
1. Introduction
The Mississippi River system spans the central United States and plays a major role in the regional economy 
through its relationship with transportation, agriculture, and urban centers (Figure 1a). Significant efforts have 
been made throughout the 20th century to monitor, predict, and manage discharge and flooding in the Mississippi 
River basin (Allison et al., 2012; L. M. Smith & Winkley, 1996). However, large floods on the Mississippi River 
continue to cause significant damage both in economic and social terms, destroying infrastructure, disrupting 
trade, and displacing millions of people (Alfortish et al., 2012; Barry, 2007).

Modes of natural climate variability, such as the El Niño-Southern Oscillation (ENSO) and the Atlan-
tic Multi-Decadal Oscillation (AMO), affect Mississippi River hydroclimate and could inform seasonal to 
decadal flood forecasting (Enfield et al., 2001; Mallakpour & Villarini, 2016; Muñoz & Dee, 2017; Rogers & 
Coleman, 2003; Tootle et al., 2005; Twine et al., 2005). For example, increased precipitation during El Niño 
events influences the hydrological cycle and increases flood risk over the Mississippi River basin via a seasonal 
response of soil moisture storage, runoff, and river discharge (J. Chen & Kumar, 2002; Dai et al., 2009; Tootle 
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sea surface temperature (SST) changes over the tropical Pacific and North Atlantic affect the hydrological 
cycle over the basin. We find that very wet periods are strongly associated with warm SSTs in the eastern 
tropical Pacific, but central tropical Pacific warming causes dry conditions. The impact of North Atlantic 
SST variability is much weaker, but, in combination with tropical Pacific warming, cool SSTs over the North 
Atlantic can amplify wet conditions over the eastern Mississippi River basin's tributaries. Our results harbor 
implications for seasonal-to-interannual flood hazard prediction, and can help stakeholders prepare for and 
mitigate flooding in the 21st century.
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et al., 2005; Twine et al., 2005). In addition, recent studies have suggested that two types of El Niño events, 
classified as eastern Pacific (EP) El Niño and central Pacific (CP) El Niño based on their sea surface temperature 
anomaly (SSTA) patterns (Ashok et al., 2007; Kao & Yu, 2009; Kug et al., 2009; Luo et al., 2022; Takahashi 
et  al.,  2011), have distinct impacts on Mississippi basin hydroclimate: CP El Niño events lead to decreased 
precipitation and soil moisture storage over the Ohio–Mississippi Valley compared to EP El Niño events (Liang 
et al., 2014; Ning & Bradley, 2015; Yu & Zou, 2013).

Beyond ENSO, North Atlantic SST variability also affects soil moisture and runoff within the Mississippi 
River basin by modulating the strength and position of the North Atlantic Subtropical High (NASH) (Enfield 
et al., 2001; Hu et al., 2011; J. A. Smith & Baeck, 2015; Tootle et al., 2005). For example, during AMO cold 
phases, cold SST anomalies generate anti-cyclonic flows, strengthening the NASH and shifting its center toward 
the west (Enfield et al., 2001; Hu et al., 2011). This in turn yields an increase in precipitation frontal flows which 
enhances flood risk over the Mississippi River compared to AMO warm phases (Enfield et  al.,  2001; Feng 
et al., 2011; Hu et al., 2011; Mallakpour & Villarini, 2016; McCabe & Wolock, 2014; Rogers & Coleman, 2003). 
North Atlantic Tripole (NAT) SST patterns also interact with the North Atlantic Oscillation (NAO) to alter mois-
ture supply over the central U.S. over interannual-to-decadal time scales (S. Chen et al., 2020; Durkee et al., 2008; 
Peng et al., 2003; Sutton et al., 2000; Z. Wu et al., 2009).

Given the observed hydrologic impacts of ENSO and the North Atlantic SSTs on the Mississippi River, it is possi-
ble that flood forecasting across the basin over seasonal to decadal time-scales could be improved by constraining 
the connections between flood hazard and predictable modes of climate variability (Kiem et al., 2003; Stedinger 
& Griffis, 2011). However, the limited number of extreme floods that occurred during the instrumental period 
make it difficult to quantify and evaluate the dynamical controls on hydroclimate extremes over the Mississippi 
River basin with robust statistics. Instrumental flood gauge measurements indicate that EP El Niño events gener-
ate more river discharge compared to CP El Niño events; however, the significance of this difference varies for 
different tributaries (Figure 1b). The underlying dynamics are also difficult to constrain using 20th century data 
alone; previous studies have only investigated a handful of CP and EP El Niño events, on the order of ∼10 each 
(Liang et al., 2014; Ning & Bradley, 2015).

