GLOBAL REGULARITY FOR THE GENERALIZED
INCOMPRESSIBLE OLDROYD-B MODEL WITH ONLY STRESS
TENSOR DISSIPATION IN CRITICAL BESOV SPACES

JIAHONG WU! AND JIEFENG ZHAQO?

ABSTRACT. This paper presents a new small data global well-posedness result on the
incompressible Oldroyd-B model with only dissipation in the equation of stress tensor
(without stress tensor damping or velocity dissipation). The dissipation is not necessarily
given by the standard Laplacian operator and any fractional dissipation with fractional
power equal to or greater than 1/2 suffices. The functional setting is the hybrid homo-
geneous Besov spaces, which allow us to maximize the functional spaces of the initial
data.

1. INTRODUCTION

The Oldroyd-B models, derived by J.G. Oldroyd, reflects one of the most popular
constitutive laws obeyed by viscoelastic fluids such as solvent with particles suspended in
it (see, e.g., [3, 12, 15, 34]). A general form of the d-dimensional incompressible Oldroyd-B
model is given by

g +u-Vu+vA?u+Vp=mV- -7, (t,r) € RT x RY
7 +u- V7 +ar +nAP71 + Q(7, Vu) = peD(u),
V-u=0,

w(0,2) = uo(z), 7(0,2) =70(),

(1.1)

where u(t, z) stands for the velocity, p(t,z) the pressure and 7(¢, ) the non-Newtonian
part of the stress tensor (a d-by-d symmetric matrix), and 0 < o, < 1 and v, u4, a,
2 are nonnegative constants. Here D(u) is the symmetric part of the velocity gradient,
namely

D(u) = %(Vu +(Vu)")

and the bilinear term @ assumes the following form

Q(7,Vu) = 7W (u) — W(u)T — b(D(u)T + 7D(u)) (1.2)
with b € [—1,1] being a constant and W (u) being the skew-symmetric part of the Vu,
1
W(u) = §(Vu —(Vu)").
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In addition, A = (—A)% is the Zygmund operator and the general fractional Laplacian
operator (—A)7 is defined through the Fourier transform, namely

AF(E) = €1 F(€)-

When o = 1 and § = 1, (1.1) reduces to the standard Oldroyd-B model. For general
fractional powers a > 0 and § > 0, (1.1) allows us to examine a family of equations
simultaneously and helps us understand how the properties of the solutions vary with
respect to the sizes of a and .

Due to its special structure and features, the Oldroyd-B models has recently attracted
considerable interests from the community of mathematical fluids. A rich array of results
have been established on the well-posedness and closely related problems. To place our
results into the context of existing research, we briefly describe some of related work. We
start with the case « = 1 and n = 0. When v > 0 and a > 0, the existence and uniqueness
of local strong solutions have been established in Hilbert spaces H* by Guillopé and Saut
[24]. If the coupling parameters and the initial data are sufficiently small, these solutions
are shown to be global [25]. Similar results in L® — L" space were obtained by Fernandez-
Cara, Guillén and Ortega [22]. The study of the existence and uniqueness in the critical
Besov setting was initiated by Chemin and Masmoudi [7]. Their results were improved in
the critical LP framework for the case of the non-small coupling parameters by Zi, Fang
and Zhang [41]. In the corotational case, namely b = 0 in (1.2), the global existence of
weak solutions was established by Lions and Masmoudi [32].

Several more recent results dealt with the case when there is only kinematic dissipation
(no damping or dissipation in 7), namely (1.1) with ¥ > 0 and @ = n = 0. Zhu [40]
obtained small global smooth solutions of the 3D Oldroyd-B model with & = 1 in time-
weighted Sobolev spaces. Chen and Hao [8] extended this small data global well-posedness
to the critical Besov setting, again for o = 1. The work of Wu and Zhao [36] were able
to establish the small data global well-posedness in critical Besov spaces for any « in the
range 1/2 < a < 1.

