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In this article, autonomous ground vehicle (AGV) path planning
is considered. The AGV is assumed to be equipped with receivers
capable of producing pseudorange measurements to overhead global
navigation satellite systems (GNSS) satellites and to cellular base
stations in its environment. Parameters of the cellular pseudoranges
related to the transmitter clock bias are estimated in an initialization
step in an open-sky environment. The AGV fuses these pseudoranges
to produce an estimate about its own states. The AGV is also equipped
with a three-dimensional building map of the environment. Starting
from a known starting point, the AGV desires to reach a known target
point by taking the shortest distance, while minimizing the AGV’s
position estimation error and guaranteeing that the AGV’s position
estimation uncertainty is below a desired threshold. Toward this objec-
tive, a so-called signal reliability map is first generated, which provides
information about regions where large errors due to poor GNSS
line-of-sight or cellular signal multipath are expected. The vehicle
uses the signal reliability map to calculate the position mean-squared
error (MSE). An analytical expression for the AGV’s state estimates is
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derived, which is used to find an upper bound on the position bias due
to multipath. An optimal path planning generation approach, which
is based on Dijkstra’s algorithm, is developed to optimize the AGV’s
path while minimizing the path length and position MSE, subject to
keeping the position estimation uncertainty and position estimation
bias due to multipath below desired thresholds. The path planning
approach yields the optimal path together with a list of feasible paths
and reliable GNSS satellites and cellular base stations to use along
these paths.

NOMENCLATURE
αp Node that proceeds α along a path.
αspur Spur node.
ai(x) Complex amplitude of signal path x and LTE

symbol i.
bm,p Multipath bias assigned to signal reliability

map.
c Speed of light.
d (g) Cost along the path from s to g.
dLOS Length of the LOS path.
dist(p) Distance represented by location p.
f (β, α) Path planning weight assigned to the edge be-

tween nodes α and β.
f1(β, α) Path planning weight assigned to the edge be-

tween nodes α and β.
f2(Az ) Path planning weight assigned edges along the

zth path Az.
g Target node.
hi(t ) Channel impulse response at time t and LTE

symbol i.
i LTE symbol.
λ̄max Threshold for position uncertainty.
r̄max Upper bound on position bias.
βp Node that proceeds β along a path.
χm ! χ1,m(i) + χ2,m(i), multipath interference.
δtcell,m mth cellular clock bias.
δtrgnss GNSS receiver clock bias.
δtrcell Cellular receiver clock bias.
δtiono,n Ionospheric delay.
δttropo,n Tropospheric delay.
δtrcell Experiment cellular receiver clock bias.
δtrgnss Experiment GNSS receiver clock bias.
δtr Receiver clock bias.
εm Constant bias between cellular clock biases.
ηmax Pseudorange bias threshold.
ηm Weighted pseudorange bias threshold.
γ (g) A path from nodes s to g.
γrootpath A root path from s to αspur.
γspur A spur path from αspur to g.
γ (g) A path from nodes s to g.
κ Threshold for amplitude of received path.
λmax(p, t ) Maximum eigenvalue used in path planning.
G = (ι, ω), directed graph with ι nodes and ω

edges.
Mcell Sequence of all cellular signal reliability maps.
Mgnssn

Signal reliability maps for the nth satellite.
Mgnss Sequence of all satellite signal reliability maps.
P Set of all paths from start to target.
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Tgnssn,p Sequence of time intervals for the nth satellite
and the pth location.

A Set of ζ shortest paths.
B Set of candidate ζ shortest paths.
B Partition of H corresponding to the clock states.
B̄ = R−T

a B.
! = (B̄TB̄)−1.
G̃ = (I− B̄!B̄T)Ḡ.
G Partition of H corresponding to the position

states.
Ḡ = R−T

a G.
Gcell Partition of G corresponding to the cellular

measurements.
Ggnss Partition of G corresponding to the satellite

measurements.
H Measurement Jacobian, = [G, B].
R Measurement noise covariance.
Ra Cholesky factor of R.
π Path from start to target location.
ρcell,m Cellular pseudorange measurement.
ρgnss,n Satellite pseudorange measurement.
τi(x) Path delay between the xth impulse to the LOS

path.
ẽθ Symbol timing error.
b̄ = R−T

a b.
"r′r Unbiased position error.
"x′r = ["r

′T
r , c"δt

′T]T, unbiased error state.
"xr State estimation error.
"zr Residual vector.
"z′r Unbiased measurement error vector.
b Vector of deterministic measurement biases.
rcell,m Position of the mth cellular transmitter.
rgnss,n Position of the nth satellite transmitter.
rr,err Position bias.
rr Vehicles 3-D position.
v Vector of measurement noises.
xr,err = [rT

r,err, cδtT
err]

T, state bias.
xr AGV state vector.
zcell,m Modified cellular pseudorange measurement.
zgnss,n Modified satellite pseudorange measurement.
zr Measurement vector.
ξ Correlator spacing in the LTE receiver tracking

loop.
ζ Number of paths in the search space.
A Signal power.
K Number of measurements used in cellular mea-

surement initialization.
L Number of subcarrier symbols in the pilot se-

quence.
m = 1, . . . , M, cellular transmitter index.
M Number of cellular base stations in the envi-

ronment.
M̄ Number of reliable cellular measurements.
MSE(p, t ) Position MSE used in path planning.
n = 1, . . . , N , satellite transmitter index.
N Number of GNSS satellites in the environment.
N̄ Number of reliable GNSS measurements.
p Location index.

P Number of locations in the reliability
map.

P(β, α) Location indices from nodes β to α.
pg Target position index.
ps Start position index.
S Evaluated edges.
s Start node.
t Time.
Tτ Number of time intervals.
tend,p,τ End time for time interval.
tstart,p,τ Start time for time interval.
Ts Sampling interval.
V Unvisited nodes.
vε,m ∼ N (0, σ 2

εm
).

vAGV AGV constant speed.
vcell,m ∼ N (0, σ 2

cell,m).
v′cell,m ! vcell,m − vε,m, ∼ N (0, σ 2

cell,m + σ 2
ε,m).

vgnss,n ∼ N (0, σ 2
gnss,n).

X Number of impulses.
zinit,m Modified cellular measurement for initializa-

tion.

I. INTRODUCTION

Autonomous ground vehicles (AGVs) are predicted to
improve the quality of life by automating the monotonous
task of driving, while reducing crash fatalities due to hu-
man error. Considering the breadth of applications AGVs
could revolutionize (e.g., cargo delivery, taxi services, emer-
gency response, intelligent farming, etc.), a myriad num-
ber of corporations have been investing in AGV enabling
technologies [1].

In light of recent tragedies [2], it is evident that AGVs
need extremely reliable sensing and navigation systems.
Virtually all current vehicular navigation systems rely on
global navigation satellite systems (GNSS). While GNSS
provide an accurate position estimate with respect to a
global frame, its signals are unreliable for the safety critical
application of autonomous driving. On one hand, GNSS
signals are susceptible to unintentional interference, inten-
tional jamming, and malicious spoofing [3]. On the other
hand, GNSS signals are severely attenuated in deep urban
canyons. Urban high-rise structures block, shadow, and
reflect signals from GNSS satellites. This makes locales
at which reliable and accurate GNSS position estimates are
achievable to be rather spotty in urban environments [4].

To overcome the limitations of GNSS, current vehicular
navigation systems fuse GNSS receivers with a suite of
sensor-based technologies (e.g., inertial measurement unit,
lidar, and camera). These dead reckoning type sensors need
an external aiding source to account for their accumulated
error, only provide local position estimates, may not prop-
erly function in all environments (e.g., fog, snow, rain, dust,
etc.), and are still susceptible to malicious attacks [5].

Signal-based technologies alleviate some of the short-
comings of sensor-based technologies and provide a global
position estimate, but some require installing dedicated
infrastructure (e.g., pseudolites [6]), while others produce a
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coarse position estimate (e.g., digital television signals [7]).
Among signal-based technologies, cellular signals are very
attractive in urban environments due to their inherent at-
tributes [8], which include the following.

1) Reception at high carrier-to-noise ratio (C/N0): A
C/N0 between 55 and 80 dB-Hz has been observed
in urban environments.

2) Abundance: Numerous stations corresponding to
different cellular providers exist in urban environ-
ments.

3) Favorable geometric configurations: Cells in cellu-
lar networks are designed to minimize interference
between stations.

Recent work have demonstrated meter-level accurate
navigation with cellular signals on ground vehicles [9]–[14]
and centimeter-level accurate navigation on aerial vehi-
cles [15], [16]. In addition to utilizing cellular measure-
ments, AGVs can employ path planning to improve po-
sitioning. The objective of path planning, also known as
motion planning or trajectory generation, is to optimize a
path over a defined objective function (e.g., path length,
path duration, position uncertainty, etc.).

