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Abstract. In her 1990 thesis, Ahmad showed that there is a so-called “Ah-

mad pair”, i.e., there are incomparable Σ0
2-enumeration degrees a0 and a1 such

that every enumeration degree x < a0 is ≤ a1. At the same time, she also
showed that there is no “symmetric Ahmad pair”, i.e., there are no incompa-

rable Σ0
2-enumeration degrees a0 and a1 such that every enumeration degree

x0 < a0 is ≤ a1 and such that every enumeration degree x1 < a1 is ≤ a0.
In this paper, we first present a direct proof of Ahmad’s second result. We

then show that her first result cannot be extended to an “Ahmad triple”, i.e.,

there are no Σ0
2-enumeration degrees a0, a1 and a2 such that both (a0,a1)

and (a1,a2) are an Ahmad pair. On the other hand, there is a “weak Ahmad

triple”, i.e., there are pairwise incomparable Σ0
2-enumeration degrees a0, a1

and a2 such that every enumeration degree x < a0 is also ≤ a1 or ≤ a2;
however neither (a0,a1) nor (a0,a2) is an Ahmad pair.

1. Introduction

Enumeration reducibility is a positive reducibility between sets of natural num-
bers. It arises naturally as a notion of relative computability for partial functions
and has applications in effective mathematics, especially in computable topology,
in computable model theory and in group theory.

We associate an algebraic presentation of this reducibility as a degree structure.
The structure of the enumeration degrees is a partial order with least upper bound
and a jump operator (just like its more famous cousin, the structure of the Turing
degrees). In this article we focus on structural properties of its local substructure—
the degree structure of the enumeration degrees of the Σ0

2-sets, which can be defined
also as those enumeration degrees below the degree 0′

e. Here, 0′
e is the enumera-

tion degree of the complement K of the halting problem K = {e | φe(e) ↓ }. The
Σ0

2-enumeration degrees can be viewed as the counterpart in enumeration reducibil-
ity of either the c.e. Turing degrees or the Turing degrees ≤ 0′, i.e., the ∆0

2-Turing
degrees. Both analogies are imperfect, but reasonable in certain respects. We re-
fer the reader to [14] for more information on current trends in research on the
enumeration degrees.

One of the common questions about a degree structure viewed as a partial or-
der is that of the complexity of its first-order theory. For most degree structures
commonly being considered, the theory turns out to be as complicated as possible:
global structures like the Turing degrees or the enumeration degrees have theories
that are computably isomorphic to the theory of second-order arithmetic, while
local structures usually have theories that are equivalent to the theory of first-order
arithmetic. We then wonder about the fragments of the first-order theory, identified
by restricting sentences to a certain quantifier complexity. We find that decidability
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breaks down at level 3, i.e., the ∃∀∃-fragment is not decidable. On the other hand
the ∃- and often even the ∀∃-fragment is decidable.

For the Σ0
2-enumeration degrees, the first of these questions has been com-

pletely settled: The full first-order theory was shown to be undecidable by Sla-
man and Woodin [13], and equivalent to full first-order arithmetic by Ganchev and
Soskova [4].

As for the second question, the ∃-fragment is easily seen to be decidable, whereas
Kent [5] showed the ∃∀∃-fragment to be undecidable. The decidability of the
∀∃-fragment remains open.

The decidability of the ∀∃-fragment can be rephrased algebraically as (uniformly
effectively) deciding the following

Question 1.1. For any given finite partial orders P and Qi ⊇ P (for i ≤ n), can
any embedding of P into the Σ0

2-enumeration degrees be extended to an embedding
of Qi for some i ≤ n (where i may depend on the particular embedding of P)?
(Without loss of generality, we will from now on assume that any finite partial
order is bounded, i.e., has a least element 0 and a greatest element 1.)

Two major subproblems of Question 1.1 have been shown to be decidable:

• Lempp, Slaman and Sorbi [8] showed that the above question is decidable
for n = 0, i.e., given any finite partial orders P ⊆ Q, it is decidable whether
any embedding of P into the Σ0

2-enumeration degrees can be extended to
an embedding of Q.

• Lempp and Sorbi [10] showed that all finite lattices can be embedded, even
preserving 0 and 1. (The lattice embeddings question can be seen as a
disjunction of extending embeddings to certain one-point extensions Qi of
a finite lattice P viewed as a partial order.)

As noted earlier, the Σ0
2-enumeration degrees are often compared to the c.e. Tur-

ing degrees. Both are dense structures with full first-order theories as complicated
as the theory of first-order arithmetic. For the c.e. Turing degrees this was proved
by Slaman and Woodin (unpublished, see Nies, Shore and Slaman [11]); for the
c.e. Turing degrees we have that in addition the ∃-fragment is decidable, whereas
Lempp, Nies and Slaman [7] showed the ∃∀∃-fragment to be undecidable. However,
the lattice embeddings problem for the c.e. Turing degrees remains one of the main
open problems dating back to the 1960’s (see Lempp, Lerman and Solomon [6]
for the most recent update), and thus the decidability of the ∀∃-theory of the c.e.
Turing degrees remains wide open as well.

An important algebraic difference between the c.e. Turing degrees and the Σ0
2-enu-

meration degrees was discovered by Ahmad in her Ph.D. thesis [1] (see Ahmad and
Lachlan [2, Corollary 3.2]): There are incomparable Σ0

2-enumeration degrees a0
and a1 (called an “Ahmad pair”) such that any degree x < a0 is also < a1. (This
makes a0 “non-splitting”, i.e., join-irreducible, and thus cannot happen in the c.e.
Turing degrees by the Sacks Splitting Theorem [12].) More interestingly even, Ah-
mad also showed (see Ahmad and Lachlan [2, Theorem 3.3]) that this phenomenon
is not symmetric: For any two incomparable Σ0

2-enumeration degrees a0 and a1,
there is either a degree x0 < a0 which is ≰ a1, or there is a degree x1 < a1 which
is ≰ a0.

In the language of Question 1.1, Ahmad’s results can be rephrased as stating
that not every embedding of P = {0, a0, a1, 1} with incomparable a0 and a1 can be
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extended to an embedding of Q0 = {0, x0, a0, a1, 1} where 0 < x0 < a0 and x0 ≰ a1,
but that every embedding of P can be extended to an embedding of either Q0 or
of Q1 = {0, a0, x1, a1, 1} where 0 < x1 < a1 and x1 ≰ a0.

In this paper, we prove two extensions of Ahmad’s results in different directions,
thus adding to our toolbox toward our ultimate goal, deciding the ∀∃-theory of the
Σ0

2-enumeration degrees. Again in the language of Question 1.1, our first result can
be rephrased as stating that every embedding of P = {0, a0, a1, a2, 1} with incompa-
rable a0, a1 and a2 can be extended to an embedding of Q0 = {0, x0, a0, a1, a2, 1}
where 0 < x0 < a0 and x0 ≰ a1 or an embedding of Q1 = {0, x1, a0, a1, a2, 1}
where 0 < x1 < a1 and x1 ≰ a2 (leaving the relationship between x0 and a2,
and between x1 and a0, unspecified so as to not have too many cases); a similar
formulation can be found for our second result.

We first present, in Section 2, a direct proof of Ahmad’s result that there is no
symmetric Ahmad pair. (Currently, the only published proof in the literature is
indirect and hard to modify.) In Section 3, we show that there is no Ahmad triple,
i.e., there are no Σ0

2-degrees a0, a1 and a2 such that both (a0,a1) and (a1,a2) form
an Ahmad pair. On the other hand, in Section 4, we also show that there is a weak
Ahmad triple, i.e., there are pairwise incomparable ∆0

2-enumeration degrees a0, a1
and a2 such that every enumeration degree x < a0 is also ≤ a1 or ≤ a2; however,
neither (a0,a1) nor (a0,a2) forms an Ahmad pair. We should add here that Kent
(personal communication around 2006) identified the existence of an Ahmad triple
and of a “cupping Ahmad pair” (i.e., an Ahmad pair whose join is 0′

e) as the
two main initial obstacles toward a decision procedure for the ∀∃-theory of the
Σ0

2-enumeration degrees.
It is worth pointing out that the first two results are specific to the Σ0

2-enu-
meration degrees. Lempp, Slaman, and Soskova [9] have shown that every finite
distributive lattice L can be embedded as an interval of Π0

2-enumeration degrees
[a,b] so that for every enumeration degree x < b we have that x ∈ [a,b] or x < a.
Embedding the diamond in such a way shows that symmetric Ahmad pairs are
possible in general.

2. A Direct Proof that there is no Symmetric Ahmad Pair

In this section, we will present a direct proof of the following

Theorem 2.1 (Ahmad [1] (see Ahmad and Lachlan [2, Corollary 3.2])). There
is no symmetric Ahmad pair in the Σ0

2-enumeration degrees, i.e., there are no
incomparable Σ0

2-degrees a0 and a1 such that every enumeration degree x0 < a0 is
≤ a1, and every enumeration degree x1 < a1 is ≤ a0.

To show that the degrees of a pair of sets A0 and A1 is not an Ahmad pair,
we need to build a set X0 <e A0 such that X0 ≰e A1. Cooper’s density proof [3]
builds precisely such a set X0 assuming that in addition A1 <e A0. Under this
additional assumption, we can build X0 = Φ0(A0) as follows: We satisfy two types
of requirements. The first type ensures that for every e, we have X0 ̸= Γe(A1) by
threatening to code A0 into the e-th column of X0. The second type of requirement
ensures that for every i, we have A0 ̸= Γi(X0) by threatening to make Γi(X0) =

Γi(X
[≤i]
0 ∪N[>i]), which (assuming X

[≤i]
0 is computable) is a c.e. set. Here X [≤n] =

{⟨m,x⟩ | m ≤ n} and X [>n] = {⟨m,x⟩ | m > n}. To make this idea work, the
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construction uses a good approximation to the set A0, i.e., a uniformly computable
sequence of finite sets {A0,s}s<ω such that

(1) for every n, there is a stage s such that A0 ↾ n ⊆ A0,s ⊆ A0; and
(2) for every n, there is a stage s such that for every t ≥ s, if A0,t ⊆ A0 then

A0 ↾ n ⊆ A0,t.

Stages at which A0,s ⊆ A0 are called good. The sets reducible to A0, namely, X0,
A1, Γe(A1), and Γi(X0), are approximated with correct approximations—good ap-
proximations whose good stages include all good stages for the approximation of A0.
If we restrict our attention to good stages for A0, then two sets with correct approx-
imations are the same if and only the length of agreement between them measured
at such stages is unbounded. So, if we enumerate elements into X0,s only by enu-
merating axioms of the form ⟨x,A0,s⟩ into Φ0, then we ensure that X0 gains new
elements only at good stages for A0, and this allows us to limit the activity of each
requirement to a finite set.

If A1 is not bounded by A0, then this construction fails: It can be that there
are infinitely many good stages for A0 that are bad for A1, causing us to falsely
assume that a requirement of the first type requires attention again and again and
forcing it to contribute an infinite set to X0. This, in turn, is in critical conflict
with the second type of requirements, which depend on the assumption that each
column in X0 is finite. The problem we see should not surprise us, because Ahmad
pairs do exist. Ahmad’s original proof of Theorem 2.1 uses the Gutteridge operator
to show that if A0 and A1 form an Ahmad pair, then A0 and all sets bounded
by A0 have eventually correct approximations with respect to the approximation
to A1, and so we can build X1 <e A1 with X1 ≰e A0 using essentially the same
construction as the one described above. The proof is ingenious, though difficult
to modify. We give a direct construction, using the priority method and a tree of
strategies. The main idea is to build the sets X0 and X1 in a more entangled way
so that our failure to prove that X1 <e A0 allows us to switch off unwanted axioms
enumerated into X0 and avoid the problem described above.

Assume that A0 and A1 are incomparable Σ0
2-sets. (If A0 and A1 are comparable,

then their enumeration degrees do not form an Ahmad pair by definition.)
We fix approximations for A0 and A1 so that {A0,s⊕A1,s}s<ω is a good approx-

imation to A0 ⊕A1. So even though we cannot ensure that good stages for A0 are
good for A1 or vice versa, we may at least ensure that there are infinitely many
common good stages.

2.1. Requirements. The construction builds an enumeration operator Φ1, at-
tempting to satisfy the following requirements for each enumeration operator Γ1

and each enumeration operator ∆1:

RΓ1
: Φ1(A1) ̸= Γ1(A0)

S∆1
: A1 ̸= ∆1(Φ1(A1)).

If some RΓ1
requirement fails then we will construct an enumeration opera-

tor Φ0 satisfying the following subrequirements for each of the enumeration opera-
tors Γ0 and ∆0:

RΓ1,Γ0 : Φ0(A0) = Γ0(A1) =⇒ A0 = Ψ(A1) (for a Ψ built by us)

SΓ1,∆0
: A0 ̸= ∆0(Φ0(A0)).
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Clearly, satisfying either group of requirements, namely, all RΓ1
- and all S∆1

-
requirements, or, for some fixed Γ1, all RΓ1,Γ0 - and all SΓ1,∆0 -requirements, will
suffice since A0 ≰e A1.

We will denote Φi(Ai) by Xi (for i < 2) whenever the operator Φi is clear from
the context.

2.2. Tree of strategies. Order each of the types of requirements and subrequire-
ments in a priority of order type ω. We have four types of strategies: an RΓ1 -strat-
egy α, an RΓ1,Γ0 -strategy β, an S∆1 -strategy γ, and an SΓ1,∆0 -strategy δ.

The root of the tree of strategies T is ∅, an RΓ1
-strategy working on the highest-

priority RΓ1
-requirement. An RΓ1

-strategy has only one outcome ⟨0⟩ and is imme-
diately followed by an RΓ1,Γ0

-strategy, working on the highest-priority RΓ1,Γ0
-re-

quirement.
An RΓ1,Γ0 -strategy β has outcomes ⟨2k⟩, ⟨2k + 1, old⟩, ⟨2k + 1, off⟩, and ⟨2k +

1, new⟩ for all k ∈ ω, ordered as follows:

⟨0⟩ <L ⟨1, old⟩ <L ⟨1, off⟩ <L ⟨1, new⟩ <L ⟨2⟩ <L · · ·
For every k < ω, the nodes β ⟨̂2k⟩ and β ⟨̂2k+1, off⟩ are SΓ1,∆0

-strategies working
on the highest-priority SΓ1,∆0

-requirement that is not assigned to any of β’s prede-
cessors. The nodes β ⟨̂2k+1, old⟩ and β ⟨̂2k+1, new⟩ are S∆1 -strategies working on
the highest-priority S∆1 -requirement that is not assigned to any of β’s predecessors.

An S∆1
-strategy γ has outcomes ⟨k⟩, where k ∈ ω is ordered by the standard

ordering on ω. Each such immediate successor of this strategy is a main RΓ1
-strat-

egy, working on the highest-priority RΓ1
-requirement that is not assigned to any of

its predecessors.
Similarly, an SΓ1,∆0 -strategy δ has outcomes ⟨k⟩, where k ∈ ω is ordered by

the standard ordering on ω. Each such immediate successor of this strategy is
an RΓ1,Γ0

-strategy, working on the highest-priority RΓ1,Γ0
-requirement (for the

same Γ1 as δ) that is not assigned to any of its predecessors.

