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A tightly coupled inertial navigation system (INS) aided by ambient
signals of opportunity (SOPs) is developed. In this system, a navigating
vehicle aids its onboard INS using pseudoranges drawn from terres-
trial SOPs with unknown emitter positions and clock biases through
an extended Kalman filter-based radio simultaneous localization and
mapping (SLAM) framework. The SOP-aided INS uses both global
navigation satellite system (GNSS) and SOP pseudoranges during
GNSS availability periods and switches to using SOP pseudoranges
exclusively during GNSS unavailability periods. This framework is
studied through numerical simulations by varying: 1) Quantity of
exploited SOPs and 2) quality of SOP-equipped oscillators. It is
demonstrated that the SOP-aided INS using a consumer-grade IMU
produces smaller estimation uncertainties compared to a traditional
tightly coupled GNSS-aided INS using a tactical-grade IMU. In the
absence of GNSS signals, over the simulation finite-time horizon, the
errors produced by the SOP-aided INS appear to be bounded, while
the errors produced by a traditional tightly coupled GNSS-aided INS
diverge unboundedly. Moreover, the article presents experimental
results demonstrating an unmanned aerial vehicle using terrestrial
cellular SOPs to aid its onboard consumer-grade IMU in the absence
of GNSS signals. It is demonstrated that the final position error of
a traditional tightly coupled GNSS-aided INS after 30 s of GNSS
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cutoff was 57.30 m, while the final position error of the tightly coupled
SOP-aided INS was 9.59 m.

[. INTRODUCTION

Today’s navigation systems, particularly those onboard
ground and aerial vehicles, fuse information from a global
navigation satellite system (GNSS) receiver and an inertial
measurement unit (IMU). The integration of these two
systems, typically referred to as a GNSS-aided inertial
navigation system (INS), takes advantage of the comple-
mentary properties of each system: The long-term stability
of a GNSS navigation solution aids the short-term accuracy
of an INS. However, relying on GNSS alone to aid an
INS poses an alarming vulnerability: GNSS signals could
become unavailable or unreliable, such as in deep urban
canyons [1] or in environments under a malicious cyber
attack (e.g., jamming or spoofing) [2]. Without GNSS aid-
ing, the errors in the INS will accumulate and eventually
diverge, compromising the vehicle’s safe and efficient op-
eration. Consumer and small-size applications that use af-
fordable microelectromechanical systems (MEMS)-based
IMUs are particularly susceptible to large error divergence
rates. While higher quality IMUs may reduce the rate of
error divergence, they may violate cost, size, weight, and/or
power constraints.

Current trends to supplement a navigation system in the
event that GNSS signals become unreliable are tradition-
ally sensor based (e.g., cameras [3], lasers [4], sonar [5],
and odometers [6]). These sensors could be used to ex-
tract relative motion information to reduce the INS’s error
divergence rate. However, they are still dead-reckoning
(DR)-type sensors; therefore, during prolonged periods of
GNSS outage, the error will eventually diverge. Moreover,
these sensors only provide local position estimates, may not
properly function in all environments (e.g., fog, snow, rain,
dust, nighttime, etc.), and are still susceptible to malicious
attacks [7].

Recently, signals of opportunity (SOPs) have been con-
sidered to enable navigation whenever GNSS signals be-
come unavailable or unreliable [8]. SOPs are ambient radio
signals that are not intended for navigation or timing pur-
poses, such as AM/FM radio [9]-[11], cellular [12]-[16],
digital television [17]-[19], low Earth orbit (LEO) satellite
signals [20]-[25], and Wi-Fi [26], [27]. In contrast to the
aforementioned DR-type sensors, absolute position infor-
mation may be extracted from SOPs to provide bounded INS
errors. Moreover, SOPs are practically unaffected by dense
smoke, fog, rain, snow, and other poor weather conditions.

SOPs enjoy several inherently desirable attributes for
navigation purposes: 1) Abundance in most locales of in-
terest, 2) transmission at a wide range of frequencies and
directions, 3) reception at carrier-to-noise ratio that is com-
monly tens of dBs higher than that of GNSS signals, and
4) they are free to use, since their infrastructure is already
operational. However, unlike GNSS, whose satellite states
are transmitted in their navigation message, the states of
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SOPs, namely, their position and clock states, are typically
unknown a priori and must be estimated.

The literature on SOPs answers theoretical observability
and estimability questions [28], [29] and prescribes receiver
trajectories for accurate receiver and SOP localization and
timing estimation [30], [31]. Moreover, recent work have
investigated SOP dynamic clock models [32] and have
demonstrated meter-level accurate navigation with SOPs
on ground vehicles [23], [33]-[36] and centimeter-level
accurate navigation on aerial vehicles [37], [38]. With ap-
propriately designed navigation receivers and estimation
frameworks, SOPs have been exploited as an INS aiding
source [39], [40].

This article presents an extended Kalman filter
(EKF)-based radio simultaneous localization and mapping
(SLAM) framework, where the states of unknown terrestrial
SOPs are simultaneously estimated along with the states
of the navigating vehicle. Terrestrial SOP pseudoranges
are used to aid the vehicle’s INS and simultaneously map
unknown SOPs. This estimation problem is analogous to
the SLAM problem in robotics [41]. However, in contrast
to the environmental map of the typical SLAM problem,
which is composed of static states (position of walls, poles,
trees, etc.); the radio SLAM map is composed of both static
states (SOP positions) and dynamic stochastic states (SOP
clock bias and drift).

Radio SLAM-type frameworks have been adopted to
exploit unknown SOPs for navigation as a standalone alter-
native to GNSS [42]. However, only the initial navigating
vehicle’s position and the unknown SOPs’ positions and
clock biases were estimated using SOP pseudoranges drawn
over the vehicle’s traversed trajectory and a simple linear
dynamics model was employed. EKF-based SOP-aided INS
frameworks that estimated the entire vehicle’s trajectory,
clock bias, INS errors, and SOPs’ states using incoming
measurements were developed and studied in [43] and [44].
In contrast to prior work presenting EKF-based SOP-aided
INS frameworks, this article provides a self-contained treat-
ment of an aided INS, with sufficient details for the inter-
ested reader to implement an SOP-aided INS that operates
both when GNSS is available and when GNSS becomes
unavailable or unreliable. The developed framework will fo-
cus on the use of consumer-grade and tactical-grade IMUs;
therefore, the EKF will estimate “absolute” INS states (e.g.,
orientation, position, velocity). Thisis in contrast to an aided
INS with a navigation-grade IMU, where the purpose of an
EKEF is to estimate the INS errors, which are then fed back
to the INS to keep the errors small (and thus linear).

To evaluate the performance of the developed SOP-
aided INS framework, this article presents a sensitivity
study conducted through numerical simulations, by vary-
ing the quantity and quality of exploited SOPs. Moreover,
this article presents experimental results demonstrating an
unmanned aerial vehicle (UAV) using terrestrial cellular
SOPs to aid its onboard consumer-grade IMU in the ab-
sence of GNSS signals. During GNSS outages, the UAV’s
position errors appear to be bounded over the simulation
and experimental finite-time horizon; although no analytical
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Fig. 1. (a) High-level diagram of an EKF-based tightly coupled INS
aided by GNSS (when available) and different SOPs, denoted SOP I,
SOP II and (b) Conceptual illustration comparing the resulting position
errors for: Traditional GNSS-aided INS (green), SOP-aided INS (blue),
and unaided INS (red).

proof was established for the infinite-time horizon case. It
is demonstrated that the final position error of a traditional
tightly coupled GNSS-aided INS after 30 s of GNSS cutoff
was 57.30 m, while the final position error of the tightly
coupled SOP-aided INS was 9.59 m.

The remainder of this article is organized as fol-
lows. Section II provides a high-level description of the
SOP-aided INS framework developed in this article. Sec-
tion III overviews the main components of an aided INS.
Section IV describes the radio SLAM SOP-aided INS
framework. Section V presents simulation results compar-
ing the estimation performance of the SOP-aided INS using
a consumer-grade IMU with a traditional GNSS-aided INS
using a tactical-grade IMU. It also presents a performance
sensitivity analysis of the SOP-aided INS framework over
varying quantity and quality of exploited SOPs. Section VI
presents experimental results demonstrating a UAV navigat-
ing with cellular SOPs using the SOP-aided INS framework.
Finally, Section VII concludes the article.

