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MAXIMAL TOWERS AND ULTRAFILTER BASES
IN COMPUTABILITY THEORY

STEFFEN LEMPP, JOSEPH S. MILLER,
ANDRE NIES, AND MARIYA 1. SOSKOVA

ABsTrRACT. The tower number t and the ultrafilter number u are cardinal
characteristics from set theory. They are based on combinatorial properties
of classes of subsets of w and the almost inclusion relation C* between such
subsets. We consider analogs of these cardinal characteristics in computability
theory.

We say that a sequence (Gn)nen of computable sets is a tower if Go = N,
Gnt+1 € Gp, and Gy, \ Gp41 is infinite for each n. A tower is mazimal if
there is no infinite computable set contained in all G,,. A tower <Gn>n€w is
an ultrafilter base if for each computable R, there is n such that G, C* R or
Gy, C* R; this property implies maximality of the tower. A sequence (Gp)nen
of sets can be encoded as the “columns” of a set G C N. Our analogs of t
and u are the mass problems of sets encoding maximal towers, and of sets
encoding towers that are ultrafilter bases, respectively. The relative position
of a cardinal characteristic broadly corresponds to the relative computational
complexity of the mass problem. We use Medvedev reducibility to formalize
relative computational complexity, and thus to compare such mass problems
to known ones.

We show that the mass problem of ultrafilter bases is equivalent to the mass
problem of computing a function that dominates all computable functions, and
hence, by Martin’s characterization, it captures highness. On the other hand,
the mass problem for maximal towers is below the mass problem of computing
a non-low set. We also show that some, but not all, noncomputable low sets
compute maximal towers: Every noncomputable (low) c.e. set computes a
maximal tower but no 1-generic Ag—set does so.

We finally consider the mass problems of maximal almost disjoint, and of
maximal independent families. We show that they are Medvedev equivalent
to maximal towers, and to ultrafilter bases, respectively.
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1. INTRODUCTION

Cardinal characteristics measure how far the set-theoretic universe deviates from
satisfying the continuum hypothesis. They are natural cardinals greater than Rg
and at most 2%°. For instance, the bounding number b is the least size of a collection
of functions f: w — w such that no single function dominates the entire collection.
Related is the dominating number 0, the least size of a collection of functions
f:w — wsuch that every function is dominated by some function in the collection.
Here, for functions f,g: w — w, we say that g dominates f if g(n) > f(n) for
sufficiently large n. An important program in set theory is to prove less than or
equal-relations between characteristics in ZFC, and to separate them in suitable
forcing extensions.

Analogs of cardinal characteristics in computability theory were first studied by
Rupprecht [15, 16] and further investigated by Brendle, Brooke-Taylor, Ng, and
Nies [2]. An article by Greenberg, Kuyper, and Turetsky [6], in part based on
Rupprecht’s work, provides a systematic approach to the two connected settings of
set theory and computability, at least for certain types of cardinal characteristics.
The relevant characteristics are given by binary relations, such as the domination
relation <* between functions; their computability-theoretic analogs are ordered
by reducibilities that measure relative computability. A well-understood example
of this is how the relation <* gives rise to the bounding number b(<*) and the
dominating number 9(<*), and their analogs in computability, which are highness
and having hyperimmune degree. A general reference in set theory is the survey
paper by Blass [1]. The brief survey by Soukup [19] contains a diagram displaying
the ZFC inequalities between the most important characteristics in this setting,
along with b(<*) and d(<*).

In this paper, we consider cardinal characteristics that do not fit into the frame-
work of Rupprecht, and Greenberg, Kuyper and Turetsky [6]. In particular, we
initiate the study of the computability-theoretic analogs of the ultrafilter, tower,
and independence numbers. These characteristics are defined in the setting of sub-
sets of w up to almost inclusion C*; we give definitions below.

The ultrafilter number u is the least size of a subset of [w]* with upward closure
a nonprincipal ultrafilter on w. We note that one cannot in general require here
that the subset is linearly ordered by C*: Recall that an ultrafilter F' on w is a
P-point if for each partition (C,,) of w such that C,, ¢ F for each n, thereis A € F
such that C,, N A is finite for each n. An ultrafilter with a linear base is a P-point.
Shelah (see Wimmers [20]) has shown that it is consistent with ZFC that there are
no P-points. So it is consistent with ZFC that the version of u relying on linear
bases would be undefined.

LThis is less commonly, but perhaps more sensibly, called the unbounding number.
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The tower number t is the minimum size of a subset of [w]* that is linearly
ordered by C* and cannot be extended by adding a new element below all given
elements. To define the pseudointersection number p, the requirement in the defi-
nition of towers that the sets in the class be linearly ordered under C* is weakened
to requiring that every finite subset of the class has an infinite intersection. So,
trivially, p < t. In celebrated work, Malliaris and Shelah [12] showed (in ZFC) that
p =t (see also [19]). It is not hard to see that ZFC proves t < u. It is consistent
that t < u (see [1] for both statements).

A class C of subsets of w is independent if any intersection of finitely many
sets in C or their complements is infinite. The independence number i is the least
cardinal of a maximal independent family. There has been much work recently
on i in set theory, in particular, the descriptive complexity of maximal independent
families, such as in Brendle, Fischer, and Khomskii [3].

1.1. Comparing the complexity of the analogs in computability. The main
setting for our analogy is given by the Boolean algebra of computable sets modulo
finite differences. We consider maximal towers, the closely related maximal almost
disjoint sets, and thereafter ultrafilter bases and maximal independent sets. As
already demonstrated in the above-mentioned papers [2, 6, 15, 16], the relative po-
sition of a cardinal characteristic tends to correspond to the relative computational
complexity of the associated class of objects.

The usual formal definitions of computation relative to an oracle only directly
apply to functions f: w — w, and hence to subsets of w (simply called sets from now
on), which can be identified with their characteristic functions. The complexity of
other objects is studied indirectly, via names that are functions on w giving discrete
representations of the object in question. A particular choice of names has to be
made. For instance, real numbers can be named by rapidly converging Cauchy
sequences of rational numbers.

The witnesses for cardinal characteristics are always uncountable. In contrast,
in our setting, the analogous objects are countable. They will be considered as
sequences of sets rather than unordered collections. For, a single set X can be used
as a name for such a sequence of sets: Let X" denote the “column” {u: (u,n) €
X}.2 To every set X, we can associate a sequence (Xn) e, in a canonical way by
setting X,, = X[™. (When introducing terminology, we will sometimes ignore the
difference between (X,), ., and X.) An alternate viewpoint is that a set X is a
name for the unordered collection of sets in its coded sequence. Although such a
name includes more information than is in the unordered family, this information is
suppressed when we quantify over all names; our results can be read in this context.

