case, we do not care about «’s effect on X
even though that effect will be finitary as we argued in the previous
case.

(3) Otherwise, for every older yf € I's s(Ay5) and each mf < k associated

with b, we can associate a set G s, the use of the oldest valid axiom for mf
b

in the set I'y. We enumerate into ®; ; the axiom for x, whose use consists
of
e all b such that age®(b) < k (note that this includes a),
e all G, for older z € X5 5, and
e all G, s where 3 is a substrategy of o not in initial state (at the end
b

of this stage) with older yf €T's4(A1s), and corresponding mf < k.

Next, we check whether z, € I'1(Ag). If x, ¢ I'1 ;(A2:) at some stage
t € [sk,s], then we have evidence that Rrp,r, may be satisfied by z, €
X1\T'1(A2). Unfortunately, we have no evidence that the effect of @ on X3
is finite. So we activate the backup strategy below outcome (k,backup).
The backup strategy will either turn off future axioms enumerated by a or
ensure that Rp, is satisfied.

(4) Finally, if x, € T'1(As,) (by the same axiom at all stages since the last
visit), then let (x4, F,) € I'1 be the axiom that has been valid longest.
Enumerate (a, Fy) € ¥1 ;. We have now eliminated a as a difference, and
so we will pick the oldest difference once again, starting over at the current
substage. (This can happen at most finitely often at any substage.)

Notice that the set X3 is only relevant under the outcomes (k,old) and (k, off)
of a (corresponding to items (1) and (2a) above, respectively). Since « itself does
not add axioms to ®o(Ap), but rather, they are only added by the backup strategies,
whenever some outcome (k’, backup) of « is played, the effect on each column of X,
will be finite if a has true outcome (k,old) or (k,off). This is also the reason we
have multiple backup strategies for a.

3.4.4. Backup Rr,r, r,. The backup Rr, r, r,-strategy § works with its immedi-
ate predecessor o and attempts to construct an enumeration operator ¥y such that
Ap = Uy(A1) by enumerating axioms into ®( and its version of ®s.

Just like a, the strategy [ is assigned the parameter sg at the first stage after
initialization. We can assume that sg is larger than max(Dy) for any k such that
a higher priority S-strategy A has A’k < . The strategy [ associates to every
element b the coding location y, = (sg,b) targeted for X,. To certain elements b,
it will also dynamically assign a coding location m, targeted for X.

At a stage s > sg, § orders the elements of Ay s U Uy (A1) by age so that if
be Aps \ Uo,s(A1s), then age®(d) is odd, and if b € ¥q 4(A1,5) \ Ao s, then age®(b)
is even.

If Ags = Ug (A1), then we exit this strategy with outcome (2
Otherwise, we pick the oldest number b such that Ag s(b) # ¥s(A1s)(

(s+1)+1).
b). If there is
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no marker my associated with b, then we choose my to be the least number of the
form (sg,n) which has not been chosen as a marker. We also enumerate the axiom
(my, {b}) into Dy.

Let I = age®(b). We must ensure that 5’s effect on X is computable and so
the strategy will dump into X all markers which are currently associated with
any number b’ with age®(b') > I. Furthermore, to each such ', we associate a new
marker my, which is the least number of the form (sg, n) which has not been chosen
as a marker. We also enumerate the axiom (my, {b'}) into ®g.

We will not ensure that 3’s effect on X5 is finitary or computable because if 3
is on the true path, then either Rr, or Rr, r, will be satisfied and X, will not be
relevant to strategies extending .

We now have two cases depending on the parity of [.

Case 1: If [ is even, i.e., if b € ¥y (A1 5)\ Ao,s, then unlike for o, we cannot simply
take the easy win y, € I'2(A1) \ X2, because we still have not guaranteed that o’s
effect on X is finitary. For that reason, we will instead consider the marker mg.
We will argue that b ¢ Ay s is evidence that mjy is not an element of Xy, and so we
check whether m; € T'g(A1). Let s; be the previous stage when « considered :

(1) If mp is not in T'o(A; ) for some ¢ € [s;, s] (via the same axiom), then we
will be able to argue that if this is the true outcome, then « enumerates
only finitely many axioms into X; as all but finitely many of them will
include an axiom for m; in I'g. In this case, Rr, r, is satisfied, and a’s
action on X is finitary. So we take outcome (I, off).

(2) Otherwise, we have evidence that m;, € T'g(A1)\ Xo and so if this is the true
outcome, then Rr, is satisfied and we take the outcome (I,new). Below
this outcome, we do not care anymore what happens to Xj.

Case 2: If [ is odd, i.e., if b € Ags \ Po,s(A15), then we enumerate the axiom
(yp, {b}) into the operator Ps.

(1) If yp ¢ T'2(A;1s), then, if this is the true outcome, all but finitely many
axioms that a enumerates will contain the use of an axiom for y; being
in I'y(A;) which is invalid. It follows that once again, Rr, r, is satisfied
and «’s action on X7 is finitary. We exit with outcome (I).

(2) Finally, if yp € I'3(A41,5) (by the same axiom at all stages since the last
visit), then let (yp, F;,) € I's be the axiom that has been valid longest.
Enumerate (b, F},) into ¥¢ 5. We have now eliminated b as a difference, and
so we will pick the oldest difference once again, starting over at the current
substage. (This can happen at most finitely often at any substage.)

3.5. Verification. We define the true path f in the tree of strategies as the leftmost
path of strategies visited infinitely often. If Ao < f, then we will say that A has true
outcome o. If s is a stage at which A is visited, we say that s is A-true. We need
to prove that f is well-defined and strategies along it satisfy their requirements.
We do so by showing the following properties of the construction by simultaneous
induction.

Lemma 3.2. The true path f is infinite, furthermore:

A. If a is an Rr,r, r,-Strategy and o < f, then:
(1) There are finitely many values of the parameter s, .
(2) There is a leftmost outcome o that o visits at infinitely many stages.
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(8) If o € {(2k) | k € w}, then Rr,r, is satisfied, and for every value
of sa, the set X{Sa} is finite.

(4) If o € {(2k + 1,0ld), (2k + 1,0ff) | k € w}, then Rr,r, r, is satisfied,
and for every value of s, the set X{S”] is finite.

(5) If o € {(2k + 1,new) | k € w}, then Rp, is satisfied.

(6) If o € {(2k + 1,backup) | k € w}, then Rp,r, is satisfied.

B. If B is a backup strategy for an Rr, r, r,-strategy o and B < f, then:
(1) There are finitely many values of the parameter sg.
(2) There is a leftmost outcome o that B visits at infinitely many stages.

(8) For every value of sg, the set X([)SB] is computable.
(4) If o € {(2l,0ff), (21 + 1) | | € w}, then Rr,r, is satisfied, and for

every value of s, the set X{S"‘] is finite.
(5) If o € {(2l,new) | | € w}, then Rp, is satisfied.
C. If v < fis an Sa,-, Sry,a,- 07 Sry.1y,A,-Strategy, respectively, then:
(1) There is a leftmost outcome o that « visits at infinitely many stages.
(2) The set D, consists of all numbers that v contributes to Xg, X1, or Xa,
respectively.
(8) The requirement San,, Sry,A,, 0T Sry.Ty,A,, Tespectively, is satisfied.

Proof. A. Since a < f, there is a least stage at which « is visited after its final
initialization. At this stage, s, receives its final value, proving (1). By construction,
we interrupt this stage so that no other strategy has the same parameter at any
point during the construction. We claim that « is the only strategy that adds ele-
ments to X {S“]. By construction, no strategy has enumerated any element into X {S”‘]
so far. Lower-priority strategies o are initialized at stage s, so any future values

of s, will be greater than s,. Once that occurs, o cannot add elements to Xl[s‘*].