2.3. Construction. At stage 0, all strategies are in initial state: All operators
associated with these strategies are empty, all parameters are undefined. At stage
s > 0, we build a path fs of length ≤ s. The intention is that there will be a true
path defined by

f(n) = lim inf
fs⪰f↾n

fs(n)

that correctly describes the outcomes of each strategy. The construction consists of
substages t for t < s, where we act for some strategy fs ↾ t of length t depending on
the current outcome of the strategy which acted at the previous substage starting
at the root. When a strategy is activated at stage s, it first ensures that it is
not missing any good stages by adjusting the approximations to A0 and A1: If s

−

is the previous stage at which this strategy was active, then it replaces Ai,s by⋂
u∈[s−,s] Ai,u for i < 2. We describe further actions of each strategy depending on

its type below.
At the end of stage s, we initialize all strategies of lower priority than fs, i.e.,

strategies extending or to the right of the strategies which acted at stage s.
Each RΓ1,Γ0 -strategy β and each SΓ1,∆0 -strategy δ works with the version of Φ0

and X0 determined by the longest RΓ1
-strategy α ≺ β, δ (we say that β and δ work

for α); this version of Φ0 is the set of Φ0-axioms enumerated by all the RΓ1,Γ0
- and

SΓ1,∆0
-strategies working for the same RΓ1

-strategy α.
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2.3.1. S∆1
. We begin with the S-strategies, as they are directly lifted from the

density construction. So, let γ be an S∆1 -strategy. The first time a strategy is
visited after initialization, the strategy receives a unique number sγ , the stage
of first visit after initialization. To keep this assignment of stages injective, we
interrupt the stage s construction if s is the first stage when γ is visited: We set
fs = γ, sγ = s, and move on to stage s + 1. If sγ < s is already defined, then we
consider the length lγ,s < s of the common initial segment of A1,s and ∆1,s(X1,s)

up to s. For every number n ≤ lγ,s, if n ∈ ∆1,s(X
[<sγ ]
1,s ∪ N[≥sγ ]), we search for the

axiom ⟨n, F ⟩ ∈ ∆1 that has been valid the longest and enumerate each element of
the form ⟨r, x⟩ ∈ F , where r ≥ sγ into the set X1,s via the axiom ⟨⟨r, x⟩, A1,s⟩. The
outcome of the strategy is ⟨k⟩, where k is the standard code of the finite set Dk

of all numbers for which γ has enumerated an axiom that looks valid at stage s.
The only thing we assume about the coding of finite sets, in addition to its effective
properties, is that Dk1 ⊆ Dk2 implies k1 ≤ k2.

We will be able to argue that if γ is on the true path, then γ enumerates only
a finite set D into X1, as the sequence {lγ,s}s is good must be bounded. At suffi-
ciently large stages in the approximation to A1, the outcome we select will always
correspond to a superset of D. At stages that are also good (i.e., stages s such
that A1,s ⊆ A1), we will be able to correctly identify the code of D as the correct
outcome. In other words, the code of the set D will be γ’s true outcome.

2.3.2. SΓ1,∆0 . An SΓ1,∆0 -strategy δ works similarly to the S∆1 -strategy. It also
receives a unique number sδ, the stage of first visit after initialization, and interrupts
the stage s construction if s is the first stage when δ is visited. Otherwise, we
consider the length lδ,s < s of the common initial segment of A0,s and ∆0,s(X0,s)

up to s. For every number n ≤ lδ,s, if n ∈ ∆0,s(X
[<sδ]
0,s ∪ N[≥sδ]), we search for the

axiom ⟨n, F ⟩ ∈ ∆0 that has been valid the longest and enumerate each element of
the form ⟨r, x⟩ ∈ F , where r ≥ sδ is in the set X0,s via the axiom ⟨⟨r, x⟩, A0,s⟩. The
outcome of the strategy is ⟨k⟩, where k is the standard code of the finite set Dk of
all numbers for which δ has enumerated an axiom that looks valid at stage s.

2.3.3. RΓ1
. The RΓ1

-strategy does nothing, has only one outcome ⟨0⟩, and deter-
mines the version of Φ0 and X0 that all the RΓ1,Γ0

- and SΓ1,∆0
-strategies working

for the RΓ1 -strategy use.

2.3.4. RΓ1,Γ0
. The RΓ1,Γ0

-strategy β attempts to construct an enumeration op-
erator Ψ such that A0 = Ψ(A1) by enumerating axioms into Φ1 and its version
of Φ0.

At the first stage after initialization, the RΓ1,Γ0
-strategy β is assigned the pa-

rameter sβ . Note that we can assume that sβ is larger than max(Dk) for any k such
that a higher-priority S-strategy λ (which can be either an S∆1

- or an SΓ1,∆0
-strat-

egy) has λ k̂ ⪯ β. Until its next initialization, β will only contribute numbers to
the sβ-th columns of X0 and X1. To every element a, we assign the coding location
xa = ⟨sβ , a⟩ targeted for X0. The coding locations ma that we associate with a
given number a but are targeted for X1 will change more dynamically during the
construction. Initially, we assign ma = ⟨sβ , a⟩ as well.
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At a stage s > sβ , β does the following. It orders the elements of A0,s∪Ψs(A1,s)
by age: For each a ∈ A0,s ∪Ψs(A1,s), we define its age (at stage s) as follows.

ages0(a) = 2k + 1 for k = min(s+ 1, µt∀u ∈ [t, s](a ∈ A0,u))

ages1(a) = 2k for k = min(s+ 1, µt∀u ∈ [t, s](a ∈ Ψ(A1,u)[u] via the same axiom))

ages(a) = min{ages0(a), ages1(a)}.

Without loss of generality, we will assume that at most one element enters the
approximation to A0 or Ψ(A1) at a fixed stage s. (We can ensure this by artificially
delaying the approximations if necessary.) And so, for every stage t ≤ s, there may
be at most one element with ages(a) = t. Furthermore, if a ∈ A0,s \Ψs(A1,s), then
ages(a) is odd, and if a ∈ Ψs(A1,s) \A0,s, then ages(a) is even. At stage s, we will
say that b is older than a if ages(b) < ages(a).

If A0,s = Ψs(A1,s), then we exit this strategy with outcome ⟨2(s + 1)⟩ (this
is an outcome that has not been visited so far). Since A0 is infinite, this will
only be a temporary situation. Otherwise, we pick the oldest number a such that
A0,s(a) ̸= Ψs(A1,s)(a). Let k = ages(a). We must ensure that β’s effect on X1

is computable, and so the strategy will dump into X1 all elements of the form
⟨sβ , n⟩ ∈ (ma, s] and assign new markers ma′ = ⟨sβ , n⟩ > s to all elements a′ with
ages(a′) > k. (Here, to dump an element m into X1 means to enumerate the axiom
⟨m, ∅⟩ into Φ1.) We have two cases depending on the parity of k.

Case 1: If k is even, i.e., if a ∈ Ψs(A1,s) \A0,s, then we will be able to argue that
xa = ⟨sβ , a⟩ ∈ Γ0(A1) \X0. The strategy selects outcome ⟨k⟩. While a maintains
its age, we will design axioms for younger elements enumerated into X0 by β so
that their use includes a. Thus, if this is β’s true outcome, they will be invalid and
hence β contributes finitely much to X0.

Case 2: If k is odd, i.e., if a ∈ A0,s \Ψs(A1,s), then we would like to add an axiom
for a into Ψ, but to do this we need some preparation. We will identify an axiom
⟨xa, Fa⟩ in Γ0(A1) and use it. Let sk be the previous stage when β considered k:

(1) If some b with ages(b) < k has mb /∈ Γ1(A0,t) at some stage t ∈ [sk, s],
then, since b is older than a, we may assume that we have identified Fb

for b and that Fb ⊆ A1,s. (Otherwise, b would be our choice for the oldest
disagreement.) We can therefore enumerate the axiom ⟨mb, Fb⟩ ∈ Φ1 so
that mb ∈ X1,s \ Γ1(A0,s). The outcome is ⟨k, old⟩. If this is the true
outcome, then we do not care what happens to X0 as strategies below this
outcome will be working with new versions of this set.

(2) Otherwise, for every b with ages(b) < k, we can associate a set Gb, the use
of the oldest valid axiom for mb in the set Γ1. We enumerate into Φ0,s the
axiom

⟨xa,
⋃

ages(b)<k

Gb ∪ {b | ages(b) ≤ k}⟩.

Next, we check whether xa ∈ Γ0(A1). If xa /∈ Γ0(A1,s), then we have
evidence that this requirement may be satisfied by xa ∈ X0 \ Γ0(A1). Un-
fortunately, we have no evidence that the effect of β on X0 is finite, so we
use the marker ma. We will always only enumerate axioms of the form
⟨ma, Fa⟩ into Φ1, where Fa is the use of a Γ0-axiom for xa. The case we
are in suggests that ma /∈ X1.
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(a) If ma /∈ Γ1(A0,t) at some stage t ∈ [sk, s], then we can guarantee
that under this outcome, β’s effect on X0 is finite. This is because
we include the use of a Γ1-axiom for ma in the use of every axiom we
enumerate into Φ0 for numbers a′ with age larger than k. (This is true
as long as a maintains its age.) We set the outcome to be ⟨k, off⟩.

(b) Otherwise, ma ∈ Γ1(A0,t) at all stages t ∈ [sk, s], so we have evi-
dence that ma ∈ Γ1(A0) \X1. We end with outcome ⟨k, new⟩ and let
strategies below forget about this version of X0.

(3) Finally, if xa ∈ Γ0(A1,t) at all stages t ∈ [sk, s] (by the same axiom at all
stages since the last visit), then let ⟨xa, Fa⟩ ∈ Γ0 be the axiom that has
been valid the longest. Enumerate ⟨a, Fa⟩ into Ψs. We have eliminated a
as a difference, and so we may proceed to pick the oldest difference once
again.

2.4. Verification. We define the true path f in the tree of strategies as the leftmost
path of strategies visited infinitely often. If λ ô ≺ f , then we will say that λ has true
outcome o. If s is a stage at which λ is visited, then we say that s is λ-true. We need
to prove that f is well defined and strategies along it satisfy their requirements.
We do so by showing the following properties of the construction by simultaneous
induction.

Lemma 2.2. The true path f is infinite, furthermore:

A. If β is an RΓ1,Γ0-strategy and β ⪯ f , then:
(1) There is a leftmost outcome o that β visits at infinitely many stages.
(2) There are finitely many values of the parameter sβ, and for each such

value, X
[sβ ]
1 is a computable set.

(3) If o ∈ {⟨2k⟩, ⟨2k + 1, off⟩ | k ∈ ω}, then RΓ1,Γ0
is satisfied, and for

every value of sβ, the set X
[sβ ]
0 is finite.

(4) If o ∈ {⟨2k + 1, old⟩, ⟨2k + 1, new⟩ | k ∈ ω}, then RΓ1
is satisfied.

B. If γ is an S∆1
-strategy and γ ⪯ f , then:

(1) There is a leftmost outcome o that γ visits at infinitely many stages.
(2) The set Do consists of all numbers that γ contributes to X1.
(3) The requirement S∆1 is satisfied.

C. If δ is an SΓ1,∆0
-strategy and δ ⪯ f , then:

(1) There is a leftmost outcome o that δ visits at infinitely many stages.
(2) The set Do consists of all numbers that γ contributes to X0.
(3) The requirement SΓ1,∆0

is satisfied.

Proof. We will prove the statements above in turn, assuming that all statements are
true for higher-priority strategies along the true path. We first note that RΓ1

-strate-
gies along the true path have only one possible outcome, visited at every true stage,
hence cannot cause f to be finite.

A. Let β ⪯ f be an RΓ1,Γ0
-strategy. It follows from the definition of the true path

that β is visited at infinitely many stages and initialized finitely often. There is a
stage at which β is first visited after its last initialization. At this stage, sβ receives
its final value, and by construction, we interrupt this stage so that no other strategy
has the same parameter at any point during the construction. By construction, no
strategy has so far enumerated any element into the sβ-th column of X0 or X1:
Lower-priority strategies σ are initialized at stage sβ , so their parameter sσ (if
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defined) will have higher value than sβ . Higher-priority strategies λ will not add
elements to the sβ-th column of X0 or X1, either. To see this, note that they
are either not visited at further stages, hence do not act any longer; they are
RΓ1,Γ0

-strategies with sλ < sβ and hence enumerate elements into smaller columns
of X0 or X1; or they are S-strategies whose true outcome is extended by β and
hence by B(2) and C(2), they will not enumerate any more valid axioms into either
operator Φ0 or Φ1. Thus β is the unique strategy that adds elements into the sβ-th
column of X0 or X1. If t < sβ is a previous value of the parameter sβ , then
our analysis shows that no strategy can add valid axioms for numbers in the t-th
columns of X0 and X1 after stage sβ .

Let Ψ =
⋃
Ψs be the enumeration operator constructed by β. By assumption,

A0 ≰e A1, hence Ψ(A1) ̸= A0. Let a be the oldest disagreement, where the age of
the disagreement is defined as in the construction. This means that there is some
stage sa such that at all stages t > sa, we have that if aget(b) < aget(a), then
b ∈ A0,t ∩Ψ(A1,t) with a fixed marker mb. The age c of a remains constant, and at
stages t > sa, the strategy β will not visit any outcome left of the c-outcomes (which
depend on the parity of c), so the marker ma will remain fixed. Furthermore, the
way β adjusts the approximation to A0 and A1 when visited ensures that there are
infinitely many stages t > sa at which we visit β, and a is the oldest disagreement
at stage t. At such stages, β will visit a c-outcome, and since there are finitely
many c-outcomes (only one c-outcome ⟨c⟩ if c is even, and three c-outcomes ⟨c, old⟩,
⟨c, off⟩, and ⟨c, new⟩ if c is odd), there is a leftmost outcome visited at infinitely
many stages, proving (1). Note that if β reaches Case 2.3 infinitely often, then β
also ends in Case 2.2 infinitely often because if t is such that a /∈ Ψ(A1,t), but
a ∈ Ψ(A1,t−), where t− is the previous β-true stage, then our convention ensures
that xa /∈ Γ0(A1,t). All numbers greater than ma in the sβ-th column of X1 will
be dumped into X1, hence the sβ-th column of X1 is cofinite, proving (2).

If a /∈ A0, then the age of a after stage sa is c = 2k, where k is the stage such that
at all t ≥ k, we have that a ∈ Ψ(A1,t) via the same axiom ⟨a, Fa⟩, say. As we argued
above, ⟨2k⟩ is β’s true outcome. We prove that xa ∈ Γ0(A1) \X0: That xa /∈ X0 is
clear, as by construction, any axiom that β enumerates into Φ0 for xa contains a
in its use, and as we already argued, no other strategy enumerates valid axioms
for xa = ⟨sβ , a⟩. On the other hand, β enumerated the valid axiom ⟨a, Fa⟩ into Ψ
because it saw that ⟨xa, Fa⟩ ∈ Γ0, and since Fa ⊆ A1, it follows that xa ∈ Γ0(A1).
Up until stage sa, there are only finitely many axioms enumerated into Φ0 by β.
After stage sa, any axiom enumerated by β into Φ0 will include a in its use because
the age of a remains constant. It follows that all such axioms are invalid, and so β

contributes a finite set to X
[sβ ]
0 .

Suppose a ∈ A0. Then c = 2k + 1, and we have several cases, depending on
the leftmost outcome visited infinitely often. If this is ⟨2k + 1, old⟩, then infinitely
often after stage sa, we visit β, and it stops at Case 2.1 of the construction, because
some b with ages(b) < k hasmb /∈ Γ1(A0,t) at some stage t since we last considered a.
There are finitely many such b, and hence the described scenario happens infinitely
often with some fixed such b. As pointed out in the construction, since b is older
than a, we know that b ∈ Ψ(A1,t) at such stages via the same axiom ⟨b, Fb⟩,
and so the construction ensures that mb ∈ X1 using this axiom. It follows that
mb ∈ X1 \ Γ1(A0).
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Otherwise, there is a stage sb > sa such that at all β-true stages t > sb at
which a is the oldest disagreement, Case 2.1 does not apply. This means that for
every older b, there is a fixed valid axiom ⟨mb, Gb⟩ ∈ Γ1. This means that the axiom
that we enumerate into Φ0 for xa is valid, and so xa ∈ X0. On the other hand,
since infinitely often we are in Case 2.2, xa /∈ Γ0(A1), and so RΓ0,Γ1

is satisfied.
If β’s true outcome is ⟨2k + 1, off⟩, then ma /∈ Γ1(A0). In this case, we already

know that RΓ0,Γ1 is satisfied. After stage sb, any axiom enumerated by β into Φ0

will include some Ga in its use, where ⟨ma, Ga⟩ ∈ Γ1. It follows that all such axioms

are invalid, and so β contributes a finite set to X
[sβ ]
0 . This ensures that (3) is true.

