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Navigation of an unmanned aerial vehicle (UAV) to reach a desired
waypoint with provable guarantees in global navigation satellite sys-
tem (GNSS)-denied environments is considered. The UAYV is assumed
to have an unknown initial state (position, velocity, and time) and
the environment is assumed to possess multiple terrestrial signals
of opportunity (SOPs) transmitters with unknown states (position
and time) and one anchor SOP whose states are known. The UAV
makes pseudorange measurements to all SOPs to estimate its own
states simultaneously with the states of the unknown SOPs. The
waypoint navigation problem is formulated as a greedy (i.e., one-step
look-ahead) multiobjective motion planning (MOMP) strategy, which
guarantees that the UAV gets to within a user-specified distance of the
waypoint with a user-specified confidence. The MOMP strategy bal-
ances two objectives: i) navigating to the waypoint; and (ii) reducing
UAV’s position estimate uncertainty. It is demonstrated that in such

Manuscript received April 7, 2021; revised July 29, 2021; released for
publication August 2, 2021. Date of publication August 10, 2021; date of
current version February 10, 2022.

DOIL. No. 10.1109/TAES.2021.3103140
Refereeing of this contribution was handled by J. Seo.

This work was supported in part by the National Science Foundation
(NSF) under Grant 1929571 and Grant 1929965, in part by the Office of
Naval Research (ONR) under Grant N0O0014-19-1-2613, and in part by the
University of California, Irvine Multidisciplinary Engineering Research
Initiative program.

Authors’ addresses: Yanhao Yang is with the Mechanical Engineering
Department, Carnegie Mellon University, Pittsburgh, PA 15213 USA,
E-mail: (yanhaoy @andrew.cmu.edu); Joe Khalife and Zaher M. Kassas
are with the Department of Mechanical and Aerospace Engineering, Uni-
versity of California, Irvine, CA 92697 USA E-mail: (khalifej@uci.edu;
zkassas @ieee.org); Joshua J. Morales is with the Department of Electrical
Engineering and Computer Science, University of California, Irvine, CA
92697 USA, E-mail: (joshum9@uci.edu). (Corresponding author: Zaher
M. Kassas.).

0018-9251 © 2021 IEEE

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 58, NO. 1

an environment, formulating the waypoint navigation problem in a
so-called “naive” fashion by heading directly to the waypoint would
result in failing to reach the waypoint. This is due to poor estimability
of the environment. In contrast, the MOMP strategy guarantees (in
a probabilistic sense) reaching the waypoint. Monte Carlo simulation
results are presented showing that the MOMP strategy achieves the
desired objective with 95% success rate compared to a 36% success
rate with the naive approach. Experimental results are presented for
a UAV navigating to a waypoint in a cellular SOP environment, where
the MOMP strategy successfully reaches the waypoint, while the naive
strategy fails to do so.

[. INTRODUCTION

Unmanned vehicles (UAVs) are increasingly being used
in a wide range of civilian and military applications, in
which it is too costly or dangerous to send human-operated
vehicles. These applications include search and rescue,
fire fighting, traffic monitoring, agriculture, delivery, and
surveillance. The majority of missions in these applications
require the UAV to fly to specified waypoints efficiently and
reliably in dynamic and uncertain environments. Reach-
ing these waypoints reliably with no human-in-the-loop
requires the UAV to continuously maintain its position in
space and time within the environment using an accurate
and robust navigation system.

Today’s UAV navigation systems essentially rely on
global navigation satellite system (GNSS) signals. How-
ever, it is well-known that GNSS signals can become un-
reliable in environments where UAVs conduct missions:
GNSS signals get highly attenuated in deep urban canyons
and under canopies [1] and are susceptible to jamming
and malicious spoofing [2]. To alleviate these shortcomings
during GNSS outages, UAV navigation systems typically
supplement GNSS receivers with additional sensors (e.g.,
inertial measurement units (IMUs) [3], cameras [4], and
lasers [5]). However, after prolonged GNSS unavailability
periods, the UAV’s position estimation error and estima-
tion uncertainty could accumulate to unacceptable levels,
compromising the safety and success of the UAV’s mission.
While the accumulation rate of UAV positioning error could
be reduced by incorporating additional sensors into the
UAV’s sensor-suite, this could violate cost, size, weight,
and power (CSWaP) constraints.

A more elegant and CSWaP-efficient approach is to de-
tect and map existing features in the unknown environment
and to prescribe the UAV’s trajectory to minimize the UAV’s
states uncertainty, which is estimated using measurements
drawn from the mapped features [6]. Fortunately, there is
plenitude of features in locales of interest, which a UAV
may exploit in the absence of GNSS signals in order to
autonomously navigate to the waypoint (e.g., trees, light
poles, buildings, etc.). This is typically achieved via the
well-studied problem of simultaneous localization and map-
ping (SLAM) [7]-[9] in the robotics literature.

Another class of features, which could be exploited
in GNSS-denied environments is signals of opportunity
(SOPs) [10]-[12]. SOPs are ambient radio signals, which
are not intended as navigation sources, e.g., cellular sig-
nals [13]-[17], digital television signals [18], [19], AM/FM
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radio signals [20], [21], and low earth orbit satellite (LEO)
signals [22]-[25]. SOPs have been exploited to produce
navigation solutions in a standalone fashion or as an aiding
source for an INS in the absence of GNSS signals [26].
Meter-level accurate navigation has been demonstrated
on ground vehicles with terrestrial cellular and television
SOPs [27]-[29], while submeter-level accurate navigation
has been demonstrated on UAVs [30].

The problem of navigating with unknown SOPs is
termed radio SLAM [26] or variations thereof [31]. While
the radio SLAM problem shares similarities with the
robotics SLAM problem, radio SLAM possesses specific
complexities due to the dynamic and stochastic nature of
the spatiotemporal state space. In particular, unlike the static
features comprising the robotics SLAM environment, SOPs
are equipped with non-ideal clocks, whose error (bias and
drift) is dynamic and stochastic. What is more, the number
of SOPs could be limited compared to the plenitude of
static features in the robotics SLAM environment, and the
initial uncertainty around the SOP states could be large. This
makes the radio SLAM environment poorly estimable, and
the coupling between the control objective (motion plan-
ning toward the waypoint) and sensing/estimation objective
(motion planning to gather the “best” information from
SOPs) evermore important. Even for the simple objective of
achieving situational awareness in these environments (i.e.,
estimating the UAV’s states simultaneously with estimating
the SOPs’ states) without requiring the UAV to reach a
desired waypoint, it was shown that moving in a random
or an open-loop fashion would cause the UAV to get lost
(exhibited by filter divergence) [32].

Initial work on greedy (i.e., one-step look-ahead) mo-
tion planning for optimal information gathering in radio
SLAM environments was conducted in [32], and receding
horizon (i.e., multistep look-ahead) trajectory optimization
was studied in [33]. While the proposed approaches were
shown to maintain localization accuracy and map quality
by prescribing optimal trajectories, they did not take into
consideration a desired waypoint as part of the UAV’s
mission. Waypoint navigation brings a second objective that
could contradict with the objective of maintaining a good
estimate of the UAV’s states. In contrast to previous work,
this article considers the problem of UAV greedy motion
planning in a radio SLAM environment to reach a desired
waypoint with provable guarantees.