[I. PROBLEM DESCRIPTION

A high-level block diagram of the developed EKF-based
radio SLAM framework to aid a navigating vehicle’s INS
with SOP pseudoranges is illustrated in Fig. 1(a). When
GNSS signals are available, both GNSS and SOP receivers
produce pseudoranges that are sent to an EKF update step
to simultaneously aid the INS and estimate the unknown
SOPs’ states. When GNSS signals become unavailable,
SOP pseudoranges are used exclusively to continue aiding
the INS and refine the SOPs’ state estimates. Fig. 1(b) is
a conceptual illustration comparing the resulting position
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errors for a traditional GNSS-aided INS (green), SOP-
aided INS (blue), and unaided INS (red). Note that when
GNSS signals are available, the SOP-aided INS is expected
to produce lower position estimation errors compared to
a traditional GNSS-aided INS. This is primarily due to
a reduction in the vertical dilution of precision (VDOP)
over using GNSS alone when terrestrial SOP pseudor-
anges, which have small elevation angles, are used with
GNSS pseudoranges, which inherently have larger elevation
angles [45]. In [13], experimental results show a UAV’s
position estimation uncertainty ellipsoid reduce by 84%
compared to using Global Positioning System (GPS) pseu-
doranges alone when seven GPS satellites’ and five SOPs’
pseudoranges were used together to estimate the position of
the UAV. When GNSS signals become unavailable, a bound
on the SOP-aided INS position errors is expected [29], [46],
whereas the unaided INS errors are expected to diverge.

[ll.  OVERVIEW OF AIDED INERTIAL NAVIGATION

An aided inertial navigation system consists of three
main components: 1) IMU, 2) INS processor, and 3) aid-
ing sensors and corresponding fusion filter. This section
overviews these components.

A. Inertial Measurement Unit

An IMU typically consist of a triad-gyroscope and triad-
accelerometer, which produce rotation rate and specific
force measurements, respectively, along three coordinate
axes. These measurements are corrupted by noise as well
as static and dynamic stochastic errors (e.g., biases, scale
factors, cross-coupling, and cross-axis sensitivity). A DR-
based navigation solution integrates these corrupted mea-
surements over time, which causes the navigation solution
to undesirable drift. Therefore, it is important to “clean up”
these measurements, as much as possible, before they get
integrated through an INS. The IMU’s onboard processor
removes factory-calibrated static errors; however, dynamic
and stochastic error components (known as in-run errors),
should be modeled and estimated online. It is within the dis-
cretion of the navigation filter designer to determine which
errors should be modeled and estimated by considering
the navigation system’s processing power, IMU’s quality,
and maneuvers that the IMU is expected to undertake. To
avoid convoluting the forthcoming discussion, only random
noise and the gyroscope’s and accelerometer’s biases are
modeled. Additional details of IMU errors and methods to
determine which states should be estimated are discussed
in [47]-[49].

Noise-corrupted and bias-corrupted IMU measurements
can be modeled in discrete-time as

b @ima (k) = P@i (k) + bgye (k) + ngye(k), k=1,2,... (1)

Payma (k) = 'R(K) ["ap(k) — 'g(k, rp(k))] + bacc (k)
+ Ryec (k) 2

where ?w; € R? is the true rotation rate of a coordinate frame
{b} fixed to the body of the IMU with respect to an inertial

1932

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 13,2021 at 06:09:38 UTC from IEEE Xplore. Restrictions apply.

;& Y By ZiE
b _ — — — — — —
R=| Ty, 4y 2y

TiZy, Yi'Zy ZitZp
a-b2a'b

Fig. 2. Position ‘r, of the origin of coordinate frame {b} expressed in
coordinate frame {i}. The rotation matrix f’R rotates the coordinates of a
vector expressed in frame {i} into frame {b}. The notation a-b denotes the
inner product of vectors @& and b. The principal directions of {i} and {b} are
represented by the unit vectors ¥;, y;, Z; and X, y,,, 2, respectively. Note

that the describing frame leading superscript on these unit vectors has
been omitted, since the frame used to describe these vectors is arbitrary
when computing f?R, as long as they are all described in the same frame.

frame {i}, such as the Earth-centered inertial (ECI) frame;
bgy: € R? is the gyroscope’s three-dimensional (3D) bias;
Ny, € R? is a measurement noise vector, which is modeled
as a white noise sequence with covariance Q,_; /R € R¥*?
is the rotation matrix, which rotates the coordinates of a
vector expressed in frame {i} into frame {b}; ‘a, € R? is
the true acceleration of {b} expressed in {i}; ‘g € R? is
the acceleration due to gravity in the inertial frame, which
depends on the position of the IMU r, € R?; by € R? is
the accelerometer’s 3D bias; and n,.. € R? isameasurement
noise vector, which is modeled as a white noise sequence
with covariance Q. Fig. 2 illustrates the relationships
of the position and orientation of {b} with respect to {i}
for an aerial vehicle-mounted IMU. The evolution of the
gyroscope and accelerometer biases are modeled as random
walks as

bgyr(k + 1) = bgyr(k) + wgyr(k) (3)
bacc(k + 1) = bacc(k) + wacc(k) (4)

where w,y,; and w,.. are process noise vectors that drive the
in-run bias variation (or bias instability) and are modeled
as white noise sequences with covariance Qy,, and Qy,,,
respectively. Note that other models may be used in place
of (3) and (4), e.g., a common model is to use a Gauss—
Markov process to model the slow varying bias, which is
parameterized by a time constant and is driven by white
noise [48], [49]. The measurements (1) and (2) are sent to
the INS to produce an orientation, velocity, and position
solution, as discussed next.

B. Inertial Navigation System

There are two main INS architectures: Stable platform
(i.e., gimballed) and strapdown. On one hand, a stable
platform INS uses a complex bulky physical structure to
mechanically isolate the IMU’s sensing axes from the ro-
tational motion of the navigating vehicle. This isolation
allows for direct extraction and integration of the IMU’s
acceleration measurements. On the other hand, a strapdown
INS omits the complex bulky structure and instead uses a
smaller size and lighter weight IMU, whose sensing axes
are fixed to the navigating vehicle. The smaller size and
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Fig. 3. Block diagram of an INS within an EKF-based aided INS. The inputs to the INS are the current state estimate iy, (k|j) and IMU

measurements “a;, (k) and Y@, (k). The output is the one-step time update imu (k + 1| ). The internal signals ”®, °a, and %@, are the
bias-compensated rotation rate, bias-compensated transformed specific force, and bias-compensated untransformed specific force, respectively, which
are computed according to (22), (24), and (25), respectively.

lighter weight comes at the cost of additional computational
complexity, which is used to resolve the IMU’s sensing
axes into an inertial frame before the acceleration mea-
surements are integrated. With advances in computational
power, most current navigation systems, especially those
that require smaller and lighter weight sensors (e.g., small
UAVs), employ a strapdown architecture. For this reason, all
subsequent equations and discussions pertain to a strapdown
INS; however, the SOP-aided INS developed in this article
can be readily applied to a stable platform architecture by
replacing strapdown mechanization equations with stable
platform ones.

An INS can be used as a standalone DR system or as part
of anintegrated navigation system, e.g., an EKF-based aided
INS, as in Fig. 1(a). The role of the INS in the context of
an EKF-based aided INS is to take the sequence of sampled
IMU measurements (1) and (2), extract *w; and ‘a;,, and
perform successive integrations to propagate an estimate of
an IMU state vector between aiding measurement updates.
It is common to directly estimate the orientation, position,
and velocity of the IMU in an Earth-centered Earth-fixed
(ECEF) frame {e}, since aiding sources (e.g., GPS satellites
and SOP emitters) are typically represented in {e}. To this
end, this article develops an EKF to estimate the IMU state
vector Xin, € R'6, given by

T
b-T e T e.T T T
ximu = |:eq ’ rb’ rb’ bgyr9 bacc] (5)

where [q = 4", 2q,)" = [2q,, ld5, 45, 2q,]" € RY is a

4D unit quaternion, representing the IMU’s orientation
(i.e., rotation from frame {e} to {b}), and °F, € R? is the
IMU’s velocity. Out of several orientation representations,
the unit quaternion is selected because it provides a minimal
orientation state representation and avoids singularities that
Euler angles are subject to. This quaternion is related to the
rotation matrix R through

"R =Tsx; — 2g,l5qx] + 2159 x]*
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where I3,3 denotes a 3 x 3 identity matrix and | ;¢ x | is the
skew-symmetric form of j¢, which is given by

0 _b% h‘]z
lhgx] = ’2213 0 ~2q,
—eq ¢4, O

A block diagram of the one-step EKF time update that
propagates the estimate Xy, (k|j) to Ximu(k + 1) is illus-
trated in Fig. 3, where ®ipy(k|j) £ Elxima(k)|Z7], E[ -] -]
is the conditional expectation operator, Z/ £ {z(i W_p,zis
a vector of INS-aiding measurements (e.g., from GNSS or
SOPs), and k > j. GNSS aiding is discussed in the next
subsection and SOP-aiding is discussed in the following
section. The strapdown INS equations pertaining to each
block are provided in Appendix A. Upon receiving an
aiding measurement z(k 4+ 1), the EKF performs a mea-
surement update to produce X, (k + 11k + 1), as discussed
in the following subsection. If z(k + 1) is not available
then xj,(k + L — 1]j) is recursively fed back to the INS
to produce X, (k + L|j), where L = 2, 3, ..., until a mea-
surement becomes available.