Higher-priority strategies will not add elements to X{S“], either. To see this, note
that any strategy A of higher priority that potentially adds elements into X; after
stage s, is either an Rp, r, r,-strategy with sy < so, or an Sr, a,-strategy which
will not enumerate any valid ®;-axioms for numbers into X FS"] by inductive hy-
pothesis and our choice of s,. This proves our claim. Note that if t < s, is a
previous value of the parameter s,, then our analysis shows that no strategy can
add elements into Xl[t] after stage s,. It follows that X F] is finite.

Let ¥, = US>Su W, ;s be the enumeration operator constructed by a. By as-
sumption, Ay €. Az, hence Ui(As) # A;. Let a be the oldest disagreement
between W;(As) and A;. This means that there is some stage s, such that at
all stages t > s,, we have that age’(a) stabilizes, and if age’(b) < age’(a), then
be A Ny (As,). Furthermore, the way o adjusts the approximation to A4,
and A when visited ensures that there are infinitely many stages ¢ > s, at which
we visit « and a is the oldest disagreement at stage ¢t. At such stages, o will visit
an age’(a)-outcome, and since there are finitely many age’(a)-outcomes, there is a
leftmost outcome o visited at infinitely many stages, proving (2).

To prove (3), suppose that o is (2k). In order to show that Rrp, r, is satisfied,
we will show that z, € I'1(A2)\X;. Since o is (2k), we have a ¢ A; ; for infinitely
many stages t, so a ¢ A;. We argued above that only a can enumerate ®;-axioms
for z,. By construction, the use of any such axiom contains a. So z, ¢ X;. As for
I'1(Asg), note that a ¢ Ay implies that a € U1(As). For any ¥;-axiom for a, there
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is a corresponding I'j-axiom for z, with the same use. The latter axiom witnesses
that x, € T'1(As) as desired.

To show that X{s“] is finite, it suffices (by our reasoning above) to show that
there is a stage after which no ®;-axiom enumerated by « is valid. This holds
because any ®;-axiom enumerated by a when the current outcome is o or to the
right of o must contain «a in its use, yet a ¢ A;. This completes the proof of (3).

To prove (4), first suppose that o is (2k+1, old). In order to show that Rr, r, r,
is satisfied, we will show that Xo & TI'3(A4;). Since o is (2k + 1,0ld), there are
infinitely many stages s such that there is some z € X5 ; with age less than 2k + 1
and z ¢ I'y(A;4), where t € [sg,s]. (Recall that sy is the last stage before s at
which « considered 2k +1.) There are only finitely many z which ever have age less
than 2k + 1, so the scenario described happens infinitely often with some fixed z.
It follows that z € X2\I'2(A;) as desired.

To show that X {S“} is finite, note that for all but finitely many stages at which
we visit «, the age of z in X5 is smaller than the age of the oldest disagreement
between A; and Uy(Az). At such stages, if a enumerates a ®;-axiom, its use
contains the use G, of a I';-axiom for z being in I'y(A41). Since z ¢ T'2(A4;), it
follows that o only enumerates finitely many valid ®;-axioms. Therefore, X {S“] is

finite (as « is the only strategy which adds elements into X{S“]). This completes
the analysis if o is (2k + 1, old).

Next suppose o is (2k + 1, off). In this case, we will show that I'y(4;) € X5. By
assumption on o (and the fact that there are only finitely many backup strategies 5
and numbers b such that the age of yf in I'y(A41) is ever less than 2k + 1), there are
a backup strategy 3, a number b, and a number m < 2k + 1 such that at infinitely
many stages s at which we visit a, we have that

e the age of yf in Iy 5(A15) is less than 2k + 1;
e m is one of the markers mf that g associates with b; and
o m ¢TIy, (Ar,) for some t € [sg, s].

It follows that y? € I'y(Ay) and m ¢ T'g(A1). Since ois (2k+1, off), we have b ¢ Ay.
We will show that yf ¢ X5. The only ®-axiom enumerated by 3 for yf has use {b},
so it is not valid. Furthermore, one can show that g is the only strategy that adds
elements into X£SB ! The proof is similar to that for o and X {S“]: Note that while 8
may not be along the true path, its immediate predecessor « is along the true path
and therefore so are all of its predecessors. We have shown that yf € I'y(41)\ Xa.

To show that X{s“} is finite, note that for all but finitely many stages when we
visit «, the age of yg in I'y(A;1) is smaller than the age of the oldest disagreement
between A; and Uy(As). At such stages, if a enumerates a ®;-axiom, its use
contains the use G, of a I'y-axiom for m. Since m ¢ I'¢(A;), it follows that c« only
enumerates finitely many valid ®;-axioms. Therefore, X{S”] is finite (as « is the
only strategy which adds elements into X {S"]). This completes the proof of (4).

To prove (5), suppose that o is (2k + 1,new). To show that Rr, is satisfied,
we will show that Xy € Tg(A;). Fix 8, b and m, following the analysis in the
case where o is (2k + 1, off). As before, we have m ¢ I'o(A1). However, since o is
(2k + 1,new), we have b € Ay. Since we enumerated the ®g-axiom (m, {b}) when
associating m with b, it follows that m € Xo. So m € Xo\I'o(A41).
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To prove (6), suppose o is (2k + 1, backup). We have z, ¢ T'1(A43). To show that
z, € X1, consider a stage s’ large enough such that for all s > ¢/,

o if age®(b) < 2k + 1, then b € Ay;
o if the age of z in Xo ; is less than 2k + 1, then z € X3 NT'2(A4;1), and the
use GG, of the oldest valid I's;-axiom for z has stabilized; and
e if 8 is a backup strategy for o and the age of (the current value of) yg in
I'3,s(Aj,s) is less than 2k 4 1, then
- yf has stabilized and lies in I'3(A41);
— each mf lies in I'g(A1); and
— the use Gmf for the oldest valid I'g-axiom for each mf has stabilized.

Such s’ exists because o is (2k+ 1, backup). At any stage s > s’ at which we visit «,
we would enumerate a valid ®;-axiom for x,. We conclude that z, € X;\I'1(As2)
as desired.

B. Since 8 < f, there is a least stage at which [ is visited after its final initialization.
At this stage, sg receives its final value, proving (1). By construction, we interrupt
this stage so that no other strategy has the same parameter at any point during
the construction. One can show that (5 is the only strategy that adds elements into

X([)sﬁ], and if ¢ is a previous value of sg, then no strategy adds elements into Xét]

after stage sg. It follows that X([)t] is computable for every previous value ¢ of sg.

Let ¥y = US>SB Uy s be the enumeration operator constructed by 8. By assump-
tion, Ag € A1, hence Wo(A1) # Ag. Let b be the oldest disagreement between
Po(A1) and Ag. Following similar reasoning as that for «, there is a leftmost out-
come o of the form (2[, off), (2], new) or (2l + 1) which is visited at infinitely many
stages, proving (2).

To prove (3), we begin by showing that mbﬁ stabilizes. Once sz and age®(b)
have stabilized, the only way that mbﬁ changes is if some b’ with agesl(b’) < 2l 1is
the oldest disagreement between Ay and Wo 4 (A1 ). At such a stage s, the
current outcome of S would be to the left of 0. This only occurs finitely often,

proving that mbﬁ stabilizes. Then all numbers greater than mf in the sg-th column

of N will eventually be dumped into Xy, implying that X([)SB] is cofinite. As for
older values of sg, we mentioned above that the corresponding columns of X, are
computable.

