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Abstract. The tower number t and the ultra�lter number u are cardinal
characteristics from set theory. They are based on combinatorial properties
of classes of subsets of ω and the almost inclusion relation ⊆∗ between such
subsets. We consider analogs of these cardinal characteristics in computability
theory.

We say that a sequence (Gn)n∈N of computable sets is a tower if G0 = N,
Gn+1 ⊆∗ Gn, and Gn ∖ Gn+1 is in�nite for each n. A tower is maximal if
there is no in�nite computable set contained in all Gn. A tower ⟨Gn⟩n∈ω is
an ultra�lter base if for each computable R, there is n such that Gn ⊆∗ R or
Gn ⊆∗ R; this property implies maximality of the tower. A sequence (Gn)n∈N
of sets can be encoded as the �columns� of a set G ⊆ N. Our analogs of t

and u are the mass problems of sets encoding maximal towers, and of sets
encoding towers that are ultra�lter bases, respectively. The relative position
of a cardinal characteristic broadly corresponds to the relative computational
complexity of the mass problem. We use Medvedev reducibility to formalize
relative computational complexity, and thus to compare such mass problems
to known ones.

We show that the mass problem of ultra�lter bases is equivalent to the mass
problem of computing a function that dominates all computable functions, and
hence, by Martin's characterization, it captures highness. On the other hand,
the mass problem for maximal towers is below the mass problem of computing
a non-low set. We also show that some, but not all, noncomputable low sets
compute maximal towers: Every noncomputable (low) c.e. set computes a
maximal tower but no 1-generic ∆0

2-set does so.
We �nally consider the mass problems of maximal almost disjoint, and of

maximal independent families. We show that they are Medvedev equivalent
to maximal towers, and to ultra�lter bases, respectively.

Contents

1. Introduction 2
2. Basics of the mass problems TB 5

Date: August 23, 2022.
2020 Mathematics Subject Classi�cation. Primary 03D30.
Key words and phrases. sequences of computable sets, mass problems, Medvedev reducibility,

cardinal characteristics, highness, ultra�lters.
Lempp was partially supported by Simons Collaboration Grant for Mathematicians #626304.

Miller was partially supported by grant #358043 from the Simons Foundation. Nies was partially
supported by the Marsden fund of New Zealand, grant 19-UOA-346. Soskova was partially sup-
ported by NSF Grant DMS-1762648. Miller and Nies were partially supported by NSF Grant
DMS-2053848. The authors thank Jörg Brendle and Noam Greenberg for helpful discussions dur-
ing a workshop at the Casa Matemática Oaxaca in August 2019, where this research received its
initial impetus. The authors would also like to thank the referees for helpful comments.

1



2 LEMPP, MILLER, NIES, AND SOSKOVA

3. Complexity of T and of U 7
4. Maximal independent families in computability 11
5. The case of computably enumerable complements 13
6. Ultra�lter bases for other Boolean algebras 18
References 20

1. Introduction

Cardinal characteristics measure how far the set-theoretic universe deviates from
satisfying the continuum hypothesis. They are natural cardinals greater than ℵ0

and at most 2ℵ0 . For instance, the bounding number b is the least size of a collection
of functions f : ω → ω such that no single function dominates the entire collection.1

Related is the dominating number d, the least size of a collection of functions
f : ω → ω such that every function is dominated by some function in the collection.
Here, for functions f, g : ω → ω, we say that g dominates f if g(n) ≥ f(n) for
su�ciently large n. An important program in set theory is to prove less than or
equal-relations between characteristics in ZFC, and to separate them in suitable
forcing extensions.

Analogs of cardinal characteristics in computability theory were �rst studied by
Rupprecht [15, 16] and further investigated by Brendle, Brooke-Taylor, Ng, and
Nies [2]. An article by Greenberg, Kuyper, and Turetsky [6], in part based on
Rupprecht's work, provides a systematic approach to the two connected settings of
set theory and computability, at least for certain types of cardinal characteristics.
The relevant characteristics are given by binary relations, such as the domination
relation ≤∗ between functions; their computability-theoretic analogs are ordered
by reducibilities that measure relative computability. A well-understood example
of this is how the relation ≤∗ gives rise to the bounding number b(≤∗) and the
dominating number d(≤∗), and their analogs in computability, which are highness
and having hyperimmune degree. A general reference in set theory is the survey
paper by Blass [1]. The brief survey by Soukup [19] contains a diagram displaying
the ZFC inequalities between the most important characteristics in this setting,
along with b(≤∗) and d(≤∗).

In this paper, we consider cardinal characteristics that do not �t into the frame-
work of Rupprecht, and Greenberg, Kuyper and Turetsky [6]. In particular, we
initiate the study of the computability-theoretic analogs of the ultra�lter, tower,
and independence numbers. These characteristics are de�ned in the setting of sub-
sets of ω up to almost inclusion ⊆∗; we give de�nitions below.

The ultra�lter number u is the least size of a subset of [ω]ω with upward closure
a nonprincipal ultra�lter on ω. We note that one cannot in general require here
that the subset is linearly ordered by ⊆∗: Recall that an ultra�lter F on ω is a
P -point if for each partition ⟨Cn⟩ of ω such that Cn ̸∈ F for each n, there is A ∈ F
such that Cn ∩A is �nite for each n. An ultra�lter with a linear base is a P -point.
Shelah (see Wimmers [20]) has shown that it is consistent with ZFC that there are
no P -points. So it is consistent with ZFC that the version of u relying on linear
bases would be unde�ned.

1This is less commonly, but perhaps more sensibly, called the unbounding number.
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The tower number t is the minimum size of a subset of [ω]ω that is linearly
ordered by ⊆∗ and cannot be extended by adding a new element below all given
elements. To de�ne the pseudointersection number p, the requirement in the de�-
nition of towers that the sets in the class be linearly ordered under ⊆∗ is weakened
to requiring that every �nite subset of the class has an in�nite intersection. So,
trivially, p ≤ t. In celebrated work, Malliaris and Shelah [12] showed (in ZFC) that
p = t (see also [19]). It is not hard to see that ZFC proves t ≤ u. It is consistent
that t < u (see [1] for both statements).

A class C of subsets of ω is independent if any intersection of �nitely many
sets in C or their complements is in�nite. The independence number i is the least
cardinal of a maximal independent family. There has been much work recently
on i in set theory, in particular, the descriptive complexity of maximal independent
families, such as in Brendle, Fischer, and Khomskii [3].

1.1. Comparing the complexity of the analogs in computability. The main
setting for our analogy is given by the Boolean algebra of computable sets modulo
�nite di�erences. We consider maximal towers, the closely related maximal almost
disjoint sets, and thereafter ultra�lter bases and maximal independent sets. As
already demonstrated in the above-mentioned papers [2, 6, 15, 16], the relative po-
sition of a cardinal characteristic tends to correspond to the relative computational
complexity of the associated class of objects.

The usual formal de�nitions of computation relative to an oracle only directly
apply to functions f : ω → ω, and hence to subsets of ω (simply called sets from now
on), which can be identi�ed with their characteristic functions. The complexity of
other objects is studied indirectly, via names that are functions on ω giving discrete
representations of the object in question. A particular choice of names has to be
made. For instance, real numbers can be named by rapidly converging Cauchy
sequences of rational numbers.

The witnesses for cardinal characteristics are always uncountable. In contrast,
in our setting, the analogous objects are countable. They will be considered as
sequences of sets rather than unordered collections. For, a single set X can be used
as a name for such a sequence of sets: Let X [n] denote the �column� {u : ⟨u, n⟩ ∈
X}.2 To every set X, we can associate a sequence ⟨Xn⟩n∈ω in a canonical way by

setting Xn = X [n]. (When introducing terminology, we will sometimes ignore the
di�erence between ⟨Xn⟩n∈ω and X.) An alternate viewpoint is that a set X is a
name for the unordered collection of sets in its coded sequence. Although such a
name includes more information than is in the unordered family, this information is
suppressed when we quantify over all names; our results can be read in this context.

