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Metric assisted stochastic sampling search for gravitational waves
from binary black hole mergers
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We present a novel gravitational-wave detection algorithm that conducts a matched-filter search
stochastically across the compact binary parameter space rather than relying on a fixed bank of template
waveforms. This technique is competitive with standard template-bank-driven pipelines in both computa-
tional cost and sensitivity. However, the complexity of the analysis is simpler, allowing for easy
configuration and horizontal scaling across heterogeneous grids of computers. To demonstrate the method
we analyze approximately one month of public LIGO data from July 27 00:00 2017 UTC-Aug 25 22:00
2017 UTC and recover eight known confident gravitational-wave candidates. We also inject simulated
binary black hole signals to demonstrate the sensitivity.
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I. INTRODUCTION

Advanced LIGO directly detected gravitational waves
(GWs) for the first time in 2015 from the merger of two
black holes each about 30 times the mass of our Sun [1].
The second confident binary black hole (BBH) observation
came just three months later [2]. Since then, the LIGO and
Virgo Collaborations have detected a total of 90 compact
binary mergers [3—6], including two neutron star mergers
[7,8] and two neutron star—black hole mergers [9]. LIGO
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and Virgo have made their data public [10], resulting in
several new BBH discoveries by the community [11-16].

Historically, gravitational-wave searches for compact
binary coalescence have relied on matched filtering
[17-19], with several groups building on matched filtering
as the foundation for their algorithms [14,20-24]. These
techniques rely on fixed banks of templates [18,25,26] and
are known to scale poorly to high-dimensional spaces [27].
Stochastic sampling methods were first proposed to address
gravitational-wave detection in future searches for
gravitational waves with the Laser Interferometer Space
Antenna [28] but have not been widely used for detection
in LIGO and Virgo data. Stochastic sampling techniques
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are, however, state of the art for the estimation of
compact binary parameters once detections have been
made [29,30].

In this work we blend aspects of traditional matched-
filter searches, bank placement techniques, and stochastic
sampling to create a new bankless matched-filter search for
gravitational waves. While it remains to be seen what the
broad applications of these techniques could be, we
demonstrate a useful case study here by analyzing LIGO
data from the Hanford and Livingston detectors
from August 2017 [31] to search for binary black hole
mergers. We recover eight known gravitational-wave
candidates.

II. MOTIVATION

Our goal is to develop an offline compact binary search
pipeline which is designed to detect gravitational waves in
archival, LIGO, Virgo, and KAGRA data based on the
GstLAL framework [32-35]. We distinguish that an offline
analysis has less strict time-to-solution requirements (hours
or days) compared to low-latency analysis where the time
to solution needs to be seconds. We will not strive to reach
the time-to-solution needs of low-latency analysis with the
algorithm we present here. Our motivation for revisiting
offline matched-filter detection for gravitational waves is to
more easily parallelize and deploy analysis across hetero-
geneous resources such as multiple concurrent sites on the
LIGO and Virgo data grids, the Open Science Grid, campus
resources, and commercial clouds. We aim to achieve this
by having a simpler workflow than competing pipelines
such as GstLAL. We also wish to simplify the setup
required to conduct an analysis and to improve usability
for new researchers wanting to learn about gravitational-
wave detection at scale. The intersection of these desires led
us to consider new algorithmic approaches to searching the
compact binary parameter space.

The Open Science Grid defines criteria for opportunistic
computing as an application that “does not require message
passing... has a small run time between 1 and 24 hours...
can handle being unexpectedly killed and restarted... ” and
“... requires running a very large number of small jobs
rather than a few large jobs” [36]. Our proposed workflow
consists of parallel jobs that each search a small amount of
gravitational-wave data from LIGO, Virgo and KAGRA
without any interdependency between jobs. To contrast, the
current GstLAL analysis workflow consists of a directed
acyclic graph with more than ten levels of interdependent
jobs. In this new approach, we target an ~1-12 h run time
for each job, the use of one CPU core per job, and ~2 GB
of RAM required per job in order to maximize throughput
on opportunistic compute resources. Each job implements
a flexible checkpointing procedure allowing work to be
periodically saved.

III. METHODS

In this work, we will conduct a matched-filter search for
binary black holes with the goal of identifying the maximum
likelihood parameters for candidate events over 4 s coa-
lescence-time windows using an analysis that foregoes the
use of a precomputed template bank and instead employs
stochastic sampling of the binary parameter space. Our
workflow consists of two stages. The first stage executes
N parallel jobs that conduct the bulk of the CPU-intensive
work—in this study, this first stage consisted of 2974 such
jobs. The results of these parallel jobs are returned to a single
location at which point a second stage is run to combine
results, assess candidate significance, estimate the search
sensitivity and visualize the results. This second stage
requires significantly lower computing power than the
first stage, but is I/O intensive and is designed to be run
potentially on local resources after grid jobs have completed.

