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As phenomics data volume and dimensionality increase due to advancements in
sensor technology, there is an urgent need to develop and implement scalable
data processing pipelines. Current phenomics data processing pipelines lack
modularity, extensibility, and processing distribution across sensor modalities
and phenotyping platforms. To address these challenges, we developed
PhytoOracle (PO), a suite of modular, scalable pipelines for processing large
volumes of field phenomics RGB, thermal, PSIl chlorophyll fluorescence 2D
images, and 3D point clouds. PhytoOracle aims to (i) improve data processing
efficiency; (if) provide an extensible, reproducible computing framework; and (iii)
enable data fusion of multi-modal phenomics data. PhytoOracle integrates
open-source distributed computing frameworks for parallel processing on
high-performance computing, cloud, and local computing environments. Each
pipeline component is available as a standalone container, providing
transferability, extensibility, and reproducibility. The PO pipeline extracts and
associates individual plant traits across sensor modalities and collection time
points, representing a unique multi-system approach to addressing the
genotype-phenotype gap. To date, PO supports lettuce and sorghum
phenotypic trait extraction, with a goal of widening the range of supported
species in the future. At the maximum number of cores tested in this study (1,024
cores), PO processing times were: 235 minutes for 9,270 RGB images (140.7 GB),
235 minutes for 9,270 thermal images (5.4 GB), and 13 minutes for 39,678 PSI|
images (86.2 GB). These processing times represent end-to-end processing,
from raw data to fully processed numerical phenotypic trait data. Repeatability
values of 0.39-0.95 (bounding area), 0.81-0.95 (axis-aligned bounding volume),
0.79-0.94 (oriented bounding volume), 0.83-0.95 (plant height), and 0.81-0.95
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(number of points) were observed in Field Scanalyzer data. We also show the
ability of PO to process drone data with a repeatability of 0.55-0.95

(bounding area).

KEYWORDS

phenomics, morphological phenotyping, physiological phenotyping, distributed
computing, high performance computing, image analysis, point cloud analysis,

data management

1 Introduction

The world population is expected to reach 10 billion people by
2050 with a projected 50% decrease in global freshwater resources
(Searchinger et al., 2019; Gupta et al., 2020). Although existing crop
improvement methods have maintained stable increases in crop
yields, a continuation of these trends is not sustainable (Grassini
et al, 2013). Crop improvement methods continue to rely on
subjective, manually collected phenotype data. However, advances
in sensor technology have contributed to the emergence of plant
phenomics, the study of plant phenotypes, over the last decade
(Andrade-Sanchez et al, 2014; Araus and Caims, 2014; Pauli et al,,
2016). Low-cost, user-friendly sensors now enable the collection of
objective data at high throughput. The resulting data volumes are
substantial and reveal bottlenecks in data processing, data
management, and data storage. To date, a variety of phenomics
bottlenecks related to data collection have been resolved, but
computational bottlenecks related to data volume and velocity
have been largely overlooked (Furbank and Tester, 2011). The
volume and velocity of plant phenomics data collection makes it
difficult to extract phenotypic trait data using existing software at
the scale required for breeding programs and basic research.
Therefore, addressing bottlenecks in computational throughput
would enable the efficient processing of data and, as a result, the
study of variation and plasticity of fine-scale traits at high temporal
resolution. These high-resolution datasets may improve the
elucidation of genetic components controlling agronomic and
functional traits (Furbank and Tester, 2011).

Phenotyping, various marker technologies, and statistical
methods have enabled the prediction of genotypic values and
genetic mapping (Bernardo, 2020). The application of these
methods allows for the dissection of the genetic and
environmental components of phenotypic trait variance. Such
studies require the measurement of quantitative traits that are
often collected visually, in the case of observational data, and
manually using handheld devices such as PAM fluorometers for
chlorophyll fluorescence measurements, spectroradiometers for
UV-VIS-NIR, protractors for leaf angle, rulers for plant height,
and weight scales for yield. Visual and manual phenotyping are
common due to having low initial investment costs, but these
approaches lack throughput and reproducibility due to the labor
required and subjectivity of measurements (Reynolds et al,, 2019).
Emerging technologies, such as automated high-throughput plant
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phenotyping platforms, often have higher initial investment costs
compared to traditional phenotype collection, but this is quickly
changing. High-throughput platforms are diverse, including robots,
drones, phones, and carts (White and Conley, 2013; Bai et al., 2016;
Thompson et al.,, 2018; Thorp et al, 2018; Yuan et al, 2018; Guo
et al., 20205 Roth et al, 2020). Compared with traditional methods,
these platforms improve data collection throughput, reduce
subjectivity through varying levels of automation, and enable
higher phenotyping resolution, referred to here as fine-scale
phenotyping (Reynolds et al, 2019). The resolution provided by
fine-scale phenotyping has enabled studies revealing genetic loci
associated with drought resistance (Li et al, 2020), stomatal
conductance (Prado et al, 2018), temporal salinity responses
(Campbell et al., 2015), and panicle architecture (Rebolledo et al.,
2016). Other studies have captured natural variation in
photosynthetic efficiency (van Bezouw et al, 2019; Khan et al,
2020) as well as highlighted the feasibility of phenomics selection
(Rincent et al, 2018; Parmley et al, 2019; Zhu et al., 2021) based on
traits such as stay-green (Rebetzke et al, 2016) and spectral
reflectance (Aguate et al., 2017; Lane et al,, 2020).

The high temporal and spatial resolution of fine-scale
phenotyping using automated plant phenotyping platforms
provide new opportunities to study dynamic patterns in
phenotype expression in response to varying conditions. For
example, the phenotypic effects of induced variation can be
assessed in mutant populations and natural variation in diversity
panels (Khan et al., 2020), allowing for the detection of temporal
fluctuations in trait expression and associations between
morphological and physiological phenotypic traits. Future
research and development in computational plant phenomics
could help improve selection accuracy due, in part, to
increasingly precise extraction of fine-scale phenotypes enabled by
complementary analytical methods and algorithms. In plant
phenomics, the level of extraction required to dissect agronomic
and functional traits would involve processing large volumes of
image, spectral, and point cloud raw data across thousands of plants
and time points to identify unique, obscure patterns of
morphophysiological responses to various environments. The
integration of these fine scale phenomics datasets within and
across projects would further expand our knowledge of traits and
aid in hypothesis generation (Coppens et al,, 2017).

The data volumes generated by biological sciences research outpace
existing computing infrastructure (Chen et al, 2013; Qin et al,, 2015;
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Stephens et al., 2015; Sivarajah et al,, 2017). Additionally, data variety
within biological sciences research is widening due to the emergence of
phenomics, particularly in plant science research (Furbank and Tester,
2011; Furbank et al, 2019; Harfouche et al, 2019). The increasing
availability and diversity of modular, high-quality sensors mounted on
automated phenotyping platforms has led to the collection of large
volumes of various data types, including morphological and
physiological traits (Coppens et al, 2017). These expanding data
volumes pose new challenges related to computation, data
integration, and data management — a problem that is likely to be
exacerbated by continued improvements and widespread use of sensor
technology (Kim et al, 2017). In information science, it has long been
recognized that existing computational techniques are inadequate in
dealing with big data, primarily due to bottlenecks in the extraction of
information from large volumes of data and the associated bottlenecks
of scalability and data management. The bottleneck in information
extraction is actively being addressed through the development of
methods including machine learning (ML) and artificial intelligence
(AI), while parallel processing is addressing scalability (Chen et al,
2013; Jukic et al,, 2015; Sivarajah et al,, 2017). Although these methods
improve scalability and information extraction, they do not address
data management. Parallel computing systems (PCSs) are
characterized by the co-location of input data and processing code,
representation of processing in terms of data flows and
transformations, and scalability. Collectively, these characteristics
facilitate the processing of datasets once considered intractable due to
previous limitations in computing (Kale, 2020). The required
computational resources in PCSs are commonly data-dependent,
meaning that each dataset requires a different set of computational
resources. To increase processing efficiency and reduce computing
costs, PCSs could allow users to tailor CPU/GPU, high-memory/high-
processor nodes, and other computational resources to specific
datasets. This capability may become increasingly important as
expanding data volumes pose a higher cost if computational
resources are used inefficiently.

