
Relational Compilation for
Performance-Critical Applications

Extensible Proof-Producing Translation of Functional Models into Low-Level Code

Clément Pit-Claudel∗

EPFL and Amazon AWS
Lausanne, Switzerland

Jade Philipoom2

MIT CSAIL
Cambridge, MA, USA

Dustin Jamner
MIT CSAIL

Cambridge, MA, USA

Andres Erbsen
MIT CSAIL

Cambridge, MA, USA

Adam Chlipala
MIT CSAIL

Cambridge, MA, USA

Abstract

There are typically two ways to compile and run a purely
functional program verified using an interactive theorem
prover (ITP): automatically extracting it to a similar lan-
guage (typically an unverified process, like Coq to OCaml)
or manually proving it equivalent to a lower-level reimple-
mentation (like a C program). Traditionally, only the latter
produced both excellent performance and end-to-end proofs.
This paper shows how to recast program extraction as

a proof-search problem to automatically derive correct-by-
construction, high-performance code from purely functional
programs.We call this idea relational compilationÐ it extends
recent developments with novel solutions to loop-invariant
inference and genericity in kinds of side effects.

Crucially, relational compilers are incomplete, and unlike
traditional compilers, they generate good code not because
of a fixed set of clever built-in optimizations but because
they allow experts to plug in domainśspecific extensions
that give them complete control over the compiler’s output.
We demonstrate the benefits of this approach with Rupi-

cola, a new compiler-construction toolkit designed to extract
fast, verified, idiomatic low-level code from annotated func-
tional models. Using case studies and performance bench-
marks, we show that it is extensible with minimal effort and
that it achieves performance on par with that of handwritten
C programs.

∗All work was done prior to joining Amazon.
2Jade Philipoom is now at Google.

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9265-5/22/06.

https://doi.org/10.1145/3519939.3523706

CCS Concepts: • Software and its engineering→ Com-

pilers; Software verification.

Keywords: compilation, verification, theorem proving

ACM Reference Format:

Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres

Erbsen, and Adam Chlipala. 2022. Relational Compilation for

Performance-Critical Applications: Extensible Proof-Producing

Translation of Functional Models into Low-Level Code. In

Proceedings of the 43rd ACM SIGPLAN International Conference

on Programming Language Design and Implementation (PLDI ’22),

June 13ś17, 2022, San Diego, CA, USA. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3519939.3523706

1 Introduction

Vulnerabilities in critical systems fall into roughly two cat-
egories: logic mistakes (incorrect business logic) and pro-
gramming mistakes (use-after-free, out-of-bounds accesses).
High-level languages attempt to eliminate both: logic mis-
takes by promoting higher levels of abstraction that facili-
tate reasoning about program behavior, and low-level issues
through safer programming paradigms (garbage collection
to rule out use-after-free errors, stream- and result-oriented
APIs for out-of-bounds accesses, etc.).

At the extreme, purely functional languages offer very
strong protections against low-level mistakes and readily
lend themselves to mathematical reasoning. By eliminat-
ing mutable arrays, exceptions, state, and other low-level
concerns and encouraging higher-order programming, lan-
guages like Coq [50], Lean [5], Idris [3], or the pure subsets
of Haskell and F* [12, 48] offer programming models much
less susceptible to the low-level issues that plague the vast
majority of today’s critical systems.

Unfortunately, such a combination of flexibility and safety
comes at a significant performance cost: it is an unsolved
problem to program a compiler for any of these purely func-
tional languages that verifiably preserves all of their high-
level guarantees while offering performance competitive
with the usual low-level suspects, especially C (Box 1).

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

918

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen, and Adam Chlipala

As a result, most critical systems are written in low-level
stateful languages, and verification efforts have to deal head-
first with the complexity of low-level programming Ð am-
bient effects like state, explicit memory management, com-
plexities of memory layout, etc.

In this paper we attempt to chart a different course, lever-
aging code-generating proof search to construct composi-
tional, extensible domain-specific compilers that perform
advanced domain- or even program-specific transformations
in a safe manner. We start with a comprehensive treatment of
relational compilation, a program-derivation technique that
soundly bridges the gap from shallowly embedded programs
to deeply embedded executable code, with special emphasis
on composability and extensibility.
We then provide a real-world perspective on relational

compilation, using it to derive, in the Coq proof assistant,
high-performance implementations of various small yet bug-
prone low-level programs. Because our focus is on low-level
programming, we do not attempt to compile all or even
most functional programs. Instead, we focus on small, loop-
heavy programs such as those often found in binary parsers,
text-manipulation libraries, cryptographic routines, system
libraries, and other high-risk, high-performance code. These
programs are not traditionally implemented in purely func-
tional languages, but we show that relational compilation
can in fact be used to write performance-critical programs in
that style, directly within the native, pure logic of an interac-
tive theorem prover, combining straightforward reasoning
and verification with excellent performance. In other words,
our programs are pure and written with maps and folds, but
they compile to code that manages its own memory, mutates
its inputs, and runs at the speed of vectorizable for loops.
Rupicola, our compiler-construction toolkit, is not a

general-purpose compiler and is not intended to replace all
program extraction. Instead, Rupicola is restricted, out of the
box, to a minimal set of constructs (essentially arithmetic,
simple data structures, and some control flow), yielding
a predictable and transparent compilation process. Users
are expected (and enabled) to extend it as needed for each
new domain, plugging in domain- or program-specific
compilation hints that capture the insight that humans
would normally apply when manually implementing
high-level specifications in a low-level language: details of
memory layout and memory management, implementation
strategies for data-structure traversals, etc.1

In a sense, Rupicola codifies and automates away the most
unpleasant part of the traditional end-to-end verification
pipeline: connecting handwritten low-level code to its func-
tional specification. In the traditional world, authors not
willing to rely on Coq’s extraction (for performance or trust

1Our implementation is free software, available under the MIT (Expat)

license at https://github.com/mit-plv/rupicola/. All benchmarks and code

samples in this paper can be downloaded as part of a preprovisioned virtual

machine at https://zenodo.org/record/6330612 [40].

To ground this discussion of high-level inefficiencies,
consider the simple task of converting an ASCII string to
uppercase.
In a purely functional language like Gallina (Coq), it

may succinctly be written as follows (with strings being
linked lists of characters, characters an inductive type with
256 cases, and toupper a disjunction with one case per
lowercase letter plus an unchanged default):

String.map Char.toupper str

This program accurately captures the intent of the task,
but how fast does it run? When extracted to OCaml, it will
pointer-chase through a linked list to traverse the original
string (creating data dependencies and cache pressure),
create a fresh string (costing allocations, cache misses, and
an extra traversal for garbage collection), and either stack-
overflow on long strings (due to a non-tail-recursive map,
though there have been recent developments in that space
[10]), or traverse the string twice (doubling allocation and
pointer-chasing costs), or accumulate continuations (even
more allocations).
Assuming that the original string is never reused, the

C implementation below performs a single pass, occupies
constant stack space, does not allocate, is cache-friendly,
can be unrolled, and is trivially vectorizable (toupper on
ASCII chars is just a comparison and a bitmask). The purely
functional version doesn’t stand a chance.

for (int i = 0; i < len; i++)

str[i] = toupper(str[i]);

Box 1. Compiler inefficiencies.

reasons) will manually relate handwritten, deeply embed-
ded low-level programs to functional models, and then they
will separately relate each functional model to a high-level
specification. In that world, authors must repeatedly deal
with the complexities of the low-level language’s semantics
and with details such as when to allocate or free memory
or how to relate low-level memory layouts to high-level
functional models. Rupicola, in contrast, completely auto-
mates the first phase of this process, generating the deeply
embedded low-level program from its functional model by
leveraging user-provided hints and program annotations.
In Rupicola, programmers only supply shallowly embedded
programs written in a subset of Gallina that naturally maps
to low-level constructs, and the tooling produces low-level,
deeply embedded code. Unchanged is the second phase that
relates these functional models to abstract specifications:
that part is still the programmer’s responsibility. But be-
cause Rupicola’s inputs are shallowly embedded, this phase
is disconnected from the details of the low-level language’s
semantics, and the traditional reasoning patterns best sup-
ported by Coq Ð especially structural induction Ð are fully
applicable (Figure 1).

919

Relational Compilation for Performance-Critical Applications PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

shallow

deep

High-level
specs

Lowered
Gallina

Bedrock2ASM

Traditional verification,
synthesis, refinement

Rupicola

Traditional compilation

(ideally, verified)

End-to-end
proof

fold
bind

nth
let

*p = a
while(…)

a[i]
lbu …,2(…)

srliw a2,a6,3

j .L6

Figure 1. Where Rupicola fits in the bigger picture. Rupicola is not a universal compiler: it bridges the shallow-to-deep gap by
accepting a restricted (but extensible) input that can reliably and predictably be translated to fast low-level code.

The main contributions of this paper are its presentation
of a flavor of proof-producing code generation that we call
relational compilation, and its application of that technique
to the automatic generation of verified, high-performance
low-level code:

• We develop a novel, systematic presentation of code gener-
ation via proof search, starting from a traditional verified
compiler and progressively transforming it to introduce
relational compilation, with a focus on composability and
extensibility.
• We describe and evaluate Rupicola, a relational com-
piler from Gallina, Coq’s programming language, to
Bedrock2 [8], a low-level imperative language. Rupicola
advances the state of the art through composable support
for arbitrary monadic programs, novel treatment of loops,
and output-code performance.

There have been many previous efforts in this space, fore-
most among them developments on Imperative/HOL [17, 18],
CakeML [13, 30], Œuf [15, 27], HOL compilation to Verilog
[23], Fiat-to-Facade [41], CertiCoq [1], and Low* [45]. We
provide detailed comparisons in section 5. Briefly, Rupi-
cola’s novelty is its combination of performance, foun-

dational proofs, and extensibility:

• All projects above except CertiCoq and Low* use proof-
producing code-generation. Among these, only Fiat-to-
Facade focuses on generating high-performance low-level
code from functional programs, but its performance does
not match that of Rupicola (others target either garbage-
collected languages or other types of languages like Ver-
ilog; LLVM/HOL for example compiles from a one-to-one
shallow embedding of LLVM).
• KreMLin, Low*’s compiler, does produce code with per-
formance matching handwritten programs, but it is not
formally verified (Rupicola’s output is certified by a proof
of total correctness). CertiCoq has proofs (though not for
the initial reification step), but it is a standard compiler
whose outputs require a runtime system.
• Fiat-to-Facade supports straightforward user extensions,

but unlike in Rupicola users are limited by the linearity of
the target language, and support for loops and effects is

ad-hoc (loops can mutate only one object, and the nonde-
terminism monad is hardcoded).