With this naming system, one can now use sequences as oracles in computations.
We view the combinatorial classes of sequences as mass problems. To measure their
relative complexity, we compare them via Medvedev reducibility <,: Let C and D be
sets of functions on w, also known as mass problems. One says that C is Medvedev
reducible to D and writes C <, D if there is a Turing functional © such that
09 € C for each g € D. Less formally, one says that functions in D uniformly
compute functions in C. We will also refer to the weaker Muchnik reducibility:
C <, D if each function in D computes a function in C.

2For definiteness, we employ the usual computable Cantor pairing function (z,n). Note that
(z,m) > x,n. This property is useful in simplifying notation in some of the constructions below.
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With subsequent research in mind, we will set up our framework to apply to
general countable Boolean algebras rather than merely the Boolean algebra of the
computable sets. Throughout, we fix a countable Boolean algebra B of subsets of w
closed under finite differences. Our basic objects will be sequences of sets in B.
We will obtain meaningful results already when we fix a countable Turing ideal Z
and let B be the sets with degree in Z. While we mainly study the case when B
consists of the computable sets, in Section 6, we briefly consider two other cases:
the K-trivial sets and the primitive recursive sets.

1.2. The mass problem 7Ty of maximal towers.

Definition 1.1. We say that a sequence (G,), ., of sets in B is a B-tower if
Gy = w, Gpy1 CF G, and Gy, \ G411 is infinite for each n. If B consists of the
computable sets, we use the term tower of computable sets.

Definition 1.2. We say that a function p is associated with a tower G if p is strictly
increasing and p(n) € (,.,, G; for each n.

The following fact is elementary.
Fact 1.3. A tower G uniformly computes a function p associated with it.

Proof. Let ® be the Turing functional such that ®&(0) = min(G), and ®%(n+1) is
the least number in (,,, | G; greater than ®Y(n). This ® establishes the required
uniform reduction. O

Definition 1.4. Given a countable Boolean algebra B of sets, the mass problem
T is the class of sets G such that (Gy), ., is a B-tower that is mazimal, i.e., such
that for each infinite set R € B, there is n such that R ~ G,, is infinite.

Clearly, being maximal implies that no associated function is computable. In
particular, a maximal tower is never computable. (Note that our notion of maxi-
mality only requires that the tower cannot be extended from below, in keeping with
our set-theoretic analogy.)

1.3. The mass problem Ug of ultrafilter bases. We now define the mass prob-
lem Up corresponding to the ultrafilter number. Since all filters of our Boolean al-
gebras are countable, any base will compute a linearly ordered base by taking finite
intersection. So for measuring the relative complexity via Medvedev reducibility,
we can restrict ourselves to linearly ordered bases. Importantly, we require that
each ultrafilter base is a tower; in particular, the difference between a set and its
successor is infinite. (Asking that an ultrafilter base is linearly ordered is not always
possible in the setting of set theory, as discussed in the introduction.)

Definition 1.5. Given a countable Boolean algebra B of sets, let U be the class
of sets I such that F' is a B-tower as in Definition 1.1 and for each set R € B, there
is n such that F;, C* R or F,, C* R. We will call a set F' in Up a B-ultrafilter base.

Each ultrafilter base is a maximal tower. In the cardinal setting, one has t < u.
Correspondingly, since Up C Tg, we trivially have Tg <, Up via the identity reduc-
tion. The following indicates that for many natural Boolean algebras, ultrafilter
bases necessarily have computational strength.
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Proposition 1.6. Given a Turing ideal IC, let B be the Boolean algebra of sets with
degree in IC. Then for each B-ultrafilter base F and associated function p in the
sense of Definition 1.2, the function p is not dominated by a function with Turing
degree in K.

Proof. Assume that there is a function f > p in K. The conditions ng = 0 and
nk+1 = f(ng) + 1 define a sequence that is computable from some oracle in X, and
for every k we have that [ny,n,11) contains an element of (), F;. So the set

E= U [n2i, N2i11)
1EW
is in K, and clearly F,, ¢* E and F,, ¢* E for each n. Therefore, F is not a
B-ultrafilter base. O

1.4. The Boolean algebra of computable sets. We finish the introduction by
summarizing our results in the case that B is the Boolean algebra of all computable
sets. By Theorem 3.1, every non-low set computes a set in 7p, and this is uniform.
This is not a characterization, however, because by Corollary 5.3, every noncom-
putable c.e. set computes a maximal tower. On the other hand, we know that there
are noncomputable (necessarily low) sets that do not compute maximal towers;
in particular, no 1-generic AY-set does so. This is because 1-generic AJ-sets are
index guessable by Theorem 3.4, and by Proposition 2.4, no index guessable set
can compute a maximal tower. Here, an oracle G is index guessable if (' can find
a computable index for ¢ uniformly in e, provided that ¢$ is computable. We
do not know whether index guessability characterizes the oracles that are unable
to compute a maximal tower. It seems unlikely; index guessability appears to be
stronger than necessary.

As already mentioned, in the setting of cardinal characteristics, t < u is consistent
with ZFC. Since non-low oracles can be computably dominated, it follows from
Proposition 1.6 that there is a member of T that does not compute any member
of Ug. In other words, Up £, Tp in the case that B consists of the computable sets.

The separation above only uses the fact that members of Up are not computably
dominated; in fact, they are high. As we show in Theorems 3.6 and 3.8, Up is
Medvedev equivalent to the mass problem of dominating functions. In Section 4, we
prove that the mass problem Zp of maximal independent families is also Medvedev
equivalent to the mass problem of dominating functions. Thus, in the case that B
is the Boolean algebra of computable sets, we have Up =, Zp. Interestingly, we do
not have a direct proof. Contrast this with the equivalence of Tp and Ag, the mass
problem of maximal almost disjoint families; this equivalence is direct and holds
for an arbitrary Boolean algebra, as we will see presently.

2. BASICS OF THE MASS PROBLEMS Tg

2.1. The equivalent mass problems 7Tp and Ag. Recall that in set theory,
the almost disjointness number a is the least possible size of a maximal almost
disjoint (MAD) family of subsets of w. In our analogous setting, we call a sequence
(Fo) e, of sets in B almost disjoint (AD) if each I, is infinite and F,, N F}, is finite
for distinct n and k.

Definition 2.1. In the context of a Boolean algebra B of sets, the mass problem Ag
is the class of sets F' such that (F},) is a mazimal almost disjoint (MAD) family

new
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in B. Namely, the sequence is AD, and for each infinite set R € B, there is n such
that RN F,, is infinite.

Fact 2.2. Ap <, Tp <; Ap.

Proof. We suppress the subscript B. To check that A <; 7, given a set G, let
Diff (G) be the set F' such that F,, = G,, \ Gy+1 for each n. Clearly, the operator
Diff can be seen as a Turing functional. If G is a maximal B-tower, then F' = Diff (G)
is MAD. For, if R € B is infinite, then R \ G,, is infinite for some n, and hence
R N F; is infinite for some i < n.