For phenomics data to provide actionable genome-phenome
insights in combination with other -omics data, large scale
phenomics data must be processed in a scalable and reproducible
manner, stored in publicly accessible data stores, and be
interoperable with other data types (Coppens et al, 2017; Kim
et al, 2017). To address these requisites, a variety of established
resources can be leveraged. For example, data management systems
such as the CyVerse Data Store, a cloud-based data management
system built on the Integrated Rule-Oriented Data System (iRODS),
provides storage and cross-platform command line interface (CLI)
access to data (Goff et al., 2011; Merchant et al., 2016). Container
technologies, such as Docker and Singularity, serve as stand-alone
environments with required dependencies pre-installed by software
developers for increased extensibility (Kurtzer et al., 2017). High
performance computers (HPCs) supply numerous processors, dual
in-line memory modules (DIMMs), intemal disk, and networking
ports to scale up processing tasks. Container technology and data
management systems coupled with HPCs provide reproducible and
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scalable environments, respectively (Devisetty et al, 2016; Kurtzer
et al, 2017). Large volume datasets further require advanced PCSs
capable of leveraging thousands of computers or cluster nodes for
parallel processing on local, doud, and/or HPC compute resources.
A suite of computing tools for deploying scalable applications
known as the Cooperative Computing Tools (CCTools) consists
of Makeflow and Work Queue, a language and computational
resource management framework for distributed computing,
respectively (Albrecht et al,, 2012). When coordinated, the above-
mentioned computational resources can improve the processing
and management of raw data and enable large scale analyses of
extracted phenomics data.

Several image analysis pipelines exist for morphological and
physiological phenotype trait extraction including: ImageHarvest
(Knecht et al, 2016); Greenotyper (Tausen et al, 2020); and
PlantCV (Fahlgren et al., 2015; Gehan et al, 2017). Most of
these software were developed for automated phenotyping
platforms in controlled greenhouse environments and would
require significant modification for processing field phenomics
data due to variations in image illumination and the lack of
spacing between plants in field settings. Although some
pipelines integrate multi-processing or distributed computing
capabilities, there is currently no published pipeline that
integrates data management systems, container technologies,
PCSs, and multi-system deployment within a single framework.
Importantly, many existing image analysis software were not
designed to enable customization of computational resources, a
critical component for efficiently processing phenomics’
expanding data volumes (Kale, 2020).

Here, we present PhytoOracle (PO), a suite of data processing
pipelines for phenomics data processing. PhytoOracle combines
data management systems, container technologies, distributed
computing, and multi-system deployment into a single
framework capable of processing phenomics data collected with
RGB cameras (RGB), photosystem II chlorophyll fluorescence
imagers (PSII), thermal cameras (thermal), structured-light laser
scanners (3D). Each pipeline component is containerized and can
be removed, replaced, rearranged, or deployed in isolation.
PhytoOracle provides advanced PCS and automation capabilities
for processing large phenomics datasets across HPC, doud, and/or
local computing environments. The PO suite organizes all
processing tasks and computational resource specifications within
a single YAML file, which enables customization of computational
resources, processing modules, and data management systems.
Users can target pipelines to the optimal computational resources
whether that be high-memory, high-processor, and/or GPU nodes.
The modularity and distributed computing capabilities of PO
enable the efficient extraction of time series, individual plant
phenotypic trait data from large, multi-modal phenomics
datasets. The PCSs like PO improve data analysis and
information processing, providing large scale data that can help
answer questions that were previously intractable due to data
volumes outpacing computing systems’ capacities.
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2 Materials and methods
2.1 Plant material

For this study, a panel of 241 lettuce genotypes were evaluated
at the University of Arizona’s Maricopa Agricultural Center (MAC)
in Maricopa, Arizona (33°04'24.8” N 111°5825.7” W). The soil type
is a Casa Grande sandy loam (fine-loamy, mixed, superactive,
hyperthermic Typic Natrargids). The panel consisted of two
subpopulations of lettuce, a diversity panel (147 genotypes) that
represented all major market classes of lettuce and a recombinant
inbred line (RIL) mapping population (94 genotypes) developed
from a cross of the cultivars “Iceberg” and “Grand Rapids.” The
population was organized in a randomized incomplete block design
with three replications of both lettuce panels per irrigation
treatment level with common checks used throughout the field.
The borders around each irrigation treatment were of the cultivar
“Green Towers.” The three irrigation treatments were: well-watered
(WW), level 1 drought (D1), and level 2 drought (D2)
(Supplementary Figure 1). The WW treatment was defined as
24% volumetric soil water content (VSWC) which represents field
capacity. To achieve the D1 and D2 conditions, 75% and 50% of the
WW irrigation amounts were applied to the plots, respectively.
Raised vegetable beds on 1.02 m row spacing were shaped to have a
surface width of 0.56 m with two seed lines per bed spaced at
0.31 m; plots were 4.00 m in length. Experimental plots consisted of
one of the individual seed lines per raised bed so that two genotypes
were planted per raised bed.

The crop was established using sprinkler irrigation for the first
35 days before switching to subsurface drip irrigation. Buried within
each bed, at a depth of 0.20 m, was pressure compensated drip tape
(Model 06D63613.16-12, Netafim, Tel Aviv, Israel) supplying a
constant 0.38 liters per hour of water. Soil moisture conditions were
recorded using a neutron probe (Model 503, Campbell Pacific
Nudlear, CPN, Martinez, CA, USA) with readings taken at depths
of 10, 30, 50, 70, and 90 cm on a weekly basis. Neutron probe access
tubes were distributed throughout the field to capture the VSWC
across the different irrigation treatments over the growing period.
Once plants were established and being irrigated with subsurface
irrigation, plots were thinned to a density of 10 equidistant plants to
facilitate individual plant phenotyping. After thinning,
approximately 26,000 plants were present in the field, with each
treatment containing approximately 9,000 plants. Standard
cultivation practices and agronomic management for lettuce
production in the Southwest were followed. A total of 1,472
plants, one from each plot within the WW and D2 treatments,
were harvested and their fresh weights were recorded at the end of
the growing period (2020-03-03).

2.2 Phenotyping platforms
The Field Scanalyzer (FS) is a ground-based, automated

phenotyping platform that moves along rails that are 394.1 m in
length running North-South with 28 m separation between the rails;
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the area covered by the FS is approximately 1.11 hectares. This area
is split into two fields with scannable areas of 0.37 hectare for the
north field and 0.46 hectare for the south field; for the purposes of
the present research, only the south field was used (Figure 1A). The
ES is equipped with a ventilated sensor box that holds multiple
imagers and cameras including the following: Allied Vision
Prosilica GT3300C stereo RGB cameras (RGB), LemnaTec
photosystem II chlorophyll fluorescence prototype imager (PSII),
FLIR A615 thermal camera (Thermal), pair of Fraunhofer
structured-light laser scanners (3D), and two Headwall
HyperSpec Inspector pushbroom hyperspectral imagers (visible to
near infrared [VNIR] and short-wave infrared [SWIR]) (Figure 1B
and Supplementary Table 1). The sensor box can move vertically
from 0.43 to 6.26 m above ground level to accommodate varying
scanning distance requirements for each sensor and to maintain a
consistent distance from the instrument to plant canopy throughout
the growing season.

The FS scanning scheme is controlled by custom operating
scripts that specify the scan area, pattern, and scheduling for data
collection of each sensor. These operating scripts are set to collect
data on specific regions of the field, agricultural plots, or the entire
field by the FS operator. The RGB, thermal, and PSII sensors collect
binary (BIN) format images, while the 3D laser scanners collect
depth and reflectance imagery from which point clouds are
generated using manufacturer-provided software (Table 1). Each
data collection is accompanied by metadata files in JavaScript
Object Notation (JSON) format containing FS variable position,
sensor fixed position (location of sensors within sensor box), preset
scanning area, and timestamps. Positioning information is collected
by a series of barcodes along the rails (X and Y axes) and a string
encoder (Z axis) using a right-handed coordinate system (+X
South-to-North, +Y East-to-West, and +Z 0.76 cm above soil
upwards). Additionally, environmental sensors collect and log
information on downwelling irradiance, photosynthetically active
radiation, air temperature, relative humidity, brightness, ambient
air carbon dioxide concentration, precipitation, and wind velocity
and direction all at 5-second intervals in JSON format.

2.2.1 Data collection and management

For this study, the FS scanned the south field during the day and
night throughout a growing season, collecting high-resolution, time-
series images and point cloud data. The total number of RGB, thermal,
PSII, and 3D data collections were 36, 36, 13, and 46, respectively. The
RGB, thermal, and 3D laser scanner data collections covered the entire
field while PSII data collections covered the center of each bed within a
single treatment (Table 1). The FS total raw data sizes for each sensor
were as follows: 0.12 terabytes (TBs) for thermal, 1.19 TBs for PSIL, 320
TBs for RGB, and 8.77 TBs for 3D. Altogether, the FS data collections
resulted in 13.36 TBs of raw data for the lettuce trial
(Supplementary Figure 2).