In stage one, we begin by reading in gravitational-wave
data from each observatory. Next, we measure the data
noise power spectrum and whiten the data using the
inferred spectrum. We then stochastically sample the data
by proposing jumps governed by a parameter space metric
as described in Sec. III D. For each jump, we generate the
appropriate template waveform and then compute the
matched-filter signal-to-noise ratio (SNR) over a 6 s stretch
of time using 122 s of data per calculation.

Within a 4 s time window, we identify peaks in the
matched-filter output, known as triggers, for each detector
that is being analyzed. For each collection of triggers, we
perform signal consistency checks [32] and calculate a
likelihood ratio ranking statistic [37]. If the new sample has
a larger SNR than the previous sample, it is stored—
otherwise, a new jump is proposed.

A local estimate of the noise background is obtained
by forming synthetic events from disjoint windows. This
causes the time and phase difference between detectors of a
single background event to be uniformly distributed, which
is what we expect from noise events. This is a somewhat
hybrid approach between the time-slide method [22] and
sampling methods [38] already employed in GW searches.
The second stage gathers the candidate events, results of
the simulated GW search, and the background samples to
produce a final summary view of the analysis results. In
order to estimate the sensitivity of our methods to detecting
gravitational waves, we conduct a parallel analysis over the
same data with simulated signals added and repeat the same
process as described above.

The remainder of this section describes key elements of
our methods in more detail.

A. Data

We assume a linear model for the gravitational-wave
strain data [17], s, which is a vector of discretely sampled
time points for a gravitational-wave detector, j:
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s; =h(d;) +n,, (1)

-

where h(#;) is an unknown gravitational waveform accu-

rately modeled as a function of éj = {m,my, ay.,
azZ,tj,qﬁj,Aj}l with m; and m, being the component
masses, a;, and a,, being the orbital-angular-
momentum-aligned component spins and 7;, ¢;, and A;
being the time of coalescence, phase of coalescence, and
amplitude, respectively, all of which depend on exactly
where the binary is with respect to the jth gravitational-
wave detector. n; is a realization of detector noise. As a
concrete example, in this work each job analyzes 800 s
stretches of data, divided into 4 s windows sampled at
2048 Hz. Thus, after including the Fourier transform block
length (124 s), the dimension of each vector in the work
described in this manuscript is 262144 sample points. In
addition, each job also contains start padding (128 s) and
stop padding (32 s). The templates have at least 6 s of zero
padding, which makes their length no more than 122 s.

We assume that the noise samples are entirely uncorre-
lated between the gravitational-wave observatories but that
the signals are correlated between observatories. In fact, we
make the simplifying assumption that the gravitational
waveform is identical between detectors except for
an overall amplitude A, time shift Az;, and phase shift
Ag; [20]:

h(6;) = Re(F (A, Fn(L L p)]]). (2)

where F[---] denotes the unitary Fourier transform and
A={my.my,a,ay}.

The exact realization of noise n is not possible to predict,
but we will assume it is well characterized as a multivariate
normal distribution with a diagonal covariance matrix in the
frequency domain, i.e., that it is stationary. However later
on, particularly in Sec. III D 6, we account for the fact that
the data are often not stationary.

B. Spectrum estimation and whitening

We rely on the same spectrum estimation methods as
described in [32]. Namely, we use a median-mean, stream-
based spectrum estimation technique that adjusts to
changes in the noise spectrum on (O(min) timescales.
The data are divided into 8 s blocks with 6 s overlap,
and the spectrum S, is estimated by windowing the input
blocks with 2 s of zero padding on each side of the window.
Since we analyze only 800 s of data per job, we use a fixed
spectrum over the job duration.

'These parameters are adequate to describe the measurable
gravitational-wave parameters for a nonprecessing, circular
binary black hole system with only 2-2 mode emission in a
single gravitational-wave detector.

From here forward, we will work in a whitened basis for
the data, namely, that

s; = Fls]o(S,) ™2, (3)

which implies that all components of s are transformed by
the inverse noise amplitude spectrum. Therefore, if the
amplitude of h is zero, s has components that satisfy
p(s;) = (2m)7"/2e7%/% with (s;, 5;) = &;;. In this whitened
data basis, an inner product between two vectors is the dot
product u - v, and unit vectors are denoted as @1. We adopt
a normalization such that h-h =1 and (n-n) = dimn.