For T <, A, given a set F, let G = Cp(F) be the set such that

r€G, & Vi<nlr g F,

Again, Cp is a Turing functional. If F' is an almost disjoint family of sets from B,
then G is a B-tower, and if F' is MAD, then G is a maximal tower. O

Recall that a maximal tower is not computable. Hence no MAD family is com-
putable. (This corresponds to the cardinal characteristics being uncountable.)

2.2. Descriptive complexity and index complexity for maximal towers.
For the rest of this section, as well as the subsequent three sections, we will mainly
be interested in the case that B is the Boolean algebra of all computable sets. We
will omit the parameter B when we name the mass problems. In the final section,
we will consider other Boolean algebras.

Besides looking at the relative complexity of mass problems such as 7 and U,
one can also look at the individual complexity of their members (as sets encoding
sequences). Recall that a characteristic index for a set M is a number e such that
XM = pe- The following two questions arise:

(1) How low in the arithmetical hierarchy can the set be located?
(2) How hard is it to find characteristic indices for the sequence members?

Arithmetical complezity.
Fact 2.3. No mazimal tower G is c.e., and no MAD set is co-c.e.

Proof. For the first statement, note that otherwise, there is a computable function p
associated with G in the sense of 1.2. The range of p extends the tower G, contrary
to its maximality.

For the second statement, note that the reduction Cp introduced in the proof of
Fact 2.2 to show that 7 <, A turns a co-c.e. set F into a c.e. set G. ([

We will return to Question (1) in Section 5, where we show that c.e. MAD sets
exist in every nonzero c.e. Turing degree, and that some ultrafilter base is co-c.e.

Complezity of finding characteristic indices for the sequence members. In several
constructions of towers (G,), ., below, such as in Corollary 5.3 and Theorem 5.4,
the oracle (" is able to compute, given n, a characteristic index for G,,. The oracle {’
does not suffice by the following result.

Proposition 2.4. Suppose that G is a mazimal tower. There is no computation
procedure with oracle ' that computes, from input n, a characteristic index for G.,.
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Proof. Assume the contrary. Then there is a computable function f such that
@lim, f(n,s) is the characteristic function of G,,. Let G be defined as follows. Given n
and x, compute the least s > x such that ¢, s () {. If the output is not 0,

put x into @n Clearly G is computable. Since G, =* @n for each n, Gis a
maximal tower, contrary to Fact 2.3, or to the earlier observation that maximal
towers cannot be computable. ([l

3. COMPLEXITY OF T AND OF U

In this section, we compare our two principal mass problems, maximal towers
and ultrafilter bases, to well-known benchmark mass problems: non-lowness and
highness. We also define index guessability. No index guessable oracle computes a
maximal tower. We show that every 1-generic AY-set is index guessable.

As we said above, we restrict ourselves to the case that B is the Boolean algebra
of computable sets, and usually drop the subscripts B.

3.1. Maximal towers, non-lowness, and index guessability. We now show
that each non-low oracle computes a set in 7. The result is uniform in the sense
of mass problems. Let NonLow denote the class of oracles Z such that Z’ £ V.

Theorem 3.1. 7 <, NonLow.

Proof. In the following, z, y, and z denote binary strings; we identify such a string x
with the number whose binary expansion is lz. For example, the string 000 is
identified with 8, the number with binary representation 1000. Define a Turing
functional © for the Medvedev reduction as follows: Set ©Z = G, where for each n,

Gpn={x:n<s:=lz|ANZ.n=2zn}.

Here Z’ denotes the jump of Z, which is computably enumerated relative to Z in
a standard way. Note that, for each n, for sufficiently large s, the string Z. |n
settles. So it is clear that for each n, we have G,,+1 C* G, and G,, \ Gp1 is
infinite. Also G,, is computable.

Suppose now that R is an infinite set such that R C* G,, for each n. Then for
each k,

Z'(k)y= 1l k)= 1 k),

( ) zeGglralrbkm ) xeRl,ﬁ-lbkx( )
and hence Z/ <t R'. So if Z € NonLow, then R cannot be computable, and hence
0% eT. O

Remark 3.2. The proof above yields a more general result. Suppose that K is a
countable Turing ideal and B is the Boolean algebra of sets with degree in K. Then
Ts <s NonLowy, where NonLowyx := {Z: VR € K[Z' £r R']}.

We next introduce a property of oracles that we call index guessability; it implies
that an oracle does not compute a maximal tower. As usual, let (®.) ., be an
effective list of the Turing functionals with one input, and write ¢, for ®?. Note
that if L is a AY-oracle, then ()"’ can compute from e a characteristic index for ®%
in case that the function ®~ is computable. To be index guessable means that ()’

suffices.

Definition 3.3. We call an oracle L indez guessable if (' can compute from e an
index for ®L whenever ®% is a computable function. In other words, there is a
functional I' such that
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®L is computable = ®L = orp.e).

No assumption is made on the convergence of T'(()/; ) in case ®£ is not a computable
function.

Clearly, being index guessable is closed downward under <r. A total function is
computable if and only if its graph is computable, in a uniform way. So for index
guessability of L, it suffices that there is a Turing functional T' such that T'((/;e)
provides an index for ®Z in case it is a computable {0, 1}-valued function.

Every index guessable oracle D is low. To see this, for i € w, let B; = {t: i € D;}.
If i € D’ then B; is cofinite, otherwise B; = (. There is a computable function g such
that @f(i) is the characteristic function of B;. To show that D’ < (/, on input 4,
let (" compute a computable index 7(i) for B;. Now use (' again to determine
limy, ¢,y (k), which equals D’ ().

By Proposition 2.4, an index guessable oracle D does not compute a maximal
tower. The following provides examples of such oracles.

Theorem 3.4. If L is AY and 1-generic, then L is index guessable.

Proof. Suppose that F' = ®L and F is a computable set. Let S. be the c.e. set of
strings o above which there is a ®.-splitting in the sense that

Se ={o: (Fp)3Fr1 = 0)(Frz - 0) 2 (p) # 222 (p)}-
Suppose that S, is dense along L. Then we claim that the set

Ce={r: (3p)@L(p) # F(p)}
is also dense along L, i.e., for every k, there is some 7 > L [k such that 7 € C..
Indeed, let 0 = L[k be a member of S, and let p, 71, and 75 witness this. Let 7;
for i = 1 or 2 be such that ®7i(p) # F(p). Then 7; = L[k is in C.. The set C, is
c.e. and hence L meets C,, contradicting our assumption that F' = ®L.

It follows that S, is not dense along L. In other words, there is some least k.
such that there is no splitting of ®. above L [ k.. On input e, the oracle (/' can
compute k. and L | k.. This allows ()’ to find an index for F, given by the following
procedure: To compute F(p), find the least 7 > L [k, such that ®7(p) | (in |7|
many steps). Such a 7 exists because ®L(p) |. By our choice of k., it follows that
o7 (p) = @L(p) = F(p). O

We summarize the known implications:

1-generic AY = index guessable = computes no maximal tower = low.

