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Abstract

While neural machine translation (NMT)

achieves remarkable performance on clean, in-

domain text, performance is known to degrade

drastically when facing text which is full of

typos, grammatical errors and other varieties

of noise. In this work, we propose a multi-

task learning algorithm for transformer-based

MT systems that is more resilient to this noise.

We describe our submission to the WMT 2019

Robustness shared task (Li et al., 2019) based

on this method. Our model achieves a BLEU

score of 32.8 on the shared task French to En-

glish dataset, which is 7.1 BLEU points higher

than the baseline vanilla transformer trained

with clean text1.

1 Introduction

Real world data, especially in the realm of social

media, often contains noise such as mis-spellings,

grammar errors, or lexical variations. Even though

humans do not have much difficulty in recognizing

and translating noisy or ungrammatical sentences,

neural machine translation (NMT; Bahdanau et al.

(2015); Vaswani et al. (2017)) systems are known

to degrade drastically when confronted with noisy

data (Belinkov and Bisk, 2017; Khayrallah and

Koehn, 2018; Anastasopoulos et al., 2019). Thus,

there is increasing need to build robust NMT sys-

tems that are resilient to naturally occurring noise.

In this work, we attempt to enhance the ro-

bustness of the NMT system through multi-task

learning. Our model is a transformer-based model

(Vaswani et al., 2017) augmented with two de-

coders, with each decoder bound to different learn-

ing objectives. It has a cascade architecture

(Niehues et al., 2016; Anastasopoulos and Chiang,

2018) where the first decoder reads in the output

of the encoder and the second decoder reads in the

1The code is available at https://github.com/

shuyanzhou/multitask_transformer

output of both encoder and the first decoder. The

objective of the first decoder, namely the denois-

ing decoder, is to recover from the noisy sentence

and generate the corresponding clean sentence.

Given both the noisy and clean sentence, the ob-

jective of the second decoder, namely the transla-

tion decoder, is to correctly translate the sentence

to the target language. This framework should

be beneficial in two ways: 1) Since the model is

trained with noisy text, it should inherently bet-

ter generalize to noisy text. 2) The translation de-

coder could potentially take advantage of the re-

covered clean sentence while maintaining specific

varieties of noise (e.g. emoji) by referring to the

original noisy sentence. This framework requires

triplets of clean and noisy source sentences, along

with target translations, so we also follow Vaibhav

et al. (2019) and design a back-translation strategy

that synthesizes noisy data.

Our proposed model outperforms the baseline

vanilla transformer trained with clean text by

4.6 BLEU points on the WMT 2019 Robust-

ness shared task (Li et al., 2019) French to En-

glish dataset. The fine-tuning process brings an

additional 2.5 points improvement. According

to our analysis, however, the improvements can

mainly be attributed to introducing noisy data dur-

ing training rather than the multi-task learning ob-

jective.

2 Multi-task Transformer

In this section, we describe in detail the architec-

ture of our proposed multi-task transformer. It is a

transformer-based (Vaswani et al., 2017) cascade

multi-task framework (Niehues et al., 2016; Anas-

tasopoulos and Chiang, 2018).

2.1 Detailed Architecture

As illustrated in Figure 1, the model consists of

one transformer encoder and two transformer de-
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than 50. We apply a pretrained Byte Pair Encod-

ing (BPE, Gage (1994)) model with 16k subword

units to both source and target sentences. The pro-

cess of synthesizing noisy French sentences is de-

scribed in the corresponding paragraph of Section

3. We denote this set of triples as Teuroparl.

Noisy fr & Clean en: As mentioned in the cor-

responding paragraph of Section 3, both noisy

French and clean English come from MTNT train-

ing data and we create clean French through back-

translation. This set of triples is denoted as Tmtnt.

4.2 Hyperparameters

We follow the transformer-base setting of Vaswani

et al. (2017), using N = 6 layers for both en-

coder and decoder, h = 8 heads for self-attention,

and dk, dv are both set to 64. The hidden size of

the model dmodel is set to 512 and the hidden size

of the feed forward network is set to 2048. The

smoothing rate ε is set to 0.1 and the dropout rate

is set to 0.1. For our multi-task transformer specif-

ically, the weight λ in Equation 1 is set to 0.5. The

implementation of the model is based on fairseq

(Ott et al., 2019)5.

4.3 Results

The baseline model is the vanilla transformer

trained with clean French and clean English. In

our experiment, it contains pairs T1 = {tc, tt}
that are extracted from Xeuroparl. On the other

hand, our model is the multitask transformer

trained with Xeuroparl. The same number of pairs

and triples are used during training. We evaluate

these two models on two MTNT datasets, one of

them comes from the original paper (Michel and

Neubig, 2018) while the other one is provided by

WMT Robustness shared task (Li et al., 2019).