We call the output of Rupicola idiomatic not because it
is particularly readable (Rupicola uses Bedrock2’s pretty-
printer to C) but because it employs the constructs and pat-
terns that a programmer would use in handwritten C code
(unlike the output of a regular compiler from Gallina to C,
which would encode in C the high-level patterns found in
the source).

2 On Relational Compilation

The traditional process for developing a verified compiler is
to define types that model the source (𝑆) and target (𝑇) lan-
guages, give these language semantics, and write a function
𝑓 : 𝑆 → 𝑇 proven to preserve semantics. That is, if 𝜎𝑆 (𝑠)
denotes the semantics of 𝑠 ∈ 𝑆 and 𝜎𝑇 (𝑡) those of 𝑡 ∈ 𝑇 , then
𝑓 is correct iff 𝑓 (𝑠) ∼ 𝑠 for all 𝑠 , where 𝑡 ∼ 𝑠 iff 𝜎𝑇 (𝑡) = 𝜎𝑆 (𝑠).
It turns out that instead of writing the compiler as a mono-

lithic program and separately verifying it, we can break
up the compiler and its proof into a collection of orthog-
onal correctness theorems and use these theorems to drive
a code-generating proof-search process Ð a process we call
relational compilation. Instead of functions 𝑓 : 𝑆 → 𝑇 , we
implement compilers as automated decision procedures for
theorems of the form ∃ 𝑡, 𝑡 ∼ 𝑠 . In a constructive setting, any
proof of that statement must exhibit a witness 𝑡 , which will
be a (correct) compiled version of 𝑠 .2

The two main benefits of relational compilation are flex-
ibility and trustworthiness: it provides a very natural and
modular way to think of compiler extensions and makes
it possible to extract shallowly embedded programs with-
out trusting an extraction routine (in contrast, extraction
in Coq is trusted). The main cost? Completeness: a (total)
function always terminates and produces a compiled output;
a (partial) proof-search process may loop or fail.
The following presentation of relational compilation in-

herits from a long research tradition: code-generating proof

2The theorem does not ∀-quantify 𝑠 because we want to generate one

distinct proof per input program Ð otherwise, with a ∀𝑠 quantification,

the theorem would be equivalent by Skolemization to defining a single

compilation function 𝑓 , which we are trying to avoid.

920

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen, and Adam Chlipala

search has been referred to as proof-producing compilation,
synthesis, or translation, and, when the source language is
shallowly embedded, proof-producing extraction, certifying
extraction, or binary code extraction. [15, 29, 31, 41]

2.1 A Step-by-Step Example in Coq

Here is a concrete pair of languages that we will use as a
demonstration. Language 𝑆 is a simple arithmetic expression
language. Language 𝑇 is a stack machine.

Language definitions. On the first line below, in Coq
syntax, is a language Swith constants and addition. Programs
in language T are lists (on the third line) of stack operations
(on the second line), either pushing a constant or popping
two values from the stack and pushing their sum.

Inductive S := SInt z | SAdd (s1 s2 : S).

Inductive T_Op := TPush z | TPopAdd.

Definition T := list T_Op.

Semantics. Interpreters for these languages are easy to
define by recursion, mapping the constructors of S and T_Op
to operations on Z. This, in turn, is enough to formulate a
(contextual) equivalence relation on S and T:

Fixpoint 𝜎S (s: S) :=

match s with

| SInt z ⇒ z

| SAdd s1 s2 ⇒ 𝜎S s1 + 𝜎S s2 end.

Definition 𝜎Op (zs: list Z) (op: T_Op) :=

match op, zs with

| TPush z, zs ⇒ z :: zs

| TPopAdd, z2::z1::zs ⇒ z1+z2 :: zs

| _, zs ⇒ zs (* Invalid: no-op *) end.

Definition 𝜎T (t: T) (zs: list Z) :=

List.fold_left 𝜎Op t zs.

Notation "t ∼ s" :=

(∀ zs, 𝜎T t zs = 𝜎S s :: zs).

Compilation. Here is a single-pass compiler for our pair
of languages. The SInt case maps to a stack-machine pro-
gram that simply pushes the constant z on the stack, and the
SAdd case produces a program that pushes both operands in
succession before computing their sum using the TPopAdd
opcode. Its proof is straightforward by induction.

Fixpoint StoT (s: S) := match s with

| SInt z ⇒ [TPush z]

| SAdd s1 s2 ⇒ StoT s1 ++ StoT s2 ++ [TPopAdd]

end.

Lemma StoT_ok : ∀ s, StoT s ∼ s. Proof. . . . Qed.

2.2 Compiling with Relations

Like all functions, StoT can be rewritten as a relation3; here is
oneway to do so (each constructor corresponds to a branch in

3Any function 𝑓 : 𝑥 ↦→ 𝑓 (𝑥) defines a relation 𝑡 ∼𝑓 𝑠 iff 𝑡 = 𝑓 (𝑠) ,

sometimes called the graph of 𝑓 .

the original recursion, and each x ℜ y premise corresponds
to a recursive call to StoT):

Inductive StoT_rel : T → S → Prop :=

| StoT_RInt : ∀ z, [TPush z] ℜ SInt z

| StoT_RAdd : ∀ t1 s1 t2 s2,

t1 ℜ s1 → t2 ℜ s2 →

t1 ++ t2 ++ [TPopAdd] ℜ SAdd s1 s2

where "t ’ℜ’ s" := (StoT_rel t s).

Compiler correctness for the relation ℜ reduces to in-
clusion: ℜ defines a correct mapping from 𝑆 to 𝑇 (possibly

one-to-many, possibly suboptimal, but correct) iff its graph is

a subset of the graph of ∼ (with unchanged proof structure):

Theorem StoT_rel_ok : ∀ t s, t ℜ s → t ∼ s.

Naturally we can useℜ to prove specific program equiva-
lences, but more importantly we can use it to run the com-
piler, with proof search! To compile s, we simply search for
a program t such that t ℜ s4.

Example s7 := SAdd (SInt 3) (SInt 4).

Example t7_rel: { t7 | t7 ℜ s7 }.

unfold s7; eexists.

?t7 ℜ SAdd (SInt 3) (SInt 4)

The value ?t7 is a placeholder (an existential variable, or
evar) corresponding to the program that we are deriving,
whichwe can refine as a side effect of applying a lemma. After
applying the lemma StoT_RAdd, Coq asks us to provide two
subprograms, each corresponding to one operand of SAdd.

apply StoT_RAdd.

?t1 ℜ SInt 3 ?t2 ℜ SInt 4

all: apply StoT_RInt. Defined.

Compute t7_rel.

= exist [TPush 3; TPush 4; TPopAdd]

We can also use Coq’s inspection facilities to see the proof
term as it is being generated (this time the boxes show the
proof term, not the goals): each lemma application is equiva-
lent to a recursive call in a run of StoT.

(exist ?t7)

apply StoT_RAdd.

(exist (?t1 ++ ?t2 ++ [TPopAdd]))

all: apply StoT_RInt.

(exist ([TPush 3] ++ [TPush 4] ++ [TPopAdd]))

This is traditional logic programming, applied to compilers.
Reemphasizing the key insight: correctly compiling a program

𝑠 is the same as proving ∃ 𝑡, 𝑡 ∼ 𝑠 .

4For the purpose of this document, { t | P } can be considered a synonym

for ∃ t, P.

921

Relational Compilation for Performance-Critical Applications PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

2.3 Open-Ended Compilation

The proofs of correctness of StoT andℜ have the exact same
structure: each is made up of two orthogonal lemmas.

Lemma StoT_SInt z : [TPush z] ∼ SInt z.

Lemma StoT_Plus t1 s1 t2 s2 :

t1 ∼ s1 → t2 ∼ s2 →

t1 ++ t2 ++ [TPopAdd] ∼ SAdd s1 s2.

Each of these is really a standalone fact, and each corre-
sponds to a partial relation between 𝑆 and𝑇 (partial because
each lemma is only applicable to some pairs of input/output
programs in 𝑆 and 𝑇 , like TPopAdd and SAdd in StoT_Plus).
In other words: A relational compiler is just a collection of

facts connecting target programs to source programs.
As a result, we do not even need to define a relation: we can

prove these lemmas directly, and use them to build a compiler
Ð just like we did the constructors ofℜ! Coq has facilities
(łhint databasesž) to perform automatic proof search using a
set of lemmas, which we can use to automate compilation.5

Relational compilation offers a crucial benefit: composabil-

ity. This is particularly useful when compiling (shallowly)
embedded domain-specific languages (EDSLs), especially
when the compiler needs to be extensible.6

2.4 Compiling Shallowly Embedded DSLs

The original setup of the problem required us to exhibit a
function 𝑓 : 𝑆 → 𝑇 . Not so with relational compilation,
which instead requires us to prove instances of the ∼ rela-
tion (one per program). Thus we can apply this compilation
technique to compile shallowly embedded DSLs7.
To change our running example to compile arithmetic

expressions written directly in Gallina, we start by redefining
the relation to use Gallina expressions on the right side of
the equivalence (there is no longer a reference to 𝑆 and 𝜎S)
and then add compilation lemmas referring to plain-Gallina
operations (eg. +, not SAdd) so that each now relates a shallow
program to an equivalent deeply embedded one:

Notation "t ≈ z" := (∀ zs, 𝜎T t zs = z :: zs).

Lemma GallinatoT_Z z : [TPush z] ≈ z.

Lemma GallinatoT_Zadd t1 z1 t2 z2 :

t1 ≈ z1 → t2 ≈ z2 →

t1 ++ t2 ++ [TPopAdd] ≈ z1 + z2.

5Hint databases provide a convenient way to package lemmas together, but

the key to extensibility is really the idea of phrasing compilation as proof

search, as it enables sound composition.
6Most compilers restrict user extensions to single-language AST transfor-

mations: the passes that translate between intermediate languages are fixed,

monolithic functions. Relational compilation, in contrast, offers a flexible

way to customize cross-language translators Ð so much so that relational

compilers are built by composing independent mini-compilers that each

support just one language construct.
7A shallow embedding is one where programs are defined directly in the

host language, in contrast with a deep embedding where programs are

represented as abstract syntax trees, i.e. data.

These lemmas are sufficient to assemble a compiler: once
we populate a hint database with compilation lemmas, we
can (relationally) compile shallowly embedded programs:

Example t7_shallow: { t7 | t7 ≈ 3 + 4 }.