To prove (4), first note that by A(6), Rr,r, is satisfied. It remains to show

that for every value of s,, the set X {3"} is finite. As reasoned above, it suffices to

show that « only enumerates valid ®;-axioms for finitely many elements in X I[SC‘],
where s, has stabilized. The proof differs depending on whether o is (2I,off) or
20+ 1).

Suppose o is (2{,0ff). We have b € ¥y(A;)\Ap and mbﬁ ¢ T'g(41). By B’s
construction of Wy, we have yf € T'2(A;) (via an axiom with the same use as a
Up-axiom for b). Let ¢t be the age of yf in I'3(A4;1). Consider any stage s such
that so, sg, the age of yf in Ty(4;), and mf all have stabilized. Suppose «
enumerates a ®i-axiom for some x, at stage s. Then a’ is the oldest disagreement
between A; ; and ¥y s(Ass). Furthermore, if t,m’f < age®(a’), then the use of
the ®;-axiom enumerated by « contains the use of a I'y-axiom for mbﬁ , rendering

it invalid (because mf ¢ T'o(Ay)). But there are only finitely many a’ for which
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there is some s such that age®(a’) < max{t,mbﬁ }, so a can only enumerate valid
®-axioms for finitely many x, as desired.

If 0 is (204 1), the analysis proceeds similarly but with yf instead of mbﬁ . In this
case, we have that b € Ag\¥y(A;) and yf ¢ T'3(A;1). By B’s construction of X,
we have yf € X, via (y?, {b}) € ®y. Let t be the age of yg in Xs. Consider any
stage s such that s,, sg and the age of y{f in X5 all have stabilized. Suppose «
enumerates a $;1-axiom for some ./ at stage s. Then a’ is the oldest disagreement
between Ay, and ¥y 4(As,). Furthermore, if ¢ < age®(a’), then the use of the
®;-axiom enumerated by « contains the use of a I';-axiom for yf , rendering it
invalid (because y ¢ a(A1)). But there are only finitely many o’ for which there
is some s such that age®(a’) < t, so a can only enumerate valid ®;-axioms for
finitely many x, as desired. This completes the proof of (4).

To prove (5), suppose o is (2, new). We will show that mf € T'o(A1)\Xo. Since o
is (21, new), we have mf € T'y(A471). To show that mf ¢ Xp, note first that the only
dp-axiom enumerated by 8 for mf has use {b}, so it is not valid. Furthermore, as

mentioned above, 3 is the only strategy that adds elements into X([JSB ], SO mf ¢ Xo.
This completes the proof of (5).

C. We will prove (1)-(3) in the case where 7 is an Sa,-strategy. Then we will
sketch how to modify the proof to address the Sr, a,- and Sr, 1, a,-strategies.

Since v < f, there is a least stage at which ~ is visited after its final initialization.
At this stage, s, receives its final value, proving (1). By construction, we interrupt
this stage so that no other strategy has the same parameter at any point during
the construction.

Consider the sequence of good stages s, i.e., stages at which Ao, € Ap. This
sequence is infinite because {Ag s }scw is a good approximation to Ag. We claim that
the length of agreement [, s between Ag s and Ay (Xo,s) is bounded on this sequence.
Towards a contradiction, suppose not. We begin by showing that Ag(Xo) = Ao:
First, if a € Ag, then pick a good stage s such that a € Ay, and [, > a. Then
a € Ao(Xo,s) € Ag(Xo). Conversely, if a € Ag(Xy), then pick a good stage s such
that a € Ag(Xo,s) and Iy s > a. Then a € Ag s C Ay as desired.

Next, we shall show that Ag(Xy) = AO(X([)G”] U N[ZSW]). The forward inclusion
is trivial. To prove the backwards inclusion, consider n € A (X([fs”] UNI[ZsD), Let
(n, F') be the oldest Ag-axiom putting n into AO(X(E<S”] UNI[Z#+1). Pick a good stage
s > s, such that FI<%4] is permanently in X, and ly,s > n. When we first visit v at
some stage s’ > s, we enumerate a ®g-axiom ((r,z), Ag o) for each (r,z) € FIZs.
By the way that v adjusts the approximation to Ao, we have Ag o C Aps C Ap.
Therefore, F' C X, implying that n € Ag(Xp). This proves the reverse inclusion.

By inductive hypotheses B(3) and C(2), X([)<s”] is computable, because the only

strategies that contribute elements to X([)<S”] after stage s, are backup strategies

B < 7y or Sp;-strategies 7' < . The equality proved in the previous paragraph then
implies that Ag(Xp), and hence Ay, is c.e., contradicting our assumption on Ay.
Therefore [, ; is bounded on the sequence of good stages s. Fix a bound /.. Using
this, we will prove (1) and (2). First note that v can only contribute numbers to X
at good stages, because every ®¢-axiom enumerated by v at stage s has use Ag .
This means that only numbers n < [, can cause v to enumerate valid ®p-axioms.
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Ifn ¢ Ag X!l NZs] ,then n & Ag x < UNEs) at good stages, so n will
0 ) 0,s

not cause vy to enumerate any valid ®g-axioms. As for n € AO(X([)Q”} U N[Zsly,
the oldest valid Ag-axiom for n will appear to be the oldest valid axiom at all
sufficiently large good stages, because we are working with a good approximation
to Ag. Therefore, at all sufficiently large good stages, v does not enumerate any
valid ®p-axioms not already in ®q. This proves that v enumerates only finitely
many elements into Xo. Let D = Dy, be the set of these elements. To prove (1)
and (2), it remains to show that (k) is the leftmost outcome that -y visits at infinitely
many stages. Consider a stage s after which D lies permanently in Xy. At any
~-true stage s’ > s, v’s current outcome (k') satisfies Dy, C Dy/. This implies that
(k) <r, (K'). By the adjustment that v makes to the approximation of Ay, we know
that v is visited at infinitely many good stages. At all such stages (after stage s), v
will have outcome (k). This proves (1) and (2).

Finally, to prove (3), we show that there is n < I, such that Ag(n) # A¢(Xo)(n).
Assume that this is not the case. Fix a stage s such that for all s* > s and
each n < I, in Ag N Ag(Xo), we have n € Ag o N Ag s (Xo,s). Consider any
good stage s’ > s at which we visit v. If n ¢ Ag N Ag(Xp), then we must have
n¢ Ay s UAg s (Xos). Soly e > 1y, contradicting our choice of .

This proves (1)—(3) in the case where +y is an Sa,-strategy. As for the Sr, a,- and
Sry,.1y,0,-5trategies, most of the above proof goes through if we simply replace A,
Ag, and X, by the appropriate sets or operators. The only nontrivial change is
in proving that X{<S”] is computable (for Sr, a,) or X£<S”] is computable (for
Sro.Ih.A, ), respectively. To prove the former, apply inductive hypotheses A(3),
A(4), B(4), and C(2). Note that A(5) and B(5) are not relevant because any
strategy above v with such a true outcome works with a different version of Xj.
To prove the latter, apply inductive hypothesis C(2). Any backup strategy above ~
works with a different version of X5, so we are not concerned with it. (I

Lemma 3.3. One of the following holds:

(1) All requirements Rp, and Sa, are satisfied.

(2) There is some operator I'g such that all requirements Rr, r, and Sp, A, are
satisfied.

(3) There are operators I'y and T'v such that all requirements Rr,r, r, and
Sry,r.,A, ore satisfied.