With this naming system, one can now use sequences as oracles in computations.
We view the combinatorial classes of sequences as mass problems. To measure their
relative complexity, we compare them viaMedvedev reducibility ≤s: Let C and D be
sets of functions on ω, also known as mass problems. One says that C is Medvedev
reducible to D and writes C ≤s D if there is a Turing functional Θ such that
Θg ∈ C for each g ∈ D. Less formally, one says that functions in D uniformly
compute functions in C. We will also refer to the weaker Muchnik reducibility :
C ≤w D if each function in D computes a function in C.

2For de�niteness, we employ the usual computable Cantor pairing function ⟨x, n⟩. Note that
⟨x, n⟩ ≥ x, n. This property is useful in simplifying notation in some of the constructions below.
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With subsequent research in mind, we will set up our framework to apply to
general countable Boolean algebras rather than merely the Boolean algebra of the
computable sets. Throughout, we �x a countable Boolean algebra B of subsets of ω
closed under �nite di�erences. Our basic objects will be sequences of sets in B.
We will obtain meaningful results already when we �x a countable Turing ideal I
and let B be the sets with degree in I. While we mainly study the case when B
consists of the computable sets, in Section 6, we brie�y consider two other cases:
the K-trivial sets and the primitive recursive sets.

1.2. The mass problem TB of maximal towers.

De�nition 1.1. We say that a sequence ⟨Gn⟩n∈ω of sets in B is a B-tower if
G0 = ω, Gn+1 ⊆∗ Gn, and Gn ∖ Gn+1 is in�nite for each n. If B consists of the
computable sets, we use the term tower of computable sets.

De�nition 1.2. We say that a function p is associated with a tower G if p is strictly
increasing and p(n) ∈

⋂
i≤nGi for each n.

The following fact is elementary.

Fact 1.3. A tower G uniformly computes a function p associated with it.

Proof. Let Φ be the Turing functional such that ΦG(0) = min(G0), and ΦG(n+1) is
the least number in

⋂
i≤n+1Gi greater than ΦG(n). This Φ establishes the required

uniform reduction. □

De�nition 1.4. Given a countable Boolean algebra B of sets, the mass problem
TB is the class of sets G such that ⟨Gn⟩n∈ω is a B-tower that is maximal, i.e., such
that for each in�nite set R ∈ B, there is n such that R∖Gn is in�nite.

Clearly, being maximal implies that no associated function is computable. In
particular, a maximal tower is never computable. (Note that our notion of maxi-
mality only requires that the tower cannot be extended from below, in keeping with
our set-theoretic analogy.)

1.3. The mass problem UB of ultra�lter bases. We now de�ne the mass prob-
lem UB corresponding to the ultra�lter number. Since all �lters of our Boolean al-
gebras are countable, any base will compute a linearly ordered base by taking �nite
intersection. So for measuring the relative complexity via Medvedev reducibility,
we can restrict ourselves to linearly ordered bases. Importantly, we require that
each ultra�lter base is a tower; in particular, the di�erence between a set and its
successor is in�nite. (Asking that an ultra�lter base is linearly ordered is not always
possible in the setting of set theory, as discussed in the introduction.)

De�nition 1.5. Given a countable Boolean algebra B of sets, let UB be the class
of sets F such that F is a B-tower as in De�nition 1.1 and for each set R ∈ B, there
is n such that Fn ⊆∗ R or Fn ⊆∗ R. We will call a set F in UB a B-ultra�lter base.

Each ultra�lter base is a maximal tower. In the cardinal setting, one has t ≤ u.
Correspondingly, since UB ⊆ TB, we trivially have TB ≤s UB via the identity reduc-
tion. The following indicates that for many natural Boolean algebras, ultra�lter
bases necessarily have computational strength.
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Proposition 1.6. Given a Turing ideal K, let B be the Boolean algebra of sets with
degree in K. Then for each B-ultra�lter base F and associated function p in the
sense of De�nition 1.2, the function p is not dominated by a function with Turing
degree in K.

Proof. Assume that there is a function f ≥ p in K. The conditions n0 = 0 and
nk+1 = f(nk) + 1 de�ne a sequence that is computable from some oracle in K, and
for every k we have that [nk, nk+1) contains an element of

⋂
i≤k Fi. So the set

E =
⋃
i∈ω

[n2i, n2i+1)

is in K, and clearly Fn ̸⊆∗ E and Fn ̸⊆∗ E for each n. Therefore, F is not a
B-ultra�lter base. □

1.4. The Boolean algebra of computable sets. We �nish the introduction by
summarizing our results in the case that B is the Boolean algebra of all computable
sets. By Theorem 3.1, every non-low set computes a set in TB, and this is uniform.
This is not a characterization, however, because by Corollary 5.3, every noncom-
putable c.e. set computes a maximal tower. On the other hand, we know that there
are noncomputable (necessarily low) sets that do not compute maximal towers;
in particular, no 1-generic ∆0

2-set does so. This is because 1-generic ∆0
2-sets are

index guessable by Theorem 3.4, and by Proposition 2.4, no index guessable set
can compute a maximal tower. Here, an oracle G is index guessable if ∅′ can �nd
a computable index for φG

e uniformly in e, provided that φG
e is computable. We

do not know whether index guessability characterizes the oracles that are unable
to compute a maximal tower. It seems unlikely; index guessability appears to be
stronger than necessary.

As already mentioned, in the setting of cardinal characteristics, t < u is consistent
with ZFC. Since non-low oracles can be computably dominated, it follows from
Proposition 1.6 that there is a member of TB that does not compute any member
of UB. In other words, UB ̸≤w TB in the case that B consists of the computable sets.

The separation above only uses the fact that members of UB are not computably
dominated; in fact, they are high. As we show in Theorems 3.6 and 3.8, UB is
Medvedev equivalent to the mass problem of dominating functions. In Section 4, we
prove that the mass problem IB of maximal independent families is also Medvedev
equivalent to the mass problem of dominating functions. Thus, in the case that B
is the Boolean algebra of computable sets, we have UB ≡s IB. Interestingly, we do
not have a direct proof. Contrast this with the equivalence of TB and AB, the mass
problem of maximal almost disjoint families; this equivalence is direct and holds
for an arbitrary Boolean algebra, as we will see presently.

2. Basics of the mass problems TB
2.1. The equivalent mass problems TB and AB. Recall that in set theory,
the almost disjointness number a is the least possible size of a maximal almost
disjoint (MAD) family of subsets of ω. In our analogous setting, we call a sequence
⟨Fn⟩n∈ω of sets in B almost disjoint (AD) if each Fn is in�nite and Fn ∩Fk is �nite
for distinct n and k.

De�nition 2.1. In the context of a Boolean algebra B of sets, the mass problem AB
is the class of sets F such that ⟨Fn⟩n∈ω is a maximal almost disjoint (MAD) family
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in B. Namely, the sequence is AD, and for each in�nite set R ∈ B, there is n such
that R ∩ Fn is in�nite.

Fact 2.2. AB ≤s TB ≤s AB.

Proof. We suppress the subscript B. To check that A ≤s T , given a set G, let
Diff(G) be the set F such that Fn = Gn ∖Gn+1 for each n. Clearly, the operator
Diff can be seen as a Turing functional. IfG is a maximal B-tower, then F = Diff(G)
is MAD. For, if R ∈ B is in�nite, then R ∖ Gn is in�nite for some n, and hence
R ∩ Fi is in�nite for some i < n.

For T ≤s A, given a set F , let G = Cp(F ) be the set such that

x ∈ Gn ↔ ∀i < n [x ̸∈ Fn].