-

With these choices the SNR is given by p(6;) =

h(6 ;)-s;. We can evaluate the SNR for the unknown
phase and time of coalescence by defining a complex SNR:

p(At ;) = F ' () s, +iF ' h(La/2)-s)),  (4)

which is a valid matched-filter output for a duration of time
equal to the length of the data minus the length of the
template. With at least 6 s of zero padding, the template
length is 122 s, and with each window using 128 s of data,
the matched-filter output is valid for a duration of 6 s.

C. Simulation capabilities

We use the GstLAL data source module [35], which
provides an interface into the LAL Simulation package
[39]. By providing a LIGO-LW XML format document
containing simulation parameters, we can inject simulated
strain into each of the currently operating ground-based
gravitational-wave detectors, LIGO, Virgo, KAGRA and
GEO-600. When operating the pipeline in a simulation
mode, gravitational-wave events are reconstructed around a
42 s interval around the GPS second of the geocentric
arrival time of the gravitational-wave peak strain.

D. Parameter space sampling

The gravitational-wave parameter space is explored
stochastically, with Gaussian jump proposals and refine-
ment steps that gradually reduce the jump size as the peak
in SNR is identified. We will refer to this procedure as
“sampling.” Our proposal distribution has a covariance
matrix that depends on the location in the parameter space
and the refinement level. It relies on computing the
parameter space metric g [18], which is described more
in the next section. We define a sequence of two parameters
that control how the sampling is done, namely, ¢;, which
controls the jump size, and N, which controls the number
of samples to reject at each level, k, before moving on to the
next. How exactly to define these parameters is certainly a
topic for future research. Our choices here were determined
empirically for the particular search we have done.
We define
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op = 101K, (5)
(500 (k= 0),
N = { 100 (k> 0), (©)

for k = 0...n, where k is terminated based on the mismatch
as in step 7 below. We define the characteristic jump
proposal distance as

8(7) = orlg(2) /3, (7)

where 7 is the set of intrinsic parameters as defined before
and &7 is the template mismatch.

Gravitational waves are searched over 4 s windows of

coalescence time using the following procedure.

(1) Establish a bounding box in the physical parameter
space to search over.

(2) Pick a starting parameter point somewhere in the
middle of the parameter space. We use the approxi-
mate expression for template count in [18] to
estimate a good central point.

(3) Evaluate the SNR at this point and set a counter
to zero. .

(4) Sample from a sampling function @(5;, 1), which is
described in detail below in Sec. III D 4.

(5) Check that the new point lies within boundaries
established in step 1 and apply any constraint
functions. If the point fails to fall within the
constraints, go to step 4.

(6) Evaluate the SNR at the new point. If the point has a
higher SNR than the previous sample, update the
sample and reset the counter to zero. If the point has
a lower SNR, increment the counter.

(7) If the counter is less than N, go back to step 4. If the
counter is greater than or equal to N, check 52,
where &% is the template mismatch between the
current and previous sample point. If & < 0.1,
terminate the sampling. Otherwise, increment £,
reset the counter, and proceed to step 4.

1. Computation of the binary parameter space metric

We define the match between adjacent compact binary
waveforms in the space of intrinsic parameters as

m(1,7+ A1) = max [A(1) - BT+ AD) (8)
eles

where the maximum is over extrinsic parameters {7.., ¢., A }.

Note that m(1,4) = 1. We also introduce a shorthand for
computing the match along a deviation in only one coor-
dinate as

where it is assumed that AZ,. is nonzero only along a given
coordinate direction.

It has previously been shown [18] that is possible to
derive a metric on the space of intrinsic parameters
describing compact binary waveforms by expanding our
definition of the match locally, e.g., about A1 =0, as
follows:

- S 1
mA, A+ A) =1+ =

P Yeraew— ;1',1 AD)| - AL AR,
2aA,1iaA,1jm( + A2)| 5o A AL

(10)
which suggests the metric

- 1 & I
i(A) = —=——=—7m(4, 1 Moo 11
350) = =3 5m7am7, "0 A+ Sy (1D

The mismatch between templates, 8% = 1 — m, becomes

- -

51, A2)* ~ A g(Z) AA. (12)

In this work, the components of the metric are evaluated
with second-order finite differencing:

- 1 [m(A. 2+ AJy) + m(i 4 — AZ) =2

9ii(4) = ) |AZ,~|2 (13)
and
- 1 1 - - -
gij(4) = —Em [m(A, 4+ A4 + A4))
—m(1, A+ AL, — AL)) — m(A, 7 — AJ; + AT,)
+m(2,2— A — AZ))], (14)

for the off diagonal terms. However, we use a more efficient
formula for the off diagonal terms, in which the number of
template evaluations is the same, but the number of match
calculations is reduced:

- 1 1 oo ﬁ e o
Gii(A) =—s——=—=-[m(ALA+ AL+ A4;) —m(A, A+ A4
i(4) 22|M,»||M,»|[ ( j)=m( )
—m(L A+ AZ) +2—m(Z,—AL;)
—m(A,A=AZ) +m(2,A— AL —AL)). (15)

The sampling method described in Sec. IV below will
not make jumps in coalescence time; therefore, the time
component is projected out [18]:

y PN i}z _gti<z)g_t)j(/_{). 16
9ij(4) = g;;(2) TG (16)
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2. Choice of coordinates

We sought out a coordinate system that maps the masses
and spins to be in the interval [—oo, co]. We also want to
choose well-measured physical parameters for mass and
spin in at least one dimension each. Therefore, we use the
following coordinates to evaluate the metric:

(m,m2)3/5
A1 = logyo {(m]—i-mz)l/s s (17)
Ay = logyo(m,), (18)

_ z apmy + dy my
s () o

T alzml - azznlz
= — || . 2
A4 tanKz)( 1 ) ﬂ (20)

3. Pathologies of the numerical metric

For certain regions of the parameter space the metric is
nearly singular, which leads to numerical errors causing a
nonpositive-definite matrix. To fix this, we conduct an
eigenvalue decomposition of g;;:

9ij = C]ikﬂkq;jl- (21)

We then define a new set of eigenvalues:

ﬂmin = mfx[ﬂk] X €, (22)
kN ﬂmin’ /)7k < ﬁmin’
by = { p*,  otherwise, (23)

where € is a parameter which we will call the aspect ratio.
We define the new metric as

9ij = Qik(ﬁk)/q]:jl' (24)

In practice we find that sampling is better when we
artificially distort the metric by setting ¢ = 0.1 for the
broadest refinement level and ¢ = 0.0001 for all other
levels, and we have done so in this work, though this should
be a direction of future work.

-

4. Drawing random samples from O(6; )

When sampling, we desire to have a jump proposal
distribution that effectively probes the space by not making
jumps that are either too near or too far. The calculation
of the parameter space metric g enables that. We wish to

propose a jump from 6 — 0+ AO such that the expected

mismatch is 6>. The metric described in previous sections
only applies to the intrinsic parameters. For the extrinsic

parameters, our jump proposal will always choose those
values of t and ¢ which maximize the SNR. At every
accepted jump point, the metric is calculated locally, which
requires 21 template evaluations, including the diagonal
and off diagonal terms, as specified in Sec. IID 1.
However, we can afford to calculate coarse versions of
the template waveform, since the match we need to
calculate is between two adjacent templates. This means
the waveform calculation cost is not high. The distance

between adjacent templates to calculate the match at AZ,- as
defined in Sec. III D 1 is hard coded and is the same for all
iterations of the sampling procedure.

To facilitate jumping in the intrinsic parameters, we
make a coordinate basis transformation in which the new
basis has a Euclidian metric. The transformation matrix M
will then be used to transform the coordinates

A =M. (25)

To solve for M we rely on the fact that distance is invariant,
giving

8 = A" gAl (26)
= (M) gAY (27)
= (A7)TMTgMAL . (28)
Setting g’ = T gives
I=MgM, (29)
MM =g, (30)
g~ = MTM. (31)

The last line implies that we can solve for M by taking the
Cholesky decomposition of the inverse metric tensor. Once
obtaining M we can produce random samples with an
expected mismatch by defining

-

O 1) =8,  A—A+EMIN,  (32)

R
where A is a four-dimensional vector with random

components satisfying p(N;) = \/1/2zexp [-N?/2].

5. Parameter space constraints

The previously defined sampling function can produce
samples that, while physical, may be outside of the desired
search range. We implement a series of user-defined
constraints that will reject samples drawn from (5, 4).
These are as follows.
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m;, m,, a;, a,.—The user can specify a bounding box in
component masses and z-component spins. Samples
outside this bounding box are rejected.

n.—The user can specify a minimum symmetric mass
ratio n = (m;m,)/(m, + m,)?, below which samples
will be rejected.

M.—The user can specify a chirp mass range, outside of
which samples will be rejected.