This article and its sequel consider the following prob-
lem, originally defined in [17]. An AGV is equipped with
receivers capable of producing pseudoranges to overhead
GNSS satellites and to cellular long-term evolution (LTE)
base stations in its environment. From a known starting
point, given a 3-D building map, the AGV desires to reach
a known target point by taking the shortest distance while
minimizing the AGV’s position estimation error and guar-
anteeing that the AGV’s position estimation uncertainty is
below a desired threshold. This article focuses on modeling,
analytical derivations, and algorithm development, while
the sequel paper [18] presents comprehensive simulation
and experimental results for different realistic scenarios to
evaluate the accuracy and efficacy of the proposed approach
on a ground vehicle navigating in a deep urban environment.

The contributions of this article are fourfold. First, this
article introduces GNSS and cellular signal reliability maps,
which store information about areas where GNSS satellites
have unobstructed line-of-sight (LOS) and areas where cel-
lular pseudorange measurements produce acceptable errors
due to multipath (i.e., below a certain threshold). Second,
this article proposes a method for calculating the position
mean-squared error (MSE), which measures the expected
quality of the position estimate at different locations and
time along the road network. Third, this article derives an
analytical expression for the position bias due to multipath,
which is shown to be parameterized by a bound on the
pseudorange bias and the largest eigenvalue of the position
estimation error covariance. Fourth, this article proposes a
path planning method that is based on Dijkstra’s algorithm,
which considers path length, position MSE, and the largest
eigenvalue of the position estimation error covariance.

This article is organized as follows. Section II overviews
related work in path planning. Section III describes the AGV
path planning problem. Section IV describes the GNSS and

cellular measurement models and estimation framework
used in this article. Section V presents methods to generate
GNSS and cellular signal reliability maps. Section VI shows
how to calculate the position MSE from signal reliabil-
ity maps, and finds an upper bound on the position bias.
Section VII describes optimal path planning generation,
which considers the path length, position MSE, and upper
bound on the position bias. Finally, Section VIII concludes
this article.

II. RELATED WORK

Path planning has been extensively studied in different
contexts. In robotics simultaneous localization and mapping
(SLAM), path planning has been considered to steer the
robot in the most informative direction [19] or to minimize
the probability of becoming lost [20]. In intelligent vehicles,
predictive and multirate reactive planning was considered
by using the vehicle dynamics, position uncertainty, and
obstacle volume to derive Lagrange–Euler equations and
potential fields [21]. Also in intelligent vehicles, a partially
observable Markov decision process (POMDP) was used
for belief state planning to account for uncertainty from
noise in sensor data and the intentions of human drivers [22].
In traffic management, the probability of arriving on-time
in a bus network under travel time uncertainty was solved
using path planning [23]. In target tracking, path planning
was considered to minimize the time between observations
of a target made by several mobile unmanned aerial vehicles
(UAVs) [24]. UAV path planning was considered in [25] to
account for map, location, and sensing uncertainty, while it
was considered in [26] to generate collision avoidance paths
using a Markov decision process. In marine vehicles, path
planning was considered to localize underwater acoustic
transponders [27]. In navigation via signals of opportunity,
path planning was considered to maximize the information
gathered from ambient signals to yield accurate positioning
and timing [28].

Path planning has been also proposed to reduce position
errors from GNSS signals. These position errors can be
predicted based on GNSS signal power and availability
prediction, proposed in [29]–[35]. In [36], a UAV was
steered toward higher received global positioning system
(GPS) signal-to-noise ratio (SNR) to improve the signal
quality for positioning. In [37] and [38], path planning
was considered to account for uncertainty in GNSS-derived
position estimates by using dilution of precision (DOP) of
GNSS satellites. Stochastic reachability analysis was used
in [39] to optimize over DOP-based position uncertainty for
a UAV while also avoiding collisions. In [40], predictions
of DOP-based position uncertainty and multipath errors
for GNSS signals were considered to define and calculate
quality of service (QoS) parameters (e.g., availability, ac-
curacy, reliability, and continuity) along a given route. A
localization error map, with GPS positioning errors due to
multipath-induced biases, was used for UAV path planning
in [41]. In [42], a UAV ignored measurements with high
multipath-induced biases and avoided areas with poor DOP,
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predicted by so-called obstructed LOS volumes and multi-
path volumes.

The aforementioned metrics can be used for path plan-
ning to reduce position errors for an AGV that utilizes
GNSS and cellular signals. However, additional challenges
need to be accounted for when fusing cellular signals
alongside GNSS signals for AGV navigation. Due to the
terrestrial nature and modulation scheme of cellular signals,
their received signals in urban environments suffer from
LOS blockage and severe multipath compared to GNSS
signals [43]. This induces errors in cellular navigation ob-
servables (pseudoranges), which contaminate the position
estimate, jeopardizing the safe operation of AGVs. Though
multipath mitigation techniques for navigation with cellu-
lar signals in the presence of the LOS signal have been
proposed [44], [45], an AGV could further improve the
positioning by optimizing its path for small positioning
errors.

In this article, path planning is used to guarantee a
desired level of accuracy, by choosing a path that yields
acceptable DOP-based uncertainty and multipath-induced
biases through the position MSE metric. In contrast to the
cost function in [41], which accounts for multipath-induced
bias, the position MSE cost function proposed in this article
also accounts for other sources of error through DOP-based
uncertainty. Also, this article explicitly considers orthogo-
nal frequency-division multiplexing (OFDM) signal models
in multipath calculations. Furthermore, in contrast to the
path planning algorithm in [42], which uses the predicted
positioning error in the path planning constraints, this ar-
ticle uses positioning error in the cost function and the
constraints.

This article demonstrates the feasibility of using path
planning to improve positioning using GNSS and cellular
measurements. For practicality, this work can be combined
with more sophisticated techniques for GNSS positioning
with 3-D maps [46], integrity monitoring notions [47], map
matching [48], and sensor fusion and filtering techniques.

III. PROBLEM DESCRIPTION

This article considers the following problem. An AGV
drives in an urban environment. The AGV is equipped with
receivers capable of producing pseudorange measurements
on GNSS satellites and nearby cellular base stations. The
AGV uses these pseudorange measurements to estimate the
vehicles’ 3-D position, AGV-mounted receiver’s clock bias,
and the clock bias of the cellular base stations. The AGV
desires to reach a target location by taking the shortest
possible path while guaranteeing that the uncertainty about
its own position estimate is below a specified threshold
(e.g., for safety concerns). A trajectory that satisfies this
objective is generated either locally (i.e., within the AGV’s
processor) or at a cloud-hosted path planning generator.
The path planning generator uses a 3-D building map of
the environment to generate a so-called signal reliability
map. The signal reliability map is a spatiotemporal map of
the environment that measures the expected accuracy from

Fig. 1. Depiction of an AGV navigating with GNSS and cellular
signals. Here, the red circles represent locations where GNSS and

cellular signals are unreliable (i.e., the position estimate produced with
such signals will violate position bias and uncertainty constraints) due to

limited LOS to GNSS satellites and/or large cellular multipath errors.
The blue circles represent locations where GNSS and cellular signals are
reliable. The proposed framework generates the optimal blue trajectory,
which satisfies the constraints while minimizing the distance traveled
between the start and target positions together with minimizing the

position MSE. This figure was obtained with ArcGIS [49].

using GNSS and cellular signals to produce an estimate of
the AGV’s state. For GNSS signals, the signal reliability
map is spatiotemporal, and specifies the GNSS satellites to
which the AGV would have a blocked LOS for different
locations at different times in the environment. For cellular
signals, the signal reliability map is a spatial map specifying
the expected pseudorange bias due to multipath. The signal
reliability maps are used to calculate the position MSE at
each location, which in turn is used to generate an optimal
path for the AGV to follow. This path is generated by
minimizing the total distance traveled and MSE, while
guaranteeing that the bias in the position estimate due to
multipath is below a desired threshold as well as ensuring
that the maximum position uncertainty is below a desired
limit. The thresholds can be chosen by the user (e.g., based
on the lane-level accuracy). In addition, the path generator
produces a table of reliable GNSS satellites and cellular
base stations along the optimal path for the AGV to use as it
traverses the optimal path. The path planning generator also
outputs other feasible paths the AGV could take. These sub-
optimal, yet feasible paths could be useful, should the AGV
choose to not follow the optimal path, e.g., to avoid traffic
jams and road blockages due to construction or emergency.
Fig. 1 depicts the objective of the optimal path planning gen-
erator. Here, the red circles on the street represent locations
that violate the user-specified constraints (position bias or
position uncertainty exceeding their respective thresholds).

