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Abstract

As the popularity of the internet continues to grow, along
with the use of web browsers and browser extensions,
the threat of malicious browser extensions has increased
and therefore demands an effective way to detect and in
turn prevent the installation of these malicious extensions.
These extensions compromise private user information
(including usernames and passwords) and are also able
to compromise the user’s computer in the form of Tro-
jans and other malicious software. This paper presents
a method which combines machine learning and feature
engineering to detect malicious browser extensions. By
analyzing the static code of browser extensions and look-
ing for features in the static code, the method predicts
whether a browser extension is malicious or benign with a
machine learning algorithm. Four machine learning algo-
rithms (SVM, RF, KNN, and XGBoost) were tested with a
dataset collected by ourselves in this study. Their detection
performance in terms of different performance metrics are
discussed.
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13.1 Introduction

In this modern age, people are using computers more than
ever — from the hourly usage of smart phones to the con-
stant usage of desktop computers at work. Not only is the
usage of computers at an all time high, but also the usage
of the internet. People use web browsers to explore the
internet for independent research, schoolwork, office work,
entertainment, and anything else one can think of. The mass
usage of web browsers such as Google Chrome, Mozilla
Firefox, or Apple’s Safari has led to users looking for better
experiences and functionalities when using their web browser
of choice, which are done through the usage of browser
extensions. Depending on the web browser of choice, users
can download many different types of browser extensions to
enhance the functionality and their productivity when using
the web browser.

Although the browser extensions can be incredibly useful,
their extensive use has led to a dramatic increase of devel-
opers with intent to create malicious browser extensions [1,
2]. These malicious extensions can perform a wide range of
malicious functionality such as stealing a user’s usernames
and passwords, redirecting the user to malicious links or
outside advertisements, stealing user information (browser
history, cookies, sessions, etc.), downloading malicious soft-
ware such as Trojans to the user’s computer. According to
Cybernews [3], the web browsers and browser extensions
have historically been an overlooked attack vector, with
millions of people being infected with malicious extensions
without even being aware of them.
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Because of the aforementioned dangerous capabilities of
malicious browser extensions and their continuous increased
usage, this paper presents a method of detecting malicious
browser extensions by using feature engineering and machine
learning classification algorithms. The two essential issues
of the proposed method are to identify the useful features
for malicious browser extension detection and determine
the detection algorithm with the identified features. The
proposed method approaches the first issue by analyzing the
static source code of both malicious and benign browser
extensions. A number of features are extracted from the
source code of three different file types in extensions which
are listed and analyzed in Sect. 13.2. For a better detection
performance, the proposed method does not just look at the
binary “present” or “absent” condition of a feature, but rather
counts its number of occurrences in a file. For this study,
we only downloaded and analyzed browser extensions for
Google Chrome — the current most popular web browser.
All references to extensions or browser extensions in the
following are for Google Chrome browser extensions.

The second essential issue is approached by using ma-
chine learning-based classification algorithms including Sup-
port Vector Machine (SVM), Random Forest (RF), K-Nearest
Neighbors (KNN), and Extreme Gradient Boosting (XG-
Boost). To test these algorithms, the 5-fold cross validation
is used to train and test these algorithms. The experimental
results are presented in Sect. 13.3.

13.2 Methodology

The primary goal of this study is to classify any single
extension as malicious or benign which are done through
three distinct steps: collection of browser extensions, fea-
ture engineering and dataset creation, and machine learning
model training and testing.

13.2.1 Collection of Browser Extensions

For the purpose of training malicious browser extension de-
tection models, it’s necessary to obtain a significant amount
of browser extensions. There are three main categories of
browser extensions collected in this study: benign browser
extensions from the chrome web store, malicious extensions
that have been removed from the chrome web store, and
self-made malicious browser extensions. The distribution of
collected browser extensions is shown in Fig. 13.1.

Dataset Distribution

B Benign
s Old-Malicious
B Self-Created-Malicious

Fig. 13.1 The distribution of collected browser extensions

13.2.2 Feature Engineering and Dataset
Creation

The second step is to perform a feature engineering by ana-
lyzing the code of collected extensions and create a dataset
for our study. During this step, we search for certain key-
words/phrases in the source code and count the number of oc-
currences of these keywords and phrases. After determining
the number of occurrences, we populate a separate file that
contains this information to be used by a machine learning
algorithm.