Proof. typeclasses eauto. Defined.

Compute t7_shallow.

= exist [TPush 3; TPush 4; TPopAdd]

There is something slightly magical happening here. By
rephrasing compilation as a proof-search problem, we have
managed to make a compiler that would not even be ex-
pressible (let alone provable!) as a regular Gallina function.
Reasoning on shallowly embedded programs is often much
nicer than reasoning on deeply embedded programs, and
this technique offers a convenient way to bridge the gap.

3 Real-World Relational Compilation

The first part of this paper presented the key ideas behind
relational compilation, keeping implementation details to a
minimum. In this part we discuss how these ideas come to-
gether to implement a realistic compiler-construction toolkit.
Specifically, we present the design and implementation of
Rupicola, a compiler-construction framework with a focus
on simple, low-level performance-critical programs.

Rupicola allows users to build compilers that extract shal-
lowly embedded programs written in subsets of Gallina (the
functional language of the Coq proof assistant), such that
every successful compilation yields a deeply embedded pro-
gram in Bedrock2 (a C-like language [8] that can be compiled
to RISC-V or pretty-printed to C, see Box 2), along with a
proof of equivalence to the original functional program.8

Rupicola is implemented in Coq, using a mix of Coq lem-
mas (to relate high-level functional code patterns to low-level
imperative ones) and Ltac tactics (to guide the application of
these lemmas). Its core is very small (hundreds of lines), but
thanks to a variety of extensions we end up with a reason-
ably expressive input language: with all extensions loaded,
we have support for arithmetic over many types (Booleans,
bounded and unbounded natural numbers, bytes, integers,
machine words), various control-flow patterns (condition-
als as well as iteration patterns like maps and folds, with
and without early exits), various flat data structures such as
mutable cells and arrays; plain and monadic binds; various
monadic extensions including the nondeterminism, state,
writer, and I/O monads and a generic free monad; and vari-
ous low-level effects and features such as stack allocation,
inline tables, intrinsics, and external functional calls.
We designed Rupicola so that the default reaction to un-

expected input is to stop and ask for user guidance, rather
than fall back to a slower generic implementation. As a re-
sult, Rupicola makes few guesses (in contrast to more clever

8Our Coq-to-Bedrock compilation toolkit is named after Rupicola Rupicola,

the Guianan Cock-of-the-Rock, depicted in Figure 1.

922

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen, and Adam Chlipala

approaches, e.g. superoptimization [26, 38]) Ð and conse-
quently very few incorrect guesses. Programs compiled using
Rupicola achieve performance indistinguishable from that
of handwritten C programs because they are (semantically)
indistinguishable from handwritten C programs.

We start by presenting Rupicola’s philosophy and design
goals and giving a flavor of using it by stepping through the
compilation of a complete example. Then, we explain the
core architecture of Rupicola and highlight two particular
challenges: genericity in computational effects and loop-
invariant inference.

3.1 Design goals

Rupicola’s goal is to enable programmers to generate fast
low-level code while reasoning about nice and simple high-
level functional programs. It is designed to offer developers
of critical software (programmers who want both high per-
formance and end-to-end proofs) a better solution than the
traditional approach of writing low-level code directly and
then separately verifying it against a high-level specification.

These (manual) proofs relating low-level imperative code
to purely functional specifications are one of the main pain
points of that traditional approach: they mix high-level rea-
soning about domain logic with low-level details of control
flow, state, and memory management, making them compli-
cated and tedious.
With Rupicola, programmers do not write low-level pro-

grams by hand. Instead, a programmer starts with a high-
level specification (typically a function, a relation, or a set
of properties that the program should have), implements a
functional model of that specification (a purely functional
program written in a subset of Gallina, optionally adorned
with performance annotations), specifies a binary interface
(an ABI, the collection of low-level representation choices
that are visible to other low-level code but abstracted-away
in the high-level code), and finally uses relational compi-
lation (that is, code-generating proof search) to generate
imperative code: the shape of the model, combined with the
lemmas introduced into the relational compiler, determines
what code gets generated.9

The first part of this process (constructing and verifying a
functional model) is done by hand, but the process is straight-
forward, and the proof of correctness is very easy: the logic
of a proof assistant like Coq is very pleasant to work with
when reasoning about purely functional, shallowly embed-
ded programs.
The rest of this process (relational compilation) is where

most of the work happens. Instead of writing imperative
code by hand, experts capture and prove (once and for all)

9Ignoring the fact that we automatically generate the low-level code instead

of asking the user to write it, this problem decomposition is rather typical:

just like in tools like Low* [45], Fiat [6], or VST [2], it lets us reason about

algorithmic changes at the functional level and separately handle the jump

to a low-level language.

the tricks that they would have used when transforming a
functional prototype into an efficient low-level implemen-
tation. These performance insights can then be utilized to
automatically generate low-level code, along with proofs of
correctness, in the same way that we used lemmas in sec-
tion 2 to generate stack-machine programs.
When a user attempts to compile a program that uses

unsupported constructs, or a program whose compilation
requires solving side conditions that Rupicola’s logic does
not recognize (e.g. tricky side conditions on array bounds
or integer overflows), Rupicola makes as much progress as
possible and then presents unsolved compilation subgoals to
the user, who may then plug in new lemmas to implement
missing constructs, or new tactics to discharge unsolved
side conditions (we evaluate the cost of developing these
extensions in section 4). This means that users never have
to guess at what is happening: they can learn the shape of
missing lemmas from the goals printed by Rupicola.

Letting users construct their own domain-specific compil-
ers means that Rupicola is predictable: compilers built with
Rupicola (almost) never backtrack and do not second-guess
the user by introducing potentially unwanted transforma-
tions Ð there are no performance surprises. Instead, Rupicola
generates good code by leveraging the insight that the user

provides. This is why extensibility is so important: it enables
users to do all their programming and proving in the com-
fortable confines of a purely functional language, yet get
complete control over the extraction of that code Ð includ-
ing algorithms, data layout, and performance.

3.2 Compiling with Rupicola

Let us revisit the example from Box 1, with Rupicola. The
source program is upstr := (𝜆 s ⇒ String.map toupper

s). Gallina’s string type is a linked list of characters, each
represented as an 8-tuple of Booleans; String.map is a sim-
ple recursive function; and toupper is specified as a match
mapping each lowercase ASCII character to its uppercase
counterpart: "a" ⇒ "A", "b" ⇒ "B", etc. The target pro-
gram is a for loop that mutates an array, which differs from
the source program in four ways:

1. First, we change to a more compact representation of
strings (C’s char* type), to save memory and improve
cache locality.

2. Second, we eliminate higher-order iteration by replacing
the recursive map with a loop, to prevent stack overflows.

3. Third, we change to in-place mutation, to eliminate mem-
ory allocations and reduce cache pressure.

4. Fourth, we introduce bit tricks specific to ASCII in the
computation of uppercase characters, to save time.

Because of the simplicity of this example, the lowering
from the high-level specification is almost trivial. We
just define a variant upstr’ of upstr on the type list

byte instead of string, using the ListArray.map iterator

923

Relational Compilation for Performance-Critical Applications PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

instead of String.map: upstr’ := (𝜆 s ⇒ let/n s :=

ListArray.map (𝜆 b⇒ a2b (toupper (b2a b))) s in s).
Proving this model equivalent to the original function

is a matter of three lines, but it contains almost all that
we need to guide the compiler (as we will see, the let/n-
binding tells Rupicola to mutate the variable named s, and
ListArray.map hints at the in-memory representation of
the string). And with that, we are ready to start!

The first transformation (strings as arrays, chars as bytes)
we encode as part of the ABI of our low-level program: a
pre-postcondition pair. We state that we start with a pointer
p to a buffer containing the same data as the string in a byte
array, and that we end with the same memory containing
the same string transformed to uppercase. The correspond-
ing specification is shown below; it says how the low-level
program that we intend to generate should be called and
what it will return:

Instance spec : spec_of "upstr" :=

fnspec! "upstr" p wlen / s r, {

requires tr m := wlen = of_nat (length s) ∧

(array p s ∗ r) m;

ensures tr’ m’ := tr’ = tr ∧

(array p (upstr’ s) ∗ r) m’ }.

Here is how to read this function specification (fnspec).
The function takes two arguments (machine words) p (a
pointer) and wlen and two ghost arguments s (a list of bytes)
and r (a separation-logic predicate), and it returns nothing;
the requires clause specifies how the function is called
(with a condition on argument wlen and on the memory
m10); and the ensures clause states that the program does
not produce observable I/O (tr’ = tr) and that it writes the
updated string (upstr’ s). Each separation-logic predicate
has an array fact that takes a pointer p and a Gallina-level
list, plus the separated frame r modeling the rest of the
memory. Predicates for arrays are used throughout Rupicola,
so we do not have to define anything new for this part.

The second transformation (map as a loop) is done using
a compiler extension Ð a lemma translating ListArray.map
into a for loop. This sort of translation is a common pattern,
so Rupicola’s standard library has built-in support for it; we
just need to load the relevant library and plug in Coq’s linear-
arithmetic solver to handle index-bounds side conditions.

The third transformation (mutation) comes as a side effect
of using an in-place map-to-loop lemma. Its application is
guided by the use of let/n (łlet/namedž), which is like a
regular let but annotated with a variable name. In Rupicola
we call this an intensional mutation effect, since it is intro-
duced automatically by analyzing the source code (and not
explicitly encoded using a state monad).

10All examples in this paper use nonoverlapping inputs, but this rule is

not a restriction of Rupicola: the compiler also supports reasoning about

nonseparating conjunctions, which are useful for programs like memmove,

which allows its source and destination to overlap.

Rupicola compiles to Bedrock2 [8], an untyped version
of the C programming language. It has a verified compiler
to RISC-V with a complete correctness proof as well as a
minimal program logic. The semantics divide the program
state in three parts: the heap (a flat array of bytes indexed
by natural numbers, with an optional layer of separation
logic in the program logic), the current function context
(a map of names to machine words), and an event trace
capturing externally observable events.
Bedrock2’s structured control flow includes function

calls, conditionals, and loops; the semantics only givemean-
ing to terminating loops, so proofs about Bedrock2 pro-
grams are total-correctness proofs. Additionally, stack us-
age is measured and restricted, so there is no general recur-
sion. Memory allocation is handled by client code, except
for allocation on the stack, which is available through a lan-
guage primitive that gives client code access to temporary
scratch space that is lexically scoped within a function’s
body.