Proof. First, suppose there are infinitely many Rr,-strategies along the true path f.
By construction of the tree of strategies, there must be infinitely many Sa,-strate-
gies along f as well. Thus all Sa,-strategies are assigned to nodes on the true path
and hence are satisfied. To show that Rr, is satisfied, fix an R -strategy o < f.
Let v be the next Sa,-strategy along f. By construction of the tree of strate-
gies, 7v’s immediate predecessor is either an Rr, r, r,-strategy with true outcome
of the form (2k + 1, new), or a backup Rr,,r, r,-strategy with true outcome of the
form (21, new). In both cases, the previous lemma shows that Rr, is satisfied.
Second, if there are only finitely many Rr,-strategies along f, fix @ < f and I'g
such that « is an Rr,-strategy and no immediate successor of a is an Ry -strategy.
If there are infinitely many Rrp, r,-strategies along f, we claim that all require-
ments Rr, r, and Sr, A, are satisfied. By construction of the tree of strategies,
there must be infinitely many Sr, a,-strategies along f. Thus all Sp, a,-strate-
gies are assigned to nodes on the true path and hence are satisfied. To show that
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Rr,.r, is satisfied, fix an Rp, r,-strategy § < f extending «. Let § be the next
Sry.A,-strategy along f. By construction of the tree of strategies, ¢’s immediate
predecessor is either an Rrp, r, r,-strategy with true outcome of the form (2k), or
a backup Rr, r, r,-strategy with true outcome of the form (21, off) or (2{ + 1). In
each case, the previous lemma shows that Rr, r, is satisfied. This proves our claim.

Finally, suppose there are only finitely many Rr, r,-strategies along f. Fix
o/ < f extending o and I'y such that o’ is an Rr, r,-strategy and no immediate
successor of o is an Rr,,r,-strategy. (Such o' exists because a’s only immediate
successor, which must lie along f, is an Rp,r,-strategy.) Then no immediate
successor of o along f can be a backup Rr, r, r,-strategy, so every immediate
successor of o along f is either an Rr, r, r,-strategy with true outcome of the
form (2k + 1,0ld) or (2k + 1, off), or an Sr, r, a,-strategy. By the previous lemma
and the design of the tree, all requirements Rr, r, r, and Sr, r,,a, are satisfied. 0

4. A WEAK AHMAD TRIPLE

In the previous section, we saw that an Ahmad triple is not possible in the
¥:9-enumeration degrees. In this section, we show a positive result, the existence of
what we call a weak Ahmad triple.

Theorem 4.1. There are pairwise incomparable AY-enumeration degrees a;, as,
and az such that

(1) there are AY-degrees aia % az and ass £ ay with ajs V ass = as; and

(2) for every ¥.9-degree x < ag, we have that either x < a; or x < as.
We call such a triple of degrees a1, as, and az a weak Ahmad triple.

4.1. Requirements. We will construct AS-sets A;, A3, Aj2, and Agz satisfying
the following list of requirements for every natural number e:

NP2 App # O.(A3 ® Asg);

N2 Ags # O.(A1 @ Ar);
Re: X = @c(A12 ® Az) = (30)[X = [(A; & A1z)] or (34)[Az3 = A(X)];
RE:Y =W (A1p ® Ags) = (AD)[Y = T(A3 ® Ags)] or (3A)[A1 = A(Y)].

Then a; = deg, (A1 ® Aj2), az = deg,(A12 & Aa3), and ag = deg, (A3 ® As3)
clearly satisfy clauses (1) and (2) of the theorem: Indeed, if Z <, Ajp @ Ass,
then Z will take the role of X for some requirement R} and the role of Y for some
requirement R3,. If either requirement is satisfied by the first disjunct, then we
know that Z <. A1 & A1 or Z <. A3 ® Ass, respectively. Otherwise, we have that
both A3 <. Z and As3 <. Z, and so A5 ® Az =, Z. Finally, by the definition of
the degrees and by density, our requirements imply that a;, as and ag are pairwise
incomparable: Clearly, a; £ a; for each j € {1,3} by (1). Similarly, a; < as_;
for some j € {1,3} contradicts (1). If a; < ap for some j € {1, 3}, then fix x with
a; < x < ag, s0 x < ag—; by (2), and in particular a; < as_;, contradicting the
last sentence.

The reader might recognize the R-requirements to be very similar to the require-
ments for making an Ahmad pair. Indeed, we can think of R. as being the strategy
making (Asz, A1) an Ahmad pair “relative” to A;z, while R? is the strategy making
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(A12, A3) an Ahmad pair “relative” to Agz. In fact, as we will see, the addition
of Ajs to the oracle in R! will not pose additional difficulties, and a similar Ahmad
pair strategy can be used.

4.2. Naive description of the strategies. We start by briefly outlining naive
strategies to satisfy each requirement and then discuss how to modify them in order
to avoid conflicts between them. The construction shares many similarities with
the usual construction of an Ahmad pair on a tree. We will use the usual setup of
a tree of strategies ordered by priority.

An N-requirement N2, say, is satisfied using a standard Friedberg-Muchnik
strategy «: It picks a witness z, and enumerates it into Ajo. It waits to see if
this witness will ever enter the set ©,(As @ As3). It wins if this never happens,
provided that z, remains in Ajs. If z, € O,(As ® Aas), we say that z, is realized.
In that case, a can win by extracting z, from A;s and ensuring that z, will remain
in ©,(As @ As3) by imposing a finite restraint on the sets Az and Aas.

Of course, this puts N''2-strategies and N ?3-strategies in conflict, and so already
we see the need for a priority ordering between strategies. This is an easy obstacle
to deal with. The complexity of our construction will only be revealed once we
think about the R-strategies as well.

Consider an R-requirement R3, say, and its strategy 8. Its initial goal is to
build the operator I'g so that I'g(As & Asz) = Y3, where Y3 = Ug(A12 & Ags).
When activated at stage s, for every natural number n < s, it checks whether
n € Y \T'g(As @ Ass), and if so, it enumerates a new axiom (n,D) into I'g,
where D contains a fresh number ag(n) that we enumerate into As. If, on the other
hand, n € T'3(As @ Aas) \ Y3, then the strategy invalidates all valid axioms for n
by extracting from As the corresponding marker az(n). A new fresh value is then
picked for as(n) to use in the next I'-axiom. (This allows us to keep our sets AY.)

The R'- and R3-strategies do not interfere with each other: They modify the
sets A; and As, respectively; however, R!-strategies do not involve the set A3, and
R3-strategies do not involve the set A;. R-strategies do not interfere with higher
priority N -strategies, as our priority tree will ensure that whenever an N -strategy
imposes a restraint, all lower-priority strategies are initialized and choose all of their
parameters (specifically, numbers or witnesses they might later on like to extract
from some set) as fresh numbers, larger than any number seen in the construction
so far. An N'12-strategy does not directly interfere with R!-strategies of higher
priority: Its extraction of the witness z from A;5 may cause some x to leave X.
However, our design of the axioms that are enumerated into I'; will guarantee in
that case that x will also leave I'; (A1 @ Ajs), and hence the R!-strategy will not
even have to act in response.

The situation is quite different, unfortunately, when one considers how the ex-
traction of z, from Ay by an N'%-strategy a affects a higher-priority R3-strat-
egy B: In that case as well, some y may be forced out of Y3 through this extraction,
and so 8 will react by extracting as(y) from As. This action, however, might di-
rectly interfere with the restraint that « is trying to impose on As in order to keep
Zo € On(A3® Asg). In order to deal with this problem, we will need to modify our
strategies.

4.3. An N-strategy working below a single R-strategy. For simplicity, we
describe first the actions and outcomes of an N''2-strategy o with one R3-strategy 3
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of higher priority working above it. In the formal construction below, we will deal
with the more general case.