For each browser extension’s source code, we look for
certain features contained within the code depending on the
type of file being analyzed. Through the feature engineering,
we identify 17 features from the HTML file, 20 features from
the JavaScript file, and 3 features from the CSS styling file.
Either the abundance, or dearth, of the identified features help
to classify a browser extension as malicious or benign.

e HTML Code Features: The 17 features extracted from
the HTML code of a browser extension are listed in Fig.
13.2. The features can be divided into two categories:
the number of injection tags and the number of HREF
JavaScript references.

1. HTML Injection Tags: A larger number of certain
HTML tags can be an indication of malicious code
including iframe tags, form tags, object tags, img
tags, and script tags. The first three were identified
by Wang et al. [4]. and the next two were found from
a website that recommends ways to avoid Cross Site
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HTML JavaScript CSS
http http background-image
https https (@import
external-JavaScript iframe tags Behavior
iframe tags XMLHttpRequests -
script tags External-JavaScript -
object tags POST -
body tags GET -
img tags Document.write -
fromCharCode innerHTML -
Sform tags fromCharCode -
document.write createElement(‘script’) -
\x Total Keywords -
\ Tabs.executeScript() -
% appendChild -
! %u -
href=javascript \x -
CoinHive \ -
: ! =
. CoinHive .

Keyword-Text Ratio

Fig. 13.2 List of extracted features

Scripting (XSS) attacks [5]. Each of these tags can
be used by attackers to launch XSS attacks. In these
attacks, outside scripts (usually JavaScript files) can be
injected into the webpage the user is on and silently
execute malicious code in the background — this can
include downloading user information or downloading
malicious software to the user’s computer. These tags
can have a reference to an outside malicious script,
thereby making the detection more difficult. To this
end, we count the number of occurrences of these tags
since a higher frequency of external JavaScript files
can be an indicator of a malicious extension.

2. HTML HREF JavaScript Calls: In HTML code, one
can create a link that doesn’t redirect a user to an-
other URL but instead executes some JavaScript code
or function. This situation is indicated by the line
href = javascript. Malicious code can be called and
executed from this code functionality, meaning that the
number of occurrences of this line can be an indicator
of potential malicious code.

» JavaScript Code Features: Fig. 13.2 also lists the 20
features extract from the JavaScript code of a browser
extension which belong to three categories: the number
of XML Requests, DOM changes, and the keyword to
content ratio.

1. JavaScript XML Requests: In JavaScript, there is a
function that allows the communication between the
web browser and a server, this function is XML-
HttpRequest which allows the webpage either to
send information to a server — it could be for storage,
manipulation, querying, etc. or to retrieve information
from the webserver. This type of functionality is
notated by the POST argument or GET argument,
respectively. Attackers can use this function to perform

a variety of malicious activities, such as sending a
user’s username and password to store on a remote
server, redirecting the user to a malicious webpage,
or performing SQL injection attacks. Because of
these capabilities, we count the occurrences of
both the function call, XMLHttpRequest, and also
the occurrences of POST and GET to help the
differentiation of malicious and benign browser
extensions.

2. JavaScript DOM Changes: JavaScript is a powerful

language for web development, in large part due to
its capability of accessing all aspects of the HTML
Document Object Model (DOM). This power of being
able to change practically any aspect of a webpage
allows JavaScript to be used by attackers to add ma-
licious scripts to webpages. In this study, we look for
certain keywords and functions that add to webpages,
and a higher frequency of these functions within the
JavaScript code can indicate a malicious browser ex-
tension. These functions include the JavaScript append-
Child, createElement( ‘script’), document.write, and in-
nerHTML functions. The first two functions were sug-
gested by Pantelaios et al. [6]. Each of these functions
have the capability to inject a malicious script into a
webpage the user is on, which like the XSS attack,
can download the user’s information or download ma-
licious software to the user’s computer. Because of
the potential of these functions for malicious extension
detection, we count the occurrence of each function for
analysis.

3. JavaScript Keyword Ratio: As mentioned by Wang et

al. [4], malicious code oftentimes has a lower amount of
three key words: this, var., and if within the JavaScript
code compared to the total amount of words in the
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whole JavaScript file. This is because the attackers tend
to use other functions and variable manipulation to hide
the malicious functionality of the code [4]. Because of
this, we count the number of occurrences of those three
keywords and calculate the ratio of the keywords to
total words for malicious extension detection. We also
count the total number of these three keywords for each
extension as a potential indicator for malicious code.

