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When electrons flow as a viscous fluid in anisotropic metals, the reduced symmetry can lead to exotic
viscosity tensors with many additional, nonstandard components. We present a viscometry technique that
can, in principle, measure the multiple dissipative viscosities allowed in isotropic and anisotropic fluids
alike. By applying representation theory to exploit the intrinsic symmetry of the fluid, our viscometry is
also exceptionally robust to both boundary complications and ballistic effects. We present the technique via
the illustrative example of dihedral symmetry, relevant in this context as the point symmetry of 2D crystals.
Finally, we propose a present-day realizable experiment for detecting, in a metal, a novel hydrodynamic
phenomenon: the presence of rotational dissipation in an otherwise isotropic fluid.
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Introduction.—Hydrodynamics models the transport of
conserved quantities, such as charge or energy, over large
length- and timescales. In ultrapure low-temperature met-
als, electronic momentum can also be approximately
conserved, if the collisions that conserve momentum are
much faster than those that relax it (e.g., off impurities or
via umklapp) [1]. In these viscous electron fluids, hydro-
dynamic effects can give rise to exotic transport phenom-
ena, such as decreasing resistance with increasing
temperature (Gurzhi effect) [2] and superballistic constric-
tion flow [3].

Theorized for many decades, electron hydrodynamics
has in recent years garnered compelling experimental
evidence [4—12]. The earliest discoveries of electron hydro-
dynamics took place in GaAs [4], monolayer graphene [5],
and bilayer graphene [6]. At low (but nonzero) charge
density, these are all isotropic Fermi liquids well described
by Galilean-invariant, textbook hydrodynamics [13]. For
the electron fluid in graphene, the shear viscosity—the sole
dominant viscosity in this isotropic Fermi liquid—has been
both calculated [14,15] and indirectly measured in experi-
ment [6,7,11].

Metals are generically anisotropic, however, as the
presence of a crystalline lattice explicitly breaks rotational
symmetry. Indeed, experiments and ab initio calculations
have recently suggested hydrodynamics might apply in less
symmetric metals, e.g., WP, [16], PtSn, [17], MoP [18],
and WTe, [19]. In such cases, anisotropy leads to a number
of novel phenomena [20], including rotational viscosity
[21] and intrinsic Hall viscosity [22]. Such viscosities
are inaccessible to current experiments, however, as
existing methods (nonlocal resistances [23,24], constriction
conductances [3], ac phenomena [25], current imaging
[10-12], channel flows [26], and heat transport [ 16,27-29])
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(i) are not robust to boundary and ballistic effects and
(i) cannot distinguish all the symmetry-allowed viscosities
that will generically appear.

Here, we present a multiterminal device, robust to both
boundary complications and ballistic effects, that can
measure the multiple dissipative viscosity components
allowed in isotropic and anisotropic fluids, all on a single
sample. Our viscometry relies on the representation theory
of point groups, from which we devise boundary conditions
that isolate viscosities via symmetry-constrained heating.
Our technique is also uniquely capable of detecting a
“smoking gun” signal of a novel hydrodynamic phenome-
non: the isolated emergence of rotational viscosity 7, in an
“otherwise isotropic” fluid [21].

Strikingly, rotational viscosity 7, gives viscous dissipa-
tion even under rigid rotations of a fluid, which is forbidden
by angular momentum conservation in isotropic fluids, but
generically allowed in anisotropic fluids. For hexagonal
fluids in particular, 7, emerges in a novel and isolated way
[21], alongside only the standard, isotropic shear, and bulk
viscosities. Hexagonal electron fluids therefore provide a
highly novel setting for finding #,, with possible candidate
materials including PdCoO, [30], NaSn,As, [31], and
ABA-trilayer graphene [32]. Finally, we argue that our
viscometry proposed here is in fact the only feasible way of
discovering 7, in an electron fluid.