Box 2. Rupicola’s target language: Bedrock2

The last transformation, efficient uppercasing, can be
plugged into the compiler as a rewrite. First we prove a
program equivalence between our toupper function on
8-tuples of Booleans and an efficient byte computation:

Definition toupper’ (b: byte) : byte :=

if wrap (b - "a") <? 26 then b & x5f else b.

Then we plug it in as a hint that applies inside the body
of the function passed to ListArray.map, along with an
unfolding hint that allows Rupicola to inline the function
toupper’. Once all these pieces are together we can invoke
the compiler, and we get the expected low-level program
with no further manual intervention beyond loading the
appropriate compiler submodules, which pulls in the 20 or so
lemmas that are needed to handle this example completely:

Derive upstr_br2fn SuchThat

(defn! "upstr" ("s", "len") { upstr_br2fn },

implements upstr’) As upstr_br2fn_ok.

Proof. compile. Qed.

The result is a Bedrock2 program upstr_br2fn and its
proof of (total) correctness upstr_br2fn_ok (the Derive

command is syntactic sugar for defining a dependent pair).
The defn! part specifies which function we are compiling
(upstr’), its spec ("upstr" matches the spec_of instance
above), and its signature ("s" and "len").
Finally, the program can be further compiled using

Bedrock2’s verified compiler (with support for linking
against separately compiled (or handwritten) verified
fragments of RISC-V machine code as needed), or it can be
pretty-printed to C and fed to a traditional C compiler.

924

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen, and Adam Chlipala

3.3 The Anatomy of a Rupicola Lemma

Rupicola has two compilation judgments and accordingly
two kinds of compilation lemmas: one to generate Bedrock2
statements and one for expressions. Here we focus on the
former; the latter is described in a case study in section 4.
We write the judgment for statements as a Hoare triple
{𝑡 ; 𝑚; 𝑙 ; 𝜎} 𝑐 {𝑃 𝑝}. In the precondition 𝑡 is the trace accu-
mulated up to this point in the program,𝑚 the memory, 𝑙 the
locals, and 𝜎 the environment of functions that the program
may call; in the postcondition 𝑃 is a predicate (which will
become useful once we compile monadic programs), and 𝑝 is
a Gallina value (the source program); and 𝑐 is the Bedrock2
program being derived (always an evar). The judgment states
that running 𝑐 with the given starting state (precondition)
leads to a final state verifying 𝑃 𝑝 (here 𝑃 is partially applied;
the result is a predicate on trace, memory, and locals).
As an example, here is a statement lemma about turning

Vector.put v i b, the replacement at index i with value b
in a length-indexed vector v of bytes (sometimes written as
v[i← b]), into store (v_var + I) B, the Bedrock2 version
of a pointer assignment.
The lemma has 5 premises. Below, the first one indicates

that local variable v_var contains a pointer v_ptr, and the
second one states that memory m contains vector v at address
v_ptr, alongside some separately framed memory r:

Lemma compile_vector_put {n} t m l 𝜎 . . . :

map.get l v_var = Some v_ptr→

(vector_value v_ptr v ∗ r) m→

The third and fourth premises are expression-compilation
subgoals expressing the fact that I and B evaluate to i and
b (by convention in this lemma we write deeply embedded
terms in uppercase):

EXPR m l I (of_bounded_nat i)→

EXPR m l B (of_byte b)→

The final premise is a statement-compilation subgoal that
generates a program K implementing the rest (k a’) of the
original computation, using the mutated vector.11

(∀ m’,

let v’ := Vector.put v i b in

(vector_value v_ptr v’ ∗ r) m’→

{ t; m’; l; 𝜎 } K { pred (k v’) })→

Finally, we have the lemma’s conclusion, which directly
relates the two programs and their continuations:

{ t; m; l; 𝜎 }

seq (store (var + I) B) K

{ pred (let/n v’ as v_var :=

Vector.put v i b in k v’) }.

11Most Rupicola lemmas include such continuations; this is more conve-

nient than using a generic sequencing lemma (a cut) because Bedrock2’s

predicates are asymmetric (the postcondition is a predicate, whereas the

precondition is a collection of values that are universally quantified over in

the Coq context of the proof).

3.4 Rupicola’s Architecture

Rupicola is divided into a minimal core (definitions, nota-
tions, forward-reasoning tactics, and supporting architec-
ture) and a collection of extensions. Section 4 covers some
of these extensions; here we focus on two particularly inter-
esting parts of Rupicola’s code generation.

3.4.1 Compiling Effectful Programs. Rupicola’s source
programs are pure, but leveraging the target language’s na-
tive effects is crucial to getting good performance. In Rupi-
cola, effects are classified into two categories: intensional
and extensional.
Intensional effects are not explicitly encoded in the

source (they do not appear in type signatures). Instead,
they are introduced by special-casing certain code patterns
through compiler extensions.
State and certain aspects of allocation are handled this

way in Rupicola. For state, in particular, we do not typically
use an explicit encoding: instead, we add lemmas to map e.g.
list accesses to pointer dereferences, or pure replacements
in a list to pointer assignments. Allocation of short-lived
objects on the stack is handled similarly; we discuss it in a
case study in subsubsection 4.1.2.

In general, intensional effects are either inferred or intro-
duced explicitly by adding semantically transparent anno-
tations to source programs (that is, annotations that do not
change the meaning of the program). For example, every
let-binding in functional models fed to Rupicola is anno-
tated with the name of the variable it binds, allowing the
compiler to decide when to mutate an object and when to
allocate a new one based on the user’s choice of names (in
general, Rupicola expects input programs to be sequences
of let-bindings, one per desired assignment in the target
language). Similarly, to indicate that a let-binding should
result in a copy instead of a mutation, a user might wrap
the value being bound in a call to a copy function of type
∀𝛼.𝛼 → 𝛼 . Finally, while in simple cases data-structure map-
pings can be inferred automatically, in complex cases the
user can control memory layout explicitly by using modules
that transparently wrap underlying functional types (for ex-
ample, the ListArray module reexposes list operations but
tells Rupicola to use a contiguous array).

With this lightweight approach to intensional effects, and
especially mutation, compiled programs can make full use of
low-level state while source programs remain easy to reason
about, with no explicit heap at the source level. This is a
key advantage of Rupicola’s intensional encoding of effects:
it essentially does not impede verification efforts. When
proving a functional model against a higher-level specifica-
tion, annotations can simply be unfolded away: Rupicola’s
name-carrying let-bindings unfold to regular let-bindings,
functions like copy above simply disappear, and modules
wrapping standard types unfold to reveal them.

925

Relational Compilation for Performance-Critical Applications PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Extensional effects, in contrast, are introduced using
explicit monadic encodings: users start with a pure specifica-
tion, implement a functional model of it using monads, and
then compile that model with Rupicola. This is how Rupicola
handles nondeterminism and I/O, for example.

Rupicola’s compilation judgment is phrased in a way that
allows lemmas about nonmonadic terms to apply regardless
of the source program’s ambient monad: when compiling a
pure binding in a monadic computation (bind (return a)

k), the shape of the simplified term (let x := a in k x)
allows us to apply any lemma that supports a. This means
that Rupicola has, for example, a single lemma for compiling
(pure) addition, applicable to all monadic programs.

Lemmas about monadic computations are a bit trickier.
Recall the vector-compilation lemma from subsection 3.3: its
conclusionwas of the form 𝑃 (let/n v := Vector.put . . . in

k v), and the following compilation goal was simply 𝑃 (k v).
In the monadic case, we might similarly expect to start from
𝑃 (bind ma k) and obtain as our next compilation goal
𝑃 (k a). . . but for which a? For 𝑃 : M A → state → Prop

and a term bind ma k, we need to find a relation between
P (bind ma k) st and P (k a) st for all st and for some
(potentially universally quantified) value a. We guarantee
that this relation exists by restricting 𝑃 and requiring it to
be formulated in terms of a monad-specific lift so that the
postcondition always has shape lift P (bind ma k).
For the nondeterminism monad, for example, we encode

a nondeterministic computation returning a value of
type A as A → Prop (for example, a list of n unspecified
natural numbers is represented as (𝜆 l ⇒ length l

= n)). Then, we require predicates to be lifted using the
function 𝑃 →| 𝜆 ma st . ∃𝑎, ma 𝑎 ∧ 𝑃 𝑎 st, which is such that
{𝑡 ; 𝑚; 𝑙 ; 𝜎} 𝑐 {lift P (bind ma k)} is implied for all 𝑎
by ma 𝑎 ∧ {𝑡 ; 𝑚; 𝑙 ; 𝜎} 𝑐 {lift P (k a)} (this is similar
to what happens with nonmonadic bindings presented in
subsection 3.3, but the value is now constrained by the
computation ma).
For the writer monad, we encode a computation as

a pair of a value and some accumulated output. Then,
we require that predicates be lifted using the function
lift := 𝑜 𝑃 →| 𝜆 ma st . 𝑃 (fst ma) (𝑜 ++ snd ma) st. Parameter
𝑜 of the lift accumulates previous output, allowing us to com-
pile monadic binds by accumulating their output into that
parameter while reducing the source term. Here the relation
is that {𝑡 ; 𝑚; 𝑙 ; 𝜎} 𝑐 {lift 𝑜 P (bind ma k)} is implied
by {𝑡 ; 𝑚; 𝑙 ; 𝜎} 𝑐 {lift (𝑜 ++ snd ma) P (k (fst ma))}.

3.4.2 Predicate Inference for Conditionals and Loops.

One of the hardest parts of conventional automated verifi-
cation is inference of invariants at control-flow join points.
Loop invariants are the classic tricky example, though a re-
duced version of the problem arises with conditionals. Rupi-
cola has a leg up over classic approaches, in that the łspeci-
ficationž to be proved is just a functional program that we

may mention directly in invariants. As a result, we have fully
automatic and predictable generation of loop invariants that
merely need to characterize the connection between func-
tional models and mutable low-level state.
To understand why compiling loops and conditionals

poses specific challenges in Rupicola, consider a simple
example: suppose that we are compiling code that writes
value x to a memory cell at address p conditionally on a
test t and returns a Boolean indicating whether a write has
happened (in code: let r, c := (if t then (true, put c

x) else (false, c)) in k c, a trivial compare-and-swap,
with k standing for the program’s continuation). We start
with locals {"c": p} (variable "c" contains pointer p) and a
memory predicate cell p c (stating that cell c is in a block
of memory at address p). The lemma that we will use to
compile this conditional will have a premise corresponding
to the compilation of k. What will that premise look like?
We might naively attempt to compile both branches and
then merge their strongest postconditions. The result,
unfortunately, is a new predicate (t ∧ cell p (put c

x)) ∨ (¬t ∧ cell p c) that is incomprehensible to later
compilation steps: code in k will refer to the new value of c,
and accordingly the compiler will look for a fact of the form
cell ?p (if t then . . . else . . .)) Ð not a disjunction.