To address these shortcomings, highly-resolved paleoclimate data assimilation (DA) products spanning the Last 
Millennium (LM), such as the Paleo Hydrodynamics Data Assimilation product (PHYDA, Steiger et al., 2018), 
are used in this study to augment 20th century instrumental data. PHYDA takes advantage of multi-proxy archives 
and model physics, complementing prior work using LM climate model simulations to investigate ENSO  and 
Mississippi flood hazard (Muñoz & Dee, 2017). While proxy coverage over the North American continent is 

Figure 1. Mississippi River system and non-robust instrumental stream gauge statistics on El Niño-Southern Oscillation 
variability: (a) Mississippi River basin and major sub-basins (Missouri, Ohio, Arkansas-White Rivers, and Lower Mississippi 
mentioned in text); (b) boxplots of peak annual discharge (m 3/s) during Central Pacific (CP) and Eastern Pacific (EP) El Niño 
events (defined in Yu and Zou (2013)) at river gauges: Vicksburg (lower Mississippi), Louisville (lower Ohio), and Hermann 
(lower Missouri). P-values of Wilcoxon rank-sum test on the differences between discharges during CP and EP El Niño 
events are shown in (b).
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robust due to tree ring availability, individual proxy record coverage (mostly from corals) is somewhat sparse over 
the central/eastern tropical Pacific (Steiger et al., 2018; PAGES2k Consortium, 2017) (see Figure S1 in Support-
ing Information S1). Paleoclimate DA fills in the data gaps in a dynamically-consistent framework, facilitating 
investigation of spatially-complete SST patterns over hundreds of years. Here, we focus on the contributions of 
North Atlantic SST variability and ENSO SST pattern to hydroclimate extremes of the Mississippi River and 
its major tributaries (Missouri, Ohio, Arkansas-White Rivers, and Lower Mississippi; Figure 1a). Specifically, 
we aim to answer two key questions: (a) What are the primary modes of SST patterns, including ENSO flavors, 
over the tropical Pacific that contribute to hydroclimate extremes over the Mississippi River basin and its major 
tributaries during the LM? (b) How does North Atlantic SST variability affect hydroclimate conditions over the 
Mississippi basin and its major tributaries during the LM?

2. Data and Methods
2.1. The Paleo Hydrodynamics Data Assimilation Product
The Paleo Hydrodynamics Data Assimilation Product (PHYDA) is a hydroclimate-focused paleoclimate DA 
product that reconstructs global temperature, hydroclimate, and dynamical variables over the past 2,000 years 
(Steiger et al., 2018). PHYDA employs an offline ensemble Kalman filter approach (Oke et al., 2002), which 
combines 2,978 proxy time series spanning different periods of the Common Era (see Figure 1 in Steiger 
et al., 2018) with a bias-corrected version of the Community Earth System Model Last Millennium Ensemble 
(CESM LME, Otto-Bliesner et  al.  (2016)). The temporal and spatial coverage afforded by PHYDA over the 
tropical Pacific and North America is given in Figure S1 in Supporting Information S1. PHYDA reconstructs 
climate variables at an annual mean resolution based on a hydrological year (April to March of next year, e.g., 
April 1997–March1998), boreal summer mean (June through August; JJA), and austral summer mean (December 
through February; DJF). We employ the ensemble mean of the AMO index to represent AMO variability, DJF 
mean and annual mean two-meter (2 m) air temperature as an approximation for SST (e.g., Cayan, 1980), and 
annual mean Palmer Drought Severity Index (PDSI, Palmer, 1965) to evaluate Mississippi River hydroclimate 
extremes over the LM.

PHYDA has been thoroughly validated in previous publications, which show that PHYDA reconstructs a more 
realistic AMO index, ENSO SST temporal variability, and ENSO spatial patterns compared to its model prior, 
CESM (Luo et al., 2022; Steiger et al., 2018, 2019). Given its large bearing on this work, we also here inde-
pendently validate the PDSI time series over the Mississippi River basin using two instrumental PDSI data prod-
ucts constructed by Sheffield et al. (2006, 2012) and Dai et al. (2004). The results show that PHYDA exhibits 
strong agreement with observed multi-decadal Mississippi PDSI variability over the 20th century (Figure S2 in 
Supporting Information S1), with an annual correlation coefficient of 0.8.

We note that we focus on PHYDA instead of other available DA reconstructions (e.g., the Last Millennium Reanal-
ysis, Hakim et al., 2016; Tardif et al., 2019) due to PHYDA's emphasis on reconstructing global hydroclimate as 
opposed to temperature; the inclusion of hundreds of additional hydroclimate-sensitive proxy records has been 
shown to improve the reconstruction skill for ENSO-related climate patterns as well (Steiger et al., 2018). These 
and other factors (e.g., the use of a hydrological year) make PHYDA the best choice for this analysis.