The N'2-strategy « will start by defining a threshold d,, to be larger than any
number mentioned so far. This threshold is meant to allow the R-strategy 8 enough
room to satisfy its requirement. If T'g(As & Aa3) changes its value on a number
x < dg, then a will be restarted. So « can assume that I'g(As & Ags) does not
change below d, and hence Az does not change on any ag(n) for n < d,. From
this point on, a (temporarily) takes over control of the operator I'g: It defines a
killing point k. as a fresh number and enumerates it into Az. It will require that
the strategy S adds this killing point to the axiom that it enumerates into I's for
any x > d,. Whenever « is restarted, all parameters that « had at the previous
stage will be canceled except for the threshold d, and the killing point k.. The
killing point k, is extracted from As (thereby invalidating all axioms that were
enumerated into I'g for any element = > d,). Finally, a new value for k, will be
set - a fresh number, not seen in the construction so far, and this fresh number is
added to As. Note that (assuming I'g(As & As3) | do changes finitely often, which
is something we will prove in Lemma 4.4), this restart can happen at most finitely
often.

The strategy « has three outcomes, stop <p co <p wait. Once it has completed
its initial setup (defining thresholds and killing points), the strategy picks a wit-
ness z, as a fresh number and enumerates it into A5 as before. It waits to see if z,
becomes realized, and while waiting, the strategy has its rightmost outcome wait.
Suppose z, enters O, (As @ As3) via an axiom (z,, F,, @ X). The strategy first
checks if it can extract z, without causing I'g-correction that will extract from As
some number in E, . At this point, the strategy is willing to sacrifice all other
setups that it has made so far and enumerate into A;> and As3 as many numbers
as necessary in order to guarantee this, with the exception of a certain pair of finite
sets R'? and R?? consisting of witnesses selected by higher-priority strategies and
kept out of their corresponding set. So if it is possible to add to A;5 and Az some
finite set of numbers that make the extraction of z, essentially harmless, then the
strategy extracts z, from A5 and takes outcome stop, where it will remain forever
(unless initialized or restarted).

Suppose that this is not possible. In this case, the strategy « gives up on the
witness z, (at least for now) and decides to prove that ’s requirement is satisfied
by initiating the construction of A so that A(Yz) = A12. We say that o switches S
from I" to A. The fact that an extraction of z, from A;s causes the extraction of a
finite set F._, from Y can now be turned into the first axiom in A. We would like to
have a stronger relationship: zo € Ajg if and only if F,, C Yg. Of course, currently
there might be other numbers in A;5 and Ass whose extraction may also cause F_
to leave Y. In order to remove their influence, we will dump into A;o and Ags,
respectively, all numbers that were ever in A1 or Aoz unless they belong to a higher-
priority N-strategy (i.e., are in R'? or R?3) or a lower-priority N-strategy v = o oc:
We collect those elements in Pj3 and P3. The act of dumping means that we
enumerate these numbers into A1, or Aag, respectively, and never again allow them
to leave these sets. (Note that any numbers controlled by strategies to the right of
the outcome oo of «, or which will be replaced by new versions, can be dumped
without harm.) We begin the construction of the operator A by enumerating the
axiom (zq, F,_ ), along with (z, () for every element z that is dumped into Aja. At
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the end of this stage, we will visit the outcome co, but before we do so, we set things
up for a new round: We extract the killing point k, from Az and redefine it as a
fresh number. We record the parameters (zq, E,_, F,_ ) in a list W that we keep
track of and then redefine the value of z, as a new fresh number. At the next visit,
the strategy a will start a new attempt at diagonalization with this new witness,
but it will keep an eye on the previous witness z and its parameters E, and F,. If
it ever sees that by dumping into A5 and Ass elements outside of R'2 U R?3, it
can restore F, C As and extract z from A;5 (and this extraction will not cause
to extract any element from E, back out of Az to correct I'g), then the strategy o
will do so and take outcome stop forever.

Below the outcome oo of a, we will have a duplicate strategy for every require-
ment of lower priority than 3’s requirement, including the one that « failed to
satisfy. These strategies will not have to worry about the strategy S any longer as
its requirement is satisfied in a different way. Specifically, an N '2-strategy ~ will
be able to employ the original Friedberg-Muchnik strategy with a couple of mod-
ifications: The witnesses that « can use have to be the witnesses that « formerly
used for its definition of A; these will be collected in a stream S'2 that o controls.
Every time o has outcome oo, it adds one more element to the stream S'2. The
strategy v will wait for the stream to contain a currently unused witness z before
it can carry on. It will then proceed as usual; however, it will only trust Az below
the current killing point of a. So z will be realized if z € ©,(As | ko ® Aag) at
the current stage. If oo is a@’s true outcome, i.e., if « visits this outcome infinitely
often, then (’s activity is pushed away by the extraction of the infinite unbounded
sequence of killing points, thereby destroying I'g as discussed above, but giving ~
enough room to faithfully realize its witness. Note that since {kqs}s<w is un-
bounded, we will still have that if the witness is never realized then it does not
belong to ©,(As @ As3). Finally, if v succeeds in realizing a witness, then it ex-
tracts it from A;5 and declares victory with outcome stop. This might have an
unanticipated effect on the operator A that « is constructing. It is possible that
an axiom for some number 2z’ > z was enumerated into A under the assumption
that z remains in A;5. The extraction of z from A;5 may cause F, to not be a
subset of Y3, even though 2z’ € Ajs. To prevent complications in the operator A,
we will in this case dump (and thus remove from the stream) all elements in the
stream S'2 that entered the stream after z did.

A similar consideration has to be incorporated when an N ?3-strategy § works
below a"co. For simplicity, we may assume that § has no R!-strategy working
above it. The strategy J also operates a simple Friedberg-Muchnik strategy with
the additional requirement that whenever it extracts a witness from A3, it must
dump into A2 (and thus remove from the stream) all witnesses that were put into
the stream after § defined its witness.

4.4. Strategies, parameters and the tree. We will describe the tree of strate-
gies T C ({0, wait, stop} U {o0; | i < w})<* (which will be a finite-branching tree).
We start with a priority ordering of all requirements of order type w. To define
the tree, we will make use of two other sets defined inductively as we move down
the tree. We have a set M, of nodes < o that have been killed, and a list @), of
requirements that need to be assigned (or reassigned) to nodes = o. The root of
the tree will be assigned the highest-priority requirement, and we set My = () and
Qp to consist of all requirements. Suppose that we have assigned a requirement
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to a node o in the tree. If this strategy is an R;'-—strategy, say, then it has only
one immediate successor 0°0. We set Qo0 = Q5 \ {R}} and assign to o"0 the
highest-priority requirement in the list Q,~. We set My~ = M,.

Suppose now that o is assigned an N-requirement, say, an N 2-requirement.
(The case N23 is similar, but now conflicting with R!.) Let 6o < §; < -+ < d,
be all initial segments of o to which we have assigned an R3-strategy and which
are not in M,. (We call such ¢, alive at 0.) The strategy ¢ has n + 3 immediate
SUCCessors,

o'stop <y, 0'oog <p 0001 <, -+ <y, 0 00, <p 0 wait.

We set Qowait = Qostop = Qo \ {N2?} and assign to each of the nodes o wait
and o”stop the highest-priority requirement in this list. We also set My wait =
Morstop = M. For i < n, we set Qo-00;, to be Q,, along with the requirements
associated with §;41,...,d,, and . We assign to o co; the highest-priority require-
ment in Qpoo;. We set My-oo, = My U{0;,0i41,...,0n}.

Lemma 4.2. Let h be an infinite path in the tree of strategies T. FEvery require-
ment Q in our priority ordering is assigned to some node o < h such that for
every § with o < 0 < h, Q is not in Qs.