Fig. 2 illustrates a flowchart of the optimal path gener-
ator framework developed in this article.

IV. MODEL DESCRIPTION AND ESTIMATION
ALGORITHM

A. AGV-Mounted Receiver States

The AGV receives signals from M spatially stationary
cellular base stations. It is assumed that the coordinates
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Fig. 2. Flowchart of the proposed path planning generator. The path
planning generator is assumed to have knowledge of GNSS orbital data,
cellular base station positions, and 3-D environment map. The user inputs
are: departure time, start position, target position, position bias threshold,
and position uncertainty threshold. The thresholds are used as constraints
to find the optimal path. The outputs of the path planning generator are

the optimal path and a table of reliable GNSS satellites and cellular base
stations to use along the optimal path.

of the cellular base stations are known a priori (e.g., via
radio mapping or satellite images [50], [51]) and are stored
locally on the AGV or on a cloud-hosted database. The
3-D position of the mth cellular base station is denoted
rcell,m ! [xcell,m, ycell,m, zcell,m]T in the Earth-centered Earth-
fixed (ECEF) coordinate frame. The AGV also receives
signals from N GNSS satellites with known positions.
The 3-D position of the nth GNSS satellite is denoted
as rgnss,n ! [xgnss,n, ygnss,n, zgnss,n]T in the ECEF coordinate
frame.

The unknown states include the vehicle’s 3-D position
rr ! [xr, yr, zr]T in the ECEF coordinate frame, the AGV-
mounted receiver’s clock bias δtr , and the clock bias of
the M cellular base stations {δtcell,m}M

m=1. The cellular LTE
technical specification requires transmitters in neighboring
cells to be synchronized in phase up to 10 µs [52]. The
cellular base station clock bias is a time-varying state, but
synchronization between the clock biases can be exploited.
Many cellular providers synchronize nearby base stations
in a much tighter fashion as was demonstrated over a 24-h
period in recent experimental studies [15], [53]. This syn-
chronization will be exploited in the proposed framework
to minimize the number of states that will be estimated.
Specifically, only the clock bias of one of the base stations
will be estimated (referred to as the first base station, without
loss of generality). The clock bias of the other cellular base
stations will be expressed as deviations from the clock bias
of the first base station. The model of such deviation and
the estimation algorithm will be discussed in the following
subsections.

B. AGV Measurements

The AGV-mounted receiver makes pseudorange mea-
surements to the N GNSS satellites. The nth GNSS

pseudorange measurement is modeled as

ρgnss,n(k) =
∥∥rr (k)− rgnss,n(k)

∥∥
2 + c · [δtr (k)− δtgnss,n(k)]

+ cδtiono,n(k) + cδttropo,n(k) + vgnss,n(k)

where c is the speed of light; δtiono,n and δttropo,n are
known ionospheric and tropospheric delays, respectively;
and δtgnss,n is the known satellite clock bias. The model
coefficients for the terms rgnss,n, δtiono,n, and δtgnss,n are
transmitted in the satellite’s navigation message. The term
δttropo,n is found using the Hopfield model [54]. The term
vgnss,n is the measurement noise, which is modeled as a
zero-mean white Gaussian random sequence with variance
σ 2

gnss,n. The measurements noise across different satellites
{vgnss,n}N

n=1 are assumed to be independent. The nth GNSS
pseudorange measurement is modified by subtracting the
known δtiono,n, δttropo,n, and cδtgnss,n to yield [54]

zgnss,n ! ρgnss,n − cδtiono,n − cδttropo,n + cδtgnss,n

=
∥∥rr − rgnss,n

∥∥
2 + cδtr + vgnss,n. (1)

Multipath interference and non-line-of-sight (NLOS) errors
are not included in the measurement model because NLOS
measurements are not used, and the GNSS receiver miti-
gates multipath when the LOS signal is present.

The AGV-mounted receiver also makes pseudorange
measurements to the M cellular base stations. The mth
cellular pseudorange measurement is modeled as [55]

ρcell,m(k) =
∥∥rr (k)− rcell,m

∥∥
2 + c · [δtr (k)− δtcell,m(k)]

+ vcell,m(k)

where vcell,m is the measurement noise, which is modeled
as a zero-mean white Gaussian sequence with variance
σ 2

cell,m. The measurement noise across different cellular base
stations {vcell,m}M

m=1 are assumed to be independent. The
model assumes that there is no multipath-induced bias. In
the case that there is multipath, a bias is introduced, caus-
ing a mismatch with the model. The subsequent sections
address bounding the pseudorange error, thereby, bounding
the induced bias in the position estimate.

By exploiting the synchronization between nearby cel-
lular base stations, the transmitter clock bias of the mth
cellular measurement can be expressed as

cδtcell,m(k) = cδtcell,1(k) + εm + vε,m(k) (2)

for m = 2, . . . , M, where εm is a deterministic constant
bias, and vε,m is approximated as a zero-mean white noise
sequence with variance σ 2

ε,m. This model is valid over rel-
atively short periods of time [53], but more sophisticated
models capturing the long-term behavior of synchroniza-
tion, or lack of, can be used [11], [15], [56], [57]. For all
cellular measurements other than the first cellular measure-
ment, the mth cellular pseudorange can be rewritten in terms
of cδtcell,1, namely

ρcell,m(k) =
∥∥rr (k)− rcell,m

∥∥
2 + cδtr (k)− cδtcell,1(k)

− εm + v′cell,m(k) (3)
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for m = 2, . . . , M, where v′cell,m ! vcell,m − vε,m is a zero-
mean white noise sequence with variance σ 2

cell,m + σ 2
ε,m.

Finally, using (2), the cellular pseudorange measure-
ment (3) to the M cellular base stations is modified accord-
ing to

zcell,1(k) =
∥∥rr (k)− rcell,1

∥∥
2 + c

[
δtr (k)− δtcell,1(k)

]

+ vcell,1(k)

zcell,m(k) ! ρcell,m(k) + εm

=
∥∥rr (k)− rcell,m

∥∥
2 + c

[
δtr (k)− δtcell,1(k)

]

+ v′cell,m(k)

for m = 2, . . . , M. The next subsection describes an esti-
mation procedure for εm and σ 2

ε,m.

C. Estimation of Cellular Measurement Clock Bias
Perturbations

The perturbation parameters of the mth cellular clock
bias from the first cellular clock bias [cf., (2)], namely, the
constant bias εm and the variance σ 2

ε,m can be estimated
by the AGV-mounted receiver locally or assumed to be
available from a cloud-hosted database. To estimate the
constant bias εm and variance σ 2

ε,m, the measurements are
differenced according to

ρcell,1(k)−ρcell,m(k) =
∥∥rr (k)− rcell,1

∥∥
2

−
∥∥rr (k)− rcell,m

∥∥
2 + εm

+ vcell,1(k)− v′cell,m(k). (4)

ρcell,1(k) can be swapped with another cellular measurement
without loss of generality. It is assumed that the differencing
operation in (4) is performed in an open area where rr is
accurately estimated (e.g., while the AGV is initially sta-
tionary with clear LOS to GNSS satellites). Subsequently,
define the measurement

zinit,m(k) ! ρcell,1(k)− ρcell,m(k)−
∥∥rr (k)− rcell,1

∥∥
2

+
∥∥rr (k)− rcell,m

∥∥
2

= εm + vcell,1(k)− vcell,m(k) + vε,m(k).

Assuming the measurement noise to be ergodic (i.e., the
ensemble average equals the time average), εm and σ 2

ε,m can
be estimated using a sample mean and a sample variance
over K measurements, namely

ε̂m =
1
K

K∑

k=1

zinit,m(k)

σ̂ 2
ε,m =

[
1

K − 1

K∑

k=1

[
zinit,m(k)− ε̂m

]2

]

− σ 2
cell,1 − σ 2

cell,m.

The value of K can be a fixed value chosen prior to the
initialization, or can be determined during initialization by
increasing K until the sample mean and variance converge.
In practice, the value of K depends on the batch size for
which (2) holds. Experimentally, it was observed that the
sample mean and variance converged in around 0.5 s with

measurements at a sampling time T = 0.1 s (i.e., K ≈ 50
samples).

D. Estimation of AGV States

The AGV’s state vector defined as xr !
[rT

r , cδtr, cδtcell,1]T is estimated from the measurement
vector zr ! [zgnss,1, . . . , zgnss,N , zcell,1, . . . , zcell,M]T through
a weighted nonlinear least-squares (WNLS) estimator.