C. Traditional GNSS-Aided INS

A traditional EKF-based GNSS-aided INS couples the
INS and GNSS through either: 1) Loose coupling, which
fuses the INS and GNSS position and velocity solutions; 2)
tight coupling, which fuses the INS solution with GNSS
pseudoranges; or 3) deep coupling, which uses the INS
solution to aid the GNSS receiver’s tracking-loops [50].
This article considers tight coupling for four main reasons.
First, in the event that less than four GNSS pseudoranges
are available, tightly coupled systems can still provide an
EKF aiding update, which is not the case in a loosely
coupled system. Second, a tightly coupled system can be
implemented with most commercial off-the-shelf (COTS)
components, which is not the case in a deeply coupled
system, since internal GNSS tracking loops are typically
required. Third, the filter will optimally deal with the geom-
etry of the aiding measurements. Fourth, the aiding source
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output does not have to be decimated in time (to maintain
statistical independence) as a result of any filtering internal
to the aiding source.

To use GNSS pseudoranges in an EKF measurement up-
date, the receiver’s clock state vector xj £ [ cét,, cStr]T €
R? must be estimated, where 8¢, is the receiver’s clock bias,
8t, is the receiver’s clock drift, and c is the speed of light.
The clock dynamics is modeled as [51]

1 T
Xeiir(k + 1) = Foexene (k) + wee (k),  Foe = [O 1:|
(6)

where 7 is the sampling interval and w , is the process
noise, which is modeled as a discrete-time white noise
sequence with covariance

Sﬁ), T+Sﬂ)v T—3 Sﬁ), T—z
chk,r = C2 . |: o T2 Str 3 St 2 (7)

Sw{ir,r 2 Sﬁ)éz |T

where Sy, and Sy,
continuous-time process noise Wy = [Wst rs ﬂ}gl,r]T, re-
spectively [28], which can be related to the power-law
coefficients, {hy}2__,, which have been shown through
laboratory experiments to characterize the power spectral
density of the fractional frequency deviation of an oscil-
lator from nominal frequency according to Sg,,, ~ ,% and
Siy,, & 2712h_2,r [52]. Augmenting Xk » With Xin, gives the
GNSS-aided INS state vector Xgnss ins € R'® that the EKF

estimates, namely

are the power spectra of the

A T T T
Xeonss,ins = [ximu’ xclk,r] : @)

The GNSS receiver makes pseudorange measurements
{Zanss.n M| atdiscrete-time instants to all N available GNSS
satellites. After compensatmg for ionospheric and tropo-

spheric delays {zy, Y| is given by

Zgnss,n(j) = ”erb(j) - ergnss,n(j)HZ
c- [Str(.]) - Btgnss,n(j)] + Vgnss,n (J) )

where Zgnss,n £ Z/gnss,n - C(Stiono,n - C(Sttropo,n; 8ti0n0,n and
tiropo,n are the ionospheric and tropospheric delays, respec-
tively; z, Zgnss,n is the uncompensated pseudorange; “rgngs » 1S
the position of the nth GNSS satellite; 8f,pss , i the clock
bias of the nth GNSS satellite; vgps , is the measurement
noise, which is modeled as a discrete time zero-mean white
Gaussian sequence with variance ogw .5 and j € N repre-
sents the time index at which {zgnss,,,}ﬁlv=1 is available, which
could be aperiodic. These pseudoranges {Zgnss,» }HN= , are used
to filter Xgpgs ins through an EKF measurement update step
to produce the updated estimate Xgyq5ins (/| /). Note that, to
simplify the forthcoming discussion, it is assumed that the
number of available GNSS satellites is constant and that the
ionospheric and tropospheric errors are perfectly accounted
for. In practice, so-called “range bias” states may be added
to the state vector X gy, ins. SUch states serve two purposes.
First, estimate any residual atmospheric and multipath error
for each pseudorange measurement. Second, and typically
more importantly, when new or reacquired GNSS satellite
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measurements are added to the measurement vector, these
states (along with a reset of the corresponding rows/columns
of the prediction error covariance matrix) can be used to
absorb the “jump” in £gpe,ins that would otherwise occur.
Given the short duration of the simulation and field tests in
this article, there were no constellation changes, thus the
jumps were not an issue. The addition of range bias states
would be prudent for longer trajectories.

Whenever GNSS pseudoranges become unavailable,
the INS continues to propagate in an open-loop fashion
(i.e., performing only EKF time updates). This causes the
position and velocity errors to grow unboundedly with time.
This is largely due to integrating the estimation errors of
bgy: and by, denoted I;gyr and b, respectively. The time
evolution of the velocity estimation error “F;, and position
estimation error ‘7, after r seconds of open-loop propagation
due to a constant 3D accelerometer bias error b, are given
by [48]

ez enth ex, le 7 2
rh(t) ~ thucct’ rb(t) ~ EbRbacct .

The increase of ‘7, and “#, with time due to a constant
gyroscope bias error i)gyr is even more significant— it is
squared and cubic with time, respectively. This is caused
by linearly increasing orientation errors with time due to
integrating I;gyr. Assuming the IMU moves at a constant
velocity and is level with respect to the Earth’s surface, the
time evolution of “F; and °F, are given by [48]

ez [,.2 e 1e 7 l,.3

Fp(t) ~ bR [b yrx] g, ‘Fp(t)~ gbR [bgyrx] gt
where ‘g = [0, 0, —||°g||.]" is a local-level frame gravity
vector. It is important to note that these relationships are
approximate, since additional errors can integrate into the
position and velocity due to gravity model approximations,
timing errors, and orientation errors. Even if the biases are
perfectly estimated before GNSS becomes unavailable, i.e.,
bgyr = 03,; and b,c = 0551, the integration of the whlte
noise ngy, and n,. will cause the standard deviation of the
position error in the ith coordinate direction o (°7 ;) to grow
according to

1 1
o (Foi) = V gSgyrfS, o (Fpi) = V3 acct®s 1=X,Y,2

respectively, where Sq,r and S, are the one-sided power
spectral density (PSD) of n,y, and ny, respectively.

From the above relationships, it is obvious that with-
out INS aiding corrections, the position errors and their
associated standard deviations grow unboundedly. The next
section develops an SOP-aided INS framework, which uses
pseudoranges drawn from unknown terrestrial SOPs to
provide INS aiding. The following sections demonstrate
through simulations and an experiment that the SOP-aided
INS reduces 7, compared to a traditional GNSS-aided INS
while GNSS is available and appears to bound 7, when
GNSS becomes unavailable.
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[V. SOP-AIDED INERTIAL NAVIGATION

The SOP-aided INS framework provides both accurate
and robust navigation with and without GNSS signals by
using pseudoranges drawn from ambient terrestrial SOPs to
correct INS errors. This section formulates the SOP-aided
INS, which operates in two modes.

1) Mapping Mode: GNSS pseudoranges are available.
Here, GNSS and SOP pseudoranges are fused in
the EKF to aid the INS, producing a more accurate
estimate Of Xgng,ins While mapping the SOP radio
environment (i.e., estimating the unknown states of
the SOPs).

2) Radio SLAM mode: GNSS pseudoranges are un-
available. Here, SOP pseudoranges aid the INS to
simultaneously localize the vehicle-mounted INS
(estimate Xjn,,) while mapping the unknown states
of the SOPs.

A. SOP Dynamics and Pseudorange Measurement
Model

Each of the M SOPs will be assumed to emanate
from a spatially stationary terrestrial transmitter. The state
vector of the mth SOP Xy, is defined as Xgopm £
[ g Xksopm]| € R, Where “ryp € R? is its 3D po-
sition state and Xk sop.m = [C8tsop.ms COtsopm]’ € R is its
clock states, where 6t,op, » and S'tsop,m are the clock bias and
drift, respectively. The SOP’s discrete-time dynamics are
modeled as

Xsop,m (k + l) = Fsopxsop,m(k) + wsop,m(k)’ k= L2,...
(10)

T
Xsop,m = [erzop’m’ x-cl-]k,sop,m] s Fsop = diag [I3><31 Fclk]
where wgqp, , 1 the process noise, which is modeled as a
discrete-time zero-mean white noise sequence with covari-
ance Qsop,m = diag[03><3v chk,sop,m]a with chk,sop,m haVing
identical structure to Qqix in (7), except that Sy, and S,;JMr
are replaced with SOP clock-specific spectra Sy, and

. ~ hO.sop,m ~
S%,mpym, respectively, where Swslww = and S,j,szgop.m ~

Zﬂzh_zysop,m.

The pseudorange observation made by the vehicle-
mounted receiver on the mth SOP, after discretization and
mild approximations discussed in [28], is related to the
receiver’s and SOP’s states by

Zsop,m(j) = ”erb(j) - ersop,m”2
+c- [Str(]) - 8ts0p,m(j)] + Vsop.m (J) (11)
where vyop , 1S the measurement noise, which is modeled

as a discrete-time zero-mean white Gaussian sequence with

; 2
variance oy, .