2.2. Climate Index Definitions
The reconstructions from PHYDA yield both mean state and variance changes going back in time; like all other 
DA-based reconstructions, PHYDA's time series variance reduces further back in time as proxy information 
decreases. To avoid the possibly confounding influences of both mean state changes and the variance reductions 
on our extremes analysis, we have removed the running 30-year mean of the PDSI and SST time series to compute 
anomalies. To define wet extremes, we have normalized the basin-mean PDSI anomalies by the 30-year running 
standard deviation. Extreme wet events are then defined as the top 1% and 10% of the normalized PDSI anomaly 
time series over the LM; normal years are defined as normalized PDSI anomalies within the interquartile range 
(IQR, 25%–75%).

We use the Niño 3.4 index (SSTAs averaged across the region of 5°S–5°N, 170°W–120°W) to characterize 
ENSO variability. In addition, CP and EP El Niño events are defined based on the C and E index method 
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(Takahashi et al., 2011), which has been validated for PHYDA in previous work (Luo et al., 2022). C and E 
indices are computed based on Empirical Orthogonal Function (EOF) analysis on tropical Pacific (30°S–30°N, 
120°E−80°W) SSTAs following the removal of the running 30-year mean, as mentioned above. The first two 
principal components (PCs) of the EOF analysis are projected onto a 45°-rotated orthogonal coordinate axis 
(! = ("!1 + "!2)∕

√

2,# = ("!1 − "!2)∕
√

2) to generate the C and E indices, respectively. CP El Niño 
events are defined when the C index exceeds 1σ and the value of the E index for CP definition years. Similarly, 
EP El Niño events are defined for those years where the E index exceeds 1σ and exceeds the C index. ENSO 
teleconnections are defined as PDSI anomalies normalized by the 30-year running standard deviation of the Niño 
3.4 index to remove the impact of ENSO amplitude (S. Dee et al., 2020; Stevenson, 2012), and to account for the 
impacts of decreasing proxy availability back in time (S. G. Dee & Steiger, 2022; Steiger et al., 2018). Patterns 
of CP and EP El Niño and hydroclimate teleconnections are generated as the composite averages of SSTA and 
PDSI anomalies. For comparisons between hydroclimate conditions associated with CP and EP El Niño events, 
the probability density functions (PDFs) of PDSI anomalies are computed.

The SST-based AMO index is used to characterize AMO variations and define its warm and cold phases. PHYDA 
reconstructs a North Atlantic SST index (SST averaged over 0°N–65°N, 0°W–80°W), which is a non-detrended 
and non-smoothed version of the AMO (Steiger et al., 2018). We applied a 20-to-100-year Butterworth bandpass 
filter to the original North Atlantic SST index to isolate AMO signals from long-term mean-state changes. The 
AMO index is then defined here as the filtered time series. Given the variance reduction in the PHYDA recon-
struction back in time (Steiger et al., 2018), the AMO index is first normalized with the 100-year moving standard 
deviations. AMO warm phase years are chosen if normalized AMO indices exceed +1 standard deviations from 
the mean (+1σ). Conversely, AMO cold phases are defined lower than −1σ.

2.3. Self-Organizing Map and Frequency Analysis
Self-organizing map (SOM) analysis is employed to isolate the tropical Pacific SSTA patterns associated 
with extreme hydroclimate conditions. SOM is an unsupervised machine learning approach that projects 
high-dimensional data information onto two-dimensional space while preserving the data structure, and classifies 
each input through finding the best-matching mode based on minimizing Euclidean distance (Kohonen, 1990; 
Liu & Weisberg, 2011). The DJF mean SSTA fields over the LM in PHYDA are assigned by the SOM algorithm 
to the spatial SSTA patterns of a pre-set number of clusters, or “nodes” (6 nodes are analyzed in the main text, 
with additional choices shown in the Supplement) to represent different tropical Pacific/North Atlantic SST 
modes. The resulting SSTA patterns associated with each cluster represent the composites of events with maxi-
mum similarity in their SSTA fields (Johnson et al., 2008), thus the SOM nodes directly represent the underlying 
physical patterns (Johnson,  2013; Liu et  al.,  2006). The SST fields are detrended by removing the 100-year 
smoothing of individual grid point time series (Horton et al., 2015), and are area-weighted according to the cosine 
of latitude prior to SOM computation. Then, a frequency-based analysis of each SSTA pattern accompanying 
extreme hydroclimate events is conducted to estimate the frequency change associated with each node in extreme 
wet years compared to normal years. We also conduct a 1,000-iteration bootstrap resampling drawn from the 
normal years (IQR) to check whether the frequency changes observed during extreme wet years indicate a depar-
ture from randomness. As a complement to the information afforded by composite averaging patterns, SOM and 
frequency analyses provide information surrounding the temporal evolution of the SSTA field in the years during 
hydroclimate extremes (S. G. Dee & Steiger, 2022; Steiger et al., 2019).