We now turn to the case when there is no kinematic dissipation, namely (1.1) with
v = 0. The well-posedness problem becomes extremely difficult. When both the damping
mechanism and the Laplacian dissipation are present for 7, Elgindi and Rousset [18] were
able to establish a small data global well-posedness result in the Sobolev space for the
2D Oldroyd-B. The 3D case was resolved by Elgindi and Liu [19]. We remark that the
damping mechanism in 7 plays a crucial role in [18, 19]. A recent work of Constantin,
Wu, Zhao and Zhu [15] were able to establish the small data global well-posedness for
(1.1) with v = 0, @ = 0 and % < B < 1, the case of no damping and general fractional
dissipation in 7. This result is for general d-dimensional space in the Sobolev space
H*(R?) with s > 1+ 4. [15] offered a key observation that the non-Newtonian stress
tensor can actually regularize the viscoelastic fluids. We remark that there is a very large
literature on the Oldroyd-B model and interested readers may consult the references
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2,9, 11, 12, 13, 14, 15, 20, 21, 26, 27, 29, 30, 31, 33, 35, 36, 37, 38, 39]. This list is by no
means exhaustive.

This paper focuses on the following generalized Oldroyd-B model without dissipation
or damping mechanism
u+u-Vu+Vp=mV-1, (t,r) € R" x RY
7+ u - VT +nAP71 + Q(1,Vu) = paD(u),
V.-u=0,
u(0,2) = ug(x), 7(0,2) = T19(2),

(1.3)

Th goal of this paper is to extend the work of Constantin, Wu, Zhao and Zhu [15] to
critical Besov setting. The small data global well-posedness of [15] is in the Sobolev
setting H*(R%) with s > 1+ g. The advantage of the critical Besov spaces is that they
weaken the regularity requirements on the initial data and maximize the functional setting
of the solutions.

Due to the lack of the kinematic dissipation, the global well-posedness and the stability
problem on (1.3) is not trivial. The first equation in (1.3) is a forced incompressible
Euler equation. As revealed in the work of Kiselev and Sverak [28], the gradient of the
vorticity (the curl of the velocity) to the 2D Euler equation in a unit disk can grow double
exponentially in time. These growth results on the Euler and forced Euler equations
appear to suggest that we should not expect the stability of (1.3) near the trivial solution
in any Sobolev or Besov settings. The results of this paper are possible due to a new
observation. Let P = I — VA~'V. denote the standard Leray projection onto divergence-
free vector fields. It is easy to check from (1.3) that u and A~'PV - 7 satisfy

Ou — VPV -7 =—-P(u-Vu), ze€RY t>0,
APV - 7+ nAPATIPY - T+ B2 Au (1.4)
= APV (u-V7) = APV - Q(T,Vu).

For the sake of clarity, we focus on the linearization of (1.4), which is given by

{Gtu VPV .7 =0,

(1.5)
APV - T+ nAPATIPY - 7+ E2Au = 0.

By differentiating (1.5) in ¢ and making suitable substitutions, we find that v and V1PV -
7 satisfy exactly the same damped wave equation,

{&tu + A2 9u — B2 Au = 0,

1.6
8ttV’11P>V - T+ 77A2’88tV’1IP>V T — %AV”IPV -7 =0. ( )

(1.6) reveals the hidden dissipation and dispersion regularization properties for u and
V~IPV-7. We exploit the regularization of (1.6) by constructing suitable energy function-
als based on (1.6). This explains the prime reason why the small data global wellposedness
and stability are possible even when the velocity equation involves no dissipation and the
equation of 7 has no damping.
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We choose the critical Besov space as the functional setup for our global solutions.
We explain how we select the precise regularity indices of the Besov spaces. For the
d-dimensional incompressible Navier-Stokes equations with general fractional dissipation

ou+u-Vu+Vp+vA®u=0, zeR:t>0, (1.7)
one of the standard critical space is the homogeneous Besov space
S 14 d_9g
Byt (RY).