The measurement Jacobian used in the WNLS estimator
is H ! [G, B], where

G !
[
GT

gnss, GT
cell

]T

Ggnss!





rT
r−rT

gnss,1

‖rr−rgnss,1‖2
...

rT
r−rT

gnss,N

‖rr−rgnss,N‖2




, Gcell !





rT
r−rT

cell,1

‖rr−rcell,1‖2
...

rT
r−rT

cell,M

‖rr−rcell,M‖2




,

and

B !
[

1N×1 0N×1

1M×1 −1M×1

]
(5)

where 1 and 0 are matrices of ones and zeros, respectively.
The G matrix is the partition of the measurement Jacobian
corresponding to the AGV position states, and can be found
in navigation textbooks [54]. The B matrix is the partition of
the measurement Jacobian corresponding to the clock bias
states.

In some cases, the GNSS and cellular receiver clocks
are not synchronized, which implies that each receiver
had a different clock bias, denoted as δtrgnss and δtrcell , re-
spectively. To account for this, the state xr is adjusted to
include the GNSS receiver’s clock bias, namely δtrgnss , as
well as the difference between the LTE receiver’s clock
bias and the first LTE base stations clock bias, namely
(δtrcell − δtcell,1). Therefore, the state vector that is estimated
becomes xr = [rT

r , cδtrgnss, c(δtrcell − δtcell,1)]T. The matrix B
is then adjusted in accordance with this new state to become

B !
[

1N×1 0N×1

0M×1 1M×1

]
. (6)

The weighting matrix in the WNLS is chosen as
inverse of the measurement noise covariance R =
diag[σ 2

gnss,1, . . . , σ
2
gnss,N , σ 2

cell,1, σ
2
cell,2 + σ 2

ε,2, . . . , σ
2
cell,M +

σ 2
ε,M].

V. SIGNAL RELIABILITY MAP GENERATION

The purpose of signal reliability maps is to find the
reliable measurements that can be used by the AGV, and
inform the path planning generator (discussed in Section VI)
of these measurements. Therefore, signal reliability maps
are generated only using information that is known a priori,
i.e., before the path planning generator prescribes a path to
the AGV. Information that is known a priori includes 3-D
building maps and other static objects in the environment.
Information that is not known a priori includes pedestrians
or other vehicles.
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A signal reliability map is a spatiotemporal map spec-
ifying for each location in the road network the GNSS
satellites to which there is expected to be blocked LOS and
the pseudorange multipath error produced for each cellular
base station. The following subsections define the signal
reliability maps for GNSS and cellular signals and discuss
their generation and storage.

A. GNSS Signal Reliability Map Generation

GNSS signals suffer from multipath interference and
NLOS conditions in urban environments. Multipath in-
terference in urban environments is a dominant error
source to which many mitigation techniques have been pro-
posed [58]–[60]. Receiver-based multipath mitigation tech-
niques typically require the LOS signal to be received [61],
while more advanced techniques in NLOS conditions re-
quire specialized antennas and additional hardware [62].

The GNSS receiver used in the experiment in the sequel
paper [18] used a posteriori multipath estimation (APME+)
mitigation technology to subtract multipath interference
from GNSS measurements [63]. The proposed approach in
this article will only use GNSS satellites that are classified
as having clear LOS. To this end, the signal reliability map
for GNSS signals stores information about whether the
LOS path between the receiver and satellite is obstructed.
GNSS visibility prediction using 3-D building maps has
been proposed in prior literature [30], [31]. GNSS reliability
maps differ from prior work in the way that the visibility
information is stored. Since GNSS satellite positions change
with time, the GNSS signal reliability maps store the time
intervals when a satellite is visible at a given location. The
intervals are stored for each satellite and each location.

Formally, the GNSS signal reliability map for a given
satellite is a sequence with P elements, where each element
represents a location in the road network. The environment
consists of N transmitters. The signal reliability map for the
nth satellite is

Mgnssn
= {Tgnssn,p}P

p=1, for n = 1, . . . , N.

Here, p represents a unique index corresponding to a partic-
ular location in the road network. Each Tgnssn,p is a sequence
of ordered pairs representing the start and end times for
which the nth satellite has unobstructed LOS at location p,
i.e.,

Tgnssn,p =
{

(tstart,p,τ , tend,p,τ )
}Tτ

τ=1 .

For one day, there are a total of Tτ time intervals with
start and end times tstart,p,τ and tend,p,τ , respectively. The
GNSS signal reliability map could be generated a priori
and updated periodically (e.g., every day, whenever new
ephemerides are available, or whenever the 3-D building
map undergoes change). The signal reliability map can be
stored locally at the vehicle or at a cloud-hosted database.
At a location p, the nth satellite has unobstructed LOS at
time t if

tstart,p,τ ≤ t ≤ tend,p,τ , for any τ = 1, . . . , Tτ .

Fig. 3. Visualization of GNSS signal reliability maps. (a) Region in
downtown Riverside, CA, USA, in which signal blockage to a particular

GNSS satellite is depicted as a 2-D red polygon. (b) Polygon layers
corresponding to 12 different satellites overlayed to generate a

“heat-type” map representing the number of satellites to which there is
NLOS. This figure is obtained with ArcGIS [49].

The signal reliability maps for N satellites are collectively
referred to by Mgnss = {Mgnssn

}N
n=1. Fig. 3 shows a visu-

alization of GNSS signal reliability maps. Here, Fig. 3(a)
shows a region in downtown Riverside, CA, USA, in which
signal blockage for a particular GNSS satellite is depicted as
a 2-D red polygon. Fig. 3(b) overlays the maps of 12 differ-
ent GNSS satellites to yield a “heat-type” map representing
the number of satellites to which there is NLOS.

For a given time, signal reliability maps are visualized as
point features, but they can also be visualized as a polygon
layer or raster feature. In the simulation and experimental
sections in the sequel paper [18], GNSS reliability maps are
stored as point features using ArcGIS software [49]. It is
worth noting that the proposed approach can be extended to
account for GNSS multipath bias by utilizing previously de-
veloped algorithms for simulating multipath bias for GNSS
signals [30], [59], [64].

Other methods for storing GNSS visibility information
can be used. For example, several locations in the road
network can store obstruction boundary information known
as skymasks, proposed in prior literature [65]. It is expected
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that the amount of memory required to store skymasks and
GNSS reliability maps is similar. As an example scenario,
consider storing reliability maps for GPS and GLONASS
satellites (49 active satellites), and that there are three times
in one day where the satellite becomes visible on average
over each location. The amount of memory required per
location is about 900 bytes (49 satellites × 6 time values
× 3 bytes per time value). Then, consider storing skymasks
over the same locations. Assume that there are 100 points
(200 total elevations and azimuths) stored in a skymask
as floats (4 bytes). The amount of memory required per
location is 800 bytes (200 floats × 4 bytes per float). It can
be seen that the amount of memory per location is about
the same for GNSS reliability masks and skymasks. One
advantage for using reliability maps is it will require less
computation compared to skymaps, because it only requires
checking that a time is within bounds. One disadvantage for
using reliability maps is as the number of GNSS satellites
increases, the amount of memory for GNSS reliability maps
will increase, while the amount of memory for skymasks
will stay the same.

B. Cellular Signal Reliability Map Generation

Compared to GNSS signals, cellular signals are often
received at lower elevation angles, which make them more
susceptible to multipath-induced errors. While multipath
mitigation techniques for cellular signals have been an
active area of research recently, multipath continues to
be among the most dominating sources of error, thereby
inducing a large pseudorange measurement bias, especially
when the power of the reflected path is higher than the power
of the direct path [12], [66].

The cellular signal reliability map stores simulated pseu-
dorange bias caused by multipath. The bias is found using
the complex channel impulse response, which provides
information about arrival time, phase, and power of each
signal path. The complex channel impulse response and the
LOS path can be readily calculated using proprietary simu-
lation software (e.g., Wireless Insite [67]). This calculation
requires knowledge about the cellular environment, in-
cluding transmitter location, signal characteristics, antenna
type, 3-D building map of the environment, and receiver
location. This is carried out for all M cellular transmitters
and different receiver locations within the environment. In
what follows, the multipath-induced bias calculation from
the channel impulse response is discussed.