Otherwise, there is a stage sc > sb after which Case 2.2.a does not apply. The
true outcome is ⟨2k + 1, new⟩, and ma ∈ Γ1(A0,t) at all stages t > sc by the same
axiom. It follows that ma ∈ Γ1(A0). To complete the proof, we will show that
ma /∈ X1. Any Φ1-axiom enumerated for ma has the form ⟨ma, Fa⟩. Such an
axiom can only be enumerated after the axiom ⟨a, Fa⟩ is enumerated into Ψ. Since
a /∈ Ψ(A1), it follows that ma /∈ X1. We conclude that RΓ1

is satisfied, proving (4).

B. Let γ ⪯ f be an S∆1
-strategy. It follows from the definition of the true path

that γ is visited at infinitely many stages and initialized finitely often. There is
a first stage at which γ is visited after its last initialization. This is the stage at
which sγ receives its final value, and by construction, we interrupt this stage so
that no other strategy has the same parameter at any point during the construc-
tion. Lower-priority strategies σ have sσ > sγ . Higher-priority strategies are the

only ones that can enumerate elements into X
[<sγ ]
1 , so by induction, X

[<sγ ]
1 is a

computable set. If s is a good stage in the approximation to A1, then A1,s ⊆ A1

and ∆1(X1,s) ⊆ ∆1(X1). Suppose that {lγ,s}A1,s⊆A1
is unbounded. Then we can

argue that A1 = ∆1(X1): If a ∈ A1, then pick a good stage s at which a ∈ A1,s

and lγ,s > a. It follows that a ∈ ∆1(X1,s) ⊆ ∆1(X1). Similarly, if a ∈ ∆1(X1),
then we can pick a good stage s at which a ∈ ∆1(X1,s) and lγ,s > a. It follows that
a ∈ A1,s ⊆ A1.

Furthermore, if {lγ,s}A1,s⊆A1
is unbounded then we can also argue that ∆1(X1) =

∆1(X
[<sγ ]
1 ∪N[≥sγ ]). One inclusion follows from the fact that X1 ⊆ X

[<sγ ]
1 ∪N[≥sγ ].

For the reverse inclusion, fix n ∈ ∆1(X
[<sγ ]
1 ∪ N[≥sγ ]). Let ⟨n, F ⟩ be the oldest

valid axiom. (Note that the age of this axiom depends only on X
[<sγ ]
1 .) Pick a

good stage s > sγ that is greater than the age of this axiom and at which lγ,s > n.
At this stage, we enumerate all ⟨r, x⟩ ∈ F , where r ≥ sγ , into the set X1,s via the
axiom ⟨⟨r, x⟩, A1,s⟩. Since s is good, these are valid axioms, and hence n ∈ ∆1(X1).

It follows that A1 = ∆1(X
[<sγ ]
1 ∪N[≥sγ ]), contradicting the fact that A1 is not c.e.

(otherwise it would be comparable with A0).
Thus lγ,s is bounded by some number lγ , say, at all good stages in the construc-

tion. At good stages, the strategy γ enumerates axioms only in response to finitely
many n. For each such n, we know by the fact that we are looking at a good
stage that n ∈ ∆1(A1). Eventually, the oldest valid axiom will emerge, and so γ
will keep selecting the same axiom ⟨n, F ⟩ for this element, and thus ultimately γ
will enumerate only finitely many elements into X1, and all these elements will be
enumerated at good stages. Let D = Dk be the set of these elements. Let sk be a
stage such that at all t ≥ sk, we have that D ⊆ X1. At all γ-true stages t ≥ sk, the
strategy γ will have outcome ⟨m⟩, where Dk ⊆ Dm. By our choice of coding, we
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have that ⟨k⟩ ≤ ⟨m⟩. By the adjustment that γ makes to the approximation of A1,
we know that γ is visited at infinitely many good stages for the approximation
to A1. At such stages, γ will have outcome ⟨k⟩. This proves (1) and (2).

To see that the requirement is satisfied, we prove that there is some element
n ≤ lγ such that A1(n) ̸= ∆1(X1)(n). Assume that this is not the case. Pick a
stage s such that all elements n ≤ lγ that are in A1 are in A1,s and s is good. There
are infinitely many such stages, and we visit γ at such stages. At such a γ-true
stage t, we have that lγ,t > lγ , contradicting our choice of lγ .

C. The case where δ ⪯ f is an SΓ1,∆0 -strategy is proved similarly to Case B. □

Lemma 2.3. Either all requirements RΓ1
and S∆1

are satisfied, or there is some
requirement RΓ1 such that all requirements RΓ1,Γ0 and SΓ1,∆0 are satisfied.

Proof. If there are infinitely many RΓ1
-strategies along the true path f , then by the

construction of the tree, it follows that there are infinitely many S∆1 -requirements
assigned to nodes on the true path, as only such strategies have immediate succes-
sors that are RΓ1

-strategies. Thus all S∆1
-requirements are assigned to nodes on

the true path and hence by Lemma 2.2 are satisfied. Consider any RΓ1
-strategy

α ≺ f . Let γ ≺ f be the next S∆1
-strategy along the true path. By the construction

of the tree, γ’s immediate predecessor is an RΓ1,Γ0
-strategy β with true outcome

⟨2k + 1, old⟩ or ⟨2k + 1, new⟩ for some k. It follows from Lemma 2.2 that RΓ1 is
satisfied, thus all requirements RΓ1 are satisfied.

If there are finitely many RΓ1
-strategies along f , then fix the longest such α.

Every immediate successor of α along the true path is either an RΓ1,Γ0
-strategy

with true outcome ⟨2k⟩ or ⟨2k + 1, off⟩ or an SΓ1,∆0
-strategy. Hence there are

infinitely many of each, and by Lemma 2.2, they are all successful. By the design
of the tree, it follows that all requirements RΓ1,Γ0 and SΓ1,∆0 are satisfied. □

3. No Ahmad triple

In this section, we extend the ideas introduced in the previous section to prove
our main result:

Theorem 3.1. There is no Ahmad triple in the Σ0
2-enumeration degrees, i.e., there

are no Σ0
2-degrees a0, a1, and a2 such that a0 ≰ a1 but every enumeration degree

x0 < a0 is ≤ a1, and such that a1 ≰ a2 but every enumeration degree x1 < a1 is
≤ a2.

3.1. Requirements. Suppose A0, A1 and A2 are Σ0
2-sets. The construction builds

an enumeration operator Φ0, attempting to satisfy the following requirements for
each of the enumeration operators Γ0 and ∆0:

RΓ0
: Φ0(A0) ̸= Γ0(A1),

S∆0
: A0 ̸= ∆0(Φ0(A0)).

If someRΓ0
-requirement fails, then we will construct an enumeration operator Φ1

satisfying the following subrequirements for each of the enumeration operators Γ1

and ∆1:

RΓ0,Γ1
: Φ1(A1) ̸= Γ1(A2)

SΓ0,∆1 : A1 ̸= ∆1(Φ1(A1)).
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If some RΓ0,Γ1
-requirement fails, then we will construct an enumeration oper-

ator Φ2 satisfying the following subsubrequirements for each of the enumeration
operators Γ2 and ∆2:

RΓ0,Γ1,Γ2
: Φ2(A0) = Γ2(A1) =⇒ A0 = Ψ0(A1) or A1 = Ψ1(A2)

(for Ψ0 and Ψ1 built by us)

SΓ0,Γ1,∆2 : A0 ̸= ∆2(Φ2(A0)).

We will denote Φ0(A0) by X0, Φ1(A1) by X1, and Φ2(A0) by X2 whenever the
operator Φi is clear from the context.

3.2. Overview. We first give a high-level overview of how the overall construction
works, without going into the specifics of the priority tree layout and the arrange-
ment of different outcomes. At each node α of the priority tree, there will be an
active version of X1 and X2 (where X0 is, of course, maintained globally). Each
version ofX1 andX2 is built in some cone;X1 is built in a cone with anRΓ0

-require-
ment at the top of the cone, while X2 is built in a cone with an RΓ0,Γ1 -requirement
at the top. These cones are nested in the sense that each node where a partic-
ular set X2 is active is also a node where a set X1 is active; but a cone for X1

can contain many different X2-cones. The setup here is typical of a non-uniform
argument; the situation in our construction is perhaps slightly more complicated
than a typical non-uniform argument due to having to keep track of three levels of
non-uniformity. However, the overall spirit is the same: The set X0 is maintained
globally, and there will only be one version of it, i.e., every node in the tree is in the
one X0-cone. Inside each X2-cone, we will have the active sets X0 and X1. Inside
this X2-cone, we actively try and satisfy the RΓ0,Γ1,Γ2

- and the SΓ0,Γ1,∆2
-strategies,

while leveraging on the assumption that the RΓ0,Γ1
- and RΓ0

-strategies at the top
of the X2- and X1-cones are unsuccessful. While this assumption is not violated, we
stay in the X2-cone and only consider the RΓ0,Γ1,Γ2 - and the SΓ0,Γ1,∆2 -strategies.

If we ever detect that the RΓ0,Γ1
-strategy is successful, we will exit the X2-cone

and immediately place the next SΓ0,∆1
-strategy before starting a newX2-cone below

it. Similarly, if we ever detect that the RΓ0
-strategy is successful, we will end the

current X1- and X2-cones and immediately place the next S∆0
-strategy before

starting a new X1- and a new X2-cone below. In this way, depending on how many
different X1- and X2-cones the true path of the construction crosses, we will be
able to argue that along the true path, either all RΓ0

- and S∆0
-requirements are

satisfied, or all RΓ0,Γ1
- and SΓ0,Γ1

-requirements are satisfied in some final X1-cone,
or all RΓ0,Γ1,Γ2

- and SΓ0,Γ1,∆2
-requirements are satisfied in some final X2-cone.

It remains to describe how a node α assigned to a requirement RΓ0,Γ1,Γ2 is
able to either detect the success of its parent RΓ0,Γ1 -strategy, or the success of its
grandparent RΓ0

-strategy, or be able to leverage on the failure of both to ensure the
success of its own requirement. By our experience with the S-strategies thus far, it
is important to note that α must not be too liberal with enumerating true axioms
into Φ0, Φ1 and Φ2; if we do not exit the current X2-cone, we must make sure
that α’s contribution to X2 is finite or at least computable. If we do not exit the
current X1-cone, then α’s contribution to X1 must be finite, while α’s contribution
to X0 must be finite regardless of the true outcome. (If we do not ensure this, then
along the true path, when we have the next S∆0

,SΓ0,∆1
- or SΓ0,Γ1,∆2

-node, we will
not be able to run the respective basic S-strategy.)
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With the foregoing comment in mind, consider a node α assigned to a require-
ment RΓ0,Γ1,Γ2 . The obvious strategy is to associate each number a (targeted
for A1) with a number xa (targeted for X1 = Φ1(A1)) and try to maintain that
a ∈ A1 iff xa ∈ X1. We build a reduction Ψ1 which will emulate Γ1. Since
A1 = Ψ1(A2) cannot possibly hold, we must be able to find some xa where
X1(xa) ̸= Γ1(A2)(xa), and hence RΓ0,Γ1

will be satisfied. This naive strategy will
work to satisfy RΓ0,Γ1 in isolation; unfortunately, we may not be able to guarantee
that the effect on X1 is finite; as discussed above, if we satisfy RΓ0,Γ1 , we stay in the
X1-cone, and we will need the strategy to enumerate only finitely many true axioms
for Φ1(A1). Notice that if there is some xa ∈ Γ1(A2)\X1, then this condition can be
ensured, since the strategy for α will only need to enumerate further axioms putting
some xa′ into Φ1(A2) if the length of agreement goes up; hence all newer axioms
in Φ1 will include the number a. However, if the disagreement is witnessed by some
xa ∈ X1 \ Γ1(A2), then there is no way to prevent infinitely many elements xa′

from being put into X1 by the strategy. Note that the same problem applies even
if we try and diagonalize X0 and Γ0(A1), or X2 and Γ2(A1). The solution to this
problem is to ensure that under the problematic outcome where xa ∈ X1 \ Γ1(A2),
all future axioms enumerated by α putting some xa′ into X1 = Φ1(A1) must also
include the use of certain elements in Γ0(A1) and Γ2(A1). If we entangle the ax-
ioms for newer xa′ in this way correctly, then we will be able to argue that in the
end, either we will be able to diagonalize X0 and Γ0(A1), or we can diagonalize X2

and Γ2(A1), or else we can force all newer xa′ -axioms enumerated by α to become
invalid.

To arrange for this entangling to work properly, we will need another setup.
Under the assumption that a ∈ A1 \ Ψ1(A2) and xa ∈ X1 \ Γ1(A2) hold, we will
need to start a backup RΓ0,Γ1,Γ2-strategy, which we will name β. Each time β sees
further proof that a ∈ A1 \ Ψ1(A2) and xa ∈ X1 \ Γ1(A2) hold, it will extend
the reduction A0 = Ψ0(A1) that it builds. The basic working of β is that it
associates each number b targeted for A0 with a number yb targeted for X2 =
Φ2(A0) and a number mb targeted for X0 = Φ0(A0). (For technical reasons, in the
construction, the association b 7→ yb will be fixed while the association b 7→ mb will
be dynamic, but we do not encumber ourselves with these details at this time.) The
plan will be to let Ψ0 emulate Γ2, so that the necessary disagreement between A0

and Ψ0(A1) must produce a corresponding disagreement between X2 and Γ2(A1).
Fix the element b so that we have either

(i) b ∈ A0 \Ψ0(A1) and yb ∈ X2 \ Γ2(A1) and mb ∈ X0, or
(ii) b ∈ Ψ0(A1) \A0 and yb ∈ Γ2(A1) \X2 and mb ̸∈ X0.

Since b will eventually be in one of the Σ0
2-sets involved above, almost every axiom

enumerated by the main strategy α putting some xa′ into X1 = Φ1(A1) will be able
to observe and use the information provided by this number b.

Consider a future stage s when the strategy α is deciding whether or not to
enumerate an axiom putting some xa′ into X1 = Φ1(A1). By our assumption on b,
we must see either yb ∈ X2[s] or yb ∈ Γ2(A1)[s]. If the strategy for α sees yb ∈ X2[s]
but yb ̸∈ Γ2(A1)[s], then it does not need to proceed with its strategy and does not
enumerate any axiom for xa′ into X1 since it currently looks like X2 ̸= Γ2(A1).
If, however, α sees yb ∈ Γ2(A1)[s] but mb ̸∈ Γ0(A1), then it also does not need to
enumerate an axiom for xa′ into X1. This is because either b ∈ A0, in which case
both yb ∈ X2 andmb ∈ X0, or they are all three out of the respective sets, and so we
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must currently see X2 ̸= Γ2(A1) or X0 ̸= Γ0(A1). Therefore, the only time when α
enumerates xa′ into X1 is when it sees both yb ∈ Γ2(A1)[s] and mb ∈ Γ0(A1)[s], in
which case it will include the use of the latter two in the axiom for xa′ in X1.

Now finally assume that β is along the true path of the construction. If the
first case (i) above applies to b, then almost every axiom xa′ enumerated by the
strategy for α will be invalid, since they will include the use of yb ∈ Γ2(A1), which
was exactly what we wanted to achieve. If the second case (ii) applies and mb is not
eventually in Γ0(A1), then again almost every axiom xa′ enumerated by the strategy
for α will be invalid, since they will include the use of mb ∈ Γ0(A1). Finally, assume
that the second case (ii) applies and mb ∈ Γ0(A1). Then in this case, it may be
possible that the strategy for α enumerates infinitely many elements into X1, but
then we would have mb ∈ Γ0(A1) \ X0, and we will exit the current X1-cone. In
this case, the current set X1 will be irrelevant anyway.