The last implication cannot be reversed by Theorem 5.1 below; the others might.
In particular, we ask whether any oracle that computes no maximal tower is index
guessable. This would strengthen Theorem 3.1. Note that the following apparent
weakening of index guessability of L still implies that the oracle L computes no
maximal tower: For each S <7 L such that each S!" is computable, there is a
functional I' such that ¢p(p,,) is the characteristic function of Sl To see this,
assume S is a maximal tower G. Such an S contradicts Proposition 2.4.

Aside. We pause briefly to mention a potential connection of our topic to com-
putational learning theory. One says that a class S of computable functions is
EX-learnable if there is a total Turing machine M such that lims M(f [ s) exists
for each f € S and is an index for f. For an oracle A, one says that S is EX[A]-
learnable if there is an oracle machine M that is total for each oracle and such that
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lim, MA(f | s) exists for each f € S and is an index for f. One calls an oracle A
EX-trivial if EX = EX[A]. Slaman and Solovay [17] showed that A is EX-trivial
if and only if A is AY and has 1-generic degree. This used an earlier result of
Haught [7] that the Turing degrees of the 1-generic AS-sets are closed downward.

3.2. Ultrafilter bases and highness. Let Tot = {e: ¢, is total}. Let DomFcn
denote the mass problem of functions i that dominate every computable function
and also satisfy h(s) > s for all s. Note that a set F' is high if and only if Tot <r
F’. To represent highness by a mass problem in the Medvedev degrees, one can
equivalently choose the set of functions dominating each computable function, or
the set of approximations to Tot, i.e., the {0, 1}-valued binary functions f such that
lim; f(e,s) = Tot(e). This follows from the next fact; we omit the standard proof.

Fact 3.5. DomFcn is Medvedev equivalent to the mass problem of approzimations
to Tot = {e: ¢, is total}.

We show that exactly the high oracles compute ultrafilter bases, and that the
reductions are uniform. By Fact 3.5, it suffices to show that ¢/ =; DomFcn. We
will obtain the two Medvedev reductions through separate theorems, with proofs
that are unrelated.

Theorem 3.6. Every ultrafilter base uniformly computes a dominating function.
In other words, U > DomFcn.

Our proof is directly inspired by a proof of Jockusch [8, Theorem 1, (iv) = (i)],
who showed that any family of sets containing exactly the computable sets must
have high degree.

Lemma 3.7. There is a uniformly computable sequence Py, Py, ... of nonempty
19-classes such that for every e,

o if . is total, then P, contains a single element, and
o if p. is not total, then P, contains only bi-immune elements.

Proof. Note that each Martin-Lo6f (or even Kurtz) random set is bi-immune: For
an infinite computable set R, the class of sets containing R is a I1{-null class and
hence determines a Kurtz test. A similar fact holds for the class of sets disjoint
from R.

For each s, let ns be the largest number such that ¢, s converges on [0,n,). We
build the I1%-class P. in stages, where P, is the nonempty clopen set we have
before stage s of the construction. Let P, o = 2“.

Stage 0. Start constructing P, as a nonempty I19-class containing only Martin-
Lof random elements.

Stage s. If ny = ns_1, continue the construction that is currently underway,
which will produce a nonempty I19-class of random elements.

On the other hand, if ny > n,_1, fix a string o such that [0] C P. s and |o| > s.
Let P. 41 = [0]. End the construction that we have been following and start a
new construction for P., starting at stage s + 1, as a nonempty I19-subclass of [o]
containing only Martin-Lof random elements.

It is clear that if ¢, is total, then P. will be a singleton. Otherwise, there will
be a final construction of a nonempty I19-class of randoms which will run without
further interruption. O

Of course, when P, is a singleton, its lone element must be computable.
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Proof of Theorem 3.6. For any set C, let S¢ = {X € 2*: C C X}. Note that if C
is computable (or even merely c.e.), then S¢ is a II{-class. Let Q. = {X: X € P.}
be the I19-class of complements of elements of P..

Now let F' be an ultrafilter base. We have that

©e 1s total <= (3i)(In) [F; \ [0,n] is a subset of some
X € P, or its complement]
= (Hl)(ﬂn) [Pe N SFl\[OJL] 75 0 or Qe N SFi\[O,n] 75 m

Even though Sp, [0, 1s a I1¥-class, we cannot hope to compute an index us-
ing F'. However, Sp, . j0,n IS & I19[F)-class uniformly in i, n. Using the fact that the
nonemptiness of a I1{[F]-class is a I1{ [ F]-property, we see that Tot = {e: ¢, is total}
is ¥9[F]. Note that the X9-index does not depend on F. Since Tot is also II9, it
is AY[F] via a fixed pair of indices, and hence Turing reducible to F’ via a fixed
reduction. One direction of the usual proof of the (relativized) Limit Lemma now
shows that we can uniformly compute an approximation to Tot from F. Hence,
from F' we can uniformly compute a dominating function by Fact 3.5. O

Theorem 3.8. Every dominating function uniformly computes an ultrafilter base.
In other words, U <; DomFcn.

Proof. Let (i), be an effective listing of the {0,1}-valued partial computable
functions defined on an initial segment of w. Let V., = {z: ¢.(z) = k} so that
((Ve,0, Ve1)) is an effective listing that contains all pairs of computable sets and
their complements.

Let T = {0,1,2}<“. Uniformly in « € T, we will define a set S,. We first explain
the basic idea and then modify it to make it work. The basic idea is to start with
Sy = w and build Sy = So N Ve for k = 0,1 and e = |af, that is, we split S,
according to the listing above. We then consider the leftmost path g such that Sy .
is infinite for each e. A dominating function h can eventually discover each initial
segment of this path, and use this to compute a set F' such that F, =* S, ;. for
each e.

The problem is that both S, NV, o and S, N Ve 1 could be finite (because e is
not a proper index of a computable set). In this case we still need to make sure
that F, \ F,41 is infinite. So the rightmost option at level n is a set Sy~ = §a that
simply removes every other element from S, (so as to obtain an infinite coinfinite
subset). The sets Sy~ for k < 1 will be subsets of ga.

We now provide the details. The set S, is enumerated in increasing fashion, and
possibly finite. So each S, is computable, though not uniformly in «. All the sets
and functions defined below can be interpreted at stages.

Let Sy, = [0,s). If we have defined (at stage s) the set So = {ro < --- <14},
let §a contain the numbers of the form ry;. Let Sy~ = §a. Let S~ = §a N Ve
for k =0,1, e = |a|. We define a uniform list of Turing functionals T'. so that the
sequence <Fg(t)> +c., 18 nondecreasing and unbounded, for each e and each oracle

function h such that h(s) > s for each s. We will let F, = {T2(¢): t € w}.