In what follows, we describe our viscometry via the
illustrative example of 2D fluids of dihedral point sym-
metry. However, our approach extends naturally to fluids of
higher dimension and/or differing point symmetry.

Dihedral hydrodynamics.—The dihedral group D,,, is
the 2M-element group of symmetries of the regular M-gon.
As an abstract group, D,;, is generated by its elements p, a
(27/ M) rotation about the M-gon center, and r, a reflection
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through a fixed axis containing the M-gon center, with
prp =r. We also take D, = O(2) to be the group of
symmetries of the circle, which includes rotations of
arbitrary angle. By the crystallographic restriction theorem
[33], the paradigmatic 2D electron fluids are those of
M € {2,3,4,6} dihedral point symmetry.
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where € is the Levi-Civita symbol and ¢ are Pauli matrices.
We have excluded in Eq. (1) only the M = 2 viscosity
tensor; in such D, fluids, one has eight allowed viscosities,
not all of which are isolated by our viscometry due to the
exceptionally low symmetry of D,. We therefore rele-
gate discussion of this singular case to the Supplemental
Material [34].

We emphasize that the presence of rotational viscosity 7,
in Eq. (1) does not rely on electrons or dihedral symmetry:
it is universal to anisotropic fluids. The lack of rotational
symmetry allows the stress tensor to have a nonvanishing
antisymmetric component ¢;;7;; # 0, which in the hydro-
dynamics must couple to the strain tensor component
€;;0;v; = V x v of the same symmetry (i.e., the vorticity);
this generic coupling is #,. Figure 1 illustrates the micro-
scopic origin of 7, in anisotropic electron fluids.

The remaining viscosities appearing in Eq. (1) can be
understood as follows: bulk viscosity ¢ [38] couples the
trace of the stress tensor to the fluid expansion V - v, plus
viscosity n couples the stress (z,, — 7,) along the axes of
the crystal to the strain (0,v, — d,v,), and cross viscosity
ny couples stress and strain at 45° to the crystal axes.
Equating plus and cross viscosities 7,1, — 7 in the Dg
tensor (M = 4) gives the D, tensor (M = 6), and further
taking 7, — O in the D,, tensor gives the isotropic tensor

FIG. 1. [Tllustration of the origin of rotational viscosity in
electron fluids. When an anisotropic Fermi surface (black) is
rotated (dark purple), quasiparticle excitations (red, blue) are
generated. In the hydrodynamic limit, such rigid rotations are
opposed by a dissipative rotational viscosity #, [21]. Note that
this Fermi surface has Dg symmetry.
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In Newtonian fluids (appropriate for the linear response
regime [1]), viscous stresses 7;; = —n, 0, v; arise linearly
in response to velocity gradlents 8k v;, with proportionality
given by the viscosity tensor 7;;. In the Supplemental
Material [34], we show that any D,j,-invariant viscosity
tensor must take the form

M =
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[
(M = c0). We therefore discuss dihedral viscosities with-
out further loss of generality by henceforth assuming the
Dy case.

We now turn to the linearized (i.e., assuming Stokes flow
[1,13]) hydrodynamics. For Dg fluids, the hydrodynamic
equations are the following pair of approximate conserva-
tion laws:

— Daip). (2a)

Op = =0, (Po”;

Po0iv; = —=c20ip — pol'v; + 1ty 0k vy, (2b)
where p (py) is the (equilibrium) fluid density, ¢ is the
electronic speed of sound, and I' is the rate of momentum-
relaxing collisions. Equation (2a) describes the local
conservation of density p, with an associated conserved
current J; = pyv; — DO,;p. The current J; has a convective
contribution from the fluid momentum p,v; and a diffusive
contribution —DJ;p, with D as the incoherent diffusion
constant [21,40]. Equation (2b) describes the approximate
conservation of fluid momentum pyv; in the presence of
viscous —d )i and Ohmic —pyl'v; forces.