In addition to FS data, drone (DR) flights were conducted over
the same 0.46-hectare south field on a weekly basis using a DJI
Phantom 4 Pro V2 (DJI, Nanshan, Shenzhen, China) and
DroneDeploy software (v. 4.2.1; DroneDeploy, San Francisco, CA,
USA) installed on an Apple iPad Mini 4 (Model #MKOP2LL/A;

frontiersin.org


https://doi.org/10.3389/fpls.2023.1112973
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Gonzalez et al.

10.3389/fpls.2023.1112973

FIGURE 1
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Overview of the Field Scanalyzer (FS) and DJI Phantomn 4 Pro V2 drone (DR) phenotyping platforms, the components that make up each platform's
sensor array and resulting data types. (A) An aerial photograph showing the area scanned by the FS which totals 0.63 hectare. Orange dots indicate
the ground control point (GCPs) configuration, consisting of five sets of four GCPs running east to west for a total of 20 GCPs. (Top B) The FS sensor
box contains a photosystem 11 (PS1) chlorophyll fluorescence imager, stereo RGB cameras, a thermal camera, two pushbroom hyperspectral imagers
(visible near-infrared [VNIR] and shortwave near-infrared [SWIR]), a pair of structured-light laser scanners, and environmental sensors. (Botton B)
Collected data included RGB, thermal, and PSIl 2D image data and 3D point cloud data. (Top C) The DJI Phantom 4 Pro V2 drone (DR) was
equipped with a 20-megapixel RGB camera and flown with automated flight mapping software at an altitude of 15 meters. (Bottom C) Collected

data included RGB 2D image data.

Apple, Cupertino, CA, USA) (Figure 1). The flight mission settings
were as follows: 15 m altitude, 80% front - 80% side overlaps, 0.41
cm/pixel ground sample distance, resulting in approximately 450
images per flight. In total, the DR collections resulted in 0.08 TBs of
raw image data for the lettuce trial (Supplementary Figure 2). For a
complete list of FS and DR data collection dates, refer to
Supplementary Table 2.

2.2.2 Data management

The FS data collections were temporarily stored on a platform-
mounted server and transferred to a cache server located at MAC.
After a three-day retention period, each data collection was
programmatically archived, producing a single “tar.gz” archive

file per data collection (one sensor’s scan), and programmatically
transferred to the CyVerse Data Store servers located in Tucson, AZ
using Internet2. Each DR data collection was uploaded to the
CyVerse Data Store manually. The DR and FS archives were
placed in a publicly available location in the CyVerse Data Store
for general use and CLI access during data processing (Goff et al,,
2011) (see Data Availability Statement).

2.3 Parallel computing system

The PO pipelines require ML models for object detection and
point doud segmentation during data processing. Data must be

TABLE 1 Data collection summary for Field Scanalyzer (FS) and drone (DR) phenotyping platforms of data types supported by PhytoOracle.

DEE] Collection time | Concurrent scan | Scanning area | Datatype | Benchmark data size | Total scans | Total size
RGB-F§ 5 Thermal-FS Full field BIN 140 36 2.91
Thermal-F$ 5 RGB-F§ Full field BIN 5 36 0.10
PSI-FS 5 - Paired-plot center BIN 80 18 LO0
3D-F§ 9 - Full field PLY 50 32 837
RGB-DR 0.5 - Full field JPEG 3 19 0.059

The scanning area listed as full field encompassed the south portion of the field (0.63 hectare). Benchmark data size, gigabytes; total size, terabytes.
Collection duration (hours) represents the time from first data capture to final data capture,
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annotated, models trained, and performance assessed before data
processing can be performed. As such, a description of model
training is presented before describing PO processing pipelines in
detail. Together with a season-specific Geo]SON containing plot
boundaries, a YAML file specifying processing tasks, and
computational resources, PO can distribute tasks across
processing nodes of an HPC.

2.3.1 Training and assessing performance of
machine learning models
2.3.1.1 2D object detection

To prepare image data for manual annotation, RGB and
thermal data collections were processed up to the plot clip step to
produce plot clipped orthomosaics (Figure 2A, Steps 1-4). Thermal
and RGB plot clipped orthomosaics were converted from
georeferenced Tag Image File Format (GeoTIFF) to PNG format
(GeoTIFFs are not supported by annotation tools). Thermal image

10.3389/fpls.2023.1112973

pixel values were normalized to the range of 0 to 255 to enhance
visible features for manual annotation. Heat map images, with each
pixel representing height, were generated from 3D point cloud data.
The scripts for each of these steps is publicly accessible (see Code
Availability Statement).

To train object detection ML models for RGB and thermal
imagery, a total of 2,000 images per sensor type were randomly
selected for developing training data (see Code Availability
Statement). A total of 200 3D-derived heatmap images were
randomly generated to train object detection ML models. The
RGB, thermal, and 3D-derived heatmap image datasets were
uploaded to Labelbox (http://labelbox.com; Labelbox, San
Francisco, CA, USA) and manually labeled with a single
bounding box around each plant. All images were manually
reviewed to ensure label quality. A JSON file containing label
bounding box coordinates for all images in a dataset was
programmatically converted to XML files, resulting in one XML

FIGURE 2
PhytoOracle two-dimensional (2D) image processing workflow. (A} The 2D
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pre-processing steps include the conversion of binary (BIN) files (RGB,

thermal, PSIl chlorophyll fluorescence) to GeoTIFF files, correction of georeferencing information within each GeoTIFF metadata using Megastitch
for RGB and thermal data, clipping corrected GeaTIFF images to plots using a GeoJSON file with plot boundary information, and generation of plot
level orthomosaics (Zarei et al, 2022). (B) RGB & thermal plot level orthomasaics are run through a Faster R-CNN detection model for plant
detection and phenotype extraction; PSll images are run through FLIP for extraction of minimum (Fg) and maximum (F,) flucrescence values,
variable fluorescence (Fy), and maximum yield of primary photochemical efficiency (Fy/Fu). (C) Upon completion of data processing for a single
experiment, individual plant detections from RGB and thermal data are associated over time using agglomerative clustering. Agalomerative clustering

uses longitude and latitude to associate multiple plant observations, giving

them a shared, unigue plant identifier. (D) The growth and temperature of

individual plants can be tracked and visualized using the unigue plant identifier. A merged, full season RGB and thermal data file can then be
combined with PSII (plot level) and 3D laser phenotype data using the unique plant/plot identifiers. (E} The results of PhytoOracle are time series
datasets with plant geographical coordinates of the bounding box predictions and plant centers; bounding area (BA); median and mean canopy

temnperatures (MEDT and MEAT, respectively); plant height (PH), axis-aligne

d and oriented bounding box volumes [AABY and OBV, respectively), and

convex hull volume (CHV); and plot level Fq, Fy, Fu, and Fy/Fy for each detected plant.
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file per image (see Code Availability Statement). The RGB and
thermal datasets were each randomly split into training, validation,
and test sets (80%, 10%, and 10%, respectively). Transfer learning
was employed to train a Faster R-CNN (region-based convolutional
neural network) ResNet-50 FPN pre-trained model for RGB,
thermal, and 3D-derived image datasets, separately, using the
Detecto Python package (v. 1.2.1, http://github.com/alankbi/
detecto) (Ren et al, 2017). The models for all data types were
trained on a single label (“plant”). Training was performed on a
HPC compute node with two AMD Zen2 48-core processors
(AMD, Santa Clara, CA, USA), 512 GB of RAM, sixteen 32 GB
memory DIMM, 2 TB SSD disk, and a V100S graphics processing
unit (GPU) (NVIDIA, Santa Clara, CA, USA) with 32 GB memory.
The selected setting of training parameters was 10 epochs, batch
size of one, learning rate of 5 x 1072, 5 x 107 weight decay (L2
regularization), and step size of three.