B. Framework Overview

The SOP-aided INS framework illustrated in Fig. 1
operates both with and without GNSS signals. To this end,
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the framework operates in one of two modes: 1) Mapping
mode when GNSS pseudoranges are available and 2) radio
SLAM mode when GNSS pseudoranges are unavailable.
This subsection describes why special care must be taken
when transitioning between GNSS-available and GNSS-
unavailable modes and how the transition is performed.

In contrast to a traditional tightly coupled GNSS-aided
INS, the SOP-aided INS has the added complexity of having
to deal with the unknown, dynamic, and stochastic states
of SOPs. These states are estimated simultaneously with
X gnss.ins» 1-€., the EKF estimates the state vectorx € R85 M,
defined as

(12)

iy T T
X = [xgnss,ins’ xsop,l’ e

T
’ xl—op,M :I
Note that the EKF estimates absolute state values instead
of state errors, which is another common approach when
formulating an EKF for an INS [48]. While GNSS signals
are available, x is estimated by the EKF in the mapping
mode using the measurement set

T
T T T
= [Zgnss’ ZSOP] » Zgnss = [Zgnss,l’ cees Zgnss,N]
T
Zsop = [Zsop,l Y Zsop,M] .

When GNSS signals become unavailable, the measurement
set reduces to

7 = Zgop-

In [29], it was shown that x is stochastically unobservable
during GNSS-unavailable modes; specifically, the EKF si-
multaneously estimating X, and Xcix sop,m USing z’ pro-
duces unbounded clock error estimation uncertainties. For
this reason, the SOP-aided INS framework transitions from
the mapping mode to the radio SLAM mode, by modifying
the state vector to resolve observability issues. Note that
the mapping mode is not required as long as the Radio
SLAM mode is provided with a prior state estimate; how-
ever, it produces correlation between the estimates, which
will reduce state estimation errors in the Radio SLAM
mode compared to using uncorrelated priors. The transition
between the mapping and the radio SLAM modes is devel-
oped next to properly initialize the estimates, corresponding
estimation uncertainties, and cross-correlations, so that a
seamless transition takes place between GNSS-available
and GNSS-unavailable modes.

To develop this transition, first note that during the
radio SLAM mode, zg, is no longer available. Therefore,
instead of estimating x. , and {xclk,sop,m}%zl individually,
the relative clock states between the receiver and each SOP,
denoted Ak = Xelkr — Xelksopms M = 1,2, ..., M, will
be estimated. As such, the state vector to be estimated is
modified from (12) to become

13)

A r T
x = [ximu, Xop1 s+

’ T
’ xsop,M
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where x(, £ [Tl e AXD,1Tom=1,2,... M. Atthe
moment of transition from GNSS-available to GNSS-
unavailable, an estimate of the new state vector x’ and the
corresponding estimation error covariance P’ are initialized
from the latest produced estimate X and its corresponding

estimation error covariance P using

¥ =T& P =MPM'
Tgnss,ins 016><5 tee 016><5
Tclk,r Tsop e 05><5
T= . ) :
| Tclk,r 05><5 tee Tsop
Mgnss,ins 015><5 e 015><5
Mclk,r Tsop e 05><5
M= ) : )
| Mclk,r 05 x5 " Tsop
0 0
A A 3x16 V3x2
Tenss.ins = [Lioxi6s Ot6x2] . Tekr = 0o T
2x16 42x2

>

T. & (L33 0550
B USSR O

A
Mgnss,ins = [115><157 015><2] ’
A [03515 0350
M r = .
[ 02515 Ino

Notice that P and P’ has one less dimension than £ and &/,
respectively. This is due to the IMU’s orientation estimation
error being represented by a three-axis error angle vector,
denoted by 6 € R3, which has one less dimension than the
estimate of g, denoted 4 € R*. The vector 8 is related to
bg, and 2§ through

:
. [ 112
G= [—(f, - ZOTO] (14)

where ® denotes quaternion product. This error represen-
tation is common when estimating quaternions, since g is
an overdetermined representation of the orientation error.
Hence, the estimation error covariance associated with g
would be singular. To avoid singularity, the covariance
associated with 8 is maintained instead.

To summarize, the two modes of operation are as fol-
lows.

1) Mapping Mode: Estimates x using the measurement
set z.

2) Radio SLAM Mode: Estimates x’ using the measure-
ment set z'.

The EKF time and measurement updates are provided
next.

C. EKF Time Update

The time update should be adjusted according to the cur-
rent operation mode to account for the state transformation
from (12) to (13).
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1) Time Update Equations for Mapping Mode: Dur-
ing the mapping mode, the EKF produces the time up-
date estimate of x(k + 1), denoted by (k + 11) £ Elx(k +
D|{z(@ )}{:1], and an associated prediction error covariance
P(k 4 1|j), where k > j, and j is the last time-step an INS-
aiding source was available. The time update equations for
each component of (12) are provided next. The time update
of Xjmy 1s produced using Zim, through the INS illustrated in
Fig. 3. The discrete-time linearized equations to produce the
one-step time update X, are provided in Appendix A. The
receiver’s one-step clock state time update follows from (6)
and is given by

Ko r(k 4 1]j) = Fanew r (k] ).

The SOPs’ one-step state time update follows from (10) and
is given by

Zsopm (k+117) = FeopRsopm(klj), m=1,...,M. (16)

Next, the one-step prediction error covariance is produced
according to

P(k + 11j) = F()P(k| jFT (k) + Q(k)
F(k) £ diag [®imu(k + 1, k), Fo, Foop, ..., Feop]
Q(k) £ diag [Qimu(k)v chk,rv Qsopv ey Qsop]

where ®;,,, and Qj,, are the discrete-time linearized INS
state transition matrix and process noise covariance, respec-
tively, which are provided in Appendix B.

2) Time Update Equations for Radio SLAM Mode:
During the radio SLAM mode, the state time update has
the same form as the mapping mode, except that (15) is
omitted and the SOP state time update (16) is replaced with
the SOP position and relative clock state time update, which
is given by

15)

an

Xopm (k+11j) = Foopkiopm(klj), m=1,.... M.

The prediction error covariance P'(k + 1]/) has the same
form as (17), except that F is replaced with F' =
diag[ @imu, Fsop, - - ., Fsopl and Q is replaced with Q' £
MQM".

D. EKF Measurement Update

The measurement update should be adjusted according
to the current operation mode to account for the change of
measurement availability from z to z'.

1) Measurement Update Equations for Mapping Mode:
Assuming z(k 4 1) is available, the EKF measurement up-
date step will produce x(k + 1|k + 1). The standard EKF
measurement update equations are slightly modified to map
the 3D orientation error correction to the 4D quaternion
state estimate. To avoid convoluting this section, the full
set of EKF state measurement update equations to pro-
duce X(k 4+ 1]k + 1) are provided in Appendix C. Given a
prediction error covariance P(k + 1|j), the corresponding
corrected error covariance is given by

P(k+1]k+1) = P(k+1]j) — K(k+1)S(k+ 1K' (k+1)
K(k+1) 2 Plk+1[)HH (k+ 1S (k+1) (18)
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S(k+1) 2 Hk+D)PG*k+DH' (k+1) + R(k+1)  (19)

where H is the measurement Jacobian and R is the mea-
surement noise covariance of z. In the mapping mode, i.e.,
7£ [zgnss, stop]T, the measurement Jacobian H is

H= [HT HT ]T

gnss’ “sop

AT T
0153 Lypes1 010 Bggy O1s

Hgyeo =
01,3 i;nss,N 010 Bl 01511
013 i-srop,l 019 h-crlkilzop,l' -0
Hop=| : & ¢ & 0o
013 i-sl;p,M 019 h-crlk 0 - 'il:op,M
where ignss,n = sz::—:i:::”’ hex = [1, O]T, isop,m =
e and b m 2 [y 0 —h "

2) Measurement Update Equations for Radio SLAM
Mode: During the radio SLAM mode, the state and co-
variance update equations have the same form, except the
measurement Jacobian is adjusted from H to H' to account
for only SOP pseudoranges being available, i.e., 2’ = Zp
and R is replaced with R’, which is the measurement noise
covariance of z'. The adjusted measurement Jacobian is

AT

.
013 Ligp1 Orxo vy oo+ 0
H/_ . .
T
.
0153 Lgppr 010 0 - v
h N
WRETe Vsop,m = (- sop,m? clk:I

V. SIMULATION STUDY

This section presents simulation results demonstrating
a UAV navigating via the tightly coupled SOP-aided INS
framework developed in Section IV. The SOP-aided INS is
first compared against a traditional tightly coupled GNSS-
aided INS. Then, the performance is studied by varying the
quantity and quality of exploited terrestrial SOPs.

A. Numerical Simulator Description

A numerical simulator was developed to generate the
following.