One may, in principle, append to Eq. (2) a third con-
servation law for energy. At py # 0, this complication does
not qualitatively modify the dynamics of homogeneous
electron fluids [1]. At py =0 (e.g., the Dirac fluid of
charge-neutral graphene), the energy density e couples to
velocity »; in an analogous way to charge density p in
Eq. (2). Because of this analogy, we focus on the py # 0
case, but our results are generalizable to Dirac fluids.

We now restrict to static flows 0, =0, so that the
left-hand side of Eq. (2) vanishes. We can then automati-
cally satisfy the resulting divergence-free condition on
J; in Eq. (2a) by writing the current in terms of a
stream function: J; = pge; ;0w = v; = (D/po)0;p+€;;0,y.
Using this stream function y, we eliminate density p from
the (static) momentum equation (2b) and, neglecting terms
of order D&y ~ (£,,0)%, where subscript ee is the
microscopic electron-electron scattering length, we find
that the stream function satisfies the generalized bihar-
monic equation
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where we have introduced the parameters
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and nondimensionalized all lengths (X,5) = (x,y)/w,
V = (05, 0Jy), using an assumed measurement length scale
w (which will later characterize the size of our viscometer).
Using an assumed solution y of the generalized biharmonic
(3), we solve for 0,p in Eq. (2b), which tells us that (away
from p, = 0) the current J; = p,v; is approximately coher-
ent at this order [41]. Substituting this result into the stream
function relation, we find that the fluid is approximately
incompressible: v; % €;;0;y.

The parameter 4 (4) is known as the “Gurzhi length” and
characterizes the length scale past which momentum-
relaxing effects begin to dominate viscous effects [1].
The dimensionless parameter ¢ (4) characterizes the degree
of square anisotropy in the fluid and must lie in the interval
6 € [-1, 1]. The transformation § — —§ corresponds to a
rotation of the crystal coordinates by 45°, and § = 0 implies
N, = 1, (no square anisotropy in the fluid).

Dihedral viscometry.—Our dihedral viscometer is a
square (x,y) € [-w/2,w/2]?, with current J; ~ pyv; boun-
dary conditions consisting of eight contacts, each of width
a, on its perimeter. Contacts are placed in pairs symmet-
rically about the midpoint of each edge, separated from
each other by a tunable spacing d. A total current / is
either injected or drained at each contact, with the con-
figuration of the viscometer determined by these choices.
For concreteness, we take box function contacts [44], and
no slip v; = 0 at the boundary away from contacts, in all
numerical calculations (though our main results are unaf-
fected by such details).

Our viscometry functions by exploiting the spatial
symmetry of the dissipation generated in the fluid. The
viscous dissipation is best understood via the irreducible
symmetries of the Dg-invariant viscosity tensor, which we
now outline; see the Supplemental Material [34] for details.

Informally, a “group representation” [45] allows a group
to act on a vector space, by assigning group elements to
matrices in a way that is consistent with the underlying
group multiplication. For finite groups and complex vector
spaces, any such representation can be decomposed into a
sum of elementary, ‘“building-block” representations,
known as “irreducible representations” (irreps). The dihe-
dral group Dg has five irreps: four one-dimensional
representations U({Z [the superscript denotes reflection

Ny —Nx
:7’ 4
2n, + 1y + 1y )

parity, Uf(r) = +1, and the subscript denotes rotation
parity, Ui (p) = i*] and one two-dimensional vector rep-
resentation R; [21,45]. These irreps label the five
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FIG. 2. First row: the five irreducible representations of Dyg.
Second row: current boundary conditions (blue and red arrows) of
matching Dg symmetry, indicated by colored wedges. Symmetry
restricts heat (5) at the square center to only a single dissipative
coefficient (yellow disk). Note that the representation U
requires more than eight contacts in order to satisfy charge
conservation.

irreducible ways a mathematical object can self-consis-
tently transform under reflection and fourfold rotation. The
irreps of Dg and their realizations as current boundary
conditions on a square are summarized in Fig. 2.