Definition of T'.. Given an oracle function h, we will write a, for I'*(s). Let ag = 0.
Suppose s > 0 and as_; has been defined. Check if there is a € T of length e such
that [Sq n(s)| > s. If there is no such a, let a, = a,_;. Otherwise, let o be leftmost
such. If max S, p(s) > as—1, let as = max S, j(s). Otherwise, again let as = as_1.
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Note that the sequence {as}s<. is unbounded because for the rightmost string
a € T of length e (i.e., the string consisting only of 2’s), the set S, ; consists of the
numbers in [0,¢) divisible by 2¢. We may combine the functionals ', to obtain a
functional ¥ such that (U"), = F, for each h with h(s) > s for each s.

Claim 3.9. If h € DomFcn, then F = V" c .

To verify this, let g € 2¥ denote the leftmost path in {0,1,2}* such that the set
Sy e is infinite for every e. Note that g is an infinite path, because for every a, if
the set S, is infinite then so is Sy~.

Fix e and let o = g [ e. Let p(s) be the least stage ¢ such that S, , has at least s
elements. Since h dominates the computable function p, we will eventually always
pick « in the definition of a; = I'?(s). Hence F, =* S,. This implies that F,. is
computable and F.y; C* Fe. Clearly, if S, is infinite, then S, \ Sj3 is infinite for
every > a. Thus F, \ F.4; is infinite.

Now let R be a computable set. Pick e such that R = V, o and R = Vea. If
g(e) =0, then Sy ;c41 € Ve o and hence Foq 1 C* R. Otherwise, Sg o1 C Ve,1 and
hence F.,; C* R. O

4. MAXIMAL INDEPENDENT FAMILIES IN COMPUTABILITY

In this short section, we determine the complexity of the computability-theoretic
analog of the independence number i for the Boolean algebra of computable sets.
It turns out that in the context of the computable sets, mazimal independent fam-
ilies behave in a way similar to ultrafilter bases.

Given a sequence (F),) let Fjy = w; for each nonempty binary string o we
write

(1) F,= () F:n () Fu

o(i)=1 o(1)=0

new’

We call (a set F encoding) such a sequence independent if each set F), is infinite.

Definition 4.1. Given a Boolean algebra of sets B, the mass problem Zp is the
class of sets F' such that (F},), ., is a family that is mazimal independent, namely,
it is independent, and for each set R € B, there is o such that F,, C* Ror F, C* R.

In the following, we let B be the Boolean algebra of computable sets, and we
drop the parameter B as usual. An easy modification of the proof of Theorem 3.6
yields the following

Theorem 4.2. Every mazimal independent family F' uniformly computes a domi-
nating function. In other words, T >4 DomFcn.

Proof. Define the T19-classes P, as in Lemma 3.7. As before let Q. = {X: X € P.}
be the I1-class of complements of elements of P.. Recall that for any set C, we let
Se={X €2¥: C C X}. Now we have that

©e is total <= (Jo)(In) [F, ~ [0,7n] is a subset of some
X € P. or its complement]
— (30‘)(377,) [Pe N SFC,\[O,n] 7é (Z) or Qe N SFU\[O,n] 7& [Z)]

As before, this shows that from F' one can uniformly compute a dominating func-
tion. (]
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Theorem 4.3. Every dominating function h uniformly computes a mazimal inde-
pendent family. In other words, T <, DomFecn.

In fact, we will prove that a dominating function h uniformly computes a set F' such
that the =*-equivalence classes of the sets F, freely generate the Boolean algebra
of computable sets modulo finite sets. This clearly implies that F' is maximal
independent: If R is an infinite computable set, then for some e and nonempty

set S of strings of length e, one has R =* | J, .4 Fir, and hence F, C* R for some o.

Proof. As in the proof of Theorem 3.8, let ()., be an effective listing of the
{0, 1}-valued partial computable functions defined on an initial segment of w, and
let Ve = {z: te(x) =k} for k=0,1.

In Phase e of the construction, we will define a computable set F, such that
F, = ©" for a Turing functional O, determined uniformly in e. Suppose we have
defined O, for i < e, and thereby have defined the sets F, given by (1) for each
string o of length e.

The idea for building F. is to attempt to follow V. ¢ while maintaining inde-
pendence from the previous sets. We apply this strategy separately on each Fj,.
Using h as an oracle we compute recursively an increasing sequence (r7), ... We
carry out the attempts on intervals [rf, 5, ). If V.o appears to split Fi, on the
current interval, then we follow it; otherwise, we merely make sure that F. remains
independent from F, on the interval by putting one number in and leaving another
one out. To decide which case holds, we consult the dominating function h as an
oracle.

We now provide the details for Phase e. Let r§ = 0. If r¢ has been defined, let
ry 1 > 7y, be the least number 7 such that for each o of length e, the following two
conditions hold:

(@) [[rs,r) N Fy| = 2

(b)o if there are u, w € dom(¢e p(re)) N Fy with r; < u < w such that 1. (u) =1

and 9. (w) = 0, then r > w for the least such w.
We define F.(z) = ©!(z) for € [r¢,rS, ) as follows. Let o be the string of
length e such that = € F,.

e If the hypothesis of condition (b), holds and . is defined on [rf, 75 ),
then let F,.(z) = . (x);
e otherwise, if x = min([rg, 75, ) N Fy), let Fe(x) = 1, else let F.(x) = 0.

Verification. By induction on e, one verifies that for each function h, the set F is
infinite for each o with || = e, and that the sequence (rf,), ., defined in Phase e

of the construction is infinite. Thus ©" is total. So F <7 h where F, = O and F
is an independent family.

Claim 4.4. FEach set F, is computable.

We verify this by induction on e. Suppose it holds for each i < e. So F, is
computable for |o| = e.

First assume that dom(w,.) is finite. Then for sufficiently large n, condition (b),
does not apply to any string o of length e, and so the sequence (ry;) .. is com-
putable. Hence F, is computable.

Now assume that . is total. Let

D.={o: |o|=eN|F, N V.| =|Fy N V1| =00}
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Define a function p by letting p(m) be the least stage s such that for each o & D,
condition (a), holds with r¢& = m and r = s, and for each o € D,, there are
u,w € dom(tpe s) such that m < w < w as in the hypothesis of condition (b),-.
(Let p(m) = 0 if m is not of the form r5.) Since F, is computable for each o
of length e, the function p is computable. Since h dominates p, for sufficiently
large n, we will define 75, ; by checking the convergence of computations 1. (z) at
a stage h(r) > p(r¢); since in Phase e of the construction, we chose the witnesses
minimal, 75, | is determined by stage p(rf,). So we might as well check the conver-
gence of computations 1.(z) at stage p(ry,). Hence again, the sequence (ry,), ., is
computable.