In other words, Rupicola’s compilation frequently matches
(syntactically) against a logical context that captures the state
reached after symbolically executing the already-derived pre-
fix of the output program. Because of this, we need precise
control over the shape of the facts that are learnt as compila-
tion progresses.
Therefore, instead of naive strongest postconditions, we

apply the following heuristic to find an invariant.

1. Identify targets of the control-flow construct (loop or con-
ditional) based on the names in the corresponding bind-
ings. In the compare-and-swap example above, this would
be two variables, "r" and "c".

2. For each target, determine whether it is a scalar or a
pointer by inspecting the current locals and memory pred-
icate. In the CAS example, we would determine that "r" is
a scalar and "c" is a pointer: "r" because we do not find
a binding for it in the map of locals, and "c" because the
binding we find for it ("c": p) is to a pointer (p appears
in the separation-logic predicate cell p c).

3. For each scalar, abstract over the corresponding binding
in the locals. For each pointer, abstract over the corre-
sponding entry in the predicate describing the memory.
For CAS, we build a new map of locals {"c": p, "r": _}

and a new memory predicate cell p _.
4. Close over the results. For CAS, we obtain the predicate
(𝜆 (r, c) l m⇒ l = {"c": p, "r": r} ∧ (cell p c) m).

The resulting predicate is a template parameterized on the
values of the variables being created or mutated: to obtain
a plain predicate, we need to supply concrete values. For

926

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen, and Adam Chlipala

forward edges (conditionals) these values are exactly the
(output of the) source programs being compiled: for CAS we
obtain (𝜆 l m ⇒ let r, c := (if t then (true, put

c x) else (false, c)) in (l = {"c": p, "r": r} ∧

(cell p c) m)).
Loops are trickier to deal with: to reason about the body

of a loop, we need to characterize the state of the program
after some unknown number of iterations. In our case, this
means instantiating the state representation predicate with
symbolic variables that represent the program’s state part-
way through iteration.

Classic verification depends on human-written loop in-
variants for this task. However, since our source programs
are purely functional, we have a better option: we can use a
complete characterization of the loop’s behavior! For most
programs, we can construct a symbolic representation of
the program’s state at iteration 𝑛 by building a term corre-
sponding to 𝑛 steps of its execution (its first 𝑛 iterations for
numeric loops, or the first 𝑛 elements of the input list for a
map or fold, etc.). So, unlike a traditional loop-verification
exercise in which we would have a human collect relevant
properties into an invariant, we create a closed-form term
parameterized by the (symbolic) iteration number and let
users reason directly about it.12

As a concrete example, say we are compiling the loop let
c := Nat.iter 10 incr c in k c (where incr increments
the content of a cell, and Nat.iter n composes a function
with itself n times). We obtain a general invariant parame-
terized over the loop-modified variables: (𝜆 i l m ⇒ let c

:= iter i incr c in l = {"c": p} ∧ (cell p c) m), and
hence we have access to a precise description of the state of
c while compiling the loop’s body.
We have loop-compilation lemmas for a wide variety of

loops, each customized to provide optimally readable inter-
mediate states. For example, our lemma that connects map
to a for loop exposes intermediate states of the form map f

(first n l) ++ (skip n l). Then, compiling loop bodies
is like a classic Hoare-logic proof, where we know the invari-
ant holds for iteration i and must prove it for iteration i+1.
If we establish that connection, we are allowed to assume the
invariant for iteration n, going into the code afterward. This
process works without extensions for all examples presented
in this paper.

The devil is in the details, though, of how we prove all the
logical side conditions that arise during compilation of the
body. We use two different approaches, depending on the
kind of property:
Properties inherent to the choice of representation of a

value (we call them structural) are encoded in separation-
logic predicates. This is the case for properties like the length

12Crucially, the predicate template captures all low-level details, and the

symbolic instantiation is in terms of the functional source program.

of an object not changing when it is mutated, for exam-
ple. Concretely, in our original uppercasing, we chose a
separation-logic predicate that captured the length of the
string in addition to its contents. Structural properties are
automatically captured by our loop-invariant inference.
Properties specific to a particular algorithm or program

(we call them incidental) are proven at the source level and
recovered during compilation using hints. For example, if
in addition to incrementing a cell our loop also accessed
an array at the index corresponding to the value of the cell
(arr[*p]), we would want to prove that after each iteration,
the value in the cell is still within the bounds of the array.
With our approach, rather than encoding them as low-level
loop invariants, users prove incidental properties directly at
the source level, by proving theorems about partial execu-
tions of their loops (iteration over part of a list or a range
of numbers). For example, a user may prove that for all i,
get (iter i incr c) equals get c + i. Plugging this as
a compilation hint would then allow a linear solver to prove
side conditions like 0 ≤ get (iter i incr c) ≤ length

arr from preconditions about c and length arr.

4 Evaluation

We claim that Rupicola’s novelty is its combination of ex-
tensibility, foundational proofs, and performance. The first
and third claims are measurable. To support them, we eval-
uated Rupicola from three angles: programmer experience,
expressivity, and performance. For the first two we used case
studies; for the last we used benchmarks.

4.1 Programmer Experience and Expressivity

4.1.1 Extensibility. For Rupicola to generate code whose
performancematches that of handwritten programs, we need
users to be able to plug in new translation strategies, new
hints, and new rewrites Ð relational compilation is the key to
making this work, and it shines in particular when compared
to traditional compilers and rewriting-based approaches.
In our experience, developing new programs in Rupicola

often requires extensions, but these extensions are almost
always very simple to plug in, assuming reasonable familiar-
ity with our framework. Table 1 summarizes some examples
of estimated incremental effort.

Table 1. Incremental verification effort for user extensions,
in lines of Coq code. Development times are rough estimates.

Domain Operation Lemma Proof Time

nondet alloc, peek 26+24 17+11 13+6 min
cells get, put 22+23 5+ 3 7+3 min

iadd 31 7 8 min
io read, write 25+26 7+10 11+8 min

927

Relational Compilation for Performance-Critical Applications PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Adding support for new monads is also straightforward,
though naturally a bit more complicated. As a concrete ex-
ample, we estimate that adding support for a writer monad
starting from a blank file required about an hour and a half,
with a bit over 15 minutes spent defining the monad and
proving its properties (17 lines of code, 5 lines of proofs), 30
minutes spent setting up the compilation of that monad (56
lines of code, 8 lines of proofs), 20 minutes to add a Gallina
primitive and compilation lemmas for it (mapping writes to
I/O trace operations at the Bedrock2 level; 50 lines of code,
15 lines of proofs), 15 minutes to write a small example and
compile it (4 lines of Gallina model, 6 lines for the Bedrock2
signature, and 1 line for the compilation łproofž: compile.),
and about 3 seconds to derive the actual code (compiler per-
formance is discussed in more detail in subsection 4.3). The
same example written by imitating other monad examples
would probably take roughly a third to half as long.

4.1.2 Case Study: Implementing Compiler Ex-

tensions to Support New Low-Level Patterns. We
implemented two useful extensions that expose different
memory-management features of the target language.

Stack allocation. Bedrock2 supports (lexically scoped)
stack allocations: a block of code can be wrapped in a binding
construct giving it access to a pointer to a block of compile-
time constant-size memory allocated on the stack. This is
particularly useful for any program that needs access to a
small working area, and unlike a global buffer it does not pol-
lute external specifications (beyond changing the function’s
stack-space requirements, which Bedrock2 tracks). We added
support for two new source constructs. For programs that
immediately initialize their stack-allocated objects, we added
a special identity function stack. When Rupicola sees let
x := stack (term) in . . ., it generates a stack allocation in
Bedrock2 and resumes compilation with the plain program
let x := term in Another form is for objects that are
not initialized and must be modeled as beginning with non-
deterministic contents. However, we proved a compilation
lemma that applies when the resulting compilation is still
provably deterministic (independent of initial bytes in the
stack region). The implementation costs for these features
were very similar: about 20 to 30 lines of lemmas and 5 to 10
lines of proofs, plus about 20 lines of typeclasses definitions
and instances.

Inline tables. Inline tables are another Bedrock2 feature
that is usefully exposed at the functional level; they are const
arrays local to a Bedrock2 function, useful for implement-
ing lookup and translation tables. The Gallina API that we
implemented is exactly the same as that for arrays, except
that only one operation (get) is available. Crucially, the API
does not impede reasoning about the code: simply unfolding
the definition of InlineTable.get reveals that it is just the

function nth on lists. The API is complicated by polymor-
phism over types of values stored in a table. We did have to
write hundreds of lines of proof to support reading full 32-bit
words from tables, as opposed to tens of lines for reading
bytes; but most of the additional effort was from proving
properties that should be part of Bedrock2 itself.

4.1.3 Case Studies: Compiler Development and End-

to-End Proofs. This section attempts to give a sense of the
effort involved in developing and using relational compilers.
Both case studies are developed in much greater detail in
chapters 5.1.3 and 5.1.4 of [39].

Rupicola’s expression compiler. Rupicola is really two
relational compilers rolled into one: one targeting Bedrock2’s
statements and one targeting its expressions. Originally, how-
ever, we assumed that the expression part of the compilation
process was so simple that it would not warrant the cost
of relational compilation. Instead, we compiled expressions
by reifying them into an AST type and then using a very
simple verified compiler targeting Bedrock2’s expression lan-
guage, and we expected to handle all necessary extensions
by plugging in new cases in our reflection tactics and proofs.
This was a miscalculation: extending that compiler was

complicated (it required modifications in increasingly com-
plex Coq tactics), and customizing its output for a specific
program required duplicating the entire compiler to change
just one case. Eventually we switched to relational compila-
tion. The code went down from 450 lines to about 250 lines,
and extending it was so smooth that we were soon back to
about 400 Ð but now with support for machine words, bytes,
Booleans, integers, two representations of natural numbers,
and expressions with casts between different types. The over-
all impact on compilation times was reasonable: less than
30% overall.