The contributions of this article are as follow. First, a
multiobjective motion planning (MOMP) strategy is formu-
lated. Three cost functions that reflect the two objectives—
namely, mission completion and uncertainty reduction; are
derived using probabilistic and information theoretic met-
rics. It is shown that under certain conditions, these cost
functions are equivalent. Second, the cost function is modi-
fied by introducing weights for the terms pertaining to each
objective, and a method to adaptively set the weights online
is proposed. This adaptation is shown to be essential for
successful mission completion. Third, the article identifies
a stopping criterion that guarantees that the UAV is within a
desired distance to the waypoint with a desired confidence,

664

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 58, NO. 1

declaring the mission as complete. Fourth, Monte Carlo
simulations are presented showing that the MOMP strat-
egy achieves the desired objective with 95% success rate
compared to a 36% success rate with a naive approach (i.e.,
one which prescribes the shortest trajectory to the waypoint
without considering the UAV’s position uncertainty). Fifth,
experimental results are presented for a UAV navigating to a
waypoint in a cellular SOP environment, where the MOMP
strategy successfully reaches the waypoint, while the naive
strategy fails to do so.

The rest of this article is organized as follows.
Section II summarizes relevant work in the literature.
Section I formulates the MOMP problem and describes the
dynamics model of the UAV and SOPs, the measurement
model, and the estimator model. Section IV develops the
proposed MOMP strategy. Section V presents simulation
results comparing naive and MOMP strategies. Section VI
presents experimental results of a UAV exploiting signals
from unknown cellular SOP transmitters to navigate to a
waypoint using the MOMP strategy. Finally, Section VII
concludes this article.

[I. RELATED WORK

Waypoint navigation has been widely studied over the
last decade with the development of autonomous aerial
vehicles [34] and mobile robots [35]. To achieve better
performance in waypoint navigation, GPS-based control
systems were adopted, whether in a stand-alone fashion [36]
or in a differential fashion with an inertial navigation sys-
tem (INS) [37]. Other approaches relied on fusing mea-
surements from an omnidirectional camera and a laser
rangefinder in a Kalman filter for outdoor waypoint nav-
igation [38]. The waypoint navigation problem has been
formulated as an optimal control problem [39], which could
be solved by linear quadratic regulator (LQR) [40], ge-
netic algorithm [41], or a combination of local and global
planning [42]. When the optimization problem becomes
multiobjective, particle swarm optimization [43], or Pareto-
optimality [44] has been adopted. Although the aforemen-
tioned methods achieved accurate waypoint navigation,
they did not take into account the effect of motion on the
estimation performance. The effect of having large esti-
mation error in waypoint navigation may have detrimental
consequences.

Motion planning approaches that optimize the path
length toward a waypoint, while taking into account sen-
sor uncertainties have been investigated in recent litera-
ture. However, sensors can provide either local or global
information of the vehicle’s position. In the case of the
former, the motion planning algorithm accounts for the
sensor uncertainty instead of optimizing for sensor uncer-
tainty [45], [46]. In the case of the latter, path planning is
affected by the predicted quality of the navigation solution
which changes throughout the environment. Ray-tracing
approaches for path planning were used to improve channel
characterization and enhance positioning performance for
autonomous ground vehicles [47]-[50] or UAVs [51]-[53],
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navigating with GNSS and/or SOPs. In [54], a method to
predict the state uncertainty of a UAV in the presence of
uncertain GNSS positioning biases using stochastic reach-
ability analysis was proposed. A framework that guarantees
that the estimation error remains less than the safety thresh-
old for ground vehicles while navigating toward a waypoint
was presented in [55]. While effective, these approaches
rely on known maps to precalculate the cost function and
perform optimization.

In robotics, sample-based approaches using the belief
space of the robot’s states are common for motion planning
involving uncertainty from localization and motion. One
of the sample-based methods for waypoint reaching that
considers state uncertainties is the belief roadmap [56],
which builds a probabilistic roadmap in arobot’s state space.
It propagates beliefs over the roadmap using an extended
Kalman filter (EKF) and plans a path of minimum goal-state
uncertainty. A modification of the sampling method was
proposed by [57] in which minimizing the maximum value
of its uncertainty metric encountered during the traversal of
a path to make it more efficient, while intermittent sensing
was considered in [58]. This approach was extended by
taking visual-inertial sensing and laser scanners into consid-
eration in [59] and [60], respectively. A rollout-policy-based
algorithm enabling online replanning in an efficient manner
in belief space to achieve simultaneous localization and
planning in dynamic environments with the presence of
large disturbances was proposed in [61]. However, for these
sample-based approaches, the sampling method and numer-
ical burden significantly affect efficiency and performance,
as they require the calculation and evaluation of all the
potential paths between the start point and the destination in
each round. Several approaches in the literature formulated
the planning as an optimization problem, constrained by un-
certainty. For example, the sampled paths were constrained
by the estimated error covariance in [62]. Similarly, [63]
applied this constraint in particle swarm optimization to
find the optimal paths satisfying the covariance bound.
Localizability was also adopted as a constraint to determine
possible regions and the path length was optimized within
these regions for a an autonomous vehicle [64]. Although
this paradigm is formulated as a constrained optimization
problem, the existence of an optimal solution is not always
guaranteed, as the constraint may contradict the primary
goal. In contrast to previous work, this article considers
opportunistic waypoint navigation in a GNSS-denied via
radio SLAM. To achieve this objective, the article formu-
lates a computationally efficient MOMP strategy, which
guarantees (in a probabilistic sense) reaching the waypoint.

[lI.  PROBLEM FORMULATION AND MODEL
DESCRIPTION

This section formulates the MOMP problem, describes
the control system model of the UAV, presents the dynamics
and measurement model of the UAV and SOPs, and dis-
cusses the EKF model for estimating the UAV’s and SOPs’
states.

Waypoint

il jectory _
- Estimated PSSR

E —— Naive motion planning
—MOMP

Fig. 1. UAV is deployed into an uncertain position in a GNSS-denied
environment and is tasked with navigating to a waypoint. A naive
strategy (shown in purple) would have the UAV move directly to the
waypoint position, risking large position estimation errors, which would
cause missing the waypoint. A MOMP strategy (shown in blue) would
have the UAV prescribe a more complex trajectory, which balances two
objectives to maintain a reliable position estimate: 1) moving to the
waypoint; and 2) minimizing the UAV position uncertainty. The MOMP
strategy guarantees (in a probabilistic sense) reaching the waypoint.

A. Problem Formulation

This article extends previous work on motion planning
by developing a MOMP strategy for a UAV navigating
with unknown SOPs, which balances two objectives: 1)
navigating to a waypoint; and 2) minimizing UAV’s position
uncertainty. The following problem is considered. A UAV
has been dropped into a GNSS-denied environment with
minimal a priori knowledge of its own states. As shown in
Fig. 1, the environment consists of multiple unknown SOPs,
from which the UAV draws and fuses pseudoranges in order
to estimate its own states and the states of the unknown SOPs
through an EKF. The UAV is tasked with navigating to a
waypoint position and is required to arrive at the waypoint
within a specified distance with a specified confidence. The
estimation uncertainty is heavily dependent on the relative
geometry between the UAV and the SOPs. Therefore, the
trajectory taken by the UAV to arrive at the waypoint affects
the uncertainty in its position estimate along the way. When
the uncertainty is very large, the EKF risks diverging, which
in turn causes the UAV to move away from the waypoint, as
illustrated in Fig. 1. To avoid such behavior, a more complex
trajectory is designed to maintain a small uncertainty along
the UAV trajectory, which guarantees to reach the waypoint.
This is also illustrated in Fig. 1. Section IV develops the
MOMP strategy.