Claim 4.5. Suppose that 1. is total. Then for each string T = o a of length e + 1,
F, C* Voo or FrNVeg="0 (so that Voo =* |J {Fr: Fr C* Vepo}) .

Let D, be as above. If o & D,, then this is immediate since F,, C* V. ; for some 4.
Otherwise, Phase e of the construction ensures that F,~ =" F, NV, .

By the last claim, the =*-equivalence classes of the F, freely generate the Boolean
algebra of the computable sets modulo finite sets. In particular, F' is a maximal
independent family. O

As mentioned in the introduction, we do not know at present whether there is a
“natural” Medvedev equivalence between the two mass problems U/ and Z as is the
case for A and 7. This would require direct proofs avoiding the detour via the mass
problem of dominating functions. For what it is worth, the cardinal characteristics u
and i are incomparable (i.e., ZFC cannot determine their order).

5. THE CASE OF COMPUTABLY ENUMERABLE COMPLEMENTS

Recall from Fact 2.3 that no maximal tower, and in particular no ultrafilter base,
can be computably enumerable. In contrast, in this section we will see that even
ultrafilter bases can have computably enumerable complement. As in the previous
sections, we are restricting our attention to the Boolean algebra of all computable
sets.

Recall that a coinfinite c.e. set A is called simple if it meets every infinite c.e. (or,
equivalently, every computable) set; A is called r-mazimal if A C* Ror A C* R
for each computable set R. Each r-maximal set is simple. For more background,
see Soare [18].

5.1. Computably enumerable MAD sets, and co-c.e. towers. We will show
that if A is a noncomputable c.e. set, then there is a co-c.e. maximal tower G < A.
Given that it is more standard to build c.e. rather than co-c.e. sets, it will be
convenient to first build a c.e. MAD set F' <t A and then use the Medvedev
reduction in Fact 2.2 to obtain a co-c.e. maximal tower. We employ a priority
construction with requirements that act only finitely often.

Theorem 5.1. For each noncomputable c.e. set A, there is a MAD c.e. set F' <r A.

Proof. The construction is akin to Post’s construction of a simple set. In particular,
it is compatible with permitting.

Let (M), be a uniformly c.e. sequence of sets such that M. = W, and
Mseq+1 = w for each e. We will build an auxiliary c.e. set H < A and let the c.e.
set ' <r A be defined by Flel = H[2el U H2et1| The purpose of the sets Moeiq
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is to make the sets H?¢*1] and hence the sets F!¢, infinite. The construction also
ensures that H, and hence F', is AD, and that [ J,, HI" is coinfinite.

As usual, we will write H, for Hl¢}. We provide a stage-by-stage construction to
meet the requirements

P,: M, ~ U H; infinite = |H. N M,| > k, where n = (e, k).
<n
(Note that the union is over all ¢ such that i < n, not i < e.) At stage s, we say
that P, is permanently satisfied if |H. ¢ N M, 5| > k.

Construction.
Stage s > 0. See if there is n < s such that P, is not permanently satisfied, and,
where n = (e, k), there is © € M¢ s \ U, .,, Hi,s such that

x> max(Hes—1), ¢ > 2n, and As [z # A1 [z
If so, choose n least, and put (z,e) into H (i.e., put x into H,).

Verification. Each H, is enumerated in increasing fashion and hence computable.

Each P, is active at most once. This ensures that . He is coinfinite: For each N,
if z < 2N enters this union, then this is due to the action of a requirement P,, with
n < N, so there are at most N many such z.

To see that a requirement P, for n = (e, k) is met, suppose that its hypothesis
holds. Then there are potentially infinitely many candidates x that can go into H,.
Since A is noncomputable, one of them will be permitted.

Now, by the choice of Ms.41 and the fact that |J, H, is coinfinite, each Hocy1,
and hence each F,, is infinite. We claim that for e < m, we have |H, N H,,| < m.
For suppose that x € H,, enters H, at stage s. Then z € H,, s since r > (m,0) > e
for any requirement P, putting x into H,,. Suppose P, puts x into H. at stage s,
where n = (e, k). Then n < m, so the claim follows as each requirement is active
at most once. We conclude that the family described by H, and therefore also the
one described by F, is almost disjoint.

To show that F'is MAD, it suffices to verify that if M, is infinite then H, N M, is
infinite for some p. If all the P, 1, are satisfied during the construction, we let p = e.
Otherwise, we let k be least such that P, is never satisfied where n = (e, k). Then
its hypothesis fails, so M. C* |J,_,, H;. Hence H, N M, is infinite for some p < n
by the pigeonhole principle. (I

Since an index guessable set computes no MAD set by Proposition 2.4, we obtain
the following

Corollary 5.2. If a c.e. set L is index guessable, then L is computable.
Downey and Nies have given a direct proof of this fact; see [14].

Corollary 5.3. For each noncomputable c.e. set A, there is a co-c.e. set G <p A
such that G € T, i.e., (Gn),c,, 5 a mazimal tower.

Proof. Let F' be the MAD set obtained above. Recall the Turing reduction Cp
showing that 7 <; A in Fact 2.2. The set G = Cp(F), given by

€ Gy & Vi<nlr & Fy)

is as required. (I
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5.2. Co-c.e. ultrafilter bases. We next construct a co-c.e. ultrafilter base F' for
the Boolean algebra of computable sets. That is, F' is co-c.e., each F, is computable
(but not uniformly so), and F' is a tower satisfying the condition in Definition 1.5.

Theorem 5.4. There is a co-c.e. ultrafilter base F.

Proof. We adapt the construction from the proof of the main result in [11], which
states that there is an r-maximal set A such that the index set Cof 4 = {e: W, U
A =* w} is X8-complete. Both the original and the adapted version make use of
the fact that we are given a c.e. index for a computable set and also one for its
complement (see the pairs (Ve , Ve,1) below). Our proof can also be viewed as a
variation on the proof of Theorem 3.8 in the setting of co-c.e. sets. We remark that
by standard methods, one can extend the present construction to include permitting
below a given high c.e. set.

We build a co-c.e. tower F' by providing uniformly co-c.e. sets F, for e € w that
form a descending sequence with F, O F.;1. We achieve the latter condition by
agreeing that whenever we remove z from F, at a stage s, we also remove it from
all F; for ¢ > e. Furthermore, no element is ever removed from Fp, so Fy = w.

Let <(V6707V671)>Pew be an effective listing of all pairs of disjoint c.e. sets as
defined in the proof of Theorem 3.8. The construction will ensure that the following
requirements are met:

M,: Fe ~\ F.41 is infinite,
Po:VeoUVer=w= Foy1 € VooV Foy1 © Vet

This suffices to establish that F' is an ultrafilter base.

The tree of strategies is T = {0,1,2}<¥. Each string a € T of length e is tied
to M, and also to P.. We write a: M, and «: P, to indicate that we view « as a
strategy of the respective type.