End-to-end verification. Narrowly speaking, how to pro-
duce code suitable for compilation with Rupicola is out-of-
scope for this paper: program synthesis, automated refine-
ment, interactive refinement, and manual programming-and-
proving are all reasonable approaches. Still, expressivity is a
concern, so for multiple of our example programs we wrote
end-to-end proofs connecting abstract specifications to Rupi-
cola’s inputs. We start from specifications capturing the de-
sired behavior with no concerns of performance or even
executability. Then we write annotated functional models,
which we verify (by hand) against the original specifications.
Finally, we find and add missing compilation lemmas inter-
actively by running the compiler and inspecting compilation
failures, if any. This process produces Bedrock2 code, which
can either be compiled to RISC-V, yielding an end-to-end
proof from high-level specifications to assembly, or trans-
lated to C and run through a traditional compiler. Because
all reasoning happens on shallowly embedded programs,
the verification experience is one that interactive theorem

928

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen, and Adam Chlipala

provers excel at: proving equivalences between relatively
small pure functions that operate on inductive data types.
As a result, the required effort was generally low (minutes
for trivial cases to hours for more complex ones).
Chapter 5.1.4 of [39] presents details about a concrete

example (the IP-checksum program benchmarked below).

4.2 Benchmarks

Flexibility and extensibility are not the only metrics that we
are optimizing for: they are in service of generating code
that competes with handwritten C on performance.
To support our performance claims, we took a collection

of tasks for which existing C implementations were avail-
able, implemented corresponding programs in Coq, and used
Rupicola to compile them. Here, we give evidence that the
performance of the resulting code is on par with handwritten
C programs. To run these programs we do not use Bedrock2’s
compiler to RISC-V; instead we use a simple pretty-printer to
C to feed our programs to a regular C compiler (it would be
possible to use Bedrock2’s compiler or CompCert for greater
assurance, albeit at a performance cost).
We chose programs from a variety of domains, includ-

ing string manipulation, hashing, and packet-manipulating
(network) programs. Not discussed in the following is an ad-
ditional suite of dozens of programs testing features around
arithmetic, monadic extensions, and stack allocation (a sub-
set of which are covered in Table 1).

Table 2 gives a short description of each program that we
benchmarked, and Figure 2 shows the results of benchmark-
ing (running on an Intel Core i5-1135G7 @ 2.40GHz). As
usual, benchmarks involving C compilers are very sensitive
to small encoding decisions, so we measure performance
across three compilers: overall the differences both in favor
and against Rupicola are within the expected fluctuations
across optimizing compilers, though we do suffer from a
missed vectorization opportunity in upstr with GCC.

For space reasons we do not include detailed benchmarks
of the OCaml code that Coq’s built-in extraction can gener-
ate; suffice to say that we have we have found it to perform
multiple orders of magnitude slower than the C code gen-
erated by Rupicola, even after tweaking Coq’s extraction to
produce more efficient code.13 It is possible to improve the
performance of the OCaml code further using potentially
unsound extraction commands, but only up to a point; and
each new customization of the extraction process is onemore
opportunity for subtle bugs.
Additional discussion of these performance results, in-

cluding a detailed analysis of performance discrepancies, is
presented in chapter 5.2.1 of [39].

13In many of these examples it does not even make sense to give a speedup

ratio between Rupicola and code exported by Coq, because Rupicola changes

the asymptotic complexity of the code it extracts (e.g. by changing a linear

nth-element lookup to a constant-time pointer dereference).

Table 2. Our benchmark suite. łSourcež, łLemmasž, and
łHintsž measure programmer effort in lines to write the origi-
nal program and its signature, to prove the properties needed
by Rupicola to compile it, and to construct the compiler, re-
spectively. łEnd-to-Endž indicates whether we have proofs
from high-level specifications. The remaining columns de-
scribe which compiler extensions each program leverages.

Name So
ur
ce

Le
m
m
as

H
in
ts

En
d-
to
-E
nd

A
rit
hm
et
ic

In
lin
e

A
rr
ay
s

Lo
op
s

M
ut
at
io
n

fnv1a 35 - 2 ✓ ✓ ✓

Fowler-Noll-Vo (noncryptographic) hash

utf8 56 - 6 ✓ ✓ ✓

Branchless UTF-8 decoding

upstr 21 - 6 ✓ ✓ ✓ ✓ ✓

In-place string uppercase (Box 1)

m3s 11 - - ✓

Scramble part of the Murmur3 algorithm

ip 37 3 7 ✓ ✓ ✓ ✓

IP (one’s-complement) checksum (RFC 1071)

fasta 19 6 5 ✓ ✓ ✓ ✓ ✓

In-place DNA sequence complement

crc32 31 16 3 ✓ ✓ ✓ ✓

Error-detecting code (cyclic redundancy check)

0 2 4 6 8
Cycles per byte (1MiB input, lower is better)

fnv1a

utf8

upstr

m3s

ip

fasta

crc32

Rupicola GCC 10.3
Rupicola GCC 11.1
Rupicola Clang 13.0
C GCC 10.3
C GCC 11.1
C Clang 13.0

Figure 2. Performance benchmarks: Rupicola vs. handwrit-
ten C. Error bars indicate 95% confidence intervals for the
mean over 1000 runs. Discrepancies are typically due to
missed vectorization opportunities [39].

929

Relational Compilation for Performance-Critical Applications PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

4.3 Limitations

In this section we try to summarize aspects that limit Rupi-
cola’s applicability.

Scalability and compilation times. While the programs
that Rupicola produces are fast, Rupicola itself is not: it runs
at the speed of Coq’s proof engine, which in our experience
means compiling anywhere between 2 and 15 statements per
second. We are primarily focused on small programs (tens to
hundreds of lines), so these issues have not proven particu-
larly disruptive. They could be solved, we expect, with mod-
erate amounts of engineering: most of them stem from API
misalignments that force us to use inefficient workarounds
(e.g. some of our derivations spend as much as 80% of their
time in autorewrite, repeatedly failing to apply a handful
of rewrites). Beyond this, Rupicola’s intrinsic complexity
should be essentially linear in the program size Ð plus time
spent discharging logical side conditions, which may involve
arbitrarily complex reasoning but in practice has not been
an excessive part of our running time.

Expertise. To use Rupicola with its existing lemmas, users
need general Coq knowledge (to write functions), a basic un-
derstanding of Rupicola’s function specifications, and knowl-
edge of what is available in Rupicola’s standard library (data
structures, algorithms, and annotations). It is possible to
compile simple programs that way with no knowledge of
Rupicola’s internals. To extend Rupicola (by writing new
lemmas), users need some familiarity with its compilation
process, plus enough experience to write and verify snippets
of Bedrock2 code (compilation lemmas connect Gallina to
Bedrock2, so new lemmas require new Bedrock2 proofs).
Ltac experience is also required when lemmas have side
conditions not handled by Rupicola’s existing automation.

Expressivity. Some low-level code patterns do not map
naturally to purely functional models and hence are hard to
generate with Rupicola. A prime example of this is nonlo-
cal control flow: while patterns like exceptions (using the
error monad) or early exits from loops are relatively easy
to support in Rupicola, code that uses arbitrary gotos or
longjmp to implement complex control flow does not lend
itself nicely to generation with Rupicola.

Trusted base. All code written in Rupicola comes with
proofs of (total) correctness, but there are still moving parts
and potential sources of bugs. Briefly, those are: Rupicola’s
inputs (user errors in specifications); Coq’s proof checker;
the environment in which programs are generated and run;
and the unverified parts of Bedrock2’s compilation toolchain
(when pretty-printing to C).

In a traditional pipeline, like Coq’s extraction to OCaml,
users have to trust (1) the correctness of their own customiza-
tions of Coq’s native extraction (textual replacements at the

OCaml level), as well as (2) Coq’s extraction machinery it-
self (a complex program spanning a few thousands lines),
and (3) the downstream (OCaml) compiler. In Rupicola (1)
is eliminated, since all extensions are verified; (2) is almost
entirely eliminated, because pretty printing to C is done by
a very small program of just 200 lines that is essentially
implementing an identity function (so there is hope that it
may eventually be reasonably robust); and (3) remains (the C
compiler), though it could be eliminated by using a verified
C compiler Ð at a performance cost.14

5 Related Work

Rupicola draws inspiration from, but shares no code with,
our own previous work, Fiat-to-Facade (F2F) [41]. It was
the first demonstration of an end-to-end pipeline for de-
riving code automatically from high-level specifications to
low-level code, and it strove for both performance and ex-
tensibility in a foundational context. Unfortunately, it also
suffered from issues that eventually convinced us to restart
from scratch: F2F’s linear target language caused us perfor-
mance issues; it only proved partial, not total correctness; it
used setoid rewriting, leading to compilation runs that took
minutes, not seconds; it used tactic hooks to build compil-
ers, leading to much less extensibility; and it hardcoded the
nondeterminism monad. Rupicola solves all these issues by
developing the simple and nicely compositional framework
of relational compilation.
Also closely related to this work is Imperative/HOL [17,

18]. Early work targeted a shallowly embedded language
with GC, but the latest work extracts directly to LLVM. The
main difference is the scope of the translation: LLVM/HOL
uses a direct embedding of LLVM into HOL, so a form of
relational compilation is used to perform what is essen-
tially a one-to-one translation where all effects in the source
are encoded extensionally. Rupicola, on the other hand, ac-
cepts more complex inputs and supports most effects inten-
sionally.15 Another closely related line of work uses proof-
producing extraction to translate HOL programs to deeply
embedded CakeML (a dialect of ML for which there exists
a verified compiler) [11, 16, 29, 30]. It bridges a much nar-
rower gap than Rupicola does (it targets a language with
garbage collection), but in exchange it offers a much more
complete translation pipeline, in the sense that it supports a
better-defined and larger part of its input language, HOL.

Members of the F* team take a slightly different approach
in KreMLin [45], an extraction framework from Low* (an
imperative subset of F*) to C: the extraction process is not

14Of course, if a performance penalty is acceptable, then using Bedrock2’s

own verified compiler to RISC-V eliminates both (2) the pretty-printer and

(3) the unverified downstream compiler.
15Another difference is that Rupicola integrates into a verified pipeline: code

extracted with Rupicola can be soundly compiled and linked against other

code written in Bedrock2 or directly in machine code, within Coq, whereas

there is no verified implementation of LLVM in Isabelle/HOL today.