3.3. Tree of strategies. Order each of the types of requirements, subrequirements
and subsubrequirements in a priority of order type ω such that each RΓ0

-require-
ment precedes all theRΓ0,Γ1

-subrequirements, and eachRΓ0,Γ1
-subrequirement pre-

cedes all the RΓ0,Γ1,Γ2
-subsubrequirements.

The root of the tree of strategies T is ∅, an RΓ0
-strategy working on the highest-

priority RΓ0 -requirement. An RΓ0 -strategy has only one outcome ⟨0⟩ and is imme-
diately followed by an RΓ0,Γ1 -strategy, working on the highest-priority RΓ0,Γ1 -re-
quirement. An RΓ0,Γ1

-strategy has only one outcome ⟨0⟩ and is immediately fol-
lowed by an RΓ0,Γ1,Γ2

-strategy, working on the highest priority RΓ0,Γ1,Γ2
-require-

ment.
An RΓ0,Γ1,Γ2 -strategy α has outcomes ⟨2k⟩, ⟨2k + 1, old⟩, ⟨2k + 1, off⟩, ⟨2k +

1, new⟩, and ⟨2k + 1, backup⟩ for all k ∈ ω, ordered as follows:

⟨0⟩ <L ⟨1, old⟩ <L ⟨1, off⟩ <L ⟨1, new⟩ <L ⟨1, backup⟩ <L ⟨2⟩ <L · · ·

For every k < ω, the nodes α ⟨̂2k⟩ are SΓ0,∆1
-strategies working on the highest-

priority SΓ0,∆1
-requirement that is not assigned to any of α’s predecessors. The

nodes α ⟨̂2k + 1, old⟩ and α ⟨̂2k + 1, off⟩ are SΓ0,Γ1,∆2 -strategies working on the
highest priority SΓ0,Γ1,∆2 -requirement that is not assigned to any of α’s predeces-
sors. The nodes α ⟨̂2k + 1, new⟩ are S∆0

-strategies working on the highest-priority
S∆0

-requirement that is not assigned to any of α’s predecessors. Finally, the nodes
α ⟨̂2k+1, backup⟩ are backup RΓ0,Γ1,Γ2

-strategies with their own outcomes (defined
below).

An S∆0 -strategy γ has outcomes ⟨k⟩, where k ∈ ω ordered by the standard
ordering on ω. Each such immediate successor of this strategy is a main RΓ0 -strat-
egy, working on the highest-priority RΓ0

-requirement that is not assigned to any
of its predecessors. The outcomes and immediate successors of the SΓ0,∆1

- and
SΓ0,Γ1,∆2

-strategies are defined analogously (RΓ0,Γ1
and RΓ0,Γ1,Γ2

, respectively).
Finally, a backup RΓ0,Γ1,Γ2 -strategy β has outcomes ⟨2l, off⟩, ⟨2l, new⟩ and ⟨2l+

1⟩ for all l ∈ ω, ordered as follows:

⟨0, off⟩ <L ⟨0, new⟩ <L ⟨1⟩ <L ⟨2, off⟩ <L · · ·

For every l < ω, the nodes β ⟨̂2l, off⟩ and β ⟨̂2l + 1⟩ are SΓ0,∆1
-strategies working

on the highest-priority SΓ0,∆1
-requirement that is not assigned to any of β’s prede-

cessors. The nodes β ⟨̂2l, new⟩ are S∆0
-strategies working on the highest-priority

S∆0 -requirement that is not assigned to any of β’s predecessors.
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3.4. Construction. This construction has many properties that are similar to the
one in Section 2. At stage 0, all strategies are in initial state: All operators asso-
ciated with these strategies are empty, and all parameters are undefined. At stage
s > 0, we build a path fs of length ≤ s with the intention of building a true path
defined by

f(n) = lim inf
fs⪰f↾n

fs(n).

When a strategy is activated at stage s, it first adjusts the approximations to A0,
A1, and A2: If s− is the previous stage at which this strategy was active, then it
replaces Ai,s by

⋂
u∈[s−,s] Ai,u for i ≤ 2. At the end of stage s, we initialize all

strategies of lower priority than fs, i.e., strategies extending or to the right of the
strategies which acted at stage s.

Each strategy β works with the version of Φ1 and X1 determined by the longest
RΓ0

-strategy α ≺ β (we say that β works for α); this version of Φ1 is the set of
Φ1-axioms enumerated by all the RΓ0,Γ1,Γ2

-strategies and SΓ0,∆1
-strategies work-

ing for the same RΓ0 -strategy. Similarly, each strategy β works with the ver-
sion of Φ2 and X2 determined by the longest RΓ0,Γ1 -strategy α ≺ β; this version
of Φ2 is the set of Φ2-axioms enumerated by all the backup RΓ0,Γ1,Γ2

-strategies and
SΓ0,Γ1,∆2

-strategies working for the same RΓ0,Γ1
-strategy.

3.4.1. S∆0
, SΓ0,∆1

, SΓ0,Γ1,∆2
. The S-strategies work precisely as in the previous

construction. Let γ be such a strategy. The first time γ is visited after initialization,
it receives a unique number sγ , the stage of first visit after initialization, and stops
the construction of fs = γ for this stage. If sγ < s is already defined, then we
consider the length lγ,s < s of the common initial segment up to s of the sets Aj,s

and ∆i,s(Xi) that are named in the corresponding requirement: For S∆0
, these

are A0,s and ∆0,s(X0,s); for SΓ0,∆1 , these are A1,s and ∆1,s(X1,s); and for SΓ0,Γ1,∆2 ,

these are A0,s and ∆2,s(X2,s). For every number n ≤ lγ,s, if n ∈ ∆i,s(X
[<sγ ]
i,s ∪

N[≥sγ ]), then we search for the axiom ⟨n, F ⟩ ∈ ∆i that has been valid the longest,
and we enumerate each element of the form ⟨r, x⟩ ∈ F , where r ≥ sγ , into the
set Xi,s via the axiom ⟨⟨r, x⟩, Aj,s⟩. Note that this action might enumerate some
number ⟨r, x⟩ into Xi,s where ⟨r, x⟩ is already in Xi,s via an axiom enumerated by
a different node.

The outcome of the strategy is ⟨k⟩, where k is the standard code of the finite
set Dk of all numbers for which γ has enumerated an axiom that looks valid at
stage s. As before, we assume that Dk1

⊆ Dk2
implies k1 ≤ k2.

3.4.2. RΓ0 , RΓ0,Γ1 . The RΓ0 -strategy and the RΓ0,Γ1 -strategy do nothing, have
only one outcome ⟨0⟩, and determine the version of Φ1 and X1, or Φ2 and X2,
respectively, that substrategies work with.

3.4.3. RΓ0,Γ1,Γ2
. The RΓ0,Γ1,Γ2

-strategy α attempts to construct an enumeration
operator Ψ1 such that A1 = Ψ1(A2) by enumerating axioms into Φ1. (It will not
enumerate axioms into either Φ0 or Φ2, only its backup strategies will.)

At the first stage after initialization, the RΓ0,Γ1,Γ2 -strategy α is assigned the
parameter sα. We can assume that sα is larger than max(Dk) for any k such that
a higher-priority S-strategy λ has λ k̂ ⪯ α. Until its next initialization, α will only
contribute numbers to the sα-th columns of X1. To every element a, we assign the
coding location xa = ⟨sα, a⟩ targeted for X1.
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At stage s > sα, α does the following. It orders the elements of A1,s∪Ψ1,s(A2,s)
by age:

ages1(a) = 2k + 1 for k = min(s+ 1, µt∀u ∈ [t, s](a ∈ A1,u))

ages2(a) = 2k for k = min(s+ 1, µt∀u ∈ [t, s](a ∈ Ψ1(A2,u)[u] via the same axiom))

ages(a) = min{ages1(a), ages2(a)}.

Once again, we assume the age is defined injectively, i.e., for every stage t ≤ s,
there may be at most one element with ages(a) = t. Also, if a ∈ A1,s \Ψ1,s(A2,s),
then ages(a) is odd, and if a ∈ Ψ1,s(A2,s) \A1,s, then ages(a) is even.

If A1,s = Ψ1,s(A2,s), then we exit this strategy with outcome ⟨2(s + 1)⟩. Oth-
erwise, we pick the oldest number a such that A1,s(a) ̸= Ψ1,s(A2,s)(a). Let
k = ages(a). We have two cases depending on the parity of k.

Case 1: If k is even, i.e., if a ∈ Ψ1,s(A2,s)\A1,s, then we will be able to argue that
xa = ⟨sα, a⟩ ∈ Γ1(A2) \X1. The strategy selects outcome ⟨k⟩. While a maintains
its age, we will design axioms for younger elements enumerated into X1 by α so
that their use includes a. Thus if this is α’s true outcome, they will be invalid,
and hence α contributes finitely much to X1. Under this outcome, we do not care
about X2.

Case 2: If k is odd, i.e., if a ∈ A1,s\Ψ1,s(A2,s), then we would like to add an axiom
for a into Ψ1. We will follow a similar scheme as in the previous construction: We
will add an axiom for xa into Φ1, wait until xa shows up in Γ1(A2), and use the
(currently) valid axiom ⟨xa, Fa⟩ to define an axiom for a in Ψ1. We entangle the
axiom for xa with axioms from both Γ0 and Γ2. First, we consider all z ∈ X2,s such
that the age of z in X2 (i.e., the least t ≤ s such that z ∈ X2,u for all u ∈ [t, s]) is
less than k. Let sk be the previous stage when α considered k:

(1) If some such z ∈ X2,s is not in Γ2(A1,t) via the same axiom for all stages
t ∈ [sk, s], then we have evidence that z ∈ X2 \Γ2(A1), and so we exit with
outcome ⟨k, old⟩. If b is younger than a, then α will always include the use
of an axiom for z being in Γ2(A2) in the use of the axiom for xb being in
Φ1(A1), so if this is the true outcome, then RΓ0,Γ1,Γ2 is satisfied and α’s
effect on X1 is finitary.

(2) Otherwise, for every z ∈ X2,s that is older than a, we can associate a set Gz,
the use of the oldest valid axiom for z being in Γ2(A1). Next, we consider
every backup strategy β (an immediate successor of α) that is not in initial

state, every number yβb = ⟨sβ , b⟩ ∈ Γ2,s(A1,s) such that the age of yβb (i.e.,

the least t ≤ s such that at all u ∈ [t, s], we have yβb ∈ Γ2,u(A1,u) via

the same axiom) is less than k, and for each such yβb , the coding locations

mβ
b < k that are associated with b by β. (Note that we do not restrict β to

the ones that extend an older outcome than k. There will only be finitely
many such backup strategies being considered due to the restriction on the

age of yβb .)

If for some such yβb ∈ Γ2,s(A1,s), there is an mβ
b < k such that mβ

b /∈
Γ0(A1,t) at some stage t ∈ [sk, s], then we have two cases:

(a) If b /∈ A0,t at some stage t ∈ [sk, s], then we have evidence that yβb ∈
Γ2(A1) \ X2. We exit with outcome ⟨k, off⟩ and argue that if this is
the true outcome, then RΓ0,Γ1,Γ2

is satisfied and α enumerates finitely
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many valid axioms into Φ1 because they all must include the use of a

Γ0-axiom for all such mβ
b .

(b) If b ∈ A0,t at all t ∈ [sk, s], then the outcome is ⟨k, new⟩. We have

evidence that mβ
b ∈ X0 as it was either dumped there (i.e., we enu-

merated the axiom ⟨mβ
b , ∅⟩ into Φ0) or its axiom has use {b}. If this

is the true outcome, then we aim to show that RΓ0
is satisfied by

mβ
b ∈ X0\Γ0(A1). In this case, we do not care about α’s effect on X1

even though that effect will be finitary as we argued in the previous
case.

(3) Otherwise, for every older yβb ∈ Γ2,s(A1,s) and each mβ
b < k associated

with b, we can associate a set Gmβ
b
, the use of the oldest valid axiom for mβ

b

in the set Γ0. We enumerate into Φ1,s the axiom for xa whose use consists
of

• all b such that ages(b) ≤ k (note that this includes a),
• all Gz for older z ∈ X2,s, and
• all Gmβ

b
where β is a substrategy of α not in initial state (at the end

of this stage) with older yβb ∈ Γ2,s(A1,s), and corresponding mβ
b < k.

Next, we check whether xa ∈ Γ1(A2). If xa /∈ Γ1,t(A2,t) at some stage
t ∈ [sk, s], then we have evidence that RΓ0,Γ1

may be satisfied by xa ∈
X1 \Γ1(A2). Unfortunately, we have no evidence that the effect of α on X1

is finite. So we activate the backup strategy below outcome ⟨k, backup⟩.
The backup strategy will either turn off future axioms enumerated by α or
ensure that RΓ0

is satisfied.
(4) Finally, if xa ∈ Γ1(A2,t) (by the same axiom at all stages since the last

visit), then let ⟨xa, Fa⟩ ∈ Γ1 be the axiom that has been valid longest.
Enumerate ⟨a, Fa⟩ ∈ Ψ1,s. We have now eliminated a as a difference, and
so we will pick the oldest difference once again, starting over at the current
substage. (This can happen at most finitely often at any substage.)

Notice that the set X2 is only relevant under the outcomes ⟨k, old⟩ and ⟨k, off⟩
of α (corresponding to items (1) and (2a) above, respectively). Since α itself does
not add axioms to Φ2(A0), but rather, they are only added by the backup strategies,
whenever some outcome ⟨k′, backup⟩ of α is played, the effect on each column of X2

will be finite if α has true outcome ⟨k, old⟩ or ⟨k, off⟩. This is also the reason we
have multiple backup strategies for α.

3.4.4. Backup RΓ0,Γ1,Γ2
. The backup RΓ0,Γ1,Γ2

-strategy β works with its immedi-
ate predecessor α and attempts to construct an enumeration operator Ψ0 such that
A0 = Ψ0(A1) by enumerating axioms into Φ0 and its version of Φ2.

Just like α, the strategy β is assigned the parameter sβ at the first stage after
initialization. We can assume that sβ is larger than max(Dk) for any k such that
a higher priority S-strategy λ has λ k̂ ⪯ β. The strategy β associates to every
element b the coding location yb = ⟨sβ , b⟩ targeted for X2. To certain elements b,
it will also dynamically assign a coding location mb targeted for X0.

At a stage s > sβ , β orders the elements of A0,s ∪ Ψ0,s(A1,s) by age so that if
b ∈ A0,s \Ψ0,s(A1,s), then ages(b) is odd, and if b ∈ Ψ0,s(A1,s) \A0,s, then ages(b)
is even.

If A0,s = Ψ0,s(A1,s), then we exit this strategy with outcome ⟨2(s + 1) + 1⟩.
Otherwise, we pick the oldest number b such that A0,s(b) ̸= Ψs(A1,s)(b). If there is
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no marker mb associated with b, then we choose mb to be the least number of the
form ⟨sβ , n⟩ which has not been chosen as a marker. We also enumerate the axiom
⟨mb, {b}⟩ into Φ0.

Let l = ages(b). We must ensure that β’s effect on X0 is computable and so
the strategy will dump into X0 all markers which are currently associated with
any number b′ with ages(b′) > l. Furthermore, to each such b′, we associate a new
marker mb′ , which is the least number of the form ⟨sβ , n⟩ which has not been chosen
as a marker. We also enumerate the axiom ⟨mb′ , {b′}⟩ into Φ0.

We will not ensure that β’s effect on X2 is finitary or computable because if β
is on the true path, then either RΓ0

or RΓ0,Γ1
will be satisfied and X2 will not be

relevant to strategies extending β.
We now have two cases depending on the parity of l.

Case 1: If l is even, i.e., if b ∈ Ψ0,s(A1,s)\A0,s, then unlike for α, we cannot simply
take the easy win yb ∈ Γ2(A1) \X2, because we still have not guaranteed that α’s
effect on X1 is finitary. For that reason, we will instead consider the marker mb.
We will argue that b /∈ A0,s is evidence that mb is not an element of X0, and so we
check whether mb ∈ Γ0(A1). Let sl be the previous stage when α considered l:

(1) If mb is not in Γ0(A1,t) for some t ∈ [sl, s] (via the same axiom), then we
will be able to argue that if this is the true outcome, then α enumerates
only finitely many axioms into X1 as all but finitely many of them will
include an axiom for mb in Γ0. In this case, RΓ0,Γ1

is satisfied, and α’s
action on X1 is finitary. So we take outcome ⟨l, off⟩.