* Common Features in HTML and JavaScript Code: Some
signs and indications of malicious code are found com-
monly in both HTML and JavaScript code, which are
described together in this section. The feature types are
the number of different types of links, and obfuscation
indicators.

1. Different Link Types: Three different types of links
are useful for determining whether an extension is
malicious or benign, which are http links, https links,
and external JavaScript file calls. Http links are links
to any website that does not encrypt all traffic coming
in and out of the website. Https links indicate that all
traffic moving in and out of the website are encrypted
which create more secure connections for end users.
Finally, we look for the number of external JavaScript
files being called throughout the HTML files, i.e. the
calling and executing of a script that is hosted on an
outside webserver — not part of the browser extension
package.

2. Obfuscation Indicators: Within the source code of
HTML and JavaScript files, attackers oftentimes try to
hide their malicious intent through code obfuscation.
Obfuscation in this context refers to the changing
and manipulation of the extension source code to
hide the functionality of the code. Malicious files
can convert their strings used for the code into vast
lines of hexadecimal, binary, base64, or ASCII values
that need to be decoded before they can be read
or understood. This can also make the detection of
malicious functionalities more difficult.

* CSS Code Features: The common XSS attack vectors
suggest that three features from CSS files could be
indicators of malicious code, which are the number of
background-image occurrences, @import occurrences,
and behavior occurrences. Each of these features within
the CSS code can have a source of any URL, which
means that an attacker could create the source of the CSS
background-image, behavior, or @import as a malicious
external JavaScript file, or malicious webpage to execute
script on the user’s computer.

Dataset Creation A python script was used to extract all
40 features from each collected browser extension and save
the information into a CSV file for further analysis. In the
CSYV file, each row is a unique browser extension with each
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column for one of the 40 extracted features. After possessing
this CSV file, we normalized the data with the min-max
normalization.

13.2.3 Machine Learning Model Training
and Testing

After the dataset was created, we used four machine learning
algorithms, SVM, RF, KNN, and XGBoost, to build detection
models based on the features described in the previous sec-
tion. For each algorithm, we used a 5-fold cross validation
technique for model training and testing. The metrics for
performance evaluation are accuracy, precision, recall, and
F1 score. All algorithms were tested with the same data
partition in each test.

In the real world, there are much more benign browser
extensions than malicious ones. Thus, our collected dataset
is highly imbalanced as shown in Fig. 13.1 which could lead
to the overfitting of machine learning algorithms. To solve
this problem, we used the Synthetic Minority Oversampling
Technique (SMOTE) [7] implemented by the Python package
Imbalanced-Learn [8] to synthetically generate malicious
samples.

We performed experiments to determine the best param-
eters for the machine learning algorithms. We tested the
RF algorithm with the number of trees varying from 5 to
300. The out-of-bag (OOB) error was used as the metric for
performance comparison, which is the difference between
the OOB score and the accuracy. As shown in Fig. 13.3, RF
with 175 trees achieves the lowest OOB error. We also tested
KNN with different number of neighbors. Figure 13.4 shows
the performance of KNN with 1 neighbor to 40 neighbors in
terms of accuracy and F1 score. As can be seen in Fig. 13.4,
both accuracy and F1 score rapidly increase from 1 neighbor
to the maximum at 5 neighbors, then start a downward
trend from 6 neighbors all the way to 40 neighbors. Thus,
5 neighbors was used for all tests of KNN.

13.3 Performance Evaluation Results

In this section, we present the performance evaluation results
and determine the best algorithms for malicious browser
extension detection. We also analyze the importance of each
feature for the detection algorithms.

13.3.1 Performance Comparison

The performance evaluation results for the balanced and
imbalanced datasets are shown in Figs. 13.5 and 13.6, respec-
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Fig. 13.3 OOB error rate in terms of the number of trees for RF
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Fig. 13.4 Accuracy and F1 score in terms of the number of neighbors for KNN
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Fig. 13.6 Performance evaluation results for the imbalanced dataset

tively. The results are analyzed in the following based on each
performance metric.