Proof. We prove this statement by induction on the priority ordering of all require-
ments. Suppose that the statement is true for all requirements of higher priority
than the requirement Q, and let ¢’ < h be least such that no requirement of higher
priority than Q enters Qs where o’ < § < h, or is assigned to any such ¢§. It follows
that Q is assigned to some longest o < ¢’, and we have the following two cases:
Case 1: Q = R; Fix the Ri-strategies 6y < 61 --- < J, < o that are alive at 0. By
our inductive hypothesis, if there is a least strategy 6 < h extending o that puts Q
into the list Qs, then this strategy cannot kill §; for any [ < n by our inductive
assumptions. Thus only o (and possibly strategies extending o) are killed by J, and
so 6 will be assigned the requirement Q. Now, since no Ri-requirement of higher
priority than Q will switch from I" to A along h beyond §, the requirement Q cannot
be added to Qg for any ¢’ with § < ¢’ < h; as a consequence, there is also a longest
Q-strategy along h.

Case 2: Q = N¥, and by symmetry assume ij = 12. Fix as usual the R3-strategies
dg < 01+ < 6, < o alive at 0. The strategy ¢ cannot put Q into the set Qs
unless o switches the outcome of 6, from T' to A along h (since, by inductive
hypothesis, no §; can be killed along h anymore). But then Q must be assigned
to 0”0 and cannot be added to Qs for any ¢’ with § < &’ < h. O

An R-strategy S has only its operator I's as a parameter. Initially (and after
every initialization), we set 'z = (). We will also refer to ®5(A12 @ Ag3) as Xz (in
the case of an R!-strategy, and proceed similarly in the case of an R3-strategy.)

An N'2-strategy a extending R3-strategies By < B1 < --- < B, still alive at «
has a threshold d,, a set of killing points k0 < --- < k", a witness z, a list of
old witnesses W, each component of which contains a number z, an index i < n,
two finite sets E, and F., and enumeration operators Ag,, ..., Ag, . Initially
(and after every initialization), all of these parameters are undefined or empty. An
NZ_strategy ~ has the same list of parameters with respect to all R!-strategies

that are still alive at ~.
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In addition, every strategy has two streams S'2 and S?3. These streams are
determined by the predecessor of every strategy. Whenever a strategy is canceled,
most of the elements in its stream (except for possibly one element) will be dumped
into the corresponding set A5 or Ass.

4.5. Construction. In our construction, we will build a sequence { fs}s<.. Each fs
is a node of length s on our tree of strategies. Strategies visited at stage s + 1 will
modify the values of their parameters, as well as the approximations to the sets Az,
Aoz, Ay and Ag. Since our tree is finitely branching, there is a leftmost path of
nodes visited at infinitely many stages, the true path. The intention is that for
every requirement Q, there is a strategy along the true path that satisfies Q.

At stage 0, we set A15 = Az = A; = Az = 0, and all parameters of all strategies
are in initial state (either undefined or empty). All streams are empty.

At stage s+ 1, we always start by visiting the root of the tree, namely, fs11 [ 0 =
(). We add to the streams SéQ and Sé?’ of the root the element s. Suppose we have
built fs11 [ k along with its streams S}il i and S]%il g+ 1f we have added a new
number to S'2, then we denote it by n'2. If we have added a new number to S22,
then we denote it by n?3. If k = s + 1, then we are done with the construction
of fs11: We initialize all strategies § > fs11, dump their streams into A;2 and Asg,
respectively, empty their streams (i.e., set S(}Z = S§3 = ()), and move on to the next
stage.

Otherwise, we have four cases depending on the requirement assigned to fsy1 [ k:

Case 1: fsr1 [ kisan R}O?—strategy B: The strategy scans all x < s.

(a) If x € Y3 \I'g(As ® Aas), then the strategy picks a fresh marker as(z)
and enumerates it into Az. Then it defines K 5 as the finite set of all
B-killing points that belong to an A'2-strategy a = 3 with current
threshold d, < z. (Note that this is a finite set as there are currently
only finitely many strategies that are not in initial state.) The strategy
then enumerates into I'g the axiom (z, ({az(z)} U K§) ® Azs [ s).

(b) If z € T'3(As @ Aogs) \ Yp, then the strategy extracts from Aj all
markers ag(z) that are in some valid axiom for x in I'g.

Once the scan is over, the strategy defines the stream S’};% by adding to
its previous value the number n'? and, similarly, the stream S%?O by adding
to it the number n?® (if they exist). Then the strategy ends the substage
with outcome 0.

Case 2: fs11 | k is an R]l—strategy. This case is dealt with analogously to the
previous case.

Case 3: foi1 | k is an N1 2-strategy a. Fix By < 81 < --+ < B, < « to be the
R3-strategies alive at o. Let K, be the greatest lower bound of the set of
all killing points k!, where v is an N''?-strategy and o = 7"00;. Let R'?
and R?3 be the sets of witnesses currently used by higher-priority N''2- and
N?3_strategies, respectively. Similarly, the sets P{, and Pi; consist of the
current witnesses of N12- and N?3-strategies extending outcome o0o;.

If this is the first time that « is visited after initialization, then define
the threshold d,, to be fresh and large and the killing points k0 < -+ < k2
as fresh numbers. Enumerate every killing point into Az. Then go to the
first case which applies:
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If T'g,(As @ Agos) | do has changed since we last visited «, then can-
cel 2o, W, and Ag, for every i < n. Extract the killing points k4, where
j =i from As. Define new values for these killing points and enumer-
ate them into As. Initialize all strategies of lower priority than a.
Dump the streams S!2 and S23 into A;o and Aag, respectively. Set
S12 =523 = () for every possible outcome o of a and end the substage
with outcome wait.

If the previous time when we visited «, it had outcome stop, and «
has not been initialized since, then let the outcome again be stop.
Define S é%stop and Sii,wp by adding to them the number n'? and n23,
respectively (if they exist).

Scan the list of old witnesses W,,. For each entry (z,i,, F., F,) such
that z has not yet been dumped into Ajs, check to see whether the
number ¢, can be decreased: Find the least j, such that for every
1> j., if we enumerate back into A3 the set E,, into Aq5 every number
x # z such that * < s and x ¢ R'? U Uj<j. Pla, and into Agz every

number z < s that is not in the set R* U U,<;. P2j37 then 3; will not
be forced to extract from As any number in E, during I'g,-correction.
(In this case, we say that z is I'g, -cleared for ¢ > j,.) If there are no
witnesses with j, < i, then move on to step (d). Otherwise, among
all witnesses with j, <., pick the one with least j., and among these
the least 2. Enumerate E, into Az, dump into A;2 every number
x # z such that * < s and x ¢ R'? U Uj<;. Pi2, and into Aps every

number z < s such that z ¢ R?3 U Uj<j. Pos- If j. = 0, then set
Zoa = 2z, extract it from A9 and end the substage with outcome stop.
Set S12 =523 = () for every possible outcome o of & and dump the
elements that were in each stream into Ais and Asg, respectively.
Otherwise, if j, > 0, then set i, = j, —1. Let F, C Y, be the set such
that z € Ay if and only if F, C Yj, . Enumerate into Ag,  the axiom
(2, F.). Update the record in W, to include (z,i,, E,, F,). Extract
the killing points k/, where j > i, from Az, and end the substage with
outcome 00;,. We set the streams Ségo = S‘i?’o = () for every outcome o
of « that is to the right of co;, and dump all elements that were in
those streams except z into A;p and Ass, respectively. Dump n'2
into Aq2 (if it exists). We leave S!2 and 5?2 unchanged for every
outcome o of « that is to the left of co;,. We update Slgooiz by adding
the number z to it, and Sig’ooi by adding the number n?? (if it exists)
to it. ’

If no current witness is selected and n'? exists and is larger than the
current witness of every N -strategy v with v wait < « or v stop =< a,
then define z, = n'? and enumerate it into A;s. Otherwise (if nl2
is defined but too small), dump n'? into A;». End the substage with
outcome wait, leaving all streams of immediate successors of o un-
changed.