(2) Otherwise, we have evidence that mb ∈ Γ0(A1)\X0 and so if this is the true
outcome, then RΓ0 is satisfied and we take the outcome ⟨l, new⟩. Below
this outcome, we do not care anymore what happens to X1.

Case 2: If l is odd, i.e., if b ∈ A0,s \ Ψ0,s(A1,s), then we enumerate the axiom
⟨yb, {b}⟩ into the operator Φ2.

(1) If yb /∈ Γ2(A1,s), then, if this is the true outcome, all but finitely many
axioms that α enumerates will contain the use of an axiom for yb being
in Γ2(A1) which is invalid. It follows that once again, RΓ0,Γ1 is satisfied
and α’s action on X1 is finitary. We exit with outcome ⟨l⟩.

(2) Finally, if yb ∈ Γ2(A1,s) (by the same axiom at all stages since the last
visit), then let ⟨yb, Fb⟩ ∈ Γ2 be the axiom that has been valid longest.
Enumerate ⟨b, Fb⟩ into Ψ0,s. We have now eliminated b as a difference, and
so we will pick the oldest difference once again, starting over at the current
substage. (This can happen at most finitely often at any substage.)

3.5. Verification. We define the true path f in the tree of strategies as the leftmost
path of strategies visited infinitely often. If λ ô ⪯ f , then we will say that λ has true
outcome o. If s is a stage at which λ is visited, we say that s is λ-true. We need
to prove that f is well-defined and strategies along it satisfy their requirements.
We do so by showing the following properties of the construction by simultaneous
induction.

Lemma 3.2. The true path f is infinite, furthermore:

A. If α is an RΓ0,Γ1,Γ2
-strategy and α ≺ f , then:

(1) There are finitely many values of the parameter sα.
(2) There is a leftmost outcome o that α visits at infinitely many stages.
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(3) If o ∈ {⟨2k⟩ | k ∈ ω}, then RΓ0,Γ1
is satisfied, and for every value

of sα, the set X
[sα]
1 is finite.

(4) If o ∈ {⟨2k + 1, old⟩, ⟨2k + 1, off⟩ | k ∈ ω}, then RΓ0,Γ1,Γ2 is satisfied,

and for every value of sα, the set X
[sα]
1 is finite.

(5) If o ∈ {⟨2k + 1, new⟩ | k ∈ ω}, then RΓ0
is satisfied.

(6) If o ∈ {⟨2k + 1, backup⟩ | k ∈ ω}, then RΓ0,Γ1
is satisfied.

B. If β is a backup strategy for an RΓ0,Γ1,Γ2
-strategy α and β ≺ f , then:

(1) There are finitely many values of the parameter sβ.
(2) There is a leftmost outcome o that β visits at infinitely many stages.

(3) For every value of sβ, the set X
[sβ ]
0 is computable.

(4) If o ∈ {⟨2l, off⟩, ⟨2l + 1⟩ | l ∈ ω}, then RΓ0,Γ1
is satisfied, and for

every value of sα, the set X
[sα]
1 is finite.

(5) If o ∈ {⟨2l, new⟩ | l ∈ ω}, then RΓ0 is satisfied.
C. If γ ≺ f is an S∆0

-, SΓ0,∆1
-, or SΓ0,Γ1,∆2

-strategy, respectively, then:
(1) There is a leftmost outcome o that γ visits at infinitely many stages.
(2) The set Do consists of all numbers that γ contributes to X0, X1, or X2,

respectively.
(3) The requirement S∆0 , SΓ0,∆1 , or SΓ0,Γ1,∆2 , respectively, is satisfied.

Proof. A. Since α ≺ f , there is a least stage at which α is visited after its final
initialization. At this stage, sα receives its final value, proving (1). By construction,
we interrupt this stage so that no other strategy has the same parameter at any
point during the construction. We claim that α is the only strategy that adds ele-

ments toX
[sα]
1 . By construction, no strategy has enumerated any element into X

[sα]
1

so far. Lower-priority strategies σ are initialized at stage sα, so any future values

of sσ will be greater than sα. Once that occurs, σ cannot add elements to X
[sα]
1 .

Higher-priority strategies will not add elements to X
[sα]
1 , either. To see this, note

that any strategy λ of higher priority that potentially adds elements into X1 after
stage sα is either an RΓ0,Γ1,Γ2 -strategy with sλ < sα, or an SΓ0,∆1 -strategy which

will not enumerate any valid Φ1-axioms for numbers into X
[≥sα]
1 by inductive hy-

pothesis and our choice of sα. This proves our claim. Note that if t < sα is a
previous value of the parameter sα, then our analysis shows that no strategy can

add elements into X
[t]
1 after stage sα. It follows that X

[t]
1 is finite.

Let Ψ1 =
⋃

s>sα
Ψ1,s be the enumeration operator constructed by α. By as-

sumption, A1 ̸≤e A2, hence Ψ1(A2) ̸= A1. Let a be the oldest disagreement
between Ψ1(A2) and A1. This means that there is some stage sa such that at
all stages t > sa, we have that aget(a) stabilizes, and if aget(b) < aget(a), then
b ∈ A1,t ∩ Ψ1,t(A2,t). Furthermore, the way α adjusts the approximation to A1

and A2 when visited ensures that there are infinitely many stages t > sa at which
we visit α and a is the oldest disagreement at stage t. At such stages, α will visit
an aget(a)-outcome, and since there are finitely many aget(a)-outcomes, there is a
leftmost outcome o visited at infinitely many stages, proving (2).

To prove (3), suppose that o is ⟨2k⟩. In order to show that RΓ0,Γ1
is satisfied,

we will show that xa ∈ Γ1(A2)\X1. Since o is ⟨2k⟩, we have a /∈ A1,t for infinitely
many stages t, so a /∈ A1. We argued above that only α can enumerate Φ1-axioms
for xa. By construction, the use of any such axiom contains a. So xa /∈ X1. As for
Γ1(A2), note that a /∈ A1 implies that a ∈ Ψ1(A2). For any Ψ1-axiom for a, there
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is a corresponding Γ1-axiom for xa with the same use. The latter axiom witnesses
that xa ∈ Γ1(A2) as desired.

To show that X
[sα]
1 is finite, it suffices (by our reasoning above) to show that

there is a stage after which no Φ1-axiom enumerated by α is valid. This holds
because any Φ1-axiom enumerated by α when the current outcome is o or to the
right of o must contain a in its use, yet a /∈ A1. This completes the proof of (3).

To prove (4), first suppose that o is ⟨2k+1, old⟩. In order to show that RΓ0,Γ1,Γ2

is satisfied, we will show that X2 ̸⊆ Γ2(A1). Since o is ⟨2k + 1, old⟩, there are
infinitely many stages s such that there is some z ∈ X2,s with age less than 2k + 1
and z /∈ Γ2(A1,t), where t ∈ [sk, s]. (Recall that sk is the last stage before s at
which α considered 2k+1.) There are only finitely many z which ever have age less
than 2k + 1, so the scenario described happens infinitely often with some fixed z.
It follows that z ∈ X2\Γ2(A1) as desired.

To show that X
[sα]
1 is finite, note that for all but finitely many stages at which

we visit α, the age of z in X2 is smaller than the age of the oldest disagreement
between A1 and Ψ1(A2). At such stages, if α enumerates a Φ1-axiom, its use
contains the use Gz of a Γ2-axiom for z being in Γ2(A1). Since z /∈ Γ2(A1), it

follows that α only enumerates finitely many valid Φ1-axioms. Therefore, X
[sα]
1 is

finite (as α is the only strategy which adds elements into X
[sα]
1 ). This completes

the analysis if o is ⟨2k + 1, old⟩.
Next suppose o is ⟨2k+1, off⟩. In this case, we will show that Γ2(A1) ̸⊆ X2. By

assumption on o (and the fact that there are only finitely many backup strategies β

and numbers b such that the age of yβb in Γ2(A1) is ever less than 2k+1), there are
a backup strategy β, a number b, and a number m < 2k + 1 such that at infinitely
many stages s at which we visit α, we have that

• the age of yβb in Γ2,s(A1,s) is less than 2k + 1;

• m is one of the markers mβ
b that β associates with b; and

• m /∈ Γ0,t(A1,t) for some t ∈ [sk, s].

It follows that yβb ∈ Γ2(A1) and m /∈ Γ0(A1). Since o is ⟨2k+1, off⟩, we have b /∈ A0.

We will show that yβb /∈ X2. The only Φ2-axiom enumerated by β for yβb has use {b},
so it is not valid. Furthermore, one can show that β is the only strategy that adds

elements into X
[sβ ]
2 . The proof is similar to that for α and X

[sα]
1 : Note that while β

may not be along the true path, its immediate predecessor α is along the true path

and therefore so are all of its predecessors. We have shown that yβb ∈ Γ2(A1)\X2.

To show that X
[sα]
1 is finite, note that for all but finitely many stages when we

visit α, the age of yβb in Γ2(A1) is smaller than the age of the oldest disagreement
between A1 and Ψ1(A2). At such stages, if α enumerates a Φ1-axiom, its use
contains the use Gm of a Γ0-axiom for m. Since m /∈ Γ0(A1), it follows that α only

enumerates finitely many valid Φ1-axioms. Therefore, X
[sα]
1 is finite (as α is the

only strategy which adds elements into X
[sα]
1 ). This completes the proof of (4).

To prove (5), suppose that o is ⟨2k + 1, new⟩. To show that RΓ0 is satisfied,
we will show that X0 ̸⊆ Γ0(A1). Fix β, b and m, following the analysis in the
case where o is ⟨2k + 1, off⟩. As before, we have m /∈ Γ0(A1). However, since o is
⟨2k + 1, new⟩, we have b ∈ A0. Since we enumerated the Φ0-axiom ⟨m, {b}⟩ when
associating m with b, it follows that m ∈ X0. So m ∈ X0\Γ0(A1).



EXTENSIONS OF TWO CONSTRUCTIONS OF AHMAD 21

To prove (6), suppose o is ⟨2k+1, backup⟩. We have xa /∈ Γ1(A2). To show that
xa ∈ X1, consider a stage s′ large enough such that for all s > s′,

• if ages(b) ≤ 2k + 1, then b ∈ A1;
• if the age of z in X2,s is less than 2k + 1, then z ∈ X2 ∩ Γ2(A1), and the
use Gz of the oldest valid Γ2-axiom for z has stabilized; and

• if β is a backup strategy for α and the age of (the current value of) yβb in
Γ2,s(A1,s) is less than 2k + 1, then

– yβb has stabilized and lies in Γ2(A1);

– each mβ
b lies in Γ0(A1); and

– the use Gmβ
b
for the oldest valid Γ0-axiom for each mβ

b has stabilized.

Such s′ exists because o is ⟨2k+1, backup⟩. At any stage s > s′ at which we visit α,
we would enumerate a valid Φ1-axiom for xa. We conclude that xa ∈ X1\Γ1(A2)
as desired.

B. Since β ≺ f , there is a least stage at which β is visited after its final initialization.
At this stage, sβ receives its final value, proving (1). By construction, we interrupt
this stage so that no other strategy has the same parameter at any point during
the construction. One can show that β is the only strategy that adds elements into

X
[sβ ]
0 , and if t is a previous value of sβ , then no strategy adds elements into X

[t]
0

after stage sβ . It follows that X
[t]
0 is computable for every previous value t of sβ .

Let Ψ0 =
⋃

s>sβ
Ψ0,s be the enumeration operator constructed by β. By assump-

tion, A0 ̸≤e A1, hence Ψ0(A1) ̸= A0. Let b be the oldest disagreement between
Ψ0(A1) and A0. Following similar reasoning as that for α, there is a leftmost out-
come o of the form ⟨2l, off⟩, ⟨2l, new⟩ or ⟨2l+ 1⟩ which is visited at infinitely many
stages, proving (2).

To prove (3), we begin by showing that mβ
b stabilizes. Once sβ and ages(b)

have stabilized, the only way that mβ
b changes is if some b′ with ages

′
(b′) < 2l is

the oldest disagreement between A0,s′ and Ψ0,s′(A1,s′). At such a stage s′, the
current outcome of β would be to the left of o. This only occurs finitely often,

proving that mβ
b stabilizes. Then all numbers greater than mβ

b in the sβ-th column

of N will eventually be dumped into X0, implying that X
[sβ ]
0 is cofinite. As for

older values of sβ , we mentioned above that the corresponding columns of X0 are
computable.

To prove (4), first note that by A(6), RΓ0,Γ1
is satisfied. It remains to show

that for every value of sα, the set X
[sα]
1 is finite. As reasoned above, it suffices to

show that α only enumerates valid Φ1-axioms for finitely many elements in X
[sα]
1 ,

where sα has stabilized. The proof differs depending on whether o is ⟨2l, off⟩ or
⟨2l + 1⟩.

Suppose o is ⟨2l, off⟩. We have b ∈ Ψ0(A1)\A0 and mβ
b /∈ Γ0(A1). By β’s

construction of Ψ0, we have yβb ∈ Γ2(A1) (via an axiom with the same use as a

Ψ0-axiom for b). Let t be the age of yβb in Γ2(A1). Consider any stage s such

that sα, sβ , the age of yβb in Γ2(A1), and mβ
b all have stabilized. Suppose α

enumerates a Φ1-axiom for some xa′ at stage s. Then a′ is the oldest disagreement

between A1,s and Ψ1,s(A2,s). Furthermore, if t,mβ
b < ages(a′), then the use of

the Φ1-axiom enumerated by α contains the use of a Γ0-axiom for mβ
b , rendering

it invalid (because mβ
b /∈ Γ0(A1)). But there are only finitely many a′ for which
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there is some s such that ages(a′) ≤ max{t,mβ
b }, so α can only enumerate valid

Φ1-axioms for finitely many xa′ as desired.

If o is ⟨2l+1⟩, the analysis proceeds similarly but with yβb instead of mβ
b . In this

case, we have that b ∈ A0\Ψ0(A1) and yβb /∈ Γ2(A1). By β’s construction of X2,

we have yβb ∈ X2 via ⟨yβb , {b}⟩ ∈ Φ2. Let t be the age of yβb in X2. Consider any

stage s such that sα, sβ and the age of yβb in X2 all have stabilized. Suppose α
enumerates a Φ1-axiom for some xa′ at stage s. Then a′ is the oldest disagreement
between A1,s and Ψ1,s(A2,s). Furthermore, if t < ages(a′), then the use of the

Φ1-axiom enumerated by α contains the use of a Γ2-axiom for yβb , rendering it

invalid (because yβb /∈ Γ2(A1)). But there are only finitely many a′ for which there
is some s such that ages(a′) ≤ t, so α can only enumerate valid Φ1-axioms for
finitely many xa′ as desired. This completes the proof of (4).

To prove (5), suppose o is ⟨2l, new⟩. We will show that mβ
b ∈ Γ0(A1)\X0. Since o

is ⟨2l, new⟩, we have mβ
b ∈ Γ0(A1). To show that mβ

b /∈ X0, note first that the only

Φ0-axiom enumerated by β for mβ
b has use {b}, so it is not valid. Furthermore, as

mentioned above, β is the only strategy that adds elements into X
[sβ ]
0 , so mβ

b /∈ X0.
This completes the proof of (5).

C. We will prove (1)–(3) in the case where γ is an S∆0 -strategy. Then we will
sketch how to modify the proof to address the SΓ0,∆1 - and SΓ0,Γ1,∆2 -strategies.

Since γ ≺ f , there is a least stage at which γ is visited after its final initialization.
At this stage, sγ receives its final value, proving (1). By construction, we interrupt
this stage so that no other strategy has the same parameter at any point during
the construction.