Again, Cp is a Turing functional. If F is an almost disjoint family of sets from B,
then G is a B-tower, and if F is MAD, then G is a maximal tower. □

Recall that a maximal tower is not computable. Hence no MAD family is com-
putable. (This corresponds to the cardinal characteristics being uncountable.)

2.2. Descriptive complexity and index complexity for maximal towers.

For the rest of this section, as well as the subsequent three sections, we will mainly
be interested in the case that B is the Boolean algebra of all computable sets. We
will omit the parameter B when we name the mass problems. In the �nal section,
we will consider other Boolean algebras.

Besides looking at the relative complexity of mass problems such as T and U ,
one can also look at the individual complexity of their members (as sets encoding
sequences). Recall that a characteristic index for a set M is a number e such that
χM = φe. The following two questions arise:

(1) How low in the arithmetical hierarchy can the set be located?
(2) How hard is it to �nd characteristic indices for the sequence members?

Arithmetical complexity.

Fact 2.3. No maximal tower G is c.e., and no MAD set is co-c.e.

Proof. For the �rst statement, note that otherwise, there is a computable function p
associated with G in the sense of 1.2. The range of p extends the tower G, contrary
to its maximality.

For the second statement, note that the reduction Cp introduced in the proof of
Fact 2.2 to show that T ≤s A turns a co-c.e. set F into a c.e. set G. □

We will return to Question (1) in Section 5, where we show that c.e. MAD sets
exist in every nonzero c.e. Turing degree, and that some ultra�lter base is co-c.e.

Complexity of �nding characteristic indices for the sequence members. In several
constructions of towers ⟨Gn⟩n∈ω below, such as in Corollary 5.3 and Theorem 5.4,
the oracle ∅′′ is able to compute, given n, a characteristic index for Gn. The oracle ∅′
does not su�ce by the following result.

Proposition 2.4. Suppose that G is a maximal tower. There is no computation
procedure with oracle ∅′ that computes, from input n, a characteristic index for Gn.
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Proof. Assume the contrary. Then there is a computable function f such that

φlims f(n,s) is the characteristic function of Gn. Let Ĝ be de�ned as follows. Given n
and x, compute the least s > x such that φf(n,s),s(x) ↓. If the output is not 0,

put x into Ĝn. Clearly Ĝ is computable. Since Gn =∗ Ĝn for each n, Ĝ is a
maximal tower, contrary to Fact 2.3, or to the earlier observation that maximal
towers cannot be computable. □

3. Complexity of T and of U

In this section, we compare our two principal mass problems, maximal towers
and ultra�lter bases, to well-known benchmark mass problems: non-lowness and
highness. We also de�ne index guessability. No index guessable oracle computes a
maximal tower. We show that every 1-generic ∆0

2-set is index guessable.
As we said above, we restrict ourselves to the case that B is the Boolean algebra

of computable sets, and usually drop the subscripts B.

3.1. Maximal towers, non-lowness, and index guessability. We now show
that each non-low oracle computes a set in T . The result is uniform in the sense
of mass problems. Let NonLow denote the class of oracles Z such that Z ′ ̸≤T ∅′.

Theorem 3.1. T ≤s NonLow.

Proof. In the following, x, y, and z denote binary strings; we identify such a string x
with the number whose binary expansion is 1x. For example, the string 000 is
identi�ed with 8, the number with binary representation 1000. De�ne a Turing
functional Θ for the Medvedev reduction as follows: Set ΘZ = G, where for each n,

Gn = {x : n ≤ s := |x| ∧ Z ′
s ↾n = x ↾n}.

Here Z ′ denotes the jump of Z, which is computably enumerated relative to Z in
a standard way. Note that, for each n, for su�ciently large s, the string Z ′

s ↾n
settles. So it is clear that for each n, we have Gn+1 ⊆∗ Gn and Gn ∖ Gn+1 is
in�nite. Also Gn is computable.

Suppose now that R is an in�nite set such that R ⊆∗ Gn for each n. Then for
each k,

Z ′(k) = lim
x∈Gk,|x|>k

x(k) = lim
x∈R,|x|>k

x(k),

and hence Z ′ ≤T R′. So if Z ∈ NonLow, then R cannot be computable, and hence
ΘZ ∈ T . □

Remark 3.2. The proof above yields a more general result. Suppose that K is a
countable Turing ideal and B is the Boolean algebra of sets with degree in K. Then
TB ≤s NonLowK, where NonLowK := {Z : ∀R ∈ K [Z ′ ̸≤T R′]}.

We next introduce a property of oracles that we call index guessability ; it implies
that an oracle does not compute a maximal tower. As usual, let ⟨Φe⟩e∈ω be an

e�ective list of the Turing functionals with one input, and write φe for Φ∅
e. Note

that if L is a ∆0
2-oracle, then ∅′′ can compute from e a characteristic index for ΦL

e

in case that the function ΦL
e is computable. To be index guessable means that ∅′

su�ces.

De�nition 3.3. We call an oracle L index guessable if ∅′ can compute from e an
index for ΦL

e whenever ΦL
e is a computable function. In other words, there is a

functional Γ such that
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ΦL
e is computable ⇒ ΦL

e = φΓ(∅′;e).

No assumption is made on the convergence of Γ(∅′; e) in case ΦL
e is not a computable

function.

Clearly, being index guessable is closed downward under ≤T . A total function is
computable if and only if its graph is computable, in a uniform way. So for index
guessability of L, it su�ces that there is a Turing functional Γ such that Γ(∅′; e)
provides an index for ΦL

e in case it is a computable {0, 1}-valued function.
Every index guessable oracleD is low. To see this, for i ∈ ω, let Bi = {t : i ∈ D′

t}.
If i ∈ D′ thenBi is co�nite, otherwiseBi = ∅. There is a computable function g such
that ΦD

g(i) is the characteristic function of Bi. To show that D′ ≤T ∅′, on input i,

let ∅′ compute a computable index r(i) for Bi. Now use ∅′ again to determine
limk φr(i)(k), which equals D′(i).

By Proposition 2.4, an index guessable oracle D does not compute a maximal
tower. The following provides examples of such oracles.

Theorem 3.4. If L is ∆0
2 and 1-generic, then L is index guessable.

Proof. Suppose that F = ΦL
e and F is a computable set. Let Se be the c.e. set of

strings σ above which there is a Φe-splitting in the sense that

Se = {σ : (∃p)(∃τ1 ≻ σ)(∃τ2 ≻ σ) Φτ1
e (p) ̸= Φτ2

e (p)}.
Suppose that Se is dense along L. Then we claim that the set

Ce = {τ : (∃p) Φτ
e (p) ̸= F (p)}

is also dense along L, i.e., for every k, there is some τ ⪰ L ↾ k such that τ ∈ Ce.
Indeed, let σ ⪰ L ↾ k be a member of Se and let p, τ1, and τ2 witness this. Let τi
for i = 1 or 2 be such that Φτi

e (p) ̸= F (p). Then τi ⪰ L ↾ k is in Ce. The set Ce is
c.e. and hence L meets Ce, contradicting our assumption that F = ΦL

e .
It follows that Se is not dense along L. In other words, there is some least ke

such that there is no splitting of Φe above L ↾ ke. On input e, the oracle ∅′ can
compute ke and L ↾ ke. This allows ∅′ to �nd an index for F , given by the following
procedure: To compute F (p), �nd the least τ ⪰ L ↾ ke such that Φτ

e (p) ↓ (in |τ |
many steps). Such a τ exists because ΦL

e (p) ↓. By our choice of ke, it follows that
Φτ

e (p) = ΦL
e (p) = F (p). □

We summarize the known implications:

1-generic ∆0
2 ⇒ index guessable ⇒ computes no maximal tower ⇒ low.