B. UAV Control System Model

This article considers motion planning for quadrotor
UAVs. Typical quadrotor controllers require full state feed-
back, which consists of the UAV’s three-dimensional (3-D)
pose (3-D position and orientation) and its first time deriva-
tive (3-D linear and angular velocities). UAVs are typically
equipped with a suite of sensors to perform pose estima-
tion, mainly a GNSS receiver, IMU, barometric pressure
sensor or altimeter, magnetometer, etc. It is worth noting
that UAVs rely mainly on GNSS to produce a position
estimate in a global frame, e.g., earth-centered earth-fixed
(ECEF) frame. In GNSS-denied environments, if equipped
with the right receivers, the UAV may draw pseudorange
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Fig. 2. High-level block diagram of the UAV control system. (a) Inner
control loop consists of a standard UAV control loop, where the desired
tracking position and heading angle trajectories are defined by the user. A
zero dynamics stabilizer block synthesizes the tracking trajectories for
the remaining states. (b) In the case of GNSS unavailability (note the
absence of the GNSS receiver), the UAV can rely on SOP measurements
to maintain a position estimate in a global frame. Moreover, motion
planning could be performed to efficiently navigate to a desired
waypoint. The additional blocks pertaining to the proposed motion
planning framework for navigating with SOPs are shown in blue. It is
important to note that the proposed approach is in a fashion where 1) no
modifications are needed for the inner control loop; and 2) the proposed
motion planning algorithm automatically computes the desired
trajectories that are input to the inner control loop.

measurements from ambient SOPs to produce a position
estimate in the global frame. As mentioned in the Introduc-
tion, the uncertainty associated with the SOP-based position
estimate heavily depends on the relative geometry between
the UAV and the SOPs. Therefore, in order to reduce this
uncertainty, a motion planning algorithm is developed to
reach the waypoint with a desired confidence. In addition
to state feedback, a desired trajectory is required to perform
UAV pose control. Zero dynamics stabilization methods
were proposed to synthesize full state desired trajectories
from desired position and heading trajectories only [65].
Treating the UAV controller as a black box, the proposed
framework aims at the following: 1) replacing the GNSS re-
ceiver with an EKF estimating the UAV position using SOP
pseudoranges; and 2) perform motion planning to determine
the desired position and heading trajectories that will be
passed as an input to the UAV’s control system. A high-level
block diagram of a typical UAV control system and the
proposed system are shown in Fig. 2. Since the proposed
framework uses the UAV’s control system as a black box,
the EKF estimating the UAV’s state from SOP pseudoranges
is formulated independently of the UAV’s on-board control
system. The UAV dynamics model assumed by the EKF is
discussed next.

C. UAV Dynamics Model

For simplicity, this article assumes a planar environ-
ment. Extensions to three-dimensions are straightforward.
Such extension would yield poor estimability of the UAV’s
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vertical position due to poor geometric diversity of the
SOPs’ heights. In such case, other sensors (e.g., altimeter)
could be readily used.

The state vector of the UAV x; is defined as

T
af.T T a T .TT A : 1T
X = [xpv’ xclk,r] s xpv = [rr s rr] » Xelk,r = [8tra (Str]

where r, € R? and 7. € R? are the UAV’s 2-D position
and velocity, respectively; and 8z, € R and &z, € R are the
UAV-mounted receiver’s clock bias and drift, respectively.
The UAV’s position and velocity states x,,, will be assumed
to evolve according to a 2-D planar motion model [66]. Tak-
ing the omnidirectional flying ability of the multirotor into
consideration, the UAV’s nominal continuous-time control
input vector u,, is given by

A T
u, = [ac‘s 9(3]

where a. € R" and 0. € [—7, ) are the continuous-time
absolute acceleration and corresponding heading angle,
respectively. Note that u,, is not the actual control input
applied to the UAV, but is the control input computed by
the motion planning algorithm from which the desired 2-D
position and heading can be computed and input to the UAV
controller, as shown in Fig. 2(b). The desired altitude is set
to be constant. Due to actuation errors and process noise,
the actual continuous-time control input vector will be

i,

c

= U, + arc = [(Tlc, éc]T

where @, £ [é., 0.]", and @ and 6, are uncorrelated, zero-
mean, white random processes with power spectra g, and
o, respectively. The continuous-time state-space model of
the UAV’s position and velocity is formulated as

xpv @) = Apvxpv )+ prgr [l_lrL ®)]

0
. By 2| P ()

Lo

05,0 Do

>

A, =

02,0 0252

gl ()] £ [a(t) cos[f(1)], ac(t) Sin[éc(t)]]T

where 05,, € R>*? is a matrix zeros and I, € R**? is the
identity matrix. Since the actual control input is unknown,
the function g,[&,(¢)] in (1) is linearized around the nominal
input u,(t), yielding

gl ()] ~ g lu,, ()] + D(0)it,, (1)

Dr(t) A Cf)S[@C(I)] _ac(t)Sin[ec(t)] (2)
sin[6:(1)]  ac(r) cos[6:(1)]

where D, (¢) is the Jacobian matrix of g.[a, (¢)] with respect
to i, (t). Combining (1) and (2) and discretizing at a sam-
pling interval T assuming zero-order hold of the control in-
put (i.e., {u, (t) = u, (kT) = u,(k), kT <t < (k+ 1)T}),
the discrete-time UAV’s position and velocity states can be
modeled as

xpv(k +1= vaxpv(k)+rpvgr [ur(k)]+wpv(k)v k=0,1,...
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Ly, Tl A LS A
F vé s r v — 2 s ur(k)
b |:02><2 Iy :| P |:T12x2
a(k)
3
o g
where a(k) £ a.(kT) and 6(k) = 6.(kT), and w,y (k) is the

discretized process noise vector, which is a zero-mean white
sequence with covariance Qpy (k) given by

1>

Q. TQuk)

v k = 32 2 4
Q) {%Qm TQ.(k) @
Qc(k) £ Dy o (k)QuoD, 4 (k), Quo = diag[Ga, Go]

(5)
D, (k) 2 D, o (kT) = cos[B(k)] —a(k)sin[6(k)]
“f O T Sin[0k)] ak)cos[0(k)] |

(6)

Furthermore, as in all practical systems, the UAV’s accel-
eration and velocity are constrained according to

a(k) S ar max
) ’ 7
{ 1)l < e mas ™
which, fore £ [1 0]7, can also be expressed as
(eTllr(k))2 = Cl% max
1 2 I 2 3)
||gr [ur(k)] + Trr(k)Hz - (Tvr,max) .

The UAV-mounted receiver’s clock state x , is mod-
eled according to the standard double integrator model
driven by process noise, whose discrete-time dynamics are
given by

Xeik,r(k 4+ 1) = FopXei (k) + wen (), £=0,1,2,...
)
where wg, 1S a zero-mean white noise sequence with
covariance Qi r given by

LT Sa’&r T+ Sﬁ’& TTS Sﬁ)az TTZ
Foy = o Qeikr = " "
0 1 Sﬁ)&zr 2 Sﬁ’ét; T

where Sy, and Sy 5, are the power spectra of the continuous-
time white process noise driving the evolution of the clock
bias and drift, which are approximated with the frequency
random walk coefficient s_,, and the white frequency

coefficient hy ;, leading to Sy, ~ % and Swsrr R 27r2h,2,r.
Combining (3) and (9) yields the discrete-time dynamics

of the UAV’s state vector x,, which is given by
xi(k + 1)=Fux (k) + Tig [u (k)] +w (k), k=0,1,2,...
T
F2diag[Fp, F]. T2 [0 00]  (10)

A . . .
and w, = [wgv, wl, 1T is the overall process noise covari-

ance, which is a zero-mean white sequence with covariance

]T

Q, = diag [va, chk,r] .
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D. SOP Dynamics Model

The environment consists of one fully known anchor
SOP, denoted with a subscript a, and m unknown SOPs.
To satisfy the observability condition established in [33]
and [67], the knowledge of the state vector of the anchor
SOP, denoted x;_, is assumed. Note that the UAV’s control
inputs u, are with respect to a global coordinate frame in
which the SOPs are expressed. This requires the UAV to
have a priori knowledge about its orientation with respect
to this global coordinate frame through some sensor (e.g., a
magnetometer). Note, however, that the UAV has no a priori
knowledge about its initial position, velocity, or clock errors
(bias and drift). The jth SOP is modeled as a stationary
transmitter with state vector

A T

.
TOT §

Xs; = [rs,-’ xclk,sj] » o Xelks; = [‘Stsj’ 8t5/']

wherers; € IR? is the SOP’s planar position and dt;, € Rand

5ts,‘ € Rare the SOP’s clock bias and drift, respectively. The
SOP’s states are assumed to evolve according to

xsj(k+ l) :stsj(k)+Gswclk,sj(k) (11)
. T
F, £ diag [sz2, Fclk] . Gy 2[00 Lo

where we s, € R? is the process noise vector driving the
jth SOP’s clock states and is modeled as a zero-mean white
noise sequence with covariance Qi s;, which has the same
form as Qqixr, except that Sy, and Sy, are replaced with
SOP clock-specific spectra, Sﬁ’ar,__,» and Sﬁ)&sy/_, respectively.