3. Results
3.1. Tropical Pacific SSTA Modes and Wet Extremes Over Mississippi River Basin
We first use a SOM algorithm (Section 2.3) to extract the top 6 SOM nodes of tropical Pacific SSTA patterns 
over the past 2,000 years in PHYDA (Figures 2a–2f). The percentage numbers at the top of each map panel show 
the frequency changes for different SSTA patterns in wet extreme events (top 10%) relative to the frequency of 
those same patterns in normal years (IQR). All El Niño-like SSTA patterns (SOMs 1, 2, and 4) show increases 
in frequency for extreme wet conditions over the Mississippi River basin, while all La Niña-like SSTA patterns 
(SOMs 3, 5, and 6) show decreases in frequency. Figure 2g shows that only the shift in SOM2 (+107%), which 
is characterized by a strong El Niño-like mean SSTA pattern (Figure 2b), exceeds the null distribution generated 
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by resampling from the normal-year node frequency changes. This result suggests that when wet extreme events 
occur over the Mississippi River basin, they are accompanied by a substantial increase in the frequency of strong 
El Niño-like warming patterns over tropical Pacific. Thus, extreme wet conditions over the Mississippi River 
basin are more strongly associated with strong El Niño-like SSTA patterns compared to other SSTA patterns over 
tropical Pacific. We conducted the same analysis on the top 1% of extreme wet events (Figure S3 in Support-
ing Information S1) with all SOM SSTA patterns (as in Figures 2a–2f). The frequency changes of each SSTA 
pattern for the top 1% events show that SOM 1 and 2 (characterized by weaker and stronger El Niño-like  SSTA 
patterns, respectively) show frequency increases during top 1% extreme hydroclimate conditions over the LM. 
The frequency increases for both SOM 1 and 2 are unusual compared to the background range (Figure S3 in 
Supporting Information  S1). In general, these results suggest strong El Niño-like SSTA patterns occur more 
frequently over the tropical Pacific during wet extreme conditions over Mississippi River basin.

To check the sensitivity of our results to the number of SOM nodes, we recomputed frequency changes using 4 
and 8 SOM nodes for both the top 1% and 10% wet extreme years (Figures S4–S7 in Supporting Information S1). 
Consistent with the results using 6 SOM nodes, the strong El Niño-like warming patterns over the tropical Pacific 
(SOM 2 for both 4 and 8 SOM maps) show large frequency increases, exceeding the null distribution (Figure 
S5–S7 in Supporting Information S1). An exception is the 4-node SOM analysis for the top 1% extreme events 
(frequency increases in Figure S4 in Supporting Information S1, but the change is within the null distribution). 
Taken together, the frequency increase for strong El Niño-like SSTA patterns is robust, even considering different 
SOM node numbers and wet extreme definitions. Wet extreme conditions over the Mississippi River basin are 
associated with strong El Niño-like mean-state warming over the tropical Pacific during the LM.

Finally, to further evaluate the drivers of wet extreme conditions over the different tributary sub-basins (Missouri, 
Ohio, Arkansas, and Lower Mississippi; Figure 1a) of the Mississippi River, we conducted the same frequency 
analyses of the SOM SSTA patterns associated with wet extreme events (top 1% or 10%) over each tributary 
(Table S1 in Supporting Information  S1). Noting that the SOM SSTA patterns are still held constant (as in 
Figures 2a–2f), the frequency of SOM 2 (strong El Niño-like warming, Figure 2b) increases by 200% for the top 
1% events and 155% for the top 10% events over the Missouri basin, and increases by 88% for the top 10% events 
over the Arkansas basin (Table S1 in Supporting Information S1), changes which all exceed the “normal-years” 
frequency distribution in each sub-basin. In contrast, the frequency changes associated with wet extremes over 