6. Glitch rejection

Glitches [40,41] are nonstationarity and non-Gaussian
transient noise artifacts of instrumental or environmental
origin found in the data. We employ a novel data-driven
technique to reject short-duration glitches, using two
parameters, the bandwidth and the effective spin parameter
x- The bandwidth is the standard deviation of frequency
weighted by template amplitude. It is defined as [42]

bandwidth?> = J1h (Z)szde/S <f| 2 2fdf/s">2
JIh(2)Pdf/S, JIh@Z)Paf/s,
(33)
whereas y is defined as
_ a1 mydy, (34)

m1+m2

It has been found that short-duration glitches ring up
templates which exclusively occupy the low bandwidth—
low y region in bandwidth-y space and that this region is
not occupied by gravitational-wave signals. This is illus-
trated in Fig. 1. As part of the simulation campaign we
performed (refer to Sec. IV C for details), we found that

50
1.00 4
0.75 4
3 40
0.50 4
0.25 30
= 0.00 A
~0.25 1 20
—0.50
10
—0.75 1
—1.00 4
T T T 0
0 20 40 60

bandwidth

FIG. 1.

only 28 injections out of 112526 fell into the glitch region.
Minimizing this number by fine-tuning the boundary of
the glitch region would be a direction for future work. We
define the glitch region as

bandwidth x (1 + y) < 20. (35)

Any trigger which falls in this region is not considered as
a gravitational-wave candidate. Similarly, any time-slid
background samples falling in the glitch region are elim-
inated and not used for background estimation. Triggers are
explained in more detail in the next subsection, whereas
background estimation is explained in Sec. III E.

7. Computing the log-likelihood ratio L

We generally follow the same procedure for ranking
candidates as described in [37,38,43] with a couple of
notable exceptions. First, we only implement a subset of
the terms used in the GstLAL-inspiral pipeline—it will be
the subject of future work to include more. Second, we
approximate some of the data-driven noise terms with
analytic functions. Third, we adopt a normalization so that
for signals the log-likelihood ratio £ is approximately p?/2,
where p is the network matched-filter SNR defined as the
square root of the sum of the squares of the SNRs found in
each observatory. We use the following terms in the log-
likelihood ratio.

L(p,E).—We approximate this term of the log-
likelihood ratio as

LGE.E) =3 Lilpn ), (36)

with [:i(piv 5[2) = p%e—élx%/z - 4X%, (37)

50
1.00 -
0.75
40
0.50
0.25 30
= 0.00 A
~0.25 1 20
—0.50 1
10
—0.75 1
—1.00
T T T 0
0 20 40 60
bandwidth

Triggers found in one month’s data for Hanford (left) and Livingston (right), colored by their log-likelihood ratio. All the

bright points to the right of the boundary are known gravitational-wave candidates, and all those to the left of the boundary are glitches
and so not considered gravitational-wave candidates and not used for background estimation.
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where x; = max{0, & — 1 — 0.0005p?} for each of the
i detectors which are assumed to be independent. The
—4x? term acts as a penalty for high & values and
helps eliminate glitches.

ﬁ(A?, A¢, Ap).—For this term we follow the procedure
in [43] with two changes. We do not include the p=*
term. We do this because we are not constructing a
data-driven noise term like GstLAL-inspiral, so it is
not necessary to have the corresponding signal term.
We also normalize the result to be O when only one
detector is operating. This is useful for achieving the
normalization discussed above. These changes have
the effect of making this term ~O for things that are
consistent with signals.

L(T).—This term quantifies the probability of having
“triggered” the combination of the gravitational-wave
detectors in which the event was found and is a
function of the detectors’ sensitivity. We will describe
triggering in more detail below. For example, it is
unlikely that only the least-sensitive detector would be
triggered for a real gravitational-wave event, so this
term would be negative in that case. This term is
complementary to the previous term but accounts for
events lacking triggers.

L(Dy).—This term quantifies the relative likelihood of
detecting an event based on the detector horizon BNS
distances (Dy);. We normalize to the horizon distance
of LIGO Livingston during O3-315 Mpc:

£(Dy) =1In (—ma;[s{(ﬁ ;’2"}])3. (38)

The log-likelihood ratio £ is then given by

-

L= L(p.8) + L(AT, Ag. AP) + L(T) + L(Dy).  (39)

For each sample drawn in step 4, we construct a template
waveform h(4) and filter that waveform against the data in
each detector stream producing an SNR time series over a
6 s period, including 1 s padding on either side. We then
find the peak SNR in the middle 4 s window in each
detector and record the time, phase, SNR, and &> of each
peak, which we call a “trigger.” For the collection of
triggers, we cycle through every detector combination—for
example, if analyzing {H,L,V}, we cycle through
{HLV,HL,HV,LV,H,L,V} and evaluate the likelihood
ratio for each combination. We then keep the maximum £
found over these detector combinations. This is done to
mitigate the effect of bad data (noisy data and possibly also
glitchy data) in one detector. Hence, triggers are obtained
by maximizing SNR over 4 s windows, whereas the
detectors to be considered for the trigger are obtained by

maximizing the likelihood ratio over all possible detector
combinations. Note that the SNR maximization for updat-
ing the sample discussed in step 6 is a separate procedure
from either of these.