E. Observation Model

The UAV-mounted receiver makes pseudorange mea-
surements on the jth SOPs, which after mild approxima-
tions discussed in [68], can be modeled according to

zj(k) = h [x:(k), x5, (k)] + v;(k)

= |Ire(k) — r;()ll2 + ¢ - [81:(k) — 615, (k)] + v;(k)
(12)

where c is the speed of light and v is the measurement noise,
which is modeled as a discrete-time zero-mean white Gaus-
sian sequence with variance 01-2. The measurement noise of
all SOPs is assumed to be uncorrelated. Subsequently, the
covariance matrix R of the measurement noise vector v =

[Va, V1, - - -, Un]T is given by R £ diag[o?, o2, ..., 02].

F. EKF Model
The anchor SOP state x;, is assumed to be known at all
time. Hence, the EKF estimates the state vector defined by
T
x(k) £ [x] (k). x] (k). ... .x] (0]

using the set of measurements given by {z(/ )}f‘zo, where
z2() £ [z.(D), z21(D), . . ., zu(D]T. From (10)—(12), the over-
all system equations are given by

x(k + 1) = Fx(k) + I'g, [u, (k)] + Gw(k) (13)
z(k) = h[x(k)] + v(k) (14)
667

Authorized licensed use limited to: The Ohio State University. Downloaded on October 12,2022 at 17:33:34 UTC from IEEE Xplore. Restrictions apply.



>

F 2 diag[F,,F,F,,....F], T2 o] ,]'
G = diag [I6X6, G, Gy, ..., GS]
hlx(k)] £ [ [x:(k), x5,(6)], b [x:(k), x4, (k)] ,
h [x:(6), x,, (0]
and w(k), defined as

>

T T T T
[w] (k) wey o, (k) ... wy o (k)]
is a zero-mean white Gaussian vector with covariance
A g
Q = dlag [Qrv chk,s] s ey chk,sm] .

A standard EKF is implemented based on (13) and (14) to
produce an estimate £(k|i) = E[x(k)|{z(1)}i_,], for i <k,
and an associated error covariance X(k|i).

wk) £

V. MULTIOBJECTIVE MOTION PLANNING STRATEGY

This section defines the motion planning problem and
formulates it as a multiobjective optimization problem.

A. Multiobjective Motion Planning Problem Definition

Consider a UAV that has been deployed into a GNSS-
denied environment with no a priori knowledge of its own
states x,. The environment consists of one anchor SOP
whose states x;, are fully known for all time and m SOPs
whose states {x; } "_; are unknown. In order to navigate, the
UAV fuses pseudoranges drawn to the SOPs (12) through
an EKF to estimate its own states while simultaneously
estimating the states of the unknown SOPs, as discussed in
Section III. The UAV is tasked with navigating to within
a distance d of a waypoint position r; with probability
(1 — @), given its EKF-produced UAV position estimate,
denoted 7, (k|k), and the associated block of the estimation
error covariance, denoted X, (k|k). Formally, this task is
achieved when the following is satisfied:

Pr[lr.(k) — rll3 = d* | #:(klk), Z, (k)] <. (15)

To navigate to the waypoint and satisfy (15), the UAV
selects a sequence of acceleration inputsu,(k),k =0, 1, .. ..
A naive strategy is to select these inputs so that the UAV
navigates directly toward the waypoint as fast as possible
without violating velocity and acceleration constraints 7.
However, flying in a straight line in the GNSS-denied en-
vironment considered herein, could cause the UAV to miss
the waypoint or cause filter divergence altogether. This is
due to poor estimability of the UAV’s and environment’s
states.

In this article, a more sophisticated MOMP strategy
is developed, where the UAV prescribes its trajectory by
balancing two objectives: 1) navigating toward the way-
point; and 2) making strategic maneuvers, which do not
necessarily move the UAV toward the waypoint, in order to
reduce the UAV’s position uncertainty. These objectives will
be achieved by formulating a multiobjective optimization
problem, which is discussed next.
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B. Cost Function Derivation

To formulate the MOMP strategy as an optimization
problem, three quantities must be defined: 1) a cost func-
tion; 2) an optimization variable; and 3) constraints on the
optimization variable. The optimization variable is defined
as the input vector u, of the UAV’s acceleration and heading
(cf., 3), and the constraints are readily obtained from the
UAV’s maximum speed and acceleration ratings (cf., 7). In
what follows, three cost functions reflecting the multiple
objectives are defined via two approaches: 1) probabilistic;
and 2) information theoretic.

1) Probabilistic Approach: One possible cost function
that reflects the desired objective to reach the waypoint
can be readily derived from the probability inequality in
(15). After dropping the time argument for compactness of
notation, applying Markov’s inequality to (15) yields

E[llry —rill3]
d?

(%) + P — 1l
- =

2 2 4
Pr(lr —rls = d* | #, %] <

(16)

where tr(-) denotes the trace of a matrix. Note that the above
inequality assumes that the EKF is unbiased, i.e., E[r, —
7:] = 0. In this case, to satisfy the mission in (15), one needs
to minimize the cost function

an

in the hopes that the right-hand side of (16) becomes less
than the desired probability «. The cost function Jypukoy
explicitly shows the two objectives the UAV is trying to
balance: 1) mission completion, captured by the term |7, —
r ||§, which is minimized when the UAV’s position estimate
is at the target; and 2) uncertainty reduction, captured by
the term tr(X,, ), which when minimized, ensures that the
UAV’s true position is as close as possible to the UAV’s
position estimate when the estimate is at the target.

2) Information Theoretic Approaches: Another way to
derive a cost function for the MOMP strategy is using infor-
mation theoretic measures. The EKF produces the estimate
7;, which, ignoring the effect of nonlinearities and assuming
Gaussian noise, is the conditional mean of r. with the
associated estimation error covariance X, . Let N, denote
the probability density function (pdf) of r, conditioned on
all the measurements, which is given by

Neo re~N (e E)

where AV (i, ) denotes the multivariate Gaussian pdf with
mean g and covariance matrix X. Another way to define the
objectives is through a target probability density N, defined
as

A - 2
JMarkov = tr(zr,) + ”rr - rl”z

(18)

Nt re~ N (r, €7) (19)

where € is a small positive number. Equation (19) is saying
that it is desired that the UAV’s position to be centered
at the target with a small uncertainty. A natural approach
to achieve this is to minimize the distance between the
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current and target pdfs. Such distance metrics are commonly
used in information theory, such as the Kullback-Leibler
(KL) divergence Dyy or the 2-Wasserstein metric W,. For
Gaussian distributions such as N; and V;, the KL divergence
can be expressed as

Do (NHIAD) = 55 [t (%) + I = rel3]
1
-3 [Indet (%) +2—4Ine] (20)
and the 2-Wasserstein metric becomes
Wa Ve, ND) = [or () + IFe — i3]
+ 2 [e—tr (z)] @1
Next, define the cost functions
JkL = 26’ Dy (NV;|ND)
= JMakoy — €~ [Indet (X)) +2 —4Ine]  (22)
and
Jw £ Wr (N, N
= Tvarkon + 2€ [e —tr (z} )] . (23)

Minimizing Jx; is equivalent to minimizing Dy (N;||N))
for any value of € > 0, since € is independent of the
optimization variable u,. Both Jg; and Jy are explicitly
expressed as Jyarkov With the addition of constants and terms
penalizing the difference between the current and target
pdfs. However, it is shown next that for small enough e,
all three cost functions are equal up to a small difference §.