Figure 2. Self-organizing map and frequency analysis for the top 10% wet extreme events over the Mississippi River basin: (a–f) Show the tropical Pacific sea surface 
temperature anomaly patterns (in standardized units) associated with six nodes in the self-organizing map (SOM) computation. Each SOM node is labeled with the 
percent change in frequency for wet extreme events. (g) Shows the frequency analysis for each SOM node. Frequency changes during wet extreme events are shown as 
red diamonds; 1,000 iterations of a resampling test of background/normal event frequency changes are shown as gray box plots.
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the Ohio and Lower Mississippi basins do not shift beyond the “normal-year” frequencies for any SOM SSTA 
patterns (Table S1 in Supporting Information S1). The unusual frequency increases of SOM 2 for Missouri and 
Arkansas rivers suggest that extreme hydroclimate responses to strong El Niño-like warming are spatially heter-
ogeneous over the Mississippi River basin; increased moisture supply over the Missouri and Arkansas basins, 
the western tributaries of the Mississippi, provide the major contributions to basin-wide wet extreme conditions 
associated with strong El Niño-like SSTA patterns in the tropical Pacific.

3.2. Mississippi River Basin Hydroclimate Associated With CP and EP El Niño
To extend our analysis of El Niño SSTA pattern impacts on Mississippi hydroclimate, the definition methods 
described in Section 2.2 were applied to extract CP and EP El Niño events. The composites and PDFs of CP 
and EP El Niño event PDSI anomalies over the basin show how the hydroclimate patterns respond to distinct El 
Niño SSTA patterns throughout the LM (Figure 3). In general, the entire Mississippi River basin exhibits lower 
PDSI during CP El Niño events (dry conditions), but increased PDSI during EP El Niño events (wet condi-
tions, Figures 3a and 3b). In particular, dry conditions are more intense over the Ohio and Lower Mississippi 
basins during CP El Niño events (Figure 3a). In contrast, dry conditions in the Missouri and Arkansas basins 
are distributed mainly in the eastern part of each basin, while wet conditions are distributed mainly around the 
western boundary of each basin (Figure 3a). During EP El Niño events, wet conditions over the Arkansas basin 
are more intense compared to other sub-basins (Figure 3b). The PDFs for the sub-basins show that PDSI during 
EP El Niño events shifts significantly (p < 0.005 in Wilcoxon rank-sum test, given the non-normal distribution 
of basin hydroclimate in Figure 3) toward positive PDSI anomalies (wet conditions) for all major tributaries 
(Figures 3c–3f), consistent with the mean hydroclimate patterns shown in Figure 3b. PDFs associated with CP 
El Niño events generally exhibit decreased PDSI compared to EP El Niño events for all sub-basins. However, 
the magnitudes of changes in PDSI are spatially heterogeneous. The Ohio basin shows the largest decrease in its 

Figure 3. Central Pacific (CP) and Eastern Pacific (EP) El Niño and associated hydroclimate conditions over the Mississippi River basin and its tributaries: sea surface 
temperature anomaly and Palmer Drought Severity Index (PDSI) anomaly map composites from the Paleo Hydrodynamics Data Assimilation product for (a) CP and (b) 
EP El Niño events. The Mississippi River basin and its major tributaries (Missouri, Ohio, Arkansas, and Lower Mississippi) are outlined with black lines. (c–f) Show 
the probability density functions of mean PDSI anomalies over Lower Mississippi, Missouri, Ohio, and Arkansas basin, respectively, during CP (orange) and EP (blue) 
El Niño events. The distributions are significantly different between CP and EP El Niño events with p < 0.005 in a Wilcoxon rank-sum test. Dotted lines represent the 
average of each distribution. All black dashed lines represent 0 PDSI anomaly. Here, PDSI anomalies are normalized by the 30-year running standard deviation of the 
Niño 3.4 index.
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PDSI PDF compared to other basins (Figure 3e), consistent with the more intense dry conditions during CP El 
Niño shown in Figure 3a. The Missouri and Arkansas basins show a less pronounced decrease in PDSI PDFs, 
with mean hydroclimate conditions around 0 during CP El Niño events (Figures 3d and 3f), consistent with the 
mapped PDSI patterns in Figure 3a. Taken together, most of the Mississippi River basin experiences wet condi-
tions during EP El Niño events but dry conditions during CP El Niño events on average during the LM. For the 
major tributaries, the hydroclimate conditions are spatially heterogeneous; the differences between two El Niño 
types are most prominent over the Ohio basin.