Consider the sequence of good stages s, i.e., stages at which A0,s ⊆ A0. This
sequence is infinite because {A0,s}s∈ω is a good approximation to A0. We claim that
the length of agreement lγ,s between A0,s and ∆0(X0,s) is bounded on this sequence.
Towards a contradiction, suppose not. We begin by showing that ∆0(X0) = A0:
First, if a ∈ A0, then pick a good stage s such that a ∈ A0,s and lγ,s > a. Then
a ∈ ∆0(X0,s) ⊆ ∆0(X0). Conversely, if a ∈ ∆0(X0), then pick a good stage s such
that a ∈ ∆0(X0,s) and lγ,s > a. Then a ∈ A0,s ⊆ A0 as desired.

Next, we shall show that ∆0(X0) = ∆0(X
[<sγ ]
0 ∪N[≥sγ ]). The forward inclusion

is trivial. To prove the backwards inclusion, consider n ∈ ∆0(X
[<sγ ]
0 ∪N[≥sγ ]). Let

⟨n, F ⟩ be the oldest ∆0-axiom putting n into ∆0(X
[<sγ ]
0 ∪N[≥sγ ]). Pick a good stage

s > sγ such that F [<sγ ] is permanently in X0 and lγ,s > n. When we first visit γ at

some stage s′ ≥ s, we enumerate a Φ0-axiom ⟨⟨r, x⟩, A0,s′⟩ for each ⟨r, x⟩ ∈ F [≥sγ ].
By the way that γ adjusts the approximation to A0, we have A0,s′ ⊆ A0,s ⊆ A0.
Therefore, F ⊆ X0, implying that n ∈ ∆0(X0). This proves the reverse inclusion.

By inductive hypotheses B(3) and C(2), X
[<sγ ]
0 is computable, because the only

strategies that contribute elements to X
[<sγ ]
0 after stage sγ are backup strategies

β ≺ γ or S∆′
0
-strategies γ′ ≺ γ. The equality proved in the previous paragraph then

implies that ∆0(X0), and hence A0, is c.e., contradicting our assumption on A0.
Therefore lγ,s is bounded on the sequence of good stages s. Fix a bound lγ . Using
this, we will prove (1) and (2). First note that γ can only contribute numbers to X0

at good stages, because every Φ0-axiom enumerated by γ at stage s has use A0,s.
This means that only numbers n ≤ lγ can cause γ to enumerate valid Φ0-axioms.
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If n /∈ ∆0(X
[<sγ ]
0 ∪N[≥sγ ]), then n /∈ ∆0,s(X

[<sγ ]
0,s ∪N[≥sγ ]) at good stages, so n will

not cause γ to enumerate any valid Φ0-axioms. As for n ∈ ∆0(X
[<sγ ]
0 ∪ N[≥sγ ]),

the oldest valid ∆0-axiom for n will appear to be the oldest valid axiom at all
sufficiently large good stages, because we are working with a good approximation
to A0. Therefore, at all sufficiently large good stages, γ does not enumerate any
valid Φ0-axioms not already in Φ0. This proves that γ enumerates only finitely
many elements into X0. Let D = Dk be the set of these elements. To prove (1)
and (2), it remains to show that ⟨k⟩ is the leftmost outcome that γ visits at infinitely
many stages. Consider a stage s after which D lies permanently in X0. At any
γ-true stage s′ ≥ s, γ’s current outcome ⟨k′⟩ satisfies Dk ⊆ Dk′ . This implies that
⟨k⟩ ≤L ⟨k′⟩. By the adjustment that γ makes to the approximation of A0, we know
that γ is visited at infinitely many good stages. At all such stages (after stage s), γ
will have outcome ⟨k⟩. This proves (1) and (2).

Finally, to prove (3), we show that there is n ≤ lγ such that A0(n) ̸= ∆0(X0)(n).
Assume that this is not the case. Fix a stage s such that for all s′ ≥ s and
each n ≤ lγ in A0 ∩ ∆0(X0), we have n ∈ A0,s′ ∩ ∆0,s′(X0,s′). Consider any
good stage s′ ≥ s at which we visit γ. If n /∈ A0 ∩ ∆0(X0), then we must have
n /∈ A0,s′ ∪∆0,s′(X0,s′). So lγ,s′ > lγ , contradicting our choice of lγ .

This proves (1)–(3) in the case where γ is an S∆0
-strategy. As for the SΓ0,∆1

- and
SΓ0,Γ1,∆2 -strategies, most of the above proof goes through if we simply replace A0,
∆0, and X0 by the appropriate sets or operators. The only nontrivial change is

in proving that X
[<sγ ]
1 is computable (for SΓ0,∆1

) or X
[<sγ ]
2 is computable (for

SΓ0,Γ1,∆2
), respectively. To prove the former, apply inductive hypotheses A(3),

A(4), B(4), and C(2). Note that A(5) and B(5) are not relevant because any
strategy above γ with such a true outcome works with a different version of X1.
To prove the latter, apply inductive hypothesis C(2). Any backup strategy above γ
works with a different version of X2, so we are not concerned with it. □

Lemma 3.3. One of the following holds:

(1) All requirements RΓ0 and S∆0 are satisfied.
(2) There is some operator Γ0 such that all requirements RΓ0,Γ1

and SΓ0,∆1
are

satisfied.
(3) There are operators Γ0 and Γ1 such that all requirements RΓ0,Γ1,Γ2

and
SΓ0,Γ1,∆2 are satisfied.

Proof. First, suppose there are infinitely many RΓ0
-strategies along the true path f .

By construction of the tree of strategies, there must be infinitely many S∆0 -strate-
gies along f as well. Thus all S∆0 -strategies are assigned to nodes on the true path
and hence are satisfied. To show that RΓ0

is satisfied, fix an RΓ0
-strategy α ≺ f .

Let γ be the next S∆0
-strategy along f . By construction of the tree of strate-

gies, γ’s immediate predecessor is either an RΓ0,Γ1,Γ2
-strategy with true outcome

of the form ⟨2k+ 1, new⟩, or a backup RΓ0,Γ1,Γ2
-strategy with true outcome of the

form ⟨2l, new⟩. In both cases, the previous lemma shows that RΓ0 is satisfied.
Second, if there are only finitely many RΓ0 -strategies along f , fix α ≺ f and Γ0

such that α is an RΓ0
-strategy and no immediate successor of α is an RΓ′

0
-strategy.

If there are infinitely many RΓ0,Γ1
-strategies along f , we claim that all require-

ments RΓ0,Γ1
and SΓ0,∆1

are satisfied. By construction of the tree of strategies,
there must be infinitely many SΓ0,∆1 -strategies along f . Thus all SΓ0,∆1 -strate-
gies are assigned to nodes on the true path and hence are satisfied. To show that
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RΓ0,Γ1
is satisfied, fix an RΓ0,Γ1

-strategy β ≺ f extending α. Let δ be the next
SΓ0,∆1 -strategy along f . By construction of the tree of strategies, δ’s immediate
predecessor is either an RΓ0,Γ1,Γ2 -strategy with true outcome of the form ⟨2k⟩, or
a backup RΓ0,Γ1,Γ2

-strategy with true outcome of the form ⟨2l, off⟩ or ⟨2l + 1⟩. In
each case, the previous lemma shows that RΓ0,Γ1

is satisfied. This proves our claim.
Finally, suppose there are only finitely many RΓ0,Γ1

-strategies along f . Fix
α′ ≺ f extending α and Γ1 such that α′ is an RΓ0,Γ1 -strategy and no immediate
successor of α′ is an RΓ0,Γ′

1
-strategy. (Such α′ exists because α’s only immediate

successor, which must lie along f , is an RΓ0,Γ1
-strategy.) Then no immediate

successor of α along f can be a backup RΓ0,Γ1,Γ2
-strategy, so every immediate

successor of α′ along f is either an RΓ0,Γ1,Γ2
-strategy with true outcome of the

form ⟨2k+ 1, old⟩ or ⟨2k+ 1, off⟩, or an SΓ0,Γ1,∆2
-strategy. By the previous lemma

and the design of the tree, all requirements RΓ0,Γ1,Γ2 and SΓ0,Γ1,∆2 are satisfied. □

4. A Weak Ahmad Triple

In the previous section, we saw that an Ahmad triple is not possible in the
Σ0

2-enumeration degrees. In this section, we show a positive result, the existence of
what we call a weak Ahmad triple.

Theorem 4.1. There are pairwise incomparable ∆0
2-enumeration degrees a1, a2,

and a3 such that

(1) there are ∆0
2-degrees a12 ≰ a3 and a23 ≰ a1 with a12 ∨ a23 = a2; and

(2) for every Σ0
2-degree x < a2, we have that either x ≤ a1 or x ≤ a3.

We call such a triple of degrees a1, a2, and a3 a weak Ahmad triple.

4.1. Requirements. We will construct ∆0
2-sets A1, A3, A12, and A23 satisfying

the following list of requirements for every natural number e:

N 12
e : A12 ̸= Θe(A3 ⊕A23);

N 23
e : A23 ̸= Θe(A1 ⊕A12);

R1
e : X = Φe(A12 ⊕A23) ⇒ (∃Γ)[X = Γ(A1 ⊕A12)] or (∃∆)[A23 = ∆(X)];

R3
e : Y = Ψe(A12 ⊕A23) ⇒ (∃Γ)[Y = Γ(A3 ⊕A23)] or (∃∆)[A12 = ∆(Y )].

Then a1 = dege(A1 ⊕ A12), a2 = dege(A12 ⊕ A23), and a3 = dege(A3 ⊕ A23)
clearly satisfy clauses (1) and (2) of the theorem: Indeed, if Z ≤e A12 ⊕ A23,
then Z will take the role of X for some requirement R1

e and the role of Y for some
requirement R3

e′ . If either requirement is satisfied by the first disjunct, then we
know that Z ≤e A1 ⊕A12 or Z ≤e A3 ⊕A23, respectively. Otherwise, we have that
both A12 ≤e Z and A23 ≤e Z, and so A12 ⊕A23 ≡e Z. Finally, by the definition of
the degrees and by density, our requirements imply that a1, a2 and a3 are pairwise
incomparable: Clearly, a2 ≰ aj for each j ∈ {1, 3} by (1). Similarly, aj ≤ a4−j

for some j ∈ {1, 3} contradicts (1). If aj < a2 for some j ∈ {1, 3}, then fix x with
aj < x < a2, so x ≤ a4−j by (2), and in particular aj < a4−j , contradicting the
last sentence.

The reader might recognize the R-requirements to be very similar to the require-
ments for making an Ahmad pair. Indeed, we can think of R1

e as being the strategy
making (A23, A1) an Ahmad pair “relative” to A12, while R3

e is the strategy making
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(A12, A3) an Ahmad pair “relative” to A23. In fact, as we will see, the addition
of A12 to the oracle in R1

e will not pose additional difficulties, and a similar Ahmad
pair strategy can be used.

4.2. Naive description of the strategies. We start by briefly outlining naive
strategies to satisfy each requirement and then discuss how to modify them in order
to avoid conflicts between them. The construction shares many similarities with
the usual construction of an Ahmad pair on a tree. We will use the usual setup of
a tree of strategies ordered by priority.

An N -requirement N 12, say, is satisfied using a standard Friedberg-Muchnik
strategy α: It picks a witness zα and enumerates it into A12. It waits to see if
this witness will ever enter the set Θα(A3 ⊕ A23). It wins if this never happens,
provided that zα remains in A12. If zα ∈ Θα(A3 ⊕A23), we say that zα is realized.
In that case, α can win by extracting zα from A12 and ensuring that zα will remain
in Θα(A3 ⊕A23) by imposing a finite restraint on the sets A3 and A23.

Of course, this puts N 12-strategies and N 23-strategies in conflict, and so already
we see the need for a priority ordering between strategies. This is an easy obstacle
to deal with. The complexity of our construction will only be revealed once we
think about the R-strategies as well.

Consider an R-requirement R3, say, and its strategy β. Its initial goal is to
build the operator Γβ so that Γβ(A3 ⊕ A23) = Yβ , where Yβ = Ψβ(A12 ⊕ A23).
When activated at stage s, for every natural number n < s, it checks whether
n ∈ Yβ \ Γβ(A3 ⊕ A23), and if so, it enumerates a new axiom ⟨n,D⟩ into Γβ ,
where D contains a fresh number a3(n) that we enumerate into A3. If, on the other
hand, n ∈ Γβ(A3 ⊕ A23) \ Yβ , then the strategy invalidates all valid axioms for n
by extracting from A3 the corresponding marker a3(n). A new fresh value is then
picked for a3(n) to use in the next Γ-axiom. (This allows us to keep our sets ∆0

2.)
The R1- and R3-strategies do not interfere with each other: They modify the

sets A1 and A3, respectively; however, R1-strategies do not involve the set A3, and
R3-strategies do not involve the set A1. R-strategies do not interfere with higher
priority N -strategies, as our priority tree will ensure that whenever an N -strategy
imposes a restraint, all lower-priority strategies are initialized and choose all of their
parameters (specifically, numbers or witnesses they might later on like to extract
from some set) as fresh numbers, larger than any number seen in the construction
so far. An N 12-strategy does not directly interfere with R1-strategies of higher
priority: Its extraction of the witness z from A12 may cause some x to leave X.
However, our design of the axioms that are enumerated into Γ1 will guarantee in
that case that x will also leave Γ1(A1 ⊕ A12), and hence the R1-strategy will not
even have to act in response.

The situation is quite different, unfortunately, when one considers how the ex-
traction of zα from A12 by an N 12-strategy α affects a higher-priority R3-strat-
egy β: In that case as well, some y may be forced out of Yβ through this extraction,
and so β will react by extracting a3(y) from A3. This action, however, might di-
rectly interfere with the restraint that α is trying to impose on A3 in order to keep
zα ∈ Θα(A3 ⊕A23). In order to deal with this problem, we will need to modify our
strategies.

4.3. An N -strategy working below a single R-strategy. For simplicity, we
describe first the actions and outcomes of an N 12-strategy α with oneR3-strategy β
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of higher priority working above it. In the formal construction below, we will deal
with the more general case.

The N 12-strategy α will start by defining a threshold dα to be larger than any
number mentioned so far. This threshold is meant to allow the R-strategy β enough
room to satisfy its requirement. If Γβ(A3 ⊕ A23) changes its value on a number
x ≤ dα, then α will be restarted. So α can assume that Γβ(A3 ⊕ A23) does not
change below dα and hence A3 does not change on any a3(n) for n ≤ dα. From
this point on, α (temporarily) takes over control of the operator Γβ : It defines a
killing point kα as a fresh number and enumerates it into A3. It will require that
the strategy β adds this killing point to the axiom that it enumerates into Γβ for
any x ≥ dα. Whenever α is restarted, all parameters that α had at the previous
stage will be canceled except for the threshold dα and the killing point kα. The
killing point kα is extracted from A3 (thereby invalidating all axioms that were
enumerated into Γβ for any element x ≥ dα). Finally, a new value for kα will be
set - a fresh number, not seen in the construction so far, and this fresh number is
added to A3. Note that (assuming Γβ(A3 ⊕A23) ↾ dα changes finitely often, which
is something we will prove in Lemma 4.4), this restart can happen at most finitely
often.

The strategy α has three outcomes, stop <L ∞ <L wait. Once it has completed
its initial setup (defining thresholds and killing points), the strategy picks a wit-
ness zα as a fresh number and enumerates it into A12 as before. It waits to see if zα
becomes realized, and while waiting, the strategy has its rightmost outcome wait.
Suppose zα enters Θα(A3 ⊕ A23) via an axiom ⟨zα, Ezα ⊕ X⟩. The strategy first
checks if it can extract zα without causing Γβ-correction that will extract from A3

some number in Ezα . At this point, the strategy is willing to sacrifice all other
setups that it has made so far and enumerate into A12 and A23 as many numbers
as necessary in order to guarantee this, with the exception of a certain pair of finite
sets R12 and R23 consisting of witnesses selected by higher-priority strategies and
kept out of their corresponding set. So if it is possible to add to A12 and A23 some
finite set of numbers that make the extraction of zα essentially harmless, then the
strategy extracts zα from A12 and takes outcome stop, where it will remain forever
(unless initialized or restarted).