3) Equivalence of Probabilistic and Information Theo-
retic Approaches: It is assumed the mission time is upper
bounded by « time-steps. Next, let P, (k) denote the covari-
ance matrix of x,, (k), which can be expressed as

P, (k) Py, (k)
Py (k) = [Plh(k) P;. (k) }

where Py, (k) and P;, (k) are the covariance matrices of r,(k)
and 7, (k), respectively, and P, (k) is the cross-covariance.
Moreover, using (5)—(7), and the property A < tr(A)I for
any matrix A > 0, Q.(k) may be upper bounded as

Qe(k) = (Ga + a7 nandie) Tox

where the right-hand side of the inequality is independent
of time. It follows from (4) and (24) that

(24)

3 2
~ N ) VP i (o
Qu(k) = (Gu + @ ) | 720 2
Shi Thx

2 Q- (25)

The following lemma establishes an upper bound on P, (k)
fork=0,1,...,«

LEMMA IV.1 Consider the system in (3) with Pp,(0) =S
diag[P;. (o), Pi.(0)] > 0,then,fork =0, 1, ..., «, the follow-
ing holds:

P, (k) < P, (k) (26)

3T3

P, (k) £ P, o) + K*T?P;,(0) +

(Zla + arz,max%) L.
(27)

PROOF From (3), the time-evolution of Py, is obtained to
be

P 0(F)" ZF" Q7).

(28)
By expanding (28), using (25), using the following proper-
ties:

P, (k) = FX

k- k-1
k(k—l) k(k —1)2k—1)
> - L=
j=0 =0
and looking at the upper d1agonal block of the left- and
right-hand sides of (28), (26) is deduced. |

Now the following theorem establishes equivalence be-
tween the three cost functions Jyarkov, Jx1, and Jy .

THEOREM IV.1 Consider the system (13), (14), with initial
UAV position and velocity prior covariance Py, (0), and
assume there exists a positive scalar p > 0 such that

2;r,. = 1_712><2- (29)

Then, over a finite number of time-steps «, for any § > 0,
there exists an €* > 0 such that for 0 < € < ¢*, the follow-
ing holds:

|JKL - JMarkov| < 51 |JW - JMaIkov| < 4. (30)

PrROOF The EKF is estimating the posterior estimation error
covariance, denoted by X, (k|k). Given the properties of
Kalman filters, the following inequality holds:

Xy, (klk) < Py (k). €19

Moreover, from (27), one can see that P, (k) < P, (k + 1),
which implies

I_)r, (k) =< I_"r, («0). (32)

Let ¢ (k) = tr[P,, («)]. Using the property “A < tr(A)L” for
a matrix A > 0, and dropping the time argument k for
compactness of notation, the following can be deduced:

X, 2 L(0)hyo. (33)

The following inequalities can be derived from (33):
Indet %, | <¢ (34)
tr (z}) <2Jc0) (35)

where ¢ £ max{2|In¢(«)|, 2|In p|}. Subsequently, com-
bining (22) and (34), using the property of the absolute
value, the following is deduced:

- JMarkovI =< 81(6)

where 8;(€) £ €*(¢ + 2+ 4| In¢€|). Similarly, combining
(23) and (35), another inequality is obtained

[Jw — IMarkov| < 82(€)

(36)

| /KL

(37)
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TABLE I
Simulation Settings

Parameter Value
Tt [400, 200]"
z:(0) [0,0,0,0,100,10]T
Ts, [100, 250, 10,0.1]7
Ts, [200, —50, 20,0.2]T
Ty [300, 300, 30, 0.3] T
Tsg [-50,150,40,0.4] T
(0| —1) ~ N[z (0), (0 | —1)]
isj(o‘ -1) NN[msj7zsj(0‘ —1)], 7=1,2,3
(0] -1) (5 x 10%) - diag[1,1,1072,1072,1,107}]
(0] -1) (103) - diag[1,1,1,1071], j=1,2,3
{hor,h—2:} {2 x 10719 2 x 10-20}

{8 x 10720, 4 x 1023},
{8 x10720,4x 10723}, j=1,2,3

{ho,sash—2,5,}
{hO,sJ- ) h—Q,Sj }

{Ga,do} {0.1 (m/s%)2,0.004 (rad)?}
R diag[400, 500, 600, 700] m?
{Ur,ma)u ar,max} {20 Hl/S7 5 m/S2}
0.1s
l—«a 95%
d 25 m

Cost function difference
»
[ )

ES

Cost function difference

Fig. 3. Cost functions equivalence based on the Markov inequality, KL
divergence, and Wasserstein metric over time. [llustrated are the
difference between (a) the KL divergence and Markov cost functions and
(b) Wasserstein and Markov cost functions calculated from the randomly
sampled covariance matrix and the established bounds.

where 8,(€) £ 2¢(e 4+ 24/Z(k)). One can straightforwardly
see that §;(¢) and §,(¢) are strictly increasing functions of
€ > 0. Consequently, for some § > 0, one can calculate

€ =60, e=68"0)

and define e* £ min{€y, €,}. Therefore, forany 0 < € < €*,
one can guarantee (30). [ |

In order to illustrate Theorem IV.1, Monte Carlo simula-
tions were performed to demonstrate the established bounds
(36) and (37). A total of 20 Monte Carlo realizations were
generated for each time-step using the simulation settings
tabulated in Table I and e = 1 x 107™* and p =1 x 107*.
The covariance matrix used to calculate Jxr., Jw, and Jyarkoy
were generated based on conditions (26) and (29). At each
time-step, the cost function difference was calculated and
is plotted in Fig. 3. The covariance matrix had a constant
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lower bound according to Theorem I'V.1 and a time-varying
upper bound according to Lemma IV.1. It can be seen that
the derived bounds correctly limit the difference between
Jxi and Jyiaroy and between Jw and Jygarkoy -

C. MOMP Optimization Problem

Theorem IV.1 implies that for a small enough target
covariance uncertainty, the three cost functions Jyjarkov» JKL»
and Jyy are practically equivalent. Consequently, the MOMP
strategy will adopt the cost function J(u;) £ Jyarkovs CON-
strained to the UAV dynamics, namely

minimize J (u,)
(8), (13), (14).

The optimization problem (38) does not specify when the
mission is completed. A stopping criterion is defined in
Section IV-D.