The BLEU score of these two models are shown

in the first and the third column of Table 1.

Compared to the vanilla transformer, our

proposed multi-task transformer yields 2.5 and

4.6 BLEU points improvement on two MTNT

datasets. However, the component that leads to the

success of this model is unclear as there are mainly

two differences: 1) our proposed model utilizes an

auxiliary decoder to recover from the noisy text,

it could potentially benefit the translation process

with cleaner data 2) our model is further trained on

5https://github.com/pytorch/fairseq/

tree/master/fairseq

Model BLEU

Vanilla Transformer 22.0 25.7

+FT w/ synthetic noise 24.6 27.1

+FT w/ MTNT 34.1 36.0

Our Model 24.5 30.3

+FT w/ MTNT 31.7 32.8

Table 1: BLEU score of different models. The second

column shows the score in MTNT test dataset intro-

duced in Michel and Neubig (2018) and the third col-

umn shows the score in the MTNT test dataset provided

by WMT Robustness share task (Li et al., 2019).

noisy data, presumably overcoming any domain-

adaptation issues.

We investigate this issue by fine-tuning the

baseline model with another set of pairs T2 =

{tn, tt} that are extracted from Teuroparl. We load

the pre-trained model and continue training for an

extra epoch. With this fine-tuning process, the

baseline model sees exact the same number of data

as our proposed model. The fine-tuning result is

shown in the second row of Table 1.

The performance of the fine-tuned baseline sys-

tem is very close to that of our proposed model

on the original MTNT test data and is 3.2 BLEU

points lower on the shared task dataset. This result

suggest that while the inclusion of synthetic noisy

sentences is generalizable among datasets, using

the denoising decoder might be beneficial only in

specific settings.

Further, to investigate model’s potential when in

possession of in-domain training data, we fine tune

both models with MTNT parallel training data.

The data we use here is the same as the MTNT

data we use to train auxiliary NMT systems to gen-

erate triples (Section 3). During the fine-tuning

process, hence, we do not introduce new parallel

data. The performance of the fine-tuned systems

are shown in the third and the last row of Table 1

respectively.

Even vanilla transformer could not beat the

multi-task transformer on both datasets before

fine-tuned with in-domain data, it performs sig-

nificantly better and outperforms our proposed

model on both datasets after the fine-tuning pro-

cess. The results suggest the potential of vanilla

transformer in fitting in-domain data. It is no-

table, of course, that the fine-tuning process leads

to a 9.5/8.9 BLEU points improvement for the

vanilla transformer and 7.2/1.5 points for our pro-
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posed model respectively. This again shows the

power of domain adaptation for building a robust

NMT system.

4.4 Case Study

Table 2 shows example outputs of original MTNT

test dataset from different models. The denoised

source is the sentence generated by the denoising

decoder in our proposed model.

The first example contains special characters

‘>’ and the word ‘xQc’. All models fail to cor-

rectly copy the special character > and generate a

replacement. On the other hand, the word ‘xQc’

confuses the two baseline models and they fail to

correctly copy this word. Our model, however,

correctly copies the word and generates a reason-

able translation. The denoised sentence seems to

not bring benefit and, in fact, it attempts to denoise

‘xQc’ to ‘XVC’. The translation decoder then

seems to combine the two versions, copying the

word from the source noisy sentence but upper-

casing it just like the denoised version.

The second example contains the acronym

‘PC’ and our model does not produce a correct

translation. It is interesting that the translated

word ‘pellets’ is also not the corresponding

translation of ‘peloton’ in the denoised sen-

tence. Somewhat similar to the first example, this

suggests that the translation decoder mostly ig-

nores the context from the denoisy decoder. In

terms of performance of vanilla transformer, al-

though the baseline model also fails, the fine-tuned

model deals with ‘PC’ correctly and procures

a good translation. This indicates that explicitly

having attention to both noisy and clean sentences

does not always lead to better translation quality.

In the last example, the noise lies in a typo in the

phrase corresponding to the phrase ‘‘double

negative’’. None of the models produces a

good translation of this phrase. Similar to the

first case, the denoised sentence has a negative

effect as it falsely “corrects” ‘‘ngation’’ to

‘‘voie’’ (“way” in English), which changes

the meaning of the word and results in the bad

translation ‘track’. This demonstrates that all

models still need to address issues regarding rare

and misspelled words.

The main takeaway from a manual inspection

of the outputs, is that the first (denoising) decoder

does not really properly deal with noise in the de-

sired way, and the translation decoder generally

ignores its output. We suspect that this issue is

caused by the data synthesis process which re-

sults in low quality triples. Other further improve-

ments could be possibly achieved by constrain-

ing the output of the denoising decoder, such that

it produces minimal, non-meaning-altering edits.