If 2o, ¢ ©4(As @ Aoz) or if 2z, € O4(As & Agz) but for every valid
axiom (zo, E @ D) € ©,, we have that max(FE) > K,, then end the

substage with outcome wait. Add n'? into S!2 . and n?3 into S22 .
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(if they exist). Leave all other streams of immediate successors of «
unchanged.

(f) If zo € ©4(As B Az3) via an axiom (z,, £ @ D) with max(E) < K,,
then we add (z4,n + 1, E,0) to W, and go back to step (c¢). (Note
that the current outcome will not be wait, since in step (c), we are
guaranteed to find some witness j, < n -+ 1.) We also cancel the value
of the current witness so that at the next visit, if o passes through
steps (a), (b) and (c), then it will go to step (d) and select a new value
of the witness.

Case 4: foi1 | k is an N?3-strategy. This case is dealt with analogously to the
previous case.

4.6. Verification. As anticipated, we have an infinite true path f of strategies
on the tree consisting of the leftmost nodes visited at infinitely many stages. Our
intention is to prove that nodes along this path satisfy their requirements. In
order to prove that nodes on this path are initialized only finitely often, we must
consider an N-strategy on the true path and think about how many times it can be
restarted, as that is the only reason, other than just visiting a node to the left of a
strategy, that causes the initialization of strategies. We will prove, in Lemma 4.4,
that for every R3-strategy B < f, the set Ig(As @ Azg) is AY, and similarly, for
every Rl-strategy 5’ < f, the set I'z/(A; & Ag2) is AJ. Throughout this proof, we
will phrase various interactions between strategies for the pairs R? and N'2. We
note that the relationship between R!' and N3 is symmetric.

First, we point out a technical fact about streams that will be useful in the rest
of the proof.

Lemma 4.3. If n enters a stream of a strateqy 6 at stage s and § was last visited
or initialized at stage s—, then n > s~ and n is larger than all previous elements of
either stream of 0.

Proof. The proof is an easy induction on the construction. The root is never ini-
tialized, and at stage s + 1, néQ = n%?’ = s, which is the last time the root was
visited.

Suppose the statement is true about 4. If § adds n'2 and n23 to the stream of its
immediate successor, then the statement clearly follows by induction, as we cannot
initialize an immediate successor of § without either visiting or initializing §. So
suppose that § is an A 12-strategy, say, and § adds a witness z to the stream of
0”00y, as that is the only other case. In that case, the witness z was defined after
6" 00; was last visited or initialized at stage t, as whenever we initialize or visit 0"co;,
we initialize and empty the stream of all strategies 6" co; where j > i. At the stage
when z was defined, it was defined as n};27 which by induction is greater than or
equal to the previous stage when § was visited, and hence greater than or equal
to t, and larger than any element in the stream of § co;. (|

Lemma 4.4. Let 3 < f be an R>-strategqy. Suppose that o is an N''2-strategy such
that B < a < f and B is alive at . Let d,, be a threshold of a. Then there is a
stage s such that after stage s, the strategy 8 does not modify the set I'3(As & Agg)
below the threshold d.. Thus, in particular, if B is never killed along f then the set
Ff}(Ag 57 A23) 18 Ag
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Proof. We prove this theorem by induction on the priority of 8 and a.. So towards a
contradiction, suppose that the statement is false for a pair of strategies 8 < a < f,
and take the pair where « has highest priority. It follows from our choice of « that
there is a least stage s, such that after stage s,, the strategy a (and hence § as
well) is not initialized and never again changes the value of its threshold d,. At
stage s, the strategy « picks its killing points as fresh numbers, and hence they do
not interfere with any axiom for any number n < s, in I'g. After stage s,, every
time I'3(As & Ass) changes on some number n < s,, the strategy « is restarted.
It chooses all parameters anew and initializes all lower-priority strategies. This
means that if 3 enumerated a new axiom into I's for some n < s, such that
n e \I’B(Au S Agg), then:

(1) This axiom cannot be invalidated by any strategy 7 of equal or lower pri-
ority than «, as N'12-strategies are initialized or restarted and hence pick
their killing points as fresh numbers larger than az(n) and have thresholds
larger than n (hence none of their killing points will be included by 8 in
this axiom). A23-strategies have to pick their witnesses anew, from fresh
streams, as their streams are emptied at the current stage. Hence these
witnesses will be larger than the current stage and will not be included in
the Ass-portion of the axiom for n.

(2) The axiom that made n enter Ug( A2 @ Ass) uses (by our convention) only
numbers smaller than the current stage and hence it will not be invalidated
by any strategy of equal or lower priority than «, as these strategies are
initialized and their streams are emptied. By Lemma 4.3, their streams will
contain only numbers larger than the current stage, from which they will
pick their witnesses.

No strategy of higher priority than o can invalidate either of these axioms, either:
A higher-priority strategy extracts from Ajs or Asz only at stages at which it,
for the first time after initialization, has its leftmost outcome stop, which by our
choice of s, must happen before stage s,. Similarly, after stage s, higher-priority
strategies extract killing points only associated with R-strategies that they end up
killing, and since § is alive at «, this cannot be 5. Of course, all Az-markers are
different, so R3-strategies do not interfere with each other.

It only takes finitely many stages for any number n < d, that ever enters
Ug(Ar2 @ Agz) to enter Ug(Aro & Agz) permanently, and hence after that stage, 8
will not need to modify I'g(As @ Ass) ever again. O

The lemma above has two easy but significant corollaries. The first corollary
was already anticipated by us.

Corollary 4.5. FEvery strategy along the true path is initialized at most finitely
often. O

The second corollary gives us the satisfaction of R-requirements in one case.

Corollary 4.6. If 3 < f is an R3-strategy that is alive at every successor of B3
along the true path, then T'g(As @ Aas) = W(A12 B Aaz). The analogous statement
for RY-strategies holds as well.

Proof. Fix an R3-strategy 8 < f. Consider the N'%-strategies 8 < ap < oy <
<ov < ap < -+ < f along the true path. The sequence {dq, }i<. of the final values
of their thresholds, attained at the first true stage after the corresponding strategy
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stops being initialized, is an unbounded increasing sequence. By Lemma 4.4, for
every 1, there is a stage s; such that at all ¢ > s;, the strategy  does not modify
I's(As @ Az3) on numbers less than d,,, and hence, by ’s design, I'g(As @ Aa3) |
do; = Up(A12®A23) | da, at all stages t > s;. Furthermore, the proof of Lemma 4.4
actually gives us more: If n < d,, is in Ug(A12 ® A23) at any S-true stage after o
selects its last threshold d,, then n € Tg(As & Agz) N ¥a(A12 & Agz). This gives
us immediately that F[g(Ag @ Aoz) | doy = Up(Ai2 ® Ag3) | do, and, by the
unboundedness of {dq, }i<w, the fact that T'g(As @ Aaz) = Up(A12 @ Aas). O

We next concentrate on the N-requirements. To prove that each is eventually
satisfied, we will first show that once a number is I';-cleared, it will remain I';-cleared
at all future stages.

Lemma 4.7. Fiz an N'2-strategy o < f below R3-strategies By < -+ < B, alive
at . If o moves a witness z from 512 to SOO , where i < j, at a stage after a’s last
initialization, then at any future stage if z is extracted from Ais and E, is enu-
merated back into As, the strategy B; will not change Az to cause z to be extracted

from F,B (Ag D A23).