Model performance was assessed by calculating Intersection
over Union (IoU), recall, precision, and F1 scores for RGB, thermal,
and 3D-derived test datasets. To determine model performance
more finely across the developmental stages of lettuce, we
assessed IoU of randomly selected plots over the course of the
season for RGB and thermal models. The IoU values were
calculated as follows:

|A N Bl

I =
U=1aUB

(1)

where A is the area of the predicted bounding box, B is the area
of the ground truth bounding box, and N is the intersection and U is
the union of predicted and ground truth boxes. Detections with an
IoU = 0.5 were dassified as true positives (TP, correctly detected
plant), those with an IoU< 0.5 were classified as false positives (FP,
plant is not present but detected), and detections with an IoU =0
were classified as false negative (FN, plant is present but not
detected). Recall, precision, and F1-score were calculated as follows:

TP

Recall = ——— 2
= TPaEN 2)
o TP
Precision = m (3}
Fl <2 Precision - Recall @

Precision + Recall

2.3.1.2 3D segmentation

To train segmentation ML models, a random sample of
individual plant point clouds were collected and labeled using a
model-assisted labeling (MAL) approach (Model-assisted labeling
(MAL); Huxohl and Kummert, 2021). The MAL script fit a plane to
each point cloud and resulted in the labeling of two classes: plant
and soil (see Code Availability Statement). The results were
visualized, and segmentation errors were manually corrected,
resulting in a total of 160 annotated individual plant point clouds;
plant point clouds were randomly split into train, validation, and
test sets (80%, 10%, and 10%, respectively). A Dynamic Graph CNN
(DGCNN) was trained on a server with four AMD EPYC 7702 64-
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Core processors (AMD, Santa Clara, CA, USA), 1 TB of RAM, and
three NVIDIA Tesla T4 GPUs (NVIDIA, Santa Clara, CA, USA)
(Wang et al, 2019). The following training parameters were
selected: 30 epochs, learning rate of 0.01, 1 x 10, momentum of
0.9, and batch size of 32. The classes predicted by the DGCNN
model for each point were compared with manually annotated data
to collect TP, FP, TN, FN values, which were used to calculate the
point-wise accuracy as follows:

TP+ TN
TP+ FP+ TN + FN

(5)

Point — wise accuracy =

2.3.2 Multimodal pipeline deployment

The processing instructions for PO data processing are defined in
a Yet Another Markup Language (YAML) file (Ben-Kiki and Evans,
2001). The PO YAML template consists of four sections: “tags”,
“modules”, “workload_manager”, and “paths”. The “tags” section
allows users to define season-specific metadata for documentation
purposes. The “modules” section is where users define their processing
tasks by specifying the container to be used, the command to be run
within the container, and the inputs and outputs. The user can select
to run the workflow locally or remotely, that is using existing local
cores or remote worker cores. The “workload_manager” key defines
computational resource specifications required by pipeline worker
nodes including the cores per worker, number of workers, and
memory per core. The information provided within the
“workload_manager” key is used to request jobs using the Slurm
workload manager. Importantly, this allows users to customize the
computing system to accommodate datasets of varying levels of
processing scales and computational complexities. The “paths”
section defines CyVerse Data Store paths for raw data download,
induding ML models to be used within the processing steps, and
output data uploads. At the moment, only CyVerse Data Store paths
are supported, but other storage providers can be supported with a few
changes to the code. Users can specify their project-specific CyVerse
Data Store paths or keep data locally without uploading it onto a data
store. Users can select to use data transfer nodes, if running PO on
HPC systems. Examples of YAML files for data processing of RGB,
PSII, thermal, and 3D phenomics data of lettuce and sorghum are
publicly available (see Code Availability Statement).

2.3.2.1 RGB processing pipeline

The full field RGB-FS datasets each consisted of 9,270 BIN files.
Each image capture collected two BIN files, one from each RGB
camera, and an associated JSON metadata file. Due to the physical
arrangement of the stereo RGB cameras and the resulting high image
overlap, only one image of each capture was used in this study. The
RGB pipeline consisted of four containerized components
(Supplementary Table 3 and Supplementary Figure 3). The first
container converted BIN files to GeoTIFF images with approximate
GPS bounding coordinates calculated from barcode positioning
information contained within the JSON metadata file generated by
the ES. The second container deployed MegaStitch, which is a software
for efficient image stitching of large-scale image datasets (Zarei et al,,
2022). Megastitch was run in a non-distributed manner as all images
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are required for the global optimization stitching method, which
generated geometrically corrected GeoTIFFs. The third container
clipped GeoTIFFs to plot boundaries using a GeoJSON file that
delimits plots within the field. The fourth container deployed a
Faster R-CNN model to detect individual plants within each plot-
clipped orthomosaic, which output bounding box coordinates.
Bounding box coordinates were converted from pixel coordinates to
geographic coordinates using the geotransform information of each
plot-clipped orthomosaic. All georeferencing was calculated in the
World Geodetic System (WGS84) coordinate reference system
(Lohmar, 1988). Longitude was calculated as follows:

Longitude = a-x+b-y+a-05+b-05+¢ (6)

where ¢ is the upper left Easting coordinate of the image, a is the
E-W pixel spacing, c is the rotation, and x and y are the bounding
box image coordinates. Latitude was calculated as follows:

Latitude = d-x+e-y+d-05+e-05+f (7)

where d is the rotation, e is the N-S pixel spacing, fis the upper
left Northing coordinate, and x and y are the bounding box image
coordinates. The four geographical corner coordinates were
converted to UTM coordinates and used to calculate plant
bounding area (BA) as follows:

Plantboundingarea = (SE, — NW,)-(SE, — NW,) (8)

where SE, is the southeast corner Easting coordinate of the
image, NW, is the northwest corner Easting coordinate, SE, is the
southeast corner Northing coordinate, and NW,, is the northwest
corner Northing coordinate.

The RGB drone (RGB-DR) images from each data collection
were processed using Pix4dDMapper software (Pix4D S.A., Prilly,
Switzerland). For each collection date, the “3D Maps” processing
template was used, which generated an orthomosaic, point doud,
and depth maps. The “GCP/MTP Manager” interface was used to
load GCP coordinates, co-align GCPs within images to known GCP
coordinates, and confirm adequate placement of GCPs within the
generated ray doud. The resulting orthomosaics were processed
using PO containers described above starting with the third
container that dipped GeoTIFFs to plot boundaries.

2.3.2.2 Thermal processing pipeline

The full field thermal-FS datasets each consisted of 9,270 BIN
files. Each image capture collected one BIN file and an associated
JSON metadata file. Each pixel within a thermal-FS image
represents an uncalibrated digital number (DN), a dimensionless
value corresponding to the output of the detector’s analog-digital
conversion. The thermal pipeline consisted of four components
(Supplementary Table 3 and Supplementary Figure 3). The first
container converted BIN files to GeoTIFFs with approximate GPS
bounding coordinates calculated from barcode positioning
information contained within the JSON metadata file. Thermal
calibration measurements were applied to each pixel, converting the
DN value to Celsius. The second container deployed MegaStitch
(Zarei et al., 2022) in a non-distributed manner, which generated
geometrically corrected GeoTIFFs. The third container clipped
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GeoTIFFs to plot boundaries specified within a Geo]SON file.
The fourth container deployed a Faster R-CNN model to detect
individual plants within each plot clipped GeoTIFF, which
outputted bounding box coordinates. To collect individual plant
canopy temperatures, each predicted bounding box, representing a
single plant, was programmatically cropped from plot level
GeoTIFF orthomosaics and K-means clustering was used with
K = 3 (MacQueen, 1967; Poblete-Echeverria et al, 2017). The
median and mean canopy temperatures (MEDT and MEAT,
respectively) were collected from the plant pixel clusters for each
plant along with corresponding distribution statistics. A 10x10 pixel
region of interest (ROI) centered within each plant detection was
analyzed for median temperature, referred to as the ROI
temperature. The longitude and latitude for each plant detection
were calculated using Equations 6, 7 respectively for subsequent
plant tracking and multi-modal data association.

2.3.2.3 PSII chlorophyll fluorescence processing pipeline
The PSII-FS datasets each consisted of 39,678 BIN files. Each data
capture resulted in a 101-image stack over a 2-second interval along
with an associated JSON metadata using a validated chlorophyll
fluorescence imaging sensor (Herritt et al, 2020). Unlike RGB and
thermal, these images captured the center of each plot instead of the
full field. One image was captured shortly before LED light saturation,
50 images during the one-second saturating pulse of light, and 50
images after the pulse of light. The illuminating LED flash has a
dominant wavelength in the range of 620-630 nm with an intensity of
up to 7,000 pmol photosynthetically active radiation (PAR) at 70 cm
from plant canopies. A modified version of the FLuorescence Imaging
Pipeline (FLIP) software was used to extract plot level minimum
fluorescence (F), variable fluorescence (Fy), maximum fluorescence
(Fys), and maximum yield of primary photochemical efficiency (Fy/
Fy) (Herritt et al,, 2021). Modifications included two containers that
converted BIN files to GeoTIFF images and clipped GeoTIFF images
to plot boundaries using a Geo]SON file. The modification facilitated
multi-modal data merging by acquiring geographical coordinates
instead of pixel coordinates and enabled the integration of the
software into the distributed computing framework. The PSII
chlorophyll fluorescence pipeline consists of four components
(Supplementary Table 3 and Supplementary Figure 3). The first
container converted 101 BIN files to 101 GeoTIFFs with
approximate GPS bounding coordinates calculated from barcode
positioning information contained within the associated JSON
metadata file. The second container dipped GeoTIFFs to plot
boundaries specified within a GeoJSON file. The third container
segmented each pixel within an image into one of five Fy
experimentally derived contribution thresholds (Herritt et al, 2021).
The fourth container applied the contribution thresholds to extract Fy
and Fy; values for each image pixel, which were used to calculate Fy
and Fy/Fy; for each stack of 101 images were calculated as follows:

FV =FM—‘F0 (9}

Fy/Fy = 7(&};“} (10)
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2.3.2.4 3D laser scanner processing pipeline

The 3D-FS datasets consist of 320 pairs of PLY files. A pair of
structured-light laser scanners captured depth and reflectance
imagery for preprocessing to point clouds, resulting in two PLY
files per data capture (640 total PLY files). Pre-processing of image
data to point clouds was performed by the manufacturer-provided
software PlyWorker before the data was transmitted offsite. The
pair of scanners captured the 3D structure of plants from east and
west directions, thereby minimizing occlusions. Each pair of PLY
files had an associated JSON metadata file. The 3D laser scanner
pipeline, utilizing the output of the PlyWorker software as an input,
consisted of six components (Supplementary Table 3 and
Supplementary Figure 3). The first container corrected the
orientation and scale of the point cloud tiles and applied the
RANSAC algorithm implemented in the Open3D Python package
(v. 0.11.2) to find a simple translation (X and Y axes) to reduce
misalignment (Fischler and Bolles, 1981; Choi et al., 2015; Zhou
et al., 2018; Zhou et al,, 2018) (Figure 3A). The second step co-
aligned 3D point clouds to RGB-derived plant detections. A custom
graphical user interface (GUI) was developed to download and
visualize 3D point cloud data and RGB orthomosaic data on local
computers after selecting a scan date to manually georeference (see
Code Availability Statement). The purpose of this tool was to co-
align 3D and RGB by identifying shared landmark features between
3D point clouds and RGB data. This co-alignment allows for
individual plant clipping using RGB-derived plant detections
(Figure 3B). Selected features included plot stakes, ground control
point (GCP) lids, or distinguishable plants in the field. The GUI (i)
shows the RGB orthomosaic region, (ii) prompts the user to select a
landmark feature, (iii) displays the point cloud tile region that
neighbors the selected landmark feature, (iv) prompts the user to
select the corresponding landmark feature within the point doud
tile. This process is repeated until an adequate number of landmark
features are selected (Figure 3C). After RGB and 3D data are co-
registered by the user, an affine transformation is calculated from
the correspondences between the selected landmark features. This
transformation maps a point in the original space of the 3D point
cloud into the space of the georeferenced RGB orthomosaic. This
transformation was then saved to a JSON file. The third container
applied the calculated transformation to the point cloud tiles,
resulting in co-aligned, georeferenced point cloud tiles (Figure
3D). The fourth container used RGB-derived plant detections to
clip individual plants from large point douds tiles (Figure 3E). The
fifth container merged multiple tiles containing the same plant
using the iterative closest point (ICP) method implemented in the
Open3D Python package (v. 0.11.2) (Besl and McKay, 1992; Zhou
et al, 2018) (Figure 3F). The sixth container deployed a Faster R-
CNN model to localize the focal plant on 3D-derived heat map
images (Figure 3G). The seventh container segmented soil and plant
points, which allowed for the isolation of plant points within each
point doud (Figure 3H). The eighth container removed any residual
neighbor plant points using the DBSCAN clustering algorithm
implemented in the Open3D Python package (v. 0.11.2) (Ester
etal, 1996; Zhou et al., 2018) (Figure 3I). Lastly, the ninth container
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created persistence diagrams for a single plant point cloud using the
Giotto-tda Python package (v. 0.5.1) (Tauzin et al, 2021), from
which the following topological data analysis (TDA) values were
collected: persistence entropy and amplitude (with distance
functions of landscape, bottleneck, Wasserstein, Betti, silhouette,
heat, and persistence image). Plant height (PH) was calculated
as follows:

Plant height = Z,... — Zpuin (11)

Where Z,,,,, is the maximum Z-axis plant point value and Z,,;,
is the minimum Z-axis plant point value. In addition, the oriented
bounding box volume (OBV), axis-aligned bounding box volume
(AABV), and number of points (NP) were calculated using the
Open3D Python package (v. 0.11.2) (Zhou et al,, 2018) (Figure 3]).

2.3.3 Pipeline benchmarking

The RGB, thermal, and PSII pipelines were benchmarked using
a single data collection for each sensor (Table 2). Benchmarking
consisted of manager and worker compute nodes using CCTools
Makeflow and Work Queue (Albrecht et al, 2012). A single HPC
compute node equipped with two AMD Zen2 processors x 48 cores
(94 total cores), 512 GB of RAM, sixteen 32 GB memory DIMM,
and 2 TB SSD disk served as the manager node. Worker nodes, with
the same computational resources mentioned above, were requested
on which the command work_gueue_factory (CCTools v. 7.1.12)
was run to request one worker per core, resulting in a total of 94
Work Queue workers per node each with 5 GB of RAM. A
Makeflow file containing information for each data input file was
created programmatically using the PO automation script, which
allowed for parallel distribution of tasks. In addition, this
automation script provided a detailed workflow to each worker,
specifying the processing step to be performed on each input file
using Singularity v3.6 for running containers (Hunt and Larus,
2007; Kurtzer et al,, 2017). A single task was performed per worker
to allow for maximum distribution of tasks. Importantly, each
pipeline differs in its definition of a single task input: RGB and
thermal consist of one BIN file; 3D of two PLY files; and PSII of 101
BIN files, each with an associated metadata JSON file. Upon
completion of assigned tasks, the manager compute node
assigned additional tasks in queue to available workers. The
benchmark dataset for RGB, thermal, and PSII sensors was
processed over the following range of available workers: 1, 4, 8,
16, 32, 64, 128, 256, 512, and 1024. Each configuration was
replicated three times, for a total of 30 benchmark data points per
sensor. A log file with information on processing times and number
of workers during processing was collected during processing.

2.3.4 Multi-modal data merging and association
To allow for identification of single plants throughout the
growing period and across sensor modalities, individual plant
detections from each collection date need to be grouped. Two
phases were carried out to accomplish this: (i) data cleaning to
remove any outliers and (ii) a series of sequential clustering steps to
combine multi-modal datasets and enable individual plant tracking.
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2.3.4.1 Removal of outlier plants

The first phase involved the removal of overlapping plants,
hereafter termed outliers, which were the result of two or more
plants growing in proximity and merging into what appeared tobe a
single plant. These outliers resulted in a single plant detection for
this pair of plants, leading to errors in subsequent analyses. To
remove these outliers, the field was manually assessed at the end of
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the season for outliers, which were manually marked with spray
paint for easy visual identification in imagery collected right before
harvesting. A GeoJSON vector layer containing a point for each
outlier was manually created on QGIS (www.qgis.org) and the end-
of-season orthomosaic containing the marked outlier canopies,
which were used to identify these outliers in the multi-
modal dataset.
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TABLE 2 Information on each benchmarking dataset’s collection date, size, and number of images.

Sensor Date Start time End time Elapsed time Total size Image count
RGB 03/03/2020 08:45 1327 04:42 140.7 9270
Thermal 03/03/2020 08:45 1327 04:42 5.4 9270
PSII 02/27/2020 19:58 00:37 04:39 86.2 39678
3D laser 03/01/2020 18:59 03:54 08:55 3085 640

Elapsed time, HH : MM; total size, gigabytes.