Streaming. For each string o € T with |a| = e, at each stage of the construction,
we have a computable set S,, thought of as a stream of numbers used by a. The
purpose of the sets S, is twofold:

(a) to be able to provide candidates for P. by a procedure of reserving numbers
from the stream, and processing them making use of its hypothesis, and
(b) to show that F. is computable.
For (b), in Claim 5.7 we will verify that F, =* S, where « is the string of length e
on the true path. Since the true path is merely computable in (", we cannot directly
define the co-c.e. set F' using the S,. Rather, we need to spread the construction
of the F, over the whole e-th level of the tree of strategies.

We provide some more detail on the dynamics of the streams. Each time « is
initialized, S, is removed from F,.,1, and S, is reset to be empty. Also, S, is
enlarged only at stages at which a appears to be on the true path.

We will verify the following conditions on the final versions of the S,:

(1) Sp = w;
(2) if « is not the empty node, then S, is a subset of S, (where o~ is the
immediate predecessor of «);

(3) at every stage, S, N Sz = 0 for incomparable strings v and f;

(4) any number z is in F,41 at the time it first enters Sy;

(5) if « is along the true path of the construction, then S, is an infinite com-
putable set.

w
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Note that S, is d.c.e. uniformly in a. The set S, is finite if « is to the left of the
true path of the construction; S, is an infinite computable set if « is along the true
path; and S, is empty if « is to the right of the true path.

The intuitive strategy a:: P, is as follows. Only strategies associated with a string
of length < e can remove numbers from F, ;. A strategy a: P, removes elements
from S, and at the same time from Fe..,. It regards the set of remaining numbers
as its own version of F,1; if a is on the true path then this version is the true F, 4
up to =%, as mentioned above. The strategy has to make sure that no strategies
to its right remove numbers from F,,; that it wants to keep. On the other hand, it
can only process a number x once it knows whether x is in V; g or V¢ ;1. The solution
to this conflict is that « reserves a number z from the stream S,, which, by an
initialization « carries out at this stage, withholds it from any action of such a 8. It
then waits until all numbers < z are in V.o U V. ;. If that never happens for some
reserved x, then « is satisfied finitarily with eventual outcome 2. Otherwise, it will
eventually process x: If z € V, o, it continues its attempt to build F.1; inside V¢ o;
else it continues to build F,; inside V. ;. It takes outcome 0 or 1, respectively,
according to which case applies. Each time the apparent outcome is 0, then the
current Sy~ (i.e., the content of its output stream based on the assumption that
the true outcome is 1) is removed from F.i ;. So if 0 is the true outcome, then
indeed F.11 C* V¢ o; and if 1 is the true outcome, then indeed Fey; C* V. ;.

The intuitive strategy o: M, simply removes every other element of S, from
F.i1. Then o : P, actually only works with the stream of remaining numbers.
There is no further interaction between the two types of strategies. (Note here that
making F.y; smaller is to the advantage of P..) Recall that if « is initialized, S,
is removed from F,,1, and S, is reset to be empty.

Construction.

Stage 0. Let o be the empty string. Let F. = w for each e. Initialize all
strategies.

Stage s > 0. Let Sy, = [0,s). Stage s consists of substages e = 0,...,s — 1,
during which we inductively define §,, a string of length s.

Substage e. We suppose that o = §, [ e and S, have been defined.

The strategy a: M, acts as follows. If at the current stage S, = {ro < --- <1y}
and rj is new in S,, it puts ry into S, if and only if &k is even; otherwise, ry is
removed from F, .

The strategy a: P, picks the first applicable case below.

Case 1: Each reserved number of a has been processed: If there is a number x
from S, greater than a’s last reserved number (if any) and greater than the last
stage at which « was initialized, pick z least and reserve it. Note that = < s since
by definition Sp ; = [0, s). Initialize all strategies v > a2, and let o2 be eligible
to act next.

If Case 1 does not apply then a has a unique reserved, but unprocessed number .

Case 2: [0,x2] C Voo UVe1 and © € V. o: Let t be the greatest stage < s at
which « was initialized. Add z to S,~ and remove from F..; all numbers in the
interval (¢,z) that are not in S,~. Declare that « has processed x. Let o0 be
eligible to act next.
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Case 3: [0,2] C Voo UV,1 and = € V. 1: Let t be the greatest stage < s at
which a was initialized or o0 was eligible to act. Add z to S,~ and remove from
F,.41 all numbers in the interval (¢,z) that are not in S,~. Declare that « has
processed x. Let o1 be eligible to act next.

Case 4: Otherwise, that is, [0,2] € V.o U Ve 1: Let ¢ be the greatest stage < s
at which a was initialized, or &0 or /"1 was eligible to act. Let Sq~ = Sq N (£, ).
Let a2 be eligible to act.

We define d;(e) = ¢ where o, 0 < i < 2, has been declared eligible to act next.
If e+ 1 < s, then carry out the next substage. Else initialize all the strategies 5
such that 05 <r § and end stage s.

Verification. By construction and our convention above, F, is co-c.e., and F, D F.41
for each e.

Let g € 3“ denote the true path, namely, the leftmost path in {0, 1,2} such
that Ve 3%°s[g [ e =< ;). In the following, given e, let & = g [ e. We verify a number
of claims.

Claim 5.5. « is only initialized finitely often.

To see this, let sy > 0 be a stage such that o <j d, for each s > sg. Suppose the
strategy « is initialized at stage s > so. Then o = 72 for a strategy [3: P;, where
i = ||, and this initialization occurs at Case 1 of substage i of stage s, namely,
when the strategy ( reserves a new number y. However, o can only be initialized
once in that way for each such g: If 8 processes y at a later stage ¢, then this causes
0; <r, a, contrary to the choice of sg. This shows the claim.

Let s, be the largest stage s such that « is initialized at stage s. Note that
o =X vy implies s, < s,.

Claim 5.6. The conditions (1)-(5) related to streaming hold.

(1), (2) and (4) hold by construction. (3) Assume this fails for incomparable
and 8, so x € S, N S at stage s. By (2), we may as well assume that v = a’¢
and 8 = «'k where i < k. By construction, k¥ < 1 is not possible, so kK = 2. Since
x € Sy~ and ¢ < 1, x was reserved by « at some stage ¢t < s. So x can never enter
S~ by the initialization of a2 when x was reserved by the strategy a: P, in its
Case 1.

(5) holds inductively, by the definition of the true path and because S, is enu-
merated in increasing fashion at stages > s,.

Claim 5.7. F, =* S, (and hence, F. is computable).

The claim is verified by induction on e. We show that for all z > s,, we have
x € F, if and only if x € S,. This holds for e = 0 because Fy = Sy = w. For the
inductive step, let v = g [(e + 1).

First, we verify that Feyq N (sy,00) € S,. Suppose that x > s, and = € Fey;.
Then z € F, and = > s,, so by the inductive hypothesis x € S,. By construction,
any element x that does not enter S, is also removed from F.;; unless x is the last
element « reserves. However, in that case necessarily v = o2 and ~ is initialized
when z is reserved, so x < s, contrary to our assumption.