The last implication cannot be reversed by Theorem 5.1 below; the others might.
In particular, we ask whether any oracle that computes no maximal tower is index
guessable. This would strengthen Theorem 3.1. Note that the following apparent
weakening of index guessability of L still implies that the oracle L computes no
maximal tower: For each S ≤T L such that each S[n] is computable, there is a
functional Γ such that φΓ(∅′;n) is the characteristic function of S[n]. To see this,
assume S is a maximal tower G. Such an S contradicts Proposition 2.4.

Aside. We pause brie�y to mention a potential connection of our topic to com-
putational learning theory. One says that a class S of computable functions is
EX-learnable if there is a total Turing machine M such that limsM(f ↾ s) exists
for each f ∈ S and is an index for f . For an oracle A, one says that S is EX[A]-
learnable if there is an oracle machine M that is total for each oracle and such that
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limsM
A(f ↾ s) exists for each f ∈ S and is an index for f . One calls an oracle A

EX-trivial if EX = EX[A]. Slaman and Solovay [17] showed that A is EX-trivial
if and only if A is ∆0

2 and has 1-generic degree. This used an earlier result of
Haught [7] that the Turing degrees of the 1-generic ∆0

2-sets are closed downward.

3.2. Ultra�lter bases and highness. Let Tot = {e : φe is total}. Let DomFcn
denote the mass problem of functions h that dominate every computable function
and also satisfy h(s) ≥ s for all s. Note that a set F is high if and only if Tot ≤T

F ′. To represent highness by a mass problem in the Medvedev degrees, one can
equivalently choose the set of functions dominating each computable function, or
the set of approximations to Tot, i.e., the {0, 1}-valued binary functions f such that
lims f(e, s) = Tot(e). This follows from the next fact; we omit the standard proof.

Fact 3.5. DomFcn is Medvedev equivalent to the mass problem of approximations
to Tot = {e : φe is total}.

We show that exactly the high oracles compute ultra�lter bases, and that the
reductions are uniform. By Fact 3.5, it su�ces to show that U ≡s DomFcn. We
will obtain the two Medvedev reductions through separate theorems, with proofs
that are unrelated.

Theorem 3.6. Every ultra�lter base uniformly computes a dominating function.
In other words, U ≥s DomFcn.

Our proof is directly inspired by a proof of Jockusch [8, Theorem 1, (iv) =⇒ (i)],
who showed that any family of sets containing exactly the computable sets must
have high degree.

Lemma 3.7. There is a uniformly computable sequence P0, P1, . . . of nonempty
Π0

1-classes such that for every e,

• if φe is total, then Pe contains a single element, and
• if φe is not total, then Pe contains only bi-immune elements.

Proof. Note that each Martin-Löf (or even Kurtz) random set is bi-immune: For
an in�nite computable set R, the class of sets containing R is a Π0

1-null class and
hence determines a Kurtz test. A similar fact holds for the class of sets disjoint
from R.

For each s, let ns be the largest number such that φe,s converges on [0, ns). We
build the Π0

1-class Pe in stages, where Pe,s is the nonempty clopen set we have
before stage s of the construction. Let Pe,0 = 2ω.

Stage 0. Start constructing Pe as a nonempty Π0
1-class containing only Martin-

Löf random elements.
Stage s. If ns = ns−1, continue the construction that is currently underway,

which will produce a nonempty Π0
1-class of random elements.

On the other hand, if ns > ns−1, �x a string σ such that [σ] ⊆ Pe,s and |σ| > s.
Let Pe,s+1 = [σ]. End the construction that we have been following and start a
new construction for Pe, starting at stage s + 1, as a nonempty Π0

1-subclass of [σ]
containing only Martin-Löf random elements.

It is clear that if φe is total, then Pe will be a singleton. Otherwise, there will
be a �nal construction of a nonempty Π0

1-class of randoms which will run without
further interruption. □

Of course, when Pe is a singleton, its lone element must be computable.
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Proof of Theorem 3.6. For any set C, let SC = {X ∈ 2ω : C ⊆ X}. Note that if C
is computable (or even merely c.e.), then SC is a Π0

1-class. Let Qe = {X : X ∈ Pe}
be the Π0

1-class of complements of elements of Pe.
Now let F be an ultra�lter base. We have that

φe is total ⇐⇒ (∃i)(∃n) [Fi ∖ [0, n] is a subset of some

X ∈ Pe or its complement]

⇐⇒ (∃i)(∃n) [Pe ∩ SFi∖[0,n] ̸= ∅ or Qe ∩ SFi∖[0,n] ̸= ∅].

Even though SFi∖[0,n] is a Π0
1-class, we cannot hope to compute an index us-

ing F . However, SFi∖[0,n] is a Π0
1[F ]-class uniformly in i, n. Using the fact that the

nonemptiness of aΠ0
1[F ]-class is aΠ

0
1[F ]-property, we see that Tot = {e : φe is total}

is Σ0
2[F ]. Note that the Σ0

2-index does not depend on F . Since Tot is also Π0
2, it

is ∆0
2[F ] via a �xed pair of indices, and hence Turing reducible to F ′ via a �xed

reduction. One direction of the usual proof of the (relativized) Limit Lemma now
shows that we can uniformly compute an approximation to Tot from F . Hence,
from F we can uniformly compute a dominating function by Fact 3.5. □

Theorem 3.8. Every dominating function uniformly computes an ultra�lter base.
In other words, U ≤s DomFcn.

Proof. Let ⟨ψe⟩e∈ω be an e�ective listing of the {0, 1}-valued partial computable
functions de�ned on an initial segment of ω. Let Ve,k = {x : ψe(x) = k} so that
⟨(Ve,0, Ve,1)⟩ is an e�ective listing that contains all pairs of computable sets and
their complements.

Let T = {0, 1, 2}<ω. Uniformly in α ∈ T , we will de�ne a set Sα. We �rst explain
the basic idea and then modify it to make it work. The basic idea is to start with
S∅ = ω and build Sα̂k = Sα ∩ Ve,k for k = 0, 1 and e = |α|, that is, we split Sα

according to the listing above. We then consider the leftmost path g such that Sg ↾ e

is in�nite for each e. A dominating function h can eventually discover each initial
segment of this path, and use this to compute a set F such that Fe =∗ Sg ↾ e for
each e.

The problem is that both Sα ∩ Ve,0 and Sα ∩ Ve,1 could be �nite (because e is
not a proper index of a computable set). In this case we still need to make sure

that Fe∖Fe+1 is in�nite. So the rightmost option at level n is a set Sα̂2 = S̃α that
simply removes every other element from Sα (so as to obtain an in�nite coin�nite

subset). The sets Sα̂k for k ≤ 1 will be subsets of S̃α.
We now provide the details. The set Sα is enumerated in increasing fashion, and

possibly �nite. So each Sα is computable, though not uniformly in α. All the sets
and functions de�ned below can be interpreted at stages.

Let S∅,s = [0, s). If we have de�ned (at stage s) the set Sα = {r0 < · · · < rk},
let S̃α contain the numbers of the form r2i. Let Sα̂2 = S̃α. Let Sα̂k = S̃α ∩ Ve,k
for k = 0, 1, e = |α|. We de�ne a uniform list of Turing functionals Γe so that the
sequence

〈
Γh
e (t)

〉
t∈ω

is nondecreasing and unbounded, for each e and each oracle

function h such that h(s) ≥ s for each s. We will let Fe = {Γh
e (t) : t ∈ ω}.

De�nition of Γe. Given an oracle function h, we will write as for Γ
h
e (s). Let a0 = 0.