3.3. North Atlantic SST Variability and Mississippi River Basin Hydroclimate
The AMO's impacts on precipitation and river flows over the U.S. during the instrumental era have been evalu-
ated in previous work (Enfield et al., 2001; Hu et al., 2011; Rogers & Coleman, 2003). To further investigate the 
connection between Mississippi wet extremes and AMO-related SST variability during the LM, PDFs of AMO 
indices during wet extreme events (top 1% and 10%) over Mississippi tributaries (Lower Mississippi, Missouri, 
Ohio, and Arkansas) are computed and compared to IQR “normal” years (Figures 4a–4h). The results show 
that PDFs of AMO indices during wet extreme events versus normal years are not significantly different (in a 
Wilcoxon rank-sum test) (Figures 4a–4h), except for the top 1% wet events over Ohio basin, wherein the AMO 
index shifts toward its warm phase (positive AMO index, Figure 4e). The results indicating that the averaged 
AMO indices are close to 0 (neutral phase) during wet extreme events for all major tributaries except for the 
Ohio suggests that, on average, the AMO's impact over most of Mississippi River basin during the LM is small. 
Composites of SSTA and PDSI anomalies for both phases of the AMO (as defined in Section 2.2) show dry 
conditions over basins, except for the Lower Mississippi, which shows slightly wetter conditions during AMO 
warm phases (Figure S8 in Supporting Information S1). The magnitude of drying during both AMO phases is 
sensitive to the phase definition (i.e., using 1, 1.5, or 2σ departures), as shown in Figures S8–S10 in Supporting 
Information  S1. This result contrasts with previous work evaluating instrumental records and paleo-records, 
which suggest that precipitation and streamflow increase over the Mississippi basin during cold phases of the 
AMO (Enfield et al., 2001; Hu et al., 2011; Muñoz et al., 2018; Rogers & Coleman, 2003).

To evaluate Atlantic impacts beyond the AMO, we investigated the average North Atlantic SST patterns associ-
ated with wet extremes over the Mississippi River basin. Composites of SSTA over the North Atlantic during wet 
extreme events consistently show cooling over the extratropical western North Atlantic (Figures 4i–4p). SOM 
analysis shows that Mississippi wet extremes are significantly associated with a warm-cold-warm (WCW) tripole 
pattern of NAT SSTs (SOM5 in Figure S11 in Supporting Information S1). By tributary, for the Lower Missis-
sippi basin, the top 1%–10% wettest years are associated with mean cooling over the North Atlantic (Figures 4i 
and 4j). However, our SOM analysis yields no significant connection between North Atlantic SST patterns and 
Lower Mississippi wet extremes (Table S2 in Supporting Information S1). For the Ohio River basin, the top 1% 
wet events are associated with WCW tripole SST patterns accompanied by EP El Niño-like patterns (Figure 4m 
and Figure S10e in Supporting Information S1), while the top 10% wet events show a general cooling pattern 
(Figure 4n). In SOM and frequency analyses, Ohio wet extremes show significant association with the WCW 
tripole pattern (SOM5 in Figure S11 and Table S2 in Supporting Information S1). For the Missouri and Arkansas 
basin, the top 1% and 10% wet extremes are generally associated with WCW tripole patterns (Figures 4k and 4l), 
but are also accompanied by strong El Niño-like patterns (Figures S12c and S12d in Supporting Information S1). 
SOM analyses show that wet extremes over the Missouri and Arkansas basin are significantly connected with a 
strong WCW tripole pattern (with strong tropical North Atlantic warming, SOM6 in Figure S11 and Table S2 in 
Supporting Information S1).

Evidence surrounding the tropical Pacific impacts on Ohio wet extremes is conflicting: SOM analysis suggests 
Ohio wet extremes do not respond substantially to any tropical Pacific SSTA patterns (Table S1 in Supporting 
Information  S1); meanwhile, Figure  3 indicates the Ohio basin is highly sensitive to CP versus  EP El Niño 
patterns. Focusing on the Atlantic, the Ohio basin's hydroclimate response shows substantial association with the 
WCW tripole SST pattern (Table S2 in Supporting Information S1). Thus, we suggest North Atlantic WCW tripole 
SSTA patterns exert a more dominant control on hydroclimate conditions over the Ohio basin compared  to  tropi-
cal Pacific forcing. Further analysis using instrumental observations consistently shows that WCW tripole SSTA 
patterns over the North Atlantic contribute to enhanced moisture supply, generating precipitation increases over 
the Ohio basin (Figure S14 and Text S2 in Supporting Information S1). In the SOM analyses of North Atlantic 
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SSTs, the strong WCW pattern, which is significantly associated with wet conditions over the Missouri and 
Arkansas basins, is consistently connected to strong El Niño-like warming patterns over the tropical Pacific 
(Text S1 in Supporting Information S1). Instrumental observations show a slight precipitation increase over the 
Missouri and Arkansas basins for WCW tripole patterns (Figure S14 in Supporting Information S1). However, 
when compared to the influence of the tropical Pacific forcing pattern, the North Atlantic influence is muted in 
these regions (Text S2 in Supporting Information S1). This suggests that El Niño-like patterns over the tropical 
Pacific, rather than North Atlantic SST variability, exert a more dominant control on both Missouri and Arkansas 
basin hydroclimate over the LM.