At each receiver location, the impulse response for the
ith LTE OFDM symbol is given by

hi(t ) =
x=X−1∑

x=0

ai(x)δ(τ − τi(x)) (7)

where X is the number of impulses, ai(x) corresponds to
the complex-valued amplitude, and τi(x) is the correspond-
ing path delay. The complex channel impulse response
(7) can be used to measure the multipath interference,

χm ! χ1,m(i) + χ2,m(i), for m = 1, . . . , M, where

χ1,m(i) = A

∣∣∣∣∣

L−1∑

l=0

X−1∑

x=1

ai(x)e− j2π (l/L)(τi (x)/Ts+ẽθ−ξ )

∣∣∣∣∣

2

− A

∣∣∣∣∣

L−1∑

l=0

X−1∑

x=1

ai(x)e− j2π (l/L)(τi (x)/Ts+ẽθ +ξ )

∣∣∣∣∣

2

(8)

χ2,m(i) = 2A(
[( L−1∑

l=0

e− j2π (l/L)(ẽθ−ξ )
)

·

( L−1∑

l ′=0

X−1∑

x=1

a∗i (x)e j2π (l ′/L)(τi (x)/Ts+ẽθ−ξ )
)]

− 2A(
[( L−1∑

l=0

e− j2π (l/L)(ẽθ+ξ )
)

·

( L−1∑

l ′=0

X−1∑

x=1

a∗i (x)e j2π (l ′/L)(τi (x)/Ts+ẽθ +ξ )
)]

(9)

where([·] denotes the real part, Ts is the sampling interval,
0 < ξ ≤ 0.5 is the time shift in the LTE receiver’s tracking
loop (ξ = 0.5 is chosen in this article), L is the number of
subcarrier symbols in the pilot (200 when the bandwidth is
20 MHz and the cell-specific reference signal is used as the
pilot), and A is the signal power due to antenna gain and
implementation loss [14], [68]. The theory for (8) and (9)
is presented in [68]. The normalized symbol timing error ẽθ

is set to zero to assume perfect tracking. Using (8) and (9),
the multipath interference χm for all M cellular transmitters
is determined.

The multipath-induced bias is comprised of the multi-
path interference χm and the NLOS bias (i.e., path delay
between the first received path and the LOS path). That is,
the multipath-induced bias is given by

bm,p ! χm + cτi(0)− dLOS (10)

where dLOS is the length of the LOS path, therefore,
cτi(0)− dLOS is the NLOS bias. If |ai(x)| < κ , for all
x = 0, . . . , X − 1, where κ is a threshold, the LTE signal
is rendered too weak to be tracked and the signal reliability
map assumes no cellular measurement at that location. For
each cellular transmitter, the bias is stored for each location
in the cellular signal reliability map. Formally, the cellular
signal reliability map for the mth transmitter is a sequence
with P elements

Mcellm = {bm,p}P
p=1

where bm,p = ∅ when the mth cellular measurement is not
received at the pth location, where ∅ denotes null. The sig-
nal reliability maps for M LTE transmitters are collectively
referred to by Mcell = {Mcellm}M

m=1.
Fig. 4 shows a visualization of a cellular signal reliability

map for a single cellular base station corresponding to the
U.S. cellular provider AT&T in downtown Riverside, CA,
USA. A raster feature is illustrated, where the black regions
indicate that the pseudorange bias due to multipath at the pth
location exceeds a threshold ηmax = 0.5 m, i.e., bm,p ≥ 0.5
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Fig. 4. Visualization of the cellular signal reliability map. The black
regions indicate that the pseudorange bias due to multipath at the pth

location exceeds a threshold ηmax = 0.5 m, i.e., bm,p ≥ 0.5 or there is no
cellular measurement, i.e., bm,p = ∅ at the pth position. This figure is

obtained with ArcGIS [49].

or there is no cellular measurement, i.e., bm,p = ∅ at the
pth position. The threshold ηmax is the pseudorange bias
threshold used in the path planning optimization problem
explained in Sections VI-B and VII.

C. Thresholding Cellular Signal Reliability Map Analysis

As the LTE wavelength is around 15 cm, a change of
a few centimeters in the receiver position can change the
relative phase in the complex channel impulse response. The
relative phase affects the multipath interference χm. In prior
work, it was shown that areas where the multipath-induced
bias exceeds a threshold can be clustered together [42].
Therefore, a thresholded value of the multipath-induced
bias is used instead of the exact simulated value in the path
planning uncertainty-based constraint, discussed further in
Section VI-B. This subsection studies the validity of simu-
lating and using the thresholded cellular reliability maps.
The validity is studied over perturbations in the relative
phase in the complex channel impulse response.

The following assumption is studied: if the simulated
multipath-induced bias exceeds (or does not exceed) a
threshold ηmax, then the bias with perturbed relative phases
also exceeds (or does not exceed) ηmax. This claim is tested
by perturbing the multipath interference, i.e., the part of
the multipath-induced bias that is affected by phase. The
relative phases in several simulated channel impulse re-
sponses are perturbed, and the perturbed multipath inter-
ference terms are compared to the unperturbed terms. The
complex channel impulse responses are calculated with
Wireless Insite software, using 3-D building maps from
downtown Riverside, CA, USA, shown in Fig. 3. Around
45 600 locations were simulated in the downtown area. For
all locations that received more than one path, the relative
phases for each path were perturbed according to a uniform
distribution from −180◦ to 180◦, and 1000 perturbed mul-
tipath interference terms are calculated per location. Five
cases for ηmax are considered in the results shown in Table I.

TABLE I
Results From Multipath Interference Simulation

The metrics in Table I are defined as follows [69].

1) True positive (TP) is the number of perturbed terms
that do not exceed ηmax, while the unperturbed terms
also does not exceed ηmax.

2) True negative (TN) is the number of perturbed terms
that exceed ηmax, while the unperturbed term also
exceeds ηmax.

3) False positive (FP) is the number of perturbed terms
that do not exceed ηmax, while the unperturbed term
exceeds ηmax.

4) False negative (FN) is the number of perturbed terms
that exceedηmax, while the unperturbed term does not
exceed ηmax.

Table I also provides the true positive rate (TPR) and
true negative rate (TNR) [69], given by

TPR =
TP

TP + FN
, TNR =

TN
TN + FP

.

TPR corresponds to the percentage of the perturbed terms
that are correctly identified as not exceeding ηmax. TNR
corresponds the percentage of perturbed terms that are
correctly identified as exceeding ηmax. It can be seen in
Table I that for a threshold as low as 1 m, the percentage
of terms that are correctly identified as being below the
threshold is 91.07%.

VI. POSITION MSE AND UNCERTAINTY CONSTRAINT
CALCULATION

This section describes the formulation of the optimiza-
tion function and constraints used to generate the optimal
path for the AGV to follow. The optimization function
involves the position MSE, which is discussed in the first
subsection, while the constraint involves the largest eigen-
value of the position estimation error covariance, which is
discussed in the second subsection.

In what follows, the biased and unbiased error states
are formally defined based on the measurement model and
the estimator. Since the measurement model is nonlinear
with respect to the state vector xr , the model is linearized
according to

"zr = H"xr + v

where the "zr is the measurement error vector, which is
the difference between the measurement vector zr and its
estimate ẑr ; "xr ! xr − x̂r , i.e., "xr is the estimation error,
which is the difference between xr and the WNLS estimate
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x̂r ; and v ! [vgnss,1, . . . , vgnss,N , vcell,1, . . . , vcell,M]T. To an-
alyze the effect of multipath-induced bias, a deterministic
bias b is introduced in the measurement

"zr ! "z′r + b

where "z′
r = ["z′Trgnss, "z′Trcell]

T is the unbiased measure-
ment error vector.

The effect of the pseudorange bias on the position
estimate can be found through the normal equation (see,
for example, [70, (7.67)])

"xr = (HTR−1H)−1HTR−1"zr

= (HTR−1H)−1HTR−1("z′r + b)

= (HTR−1H)−1HTR−1"z′r
+ (HTR−1H)−1HTR−1b.

Therefore, the bias in the pseudorange introduces an addi-
tive bias in the estimation error according to

"xr = "x′r + xr,err

where xr,err ! [rT
r,err, cδtT

err]
T results from the multipath-

induced bias in the measurement, and "x′r !
["r

′T
r , c"δt

′T]T is the unbiased state estimation error.
The vector δt represents the vector of clock bias states.
Therefore, the unbiased state estimation error and the state
bias can be, respectively, expressed as

"x′r = (HTR−1H)−1HTR−1"z′r
xr,err = (HTR−1H)−1HTR−1b. (11)

The following subsection explains the steps for using the
GNSS and cellular signal reliability maps whose generation
was described in Section V to calculate the position MSE
for the path planning cost function, and calculate the largest
eigenvalue of the position estimation error covariance for
the path planning constraint.