E. Background estimation

We treat windows recovered as single triggers and
windows recovered as coincidences differently while esti-
mating the background. For single trigger windows, the
foreground sample itself is used as the background sample
representing that window. To estimate the coincident
background, we form false coincidences from a given
job which analyzes 800 s of data in 200 coalescence time
windows. To form false coincidences, we shift the windows
in time with respect to each other. We then draw samples
randomly from all single detector triggers. For each
recovered false coincidence, we compute a £ and histo-
gram the result. This process is then repeated 100 times
with different time offsets to increase the amount of
background we have. This background is given an appro-
priate weight so that the ratio of singles to coincidences in
the background and foreground is the same, as well as to
ensure that the background is normalized. Using the £
histogram for the background, false alarm rates (FARs) are
assigned to all the triggers. One point to note is that the
windows in which we detect events are not used to form
combinations so as to not contaminate the background with
signals.

IV. RESULTS
A. Dataset

We analyze public gravitational-wave data from LIGO
taken from July 27 00:00 2017 UTC-Aug 25 22:00 2017
UTC during advanced LIGO’s second observing run. We
choose segments of data with a minimum length of 1200 s
for each of the LIGO detectors. From those segments we
form coincident segments. Jobs require 128 s of start
padding, 32 s of end padding and 124 s for the Fourier
transform block to produce triggers. Thus, each job can
analyze a minimum of 288 s (which produces triggers for a
single 4 s window) and we choose a maximum duration of
1084 s to produce 800 s of triggers over 200 windows.
Jobs are overlapped so that triggers are produced
contiguously.

After accounting for the segment selection effects, we
analyzed approximately 20.17 days of coincident data.

B. Search parameter space

We search for gravitational-wave candidates with com-
ponent masses between 0.9 and 400 M, with z-component
spins between —1 and 1. We conduct the matched-filter
integration between 10 and 1024 Hz.
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FIG. 2. Distribution of component masses as measured at Earth
for the BBH simulation set.

C. Simulation set

In order to ascertain our sensitivity to gravitational-wave
signals of the type discovered in this data, we conducted a
simulation campaign with 112526 simulated signals having
a 32 M, mean component mass and standard deviation of
4.0 M with aligned dimensionless spins up to 0.25 and a
maximum redshift of 1 isotropically distributed in location.
The injections were distributed uniformly in comoving
volume. The redshifted component mass distribution is
visualized in Fig. 2. The injection set was specifically
created for the BBH parameter space. We do not make any
claims about the sensitivity of our pipeline in other lower
mass parameter spaces.

D. Candidate list

Our search results are summarized in Fig. 3 and Table I.
Results from the entire search are shown in Fig. 3. In this
plot, we show the observed distribution of all events as a
function of v/2L£, an expression proportional to the SNR, as
well as the background distribution expected from noise
during the same time. The detected events clearly stand out
from the expected noise curve at V2L around 8, which
suggests that the extra events at high £ must be signal-like.

In Table I, we report the ten triggers with the smallest
FARs. The first five of these events as well as the seventh
were previously reported by the LIGO Collaboration and
others [3,12,44] and labeled GW170817, GW170814,
GW170809, GW170823, GW170729, and GW170818.
These events are detected confidently with FARs of
5x 1073 yr~! for the first five and 4 x 1072 yr~! for the
seventh. GW170817 is recovered as a single detector

10° A
—— Observed
Expected
104 4 from noise
=)
=
2
©  10° A
E
k&
=]
E 10°H
=]
O
1072 o
T T T T T
6 x 10° 10!
V2L
FIG. 3. Cumulative histograms of our search results as a

function of likelihood ratio. The orange line represents the
corresponding histogram expected from noise during the same
time frame.

candidate in Hanford, since there is a simultaneous glitch
in Livingston, and the resulting high £ in Livingston
causes its log-likelihood ratio to be strongly penalized. We
report many of the components masses of these events
outside of confidence ranges reported by the LIGO
Collaboration [3]. It is important to note that this is not
a contradiction: we are not optimizing the posterior
probability distribution, as is done during parameter esti-
mation for the results reported by the LIGO Collaboration.
Despite the differences in masses, we are able to recover
each trigger to within tens of milliseconds of the reported
values by the LIGO Collaboration and are confident they
correspond to the respective gravitational-wave candidates.