It is desired that the UAV be able to solve the optimiza-
tion online on its on-board processor. In order to meet this
requirement, a greedy approach is adopted, i.e., the optimal
control input is computed one step at a time. However, the
optimizer could get stuck at a local optimum in which one of
the two terms in the cost function dominates. It was observed
in simulations that the distance term usually dominates
at the beginning, causing the UAV to fly directly toward
the waypoint. Once close to the waypoint, the trace of the
estimation error covariance starts to dominate, causing the
UAV to get stuck flying around the waypoint to minimize
its position estimate’s uncertainty but to no avail. To avoid
such behaviors, the cost function J(u,) is reformulated to
become a weighted sum given by

Subject to: (38)

J@r) = wli [ (k)] + (1 — w)lu (k)] (39)

where  Ji[u (k)] 2 [Pk + 1k) — 3, Dalu(k)] =
tr[X, (k+ 1]k +1)], and the weight w 1is changed
adaptively. More specifically, J; is the Euclidean distance
between the UAV’s position estimate and the waypoint,
which corresponds to the objective of navigating toward
the waypoint. Furthermore, J, is the A-optimality criterion
applied to the UAV’s position estimation covariance [32],
which corresponds to the objective of minimizing the
UAV’s position uncertainty. Note that X, (k + 1|k + 1) can
be computed at time-step k since it is independent of the
measurements at k + 1. The MOMP problem is then cast
as a greedy motion planning problem to find the optimal
input u; (k), that minimizes J subject to the dynamics and
Vr.max and d; max, formally expressed as
minimize J(u,) = w/i[u.(k)] + (1 — w)[u (k)]

(k)
(8), (13), (14)

where the weight is defined as

Subject to: (40)

w2 1(Z,,d, o)

where 1(X,,, d, @) is an indicator function used to switch
between each objective and is discussed in Subsection IV-E.
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In the next two sections, a test is developed as a stopping cri-
terion for task (15), and the indicator function 1(%,,, d, o)
is specified.

Note that in practice, a vehicle has constraints on its
acceleration and velocity which will also constrain the
turning radius of the vehicle. Therefore, as the vehicle
approaches the waypoint, it should reduce its velocity in
order to make “tighter” turns to successfully reach the
waypoint. To this end, an adaptive velocity constraint v; ..
is proposed, which is defined as

U;,max = mil’l { ”i'r - rt||2 ar,max> Ur.max}

which is based on the centripetal acceleration. Adjusting
the maximum velocity according to (41) will decrease the
velocity of the UAV, to ensure that the UAV does not get
stuck traversing an infinite loop around the waypoint. Ad-
ditionally, (41) is effectively a proportional controller, with
proportionality constant /@, max, which has arealistic effect
of slowing the UAV down as it approaches the waypoint.

Since the cost function is generally nonconvex, it was
solved by an exhaustive search-type algorithm, in order
to avoid converging to a local optimum. To this end, the
feasible set of maneuvers at time-step ¢; was gridded to n;
possible maneuvers. The complexity of evaluating the cost
function at a particular input is O(1) since it is independent
of the value of the input. Consequently, the computational
complexity at a time-step #; will be O(n;). Of course,
advanced numerical optimization solvers can be invoked,
which would impact the corresponding computational com-
plexity.

(41)

D. Stopping Criterion

Since the UAV does not have access to its true positionr;,
atest to determine if task (15) is satisfied must be formulated
in terms of values the UAV has access to. Specifically, a
test is formulated using the UAV’s EKF-produced position
estimation error covariance X, .

THEOREM IV.2 Consider an environment consisting of a
UAV that has been deployed into a GNSS-denied environ-
ment with no a priori knowledge of its own states, one
anchor SOP whose states are fully known, m unknown
SOPs, and a desired waypoint position r,. Given the distance
tolerance from the waypoint d, and the specified confidence
probability 1 — «. Then, if

d? .
1—-F D n, V) <a
(A-max l:zl l)

holds, then task (15) is satisfied; where F(f;; n, Z:’zl b%)
is the cumulative density function (CDF) of a non-central
x 2-distributed random variable with n degrees-of-freedom

; nog2 d>
and noncentrality parameter ) ., b7, evaluated at o=

Amax = max; A;(X,.) is the maximum eigenvalue of X, ,
n is the dimension of the UAV position states, and b =
[by ...b,]" is given by

¥, = UAUT

(42)

b2 A IUGR —r).

PROOF The proof will show that (42) is sufficient to satisfy
(15). The Euclidean distance term ||r, — r, ||% in (15) can be
expressed as

Ire —rll3 = By +Fe — r)T(F + F — 1)
— (7, + 7 —r)TUTA ZAA UG, + 7, — 1)
—(+b)TAQY +b)

n
= Z Ai(yi + bi)’

i=1
(43)
where A; is the ith eigenvalue of %,, y = A*%Ui*r =
[y ...y,]7 is the estimation error aligned to the coordinates
defined by the eigenvectors and eigenvalues of the estima-
tion error covariance matrix; therefore, y ~ N(0,x1, I>x2).
Equation (43) may be upper bounded by replacing all A;

with Amax, Which gives

n n
e = 7ll3 = D 2+ 51 < Amax 00+ b)*. (44)
i=1

i= i=1

Therefore, an upper bound for the probability in (15) may
be established by replacing the Euclidean distance term in
(15) by the right-hand side of (44), which gives

Pr(llr; —r3 = d?) < Pr (xm > itby=d).

i=1

(45)
Note that A, Z:’:l(yi + b;)? is noncentral x>-distributed
with n degrees-of-freedom and noncentrality parameter
Y%, b?, yielding the probability

n d2 "

Pr (kmﬂxz(yi +b)* = dz) =1-F (x ;o be> .
ax i=1

(46)

i=1 m

Substituting the right-hand side of (46) into (45) yields

d? .
Pr(llr, —rll3>d*) <1—F (kmax; n, ;bf) .47

If (42) holds, substituting it into (47) yields (15). |

E. Indicator Function Selection

The MOMP strategy needs a mechanism to balance the
objective functions J; and J,. One way to balance these
objectives is to use a function of the uncertainty of the
UAV’s position estimate as an indicator. If the uncertainty
becomes too large, the UAV should focus on decreasing the
uncertainty until it becomes small enough so that satisfying
task (15) is feasible. Then, the UAV may switch back to
navigating toward the waypoint. To make this happen, the
indicator function 1(X,,, d, o) is set as anecessary condition
for (42) to be satisfied. This condition is established in the
following lemma.
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LEMMA IV.2 A necessary condition for criterion (42) to be
satisfied is

not)\max - d2 =< 0 (48)

where 1, £ F~'(1 — a; n,0) is the value of the inverse
CDF of a y?-distributed random variable with n degrees-
of-freedom, evaluated at 1 — «, and » is the dimension of
the UAV position states.

PROOF The proof will proceed by contradiction. Assume
that (48) is not satisfied, i.e., fgAmax — d> > 0. Then, from
the definition of 7, the following holds:

2
< F'1=wa:n,0).

(49)

max

Since x? CDFs are monotonically increasing, evaluating
a n degrees-of-freedom x> CDF at both sides of (49) and
moving some terms yields

d2
I—F( ;n, O) > .
A‘1’\’laX

Note that the CDF of a n degrees-of-freedom noncentral
x>-distribution decreases as the noncentral parameter in-
creases [69], i.e.,

d? d?
F<A ;n,q)ZF(k ;n,c:z),0501<62 (5D

where c; and ¢, are the noncentral parameters. By setting
ci=0and ¢, = Z?:l b% > 0, where b; are defined accord-
ing to Theorem IV.2, then (51) implies that

1—F ( @ o) <1-F a Xn:bz (52)
- , n, = - yn, i .
)"max )\max i=1

Combining (50) and (52) yields

1—F & Z b’
— ; n, P>
)"max i=1

which is in contradiction with (42). [ |

(50)

According to Lemma IV.2, the indicator function
1(%, ., d, a) is selected to be

1, if na)‘-max - d2 = 0

53
0, else (53)

(T, d )= {

The MOMP strategy is summarized in Fig. 4.