Suppose s > 0 and as−1 has been de�ned. Check if there is α ∈ T of length e such
that |Sα,h(s)| ≥ s. If there is no such α, let as = as−1. Otherwise, let α be leftmost
such. If maxSα,h(s) > as−1, let as = maxSα,h(s). Otherwise, again let as = as−1.
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Note that the sequence {as}s<ω is unbounded because for the rightmost string
α ∈ T of length e (i.e., the string consisting only of 2's), the set Sα,t consists of the
numbers in [0, t) divisible by 2e. We may combine the functionals Γe to obtain a
functional Ψ such that (Ψh)e = Fe for each h with h(s) ≥ s for each s.

Claim 3.9. If h ∈ DomFcn, then F = Ψh ∈ U .

To verify this, let g ∈ 2ω denote the leftmost path in {0, 1, 2}ω such that the set
Sg ↾ e is in�nite for every e. Note that g is an in�nite path, because for every α, if
the set Sα is in�nite then so is Sα̂2.

Fix e and let α = g ↾ e. Let p(s) be the least stage t such that Sα,t has at least s
elements. Since h dominates the computable function p, we will eventually always
pick α in the de�nition of as = Γh

e (s). Hence Fe =∗ Sα. This implies that Fe is
computable and Fe+1 ⊆∗ Fe. Clearly, if Sα is in�nite, then Sα ∖ Sβ is in�nite for
every β ≻ α. Thus Fe ∖ Fe+1 is in�nite.

Now let R be a computable set. Pick e such that R = Ve,0 and R = Ve,1. If
g(e) = 0, then Sg ↾ e+1 ⊆ Ve,0 and hence Fe+1 ⊆∗ R. Otherwise, Sg ↾ e+1 ⊆ Ve,1 and

hence Fe+1 ⊆∗ R. □

4. Maximal independent families in computability

In this short section, we determine the complexity of the computability-theoretic
analog of the independence number i for the Boolean algebra of computable sets.
It turns out that in the context of the computable sets, maximal independent fam-
ilies behave in a way similar to ultra�lter bases.

Given a sequence ⟨Fn⟩n∈ω, let F∅ = ω; for each nonempty binary string σ we
write

(1) Fσ =
⋂

σ(i)=1

Fi ∩
⋂

σ(i)=0

F i.

We call (a set F encoding) such a sequence independent if each set Fσ is in�nite.

De�nition 4.1. Given a Boolean algebra of sets B, the mass problem IB is the
class of sets F such that ⟨Fn⟩n∈ω is a family that is maximal independent, namely,

it is independent, and for each set R ∈ B, there is σ such that Fσ ⊆∗ R or Fσ ⊆∗ R.

In the following, we let B be the Boolean algebra of computable sets, and we
drop the parameter B as usual. An easy modi�cation of the proof of Theorem 3.6
yields the following

Theorem 4.2. Every maximal independent family F uniformly computes a domi-
nating function. In other words, I ≥s DomFcn.

Proof. De�ne the Π0
1-classes Pe as in Lemma 3.7. As before let Qe = {X : X ∈ Pe}

be the Π0
1-class of complements of elements of Pe. Recall that for any set C, we let

SC = {X ∈ 2ω : C ⊆ X}. Now we have that

φe is total ⇐⇒ (∃σ)(∃n) [Fσ ∖ [0, n] is a subset of some

X ∈ Pe or its complement]

⇐⇒ (∃σ)(∃n) [Pe ∩ SFσ∖[0,n] ̸= ∅ or Qe ∩ SFσ∖[0,n] ̸= ∅]
As before, this shows that from F one can uniformly compute a dominating func-
tion. □
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Theorem 4.3. Every dominating function h uniformly computes a maximal inde-
pendent family. In other words, I ≤s DomFcn.

In fact, we will prove that a dominating function h uniformly computes a set F such
that the =∗-equivalence classes of the sets Fe freely generate the Boolean algebra
of computable sets modulo �nite sets. This clearly implies that F is maximal
independent: If R is an in�nite computable set, then for some e and nonempty
set S of strings of length e, one has R =∗ ⋃

σ∈S Fσ, and hence Fσ ⊆∗ R for some σ.

Proof. As in the proof of Theorem 3.8, let ⟨ψe⟩e∈ω be an e�ective listing of the
{0, 1}-valued partial computable functions de�ned on an initial segment of ω, and
let Ve,k = {x : ψe(x) = k} for k = 0, 1.

In Phase e of the construction, we will de�ne a computable set Fe such that
Fe = Θh

e for a Turing functional Θe determined uniformly in e. Suppose we have
de�ned Θi for i < e, and thereby have de�ned the sets Fσ given by (1) for each
string σ of length e.

The idea for building Fe is to attempt to follow Ve,0 while maintaining inde-
pendence from the previous sets. We apply this strategy separately on each Fσ.
Using h as an oracle we compute recursively an increasing sequence ⟨ren⟩n∈ω. We
carry out the attempts on intervals [ren, r

e
n+1). If Ve,0 appears to split Fσ on the

current interval, then we follow it; otherwise, we merely make sure that Fe remains
independent from Fσ on the interval by putting one number in and leaving another
one out. To decide which case holds, we consult the dominating function h as an
oracle.

We now provide the details for Phase e. Let re0 = 0. If ren has been de�ned, let
ren+1 > ren be the least number r such that for each σ of length e, the following two
conditions hold:

(a)σ |[ren, r) ∩ Fσ| ≥ 2;
(b)σ if there are u,w ∈ dom(ψe,h(ren)

)∩Fσ with ren ≤ u < w such that ψe(u) = 1
and ψe(w) = 0, then r > w for the least such w.

We de�ne Fe(x) = Θh
e (x) for x ∈ [ren, r

e
n+1) as follows. Let σ be the string of

length e such that x ∈ Fσ.

• If the hypothesis of condition (b)σ holds and ψe is de�ned on [ren, r
e
n+1),

then let Fe(x) = ψe(x);
• otherwise, if x = min([ren, r

e
n+1) ∩ Fσ), let Fe(x) = 1, else let Fe(x) = 0.

Veri�cation. By induction on e, one veri�es that for each function h, the set Fσ is
in�nite for each σ with |σ| = e, and that the sequence ⟨ren⟩n∈ω de�ned in Phase e

of the construction is in�nite. Thus Θh
e is total. So F ≤T h where Fe = Θh

e , and F
is an independent family.

Claim 4.4. Each set Fe is computable.

We verify this by induction on e. Suppose it holds for each i < e. So Fσ is
computable for |σ| = e.

First assume that dom(ψe) is �nite. Then for su�ciently large n, condition (b)σ
does not apply to any string σ of length e, and so the sequence ⟨ren⟩n∈ω is com-
putable. Hence Fe is computable.

Now assume that ψe is total. Let

De = {σ : |σ| = e ∧ |Fσ ∩ Ve,0| = |Fσ ∩ Ve,1| = ∞}.



MAXIMAL TOWERS AND ULTRAFILTER BASES IN COMPUTABILITY 13

De�ne a function p by letting p(m) be the least stage s such that for each σ ̸∈ De,
condition (a)σ holds with ren = m and r = s, and for each σ ∈ De, there are
u,w ∈ dom(ψe,s) such that m ≤ u < w as in the hypothesis of condition (b)σ.
(Let p(m) = 0 if m is not of the form ren.) Since Fσ is computable for each σ
of length e, the function p is computable. Since h dominates p, for su�ciently
large n, we will de�ne ren+1 by checking the convergence of computations ψe(z) at
a stage h(ren) ≥ p(ren); since in Phase e of the construction, we chose the witnesses
minimal, ren+1 is determined by stage p(ren). So we might as well check the conver-
gence of computations ψe(z) at stage p(r

e
n). Hence again, the sequence ⟨ren⟩n∈ω is

computable.