Suppose that this is not possible. In this case, the strategy α gives up on the
witness zα (at least for now) and decides to prove that β’s requirement is satisfied
by initiating the construction of ∆ so that ∆(Yβ) = A12. We say that α switches β
from Γ to ∆. The fact that an extraction of zα from A12 causes the extraction of a
finite set Fzα from Yβ can now be turned into the first axiom in ∆. We would like to
have a stronger relationship: zα ∈ A12 if and only if Fzα ⊆ Yβ . Of course, currently
there might be other numbers in A12 and A23 whose extraction may also cause Fzα

to leave Yβ . In order to remove their influence, we will dump into A12 and A23,
respectively, all numbers that were ever in A12 or A23 unless they belong to a higher-
priority N -strategy (i.e., are in R12 or R23) or a lower-priority N -strategy γ ⪰ αˆ∞:
We collect those elements in P12 and P23. The act of dumping means that we
enumerate these numbers into A12 or A23, respectively, and never again allow them
to leave these sets. (Note that any numbers controlled by strategies to the right of
the outcome ∞ of α, or which will be replaced by new versions, can be dumped
without harm.) We begin the construction of the operator ∆ by enumerating the
axiom ⟨zα, Fzα⟩, along with ⟨x, ∅⟩ for every element x that is dumped into A12. At



EXTENSIONS OF TWO CONSTRUCTIONS OF AHMAD 27

the end of this stage, we will visit the outcome ∞, but before we do so, we set things
up for a new round: We extract the killing point kα from A3 and redefine it as a
fresh number. We record the parameters ⟨zα, Ezα , Fzα⟩ in a list W that we keep
track of and then redefine the value of zα as a new fresh number. At the next visit,
the strategy α will start a new attempt at diagonalization with this new witness,
but it will keep an eye on the previous witness z and its parameters Ez and Fz. If
it ever sees that by dumping into A12 and A23 elements outside of R12 ∪ R23, it
can restore Ez ⊆ A3 and extract z from A12 (and this extraction will not cause β
to extract any element from Ez back out of A3 to correct Γβ), then the strategy α
will do so and take outcome stop forever.

Below the outcome ∞ of α, we will have a duplicate strategy for every require-
ment of lower priority than β’s requirement, including the one that α failed to
satisfy. These strategies will not have to worry about the strategy β any longer as
its requirement is satisfied in a different way. Specifically, an N 12-strategy γ will
be able to employ the original Friedberg-Muchnik strategy with a couple of mod-
ifications: The witnesses that γ can use have to be the witnesses that α formerly
used for its definition of ∆; these will be collected in a stream S12 that α controls.
Every time α has outcome ∞, it adds one more element to the stream S12. The
strategy γ will wait for the stream to contain a currently unused witness z before
it can carry on. It will then proceed as usual; however, it will only trust A3 below
the current killing point of α. So z will be realized if z ∈ Θγ(A3 ↾ kα ⊕ A23) at
the current stage. If ∞ is α’s true outcome, i.e., if α visits this outcome infinitely
often, then β’s activity is pushed away by the extraction of the infinite unbounded
sequence of killing points, thereby destroying Γβ as discussed above, but giving γ
enough room to faithfully realize its witness. Note that since {kα,s}s<ω is un-
bounded, we will still have that if the witness is never realized then it does not
belong to Θγ(A3 ⊕ A23). Finally, if γ succeeds in realizing a witness, then it ex-
tracts it from A12 and declares victory with outcome stop. This might have an
unanticipated effect on the operator ∆ that α is constructing. It is possible that
an axiom for some number z′ > z was enumerated into ∆ under the assumption
that z remains in A12. The extraction of z from A12 may cause Fz′ to not be a
subset of Yβ , even though z′ ∈ A12. To prevent complications in the operator ∆,
we will in this case dump (and thus remove from the stream) all elements in the
stream S12 that entered the stream after z did.

A similar consideration has to be incorporated when an N 23-strategy δ works
below αˆ∞. For simplicity, we may assume that δ has no R1-strategy working
above it. The strategy δ also operates a simple Friedberg-Muchnik strategy with
the additional requirement that whenever it extracts a witness from A23, it must
dump into A12 (and thus remove from the stream) all witnesses that were put into
the stream after δ defined its witness.

4.4. Strategies, parameters and the tree. We will describe the tree of strate-
gies T ⊆ ({0,wait, stop} ∪ {∞i | i < ω})<ω (which will be a finite-branching tree).
We start with a priority ordering of all requirements of order type ω. To define
the tree, we will make use of two other sets defined inductively as we move down
the tree. We have a set Mσ of nodes ≺ σ that have been killed, and a list Qσ of
requirements that need to be assigned (or reassigned) to nodes ⪰ σ. The root of
the tree will be assigned the highest-priority requirement, and we set M∅ = ∅ and
Q∅ to consist of all requirements. Suppose that we have assigned a requirement



28 GOH, LEMPP, NG, AND SOSKOVA

to a node σ in the tree. If this strategy is an Ri
j-strategy, say, then it has only

one immediate successor σ 0̂. We set Qσ 0̂ = Qσ \ {Ri
j} and assign to σ 0̂ the

highest-priority requirement in the list Qσ 0̂. We set Mσ 0̂ = Mσ.
Suppose now that σ is assigned an N -requirement, say, an N 12

e -requirement.
(The case N 23

e is similar, but now conflicting with R1.) Let δ0 ≺ δ1 ≺ · · · ≺ δn
be all initial segments of σ to which we have assigned an R3-strategy and which
are not in Mσ. (We call such δj alive at σ.) The strategy σ has n + 3 immediate
successors,

σ ŝtop <L σˆ∞0 <L σˆ∞1 <L · · · <L σˆ∞n <L σˆwait.

We set Qσˆwait = Qσ ŝtop = Qσ \ {N 12
e } and assign to each of the nodes σˆwait

and σ ŝtop the highest-priority requirement in this list. We also set Mσˆwait =
Mσ ŝtop = Mσ. For i ≤ n, we set Qσˆ∞i to be Qσ, along with the requirements
associated with δi+1, . . . , δn, and σ. We assign to σˆ∞i the highest-priority require-
ment in Qσˆ∞i

. We set Mσˆ∞i
= Mσ ∪ {δi, δi+1, . . . , δn}.

Lemma 4.2. Let h be an infinite path in the tree of strategies T . Every require-
ment Q in our priority ordering is assigned to some node σ ≺ h such that for
every δ with σ ≺ δ ≺ h, Q is not in Qδ.

Proof. We prove this statement by induction on the priority ordering of all require-
ments. Suppose that the statement is true for all requirements of higher priority
than the requirement Q, and let σ′ ≺ h be least such that no requirement of higher
priority than Q enters Qδ where σ′ ⪯ δ ≺ h, or is assigned to any such δ. It follows
that Q is assigned to some longest σ ⪯ σ′, and we have the following two cases:
Case 1: Q = Ri

j . Fix the Ri-strategies δ0 ≺ δ1 · · · ≺ δn ≺ σ that are alive at σ. By
our inductive hypothesis, if there is a least strategy δ ≺ h extending σ that puts Q
into the list Qδ, then this strategy cannot kill δl for any l ≤ n by our inductive
assumptions. Thus only σ (and possibly strategies extending σ) are killed by δ, and
so δ will be assigned the requirement Q. Now, since no Ri-requirement of higher
priority than Q will switch from Γ to ∆ along h beyond δ, the requirement Q cannot
be added to Qδ′ for any δ′ with δ ≺ δ′ ≺ h; as a consequence, there is also a longest
Q-strategy along h.
Case 2: Q = N ij

e , and by symmetry assume ij = 12. Fix as usual the R3-strategies
δ0 ≺ δ1 · · · ≺ δn ≺ σ alive at σ. The strategy σ cannot put Q into the set Qσ ô

unless σ switches the outcome of δn from Γ to ∆ along h (since, by inductive
hypothesis, no δl can be killed along h anymore). But then Q must be assigned
to σ ô and cannot be added to Qδ′ for any δ′ with δ ≺ δ′ ≺ h. □

An R-strategy β has only its operator Γβ as a parameter. Initially (and after
every initialization), we set Γβ = ∅. We will also refer to Φβ(A12 ⊕A23) as Xβ (in
the case of an R1-strategy, and proceed similarly in the case of an R3-strategy.)

An N 12-strategy α extending R3-strategies β0 ≺ β1 ≺ · · · ≺ βn still alive at α
has a threshold dα, a set of killing points k0α < · · · < knα, a witness zα, a list of
old witnesses Wα, each component of which contains a number z, an index i ≤ n,
two finite sets Ez and Fz, and enumeration operators ∆β0 , . . . , ∆βn . Initially
(and after every initialization), all of these parameters are undefined or empty. An
N 23-strategy γ has the same list of parameters with respect to all R1-strategies
that are still alive at γ.
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In addition, every strategy has two streams S12 and S23. These streams are
determined by the predecessor of every strategy. Whenever a strategy is canceled,
most of the elements in its stream (except for possibly one element) will be dumped
into the corresponding set A12 or A23.

4.5. Construction. In our construction, we will build a sequence {fs}s<ω. Each fs
is a node of length s on our tree of strategies. Strategies visited at stage s+ 1 will
modify the values of their parameters, as well as the approximations to the sets A12,
A23, A1 and A3. Since our tree is finitely branching, there is a leftmost path of
nodes visited at infinitely many stages, the true path. The intention is that for
every requirement Q, there is a strategy along the true path that satisfies Q.

At stage 0, we set A12 = A23 = A1 = A3 = ∅, and all parameters of all strategies
are in initial state (either undefined or empty). All streams are empty.

At stage s+1, we always start by visiting the root of the tree, namely, fs+1 ↾ 0 =
∅. We add to the streams S12

∅ and S23
∅ of the root the element s. Suppose we have

built fs+1 ↾ k along with its streams S12
fs+1↾k and S23

fs+1↾k. If we have added a new

number to S12, then we denote it by n12. If we have added a new number to S23,
then we denote it by n23. If k = s + 1, then we are done with the construction
of fs+1: We initialize all strategies δ > fs+1, dump their streams into A12 and A23,
respectively, empty their streams (i.e., set S12

δ = S23
δ = ∅), and move on to the next

stage.
Otherwise, we have four cases depending on the requirement assigned to fs+1 ↾ k:

Case 1: fs+1 ↾ k is an R3
j -strategy β: The strategy scans all x ≤ s.

(a) If x ∈ Yβ \Γβ(A3 ⊕A23), then the strategy picks a fresh marker a3(x)
and enumerates it into A3. Then it defines Kx

β as the finite set of all

β-killing points that belong to an N 12-strategy α ≻ β with current
threshold dα ≤ x. (Note that this is a finite set as there are currently
only finitely many strategies that are not in initial state.) The strategy
then enumerates into Γβ the axiom ⟨x, ({a3(x)} ∪Kx

β )⊕A23 ↾ s⟩.
(b) If x ∈ Γβ(A3 ⊕ A23) \ Yβ , then the strategy extracts from A3 all

markers a3(x) that are in some valid axiom for x in Γβ .
Once the scan is over, the strategy defines the stream S12

β 0̂ by adding to

its previous value the number n12 and, similarly, the stream S23
β 0̂ by adding

to it the number n23 (if they exist). Then the strategy ends the substage
with outcome 0.

Case 2: fs+1 ↾ k is an R1
j -strategy. This case is dealt with analogously to the

previous case.
Case 3: fs+1 ↾ k is an N 12

e -strategy α. Fix β0 ≺ β1 ≺ · · · ≺ βn ≺ α to be the
R3-strategies alive at α. Let Kα be the greatest lower bound of the set of
all killing points kiγ , where γ is an N 12-strategy and α ⪰ γˆ∞i. Let R12

and R23 be the sets of witnesses currently used by higher-priority N 12- and
N 23-strategies, respectively. Similarly, the sets P i

12 and P i
23 consist of the

current witnesses of N 12- and N 23-strategies extending outcome ∞i.
If this is the first time that α is visited after initialization, then define

the threshold dα to be fresh and large and the killing points k0α < · · · < knα
as fresh numbers. Enumerate every killing point into A3. Then go to the
first case which applies:
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(a) If Γβi
(A3 ⊕ A23) ↾ dα has changed since we last visited α, then can-

cel zα, Wα and ∆βi
for every i ≤ n. Extract the killing points kjα where

j ≥ i from A3. Define new values for these killing points and enumer-
ate them into A3. Initialize all strategies of lower priority than α.
Dump the streams S12

α and S23
α into A12 and A23, respectively. Set

S12
α ô = S23

α ô = ∅ for every possible outcome o of α and end the substage
with outcome wait.

(b) If the previous time when we visited α, it had outcome stop, and α
has not been initialized since, then let the outcome again be stop.
Define S12

α ŝtop and S23
α ŝtop by adding to them the number n12 and n23,

respectively (if they exist).
(c) Scan the list of old witnesses Wα. For each entry ⟨z, iz, Ez, Fz⟩ such

that z has not yet been dumped into A12, check to see whether the
number iz can be decreased: Find the least jz such that for every
i ≥ jz, if we enumerate back into A3 the set Ez, into A12 every number
x ̸= z such that x ≤ s and x /∈ R12 ∪

⋃
j<jz

P j
12, and into A23 every

number x ≤ s that is not in the set R23 ∪
⋃

j<jz
P j
23, then βi will not

be forced to extract from A3 any number in Ez during Γβi
-correction.

(In this case, we say that z is Γβi-cleared for i ≥ jz.) If there are no
witnesses with jz ≤ iz, then move on to step (d). Otherwise, among
all witnesses with jz ≤ iz, pick the one with least jz, and among these
the least z. Enumerate Ez into A3, dump into A12 every number
x ̸= z such that x ≤ s and x /∈ R12 ∪

⋃
j<jz

P j
12, and into A23 every

number x ≤ s such that x /∈ R23 ∪
⋃

j<jz
P j
23. If jz = 0, then set

zα = z, extract it from A12 and end the substage with outcome stop.
Set S12

α ô = S23
α ô = ∅ for every possible outcome o of α and dump the

elements that were in each stream into A12 and A23, respectively.
Otherwise, if jz > 0, then set iz = jz−1. Let Fz ⊆ Yβiz

be the set such
that z ∈ A12 if and only if Fz ⊆ Yβiz

. Enumerate into ∆βiz
the axiom

⟨z, Fz⟩. Update the record in Wα to include ⟨z, iz, Ez, Fz⟩. Extract
the killing points kjα where j ≥ iz from A3, and end the substage with
outcome ∞iz . We set the streams S12

α ô = S23
α ô = ∅ for every outcome o

of α that is to the right of ∞iz and dump all elements that were in
those streams except z into A12 and A23, respectively. Dump n12

into A12 (if it exists). We leave S12
α ô and S23

α ô unchanged for every
outcome o of α that is to the left of ∞iz . We update S12

αˆ∞iz
by adding

the number z to it, and S23
αˆ∞iz

by adding the number n23 (if it exists)

to it.
(d) If no current witness is selected and n12 exists and is larger than the

current witness of every N -strategy γ with γˆwait ⪯ α or γ ŝtop ⪯ α,
then define zα = n12 and enumerate it into A12. Otherwise (if n12

is defined but too small), dump n12 into A12. End the substage with
outcome wait, leaving all streams of immediate successors of α un-
changed.

(e) If zα /∈ Θα(A3 ⊕ A23) or if zα ∈ Θα(A3 ⊕ A23) but for every valid
axiom ⟨zα, E ⊕ D⟩ ∈ Θα, we have that max(E) ≥ Kα, then end the
substage with outcome wait. Add n12 into S12

αˆwait and n23 into S23
αˆwait
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(if they exist). Leave all other streams of immediate successors of α
unchanged.