V. SIMULATION RESULTS

This section presents simulation results of a UAV tasked
with reaching a waypoint in a GNSS-denied environment,
but pseudorange measurements made to unknown SOPs.
Three greedy motion planning strategies to prescribe the
UAV’s trajectory are compared: (i) naive approach, where
the UAV moves directly to the waypoint without consid-
ering the quality of its position estimate or knowledge of
the environment; (ii) MOMP (38), which balances two
objectives—minimizing the distance to the waypoint and
minimizing UAV position uncertainty; and (iii) adaptive
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UAV and Radio SLAM Environment
wll) @(k+1) =P k) + T k)] - wilk) |
= P @y, (k + 1) = Fuay (k) + wy, (k)
~OpNav - za(k) = h[wo(k), @, (k)] + va(k),
zi(k)=h [ﬁ,(k),msl(/{)} +w(k), j=1,...,m
Estimator: EKF
7:(k|k), Z, (k)
Multi-objective motion planning
argmin  J (u,(k), 7, d, @)
ur(k)
_u*(k): Subject to: LopNav
' (eTus(k)* <a? e
P 2
e k) + 38 [ < (Fh )

Fig. 4. UAV multiobjective motion planning loop.

MOMP (40), which is similar to (ii) with the addition of
weights to the objectives so that neither one dominates. A
Monte Carlo study is conducted using 500 runs to compare
each strategy by evaluating the average time to reach the
waypoint, final root-mean-squared error (FRMSE) of the
UAV’s estimated position, final root mean squared distance
(FRMSD) toward the waypoint at the end of the mission, and
success rate of reaching the waypoint. If the UAV did not
reach the waypoint within 200 s, the mission was stopped
and recorded as failure.

A. Simulation Settings

Consider an environment comprising four SOPs and
a specified waypoint. The UAV is deployed into an un-
certain position, has minimal knowledge of the SOPs in
the environment, and is tasked with reaching the known
waypoint position .. The UAV’s uncertain deployment
position is captured by initializing the EKF with a state
estimate, denoted X,(0] — 1), with a large estimation error
covariance X,(0] — 1). One anchor SOP is available, and
the remaining three SOPs are unknown, i.e., their initial
state estimates X,(0| — 1) have initial estimation error co-
variances ES/.(0| — 1) > 0404, j=1,2,3.

The Monte Carlo analysis was conducted over 500 runs.
For each run, the EKF was initialized with different initial
estimates and used different realizations of process and
measurement noise. The EKF and the simulation settings
are tabulated in Table I. For each Monte Carlo, run the naive,
MOMP, and adaptive MOMP strategies were employed to
prescribe the UAV’s trajectory according to the closed-loop
procedure illustrated in Fig. 4. For each run using the naive
strategy, the mission was declared complete by the UAV by
checking if ||, — r|| < 5 m, using d from Table I. For each
run using the MOMP strategies, the mission was declared
complete according to the stopping criterion described in 4.
It is important to note that the nonadaptive MOMP strategy
did not declare mission success for any of the runs.

B. Naive and MOMP Strategies Comparison Results

The true and EKF-estimated UAV trajectories, the cor-
responding final 95th-percentile estimation uncertainty el-
lipse, the circle around the waypoint with distance d, and
the true and estimated SOP positions for an example run is
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Fig. 5. Results for the naive motion planning strategy. Illustrated are the
true and estimated UAV trajectories, true and estimated SOP positions,
the waypoint position, the corresponding uncertainty ellipse, and the
target perimeter (specified distance d to the waypoint). It can be seen that
while the UAV actually fails to reach the target perimeter (ground truth
trajectory) despite its estimate indicating otherwise.

True UAV trajectory
Estimated UAV trajectory
&9 True SOP position

&0  Estimated SOP position

@ Anchor SOP

®  Waypoint

Target perimeter

Final UAV uncertainty ellipse

T T T

@)}

y (m)

-50

-100 0 100 200 300 400 500
x (m)

Fig. 6. Results for the MOMP strategy. Illustrated are the true and
estimated UAV trajectories, true and estimated SOP positions, the
waypoint position, the corresponding uncertainty ellipse, and the target
perimeter. The zoomed box in the bottom right illustrates the scenario
mentioned in Section IV-C, where the distance term in the cost function
dominates at the beginning, causing the UAV to fly directly toward the
waypoint. Once close to the waypoint, the trace of the estimation error
covariance starts to dominate, causing the UAV to get stuck flying around
the waypoint to minimize its position estimate’s uncertainty but to no
avail.

TABLE II
Motion Planning Performance

Strategy Time [s] FRMSE [m] FRMSD [m] Success [%]
Naive 27.50 77.04 77.19 36.00
MOMP 200.00 210.38 214.15 32.40

Adaptive

MOMP 91.31 18.95 19.32 95.20

illustrated in Figs. 5 —7 for the naive, MOMP, and adaptive
MOMP strategies, respectively. Table II tabulates the aver-
age time-duration to reach the waypoint, the UAV’s position
FRMSE, the UAV’s FRMSD, and the mission completion
success rate for the 500 Monte Carlo runs for each strategy.

True UAV trajectory

Estimated UAV trajectory

&9 True SOP position

09 Estimated SOP position

&9 Anchor SOP

®  Waypoint

Target perimeter

Final UAV uncertainty ellipse
T T

E
>150 - g
100 - i
50 - .
of _
g f
-200 -1;)0 (; 1t‘)o 200 3(30 4[‘JO 5(;0 600
x (m)
Fig. 7. Results for the adaptive MOMP strategy. Illustrated are the true

and estimated UAV trajectories, true and estimated SOP positions, the
waypoint position, the corresponding uncertainty ellipse, and the target
perimeter. The zoomed box in the bottom right illustrates that the final
position uncertainty of the UAV is contained within the target perimeter
(i.e., within specified distance d to the waypoint).

If the UAV did not reach the waypoint within 200 s, the
mission was stopped and recorded as failure. The time
duration to reach the waypoint is computed by recording
the elapsed time from mission start to the time the UAV
declares the mission complete. The UAV’s position FRMSE
is computed by averaging the final position estimation error
squared over all runs, and the UAV’s FRMSD is computed
by averaging the square of the final distance to the waypoint
over all the runs. The success rate is computed by dividing
the number of runs the UAV’s true position was within a
distance of d from the waypoint by the total number of
runs.

The following conclusions can be drawn from these
results. First, the nonadaptive MOMP strategy performed
the worst in all metrics. The mean time to completion is
nearly 200 s, the entire simulation run. The distance term
dominates initially causing the UAV to go straight to the
target. Once close to the target, the trace term becomes more
dominant, causing the UAV to fly around in order to reduce
its position uncertainty before heading back to the target.
However, because of the poor estimability around the target,
the UAV cannot bring its position uncertainty down in the
allotted time. In fact, it was observed that the covariance
matrix in the EKF tends to grow as the UAV is flying around
due to the poor SOP geometry around the target. This causes
the UAV to not complete the mission, and explains the large
FRMSE and FRMSD values. The FRMSD and the FRMSE
of the proposed adaptive MOMP strategy was significantly
lower than the naive and nonadaptive MOMP approaches,
even if the timeout runs are removed. Second, the naive
approach declared an average mission complete time that
was about 60 s sooner than the adaptive MOMP strategy.
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switching cost function.

However, only about 30% of these missions were actually
successful.

Note that in some runs that used the naive strategy, the
filter diverged and the UAV never reached the waypoint,
but the filter reported mission completed. This is due to
the naive approach failing to consider the uncertainty in
the UAV’s position estimate, causing the UAV to declare
mission complete when the actual position is unacceptably
far from the waypoint. This can be seen in Fig. 5, where the
UAV position estimate had reached the waypoint, whereas
the true UAV position was further than a distance d. In
contrast, the UAV spent more time in the adaptive MOMP
strategy performing maneuvers around the SOPs before
moving to the waypoint, as is illustrated in Fig. 5. The
zoomed box of Fig. 7 shows how the MOMP strategy
ensures that the uncertainty ellipse corresponding to 1 — o
is contained within the specified distance d from waypoint
before the mission is declared complete. Moreover, this pa-
per does not assume prior knowledge of the UAV’s position,
velocity, or clock error (bias and drift). Therefore, the initial
errors may be very large. This is accounted for by selecting
a large initial uncertainty. As the UAV starts moving, its
state becomes observable, allowing the EKF to correct some
of the large initial errors. As a result, the estimate rapidly
converges to the true trajectory’s neighborhood, as apparent
from Figs. 5-7.