1) “Ground Truth” Trajectory of the UAV: The trajec-
tory was generated using a six degrees-of-freedom
(6DoF) kinematic model [48], which included a
straight segment with linear acceleration, a 5° pitch-
ing climb, a straight segment without acceleration,
and four 60° banking turns, performed over a 200-s
period. During the first 100 s of the trajectory, the
UAV completes all maneuvers except for the last
three banking turns, which are then completed during
the remaining 100 s. This particular trajectory was
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UAV's trajectory

SOP locations GPS cutoff location

Fig. 4. True trajectory the UAV traversed (yellow) and SOP locations
(orange transmitters). The GPS cutoff location is marked with X.

TABLE I
INS Process Noise Covariances

Consumer Tactical

2.74-(107%) I5x3
6.01-(107%) T35
(10719) I35
(10719) I35

3.38-(1079) - I3x3
3.38-(1079) - I3x3
(10714) I35
(10714) I35

Qn,,. [rad? /sec?]
Q... [m*/sec’]
Qu,,. [rad? /sec?]

Qu,.. [m?/sec’]

chosen because it excites all 6DoF of the UAV, i.e.,
both horizontal and vertical directions and all three
angles (roll, pitch, and yaw), allowing the SOP-aided
INS to be studied under various maneuvers. The
trajectory that the UAV traversed is illustrated in
Fig. 4.

2) Gyroscope and Accelerometer Data: These data
were generated at 100 Hz according to (1) and (2),
respectively, for a tactical-grade and a consumer-
grade IMU. The random noise for each of the axes of
the tactical-grade IMU was set to have a PSD of 10
deg /~/hr and 1000 pg/~/Hz for the gyroscope and
accelerometer, respectively. The random noise for
consumer-grade IMUs are typically stated in terms
of total accumulated noise at the output of the sensor.
Each axis of the consumer-grade IMU was set to have
an accumulated noise of 0.3 deg /s and 2.5 mg for
the gyroscope and accelerometer, respectively. The
evolution of the biases were generated according to
(3) and (4) using driving process noise with spectra
setto Sy, =107% - Iz,3and Sy, = 107% - Iz, for
consumer grade and S, = 107'? - Iz,3and S, =
107!2 . 15,5 for tactical-grade, respectively. These
spectra are mapped online to the discrete-time noise
covariances Qp,,, Qu,.> Qu,,, and Qy, through
the equations provided in Appendix B. The result-
ing covariance matrices for both the tactical and
consumer-grade IMU used in this simulation are
listed in Table I.
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TABLE 11
GPS and SOP Measurement Noise Standard Deviations

Minimum [m] Mean [m] Maximum [m]
GPS 2.79 3.24 3.51
SOP 0.859 1.69 3.53

3) GPS LI C/A Pseudoranges: These pseudoranges
were generated at 1 Hz according to (9), using
satellite orbits produced from receiver indepen-
dent exchange (RINEX) files downloaded from a
continuously operating reference station (CORS)
server [53]. The GPS pseudorange measurement
n0ise {Vgnss,n(J )}2’=1 were set to be independent with
a measurement noise variance computed according

to [54]
ztemB TZ 2
agzns&nyj.: C 1OpLLL Oy |_1+ ] (20)
2CNow; L Teo(CNodn

where t.,,; = 0.5 chips is the early-minus-late corre-
lator spacing, Bpr . = 0.05 Hz is the delay lock loop
(DLL) bandwidth, 7. = 1/(1.023 x 10°) s is the
chip duration, (C/Ny),,; (in Hz) is the time-varying
received carrier-to-noise ratio, which was derived
from the RINEX files, o, = 17 is a scaling parameter
to account for unmodeled errors, and T-p = 10 ms
is the coherent integration time. Another common
model often employed is the scaled C/Nj - elevation
model [55]. The minimum, mean, and maximum
measurement noise standard deviation across all
GPS satellites over the simulation time from using
(20) are tabulated in Table II. The receiver was set to
be equipped with a typical temperature-compensated
crystal oscillator (TCXO), with values specified in
Table V.

4) SOP Pseudoranges: These pseudoranges were gen-
erated at 5 Hz according to (11). The SOP pseu-
dorange measurement noise {vsop,m( j)} _, were set
to be independent with a time-varying measure-
ment noise variance which corresponds to code di-
vision multiple access (CDMA) signals, computed
according to (20) except that fem = 1, ngm nj 18
replaced with o, . T, = 1/(1.2288 x 10°), o, =
22, Tco =1/37.5 s, and the carrier-to-noise ra-
tio (C/Np),,; is replaced with a time-varying log-
distance path loss model [56]

(C/No),, j = Po — 10y -log,,(d(;j)/Do)
(C/No)mj — 10[(C/N0),/u,,'/10]

where P, = 56 dB-Hz is a calibration carrier—to—
noise ratio at a distance Dy = 1400 m, d(j) £
175(j) — “Fsop.mll2, and y = 2 is the path loss ex-
ponent. The calibration values Py and D, are values
commonly observed by the authors during experi-
mental campaigns [14]. The SOP pseudorange mea-
surement noise variance computation assumes that
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the correlation function within the DLL is equiv-
alent to GPS. This is a reasonable assumption for
cellular CDMA signals when 7., is between 0.8 and
1.25 chips. More sophisticated models are discussed
in [57]. The minimum, mean, and maximum mea-
surement noise standard deviation across all SOPs
over the simulation time are tabulated in Table II.
The SOP dynamics evolved according to (10). Each
SOP was set to be equipped with a typical oven-
controlled crystal oscillator (OCXO), with values
specified in Table V. The SOP transmitters’ positions
{“Fsop.m )i, Were surveyed from cellular tower loca-
tions in downtown Los Angeles, California, USA.

B. Simulation Results: Tightly Coupled SOP-Aided INS
Versus GNSS-Aided INS

To study the navigation performance of the tightly cou-
pled SOP-aided INS, it is compared against a tightly cou-
pled GNSS-aided INS during GNSS-available and GNSS-
unavailable modes. The SOP-aided INS framework was
assumed to be equipped with a consumer-grade IMU,
while the GNSS-aided INS framework was assumed to be
equipped with a tactical-grade IMU. For both frameworks,
GPS pseudoranges were set to be available for r € [0100)
s and unavailable for ¢ € [100, 200] s. During the first 100
s, the inertial radio SLAM framework is in the mapping
mode, which causes the estate estimates to begin to con-
verge. This will be illustrated later in the results. The initial
estimates (at r = 0 s) of the UAV’s states were initialized
with a random error drawn according t0 Xgpgs ins(0]0) ~
N[017><], (0|0) Where

Xanss,ins

Py ... (0[0) £ diag [Py, (0]0), Py, (0]0)]

P, (0[0)=diag [(107%)-T3x3, 9-Tax3, Lz, (107%)-Tgys]
xclk,r(0|0) = dlag [9, 1].

Ximu

For the SOP-aided INS framework, the SOPs’ state
estimates were initialized according to Xyp,,(0]0) ~
Nxs0pm(0), Piop(0[0)],  for m=1,...,M, where
Xqop.m(0) = [Ty, 10%,10]7, P, (0]0) = (10%) -
diag[Izx3, 0.1, 0.01]. Note that the estimate of the
SOPs’ states are initialized by drawing from a Gaussian
distribution with a mean equal to the true states and
a covariance to capture uncertainty. This initialization
scheme is used in simulation to ensure consistent initial
priors in the EKF. In practice, if the initial SOPs’ states
are completely unknown, then a small time history of
pseudoranges from the beginning of the run can be saved
and processed through a batch filter to estimate these states.
Then, the estimate and associated covariance of the batch
filter can be used to initialize the EKF. As long as the
vehicle is moving and has access to GPS, the position and
clock states of the SOPs are observable [28], [29]. The
simulated trajectory, SOP positions, the GPS cutoff location
are illustrated in Fig. 4. The GPS and SOP pseudorange
measurement noise standard deviations used in the EKF
were set to the same time-varying values that were used
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TABLE III

SOP Final Error and RMSD
SOP1 SOP2 SOP3 SOP4
Final error [m] 2.117 2.077 0.623 0.776
Final RMSD [m] 3.435 2.823 1.599 3.823

to generate the measurements, which are discussed in
Section V-A.

Before the simulation results are presented, it is worth
discussing the feasibility of the simulation scenario illus-
trated in Fig. 4 with two remarks.

REMARK 1 Notice that at some points during the UAV’s
trajectory, some of the SOPs are around 5 km from the
UAV and have overlapping coverage areas with each other.
In practice, towers typically transmit in all directions from
three sets of antennas that are spaced 120 degrees apart.
Since SOP navigation receivers are not subscribers to the
network (e.g., as a cell phone user is), the receiver is not
limited to the artificial coverage areas that service provider
user equipment impose to ensure that the device has optimal
reception. A universal software radio peripheral (USRP)
mounted to a vehicle can certainly sample and receive pow-
erful signals from overlapping coverage areas, especially
if they are flying in the air over the buildings. During
several experiments conducted by the authors, signals from
10 independent towers were received simultaneously, some
of which were more than 6 km away [38]. The signals had
areceived carrier-to-noise ratio greater than 35 dB-Hz for 8
of the towers and greater than 27 dB-Hz for the other two,
which was high enough to produce useful pseudoranges to
all 10 towers.