930

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen, and Adam Chlipala

verified (though a proof-producing strategy for a subset was
described [25]), but the close match between the Low* style
and C means that KreMLin’s trusted base is reasonably small,
and the emphasis on output-code quality means that C code
from KreMLin can easily be integrated into larger, poten-
tially unverified C programs (as has in fact been done with
cryptography routines [44]). This strategy is viable because
F* provides convenient facilities for reasoning about stateful
programs in shallowly embedded style, making it possible
to prove the connection between code written in high-level
functional style and low-level imperative style without re-
sorting to reasoning about deeply embedded low-level terms.
More recent developments explore metaprogramming and
code generation using stateful functors [43].
The authors of Cogent [33] take a different approach. In-

stead of translating between two languages (one functional
and one imperative), they guarantee (using a restrictive type
system) that all valid Cogent programs admit efficient im-
plementations that do not depend on a runtime or a garbage
collector (similar to the way in which Facade [41] was es-
sentially a linear type system on top of Cito [56]). As a re-
sult, unlike Rupicola and F2F, Cogent is complete, but it is
also much more restrictive: it does not support arbitrary
user-supplied extensions, nor custom translation of specific
high-level patterns; and all optimizations must be expressed
in the source program, not as transformations to be applied
as part of the source-to-target translation process.

Coq extraction and verified compilation. Coq’s tradi-
tional extraction mechanism [36, 37] is not machine-verified,
but it is proven on paper [21], and it supports a form of (un-
sound) extension by remapping constructors and functions
to arbitrary OCaml expressions, a feature very commonly
used in large extracted Coq developments. With sufficiently
arcane combinations of extraction commands, it is often pos-
sible to improve performance significantly, at some risk to
soundness. More principled are approaches based on reifica-
tion: with a sufficiently restricted subset of Gallina, it is pos-
sible to reify terms into a deeply embedded AST using Ltac’s
reflection and certify correctness of that translation by inter-
preting deeply embedded results back into Gallina [27, 58].

CertiCoq [1] is a verified compiler from Coq to assembly:
it starts by reifying Gallina into a deeply embedded AST and
then proceeds as a traditional verified compiler. Unlike in
Rupicola, the extraction process is not extensible, so users
pay the price of inefficiencies at the Gallina level; but, in
exchange, the compiler is complete: it supports all of Gallina.
More generally, the last few years have seen an explosion of
work on the topic of compiler verification, most notably with
CakeML [16] and CompCert [20]. F2F depended on a verified
compiler called Cito [56]; Rupicola uses Bedrock2 [8].

Translation validation. Complete verification of a com-
piler can be onerous, and verifying that the compiler pro-
duces correct outputs on all inputs is often qualitatively more

complex than establishing that property for any given in-
put/output pair. As a result, many verified systems employ
translation validation instead of verification: a (trustworthy,
ideally verified) checker is used to confirm, for each run
of the compiler, that the outputs are correct. The problem
is undecidable for most input and output languages, so a
variety of heuristics coexist in the literature [14, 32, 42, 52ś
54, 57], some quite close to the relational-extraction style
that we advocate [9]. It would not be unreasonable to classify
Rupicola as a translation-validation system, since it uses un-
verified Ltac scripts to generate output programs along with
łwitnessesž of correctness in the form of Coq proof terms.

Other compilation, optimization, and synthesis work.
Many recent developments seek to reduce the cost of run-
ning functional programs, e.g. in OCaml [4] or Coq [22, 34].
Related work has also explored dynamically discovering the
sort of mutation that Rupicola introduces statically [7, 46,
47, 55]. Earlier work on decompilation into logic handles
user extension similarly to Rupicola, albeit with code gener-
ation separate from translation validation [28, 31]. Stepping
back further, Rupicola’s design shares a lot with work on
extensible compilation and domain-specific languages for
optimization [19, 35, 49, 51] and more generally with work
on automated program derivation and program synthesis,
all the way back to deductive program synthesis [24].

6 Conclusion

We have introduced the framework of relational compila-

tion and presented Rupicola, a relational-compilation toolkit
that leverages modular compiler extensions to derive high-
performance, verified low-level programs automatically from
functional sources. Rupicola is unique in its combination of
extensibility, foundational proofs, and performance. We are
in the process of extending it to support further application
domains, and we are looking into integrating its verified
outputs into existing widely used libraries.16

Acknowledgments

We are grateful to our anonymous reviewers for their feed-
back and suggestions, to our shepherd, Talia Ringer, for her
guidance in preparing the final version of this paper, and
to Benoit Pit-Claudel for his help with proofreading. This
work was supported in part within the National Science
Foundation Expedition on the Science of Deep Specification
(award CCF-1521584), by the National Science Foundation
Graduate Research Fellowship under Grant No. 174530, and
by gifts from Amazon Web Services, Google, and the Tezos
Foundation.

16Readers curious to learn more about relational compilation and about

Rupicola are encouraged to consult the first author’s PhD dissertation [39].

931

Relational Compilation for Performance-Critical Applications PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

References
[1] Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe

Paraskevopoulou, Randy Pollack, Olivier Savary Belanger, Matthieu

Sozeau, and Matthew Weaver. 2017. CertiCoq: A Verified Compiler

for Coq. In 3rd International Workshop on Coq for PL (CoqPL 2017).

[2] Andrew W. Appel. 2011. Verified Software Toolchain. In 20th Euro-

pean Conference on Programming Languages and Systems (Saarbrücken,

Germany) (ESOP 2011). Springer-Verlag, Berlin, Heidelberg, 1ś17.

[3] Edwin C. Brady. 2013. Idris, a general-purpose dependently typed

programming language: Design and implementation. Journal of Func-

tional Programming 23, 5 (2013), 552ś593. https://doi.org/10.1017/

S095679681300018X

[4] Pierre Chambart, Mark Shinwell, Damien Doligez, and OCaml Contrib-

utors. 2016. Optimization with FLambda. https://ocaml.org/manual/

flambda.html

[5] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,

and Jakob von Raumer. 2015. The Lean Theorem Prover (System

Description). In 25th International Conference on Automated Deduction

(CADE 2015). 378ś388. https://doi.org/10.1007/978-3-319-21401-6_26

[6] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam

Chlipala. 2015. Fiat: Deductive Synthesis of Abstract Data Types in a

Proof Assistant. In 42nd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL 2015). Association for Com-

puting Machinery, 689ś700. https://doi.org/10.1145/2676726.2677006

[7] Klaus Didrich, Andreas Fett, Carola Gerke, Wolfgang Grieskamp, and

Peter Pepper. 1994. OPAL: Design and Implementation of an Algebraic

Programming Language. In International Conference on Programming

Languages and System Architectures. 228ś244. https://doi.org/10.1007/

3-540-57840-4_34

[8] Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and

Adam Chlipala. 2021. Integration Verification across Software and

Hardware for a Simple Embedded System. In 42nd ACM SIGPLAN

International Conference on Programming Language Design and Im-

plementation. Association for Computing Machinery, New York, NY,

USA, 604ś619. https://doi.org/10.1145/3453483.3454065

[9] Yannick Forster and Fabian Kunze. 2019. A certifying extraction with

time bounds from Coq to call-by-value 𝜆-calculus. In 10th International

Conference on Interactive Theorem Proving (ITP 2019). Schloss Dagstuhlś

Leibniz-Zentrum für Informatik, 17:1ś17:19.

[10] Konstantin Romanov Gabriel Scherer, Frédéric Bour. 2020. TRMC,

reloaded. https://github.com/ocaml/ocaml/pull/9760

[11] Son Ho, Oskar Abrahamsson, Ramana Kumar, Magnus O. Myreen,

Yong Kiam Tan, and Michael Norrish. 2018. Proof-Producing Synthesis

of CakeML with I/O and Local State from Monadic HOL Functions.

In 9th International Joint Conference on Automated Reasoning (IJCAR

2018). Springer International Publishing, 646ś662. https://doi.org/10.

1007/978-3-319-94205-6_42

[12] Paul Hudak, John Hughes, Simon L. Peyton Jones, and Philip Wadler.

2007. A history of Haskell: being lazy with class. In 3rd ACM SIG-

PLANHistory of Programming Languages Conference (HOPL 2007). 1ś55.

https://doi.org/10.1145/1238844.1238856

[13] Lars Hupel and Tobias Nipkow. 2018. A Verified Compiler from Is-

abelle/HOL to CakeML. In 27th European Symposium on Programming

(ESOP 2018). 999ś1026. https://doi.org/10.1007/978-3-319-89884-1_35

[14] Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. 2012. Vali-

dating LR(1) Parsers. In Programming Languages and Systems. Springer

Berlin Heidelberg, Berlin, Heidelberg, 397ś416.

[15] Ramana Kumar, Eric Mullen, Zachary Tatlock, and Magnus O. Myreen.

2018. Software Verification with ITPs Should Use Binary Code

Extraction to Reduce the TCB. In 9th International Conference on

Interactive Theorem Proving (ITP 2018). Springer, 362ś369. https:

//doi.org/10.1007/978-3-319-94821-8_21

[16] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.

2014. CakeML: A Verified Implementation of ML. In 41st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL 2014). 179ś192. https://doi.org/10.1145/2535838.2535841

[17] Peter Lammich. 2015. Refinement to Imperative/HOL. In 6th Interna-

tional Conference on Interactive Theorem Proving (ITP 2015). 253ś269.

https://doi.org/10.1007/978-3-319-22102-1_17

[18] Peter Lammich. 2019. Generating Verified LLVM from Isabelle/HOL.

In 10th International Conference on Interactive Theorem Proving (ITP

2019). 22:1ś22:19. https://doi.org/10.4230/LIPIcs.ITP.2019.22

[19] Sorin Lerner, Todd D. Millstein, Erika Rice, and Craig Chambers.

2005. Automated Soundness Proofs for Dataflow Analyses and Trans-

formations via Local Rules. In 32nd ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages (POPL 2005). 364ś377.

https://doi.org/10.1145/1040305.1040335

[20] Xavier Leroy. 2006. Formal Certification of a Compiler Back-end

or: Programming a Compiler with a Proof Assistant. In 33rd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL 2006). 42ś54. https://doi.org/10.1145/1111037.1111042

[21] Pierre Letouzey. 2002. A New Extraction for Coq, In 2nd International

Workshop on Types for Proofs and Programs. Types for Proofs and

Programs, 200ś219. https://doi.org/10.1007/3-540-39185-1_12

[22] John M. Li and Andrew W. Appel. 2021. Deriving Efficient Program

Transformations from Rewrite Rules. Proceedings of the ACM on

Programming Languages 5, ICFP, Article 74 (Aug. 2021), 29 pages.

https://doi.org/10.1145/3473579

[23] Andreas Lööw and Magnus O. Myreen. 2019. A proof-producing trans-

lator for Verilog development in HOL. In 7th International Workshop

on Formal Methods in Software Engineering (FormaliSE@ICSE 2019).