(f) If zα ∈ Θα(A3 ⊕ A23) via an axiom ⟨zα, E ⊕D⟩ with max(E) < Kα,
then we add ⟨zα, n + 1, E, ∅⟩ to Wα and go back to step (c). (Note
that the current outcome will not be wait, since in step (c), we are
guaranteed to find some witness jz ≤ n+1.) We also cancel the value
of the current witness so that at the next visit, if α passes through
steps (a), (b) and (c), then it will go to step (d) and select a new value
of the witness.

Case 4: fs+1 ↾ k is an N 23
e -strategy. This case is dealt with analogously to the

previous case.

4.6. Verification. As anticipated, we have an infinite true path f of strategies
on the tree consisting of the leftmost nodes visited at infinitely many stages. Our
intention is to prove that nodes along this path satisfy their requirements. In
order to prove that nodes on this path are initialized only finitely often, we must
consider an N -strategy on the true path and think about how many times it can be
restarted, as that is the only reason, other than just visiting a node to the left of a
strategy, that causes the initialization of strategies. We will prove, in Lemma 4.4,
that for every R3-strategy β ≺ f , the set Γβ(A3 ⊕ A23) is ∆0

2, and similarly, for
every R1-strategy β′ ≺ f , the set Γβ′(A1 ⊕A12) is ∆

0
2. Throughout this proof, we

will phrase various interactions between strategies for the pairs R3 and N 12. We
note that the relationship between R1 and N 23 is symmetric.

First, we point out a technical fact about streams that will be useful in the rest
of the proof.

Lemma 4.3. If n enters a stream of a strategy δ at stage s and δ was last visited
or initialized at stage s−, then n ≥ s− and n is larger than all previous elements of
either stream of δ.

Proof. The proof is an easy induction on the construction. The root is never ini-
tialized, and at stage s + 1, n12

∅ = n23
∅ = s, which is the last time the root was

visited.
Suppose the statement is true about δ. If δ adds n12 and n23 to the stream of its

immediate successor, then the statement clearly follows by induction, as we cannot
initialize an immediate successor of δ without either visiting or initializing δ. So
suppose that δ is an N 12-strategy, say, and δ adds a witness z to the stream of
δˆ∞i, as that is the only other case. In that case, the witness z was defined after
δˆ∞i was last visited or initialized at stage t, as whenever we initialize or visit δˆ∞i,
we initialize and empty the stream of all strategies δˆ∞j where j > i. At the stage
when z was defined, it was defined as n12

δ , which by induction is greater than or
equal to the previous stage when δ was visited, and hence greater than or equal
to t, and larger than any element in the stream of δˆ∞i. □

Lemma 4.4. Let β ≺ f be an R3-strategy. Suppose that α is an N 12-strategy such
that β ≺ α ≺ f and β is alive at α. Let dα be a threshold of α. Then there is a
stage s such that after stage s, the strategy β does not modify the set Γβ(A3 ⊕A23)
below the threshold dα. Thus, in particular, if β is never killed along f then the set
Γβ(A3 ⊕A23) is ∆0

2.
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Proof. We prove this theorem by induction on the priority of β and α. So towards a
contradiction, suppose that the statement is false for a pair of strategies β ≺ α ≺ f ,
and take the pair where α has highest priority. It follows from our choice of α that
there is a least stage sα such that after stage sα, the strategy α (and hence β as
well) is not initialized and never again changes the value of its threshold dα. At
stage sα, the strategy α picks its killing points as fresh numbers, and hence they do
not interfere with any axiom for any number n ≤ sα in Γβ . After stage sα, every
time Γβ(A3 ⊕ A23) changes on some number n ≤ sα, the strategy α is restarted.
It chooses all parameters anew and initializes all lower-priority strategies. This
means that if β enumerated a new axiom into Γβ for some n ≤ sα such that
n ∈ Ψβ(A12 ⊕A23), then:

(1) This axiom cannot be invalidated by any strategy γ of equal or lower pri-
ority than α, as N 12-strategies are initialized or restarted and hence pick
their killing points as fresh numbers larger than a3(n) and have thresholds
larger than n (hence none of their killing points will be included by β in
this axiom). N 23-strategies have to pick their witnesses anew, from fresh
streams, as their streams are emptied at the current stage. Hence these
witnesses will be larger than the current stage and will not be included in
the A23-portion of the axiom for n.

(2) The axiom that made n enter Ψβ(A12⊕A23) uses (by our convention) only
numbers smaller than the current stage and hence it will not be invalidated
by any strategy of equal or lower priority than α, as these strategies are
initialized and their streams are emptied. By Lemma 4.3, their streams will
contain only numbers larger than the current stage, from which they will
pick their witnesses.

No strategy of higher priority than α can invalidate either of these axioms, either:
A higher-priority strategy extracts from A12 or A23 only at stages at which it,
for the first time after initialization, has its leftmost outcome stop, which by our
choice of sα must happen before stage sα. Similarly, after stage sα, higher-priority
strategies extract killing points only associated with R-strategies that they end up
killing, and since β is alive at α, this cannot be β. Of course, all A3-markers are
different, so R3-strategies do not interfere with each other.

It only takes finitely many stages for any number n ≤ dα that ever enters
Ψβ(A12 ⊕A23) to enter Ψβ(A12 ⊕A23) permanently, and hence after that stage, β
will not need to modify Γβ(A3 ⊕A23) ever again. □

The lemma above has two easy but significant corollaries. The first corollary
was already anticipated by us.

Corollary 4.5. Every strategy along the true path is initialized at most finitely
often. □

The second corollary gives us the satisfaction of R-requirements in one case.

Corollary 4.6. If β ≺ f is an R3-strategy that is alive at every successor of β
along the true path, then Γβ(A3⊕A23) = Ψβ(A12⊕A23). The analogous statement
for R1-strategies holds as well.

Proof. Fix an R3-strategy β ≺ f . Consider the N 12-strategies β ≺ α0 ≺ α1 ≺
· · · ≺ αn ≺ · · · ≺ f along the true path. The sequence {dαi

}i<ω of the final values
of their thresholds, attained at the first true stage after the corresponding strategy
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stops being initialized, is an unbounded increasing sequence. By Lemma 4.4, for
every i, there is a stage si such that at all t ≥ si, the strategy β does not modify
Γβ(A3 ⊕ A23) on numbers less than dαi , and hence, by β’s design, Γβ(A3 ⊕ A23) ↾
dαi

= Ψβ(A12⊕A23) ↾ dαi
at all stages t ≥ si. Furthermore, the proof of Lemma 4.4

actually gives us more: If n ≤ dαi
is in Ψβ(A12 ⊕A23) at any β-true stage after αi

selects its last threshold dαi
, then n ∈ Γβ(A3 ⊕ A23) ∩ Ψβ(A12 ⊕ A23). This gives

us immediately that Γβ(A3 ⊕ A23) ↾ dαi = Ψβ(A12 ⊕ A23) ↾ dαi and, by the
unboundedness of {dαi}i<ω, the fact that Γβ(A3 ⊕A23) = Ψβ(A12 ⊕A23). □

We next concentrate on the N -requirements. To prove that each is eventually
satisfied, we will first show that once a number is Γi-cleared, it will remain Γi-cleared
at all future stages.

Lemma 4.7. Fix an N 12-strategy α ≺ f below R3-strategies β0 ≺ · · · ≺ βn alive
at α. If α moves a witness z from S12

∞j
to S12

∞i
, where i < j, at a stage after α’s last

initialization, then at any future stage, if z is extracted from A12 and Ez is enu-
merated back into A3, the strategy βj will not change A3 to cause z to be extracted
from Γβj

(A3 ⊕A23).

Proof. Suppose that at stage s, the strategy α moves z from S12
∞j

to S12
∞i

, where

i < j. At this stage, it dumps into A12 all numbers x ≤ s such that x /∈ {z} ∪
R12 ∪

⋃
i′≤i P

i′

12, and into A23 all numbers x ≤ s such that x /∈ R23 ∪
⋃

i′≤i P
i′

23. At
stage s, we see that under these circumstances, the extraction of z from A12 will not
cause any number y that is currently in Ψβj

(A12⊕A23) and that has an A3-marker

a3(y) ∈ Ez to leave the set Ψβj
(A12⊕A23). Assuming that (R12∪

⋃
i′≤i P

i′

12)∩A12 as

seen at the current stage s remains a subset of A12, and that (R23∪
⋃

i′≤i P
i′

23)∩A23

as seen at stage s remains a subset of A23, this will be true at future stages as
well, as every strategy to the right of αˆ∞i is initialized and will select its future
witnesses from its stream that is currently empty and will by Lemma 4.3 in the
future only have elements larger than any number mentioned before stage s, hence
not be included in any axiom in Ψβj valid at stage s.

The only potential problem is that some strategy γ might, at a stage t, extract
from A12 a number y that is in the set (R12∪

⋃
i′≤i P

i′

12)∩A12 at stage s, or from A23

a number y that is in the set (R23 ∪
⋃

i′≤i P
i′

23) ∩A23 at stage s.

First note that if y ∈ R12 ∪ R23, then y is the current witness of an N -strategy
δ ≺ α. Since δ has no witness at stages when it has an infinite outcome, and its
current witness is not in A12 if it has outcome stop, it follows that δˆwait ⪯ α. This
means that y remains the current witness of δ at all future stages and never enters
another stream. No other strategy has access to it in order to extract it at stage t.

Suppose that y ∈ P i′

12 for i′ ≤ i. Let δ ⪰ αˆ∞i′ be the strategy with witness y
at stage s. Let γ be the strategy that extracts y at stage t. Once again, γ cannot
have higher priority than α, or else α would be initialized. It follows that γ = α,
or else γ ⪰ αˆ∞k, where k ≤ i′, as all other strategies of lower priority than α are
initialized at the stage when y was assigned to δ as a witness and thus have streams
consisting of elements larger than y by Lemma 4.3. If γ = α, then at stage t, the
strategy α dumps all elements less than t that are not in {y} ∪R12 ∪R23 into A12

and A23, respectively, in particular z will be dumped. If γ ⪰ αˆ∞k and k ≤ i,
then consider the stage r at which y entered the stream of αˆ∞k. Since at stage s,
the number y is already in the stream of αˆ∞i′ , and whenever a number switches
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streams, all streams associated with strategies to the right are dumped, we have
that at stage r, the number z is dumped (z cannot already be in a stream to the
left of or equal to αˆ∞k at stage r, or else y would have been dumped before
stage r). □

Lemma 4.8. Every N -requirement is satisfied.

Proof. By symmetry, fix an N 12
e -requirement, say. By Lemma 4.2, there is a strat-

egy α along the true path that is assigned N 12
e and such that no strategy σ extend-

ing α along the path f has N 12
e ∈ Qσ. It follows that αˆwait ≺ f or α ŝtop ≺ f .

Let sα be the first stage after which α is not initialized. Recall that the num-
ber Kα is defined as the greatest lower bound of the set of all killing points kiγ ,

where γ is an N 12-strategy and α ⪰ γˆ∞i. Every time that α is visited, this number
has a larger value than at the previous visit. Furthermore, no N -strategy of higher
priority than α modifies A3 on numbers x ≤ Kα. This is because when such an
N -strategy γ such that γˆ∞i ⪯ α has outcome ∞i, it extracts from A3 all killing
points kjγ , where j ≥ i, and then it redefines them as fresh numbers. The strategy γ
cannot extract any smaller killing point without initializing α.

So A3 ↾ Kα can only be modified by an R-strategy β above α. We note that
such a strategy is necessarily alive at α. Indeed, if β is not alive above at α, then
it is killed by a strategy γ such that γˆ∞i ⪯ α and β is γ’s j-th R3-strategy, where
j ≥ i. Every time that γ has outcome ∞i, it extracts its j-th killing point from A3,
thereby invalidating all axioms in Γβ for numbers x ≥ dγ . After stage sα, the
strategy β does not modify Γβ(A3 ⊕ A23) on any number x ≤ dγ , hence if it sees
a valid axiom for some x that needs to be made invalid, then x > dγ . This axiom
has marker a3(x) > kjγ ≥ Kα.

If αˆwait ≺ f , then let s ≥ sα be such that α has outcome wait at every stage
t ≥ s. After stage s, the strategy α will select its final witness zα. It follows from
the construction that zα never enters Θα(A3 ⊕ A23) with an axiom that does not
use any numbers larger than Kα. Since the values of Kα at α-true stages form an
unbounded sequence, it follows that every axiom we ever see for zα in Θα(A3⊕A23)
is invalid at infinitely many stages. Hence zα /∈ Θα(A3⊕A23). As no strategy other
than α can extract zα from A12, and zα is enumerated into A12 at the stage when
it is defined, it follows that zα ∈ A12 \Θα(A3 ⊕A23).

If, on the other hand, α ŝtop ≺ f , then there is a stage s ≥ sα such that α has
outcome stop for the first time at stage s. At this stage, α has found a witness z
that is cleared by all higher priority R3-strategies that are alive at α. Note that
max(Ez) < Kα, and by Lemma 4.7, no strategy β that is alive at α will extract a
marker from A3 that is in Ez. Every number that was in A23 when the axiom for z
in Θα was found is dumped into A23 at stage s (only elements that are in R23 are
preserved; however, they cannot have been in R23 when z was realized and not be
in R23 later unless α is initialized). It follows that z ∈ Θα(A3 ⊕A23) \A12. □

The final lemma that we present handles the case when an R-requirement is
satisfied by its backup strategy, which completes the proof.

Lemma 4.9. Let α be an N 12-strategy below the R3-strategies β0 ≺ · · · ≺ βn ≺ α
alive at α. If αˆ∞i ≺ f , then A12 ≤e Yβi

. (Of course, a symmetric result holds for
N 23-strategies below R1-strategies.)
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Proof. Let sαi
be a stage such that αˆ∞i is not initialized after stage sαi

. After this
stage, the set R12

α does not change. We prove that if x ≥ sα is an element that is
never dumped into A12, then either x ∈ R12

α or x ∈ A12 if and only if x ∈ ∆βi(Yβi).
Fix x and suppose that x is never dumped into A12 and that x /∈ R12

α . Fix the
least witness z of α such that z ≥ x. Consider the stage at which z is realized
and enters one of the streams of α’s immediate successors. If z > x, then at that
stage, x would be dumped into A12. So suppose that z = x. Now consider the next
stage at which α has outcome ∞i. At that stage, some element z′ enters the stream
Sαˆ∞i

, and by our choice of sαi
, we know that at this stage, x is in some stream

Sαˆ∞j
where j ≥ i. If x ̸= z′, then x would be dumped into A12 at this stage, so

suppose that x = z′ and x enters the stream Sαˆ∞i
at stage s. Then at this stage,

we add an axiom ⟨x, Fx⟩ into ∆βi for x, where Fx is such that under the current
circumstances at stage s, we have that x ∈ A12 if and only if Fx ⊆ Yβi . As in the

proof of Lemma 4.7, if some number that is in the set (R12 ∪
⋃

j≤i P
j
12) ∩ A12 at

stage s is extracted from A12 or a number that is in the set (R23∪
⋃

j≤i P
j
23)∩A23 at

stage s is extracted from A23, then x is dumped into A12. So suppose that neither
of these ever happens. Then clearly, if x ∈ A12, then Fx ⊆ Yβi , as all strategies of
lower priority than αˆ∞i are initialized at stage s. If at any stage t > s, we visit α
and notice that Fx ⊆ Yβi

even if x /∈ A12, then the strategy α will move x to a
smaller stream and initialize αˆ∞i, contrary to our assumptions. □

Putting Corollary 4.6 and Lemma 4.9 together, we conclude the following

Corollary 4.10. Every R-requirement is satisfied.

Proof. Fix an R3
e-requirement, say. By Lemma 4.2, let β be the longest R3

e-strategy
along f . If β is not switched from Γ to ∆ by any strategy extending β along f ,
then by Corollary 4.6, R3

e is satisfied. If β ≺ αˆ∞i ≺ f and α switches β from Γ
to ∆, then β is α’s i-th live R3-strategy. By Lemma 4.9, A12 ≤e Yβ , and hence R3

e

is once again satisfied. □

This concludes the proof of Theorem 4.1.
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