2.3.4.2 Grouping plant phenotypes for individual
plant tracking

The second phase involved the sequential clustering of
phenotypic trait data from various sensor modalities. First, the
full season RGB dataset was combined with the Geo]SON file
containing manually marked outlier plant points generated in the
first phase. Individual plant detections throughout the season were
then dustered using agglomerative clustering, a form of hierarchical
clustering algorithm implemented in the scikit-learn Python
package v0.24.2 (Cox, 1957; Fisher, 1958; Ward, 1963; Pedregosa
et al, 2011). Agglomerative clustering requires a threshold value,
which was empirically derived based on having the lowest number
of outliers grouped into a cluster and reduced fluctuations in growth
curves. The optimal threshold value of 6 x 107 was used to
maximize the number of clustered observations of a single plant
and minimize the clustering of weeds and/or neighboring plants.
The full season RGB plant detections were clustered using the
empirically derived threshold value and results were assessed in
QGIS. Each cluster, representing a single plant time series, was
given a unique identifier denoting the plant’s genotype and the
clustering number (“genotype”_"cluster number”). All clusters
containing an outlier point were given the label ‘double’ for the
identification and exclusion of these data points from subsequent
analyses (Supplementary Figure 4). Second, the resulting grouped
RGB dataset was then dustered with the full season thermal data.
Full season RGB and thermal outputs were merged using the same
technique used during clustering of the full season RGB data. This
clustering step resulted in a single dataset containing RGB and
thermal data with a shared unique plant identified. Third, the
merged dataset, containing clustered RGB and thermal
phenotypic trait data, was combined with PSII chlorophyll
fluorescence and 3D laser full season files using plot numbers and
unique plant identifiers, respectively. The final output was a time-
series, multi-modal phenotypic trait dataset at the individual plant
level for RGB, thermal, and 3D phenotype data and plot level for
PSII chlorophyll fluorescence phenotype data.

2.3.5 Analysis of extracted phenotypes
2.3.5.1 Assessing accuracy of plant detection across
growing period

To assess plant detection performance, the median IoU
throughout various time points were quantified for RGB and
thermal image data. Canopy temperature extraction performance
was assessed by manually extracting median canopy temperature
across all time points of a random sample of 200 selected plots, with
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each plot containing a minimum of five plants across 19 collection
dates resulting in 1,481 data points. We examined the correlation
between manually extracted canopy temperature and pipeline
extracted MEDT over an entire season for these selected plots.
The BA extraction performance was evaluated by assessing its
Pearson correlation with harvested, fresh weight biomass for each
plot in the field trial. The median individual plant BA was used for
correlation assessments. A similar assessment of correlation was
conducted for AABV extraction.

2.3.5.2 Assessing grouping of plant
phenotypes performance

The results from the proposed clustering association method
were visualized across 200 plots as a vector layer overlaid on an end-
of-season orthomosaic in which the outliers were marked. Each plot
was imaged over 19 time points, resulting in a total of 3,800 images.
If an identification was marked and the overlaid detection was
identified as an outlier by the clustering algorithm, then the
identification was classified as a true positive (TP). If the plant
was marked and the overlaid detection was not determined to be an
outlier by the clustering script, then the identification was classified
as a false negative (FN). If the plant was not marked and the
overlaid detection was determined to be an outlier by the clustering
script, then the overlaid identification was classified as a false
positive (FP). If the plant was not marked and the overlaid
detection was determined to not be an outlier by the dustering
script, then the overlaid identification was classified as a true
negative (TN).

2.3.5.3 Statistical analysis and data visualization

The BA, NP, OBV, AABV, and PH phenotype trait data were
analyzed after first checking for residual normality and error
variance homogeneity at each collection event. For each trait,
collection time points were analyzed separately using the Ime4
package (Bates et al,, 2015) in the R programming language (R Core
Team, 2022). Spatial effects were modeled on a row and column
basis. The following linear mixed model was fitted to trait data for
the estimation of variance components:

Yik = B+ & + irgj+ g x irg,-j + rep(irg}kj + row(rep
X irg)gj + col(rep X itT)yy; + €jikim (12)

where y; is an individual phenotypic observation; i is the
overall mean; g; is the effect of the i-th genotype; irg; is the effect of
the j-th irrigation treatment which was either WW, D1 or D2; g x
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irg;; is the interaction effect between the i-th genotype and the j-th
irrigation treatment; rep(irg)y; is the effect of the k-th replication
nested within the j-th irrigation treatment; row(rep x irg)y; is the
effect of the I-th plot grid row nested with k-th replication within the
j-th irrigation treatment; col(rep x irr),; is the effect of the m-th
plot grid column nested within the k-th replication within the j-th
irrigation treatment; and &;y,, is the residual effect. The variance
component estimates from the full model were used to estimate
repeatability (r) as follows:

o
t= ——E (13)
e B oo
£ Mirg Mplat

where og‘z is the genotypic variance due to genotypes, 0‘;,- is the
estimated variance with the genotype-by-irrigation treatment
variation, and 62 and residual variances, respectively. The
variable n;,, is the number of irrigation treatments in which each
genotype was observed and n1py,, is the number of plots in which the
genotype was observed.

All plots presented in this study were generated using the
Seaborn, Matplotlib, and Plotly Python packages using Python
v3.9 (Hunter, 2007; Hossain, 2019; Waskom, 2021), Pearson
correlations presented in the plots were calculated using the SciPy
Python package (v0.15.1) (Virtanen et al., 2020).

3 Results

3.1 Environmental conditions during
growing period

Weather data mean values for the growing season between
2019-11-13 and 2020-03-03 were: 10.72 °C air temperature, 61.88%
relative humidity, 0.62 kPa vapor pressure deficit, and 0.55 MJ/m>
solar radiation (Supplementary Figure 5). The irrigation treatments
resulted in contrasting VSWC, with minimum values at 10 cm of
19.2, 14.7, and 12.8 in irrigation treatments WW, D1, and D2,
respectively. At 30 cm, minimum values were 21.3, 21.5, and 17.2
for WW, D1, and D2, respectively (Supplementary Figure 1).

3.2 Model performance metrics

Faster R-CNN models were separately trained to identify single
plants in RGB and thermal imagery, each trained and evaluated
with 2,000 and 250 images, respectively. Performance was assessed
without any prediction confidence threshold, resulting in 2,752 and
1,450 ‘plant’ class detections for RGB and thermal, respectively. The
RGB detection model detected plants with a 0.98 recall, 0.93
precision, 0.96 Fl-score, and 0.96 overall accuracy when tested on
FS (RGB-FS) image data. The RGB detection model performance
was further evaluated with a 400-image RGB-DR test dataset and
resulted in 0.98 recall, 0.96 precision, 0.97 F1-score, and 0.97 overall
accuracy. The thermal detection model performed better than the
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RGB detection model with a 0.98 recall, 0.99 precision, 0.98 F1-
score, and 0.98 overall accuracy. A single DGCNN model was
trained to segment points corresponding to plant and soil classes in
point clouds containing a single plant. The model was trained and
evaluated with 128 point clouds and 16 point clouds, respectively.
The DGCNN model was assessed for point-wise accuracy using the
test set, which was calculated at 0.98 (Table 3).

The median IoU was calculated separately for each distinct
collection time point represented in a 250-image test set to assess
temporal effects on bounding box accuracy. Overall, the median
IoU was 0.84, 0.84, and 0.88 for RGB-FS, RGB-DR, and thermal-FS,
respectively. The median IoU differed between dates, with an
increasing trend as time progressed (Figure 4). This trend was
stronger in the RGB-FS and RGB-DR data as these data were
collected earlier in the season when plants were small with fewer
distinguishable features as compared to thermal scans.

3.3 Validation of pipeline-extracted
phenotypes and multimodal data
association

Across the entire time series clustering test set, the
agglomerative clustering method grouped plant detections into
individual plant, time-series data with 0.99 recall, 0.93 precision,
0.96 F1-score, and 0.96 overall accuracy. The observed coefficient of
determination (1) between individual plant fresh weight collected
at harvest and pipeline-extracted 3D-FS AABV were 0.29 for
Batavia (p< 0.01), 0.36 for Butterhead (p< 0.0001), 0.55
for Cutting/Crisp (p< 0.0001), 0.59 for Iceberg (p< 0.0001), 0.61
for Leaf (p< 0.0001), and 0.48 for Romaine (p< 0.0001)
(Supplementary Figure 6). The observed coefficient of
determination (r°) between individual plant fresh weight and
pipeline-extracted RGB-FS BA were 0.21 for Batavia (p< 0.01),
0.39 for Butterhead (p< 0.0001), 0.56 for Cutting/Crisp (p< 0.0001),
0.62 for Iceberg (p< 0.0001), 0.61 for Leaf (p< 0.0001), and 0.29 for
Romaine (p< 0.0001) (Figure 5). The observed range of # values
between manually extracted and pipeline-extracted median canopy
temperatures (MEDT) over 12 unique collection dates was 0.43-
0.94 (Supplementary Figure 7). The overall observed * was 0.95
when considering all dates (p< 0.0001) (Figure 6).