Claim 4.5. Suppose that ψe is total. Then for each string τ = σ â of length e+1,
Fτ ⊆∗ Ve,0 or Fτ ∩ Ve,0 =∗ ∅ (so that Ve,0 =∗ ⋃

τ{Fτ : Fτ ⊆∗ Ve,0}) .

Let De be as above. If σ ̸∈ De, then this is immediate since Fσ ⊆∗ Ve,i for some i.
Otherwise, Phase e of the construction ensures that Fσ̂0 =∗ Fσ ∩ Ve,0.

By the last claim, the=∗-equivalence classes of the Fe freely generate the Boolean
algebra of the computable sets modulo �nite sets. In particular, F is a maximal
independent family. □

As mentioned in the introduction, we do not know at present whether there is a
�natural� Medvedev equivalence between the two mass problems U and I as is the
case for A and T . This would require direct proofs avoiding the detour via the mass
problem of dominating functions. For what it is worth, the cardinal characteristics u
and i are incomparable (i.e., ZFC cannot determine their order).

5. The case of computably enumerable complements

Recall from Fact 2.3 that no maximal tower, and in particular no ultra�lter base,
can be computably enumerable. In contrast, in this section we will see that even
ultra�lter bases can have computably enumerable complement. As in the previous
sections, we are restricting our attention to the Boolean algebra of all computable
sets.

Recall that a coin�nite c.e. set A is called simple if it meets every in�nite c.e. (or,
equivalently, every computable) set; A is called r-maximal if A ⊆∗ R or A ⊆∗ R
for each computable set R. Each r-maximal set is simple. For more background,
see Soare [18].

5.1. Computably enumerable MAD sets, and co-c.e. towers. We will show
that if A is a noncomputable c.e. set, then there is a co-c.e. maximal tower G ≤T A.
Given that it is more standard to build c.e. rather than co-c.e. sets, it will be
convenient to �rst build a c.e. MAD set F ≤T A and then use the Medvedev
reduction in Fact 2.2 to obtain a co-c.e. maximal tower. We employ a priority
construction with requirements that act only �nitely often.

Theorem 5.1. For each noncomputable c.e. set A, there is a MAD c.e. set F ≤T A.

Proof. The construction is akin to Post's construction of a simple set. In particular,
it is compatible with permitting.

Let ⟨Me⟩e∈ω be a uniformly c.e. sequence of sets such that M2e = We and
M2e+1 = ω for each e. We will build an auxiliary c.e. set H ≤T A and let the c.e.
set F ≤T A be de�ned by F [e] = H [2e] ∪H [2e+1]. The purpose of the sets M2e+1



14 LEMPP, MILLER, NIES, AND SOSKOVA

is to make the sets H [2e+1], and hence the sets F [e], in�nite. The construction also
ensures that H, and hence F , is AD, and that

⋃
nH

[n] is coin�nite.

As usual, we will write He for H
[e]. We provide a stage-by-stage construction to

meet the requirements

Pn : Me ∖
⋃
i<n

Hi in�nite ⇒ |He ∩Me| ≥ k, where n = ⟨e, k⟩.

(Note that the union is over all i such that i < n, not i < e.) At stage s, we say
that Pn is permanently satis�ed if |He,s ∩Me,s| ≥ k.

Construction.
Stage s > 0. See if there is n < s such that Pn is not permanently satis�ed, and,
where n = ⟨e, k⟩, there is x ∈Me,s ∖

⋃
i<nHi,s such that

x > max(He,s−1), x ≥ 2n, and As ↾x ̸= As−1 ↾x.

If so, choose n least, and put ⟨x, e⟩ into H (i.e., put x into He).

Veri�cation. Each He is enumerated in increasing fashion and hence computable.
Each Pn is active at most once. This ensures that

⋃
eHe is coin�nite: For eachN ,

if x < 2N enters this union, then this is due to the action of a requirement Pn with
n < N , so there are at most N many such x.

To see that a requirement Pn for n = ⟨e, k⟩ is met, suppose that its hypothesis
holds. Then there are potentially in�nitely many candidates x that can go into He.
Since A is noncomputable, one of them will be permitted.

Now, by the choice of M2e+1 and the fact that
⋃

eHe is coin�nite, each H2e+1,
and hence each Fe, is in�nite. We claim that for e < m, we have |He ∩Hm| ≤ m.
For suppose that x ∈ Hm enters He at stage s. Then x ∈ Hm,s since r ≥ ⟨m, 0⟩ > e
for any requirement Pr putting x into Hm. Suppose Pn puts x into He at stage s,
where n = ⟨e, k⟩. Then n ≤ m, so the claim follows as each requirement is active
at most once. We conclude that the family described by H, and therefore also the
one described by F , is almost disjoint.

To show that F is MAD, it su�ces to verify that ifMe is in�nite then Hp∩Me is
in�nite for some p. If all the P⟨e,k⟩ are satis�ed during the construction, we let p = e.
Otherwise, we let k be least such that Pn is never satis�ed where n = ⟨e, k⟩. Then
its hypothesis fails, so Me ⊆∗ ⋃

i<nHi. Hence Hp ∩Me is in�nite for some p < n
by the pigeonhole principle. □

Since an index guessable set computes no MAD set by Proposition 2.4, we obtain
the following

Corollary 5.2. If a c.e. set L is index guessable, then L is computable.

Downey and Nies have given a direct proof of this fact; see [14].

Corollary 5.3. For each noncomputable c.e. set A, there is a co-c.e. set G ≤T A
such that G ∈ T , i.e., ⟨Gn⟩n∈ω is a maximal tower.

Proof. Let F be the MAD set obtained above. Recall the Turing reduction Cp
showing that T ≤s A in Fact 2.2. The set G = Cp(F ), given by

x ∈ Gn ↔ ∀i < n [x ̸∈ Fn]

is as required. □
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5.2. Co-c.e. ultra�lter bases. We next construct a co-c.e. ultra�lter base F for
the Boolean algebra of computable sets. That is, F is co-c.e., each Fe is computable
(but not uniformly so), and F is a tower satisfying the condition in De�nition 1.5.

Theorem 5.4. There is a co-c.e. ultra�lter base F .

Proof. We adapt the construction from the proof of the main result in [11], which
states that there is an r-maximal set A such that the index set CofA = {e : We ∪
A =∗ ω} is Σ0

3-complete. Both the original and the adapted version make use of
the fact that we are given a c.e. index for a computable set and also one for its
complement (see the pairs (Ve,0, Ve,1) below). Our proof can also be viewed as a
variation on the proof of Theorem 3.8 in the setting of co-c.e. sets. We remark that
by standard methods, one can extend the present construction to include permitting
below a given high c.e. set.

We build a co-c.e. tower F by providing uniformly co-c.e. sets Fe for e ∈ ω that
form a descending sequence with Fe ⊇ Fe+1. We achieve the latter condition by
agreeing that whenever we remove x from Fe at a stage s, we also remove it from
all Fi for i > e. Furthermore, no element is ever removed from F0, so F0 = ω.

Let ⟨(Ve,0, Ve,1)⟩
e∈ω

be an e�ective listing of all pairs of disjoint c.e. sets as

de�ned in the proof of Theorem 3.8. The construction will ensure that the following
requirements are met:

Me : Fe ∖ Fe+1 is in�nite,

Pe : Ve,0 ∪ Ve,1 = ω ⇒ Fe+1 ⊆∗ Ve,0 ∨ Fe+1 ⊆∗ Ve,1.

This su�ces to establish that F is an ultra�lter base.
The tree of strategies is T = {0, 1, 2}<ω. Each string α ∈ T of length e is tied

to Me and also to Pe. We write α : Me and α : Pe to indicate that we view α as a
strategy of the respective type.