A. Position MSE

The position MSE is a scalar measure, which accounts
for the precision and bias of an estimator [71], and is
commonly used due to its mathematical tractability. It refers
to the mean of the squared estimation error in the position
at a specified location and time, i.e.,

3-D position MSE = E
[
"rT

r "rr
]

= tr
[
E["rr"rT

r ]
]

= tr
[
E[("r′r + rr,err )("r′r + rr,err )T]

]

= tr
[
E["r′r"r′r

T]
]

+
∥∥rr,err

∥∥2
2 (12)

where E[ · ] denotes the expected value and tr[ · ] denotes
the trace, and (12) follows from "r′r being zero-mean.
The position bias is ‖rr,err‖2

2, obtained from the first three
elements of xr,err. The covariance of the unbiased position
error is related to the weighted-position dilution of precision
(WPDOP) according to [72]

WPDOP !
√

tr
[

cov["r′r]
]

=
√

h2
11 + h2

22 + h2
33

where h j j is the jth diagonal of (HTR−1H)−1.
The calculation of the position bias ‖rr,err‖2 due to

multipath uses the simulated LOS and pseudorange bias
due to multipath, which were found in the signal reliability
maps. The steps to calculate the position MSE are described
next.

1) Step 1. Calculate the Vector b: For location p and
time t , there are N̄ ≤ N reliable GNSS measurements as
determined by the signal reliability maps such that for
each n = 1, . . . , N̄ , where t satisfies a time interval de-
fined in Tgnssn,p. Also, there are M̄ ≤ M reliable cellular
measurements for all m = 1, . . . , M̄, such that bm,p is not
null and |bm,p| ≤ ηm, where ηm is the mth element of
R−T

a 1(N̄+M̄ )×1ηmax, where Ra is the Cholesky factor of R,
i.e., R = RT

a Ra. The method for calculating the threshold
ηmax is shown in Section VI-B. The pseudorange bias vector
is b = [01×N̄ , b1,p, . . . , bM̄,p]T.

2) Step 2. Calculate the Jacobian H: The rows of H
are calculated from the transmitter positions of the corre-
sponding elements in b, and the coordinates of location p.
It is assumed that the biased position and true position are
close enough so that the measurement Jacobian for the true
position is close to that of the biased position.

3) Step 3. Calculate the MSE: The position MSE is
calculated from

3-D position MSE ! WPDOP2 +
∥∥rr,err

∥∥2
2 .

The position MSE at a particular position p and time t , de-
noted MSE(p, t ), will be used in the path planning algorithm
described in Section VII.

B. Uncertainty Constraint Calculation

This subsection describes the calculation of the path
planning constraint on the largest eigenvalue of the position
estimation error covariance. The purpose of this constraint
is to restrict the AGV’s path to be within the maximum
position uncertainty. To this end, the largest eigenvalue of
the position-estimation error covariance will be used, which
specifies the length of the largest axis of the uncertainty
ellipsoid [73]. The largest eigenvalue at a particular position
p and at time t , denoted λmax(p, t ), is found from the upper
3× 3 matrix block of (HTR−1H)−1, where H is calculated
according to the method discussed in Section VI-A.

This constraint is also related to a conservative upper
bound on the position bias, which can be derived from the
expression

rr,err = (G̃TG̃)−1G̃Tb̄ (13)

where

RAGOTHAMAN ET AL.: AUTONOMOUS GROUND VEHICLE PATH PLANNING IN URBAN ENVIRONMENTS 1571

Authorized licensed use limited to: The Ohio State University. Downloaded on October 12,2022 at 17:18:58 UTC from IEEE Xplore.  Restrictions apply. 



G̃ = (I− B̄!B̄T)Ḡ, Ḡ = R−T
a G

! = (B̄TB̄)−1, b̄ = R−T
a b, B̄ = R−T

a B.

The derivation of (13) is given in Appendix A. The bias
corresponding to the mth cellular measurement is con-
strained such that |bm,p| ≤ ηm, where ηm is the mth el-
ement of R−T

a 1(N̄+M̄ )×1ηmax and ηmax is the pseudorange
bias threshold. The constraint can also be written as |b̄| ≤
1(N̄+M̄ )×1ηmax, where | · | corresponds to the absolute value
of each element in the vector.

Subsequently, the upper bound on the position bias can
be found according to

∥∥rr,err
∥∥

2 ≤ maximize
|b̄|≤1ηmax

∥∥(G̃TG̃)−1G̃Tb̄
∥∥

2

≤ maximize
‖b̄‖2≤

√
M̄ηmax

∥∥(G̃TG̃)−1G̃Tb̄
∥∥

2 (14)

= maximize
‖b̄‖2=

√
M̄ηmax

∥∥(G̃TG̃)−1G̃Tb̄
∥∥

2 (15)

=
√

M̄ηmax maximize∥∥∥b̄′
∥∥∥

2
=1

∥∥∥(G̃TG̃)−1G̃Tb̄′
∥∥∥

2
(16)

= ηmax

√
M̄σ ′max

[
(G̃TG̃)−1G̃T]

(17)

= ηmax

√
M̄ · λmax

[
(G̃TG̃)−1

]
! r̄max (18)

where σ ′max denotes the largest singular value, λmax denotes
the largest eigenvalue, and r̄max denotes the upper bound on
the position bias. Equation (14) is found by relaxing the box
constraint (i.e., a constraint where the optimization vector,
b̄ in this case, has upper and lower thresholds) to a 2-norm
ball (i.e., the space bounded by the L2-norm), where M̄ is
the number of cellular measurements used. Equation (15)
follows from convexity of the objective function and con-
straints (i.e., the value of ‖b̄‖2 that maximizes the objective
function lies on the boundary of the constraint). Equation
(16) is found through change of variables b̄′ ! 1√

M̄ηmax
b̄.

Equation (17) follows from the definition of the largest
singular value. Equation (18) follows from the relationship
between the largest eigenvalue and the largest singular value
of a matrix. The term λmax[(G̃TG̃)−1] denotes the maximum
eigenvalue of the position estimation error covariance. The
upper bound in (18) shows that the maximum eigenvalue
also relates to the position error.

C. Simulated Receiver Spacing

This subsection studies the impact of spatial sampling
on the position MSE, defined in Section VI-A. The position
MSE was calculated over a 209-m path based on simulated
LTE and GPS reliability maps. The GPS reliability map was
generated on September 20, 2020 at 11:20 UTC. Otherwise,
the simulation environment and settings are similar to those
defined in the companion paper [18]. Fig. 5 shows the
calculated position MSE over various simulated receiver
position spacings. The figure also shows the position root-
mean-squared error (RMSE) for each spacing, calculated as
the root of the average position MSE along the path.

Fig. 5. Position MSE over simulated receiver position spacings of (a)
10 m, (b) 8 m, (c) 1 m, and (d) 0.5 m. A spike in position MSE occurs

between distances 151.5 and 155 m, and is captured in (b)–(d).

It can be seen that there is a loss of resolution in the
high spacing cases, where the position MSE appears to
be smeared compared to the lower resolution cases. In
Fig. 5(d), around 150 m, there is a 3.5-m section of high
position MSE that is not captured in Fig. 5(a). Despite these
differences, the position RMSE averages to a similar value
across all spacings to within 0.3 m.

The following conclusions can be drawn as they pertain
to path planning metrics. When using position MSE as a
path planning cost function, a high spacing (10 m) suffices,
as can be shown by the closeness of the position RMSE
over the four spacing cases. As a path planning constraint,
smaller spacing (1 m) would be preferable to capture the
spikes and locations with too few measurements. Methods
for improving the sampling method (e.g., based on the
amount of surrounding building features) can be explored
in future work.

VII. PATH PLANNING GENERATION

The path planning generation step utilizes the signal
reliability map to prescribe an optimal path for the AGV
to follow. This section describes the steps to determine the
optimal path between a start position at a desired departure
time and a target position. The optimal path is one that
accounts for the shortest path length and the position MSE,
subject to a maximum tolerable uncertainty (as measured
by the largest eigenvalue of the position estimation error
covariance).

To account for both position error and path length, the
optimization cost function is chosen to be the sum of the
position MSE along the path, multiplied by the distance
between two adjacent points. The distance is explicitly con-
sidered in the cost function because only including position
MSE could result in lengthy paths, e.g., paths that require
the AGV to leave and reenter the urban environment. The
optimization function constraints account for the position

1572 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 57, NO. 3 JUNE 2021

Authorized licensed use limited to: The Ohio State University. Downloaded on October 12,2022 at 17:18:58 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Flow chart of signal reliability map generation, position MSE
and uncertainty constraint calculation, and path planning generation.

bias due to cellular multipath as well as uncertainty about the
AGV’s position estimate. The user-specified constraints are:
threshold for position bias r̄max and threshold for position
uncertainty λ̄max. The threshold λ̄max is used as a constraint
for all points p and time t along the AGV’s path, i.e.,
λmax(p, t ) ≤ λ̄max. The threshold λ̄max is also used along
with r̄max to calculate a threshold on the pseudorange bias
ηmax. The calculation of ηmax can be achieved from (18) by
substituting the user-specified r̄max, and using λ̄max in place
of λmax[(G̃TG̃)−1]. Since M̄ ≤ M, M̄ is replaced with M to
calculate an upper bound that is independent of a particular
location and is valid for the entire environment.