3.4 Collection and processing benchmarks

3.4.1 Field scanalyzer data collection

Benchmark datasets were collected using the FS, with varying
operation times depending on the sensor. The file size of benchmark
datasets ranged from 5.4 GB to 308.5 GB in size and consisted of
640 to 39,678 files. The data collection of RGB and thermal image
data, which occurs simultaneously, took a total of 4 hours and 42
minutes to complete resulting in 9,270 raw images per sensor. The
PSII data collection took 4 hours and 39 minutes, resulting in the
largest raw file count (39, 678 images).
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TABLE 3 Performance metrics for Faster R-CNN detection models for image processing of Field Scanalyzer RGB (RGB-FS), drone RGB (RGB-DR), and
Field Scanalyzer thermal (Thermal-FS).

Data Type Detections Recall Precision Fl-score | Accuracy
A RGB - DR Detection 4356 4097 182 77 0.98 0.96 0.97 0.97
A RGB - FS Detection 2752 2519 178 54 0.98 0.93 0.96 0.96
B Thermal - FS Detection 1450 1404 10 36 098 0.9 098 098
G 3D - FS Segmentation = = = - = - = 098

FS, Field Scanalyzer; DR, drone; TP, true positive; FP, false positive; and FN, false negative. For the 3D-FS model, the accuracy reported is a point-wise accuracy collected across points within the

test dataset, as such values for columns Total detections through Fl -score are not presented.

3.4.2 PhytoOracle data processing

The RGB and PSII processing times saw the largest reduction
from computational parallelization, at 61% and 95% respectively, at
the maximum number of 1024 workers. Thermal processing time
saw the smallest reduction of 22% at the maximum number of 1024
workers. At the maximum number of workers tested in this study,
RGB and thermal each processed in 235 minutes and PSII in 13
minutes (Figure 7).

3.5 Phenotypic repeatability estimates at
individual sampling events

The mean repeatability values for each pipeline are as follows:
0.86 (RGB-DR BA), 0.81 (RGB-FS BA), 0.90 (3D-FS AABV), 0.90
(3D-FS OBV), 0.90 (3D-FS PH), and 0.89 (3D-FS NP) (Table 4). In
general, the repeatability of RGB and 3D phenotypic trait data had
increasing trends over the growing season (Figure 8).

4 Discussion

The proliferation of phenomics technology has led to large data
volumes that need to be processed. Challenges related to
computation of phenomics big data reduce its full application and
efficacy in providing actionable genome-phenome insights into
plant morphophysiological traits. Among the significant
bottlenecks in plant phenomics, we address the lack of scalable,

modular processing pipelines capable of processing expanding data
volumes to extract morphological and physiological phenotypic
trait data. Although other pipelines, such as Image Harvest and
Greenotyper, have considered and implemented distributed
computing systems, these capabilities have not been fully
developed for general use on HPC clusters or multiple node
deployment. Instead, it is left to the user to undertake that
implementation (Knecht et al, 2016; Tausen et al, 2020). The
PhytoOrade suite of scalable, modular data processing pipelines
addresses critical bottlenecks within plant phenomics including
data diversity, scalability, reproducibility, and extensibility.
PhytoOracle accomplishes this by integrating distributed
computing, container technology, data management systems, and
machine learning into a single suite of phenomics data

processing pipelines.

4.1 PhytoOracle addresses neglected
bottlenecks in phenomics data processing

The PO suite can process data from multiple sensors including
RGB, thermal, and PSII chlorophyll fluorescence 2D image data and
3D point cloud data. Except for PSII chlorophyll fluorescence, PO
data processing pipelines result in individual plant phenotypic trait
data that can be associated using our agglomerative clustering
approach (Figure 2 and Supplementary Figure 5). To date, the
only other published pipeline capable of handling such diverse data
types is PlantCV. However, PlantCV’s approach to individual plant
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FIGURE 4

Change in median Intersection over Union (loU) across the collection dates represented in RGB and thermal test data sets for the Field Scanalizer
(FS) and Drone (DR) systems. Both RGB Field Scanalyzer scans (RGB-FS) and drone flights (RGB-DR), began earlier than thermal, allowing to capture
the temporal effect of collection date, a proxy to plant size, on the median loU. Error bands represent 95% confidence intervals around the median.
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phenotyping does not translate well to field phenomics data
(Fahlgren et al, 2015; Gehan et al, 2017). In field phenomics
data, plant spacing creates challenges for individual plant
phenotype extraction. The threshold-based contour approach
used by much software, including PlantCV, works well in
controlled environments, however, most imaging approaches
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FIGURE 6

Correlation between validation and pipeline-extracted median
canopy temperatures (MEDT). Each point represents an individual
plant temperature collected at a single time point, with the
complete dataset consisting of 12 distinct collection dates,
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outside of controlled environments often capture multiple
overlapping plants under highly variable lighting conditions.
These variable conditions make threshold-based contour
approaches difficult to implement in processing field phenomics
data. For this reason, PO leverages ML models that are better able to
handle overlapping plants and variable lighting conditions.

To resolve time series, multi-plant measurements to the
individual plant level, PO leverages ML approaches, such as
Faster R-CNN for object detection and DGCNN for point cloud
segmentation. These ML models make PO robust and generalizable
to other crops. For instance, if a user wants to process a new crop
species, a model could be trained and deployed within PO, requiring
little to no code development. Furthermore, the ML models
presented here can be used by other researchers and/or new
models can be trained using our labeled data and existing
containers. PO also provides a general use solution to training of
Faster R-CNN object detection models.

The PO suite provides scalability through a distributed
computing framework leveraging the open-source CCTools’
Makeflow and Work Queue software (Albrecht et al, 2012),
which provides the language and computational resource
management necessary to scale tasks beyond traditional job
arrays and local computing resources. Importantly, this enables
users to leverage dataset-specific resources across multiple
computing environments during data processing, providing a
path to maximize and optimize computational resource use. For
example, the manager can be launched on an HPC cluster to ensure
adequate storage space while workers could be launched on a lab
workstation. The benefit of this approach is that computational
resources beyond one computer or even one cluster can be
leveraged to process thousands of tasks in parallel. Data
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processing on a single computer or server constrains users to locally
available memory and processors, preventing scalability. On the
other hand, distributed computing systems allow users to access
processors and memory on remote nodes, allowing the system to, in
theory, linearly scale the processing task at hand. The PO
benchmarking focused on HPC nodes instead of local nodes and
cloud-native options, such as XSEDE, due to those resources not
having the storage space required to store raw and intermediate
data. This is important, as it highlights that computational
resources must consider not only CPU/GPU availability but also
storage space capabilities as large-scale phenomics data processing
results in many intermediate outputs that must be temporarily
stored to serve as input to subsequent steps. In the end, these
intermediate data can be deleted, but they must be able to be
temporarily stored during data processing.

As data volumes increase, scalability will become a higher
priority within research fields aimed at extracting relevant
insights from big data (Chen et al, 2013; Sivarajah et al., 2017).
However, this is likely to exacerbate existing network IO
bottlenecks, which prevent linear scaling (Zhang et al., 2020). For
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Average tasks process per minute and processing times for each PhytoOracle pipeline. (Top) Average tasks processed (tasks/minute) as a function of
the number of worker cares. (Bottomn) Total processing time (minutes) as a function of the number of workers (one CPU core per work). Available
workers ranged from 1 to 1024 and the values represent the average of three runs with the same configuration. Error bars represent 95% confidence

example, the presented benchmarking information shows that
although the average number of tasks completed continued to
increase, the total processing time remained relatively stable after
32 workers. These results highlight limitations in scaling likely
associated with network and data transfer bottlenecks. Improving
the utilization of local, cloud, or HPC systems is a major concern
and area of active research (Tanash etal, 2019). Generally, there are
seemingly two options for further improvements to computational
throughput: (i) identifying the optimal worker configurations per
pipeline and/or (ii) moving pipelines closer to where the data are
collected. An analysis of big data environments using Docker
containers found that adding nodes (workers) beyond a certain
threshold decreased performance due to an increase in the time for
a network request to be sent and received (round trip time), which is
similar to the results presented here (China Venkanna Varma et al,
2016). Moving pipelines closer to the data seems more feasible than
finding optimal worker configurations as there may not be an
optimal worker configuration to mitigate scaling plateaus until
network bottlenecks are resolved. Network bandwidth is
commonly associated with a lack of linear scaling; oftentimes, the

TABLE 4 Repeatability of pipeline extracted phenotypes collected from Field Scanalyzer (FS) and drone (DR) platforms.