We leave these investigations as future work.

5 Related Work

Here, we discuss how the MT community handles

the noise problem. In general, there are mainly

two kinds of approaches: the first attempts to de-

noise text, and the second proposes training with

noisy texts.

Denoising text: Sakaguchi et al. (2017) pro-

poses semi-character level recurrent neural net-

work (scRNN) to correct words with scrambling

characters. Each word is represented as a vector

with elements corresponding to the characters’ po-

sition. Heigold et al. (2018) investigates the ro-

bustness of character-based word embeddings in

machine translation against word scrambling and

random noise. The experiments show that the

noise has a larger influence on character-based

models than BPE-based models. To minimize the

influence of word structure, Belinkov and Bisk

(2017) proposes to represent word as its average

character embeddings, which is invariant to these

kinds of noise. The proposed method enables the

MT system to be more robust to scrambling noise

even training the model with clean text. Instead of

handling noise at the word level, we try to recover

the clean text from the noisy one at the sentence

level. Besides noise like word scrambling, the sen-

tence level denoising could potentially better deal

with more complex noise like grammatical errors.

Training with noisy data: Li et al. (2017) de-

signs methods to generate noise in the text, mainly

focusing on syntactic noise and semantic noise.

(Sperber et al., 2017) proposes a noise model

based on automatic speech recognizer (ASR) er-

ror types, which consists of substitutions, dele-

tions and insertions. Their noise model samples

the positions of words that should be altered in

the source sentence. Even training with synthetic

noise data brings a large improvement in translat-

ing noisy data, Belinkov and Bisk (2017) shows

that models mainly perform well on the same kind

of noise that is introduced at training time, and

they mostly fail to generalize to text with other
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Source > Tu veux dire comme xQc?
Target > Do you mean like xQc?
Baseline ’You want to call it al-Qc?’
Baseline FT − Do you mean asylum-seekers?

Denoised Source − Avez-vous lintention de parler de XVC?
Our model − Do you intend to refer to as XQC?

Source Si tu joues sur pc, a-t-il t bien adapt?
Target If you play on PC, has it been well adapted?
Baseline If you are playing on a pile, has it been adequate?
Baseline FT If you play on pc, has it been properly adapted?

Denoised Source Si vous jouez au peloton, a-t-il t bien adapt?
Our model If you play on pellets, has you been well adapted?

Source Les franais sont les champions de la double-ngation.
Target French people are the champions of the double negative.
Baseline The French are the champions of dual-nation.
Baseline FT The French are the champions of double-nutrition.

Denoised Source Les Franais sont les champions de la double voie.
Our model The French are the champions of the double-track.

Table 2: Comparison of baseline, baseline FT w/ synthetic noise and our model in MTNT fr-en.

kinds of noise. Similar findings were outlined in

Anastasopoulos et al. (2019) and Anastasopoulos

(2019), which evaluated MT systems on natural

and natural-like grammatical noise, specifically on

English produced by non-native speakers. Natural

noise appears to be richer and more complex com-

pared to synthetic noise, making it challenging to

manually design a comprehensive set of noise to

approximate real world settings. In our work, we

follow (Vaibhav et al., 2019) and synthesize the

noisy text through back-translation. There is no

need to manually control the distribution of noise.

In terms of multi-task learning for machine

translation, Tu et al. (2017) proposes to add a

reconstructor on top of the decoder. The aux-

iliary objective is to reconstruct the source sen-

tence from the hidden layers of the translation de-

coder. This encourages the decoder to embed com-

plete source information, which helps improve the

translation performance. This approach was found

to be helpful in low-resource MT scenarios also

by Niu et al. (2019). Anastasopoulos and Chiang

(2018) proposes a tied multitask learning model

architecture to improve the speech translation task.

The intuition is that, speech transcription as an in-

termediate task, should improve the performance

of speech translation if the speech translation is

based on both the input speech and its transcrip-

tion.

6 Conclusion

In this work, we propose a multi-task transformer

architecture that tries to not only denoisy the noisy

source text but also translate it. We design a strat-

egy for synthesizing data triplets for this architec-

ture. Our model could be viewed as a combina-

tion of denoising source text and domain adap-

tation, both of which are popular approaches for

designing robust NMT systems. Compared to

the baseline vanilla transformer that is trained on

clean data only, our proposed model with fine tun-

ing enjoys 7.1 BLEU points improvement on the

WMT Robustness shared task French to English

dataset. However, this improvement is most likely

attributed to the noisy text we add to the training

process (hence, due to better domain adaptation),

and not due to the denoising multi-task strategy.
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