4. Discussion and Conclusions
Developing adaptation strategies for a future with a dramatically altered hydrological cycle is an urgent global 
research priority for science and engineering (Alfieri et al., 2017; Kundzewicz et al., 2014). To this end, this 

Figure 4. North Atlantic sea surface temperature impacts on hydroclimate conditions over the Mississippi River basin: (a–h) Show the probability density functions of 
the Atlantic Multi-Decadal Oscillation indices during wet extreme events (top 1% and 10%) over major tributaries (Lower Mississippi, Missouri, Ohio, and Arkansas), 
compared to those during normal years (IQR). The differences in the PDFs between wet extremes and normal years are only significant (p < 0.05 in Wilcoxon rank-sum 
test) for the top 1% wet conditions over the Ohio basin (e). Dotted lines represent the average of each distribution. (i–p) Show the sea surface temperature anomaly and 
Palmer Drought Severity Index anomaly composite maps during wet extreme events (top 1% and 10%) over the major tributaries. The Mississippi River basin and its 
major tributaries are outlined with black lines.
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work seeks to improve our understanding of the dynamical causes of hydrologic extremes on the Mississippi 
River system. We used a state-of-the-art paleoclimate DA reconstruction spanning the LM (PHYDA) to provide 
a long-term contextualization for recent basin hydroclimate extremes. We diagnosed and partitioned the drivers 
of regional hydroclimate changes, focusing on the modes of natural variability known to alter modern hydrology 
in the basin: ENSO and North Atlantic SST variability. By assembling key metrics for climate variability and 
basin hydroclimate, we evaluated the controls on hydroclimate extremes throughout the Mississippi River basin 
over the LM.

We used SOM analyses to isolate the SST modes over the tropical Pacific that most frequently accompany 
extreme wet events over the Mississippi River basin and its major tributaries (Missouri, Ohio, Arkansas, and 
Lower Mississippi). We find that Mississippi River wet extremes are associated with strong El Niño-like warm-
ing. The Missouri and Arkansas basins dominate the forcing of wet extremes over the whole Mississippi River 
basin. We also differentiated El Niño events based on tropical Pacific SST patterns into CP and EP El Niño events 
to assess their impacts on hydroclimate changes. The entire Mississippi River basin experiences dry conditions 
during CP El Niño, but wetter conditions during EP El Niño, consistent with studies evaluating 20th century data 
(Liang et al., 2014; Ning & Bradley, 2015; Yu & Zou, 2013). These hydroclimate teleconnection differences are 
mainly associated with shifts in the position and strength of stationary wave trains triggered by CP and EP SST 
patterns (Guo et al., 2017; Patricola et al., 2020; Weng et al., 2007, 2009). Tributary basins show spatial heter-
ogeneity in response to CP and EP El Niño events; in particular, the Ohio basin exhibits the largest difference 
between CP (dry) and EP (wet) El Niño events. Finally, in addition to ENSO, we investigated the North Atlantic 
SST patterns associated with Mississippi River wet extremes. Analyses of North Atlantic SST changes show that, 
WCW NAT SSTs (following the definition in Han et al. (2016)) exert a dominant impact on Ohio hydroclimate 
extremes, which are associated with westward moisture flow generated by the cyclonic circulation anomalies 
over the North Atlantic and subsequent moisture convergence over the Ohio basin (Figure S14 and Text S2 in 
Supporting Information S1).

These results harbor important implications for risk assessments under a changing climate, and can inform 
regional adaptation strategies in the long-term. Recent studies indicate predictive power out to 2-year lead times 
for ENSO events (X. Wu et al., 2021). The information from paleoclimate data generated here linking ENSO to 
Mississippi hydroclimate could be used for seasonal-to-interannual flood hazard prediction. In addition, large 
teleconnection nonstationarity may complicate decadal-scale prediction by compounding with anthropogenic 
influences on the climate variability and river channels/basins (Muñoz et al., 2018). As one example, Mississippi 
hydroclimate could be modified by increased CP El Niño frequency (Lee & McPhaden, 2010; Yeh et al., 2009) 
or strengthened ENSO teleconnections forced by anthropogenic warming (Fasullo et al., 2018). Future work must 
consider the ways in which atmospheric warming will be modulated by both ENSO and NAT/NASH over decadal 
timescales. Furthermore, by integrating atmospheric and hydrologic processes in observational and simulated 
datasets, future work could establish a framework to diagnose the role of internal variability on riverine flooding 
that could be applied to other large temperate river systems where similar uncertainties prevail. This work takes a 
first step toward formalizing these frameworks, using LM paleoclimate data to bolster our statistics surrounding 
ENSO and North Atlantic SST (AMO and NAT) impacts on seasonal hydroclimate extremes.