Data Trait Min. Mean Max.
RGB-DR Bounding area 0.55 0.86 095
RGB-FS Bounding area 039 0.81 095

3D-ES Axis-aligned bounding vol 0.81 090 095

3D-FS Oriented bounding volume 079 0.90 0.94

3D-F§ Plant height 0.83 0.90 095

3D-F§ Number of points 081 0.89 0.95

Minimum, Min.; Max, Maximum.
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processing phase is efficient and would theoretically allow for linear
scaling, but the communication phase creates a bottleneck
preventing linear scaling (Zhang et al, 2020). In our case, raw
data is stored on the CyVerse Data Store due to its volume, velocity,
and variety-making it intractable to keep these data on local servers
for processing. This results in data being located “far” (CyVerse
Data Store servers) from the processing pipeline (HPC), resulting in
significant network requests that negatively impact data processing
throughput. In the future, improvements to network capabilities
may help to further improve processing efficiency.

The PO suite leverages container technology to ensure
consistent, immutable data processing. Each PO processing step is
containerized using Docker and deployable on HPC, doud, and
local computers on which either Docker or Singularity is installed.
As opposed to running non-containerized processing code,
containers ensure that each processing step is reproducible by
controlling code versions and processing environments. Instead of
users having to install over 40 Python packages to run PO, we
provide containers that contain these libraries, significantly
reducing the barrier to entry (Supplementary Table 4).
Additionally, the PO automation script automatically downloads
and configures CCTools, and requires no additional third-party
Python packages. The only requirements for running PO are
Singularity or Docker, iRODS, and Python. These tools are
generally found on HPC clusters, except for iRODS which can be
installed by system administrators.

The PO suite provides a general use framework through our
automation script. Together with our suite of processing containers,
this automation script automates the complexity of developing a
PCSs, allowing users with little computer programming experience
to leverage PO for processing their own phenomics data. The PO
suite has four existing YAML files that can be customized by other
researchers to process their own data. Users with advanced
programming and command line experience can develop their
own containers for data processing and integrate them into PO
by including each container as a module within the YAML file,
specifying the location of raw data on the CyVerse Data Store or
local storage, and outlining the expected output files. The use of a
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generalizable automation script and a customizable YAML file
makes it possible for users to run PO on various datasets,
allowing researchers to spend more time on analysis than
software development and data processing.

4.2 PhytoOracle extracts repeatable
phenotypes from distinct platforms

The phenotypic trait data extracted from the FS and DR
platforms align with values reported in the literature.
Morphological trait repeatability values collected by the 3D-FS
sensor align with the range of values reported in wheat (Deery et
al., 2019; Walter et al, 2019; Deery et al, 2020). Similar values for
3D-FS phenotypes are reported here: 0.81-0.95 (AABV), 0.79-0.94
(OBV), 0.83-0.95 (PH), and 0.81-0.95 (NP). These values highlight
the usefulness and applicability of PO for phenotype extraction,
particularly morphological phenotypes. Additionally, similar trends
of repeatability values were found across two distinct datasets: 0.55-
0.95 and 0.39-0.95 for RGB-DR and RGB-FS platforms,
respectively. These overlapping repeatability values demonstrate
the applicability of PO to multiple platforms. The lower limit for
repeatability for bounding area is an artifact of varying data
collection start dates: 2019-12-10 for RGB-FS, 2019-12-12 for
RGB-DR, and 2020-01-21 for 3D-FS. These earlier dates had a
greater number of plants per plot, lowering the ability to accurately
extract individual plant phenotypes due to overlap between plants.
The number of plants per plot was reduced to approximately ten on
2020-01-16. Notably, all 3D-FS scans were collected after this date,
resulting in a narrower range of repeatability values due to all scans
being collected on well-spaced, lower overlap conditions.

Repeatability is dependent on data and algorithms, meaning
that any system could result in similar repeatability values as PO.
However, an important difference is the ease at which these other
systems handle and process large volumes of data to extract those
repeatable phenotypic trait values. The PO system addresses this
issue by allowing the extraction of highly repeatable traits in a few
hours. Furthermore, the PO system also provides extensibility. Each
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module within PO collectively results in highly repeatable
phenotypic traits across sensor data types. Even in cases where
scalability is not necessary, such as small volumes of drone data,
these repeatability values across sensors and phenotyping platforms
highlight PO’s wide range of applications. The PO system,
therefore, accelerates data processing of diverse data types from
across phenotyping platforms, enabling the extraction of highly
repeatable phenotypic traits that would otherwise have to be
extracted using various, disparate systems or software that make
it difficult to analyze, interpret, or combine resulting outputs.

4.3 PO enables deployment of future
algorithms across species

The PO suite addresses challenges in scalability and modularity
to improve plant phenomics data processing. This was
accomplished by leveraging existing and emerging technologies to
process large volumes of phenomics data in a scalable, modular
manner. Existing technologies include container technology,
distributed computing frameworks, and data management
systems, while emerging technologies include ML models for trait
extraction. By coordinating this combination of technologies, PO
processes data in an automated, efficient manner across platforms
and sensors. The PO suite serves as a tool for others in plant
phenomics to leverage within their research groups. This is made
possible by the diverse availability of processing containers which
can be deployed on any system on which Docker, Singularity,
iRODS, and CCTools are installed. The phenotypic data
processed by PO show high repeatability values across platforms,
indicating PO’s utility within plant science and plant breeding
programs. Importantly, the PO suite provides large volumes of
phenotypic trait data that can be combined with other -omics data
for applications in selection, dissection of functional and adaptive
traits, and characterization of temporal patterns in trait expression
(Supplementary Figure 8).

As ML methods mature, new models can be implemented within
PO due to its customizable YAML configuration file. For example,
models for leaf segmentation and extraction of traits such as leaf
curling at scale, are the next steps of PO development. Furthermore,
the training of these models is possible due to the large volume of
intermediate data generated by pipelines like PO, which can serve as
(i) training data for these next-generation models and (ii) as samples
for model-generated data to further increase training data sizes.
Containers that deploy these next-generation ML models could
then be added to existing PO pipelines to provide organ-level
phenotypic trait data that complements existing whole plant
phenotypic trait data. This volume and diversity of phenomics data
would enable fine-scale phenotyping at scale, which may uncover
details on the temporal patterns in trait expression.

PhytoOracle addresses many phenomics bottlenecks, but there
are outstanding bottlenecks such as enviromic capabilities and multi-
species support. Enviromic capabilities are limited within PO, which
are important to account for the environmental noise encountered in
field phenomics data. In the future, PO pipelines will be further
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developed to output environmental data directly from the Field
Scanalyzer and neighboring weather stations alongside phenotypic
trait data. As this would be difficult to generalize across users, we
decided not to provide this capability at present. However, the
authors understand that these complementing data would enhance
interpretability and interoperability of processed phenotypic trait
data, therefore, we plan to support these capabilities in the future.
Although the present study focuses on lettuce, PO has been refactored
to process sorghum phenomics data with the same containers used to
process lettuce phenomics data (Supplementary Figure 9). Further
research and development will lead to the extraction of species-
specific traits, and it is our goal to publish updates on these
added functionalities.

5 Conclusion

The scalable, modular PhytoOracle data processing pipelines
enable the extraction of large, time-series phenotypic trait data in an
automated and reproducible manner, key factors required to
process projected data volumes. The resulting traits extracted by
PO from both FS and DR platforms show high repeatability,
highlighting the usefulness of PO across phenotyping platforms.
The intermediate processed data, such as individual plant point
couds, extracted by PO opens new opportunities to extract fine-
scale phenotypes at multiple resolutions (plot, plant, and organ
levels). Importantly, the PO pipelines can be refactored to process
phenomics data from other crops spedies, as discussed here with
sorghum phenomics data. In the future, these time-series datasets
may provide biological insight into morphological and
physiological responses to drought conditions at the individual
plant level across multiple crop species. This information could
enable new species-specific targets for genetic improvement based
on time-series, fine-scale phenotypic trait data.

Code availability statement

The Python scripts used to prepare RGB training data can be
accessed here: http://github.com/phytooracle/automation/blob/main/
ml/collect_rgb_data.py. The Python script used to prepare thermal
training data can be accessed here: http://github.com/phytooracle/
automation/blob/main/ml/collect_flir_data.py. The Python script
used to prepare 3D-derived images can be found here: htip://
github.com/phytooracle/3d_heat_map/blob/main/3d_heat_map.py.
The code used to train object detection models can be found here:
http://github.com/phytooracle/ezobde. Examples of YAML files used
for data processing can be accessed here: htip://github.com/
phytooracle/automation/tree/main/yaml_files. The automation
script and data processing repositories can be accessed at: hitp://
github.com/phytooracle. Each PhytoOracle container built from data
processing repositories can be accessed at http://hub.docker.com/
orgs/phytooracle. For a detailed description of each data
processing3repository and associated container, refer to the
Supplementary Material.
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Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://datacommons.cyverse.org/
browse/iplant/home/shared/phytooracle/season_10_lettuce_yr_2020.
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