We also recover one binary black hole event, GW 170727,
previously reported by other groups [12,44] as well
as one, GW170817a, reported by Zackay et al. [11] which
do not appear in the LIGO GWTC-2. We recover the
GW170727 event with a FAR of 3 x 10*! yr~!. We recover
GW170817a in Livingston with a FAR of 5 x 1073 yr~!
while Zackay reports it with a FAR of 8.7 x 1072 yr~!.
Zackay also reports the probability of it being of astro-
physical origin at 86% [11], but we do not make that
estimation here. As in the previous case, we recover both
these events to within tens of milliseconds of the previously
reported values and are confident that they correspond to the
respective gravitational-wave candidates.

We make no claims regarding the possibility of the
remaining two events we report being gravitational-wave
candidates. These appear eighth and ninth in Table I.
They are not recovered significantly, and it is likely they
are noise.
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TABLE L.

Candidate gravitational-wave events with the ten smallest false alarm rates and largest SNRs. The first seven triggers as well

as the last one correspond to known gravitational-wave candidates: GW170817, GW170814, GW170809, GW170823, GW 170729,
GW170817a, GW170818, and GW170727. The other two triggers have not been previously reported as gravitational-wave candidates.

FAR (yr')) V2L  pue my (Mg)  my (Mg)  a a  pm & e & Date (UTC)

5% 1079 18.5 18.7 1.8 1.1 -0.3 0.7 18.7 0.8 2017-08-17 12:41:04
5x 1079 16.3 17.1 38.7 24.5 0.7 -0.9 9.6 1.3 14.1 1.0 2017-08-14 10:30:43
5% 1079 11.9 12.6 46.4 25.8 0.6 -1.0 6.5 1.3 10.8 0.7 2017-08-09 08:28:21
5% 10793 11.7 11.8 51.5 38.6 0.4 -0.5 6.6 0.9 9.8 0.7 2017-08-23 13:13:58
5% 10793 10.7 10.9 73.1 43.3 -0.1 1.0 7.9 1.1 7.5 1.0 2017-07-29 18:56:29
5x 1079 10.6 10.7 122.7 45.5 0.9 -0.9 10.7 1.0 2017-08-17 03:02:46
4 x 10792 9.6 10.1 39.7 36.3 0.7 -0.8 10.1 1.2 2017-08-18 02:25:09
6 x 10700 8.7 9.0 20.8 3.3 0.1 0.6 9.0 1.0 2017-08-03 05:59:03
3 x 1010 8.6 8.8 53.1 1.2 -0.3 1.0 3.7 0.9 8.0 0.8 2017-08-14 07:35:04
3 x 10101 8.5 8.7 51.5 43.6 0.4 -0.9 4.6 0.8 7.4 1.1 2017-07-27 01:04:30

The first seven events reported in Table I, as well as
the last one, are excluded from the background, since
all of them are previously reported gravitational-wave
candidates.

E. Sensitivity estimate

The sensitivity of our new pipeline is demonstrated in
Figs. 4 and 5. Figure 4 shows the distribution of all the
injected events by SNR with a network SNR of 12 contours
and detector SNR of seven contours added. This figure
shows that the majority of loud injected events were
recovered by our pipeline, with 70 missed in the region

102 7

PH1

10! .

Found
Missed

Il.ll T
10! 102

PL1

FIG. 4. Distribution of injected SNRs for recovered injections
above £ = 35(v/2L = 8.37). Missed injections with network
SNR above 12 and detector SNRs greater than 7 (indicated by the
shaded contour) are discussed in Appendix B.

with network SNR above 12 and detector SNRs greater
than 7. Only nine of these missed injections are because
the pipeline could not adequately recover the injections.
This shows that the pipeline only very rarely gets stuck at
local peaks, instead of finding the global maxima,
which will correspond to the injected signal. It is possible
that as we move to a lower mass parameter space,
the frequency of such occurrences will increase. All of
the loud missed events are discussed in more detail in
Appendix B.

Figure 5 shows the efficiency of the pipeline as a
function of the injected network SNR of the synthetic
gravitational-wave set described in Sec. IV C. This plot
shows that without any data cleaning implementation,
almost 90% of events at SNR 10 are recovered by the
pipeline while that percentage only increases with the SNR
and plateaus just short of 100% around SNR 13.

1.0

0.8

0.6

Efficiency

0.2

0.0

T T T T
4 6 8 10 12 14
Injected pnet

FIG. 5.
SNRs.

Efficiency of recovering injections at different injected
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V. CONCLUSION

In this paper, we have described in detail a novel
gravitational-wave detection algorithm. This algorithm
searches stochastically over the chosen parameter space,
saving the time and computing power required to generate
large banks of template waveforms. The algorithm samples
the parameter space by making jumps with a preestimated
mismatch between templates informed by the parameter
space metric and keeping those points which have a higher
SNR. This method is shown to be of comparable accuracy
in the recovery of gravitational-wave events at high masses
as current template-based pipelines.