99ś108. https://doi.org/10.1109/FormaliSE.2019.00020

[24] ZoharManna and Richard J.Waldinger. 1980. ADeductive Approach to

Program Synthesis. ACM Transactions on Programming Languages and

Systems 2, 1 (Jan. 1980), 90ś121. https://doi.org/10.1145/357084.357090

[25] Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis,

Chris Hawblitzel, Cătălin Hriţcu, Monal Narasimhamurthy, Zoe

Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, Tahina

Ramananandro, Aseem Rastogi, and Nikhil Swamy. 2019. Meta-F*:

Proof Automation with SMT, Tactics, and Metaprograms. In 28th Euro-

pean Symposium on Programming (ESOP 2019). Springer International

Publishing, 30ś59. https://doi.org/10.1007/978-3-030-17184-1_2

[26] Henry Massalin. 1987. Superoptimizer - A Look at the Smallest Pro-

gram. In 2nd International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS 1987). 122ś126.

https://doi.org/10.1145/36177.36194

[27] Eric Mullen, Stuart Pernsteiner, James R. Wilcox, Zachary Tatlock, and

Dan Grossman. 2018. Œuf: Minimizing the Coq Extraction TCB. In

7th ACM SIGPLAN International Conference on Certified Programs and

Proofs (Los Angeles, CA, USA) (CPP 2018). Association for Computing

Machinery, New York, NY, USA, 172ś185. https://doi.org/10.1145/

3167089

[28] Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind. 2008.

Machine-Code Verification forMultiple Architectures - An Application

of Decompilation into Logic. In 8th International Conference on Formal

Methods in Computer-Aided Design (FMCAD 2008). 1ś8. https://doi.

org/10.1109/FMCAD.2008.ECP.24

[29] Magnus O. Myreen and Scott Owens. 2012. Proof-producing Synthesis

of ML from Higher-order Logic. In 17th ACM SIGPLAN International

Conference on Functional Programming (ICFP 2012). 115ś126. https:

//doi.org/10.1145/2364527.2364545

[30] Magnus O. Myreen and Scott Owens. 2014. Proof-producing trans-

lation of higher-order logic into pure and stateful ML. Journal of

Functional Programming 24, 2-3 (Jan. 2014), 284ś315. https://doi.org/

10.1017/s0956796813000282

[31] Magnus O. Myreen, Konrad Slind, and Michael J. C. Gordon. 2009. Ex-

tensible Proof-Producing Compilation. In 18th International Conference

on Compiler Construction (CC 2009). 2ś16. https://doi.org/10.1007/978-

932

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen, and Adam Chlipala

3-642-00722-4_2

[32] George C. Necula. 2000. Translation validation for an optimizing

compiler. ACM SIGPLAN 2000 conference on Programming language

design and implementation - PLDI ’00 (2000). https://doi.org/10.1145/

349299.349314

[33] Liam O’Connor, Zilin Chen, Christine Rizkallah, Vincent Jackson,

Sidney Amani, Gerwin Klein, Toby Murray, Thomas Sewell, and

Gabriele Keller. 2021. Cogent: uniqueness types and certifying com-

pilation. Journal of Functional Programming 31 (2021), 25. https:

//doi.org/10.1017/S095679682100023X

[34] Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel. 2021. Com-

positional Optimizations for CertiCoq. Proceedings of the ACM on

Programming Languages 5, ICFP, Article 86 (Aug. 2021), 30 pages.

https://doi.org/10.1145/3473591

[35] Lionel Parreaux. 2020. Type-Safe Metaprogramming and Compilation

Techniques For Designing Efficient Systems in High-Level Languages.

Ph. D. Dissertation. EPFL, Lausanne. https://doi.org/10.5075/epfl-

thesis-10285

[36] Christine Paulin-Mohring. 1989. Extraction de programmes dans le

Calcul des Constructions. Theses. Université Paris-Diderot - Paris VII.

https://tel.archives-ouvertes.fr/tel-00431825

[37] Christine Paulin-Mohring and BenjaminWerner. 1993. Synthesis ofML

Programs in the System Coq. Journal of Symbolic Computation 15, 5-6

(May 1993), 607ś640. https://doi.org/10.1016/S0747-7171(06)80007-6

[38] Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nis-

hant Totla, Sarah E. Chasins, and Rastislav Bodik. 2014. Chlorophyll:

synthesis-aided compiler for low-power spatial architectures. In 35th

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI 2014). 396ś407. https://doi.org/10.1145/2594291.

2594339

[39] Clément Pit-Claudel. 2022. Relational compilation: Functional-to-

imperative code generation for performance-critical applications. Theses.

Massachusetts Institute of Technology. https://pit-claudel.fr/clement/

PhD/RelationalCompilation_Pit-Claudel_2022.pdf

[40] Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen,

and Adam Chlipala. 2022. Artifact for Rupicola paper at PLDI 2022.

https://doi.org/10.5281/zenodo.6330740

[41] Clément Pit-Claudel, Peng Wang, Benjamin Delaware, Jason Gross,

and Adam Chlipala. 2020. Extensible Extraction of Efficient Imperative

Programs with Foreign Functions, Manually Managed Memory, and

Proofs. In 10th International Joint Conference on Automated Reasoning

(IJCAR 2020, Vol. 12167). Springer International Publishing, 119ś137.

https://doi.org/10.1007/978-3-030-51054-1_7

[42] A. Pnueli, M. Siegel, and E. Singerman. 1998. Translation validation. In

4th International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems (TACAS 1998). Springer Berlin Heidelberg,

Berlin, Heidelberg, 151ś166.

[43] Jonathan Protzenko and Son Ho. 2021. Zero-cost meta-programmed

stateful functors in F*. CoRR abs/2102.01644 (2021). arXiv:2102.01644

https://arxiv.org/abs/2102.01644

[44] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Haw-

blitzel, Marina Polubelova, Karthikeyan Bhargavan, Benjamin Beur-

douche, Joonwon Choi, Antoine Delignat-Lavaud, Cedric Fournet, and

et al. 2020. EverCrypt: A Fast, Verified, Cross-Platform Cryptographic

Provider. 2020 IEEE Symposium on Security and Privacy (SP) (May

2020). https://doi.org/10.1109/sp40000.2020.00114

[45] Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi, Tahina

Ramananandro, Peng Wang, Santiago Zanella Béguelin, Antoine

Delignat-Lavaud, Catalin Hritcu, Karthikeyan Bhargavan, Cédric Four-

net, and Nikhil Swamy. 2017. Verified Low-level Programming Em-

bedded in F*. Proceedings of the ACM on Programming Languages 1,

ICFP (2017), 17:1ś17:29. https://doi.org/10.1145/3110261

[46] Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen.

2021. Perceus: Garbage free reference counting with reuse. 42nd
ACM SIGPLAN International Conference on Programming Language De-

sign and Implementation (June 2021). https://doi.org/10.1145/3453483.

3454032

[47] Wolfram Schulte and Wolfgang Grieskamp. 1991. Generating Efficient

Portable Code for a Strict Applicative Language. In PHOENIX Seminar

and Workshop on Declarative Programming. 239ś252. https://doi.org/

10.1007/978-1-4471-3794-8_16

[48] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, An-

toine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric

Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzin-

dohoue, and Santiago Zanella Béguelin. 2016. Dependent types and

multi-monadic effects in F*. In 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL 2016). 256ś

270. https://doi.org/10.1145/2837614.2837655

[49] Zachary Tatlock and Sorin Lerner. 2010. Bringing Extensibility to

Verified Compilers. In 37th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI 2010). 111ś121. https:

//doi.org/10.1145/1806596.1806611

[50] The Coq Development Team. 2021. The Coq Proof Assistant. https:

//doi.org/10.5281/zenodo.4501022

[51] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew

Flatt, and Matthias Felleisen. 2011. Languages as Libraries. In 32nd

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI 2011). 132ś141. https://doi.org/10.1145/1993498.

1993514

[52] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Eval-

uating Value-Graph Translation Validation for LLVM. In 32nd ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (San Jose, California, USA) (PLDI 2011). Association for

Computing Machinery, New York, NY, USA, 295ś305. https://doi.org/

10.1145/1993498.1993533

[53] Jean-Baptiste Tristan and Xavier Leroy. 2008. Formal Verification

of Translation Validators: A Case Study on Instruction Scheduling

Optimizations. In 35th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (San Francisco, California, USA)

(POPL 2008). Association for Computing Machinery, New York, NY,

USA, 17ś27. https://doi.org/10.1145/1328438.1328444

[54] Jean-Baptiste Tristan and Xavier Leroy. 2009. Verified Validation of

Lazy Code Motion. In 30th ACM SIGPLAN Conference on Programming

Language Design and Implementation (Dublin, Ireland) (PLDI 2009).

Association for Computing Machinery, New York, NY, USA, 316ś326.

https://doi.org/10.1145/1542476.1542512

[55] Marian Vittek. 1996. A Compiler for Nondeterministic Term Rewriting

Systems. In 7th International Conference on Rewriting Techniques and

Applications (RTA 1996). 154ś167. https://doi.org/10.1007/3-540-61464-

8_50

[56] Peng Wang, Santiago Cuellar, and Adam Chlipala. 2014. Compiler

Verification Meets Cross-language Linking via Data Abstraction. In

2014 ACM International Conference on Object Oriented Programming

Systems Languages & Applications (OOPSLA 2014). 675ś690. https:

//doi.org/10.1145/2660193.2660201

[57] Yasunari Watanabe, Kiran Gopinathan, George Pîrlea, Nadia Polikar-

pova, and Ilya Sergey. 2021. Certifying the Synthesis of Heap-

Manipulating Programs. Proceedings of the ACM on Programming

Languages 5, ICFP, Article 84 (Aug. 2021), 29 pages. https://doi.org/10.

1145/3473589

[58] Vadim Zaliva and Matthieu Sozeau. 2019. Reification of shallow-

embedded DSLs in Coq with automated verification. In 5th Interna-

tional Workshop on Coq for PL (CoqPL 2019).

933

	Abstract
	1 Introduction
	2 On Relational Compilation
	2.1 A Step-by-Step Example in Coq
	2.2 Compiling with Relations
	2.3 Open-Ended Compilation
	2.4 Compiling Shallowly Embedded DSLs

	3 Real-World Relational Compilation
	3.1 Design goals
	3.2 Compiling with Rupicola
	3.3 The Anatomy of a Rupicola Lemma
	3.4 Rupicola's Architecture

	4 Evaluation
	4.1 Programmer Experience and Expressivity
	4.2 Benchmarks
	4.3 Limitations

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