REMARK 2 The UAV trajectory may cross from one
sector to another of the same tower. Crossing sectors of
the same tower would introduce a shift in the observed
clock bias due to an offset in the pseudorandom noise (PN)
sequence and other effects, such as unmodeled distance
between the phase-center of the sector antennas and delays
due to RF components (e.g., connectors, cabling, filters,
amplifiers, etc.). This behavior was not simulated and only
a single aggregated SOP position was used to simulate
pseudoranges from each tower. In practice, when the UAV
transitions from one sector to another, the clock shift due to
the PN sequence offset should be removed from the clock
bias estimate in the EKF. After removing this shift, the
remaining shift can be modeled as a stochastic process that
follows an autoregressive (AR) model. This behavior and
the characterization of the AR model is detailed in [57].

The resulting estimation error trajectories and corre-
sponding +three-standard deviation bounds (+30') for the
position of the UAV and SOP 1 are plotted in Figs. 5 and
6, respectively. The final 3D position error and root mean
squared deviation (RMSD) for SOPs 1-4 are tabulated in
Table III. The RMSD is defined as

RMSD £ ,/Tr [P.,.,, ]
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Fig. 5. Tesulting north, east, and down position errors for the UAV are
illustrated for two frameworks. In both frameworks, the UAV had access
to GPS pseudoranges for only the first 100 s while traversing the
trajectory illustrated in Fig. 4, after which GPS pseudoranges were cut
off. The GPS cutoff time is marked with a red dashed vertical line. The
first framework used a tightly-coupled GPS-aided INS with a
tactical-grade IMU (orange). In the second framework used an
SOP-aided INS (black).

where Tr[A] is the trace of matrix A and Pe,, is the
covariance of the mth SOP’s position estimate.

The following may be concluded from Figs. 5 and
6. First, when GPS pseudoranges became unavailable at
t = 100 s, the UAV’s north, east, and down estimation error
variances associated with the traditional GPS-aided INS
begin to diverge unboundedly, as expected, whereas the
errors associated with the SOP-aided INS appear bounded.
Second, before GPS cutoff, the SOP-aided INS with a
consumer-grade IMU yielded lower estimation error vari-
ances when compared to the traditional GPS-aided INS with
a tactical-grade IMU; therefore, including SOP pseudor-
anges along with GPS pseudoranges to aid an INS may relax
requirements on IMU quality. The benefits of including
SOP pseudoranges along with GPS pseudoranges are partly
attributed to improved pseudorange geometric diversity.
This diversity produces smaller estimation errors due to a
reduced geometric dilution of precision (GDOP), horizontal
dilution of precision (HDOP), and VDOP, as can be seen by
comparing the values for using GPS only and GPS+SOPs,
tabulated in Table IV. Third, the SOPs’ north, east, and
down estimation error variances suddenly reduce at approx-
imately 65 s due to the UAV’s left banking turn, causing a
rapid change in the angle of the line-of-sight vector from
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Fig. 6. Resulting north, east, and down position errors and
corresponding 30 bounds (black) for SOP 1. The GPS cutoft time is
marked with a red dashed vertical line.

TABLE IV
Minimum and Maximum GDOP, HDOP, and VDOP
GPS only GPS+SOPs
Minimum GDOP 1.928 0.927
Maximum GDOP 1.934 1.027
Minimum HDOP 1.027 0.695
Maximum HDOP 1.030 0.902
Minimum VDOP 1.358 0.514
Maximum VDOP 1.362 0.609

the UAV to the SOP, which improves the estimability of
the SOP’s position. The uncertainty continues to reduce
after GPS is cut off, indicating the SOPs’ position states
are stochastically observable in the radio SLAM mode.
Fourth, the SOPs’ position errors are consistent with the
430 bounds, i.e., the produced error variances are correctly
representing the estimation uncertainty. This can be seen
visually in Fig. 7, which illustrates that the true position
of SOP 1 is contained within the final 99th—percentile
uncertainty ellipsoid, which s centered at the final estimated
position. Similar behavior was observed for SOPs 2, 3, and
4 and after simulation runs using different realizations of
process noise and measurement noise.

During these simulations it was assumed that pseudo-
range measurements from all four SOPs were available at
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Fig. 7. True position, final position estimate, and final 99th—percentile
uncertainty ellipsoid for SOP 1.

5 Hz, without interruption. If at any point in time pseu-
doranges become faulty from any of the SOPs, then the
fault can be detected and the pseudoranges associated with
that SOP should be temporarily excluded using a receiver
autonomous integrity monitoring (RAIM) framework for
SOPs [58]. The UAV’s position errors and associated esti-
mation uncertainty will increase when an SOP is excluded,
since less measurements are available. The degradation in
performance due to excluding a varying number of SOP’s
pseudoranges is studied in the next subsection.

The plots in Fig. 8(a)—(b) correspond to the estimation
errors of the receiver’s clock bias ¢8z, and clock drift ¢dt,,
respectively, when GPS was available and the plots in
Fig. 8(c)—(d) correspond to the estimation errors of SOP
I’s clock bias ¢dtp 1 and clock drift cStsop,l, respectively,
while GPS was available. Fig. 8(e)—(f) correspond to the
estimation errors of the relative bias cA8#; and drift c At
between the UAV-mounted receiver and SOP 1 that were
initialized when GPS pseudoranges became unavailable, as
was described in Section IV-B. Note from Fig. 8(a)—(b) that
including SOP pseudoranges along with GPS pseudoranges
reduces the estimation uncertainty associated with cé¢, and
¢8t, compared to using GPS pseudoranges alone. Also note
from Fig. 8(e)—(f), that the initialization scheme discussed
in Section IV-B produces consistent estimates of cAdt; and
drift cASt; the moment GPS gets cut off and that these
states are estimable during the GPS cutoff period. Similar
behavior has been observed through extensive experimental
campaigns conducted by the authors [43], [44], [59]. In
contrast, if c¢ét;, cSt,, and cdtyop 1, cStsop,l were estimated
individually, their estimation errors would have diverged
unboundedly [29].

C. Performance Analysis

Several factors affect the navigation performance when
exploiting SOP pseudoranges to aid an INS. The main
factors are: Quantity of SOPs, quality of SOP-equipped
oscillators, quality of receiver-equipped oscillator, receiver-
to-SOP geometry, channel (e.g., line of sight conditions and
multipath), and outliers due to unmodeled effects. In what
follows, the performance sensitivity of the SOP-aided INS
is studied by varying the quantity of SOPs and quality of
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Fig. 8. Estimation error trajectories and £30 bounds for the clock
states of the SOP-aided INS framework (black) and traditional
GPS-aided INS (orange). (a) and (b) correspond to the receiver’s clock
bias ¢dt, and clock drift ¢ét;, respectively, while GPS was available and
(c) and (d) correspond to SOP 1’s clock bias cdtqp,1 and clock drift
cStsop_l , respectively while GPS was a\(ailable. (e) and (f) correspond to
the relative bias ¢ Adty and drift cAdt; between the UAV-mounted
receiver and SOP 1 during the radio SLAM mode.

their equipped oscillators using the environment illustrated
in Fig. 4.

1) Varying Quantity of SOPs: To study the perfor-
mance sensitivity of the SOP-aided INS framework for a
varying number of SOPs, six separate simulation runs were
conducted. The first four runs employed the SOP-aided INS
with a consumer-grade IMU and M =1, ..., 4 SOPs. The
last two runs employed a traditional tightly coupled GPS-
INS and no SOPs (M = 0) with 1) a tactical-grade IMU
and 2) aconsumer-grade IMU. Fig. 9 illustrates the resulting
logarithm of the determinant of the position estimation error
covariance log{det[P,, (k|j)]} for each run, which is related
to the volume of the estimation uncertainty ellipsoid [30].

The following may be concluded from Fig. 9. First,
the estimation uncertainties produced by the SOP-aided
INS are reduced when M is increased, and the sensitivity
of the estimation uncertainty to varying M is captured by
the distance between the log{det[P,, ]} trajectories. Second,
although the SOP-aided INS used a consumer-grade IMU,
the position estimation uncertainty for M =1, ..., 4 was
always lower than the position estimation uncertainty pro-
duced by a traditional tightly coupled GPS-aided INS using
a tactical-grade IMU. Third, the estimation uncertainties
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Fig. 9. Logarithm of the determinant of the estimation error covariance
of the UAV’s position states log{det[Py, (k|j)]}. The two curves for
M = 0 correspond to a tightly-coupled GPS-aided INS equipped with a
tactical-grade IMU (purple) and consumer-grade IMU (green). The
curves for M = 1, 2, 3, 4 correspond to the tightly-coupled SOP-aided
INS with a consumer-grade IMU for a varying number of SOPs. The
GPS cutoff time is marked with a red dashed vertical line.