To demonstrate the validity of this method, we have
presented an analysis of approximately one month of LIGO
data from July 27 00:00 2017 UTC-Aug 25 22:00 2017
UTC exploring the binary black hole parameter space. We
recovered six known gravitational-wave candidate events to
within tens of milliseconds of previously reported coales-
cence times, as well as two gravitational-wave candidates
previously reported.

Additionally, we conducted an injection campaign of
compact binary mergers to prove the sensitivity of the
pipeline to binary black hole merger events. We recovered
almost 90% of events with SNR 10 and an increasing
percentage at higher SNRs that plateaus just below 100%
at SNR 13. The majority of the missing loud injections
were due to the presence of glitches near the injected
events.

In the future, we plan to extend our method to all regions
of the parameter space. We expect that even though the
algorithm will scale similarly to any search using template
banks at lower mass, it will still retain its other advantages,
such as simpler workflow and ease of setup. We plan to
make our method competitive with other searches like
GstLAL for LIGO’s fourth observing run. It remains an
open project to get good convergence during the sampling
process for all regions of the parameter space.

ACKNOWLEDGMENTS

This research has made use of data, software and/or
web tools obtained from the Gravitational Wave Open
Science Center, a service of LIGO Laboratory, the LIGO
Scientific Collaboration and the Virgo Collaboration. LIGO
Laboratory and Advanced LIGO are funded by the United
States National Science Foundation (NSF) as well as the
Science and Technology Facilities Council (STFC) of
the United Kingdom, the Max-Planck-Society (MPS),
and the State of Niedersachsen/Germany for support of
the construction of Advanced LIGO and construction and
operation of the GEO600 detector. Additional support for
Advanced LIGO was provided by the Australian Research
Council. Virgo is funded, through the European
Gravitational Observatory (EGO), by the French Centre
National de Recherche Scientifique (CNRS), the Italian

Istituto Nazionale di Fisica Nucleare (INFN) and the Dutch
Nikhef, with contributions by institutions from Belgium,
Germany, Greece, Hungary, Ireland, Japan, Monaco,
Poland, Portugal, and Spain. This work was supported
by National Science Foundation Grants No. OAC-
1841480, No. PHY-2011865, and No. OAC-2103662.
Computations for this research were performed on
Pennsylvania ~ State ~ University’s  Institute  for
Computational and Data Sciences gravitational-wave clus-
ter. C. H. acknowledges generous support from the Eberly
College of Science, the Department of Physics, the Institute
for Gravitation and the Cosmos, the Institute for
Computational and Data Sciences, and the Freed Early
Career Professorship.

APPENDIX A: DATA RELEASE DETAILS
AND CODE VERSIONS

A tarball containing the source code and data files
necessary to reproduce the results and plots in this paper
is available [45]. Instructions for installing the code and for
using it to create the plots and results can be found in
README.md inside the source_code directory in the
tarball.

APPENDIX B: FOLLOW-UP OF MISSED
INJECTIONS

In this appendix, we will discuss the particularly loud
injections which were not recovered during the simulation
mode of the pipeline. An injection is deemed to be
recovered, if it was assigned a log-likelihood ratio £ of
35 or greater. Out of the 112526 injections, 65361 were
missed. Most of these (65291 out of 65361) were missed
because the injected SNR was too low for them to be
recovered significantly. Some, however, had a high injected
SNR and were still missed. We will discuss the reasons for
the same, for missed injections with network SNR above 12
and detector SNRs greater than 7. These injections are
shown in Fig. 4, of which there are 70. Out of these, 33 were
missed due to the data containing a glitch simultaneous to
the injection, causing the glitch rejection mechanism to

Q-transform: L1:GDS-CALIB_STRAIN,rds

Q: 5.66, tres: 0.000417, q-range: [4.00, 64.00], whitened, f-range: [36.01, 5164.51], e-range: [-5.18, 2.06e+03]

n
S

1000

@

3
Normalized energy

Frequency (Hz)

o
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Time (seconds) from 2017-07-29 20:15:18 (1185394536.0)

FIG. 6. An example of a Q-transform plot showing a glitch in
Livingston, causing a simultaneous injection to be missed.
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reject that part of the data. The existence of a glitch in the
data was verified by creating Q-transform plots of the data
window. An example of such a glitch is shown in Fig. 6. Out
of the remaining 37 loud missed injections, 28 fell into the
glitch region as defined in Sec. III D 6 and, hence, were

rejected. The pipeline failed to recover only nine injections
out of the original 112526. However, such problematic
injections can be recovered by increasing N, the number of
samples to reject at each level, k, before moving on to the
next, at the cost of the run time of the pipeline.
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