Particularly relevant for viscometry is the four-
dimensional vector space 7, of rank-2 tensors, as the
velocity strain tensor is an element of this space:
0;v; € T,. The viscosity tensor 7;;, =1;; then acts
linearly on 7, as a 4 x4 matrix by index contraction.
Since the viscosity tensor is Dg-invariant, Schur’s lemma
[45] implies that ;; ;; must act proportionally to the identity
on each Dg-invariant subspace of 7,. We illustrate this
result by expressing the heat that is generated through
viscous dissipation, Wi = (0;v;)1;;11(0kv;), as

Waie = 1.(€;;0;v;)* + ’7+(0'1Z'jaivj)2
+ 11x (G;Fjaiyj)z + §(5ij3ivj)2, (5)

where each term in Eq. (5) represents a projection of 0;v;
into a given one-dimensional Dg-invariant subspace of 7 5,
corresponding to a one-dimensional irrep of Dg.

Note that the total [46] heat W = W ;. + Wopm gen-
erated by the fluid flow also contains an Ohmic contribu-
tion Wopm = pol“v?. Even though pyI" is not a component
of the viscosity tensor, the fluid velocity v; nevertheless
transforms according to the remaining vector irrep Ry,
conveniently completing our correspondence between Dg
irreps and dissipative coefficients in Fig. 2.

Importantly, both the center of the square and its
boundary are mapped to themselves under any Dg-sym-
metry transformation. Thus the center strain tensor
(0;v;),_o and center velocity v;(0) must have the same
Dg symmetry as the square boundary. This implies that we
can selectively isolate at the square center each of the five
terms in the heat decomposition W = W ;.. + Wopn, by
choosing boundary conditions corresponding to each of the
five irreps of Dyg.

The above considerations are summarized in Fig. 2. A
numerical demonstration of isolated 7., 1, , and 7, heating
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FIG. 3. Flows numerically solving Eq. (3) in our viscometer
with w = 1 um, Iy = 100 uA, d/w = 0.41, a/w = 0.05, § = 0,
and 2/w = 0. Rows specify Dg-irreducible boundary conditions,
and columns give the temperature variation —(V?T), sourced
solely by 7, dissipation. Symmetry restricts center heating to
only the diagonal plots. In giving an order-of-magnitude estimate
for the scale of heating, we have taken relevant physical
parameters from hydrodynamic electrons in monolayer graphene
[6,7]; see the Supplemental Material [34]. Temperature varia-
tions of this magnitude are detectable with existing local
thermometers [47,48].

is given in Fig. 3 (see the Supplemental Material [34]
for additional flow plots). In the Supplemental Material,
we further show that our result does not fundamentally
rely on hydrodynamics; across the entire ballistic-to-
hydrodynamic crossover, our symmetry-based “visco-
meter” continues to isolate dissipation channels according
to their symmetry.

The isolated center heat Wy = 1,(Jv,)§ generated solely
by the viscosity 7, sources a Poisson equation [5]

W = —«V?T (6)

for temperature 7, with « as the electronic thermal
conductivity. If one is able to measure both the center
temperature variation (V2T), (e.g., by local thermometry
[47,48]) and center strain component (Jv,), (e.g., by flow
imaging [10-12]), then 7, = —k(V*T)y/(0v,)3 can be
determined. Alternatively, if one uses only local thermo-
metry, one may still estimate (0v,),—and hence 7,—by
mapping out heating patterns W(x,y) via Eq. (6) and
comparing against numerical simulations.