Streaming. For each string α ∈ T with |α| = e, at each stage of the construction,
we have a computable set Sα, thought of as a stream of numbers used by α. The
purpose of the sets Sα is twofold:

(a) to be able to provide candidates for Pe by a procedure of reserving numbers
from the stream, and processing them making use of its hypothesis, and

(b) to show that Fe is computable.

For (b), in Claim 5.7 we will verify that Fe =
∗ Sα where α is the string of length e

on the true path. Since the true path is merely computable in ∅′′, we cannot directly
de�ne the co-c.e. set F using the Sα. Rather, we need to spread the construction
of the Fe over the whole e-th level of the tree of strategies.

We provide some more detail on the dynamics of the streams. Each time α is
initialized, Sα is removed from Fe+1, and Sα is reset to be empty. Also, Sα is
enlarged only at stages at which α appears to be on the true path.

We will verify the following conditions on the �nal versions of the Sα:

(1) S∅ = ω;
(2) if α is not the empty node, then Sα is a subset of Sα− (where α− is the

immediate predecessor of α);
(3) at every stage, Sγ ∩ Sβ = ∅ for incomparable strings γ and β;
(4) any number x is in Fe+1 at the time it �rst enters Sα;
(5) if α is along the true path of the construction, then Sα is an in�nite com-

putable set.
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Note that Sα is d.c.e. uniformly in α. The set Sα is �nite if α is to the left of the
true path of the construction; Sα is an in�nite computable set if α is along the true
path; and Sα is empty if α is to the right of the true path.

The intuitive strategy α : Pe is as follows. Only strategies associated with a string
of length ≤ e can remove numbers from Fe+1. A strategy α : Pe removes elements
from Sα, and at the same time from Fe+1. It regards the set of remaining numbers
as its own version of Fe+1; if α is on the true path then this version is the true Fe+1

up to =∗, as mentioned above. The strategy has to make sure that no strategies β
to its right remove numbers from Fe+1 that it wants to keep. On the other hand, it
can only process a number x once it knows whether x is in Ve,0 or Ve,1. The solution
to this con�ict is that α reserves a number x from the stream Sα, which, by an
initialization α carries out at this stage, withholds it from any action of such a β. It
then waits until all numbers ≤ x are in Ve,0 ∪ Ve,1. If that never happens for some
reserved x, then α is satis�ed �nitarily with eventual outcome 2. Otherwise, it will
eventually process x: If x ∈ Ve,0, it continues its attempt to build Fe+1 inside Ve,0;
else it continues to build Fe+1 inside Ve,1. It takes outcome 0 or 1, respectively,
according to which case applies. Each time the apparent outcome is 0, then the
current Sα̂1 (i.e., the content of its output stream based on the assumption that
the true outcome is 1) is removed from Fe+1. So if 0 is the true outcome, then
indeed Fe+1 ⊆∗ Ve,0; and if 1 is the true outcome, then indeed Fe+1 ⊆∗ Ve,1.

The intuitive strategy α : Me simply removes every other element of Sα from
Fe+1. Then α : Pe actually only works with the stream of remaining numbers.
There is no further interaction between the two types of strategies. (Note here that
making Fe+1 smaller is to the advantage of Pe.) Recall that if α is initialized, Sα

is removed from Fe+1, and Sα is reset to be empty.

Construction.
Stage 0. Let δ0 be the empty string. Let Fe = ω for each e. Initialize all

strategies.
Stage s > 0. Let S∅,s = [0, s). Stage s consists of substages e = 0, . . . , s − 1,

during which we inductively de�ne δs, a string of length s.

Substage e. We suppose that α = δs ↾ e and Sα have been de�ned.

The strategy α : Me acts as follows. If at the current stage Sα = {r0 < · · · < rk}
and rk is new in Sα, it puts rk into S̃α if and only if k is even; otherwise, rk is
removed from Fe+1.

The strategy α : Pe picks the �rst applicable case below.
Case 1: Each reserved number of α has been processed: If there is a number x

from S̃α greater than α's last reserved number (if any) and greater than the last
stage at which α was initialized, pick x least and reserve it. Note that x < s since
by de�nition S∅,s = [0, s). Initialize all strategies γ ⪰ α̂ 2, and let α̂ 2 be eligible
to act next.

If Case 1 does not apply then α has a unique reserved, but unprocessed number x.
Case 2: [0, x] ⊆ Ve,0 ∪ Ve,1 and x ∈ Ve,0: Let t be the greatest stage < s at

which α was initialized. Add x to Sα̂0 and remove from Fe+1 all numbers in the
interval (t, x) that are not in Sα̂0. Declare that α has processed x. Let α̂ 0 be
eligible to act next.
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Case 3: [0, x] ⊆ Ve,0 ∪ Ve,1 and x ∈ Ve,1: Let t be the greatest stage < s at
which α was initialized or α̂ 0 was eligible to act. Add x to Sα̂1 and remove from
Fe+1 all numbers in the interval (t, x) that are not in Sα̂1. Declare that α has
processed x. Let α̂ 1 be eligible to act next.

Case 4: Otherwise, that is, [0, x] ̸⊆ Ve,0 ∪ Ve,1: Let t be the greatest stage < s

at which α was initialized, or α̂ 0 or α̂ 1 was eligible to act. Let Sα̂2 = S̃α ∩ (t, s).
Let α̂ 2 be eligible to act.

We de�ne δs(e) = i where α̂ i, 0 ≤ i ≤ 2, has been declared eligible to act next.
If e + 1 < s, then carry out the next substage. Else initialize all the strategies β
such that δs <L β and end stage s.

Veri�cation. By construction and our convention above, Fe is co-c.e., and Fe ⊇ Fe+1

for each e.
Let g ∈ 3ω denote the true path, namely, the leftmost path in {0, 1, 2}ω such

that ∀e ∃∞s [g ↾ e ⪯ δs]. In the following, given e, let α = g ↾ e. We verify a number
of claims.

Claim 5.5. α is only initialized �nitely often.

To see this, let s0 > 0 be a stage such that α ≤L δs for each s ≥ s0. Suppose the
strategy α is initialized at stage s ≥ s0. Then α ⪰ β 2̂ for a strategy β : Pi, where
i = |β|, and this initialization occurs at Case 1 of substage i of stage s, namely,
when the strategy β reserves a new number y. However, α can only be initialized
once in that way for each such β: If β processes y at a later stage t, then this causes
δt <L α, contrary to the choice of s0. This shows the claim.

Let sα be the largest stage s such that α is initialized at stage s. Note that
α ⪯ γ implies sα ≤ sγ .

Claim 5.6. The conditions (1)�(5) related to streaming hold.

(1), (2) and (4) hold by construction. (3) Assume this fails for incomparable γ
and β, so x ∈ Sγ ∩ Sβ at stage s. By (2), we may as well assume that γ = α̂ i
and β = α̂ k where i < k. By construction, k ≤ 1 is not possible, so k = 2. Since
x ∈ Sα î and i ≤ 1, x was reserved by α at some stage t ≤ s. So x can never enter
Sα̂2 by the initialization of α̂ 2 when x was reserved by the strategy α : Pe in its
Case 1.

(5) holds inductively, by the de�nition of the true path and because Sα is enu-
merated in increasing fashion at stages ≥ sα.

Claim 5.7. Fe =
∗ Sα (and hence, Fe is computable).

The claim is veri�ed by induction on e. We show that for all x > sα, we have
x ∈ Fe if and only if x ∈ Sα. This holds for e = 0 because F0 = S∅ = ω. For the
inductive step, let γ = g ↾(e+ 1).

First, we verify that Fe+1 ∩ (sγ ,∞) ⊆ Sγ . Suppose that x > sγ and x ∈ Fe+1.
Then x ∈ Fe and x > sα, so by the inductive hypothesis x ∈ Sα. By construction,
any element x that does not enter Sγ is also removed from Fe+1 unless x is the last
element α reserves. However, in that case necessarily γ = α̂ 2 and γ is initialized
when x is reserved, so x < sγ contrary to our assumption.