The path planning generation block solves a con-
strained optimization problem, discussed next, and returns
the AGV’s prescribed path along with a list of reliable
GNSS satellites and cellular base stations to use along the
path. As the AGV traverses this optimal path, it only uses
signals from these reliable GNSS satellites and cellular
base stations. Note that to make the WNLS estimation
problem observable, there needs to be at least either N̄ ≥ 4
reliable GNSS satellite signals to estimate x′r ! [rT

r , cδtr]T

or N̄ + M̄ ≥ 5 reliable GNSS satellite and cellular signals to
estimate xr ! [rT

r , cδtr, cδtcell,1]T, with M̄ ≥ 1. Fig. 6 sum-
marizes the flowchart of signal reliability map generation,
position MSE and eigenvalue calculation, and path plan-
ning generation with the corresponding inputs and outputs
defined in Sections V and VI.

To account for distance in the optimization problem,
each location p is assigned a distance, for p = 1, . . . , P.
This distance, denoted dist(p), signifies the length of the
road network segment represented by the location p and its
adjacent location, and is based on the spatial discretization
of the reliability maps. The steps to calculate the distance
for locations p = 1, . . . P are summarized in Fig. 7. Point p3

in Fig. 7 shows the calculation of dist(p3) when the point is
adjacent to an intersection, and Point p2 in Fig. 7 shows the
calculation of dist(p2) when the point is not adjacent to an
intersection. If the street has multiple lanes in one direction,
a location index is assigned to each lane, and dist(p) is
assigned the distance shown divided by the number of lanes.

The path planning optimization problem is formulated
next. Formally, a path from the start to the target location
is denoted π ∈ P , where P is the set of all paths. The path

Fig. 7. Steps to calculate dist(p) for 3-D points whose indices are p2
and p4. For p4, which is adjacent to an intersection, the 3-D midpoint

between p4 and p3 is calculated, then dist(p4) is the distance between the
midpoint and the intersection center. For p2, which is not adjacent to an

intersection, the midpoint between p3 and p2 is calculated, then the
midpoint between p2 and p1 is calculated. Then, dist(p2) is the distance

between the two calculated midpoints.

π is composed of a sequence of position indices between
the start position index ps and the target pg, namely π =
{ps, p1, p2, . . . , pg}.

The optimization problem is expressed as

minimize
π∈P

∑

p∈π
dist(p) · MSE(p, t )

subject to λmax(p, t ) ≤ λ̄max∥∥rr,err
∥∥

2 ≤ r̄max. (19)

The second constraint in (19) can be relaxed using (18)
to yield the optimization problem

minimize
π∈P

∑

p∈π
dist(p) · MSE(p, t )

subject to λmax(p, t ) ≤ λ̄max

|b̄| ≤ 1ηmax. (20)

Note that the cost function in (20) accounts for both
the position MSE and the path length. Other cost functions
could be used to favor either part: position MSE versus path
length, e.g., using an exponential for either term.

The optimization problem (20) resembles the problem
of finding the shortest path in a weighted graph, where the
roads are the edges of the graph and the path planning metric
determines the weight of each edge. Several algorithms have
been proposed to find the shortest path that use dynamic
programming [74]–[76]. These algorithms cannot be used
because the problem lacks optimal substructure due to the
time-varying nature of the costs and constraints in (20).
The following subsections show two possible approaches
for prescribing a path to the AGV.

A. Path Planning Generator: Approach A

To simplify the optimization problem and use dynamic
programming for the path planning algorithm, it will be
assumed that the GNSS reliability map from the depar-
ture time through the time the AGV arrives at the target
position is time invariant, making MSE(p, t ) = MSE(p)
and λmax(p, t ) = λmax(p). This assumption is reasonable
for short AGV paths during which the geometry of the

RAGOTHAMAN ET AL.: AUTONOMOUS GROUND VEHICLE PATH PLANNING IN URBAN ENVIRONMENTS 1573

Authorized licensed use limited to: The Ohio State University. Downloaded on October 12,2022 at 17:18:58 UTC from IEEE Xplore.  Restrictions apply. 



GNSS satellite constellation does not vary significantly. For
example, a GPS satellite moves less than 0.152 radians in
15 min (see Appendix B). An additional check is performed
to ensure that the GNSS reliability map does not have
sharp changes (i.e., loss of a satellite) as the AGV executes
the path, in which case Approach B is to be implemented
instead. This check requires the assumption that the vehicle
travels at a constant speed vAGV.

Based on the aforementioned assumption, dynamic pro-
gramming can be used in this approach. Among exist-
ing path planning algorithms, Dijkstra’s algorithm is most
widely used and is recognized as a classic algorithm to find
the shortest path between two arbitrary nodes of a weighted
graph [77]. Dijkstra’s algorithm is readily implementable
with acceptable complexity; thus, it is adopted in this ap-
proach to solve the AGV path planning problem.

Assume that the AGV is driving in a region consisting of
ι intersections and ω roads (e.g., side streets and highways).
This region can be modeled by a graph G = (ι, ω), which
consists of ι nodes and ω edges. Each intersection corre-
sponds to a node, and each street segment that connects
two intersections corresponds to either one or two edges. In
the experiments in the companion paper [18], the graph is
constructed using the following rules.

1) One-way street segments are assigned one edge with
one direction.

2) Two-way street segments are assigned two edges
with one direction for each way.

The path planning metric f (β, α) assigns a nonnegative
real number corresponding to the weight of the edge from
nodes β to α in G. Based on the objective function in (20),
the weight is given by the position MSE at all points from
nodes β and α, denoted P(β, α), multiplied by dist(p), i.e.,

f (β, α) =
∑

p∈P(β,α)

dist(p) · MSE(p).

It is assumed that the deviation between MSE(p) and the
MSE calculated at the true time is small. Based on the
constraints in (20), if λmax(p) exceeds λ̄max for p ∈ P(β, α),
then the edge is removed from the graph.

Dijkstra’s algorithm is implemented as follows. Let s
indicate the start node at which the AGV starts, and let g
indicate some target node. Let d (g) denote the cost along
the path from s to g, let S denote the set of edges that have
already been evaluated by the algorithm, and let V denote
the set of unvisited nodes. Within a path γ (g) ∈ G, denote
αp as the predecessor of α and βp as the predecessor of β. To
ensure γ (g) does not have loss of a satellite, the algorithm
tracks the time of travel from the source to the current node,
denoted t (s, α). Approach A is initialized as follows:

1) d (s) = 0;
2) t (s) = 0;
3) for each node α adjacent to s, set d (α) = f (s, α) and

αp = s;
4) for each node α such that α .= s and α in not adjacent

to s, set d (α) =∞;

Algorithm 1: Path Planning Algorithm.
Input: G, s, g, S, and f (β, α)
Output: d (g) and γ (g)
1: Find α ∈ V that minimizes d (α)
2: For each β adjacent to α
3: If d (α) + f (β, α) < d (β ),
4: d (β ) = d (α) + f (β, α)
5: βp = α
6: t (s, α) = t (s, α) + dist (β, α) · vAGV

7: If satellite becomes obstructed at α between
t (s)

8: and t (s, α),
9: Exit the Algorithm, goto Approach B
10: Else,
11: Do not change d (β ) and βp

12: End if
13: End for
14: V ← V − {α}
15: S← S + {α}
16: If S .= V ,
17: Goto Step 1
18: Else,
19: Exit the Algorithm
20: End if

5) S = {s}.

After the aforementioned initialization, the path plan-
ning algorithm outlined in Algorithm 1 is executed.

If no paths satisfy the constraint, then the user is made
aware that there are no feasible paths with the current
settings. To receive ζ admissible paths in addition to the
optimal path, Yen’s algorithm is used [78]. Yen’s algorithm
is described in detail in the next subsection. The node and
edge data of the graph G can be extracted from digital maps,
such as the Open Street Map (OSM) database [79]. OSM
is built by a community of mappers that contribute and
maintain roads, trails, and railway stations information.

B. Path Planning Generator: Approach B

For long trajectories spanning long travel time, the
optimization problem cannot be simplified as shown in the
previous subsection, since the assumption that the reliability
map is time-invariant would not hold. Therefore, this sub-
section considers path planning for long trajectories while
accounting for satellite motion.

In this approach, a trajectory is considered long if there
is a large change in the geometry of the satellites that are
expected to have LOS along the path. The resultant path is
determined to be long if either of the following conditions
are met.