Another consistency check arises by varying the vis-
cometer geometry. Numerically solving Eq. (3) for varying
contact spacing d, we show in Fig. 4 how the anisotropy &

Wo(d, 5)/ma’XdWO (d7 5)
Uy

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 L0
Contact Spacing d/w  Contact Spacing d/w  Contact Spacing d/w

060=08 06=04 06=00 0bd=-04 @d=-028

FIG. 4. Viscometer center heat W, numerically determined
from Eq. (3), as a function of boundary condition irrep, contact
spacing d, and anisotropy &, for a/w = 0.01 and 1/w = oo. Each
curve is normalized by its maximum value. The uniqueness of
these curves should allow for experimental determination of J.
Although momentum relaxation is neglected in these 1/w = oo
plots, we find that the shape of these curves, and hence their
utility in determining J, is extremely insensitive to decreasing 4
(increasing I'); see the Supplemental Material [34].

can be determined experimentally. The center heat Wy (d)
(as a function of contact spacing d) varies uniquely with
anisotropy ¢, allowing for computation of the latter. In fact,
we show in the Supplemental Material [34] how 6 may be
determined from as few as two contact spacings and
two boundary configurations, for four total center heat
measurements.

Finally, in the Supplemental Material, we discuss how
our viscometry compares against more conventional
Poiseuille, channel flow methods, particularly in the Dy
case [26] where there is insufficient symmetry to isolate all
viscosities via boundary conditions, as above.

Conclusions.—Even if the above procedure cannot be
carried out in full, one may nevertheless defect rotational
viscosity 5, by simply observing center heat in the Ug
configuration. Uy symmetry precludes any center heat that
might arise from another viscosity component, Ohmic
effects, incoherent currents, or even ballistic scattering
(in addition to being highly suppressed in the viscous
limit, ballistic center heat also has easily distinguishable
scaling with viscometer size w; see the Supplemental
Material [34]). We therefore anticipate that our viscometry
can enable the discovery of 7, in the near future.

We further claim that (in contrast to other dihedral
viscosities) there is no feasible way to detect 5, beyond
the symmetry-based technique proposed here. Expanding
the hexagonal viscosity tensor (1) in Eq. (2b), one in fact
obtains the isotropic momentum equation, but with replace-
ments {n,{} = {n+n.,{ —n,}. This implies that rota-
tional viscosity does not modify bulk flow patterns.
Although exotic no-stress boundary conditions can, in
principle, generate weakly #,-dependent flows, the incom-
plete understanding of viscous electron boundary condi-
tions makes it unclear how such an experiment could be
robustly carried out.
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Indeed, there has been much discussion concerning
the proper boundary conditions (e.g., no slip, no stress,
generalized Robin) for viscous electron flow [49-51].
Because our viscometer relies on symmetry, it conveniently
sidesteps any such boundary complication, so long as the
boundaries are symmetrically complicated. For example,
although we assumed no-slip v; = 0 boundary conditions
in the preceding numerics, if no-stress or generalized Robin
boundary conditions are instead required, the numerical
values in Figs. 3 and 4 will change but the irrep decom-
position of the rank-2 tensor space 7, will continue to
guarantee isolated center heating.

We emphasize that our viscometry extends to more
general fluids. For fluids of point group symmetry G,
one constructs a device with G-irreducible boundary
conditions. Then the viscous heat generated at a G-invariant
point (i.e., mapped to itself under the action of G) can be
selectively restricted to each irreducible component of the
viscosity tensor, as above. Our viscometry therefore also
generalizes to higher dimensions, although measuring
local heating at the center of a 3D sample may be more
challenging.

Finally, for fluids with broken inversion and time-
reversal symmetries, additional nondissipative tensors
[52-54] may appear in 7;;; (1). We compute these
lower-symmetry tensors in the Supplemental Material
[34], matching those found in recent work on anisotropic
Hall viscosities [52]. We expect our viscometry to partially
extend to such fluids, since tailored boundary conditions
will be able to similarly isolate in experiment the effects of
symmetry-constrained Hall viscosities. However, while
neither Hall viscosity nor 5, modify the form of the
Navier-Stokes equations, the Hall viscosity is, moreover,
nondissipative. Thus, for our viscometry to prove fully
applicable to Hall viscosities, an experimental signature
beyond heating must first be identified.
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