Next, we verify that Sγ∩(sγ ,∞) ⊆ Fe+1. Suppose that x ∈ Sγ and x > sγ . Then
x ∈ Sα, so by the inductive hypothesis x ∈ Fe. At a stage s ≥ sγ , an element x
of Sα cannot be removed from Fe+1 by a strategy β >L α because Sβ ∩ Sα = ∅
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by (3) as veri�ed above and since β can only remove elements from Sβ . So x can
only be removed from Fe+1 by α : Me or α : Pe.

If α : Me removes x from Fe+1, then x ̸∈ S̃α, which contradicts that x ∈ Sγ .
So, by construction, the only way x can be removed from Fe+1 is by the strategy
α : Pe. Since x > sγ this would mean that x does not enter Sγ either, contrary to
our assumption.

Claim 5.8. Each requirement Me is met, namely, Fe ∖ Fe+1 is in�nite.

To see this, recall that α = g ↾ e. The action of α : Me removes in�nitely many
elements of Sα from Fe+1. This su�ces by Claim 5.7.

Claim 5.9. Each requirement Pe is met.

Suppose the hypothesis of Pe holds. Then every number that α reserves is
eventually processed. So either g(e) = 0, in which case Fe+1 ⊆∗ Ve,0 by Claim 5.7,
or g(e) = 1, in which case Fe+1 ⊆∗ Ve,1, also by Claim 5.7. □

6. Ultrafilter bases for other Boolean algebras

As mentioned, we have set up our framework to apply to general countable
Boolean algebras, rather than merely the Boolean algebra of the computable sets,
mainly with subsequent research in mind. In this last section of our paper, we
provide two results in the setting of other Boolean algebras of sets.

Recall that K(x) denotes the pre�x-free complexity of a string x, and that a
set A ⊆ ω is K-trivial if ∃c ∀nK(A ↾n) ≤ K(0n) + c. For more background on
K-trivial sets, see Nies [13, Ch. 5] or Downey and Hirschfeldt [5, Ch. 11]. Note
that by combining results of various authors, the K-trivial degrees form a Turing
ideal in the ∆0

2-degrees (see, e.g., Nies [13, Sections 5.2, 5.4]). Thus the K-trivial
sets form a Boolean algebra.

Theorem 6.1. There is a ∆0
2 ultra�lter base for the Boolean algebra of the K-trivial

sets.

Proof. Ku£era and Slaman [10] noted that there is a function h ≤T ∅′ that domi-
nates all functions that are partial computable in some K-trivial set. We use h in
a variation of the proof of Theorem 3.8.

Let ⟨Ve,0, Ve,1⟩e∈ω be a uniform listing of the K-trivials and their complements
given by wtt-reductions to ∅′; such a listing exists by Downey, Hirschfeldt, Nies,
and Stephan [4] (see also [13, Theorem 5.3.28]).

Let T = {0, 1}<ω. For each α ∈ T , we de�ne a (possibly �nite) K-trivial set Sα.

Let S∅ = ω. Suppose we have de�ned the set Sα = {r0 < r1 < · · · }. Let S̃α contain

the numbers of the form r2i. Let Sα̂k = S̃α ∩ Ve,k for e = |α| and k = 0, 1. Since

S̃α ≤T Sα, one veri�es inductively that all these sets are K-trivial.
Uniformly recursively in ∅′, we build sets Fe, given as the set of members of

nondecreasing unbounded sequences ae0 ≤ ae1 ≤ . . .. Suppose we have de�ned aek−1.
Try to let α ∈ T be the leftmost string of length e such that Sα has at least k + 1
elements less than h(k). If such α exists, let aek be the k-th element of Sα, unless
this is less than aek−1, in which case we let aek = aek−1.

Let g ∈ 2ω denote the leftmost path in {0, 1}ω such that for every e, the set Sg ↾ e

is in�nite. Fix e and let α = g ↾ e. Let p(k) be the (k+1)-st element of Sα. Since h
dominates the function p, eventually in the de�nition of Fe we will always pick α.
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Hence Fe =∗ Sα. In particular, Fe is K-trivial. To see that F ≤T ∅′, given input
n = ⟨r, e⟩, with ∅′ as an oracle, compute the least k such that r ≤ aek, using that
the sequences ⟨aek⟩k∈ω are unbounded for each e. Then n ∈ F i� r = aek.

Clearly, if Sα is in�nite, then Sα ∖ Sβ is in�nite for α ≺ β. So Fe ∖ Fe+1 is
in�nite.

To verify that F is an ultra�lter base for the K-trivials, let R be a K-trivial set.
Pick e such that R = Ve,0 and R = Ve,1. If g(e) = 0 then Sg ↾ e+1 ⊆ Ve,0, and hence

Fe+1 ⊆∗ R. Otherwise, Sg ↾ e+1 ⊆ Ve,1, and hence Fe+1 ⊆∗ R. □

Remark 6.2. Any ultra�lter base for the K-trivials must have high degree. We
can see this by modifying the proof of Theorem 3.6: Every Martin-Löf random
set X is Martin-Löf random relative to every K-trivial (i.e., K-trivial sets are low
for ML-randomness). Hence neither X nor X contains an in�nite K-trivial subset.

Finally, we consider the Boolean algebra of the primitive recursive sets. One says
that an oracle L is of PA degree if it computes a completion of Peano arithmetic.
Recall that L is of PA degree if and only if it computes a separating set for each
disjoint pair of c.e. sets.

Theorem 6.3. An oracle C computes an ultra�lter base for the primitive recursive
sets if and only if C ′ is of PA degree relative to ∅′.
Proof. We modify the proof of Jockusch and Stephan [9, Theorem 2.1]. They say
that a set S ⊆ ω is p-cohesive if S is cohesive for the primitive recursive sets. Their
theorem states that S is p-cohesive if and only if S′ is of PA degree relative to ∅′.
⇒: Suppose that C computes an ultra�lter base F for the primitive recursive sets.
Let g ≤T F be a function associated with F as in De�nition 1.2. Then the range S
of g is p-cohesive. Hence S′ and therefore C ′ is of PA degree relative to ∅′ by one
implication of [9, Theorem 2.1].
⇐: We modify the proof of the other implication of [9, Theorem 2.1]. Let ⟨Ai⟩i∈ω

be a uniformly recursive list of all the primitive recursive sets. We call i a primitive
recursive index for Ai (or index, for short). By our hypothesis on C, there is a
function g ≤T C

′ such that

|Ai ∩An| < |Ai ∩An| ⇒ g(i, n) = 0

|Ai ∩An| < |Ai ∩An| ⇒ g(i, n) = 1

(because the conditions on the left are both Σ0
2, and so C ′ computes a separating

set for them).
We inductively de�ne a C ′-computable sequence of indices ⟨en⟩n∈ω. Let e0 be

an index for ω. If en has been de�ned and Aen = {r0 < r1 < · · · } (possibly �nite),
let e′n be an index, uniformly obtained from en, such that Ae′n = {r0, r2, . . .}. Now
let

Aen+1
= Ae′n ∩An if g(e′n, n) = 0, and

Aen+1
= Ae′n ∩An if g(e′n, n) = 1.

By induction on n, one veri�es that Aen is in�nite and Aen ∖ Aen+1
is in�nite.

Since g ≤T C ′, the numbers en have a uniformly C-computable approximation
⟨en,x⟩x∈ω.

Let the ultra�lter base F ≤T C be given by Fn(x) = Aen,x
(x). Then Fn =∗ Aen

is primitive recursive. Since Fn+1 ⊆∗ An or Fn+1 ⊆∗ An for each n, the set F is an
ultra�lter base for the primitive recursive sets. □
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