Fig. 8 shows, on one hand, how the indicator function
condition (48) indicates adaptive MOMP switching costs to
balance information gathering and reaching the waypoint.
On the other hand, without the indicator function, the naive
and nonadaptive MOMP never meet condition (48), which is
necessary for (42), leading to poor performance. These find-
ings demonstrate the tradeoff between mission duration and
mission success and stress the importance of considering the
UAV’s position estimation uncertainty when prescribing the
UAV’s trajectory.

VI.  EXPERIMENTAL RESULTS

This section presents a field experiment demonstrat-
ing a UAV navigating to a waypoint using pseudoranges
measurements from cellular SOPs. The naive and adaptive
MOMP strategies are employed and the resulting perfor-
mance of each strategy is compared.
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Fig. 9. Experimental setup.

A. Scenario Description

In order to conduct a safe experiment, a postprocessing
approach was adopted. To this end, an environment was
first built in simulation based on the real field experimental
environment. Two simulations were run in this created
environment, which corresponded to naive and adaptive
MOMP. For each strategy, the UAV was initialized in the
same location and was tasked with reaching the same way-
point position. One cellular transmitter was allocated as
an anchor SOP and two SOPs were set to be unknown.
Next, the produced trajectories for each motion planning
strategy were flown manually by a piloted UAV. The SOPs
had comparable height, at which the UAV was flown. The
piloted UAV true trajectories will serve as the ground truth
prescribed trajectories for each strategy. To perform data
association, an offline technique was performed, in which
the profiles of the pseudoranges were compared with the dis-
tance profiles to each SOP. Finally, the pseudoranges were
fused through an EKF for each motion planning strategy and
the resulting mission performance was compared in terms
of mission duration, UAV position rmse, and final distance
to the waypoint position.

B. Experimental Setup

An Autel X-Star Premium UAV was equipped with an
Ettus universal software radio peripheral (USRP)-E312R
to sample cellular CDMA signals. The USRP was tuned to
a carrier frequency of 882.75 MHz, which is commonly
used by the cellular provided Verizon Wireless. Signals
from three cellular SOPs were acquired and tracked via the
Multichannel Adaptive Transceiver Information eXtractor
(MATRIX) software-defined received (SDR) [70], produc-
ing pseudoranges to all SOPs for the entire duration of the
flight. A ground truth trajectory for the UAV was parsed
from the UAV’s onboard navigation system log file, which
records position from its integrated GNSS-aided inertial
navigation system (INS). The anchor SOP’s clock was
solved for off-line by subtracting the true distance from
the SOP’s pseudoranges. The experiment was conducted in
Colton, California, USA. The experimental EKF settings
are tabulated in Table III, and the experimental setup is
shown in Fig. 9.
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TABLE III
Experiment Settings

Parameter Value
7 [—21.27, —334.5]T
2, (0) [~1.6617, —26.98,0,0,0,0]T
s, [—3762, —2496, 0, —0.8302]T

x5, [765.4, 4927, 0, —0.2814]7

Ts, [380.7,1611.8,0, —1.0416] T
Z:(0| —1) ~ Nz:(0),2,(0 | —1)]
25, (0| —1) ~Nlzs;, 35,0 1)), j=1,2
(0| —1) (10* - diag[1,1,1072,1072,10~4,1079))
(0] -1) (103 - diag[1,1,1073,107°]), j=1,2
{hor,h—2r} {2 x10719,2 x 10720}
{ho,s;sh—2,s;} {8x10720,4x 10723}, j=1,2
{Ga,d0} {0.1 (m/s?)2,0.004 (rad)?}
R diag[400, 400, 400] m?2
{Ur,max, ar,max} {12 m/s,3 m/sQ}
0.1s
1-—a 95%
d 50 m

Prescribed naive trajectory
Estimated naive trajectory

Fig. 10. Experimental environment and UAV trajectories. Prescribed
(cyan and blue) and estimated (pink and red) for the naive strategy and
the adaptive MOMP strategy. Map data: Google Earth.

TABLE IV
Solutions Performance

Trajectory Time [s] 2-D RMSE [m] 2-D Final Distance [m]
Naive 57.00 40.23 77.44
Adaptive
MOMP 268.9 23.26 12.246
C. Results

The prescribed and estimated UAV trajectories for the
naive and adaptive MOMP strategies are illustrated in
Fig. 10. The resulting mission performance is tabulated in
Table IV. From this table, it can be concluded that using the
adaptive MOMP strategy to prescribe the UAV trajectory
to navigate to a waypoint resulted in a smaller rmse and
final distance to the waypoint compared to using the naive
strategy. Note that on one hand, although the naive strat-
egy prescribed the shortest path and declared the mission
successful, the UAV’s position estimate had large errors,

causing the UAV to be unacceptably far from the waypoint,
which in turn translates to mission failure. The large errors
are attributed to poor prior knowledge of the SOPs in the en-
vironment. On the other hand, the adaptive MOMP strategy
prescribed a trajectory that performed maneuvers around the
environment, which reduced the uncertainty of the SOPs in
the environment. The reduction of the uncertainty of the
SOP’s states simultaneously reduces the uncertainty of the
UAV’s position states through correlation. Eventually, when
the UAV’s position estimation error and error covariance are
small enough, the UAV switches its objective to navigating
toward the waypoint, which is successfully achieved since
the filter errors are small.

VII.  CONCLUSION

This article developed a MOMP strategy for a UAV
navigating to a specified waypoint in a GNSS-denied en-
vironment. The UAV was required to reach the waypoint
within a specified distance with a specified probability. The
UAV only had access to pseudoranges from unknown SOPs,
which were used to simultaneously estimate the UAV’s
states along with the unknown SOPs’ states while the UAV
navigated to the specified waypoint. The MOMP cost func-
tions were derived in three different approaches—using the
Markov inequality, the KL-divergence, and the Wasserstein
metric. It was shown that all cost functions are equivalent
under certain conditions, and the resulting cost function
balanced two objectives: 1) navigate to the waypoint; and
2) reduce UAV position estimation uncertainty. Adaptive
weights were introduced to the MOMP cost function to
avoid the algorithm getting stuck at local minima. An indi-
cator function was selected, which switches between the two
objectives using a function of the UAV’s position estimation
error covariance. A simple test was derived using the UAV’s
position estimation error covariance to determine if the UAV
had reached the waypoint within the specified distance and a
specified confidence probability. Monte Carlo simulations
and experimental results demonstrated that the proposed
MOMP strategy significantly reduces the UAV’s position
rmse and the final distance to the waypoint compared to a
naive approach, in which the UAV moves directly to the
waypoint. The adaptive MOMP strategy also outperformed
the naive strategy in terms of mission success rate.

The MOMP strategy studied in this article requires an
indicator function to switch between the two components in
the cost function, when using greedy motion planning. Fu-
ture work can extend this framework to adaptive weighting
of the two components of the cost function or adopt a re-
ceding horizon trajectory optimization strategy to consider
both components at the same time. In addition, the cost
function of MOMP is generally nonconvex, which upon
employing numerical optimization solvers, could result in
convergence to local optima, in addition to requiring in-
volved computations which could be infeasible for real-time
implementations. Applying a convex information gathering
cost (e.g., innovation-based metrics [32]) to MOMP could
be the subject of future work.
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