TABLE V
Quality of SOP Clocks
Quality parameters {ho,sop,ms R—2,sop,m }
Worst TCXO {2.0x 10719, 2.0 x 10720}

Typical TCXO
Typical OCXO
Best OCXO

{9.4%x107%, 3.8 x 1072}
{8.0x 10720, 4.0 x 10723}
{2.6 x 10722, 4.0 x 10726}

produced by the GPS-aided INS began to diverge unbound-
edly when GPS was cut off, whereas a bound may be
specified for the uncertainties produced by the SOP-aided
INSforM =1, ...,4.

2) Varying Quality of SOP Clocks: To study the per-
formance sensitivity of the SOP-aided INS framework for
a varying quality of SOP clocks, four simulation runs were
conducted, where in each run all four SOPs were assumed to
be equipped with the same clock quality: 1) Worst TCXO,
2) typical TCXO, 3) typical OCXO, and 4) best OCXO.
In all runs, the UAV-mounted receiver was assumed to be
equipped with a typical TCXO. The characterizing parame-
ters of the four oscillator grades are tabulated in Table V. The
resulting 30 bounds for exploiting four SOPs, which were
assumed to all be equipped with a worst TCXO (black), typ-
ical TCXO (green), typical OCXO (blue), and best OCXO
(purple), are plotted in Fig. 10. The four grades of oscillators
considered and their characterizing parameters are tabulated
in Table V.

From Fig. 10 it may be concluded that while GPS was
available, the sensitivity of the estimation performance to
SOP clock quality was minimal. When GPS pseudoranges
become unavailable, the estimation performance was sig-
nificantly more sensitive to the SOP clock quality, and
the sensitivity is captured by the distance between the 30
trajectories. Although the uncertainty in the estimates were
larger when SOPs were equipped with a worst TCXO, a
bound may still be established.
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Fig. 10. Estimation error trajectories and =30 bounds for the UAV’s
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INS assuming all SOPs to be equipped with 1) worst TCXO (black), 2)

Typical TCXO (green), 3) typical OCXO (blue), and 4) best OCXO

(purple). The GPS cutoff time is marked with a red dashed vertical line.

VI. EXPERIMENTAL DEMONSTRATION

This section presents experimental results demonstrat-
ing a UAV navigating with the tightly coupled SOP-aided
INS framework using real IMU data, signals from three
cellular SOP transmitters, and signals from 11 GPS satel-
lites (when available). For a comparative analysis, results
are also presented of the UAV navigating with a traditional
tightly coupled GPS-aided INS using the same IMU data
and GPS signals. The following experiment was conducted
by collecting the IMU, GPS, and SOP data in the field,
after which the data were postprocessed in the lab. The
experiment used an Autel Robotics UAV [60] equipped with
the following.

1) Tri-band (144/400/1200 MHz) cellular omnidirec-
tional antenna from Ettus Research [61].

2) Consumer-grade L1 GPS active patch antenna from
QGP Supply [62].

3) Dual-channel USRP from Ettus Research [63],
which was used to simultaneously downmix and
sample cellular CDMA signals at 3.2 mega-samples
per second (MSPS). Pseudoranges to three cellular
SOPs were extracted from these samples at 5 Hz
by processing them through the Multichannel Adap-
tive TRansceiver Information eXtractor (MATRIX)
software-defined radio (SDR) [13], [57], developed
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Fig. 12. Time history of C/Ny for SOP 1,2, and 3, produced by the
MATRIX SDR.

by the Autonomous Systems Perception, Intelli-
gence, and Navigation (ASPIN) Laboratory at the
University of California, Irvine.

4) Proprietary consumer-grade IMU, developed by Au-
tel Robotics. The Autel Robotics UAV allows ac-
cess to raw IMU data, which were used for the
time update at 100 Hz of the orientation, position,
and velocity of the UAV as illustrated in Fig. 3.
The IMU data are also coupled with altimeter and
GPS data in the UAV’s onboard navigation system
to produce an integrated navigation solution. The
UAV allows access to this navigation solution, which
was used as the ground truth result with which the
proposed tightly-coupled SOP-aided INS framework
was compared.

Fig. 11 depicts the experimental software and hardware
setup.

The following experiment was conducted by collecting
the IMU, GPS, and SOP data and then postprocessing the
data in the lab. The UAV was commanded to traverse the
trajectory plotted in Fig. 13(a), in which GPS was available
for the first 50 s, then unavailable for the last 30 s. The SOP-
aided INS framework was initialized with a state estimate
given by

;
£(010) = [£],5,11,(010), 2T, (010, .. &L, ,010)]

where the estimates of orientation f@(OlO), position 7, (0]0),
and velocity 7,(0]0) were set to values parsed from the
beginning of the UAV’s navigation system log files, which
were recorded during the trajectory, and the IMU biases
3gyr and b, were initialized by averaging 5 s of gravity-
compensated IMU measurements while the vehicle was
stationary and after the IMU had warmed up. The cellular
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(a) Experimental environment showing the UAV’s trajectory, cellular SOPs’ locations, initial SOPs’ position uncertainties, and final position

uncertainties. (b) UAV’s trajectory before and after GPS cutoff: 1) White: Ground truth, 2) Green: SOP-aided INS before GPS cutoff, 3) Blue:
SOP-aided INS after GPS cutoff, and 4) Red: GPS aided INS after GPS cutoff, i.e., INS only. (c) and (d) True and estimated SOP locations and
corresponding final uncertainty ellipses. A vector graphics editor was used to trace the trajectories and ellipses for easier viewing.

SOP transmitters’ initial state estimates were drawn accord-
ing t0 £50p,m(010) ~ NAPL,, > X T cop m (O, Poop m (0]0)).
The true transmitters’ positions {ersop,m}?n=1 were surveyed
beforehand according to the framework described in [64]
and verified using Google Earth. The initial clock bias and
drift

: T
xclk,sop,m(o) =cC [atsop,m(0)7 Stsop,m(o)] m=1,...,3

were solved for by using the initial set of cellular transmitter
pseudoranges (11) according to

Catsop,m(o) = ”erb(o) - ersop,m” + Catr(o) - Zsop,m(o)
C‘Stsop,m(o) = [atsop,m(l) - Stsop,m(o)]/T

where catsop,m(l) = ”erb(l) - ersop,m ” + C‘Str(l) -
Zsop,m(1) and the receiver’s clock bias cét,(0) was provided
by the GPS receiver while GPS was available.

The corresponding estimation error covariance was ini-
tialized according to

P(0]0) = diag [Pgngs,ins(010), Pyop 1(0]0), . . ., Pyop 3(0]0)]
P,.....(0[0) £ diag [Py, (0]0), Py, (0]0)]

P, (0/0)=diag [(107") T3x3, 9-Lax3, L3, (107%)- Ty
P, (0/0) = diag[0.1, 0.01]

Pyop,n(010) = 10* - diag [I343,0.3,0.03], m=1,2,3.

Signals may be acquired later in the run from SOPs that
were not initialized in the EKF while the receiver had

J.MORALES ET AL.: TIGHTLY COUPLED INS WITH SIGNALS OF OPPORTUNITY AIDING

access to GPS. Although this case is not considered in this
experiment, it is worth mentioning here that a batch filter
that uses pseudoranges collected over a short window of
time may be used to initialize the estimates of the newly
acquired SOP’s in the absence of GPS [65]. To incorporate
the uncertainty of the vehicle’s position states, these states
may be added to the estimated vector and the INS-produced
vehicle’s position may be fed as measurements along with
the SOP pseudoranges.

The process noise covariance of the receiver’s clock
Qi r Was set to correspond to a typical TCXO. The process
noise covariances of the cellular transmitters’ clocks were
set to correspond to a typical OCXO, which is usually the
case for cellular transmitters [66], [67]. The power spectral
density matrices associated with the gyroscope and ac-
celerometer noise were set to S, = (7 x 107*)* - I3,3 and
Su.. = (5 x 107%)? - 15,3, respectively. The power spectral
density matrices associated with the gyroscope and ac-
celerometer bias variations were setto Sy, = (1 x 107%)% .
L33 Su, = (1 x 107*)% - I5,3, whose values were found
empirically using raw IMU data. These spectra are mapped
to the discrete-time noise covariances Qy,,,, Qu,..> Qu,,, and
Qy,.. online through the equations provided in Appendix
B. The measurement noise variances {aszop,m}fn=1 were com-

puted according to (20), except that 2 - is replaced with

anss,n, j

02 Te = 1/(1.2288 x 10°), 0, = 10, Teo = 1/37.5 s,

and the carrier-to-noise ratio C/N, produced by the MA-
TRIX SDR for each SOP was used. Note that the C/N,
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TABLE VI
Experimental Estimation Errors After GPS Cutoff

Estimation framework RMSE [m] Final error [m]

18.94
5.84

57.30
9.59

INS only
SOP-aided INS

produced by an SOP SDR could be used in real time to
create a time-varying measurement noise variance for the
EKF. The time history of C/N, for each SOP is illustrated
in Fig. 12.