1) The path is long if it is expected to take longer
than a threshold time to traverse the path. GPS
satellites move less than 0.152 radians in 15 min at
high elevation angles (see Appendix B), so we can
consider 15 min to be the threshold time. A threshold
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distance between the start and target location can
be calculated by assuming a constant speed vAGV.
Therefore, if the distance between the start and target
location exceeds 900 s ·vAGV (i.e., the total distance
travelled by a vehicle moving at speed vAGV for 15
min), Approach B is used.

2) The path is considered long based on the check
performed in Approach A. If a satellite is expected
to lose LOS during the path execution, there will be a
large change in the cost function and constraints, and
Approach B is used. This check is performed using
GNSS reliability maps and assumption of constant
speed.

Approach B is implemented as follows. The road net-
work is modeled as a graph G similar to Approach A, except
the edge weights correspond to Euclidean distance, i.e.,

f1(β, α) =
∑

p∈P(β,α)

dist(p).

The ζ shortest paths in Euclidean distance are found in the
road network using Yen’s algorithm [78]. The ζ shortest
paths are stored inA, where each path is denoted asAz from
z = 1, . . ., ζ . Yen’s algorithm exploits the fact that many of
the shortest paths will be coincident. This is done by first
setting some edge weights to∞, then finding the shortest
path from a selected node in the kth previous path (called
a spur node and denoted αspur) to the target node g. This
path from αspur to g, denoted as γspur, is called the spur path.
Then, the new path is calculated by adding the spur path to
the kth previous path from s to αspur, called the root path
and denoted γrootpathk

. The resulting path is added to set B,
and the shortest path in B is added to set A.

The path planning cost along each path inA is calculated
based on the position MSE

f2(Az ) =
∑

p∈P(Az )

dist(p) · MSE(p, t )

for z = 1, . . ., ζ , where P(Az ) is the set of location indices
in Az. The algorithm returns the path with the smallest
f2(Az ) that satisfies λmax(Az ) > λ̄max for p ∈ P(Az ) and for
all z = 1, . . ., ζ . The constraint λmax(Az ) is the maximum
eigenvalue metric along the entire path Az based on the
constraints in (20).

After the aforementioned initialization, the path plan-
ning algorithm outlined in Algorithm 2, whereAz[k] is used
to denote the kth node in path Az.

The computational complexity of Approach B is O(ζ ι3),
which is higher than the computational complexity of Ap-
proach A, O(ι2) [78]. Another disadvantage for Approach
B is that the prescribed path is not guaranteed to be optimal
like in Approach A. However, for trajectories with long du-
ration, Approach B will be more correct because it accounts
for satellite motion. Choosing Approach A over Approach
B for paths with long duration can lead to worse navigation
performance than expected, or ignoring measurements that
can be used. This point is discussed further in the sequel
paper [18].

Algorithm 2: Path Planning Algorithm.
Input: G, s, g, f1, f2

Output: d (g) and γ (g)
1: A1 = Dijkstras(G, s, g)
2: γ (g) = A1; d (g) = f2(A1)
3: For z = 2 to ζ ,
4: Create local copy of G; B = {}
5: For k = 1 to len(Az−1)− 1
6: αspur = Az−1[k]
7: γrootpathz

= Az−1[0 : k]
8: For j = 1 : z − 1,
9: γrootpath j

= A j[0 : k]
10: If γrootpathz

= γrootpath j
,

11: In G copy, f1(αspur,A j[k + 1]) =∞
12: End if
13: End for
14: γspur = Dijkstras(G, αspur, g)
15: B← B + {γrootpathk

+ γspur}
16: End for
17: Sort B
18: If λmax(B1) < λ̄max and f2(B1) > d (g)
19: γ (g) = B1; d (g) = f2(B1)
20: End if
21: A← A + B1

22: End for

VIII. CONCLUSION

This article considered the problem where an AGV
equipped with GNSS and cellular receivers desires to reach
a target location while taking the shortest path with min-
imum position MSE, while guaranteeing that the bias in
the position estimate and the position uncertainty are below
desired thresholds. Parameters of the cellular pseudoranges
related to the transmitter clock bias are estimated in an ini-
tialization step in an open-sky environment. A path planning
generator prescribes a trajectory that satisfies this objective
using a 3-D building map to create signal reliability maps for
GNSS and cellular LTE signals. The signal reliability maps
are used to calculate the position MSE and uncertainty-
based constraint at each location, which in turn is used
to generate an optimal path for the AGV to follow. In
Part II of this study, extensive simulation and experimental
results are presented demonstrating the improvement in the
position RMSE by employing the proposed framework and
the consistency between the simulated results with those
obtained experimentally on a ground vehicle driving in
downtown Riverside, CA, USA.

This article demonstrated the feasibility of using path
planning to improve GNSS and cellular positioning, and
there are opportunities for future work. Different methods
of spatial sampling can be explored, where location indices
are distributed based on properties of the road network.
Other or additional information can be stored in reliability
maps, such as measurement noise variances as a function
of simulated carrier-to-noise ratio. Other error sources can
be introduced in the path planning cost and constraints,
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such as GNSS multipath-induced bias, or inaccuracies in
the building footprints that have been modeled in prior work
[80]. Methods for GNSS and cellular visibility predictions
can be improved through comparing signal availability and
received signal strength to 3-D map predictions using power
and shadow matching [29], [34], or using a fish-eye camera
to detect GNSS NLOS [33]. The same costs and constraints
can be evaluated with different navigation frameworks that
use filtering techniques and sensor fusion. Integrity moni-
toring techniques [47] and map matching [48] can also be
used to improve transmitter selection or augment the path
planning cost function. Time-varying path planning in ap-
proach B can be improved by using traffic information [81].

APPENDIX A

RELATIONSHIP BETWEEN PSEUDORANGE AND POSI-
TION BIAS

This appendix establishes the relationship between posi-
tion bias and pseudorange bias [cf., (13)]. For this analysis,
it is assumed that the biased position and true position are
close enough so that the measurement Jacobians evaluated
at each are approximately equal.

From (11), the relationship between pseudorange bias
and the state bias is given by

xr,err ! (HTR−1H)−1HTR−1b.

Consider the Choleky factorization of R = RT
a Ra, and de-

fine H̄ ! R−T
a H and b̄ ! R−T

a b, which results in

xr,err = (H̄TH̄)−1H̄Tb̄. (21)

Recall that H ! [G, B] and xr,err ! [rT
r,err, cδtT

err]
T; there-

fore, (21) can be partitioned as

[
rr,err

cδterr

]

=
[

ḠTḠ ḠTB̄
BTḠ B̄TB̄

]−1 [
ḠT

B̄T

]

b̄.

An expression for rr,err can be found through block matrix
inversion

rr,err =
[
A −AḠTB̄!

] [
ḠT

B̄T

]

b̄

A ! (ḠTḠ− ḠTB̄!B̄TḠ)−1 (22)

where ! = (B̄TB̄)−1. After rearranging (22), the relation-
ship is found to be

rr,err = (ḠTḠ− ḠTB̄!B̄TḠ)−1(ḠT − ḠTB̄!B̄T)b̄

= (ḠT(I− B̄!B̄T)Ḡ)−1ḠT(I− B̄!B̄T)b̄

where (I− B̄!B̄T) is a projection matrix. The aforemen-
tioned equation can be rewritten as

rr,err = (G̃TG̃)−1G̃Tb̄

where G̃ ! (I− B̄!B̄T)Ḡ.

Fig. 8. Description of the variables used to approximate the change in
satellite geometry.

APPENDIX B

CHANGE IN GNSS SATELLITE GEOMETRY

This appendix provides an approximation of the change
in satellite geometry as a function of time. For a conservative
approximation, the GNSS satellite is assumed to start at
zenith, where the angular velocity from the surface of Earth
is fastest. GNSS satellite angular velocities, denoted ωs, can
be used. For example, for a GPS satellite ωs ≈ 1.522 rad/s.
For low to medium orbit altitudes, the magnitude of the
tangential velocity of the satellite in the ECEF shows small
variation and can be approximated by a constant [82]. If the
satellite starts at zenith, the amount of time TGPS it takes for
the GPS satellite to travel 3θ radians can be approximated
by

TGPS ≈
2

ωs − ωE cos i
cos−1

(
rearth

rGPS
sin 3θ − π

2
+ 3θ

)

(23)

where rearth ≈ 6371 km is the radius of Earth, ωE ≈
7.2921× 10−5 rad/s is the Earth’s angular speed, i = 55◦ is
the inclination angle of the GPS satellite, and rGPS ≈ 26 571
km is the altitude of the GPS satellite. Equations (23) can
be used to calculate the time it takes for the satellite to travel
3θ radians (see Fig. 8).
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