Proof. Suppose that at stage s, the strategy a moves z from S12 to SI2 | where
i < j. At this stage, it dumps into A;2 all numbers 2 < s Such that z gé {z} U
R®UU, <, Pj,, and into Az all numbers = < s such that ¢ R® U(J, ., Piy. At
stage s, we see that under these circumstances, the extraction of z from Ay w111 not
cause any number y that is currently in Wg, (A12 @ Agsz) and that has an As-marker
as(y) € E. toleave the set Uy (A12® Ags). Assuming that (R0, ., Piy)NA as
seen at the current stage s remains a subset of Ay, and that (R*U(J,, ., Piz)N Ay
as seen at stage s remains a subset of Ass, this will be true at future stages as
well, as every strategy to the right of a”oo; is initialized and will select its future
witnesses from its stream that is currently empty and will by Lemma 4.3 in the
future only have elements larger than any number mentioned before stage s, hence
not be included in any axiom in ¥g, valid at stage s.

The only potential problem is that some strategy v might, at a stage t, extract
from A5 a number y that is in the set (R2U|J,,; Pjs)N A1z at stage s, or from Agg
a number y that is in the set (R U|J, ., Pi;) N Aoz at stage s.

First note that if y € R' U R?3, then y is the current witness of an N -strategy
6 < «. Since § has no witness at stages when it has an infinite outcome, and its
current witness is not in A5 if it has outcome stop, it follows that 6" wait < «. This
means that y remains the current witness of § at all future stages and never enters
another stream. No other strategy has access to it in order to extract it at stage ¢.

Suppose that y € Pflg for ¢/ < i. Let § = a’co; be the strategy with witness y
at stage s. Let v be the strategy that extracts y at stage ¢. Once again, v cannot
have higher priority than «, or else o would be initialized. It follows that v = «,
or else v = o ooy, where k < i, as all other strategies of lower priority than o are
initialized at the stage when y was assigned to 0 as a witness and thus have streams
consisting of elements larger than y by Lemma 4.3. If v = «, then at stage t, the
strategy o dumps all elements less than ¢ that are not in {y} U R'2 U R?3 into Ajy
and Ass, respectively, in particular z will be dumped. If v = a’ocop and k < 4,
then consider the stage r at which y entered the stream of a"ocoy. Since at stage s,
the number y is already in the stream of a"co;/, and whenever a number switches
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streams, all streams associated with strategies to the right are dumped, we have
that at stage r, the number z is dumped (z cannot already be in a stream to the
left of or equal to a’ocop at stage r, or else y would have been dumped before
stage 7). O

Lemma 4.8. Every N -requirement is satisfied.

Proof. By symmetry, fix an A12-requirement, say. By Lemma 4.2, there is a strat-
egy « along the true path that is assigned A/1? and such that no strategy o extend-
ing o along the path f has N2 € Q,. It follows that a"wait < f or a’stop < f.

Let s, be the first stage after which « is not initialized. Recall that the num-
ber K, is defined as the greatest lower bound of the set of all killing points kf/,
where v is an AN''2-strategy and o > y"00;. Every time that « is visited, this number
has a larger value than at the previous visit. Furthermore, no A -strategy of higher
priority than a modifies A3 on numbers x < K,. This is because when such an
N-strategy v such that v"0o; < « has outcome oo;, it extracts from Az all killing
points k%, where j > 4, and then it redefines them as fresh numbers. The strategy ~
cannot extract any smaller killing point without initializing a.

So A3 | K, can only be modified by an R-strategy 5 above a. We note that
such a strategy is necessarily alive at «. Indeed, if 5 is not alive above at «, then
it is killed by a strategy v such that 7 0o; < « and 3 is v’s j-th R3-strategy, where
j > 1. Every time that v has outcome o0o;, it extracts its j-th killing point from Ag,
thereby invalidating all axioms in I'g for numbers x > d,. After stage s,, the
strategy 3 does not modify I'3(As @ Ag3) on any number < d.,, hence if it sees
a valid axiom for some x that needs to be made invalid, then > d.,. This axiom
has marker az(x) > kI > K.

If o wait < f, then let s > s, be such that o has outcome wait at every stage
t > s. After stage s, the strategy « will select its final witness z,. It follows from
the construction that z, never enters ©,(As © Ag3) with an axiom that does not
use any numbers larger than K. Since the values of K, at a-true stages form an
unbounded sequence, it follows that every axiom we ever see for z, in ©,(As® Ass)
is invalid at infinitely many stages. Hence z,, ¢ O,(A3® As3). As no strategy other
than « can extract z, from Ajs, and z, is enumerated into A;o at the stage when
it is defined, it follows that z, € Aj2 \ O, (A3 B Ass).

If, on the other hand, a"stop < f, then there is a stage s > s, such that « has
outcome stop for the first time at stage s. At this stage, o has found a witness z
that is cleared by all higher priority R3-strategies that are alive at «. Note that
max(E,) < K,, and by Lemma 4.7, no strategy § that is alive at « will extract a
marker from As that is in F,. Every number that was in A3 when the axiom for z
in ©, was found is dumped into A,z at stage s (only elements that are in R?? are
preserved; however, they cannot have been in R?3 when z was realized and not be
in R?3 later unless « is initialized). It follows that z € ©,(A3 @ Az3) \ Aja. O

The final lemma that we present handles the case when an R-requirement is
satisfied by its backup strategy, which completes the proof.

Lemma 4.9. Let a be an N''2-strategy below the R3-strategies By < --+ < fBn < «
alive at . If a’oo; < f, then A1a <. Yp,. (Of course, a symmetric result holds for
N2 _strategies below R*'-strategies.)
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Proof. Let s, be a stage such that a"oo; is not initialized after stage sq,. After this
stage, the set R'? does not change. We prove that if z > s, is an element that is
never dumped into A2, then either x € RE? or x € Ayz if and only if z € Ag, (V3,).

Fix x and suppose that x is never dumped into A and that x ¢ R.2. Fix the
least witness z of a such that z > x. Consider the stage at which z is realized
and enters one of the streams of a’s immediate successors. If z > x, then at that
stage,  would be dumped into Ay. So suppose that z = z. Now consider the next
stage at which o has outcome oo;. At that stage, some element 2’ enters the stream
Sarco;, and by our choice of s,,, we know that at this stage,  is in some stream
Saroo; Where j > i. If x # Z', then = would be dumped into Aj at this stage, so
suppose that = 2z’ and x enters the stream Sy, at stage s. Then at this stage,
we add an axiom (z, Fy) into Ag, for =, where F, is such that under the current
circumstances at stage s, we have that x € A5 if and only if F,, C Yp,. As in the
proof of Lemma 4.7, if some number that is in the set (R'?> UJ;; P,) N A1z at

stage s is extracted from A5 or a number that is in the set (R23UU]'<¢ P2j3)ﬂA23 at
stage s is extracted from Ass, then x is dumped into A;2. So suppose that neither
of these ever happens. Then clearly, if € A5, then F,; C Yj,, as all strategies of
lower priority than o’co; are initialized at stage s. If at any stage ¢ > s, we visit «
and notice that F,, C Yp, even if & ¢ Ajo, then the strategy a will move z to a
smaller stream and initialize o oo;, contrary to our assumptions. [

Putting Corollary 4.6 and Lemma 4.9 together, we conclude the following
Corollary 4.10. Every R-requirement is satisfied.

Proof. Fix an R3-requirement, say. By Lemma 4.2, let 3 be the longest R3-strategy
along f. If 8 is not switched from I' to A by any strategy extending S along f,
then by Corollary 4.6, R3 is satisfied. If 8 < a’oo; < f and « switches 3 from T
to A, then 8 is o’s i-th live R3-strategy. By Lemma 4.9, A12 <. Y3, and hence R3
is once again satisfied. (|

This concludes the proof of Theorem 4.1.
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