We acknowledge important limitations of this work. We rely on a single data assimilation product (PHYDA), 
which houses uncertainties. First, while PHYDA contains relatively robust proxy coverage from tree rings over 
the Mississippi Basin and coral records in the tropical Pacific, the reconstruction does lose variance back in time 
due to changes in proxy availability. The proxy coverage in both space and time relevant to our study contained 
in PHYDA is given in (Figure S1 in Supporting Information S1). Normalizing the data using a 30-year moving 
standard deviation, as described in the methods, may inflate the mean variance and the uncertainties back in 
the reconstruction, but avoids issues related to changing proxy availability. Second, paleoclimate DA relies on a 
climate model prior for spatial covariance information, and the CESM-LME prior for PHYDA contains biases. 
PHYDA's climate patterns are inherently tied to the spatial air-sea relationships in CESM, and larger ENSO 
variance in CESM compared to observations may amplify ENSO teleconnection patterns over the Mississippi 
river basin (Deser et al., 2012). However, PHYDA's SSTs are bias-corrected to more closely match observations 
(Steiger et al., 2019), which may partially remedy this problem. In addition, PHYDA, as a paleoclimate recon-
struction, has fewer degrees of freedom than those seen in observations (Johnson, 2013). It is therefore more diffi-
cult to extract CP and EP patterns using a SOM analysis on PHYDA (Figure 2), but we were able to approximate 
the patterns using EOF analysis (Figure 3). It is possible that the EOF analysis is identifying patterns that are 
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not physically distinct in PHYDA. Nevertheless, the fact that the temporal evolution of PHYDA is proxy-driven 
bolsters our confidence in the primarily frequency-based analyses employed in this work (SOMs, PDFs, and 
composites). The choice of model prior employed in the DA has a necessarily large impact on SSTs and PDSI 
evaluated here (Amrhein et al., 2020; Parsons & Hakim, 2019); additional work is required to evaluate the sensi-
tivity of the PHYDA reconstruction to other model priors (or observational priors). Finally, PHYDA is limited in 
its reconstruction of dynamically-informative variables such as geopotential height, sea level pressure, or winds. 
Skillful reconstructions of such variables are challenging given the available proxy data spanning the Common 
Era, however. Circulation and atmospheric dynamical information would shed light on the synoptic-scale patterns 
which transport moisture into the basin over time; with only SST and hydroclimate fields reconstructed at the 
surface, we are required to extrapolate how SST fields likely shift pressure surfaces, wind fields, and ultimately, 
moisture transport. To address this, we extrapolated dynamical information from instrumental reanalysis data to 
bolster our conclusions, and to evaluate the atmospheric circulation anomalies accompanying tropical Pacific 
and North Atlantic SST anomalies identified in PHYDA (Figures S12 and S13 in Supporting Information S1). 
Additional work evaluating these patterns in climate models and linking DA reconstruction patterns to model 
simulations would enhance these analyses, and such work is ongoing amongst the authors of this manuscript.

In closing, ensemble climate model simulations predict significant changes in hydroclimate extremes over 
the Mississippi River basin that harbor potential to catastrophically disrupt shipping, agriculture, fisheries, 
and industry in the central United States. The Mississippi and Gulf Coast regions are home to some of the 
busiest ports in the United States, and billions of dollars have been invested in flood mitigation and navi-
gation infrastructure, with billions more proposed (Peyronnin et  al.,  2013). Much of this infrastructure is 
designed for the hydroclimatic conditions of the 20th century, but the hydroclimatology of the Mississippi 
River basin will likely change over the coming century (Tao et al., 2014; Van der Wiel et al., 2018). Recent 
floods have resulted in operational failures which shutdown barge traffic and interrupt Morganza spillway 
operations (Fahie, 2019). These events motivate the generation of robust constraints on the climate mecha-
nisms controlling regional basin discharge events. Climate data spanning thousands of years at annual resolu-
tion can provide such constraints over long time scales. Understanding the climatic controls on flood hazard, 
specifically due to natural modes of variability like ENSO and the AMO, are required for risk assessments 
under a changing climate, and can inform regional adaptation strategies in the long-term. While actionable 
science may require longer extensions of this research, this work represents an important first step toward 
documenting the modes of natural variability that will compound with climate change to alter hydroclimate in 
the region. By analyzing data capturing past, present, and future climate and river discharge patterns for the 
Mississippi River basin, we hope to advance knowledge of future climate risks in the central and southeastern 
United States.
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