Next, we verify that S,N(s,,00) C Fey1. Suppose that € S, and « > s,. Then
x € Sq, so by the inductive hypothesis € F,. At a stage s > s, an element x
of S, cannot be removed from F,;; by a strategy 8 >1 o because Sg NS, =
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by (3) as verified above and since 3 can only remove elements from Sz. So x can
only be removed from F,y; by a: M, or a: P..

If a: M, removes z from F_.iq, then = ¢ §a, which contradicts that = € S,.
So, by construction, the only way = can be removed from F.,; is by the strategy
a: P.. Since x > s, this would mean that = does not enter S, either, contrary to
our assumption.

Claim 5.8. FEach requirement M. is met, namely, F, \ Fey1 is infinite.

To see this, recall that a = g [ e. The action of « : M, removes infinitely many
elements of S, from F, ;. This suffices by Claim 5.7.

Claim 5.9. Fach requirement P, is met.

Suppose the hypothesis of P, holds. Then every number that « reserves is
eventually processed. So either g(e) = 0, in which case F.y1 C* V¢ by Claim 5.7,
or g(e) =1, in which case Fry; C* V. 1, also by Claim 5.7. O

6. ULTRAFILTER BASES FOR OTHER BOOLEAN ALGEBRAS

As mentioned, we have set up our framework to apply to general countable
Boolean algebras, rather than merely the Boolean algebra of the computable sets,
mainly with subsequent research in mind. In this last section of our paper, we
provide two results in the setting of other Boolean algebras of sets.

Recall that K(x) denotes the prefix-free complexity of a string x, and that a
set A C wis K-trivial if 3cVn K(A[n) < K(0™) + ¢. For more background on
K-trivial sets, see Nies [13, Ch. 5] or Downey and Hirschfeldt [5, Ch. 11]. Note
that by combining results of various authors, the K-trivial degrees form a Turing
ideal in the AJ-degrees (see, e.g., Nies [13, Sections 5.2, 5.4]). Thus the K-trivial
sets form a Boolean algebra.

Theorem 6.1. There is a A ultrafilter base for the Boolean algebra of the K -trivial
sets.

Proof. Kucera and Slaman [10]| noted that there is a function A <t @' that domi-
nates all functions that are partial computable in some K-trivial set. We use h in
a variation of the proof of Theorem 3.8.

Let (Ve o, V671>e€w be a uniform listing of the K-trivials and their complements
given by wtt-reductions to ('; such a listing exists by Downey, Hirschfeldt, Nies,
and Stephan [4] (see also [13, Theorem 5.3.28]).

Let T'= {0,1}<%. For each a € T, we define a (possibly finite) K-trivial set S,,.
Let Sy = w. Suppose we have defined the set S, = {rg <71 < ---}. Let S,, contain
the numbers of the form ;. Let Syt = So N Ve, for e = |a| and k = 0,1. Since
ga <t S,, one verifies inductively that all these sets are K-trivial.

Uniformly recursively in (', we build sets F., given as the set of members of
nondecreasing unbounded sequences a§ < af < .... Suppose we have defined af_;.
Try to let o € T be the leftmost string of length e such that S, has at least k£ + 1
elements less than h(k). If such « exists, let af be the k-th element of S,, unless
this is less than af_,, in which case we let aj = af_;.

Let g € 2¢ denote the leftmost path in {0, 1}* such that for every e, the set Sy
is infinite. Fix e and let o = g [ e. Let p(k) be the (k+ 1)-st element of S,. Since h
dominates the function p, eventually in the definition of F, we will always pick a.
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Hence F, =* S,. In particular, F, is K-trivial. To see that F' <t (), given input
n = (r,e), with (' as an oracle, compute the least k such that r < af, using that
the sequences (ag),,, are unbounded for each e. Then n € F iff r = af.

Clearly, if S, is infinite, then S, \ Sg is infinite for a < 5. So F, \ Fei1 is
infinite.

To verify that F is an ultrafilter base for the K-trivials, let R be a K-trivial set.
Pick e such that R =V, ¢ and R = Ve If g(e) = 0 then Sy jet1 € Ve, and hence
F.11 C" R. Otherwise, Sy 141 € Ve,1, and hence Foq C* R. [l
Remark 6.2. Any ultrafilter base for the K-trivials must have high degree. We
can see this by modifying the proof of Theorem 3.6: Every Martin-Lof random
set X is Martin-Lof random relative to every K-trivial (i.e., K-trivial sets are low
for ML-randomness). Hence neither X nor X contains an infinite K-trivial subset.

Finally, we consider the Boolean algebra of the primitive recursive sets. One says
that an oracle L is of PA degree if it computes a completion of Peano arithmetic.
Recall that L is of PA degree if and only if it computes a separating set for each
disjoint pair of c.e. sets.

Theorem 6.3. An oracle C' computes an ultrafilter base for the primitive recursive
sets if and only if C' is of PA degree relative to ().

Proof. We modify the proof of Jockusch and Stephan [9, Theorem 2.1]. They say
that a set S C w is p-cohesive if S is cohesive for the primitive recursive sets. Their
theorem states that S is p-cohesive if and only if S’ is of PA degree relative to .
=: Suppose that C' computes an ultrafilter base F' for the primitive recursive sets.
Let g <7 F be a function associated with F' as in Definition 1.2. Then the range S
of g is p-cohesive. Hence S’ and therefore C’ is of PA degree relative to (/' by one
implication of [9, Theorem 2.1].

<: We modify the proof of the other implication of [9, Theorem 2.1]. Let (A;),
be a uniformly recursive list of all the primitive recursive sets. We call i a primitive
recursive index for A; (or index, for short). By our hypothesis on C, there is a
function g <t C' such that

[Ai N An| < AN AL = g(in)=0
AN Al <|AiN A, = gli,n) =1

(because the conditions on the left are both ¥9, and so ¢’ computes a separating
set for them).

We inductively define a C’-computable sequence of indices (e,), . Let ey be
an index for w. If e,, has been defined and A., = {ro < r; <---} (possibly finite),
let €7, be an index, uniformly obtained from e, such that A, = {ro,72,...}. Now
let

A = Ao NA, if g(e},,n) =0, and

= Ao NA, if gle),,n) = 1.

ent1
€n+1

By induction on n, one verifies that A, is infinite and A, \ A, is infinite.
Since g <t C’, the numbers e, have a uniformly C-computable approximation
<e"7w>x6w‘

Let the ultrafilter base F' <t C be given by Fy,(z) = Ac, ,(z). Then F, =* A.,
is primitive recursive. Since F,, 1 C* A, or F,, 41 C* A, for each n, the set F is an
ultrafilter base for the primitive recursive sets. O
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