The UAV flew in the vicinity of three cellular SOPs with
aninitial uncertainty ellipsoid illustrated in Fig. 13(a). It can
be seen in Fig. 13(b) that after the GPS cutoff point, the INS
only solution (red) began to drift from the truth, resultingin a
large final error. On the other hand, the tightly coupled SOP-
aided INS solution (green) prevented this drift by using the
pseudoranges drawn from the three cellular SOPs, resulting
in a significantly reduced final error. The north-east root
mean squared error (RMSE) and final error for 1) GPS-aided
INS framework after GPS cutoff (i.e., INS only) and 2)
SOP-aided INS framework after GPS cutoff are summarized
in Table. VI. The final estimated transmitter location and
corresponding 95th—percentile uncertainty ellipse for two
of the SOP transmitters are shown in Fig. 13(c)—(d). The
final localization errors for the three SOPs were 26.6, 19.6,
and 59.1 m, respectively.

Note the following two points from these results. First,
the final error of the UAV’s position is smaller than the
SOPs’ position errors. Since the SOP-aided INS is EKF-
based and the UAV has a priori knowledge of its state, the
UAV’s final position error can be smaller than the aiding
sources’ final position errors. The UAV’s position error and
uncertainty may grow in this time window and the growth
rate is dependent on IMU quality, the uncertainty in the
SOPs’ positions and clock states, and measurement quality.
However, the pseudorange measurements from the SOPs
are still significantly decreasing the error and uncertainty
growth rate compared to an INS alone. Second, the relatively
large estimation error of the third SOP is mostly attributed
to a lower carrier-to-noise ratio compared to the other SOPs,
which results in a higher measurement noise variance. Also,
there was a small number of outliers in the pseudorange
measurements that were not removed. To further enhance
performance, these outliers may be detected and the SOP
responsible for the outliers may be temporarily excluded us-
ing a RAIM approach for SOPs [58]. Despite not removing
the small number of outlier pseudorange measurements, the
final position error was smaller than the initial uncertainty
and the position estimate was captured within the final
estimation uncertainty ellipse.

VII.  CONCLUSION

This article developed and studied an SOP-aided INS
framework. The performance of the framework was com-
pared against a traditional tightly coupled GNSS-aided INS
integration strategy and the performance sensitivity was
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studied by varying the quantity and quality of exploited
SOPs. The SOP-aided INS was shown to possess several
advantages over the GNSS-aided INS. When GNSS sig-
nals are available, incorporating ambient terrestrial SOPs
produces a more accurate navigation solution compared to
using GNSS alone. A bound appears to be established on the
estimation errors in the absence of GNSS. The SOP-aided
INS may relax requirements on IMU quality. For example,
using a consumer-grade IMU was shown to produce esti-
mation uncertainties lower than a traditional tightly coupled
GNSS-aided INS using a tactical-grade IMU when two,
three, or four SOPs were exploited. Furthermore, it was
shown that SOPs equipped with low-quality oscillators may
serve as effective INS-aiding sources to establish a bound
on INS errors in the absence of GNSS for a finite-time
horizon. Moreover, experimental results demonstrated a
vehicle navigating with the SOP-aided INS framework in
the absence of GNSS, which yielded an RMSE reduction
of 59.9% when compared to an unaided INS.

APPENDIX
A. TIME UPDATE OF X,

The time update of xiy, is performed using ECEF strap-
down mechanization equations.

1 Orientation Time Update

The orientation time update is given by

btk +11j) = ;' ® L (k| ) 1)
Where 1§ represents an estimate of the rotation quater-
nion between the IMU’s body frame at time k and k + 1.
The quaternion b:“q is computed by integrating gyroscope
rotation rate data @y, (k) and iy, (k + 1) using a fourth
order Runge-Kutta according to

Zi*‘q =qo+ — (d1 +2d> +2d; +dy)
where
I 1. _ 1
1 _ B 1
1
di =3[ '0tk+ D] (7o +Tds). 7 210,0.0. 1]

1
&2 2 ['ok) + ok + 1] — R (k)

where [ -] € R*** is given by

Q[a] £ [‘E‘fﬁj g] c atla,
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b&(k) is the bias-compensated rotation rate measurement,
which is computed according to

Po(k) = @imu(k) — by (k| ) (22)

and fw £ 10, 0, fw]T is the rotation rate of the Earth, i.e., the
rotation rate of the ECEF frame {e} with respect to the ECI
frame {i}. The value of ¢w, according to the latest version of
the world geodetic system (WGS 84), is {w = 7.292 115 x
107 rad/s.

2 Position and Velocity Time Update

Integrating IMU specific force data to perform a time
update of the position and velocity in an ECEF coordinate
frame introduces a centrifugal and Coriolis term due to the
rotation rate of the Earth {@ [48]. Assuming that the varia-
tion of the Coriolis force is negligible over the integration
interval, the velocity time update is performed according to

a a T
Pk + 1)) = Foklj) + 5 [“ak) + atk + 1))

+ gk, “rp(kNT — 2T [Lwx | Fy(k| )
(23)

where ‘@ and “a are the transformed bias-compensated
specific force and untransformed bias-compensated specific
force, respectively, which are given by

a(k) 2 R (k)’ak)
ba(k) = Gimu (k) — bacc (k1)

and R(k) £ R[24(k| )].
The position time update is performed according to

(24)
(25)

T - . . N .
Ptk +11j) = Fokl ) + = [Fp(k + 1]j) + PF(k| )]

— T?[Lox ]kl j). (26)

3 Accelerometer and Gyroscope Bias Time Update

The time update of the biases by, and b, follow from
(1) and (2), respectively, giving

bgyr(k + 1|]) = i’gyr(klj)

bucc(k 4 11j) = byce (K1 ).

B. INS STATE TRANSITION AND PROCESS NOISE CO-
VARIANCE MATRICES

The calculation of the discrete-time linearized INS state
transition matrix @y, and process noise covariance Qi
are performed using strapdown INS equations as described
in [48] and [68]. The discrete-time linearized INS state
transition matrix @y, is given by

<I)qq 03><3 03><3 <I’qbgyr 03><3
<I’rq I3><3 TI3><3 <I)rbgy, <I>rbacc
Dy 035 @i P, Pin,,
0353 0353 0353
03,3 033 033

(I)imu =
Iz 033
03,3 I3x3
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where

Yy =L —Tljox], @=Ly —2T[[ox]

D

eyr

T . .\
= -5 [RTk+ 1D +RT0)]

T e en T
iy = _EL[ atk) +atk + ] x], ®rg=—==4y

2
T ..
Dy, = _EL atk)x|®gp,,., Pip, = Pp,,
T
D, = E‘I’fbgy,, D, = E‘I’fbm'

The discrete-time linearized INS process noise covariance
Qimy 1s given by

mu

r T
Qimu = E(I)imuNc(p' + Nc
where
N, = diag[sngy,a 053, Snma Swgy,a Swacc]

where S, = TQq,, and S, = T'Qy,,,, are the PSD matri-
ces of the gyroscope’s and accelerometer’s random noise,
respectively, and Sy, = Qu,,, /7T and Sy, = Qu,, /T are
the PSD matrices of the gyroscope’s and accelerometer’s
bias variation, respectively.

C. EKF STATE MEASUREMENT UPDATE EQUATIONS

The standard EKF equations are modified to deal with
the 3D orientation error correction, which contains one less
dimension than the 4D orientation quaternion estimate, as
described in Section I'V-B. To this end, the state estimate
is separated into two parts according to & £ [’e’ch, 17,
where 24 € R* is the orientation quaternion estimate and
§ € R4 M 5 a vector containing the remaining estimates
of x. Next, the EKF correction vector ¥(k + 1), which is
to be applied to the current state prediction X(k 4 1|j) to
produce the EKF state measurement update X(k + 1|k + 1),
is computed according to

§ o [0G+1)] _ [ AgK(k+Dw(k+1]j)
Mt D) = [i(k—i—l)] = [AyK(k+1)v(k+1|j)}

where 6 € R is the orientation correction, j € R4 M jsa
vector containing the remaining corrections

Ap = [I3x3, 03 (1445 M)]

Ay £ [0014+5 myx3s Laass myxiass i |

vk +1]j) £ z(k + 1) — 3(k + 1|j) is the measurement
residual, and K and S are defined in (18) and (19), respec-
tively. Finally, the EKF state measurement update x(k +
1|k + 1) is computed by applying 8(k + 1) to 2g(k+1|)
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through (14), and applying y(k + 1) to y(k + 1]j) using the
standard EKF additive update equation, giving

Fh4+1k+1) =

.
Gk+11)® [%9T(k+l), \/1 - }‘éT(k+1)é(k+1)]

Y(k+11j) +y(k+1)
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