Accuracy Accuracy is calculated as the number of corrected
classified extensions divided by the total number of exten-
sions. Accuracy is not an appropriate metric to compare the
performance of algorithms when the dataset is imbalanced as
the algorithms will have the overfitting problem. Our results
prove this problem that the four algorithms achieve high
accuracy but low recall when the dataset is imbalanced. RF
has the best accuracy of 99.79% for the balanced dataset.

Precision Precision is calculated as the number of true pos-
itives divided by the sum of true positives and false positives
which indicates the ratio of correctly classified malicious
browser extensions out of the extension being classified as
malicious. RF is the best performed algorithm in terms of
precision for both the balanced and imbalanced datasets. The
precision scores of RF are 99.96% and 100% for the balanced
and imbalanced datasets, respectively.

Recall Recall is calculated as the number of true positives
divided by the sum of true positives and false negatives
which indicates the ratio of correctly classified malicious
browser extensions out of all malicious browser extensions.
RF achieves the best recall score of 99.62% for the balanced
dataset while XGBoost outperforms other algorithms for the
imbalanced dataset with a recall score of 80.61%.

F1 Score This metric gives an insight into the general detec-
tion performance of an algorithm by combing precision and
recall using the harmonic mean. The F1 score is especially
useful when the dataset is imbalanced. The best performed al-
gorithm in terms of the F1 score for the balanced dataset is RF
(99.79%) followed by XGBoost (99.65%), KNN (97.52%),

Precision

. SVM

Bmm Random Forest
mm KNN

s X GBoost

F1 Score

and SVM (83.13%). The best performed algorithm for the
imbalanced dataset in terms of the F1 score is also RF
(87.98%) followed by XGBoost (87.94%), KNN (82.95%),
and SVM (74.31%). The results show that RF and XGBoost
have similar performance for both datasets. Both of them
significantly outperform other two algorithms.

13.3.2 FPR and FNR of Algorithms

In this section, we directly compare the false positive rates
(FPR) and false negative rates (FNR) of the four algorithms
to better understand their strengths and weaknesses.

FNR Because of the nature of our research goal — a method
for detecting malicious browser extensions, we want the FNR
as low as possible to minimize the possibility of malware in-
fection. Thus, directly comparing the FNRs of the four algo-
rithms helps to understand the effectiveness of an algorithm.
Figure 13.7 compares the performance of the algorithms in
terms of FNR for the balanced dataset. KNN has the best
FNR of 0.36% followed by RF (0.38%), XGBoost (0.49%),
and SVM (28.11%). The results for the imbalanced dataset
are shown in Fig. 13.8. It can be seen that all algorithms have
significantly higher FNRs for the imbalanced dataset due the
overfitting problem. XGBoost has the best FNR of 19.38%
followed by RF (21.36%) for the imbalanced dataset. The
results demonstrate that the overfitting problem caused by the
imbalanced dataset is solved by creating synthetic malicious
samples with SMOTE.

FPR Although FPR is not as critical as FNR, we still want
a detection algorithm to achieve a low FPR when the FNR
is low. Figures 13.9 and 13.10 compare the FPRs of the
algorithms for the balanced and imbalanced datasets, respec-
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Fig. 13.7 FNRs of the algorithms for the balanced dataset
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Fig. 13.8 FNRs of the algorithms for the imbalanced dataset

tively. For the balanced dataset, RF has the best FPR of
0.039% followed by XGBoost at 0.2%. KNN has the worst
FPR of 4.48%. For the imbalanced dataset, RF achieves a
perfect FPR followed by XGBoost at 0.0998%. KNN is still
the worst performed one with a FPR of 0.17%.

13.4 Conclusion

Because of the popularity of browser extensions for web
users, the prevalence of malicious browser extensions has in-
creased which creates a need to effectively detect these mali-
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Fig. 13.9 FPRs of the algorithms for the balanced dataset
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Fig. 13.10 FPRs of the algorithms for the imbalanced dataset

cious extensions for the protection of users and their informa-
tion. This study explores the use of feature engineering and
machine learning algorithms for detecting such malicious ex-
tensions. Our results show that the use of static code analysis
for feature engineering and various machine learning algo-
rithms can lead to an effective malicious browser extension
detection method. The results also show that the overfitting

Random Forest

KNN

XGBoost

Algorithm

problem caused by the collected imbalanced dataset can be
solved by balancing the dataset with synthetically generated
malicious samples.
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