Critical spaces on the Navier-Stokes or generalized Navier-Stokes equations can be found
in many papers and books (see, e.g., [1, 4, 5, 6, 23]). Any solution (u,p) of (1.7) and its
naturally scaled counterpart (wy,py)) with

un(t, x) = N7t u(Nt, Ax),  palt, z) = N2 (Nt Ax)
share the equivalent norm

Hu(t7 .>” -1+%—2a ~ Hu)\<)\_2at7 )H -1+%—2a

By (R?) By, (R4)

As can be seen from (1.6), both u and A™!PV -7 are fractionally dissipated via the operator
(—A)? in addition to the dispersion effect. As a consequence, the natural setup for u and
7 should involve the homogeneous critical Besov space

14428
Byy® T (RY).
The situation here is more complex due to the nonlinear coupling and the partial dissipa-
tion in (1.3). Strictly speaking, there is no scaling invariance for (1.3). As we explain later
in this introduction, the low frequencies and the high frequencies have different regularity
setting and we employ the hybrid Besovv spaces introduced by Danchin in [16, 17] and

used by Chen, Miao and Zhang [10] in their studies of the compressible Navier-Stokes
equations.

After explaining some of the basic ingredients of our main result, we are ready to
provide a precise statement.

Theorem 1.1. Let d > 2 and pq, pio,n > 0. Assume
1 1
either 3 <p<1 or pB= 3 with 0% > Cpypis,

where C' > 0 is a pure constant. Then there exists a small constant € such that if 79 €

cdyq1_9 . d cdiq1_9 . di93 1 .
B;j ’n B3y, u € ij ’n BQ“’J+ ’ satisfy V - uy =0 and

4128 4 <e, (1.8)
3,

||u0||B§f172BnB§f2B71 + HTOHBZ1 5

then (1.3) has a unique global solution (u,T) satisfying

. d _ . d _ . d
we CRY; By ™ 0 BE T n L RY; BE:;

. d _ . d . d . d
reCRY B TN B, rel'RY B nBHY).
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In fact, we have

)

Sup<|lu”32—j1 23 BQ%’:' B—1 + ||T||B2—1+1 28 32%’1
> / > h I <
# bl gt [l 5 6 (19)
and
/ |7 (¢ Hl det <e+tet (1.10)

Furthermore, if (ug, 7o) is more reqular and sufficiently small, say Ty € B2Jrl ' B;fs,

Uy € B2Jrl ' BQHBJFS Y with s > 0 and their norms are smaller than & depending on
s, then we have

we CRY: B BT Ly BE 0 B2 (1.11)

r e O(RY; 32“ 2 ng“’), rel (R+;B§f mej””ﬂ.

Our result establishes the small data global existence and regularity of (1.3) in critical
Besov spaces. It is not clear if the upper bound (1.10) for the time integral of the lower
frequency piece of 7 can be improved to a time independent bound. In order to describe
our proof, we explain how the low frequencies and the high frequencies are set in different
regularity Besov spaces in order to suit the linearized system in (1.5) or equivalently in
(1.6). (1.5) can be written as

u u
o ( VPV -7 ) B A( VPV -7 ) ’ (1.12)

0 [LlA
A(N) = ( ) .
—FA A%
Let 7 = A~'PV - 7, then the solution can be expressed as

(u(t), 7(t) " = e V'(u(0),7(0)",

where

In the frequency space, A becomes a multiplier and the eigenvalues of A(&) are given by

&1 4+ /m2IENY — 2p1 pol €2
2 9

nl€1*7 — VP [E1* — 2pm 18]
: .

)\+:—

A= —
The change of functions

i) = Sllela+ 1

07(8) = Avi+ pule|7
diagonalize the system (1.12).
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For%ﬁﬂglandasf—ﬂ),

1 1
Ay~ —577\5126 and A ~ —577’5\2[3,

vt and v~ both behave like the heat kernel operator e —5mth*’

cies, u and 7 have the parabolic behavior

. Therefore, for low frequen-

L
and this explains why we choose the critical Besov space Bj’;rl *? for the low frequencies.
Similarly, for % < B <1andas & — oo,

M2 _
A o~ —nl¢f? and A ~ _WEP 2,

+ _ . _ntA28 _H1E2 4A2-28 .
and v™ and v~ behave like the heat kernel operator e™" and e~ 27 , respectively,
for the high frequencies. In the case when § = 1, Ay ~ —n|¢|* and A\_ ~ —HE2 a5 £ — oo,

"

vT has the parabolic smoothing effect that behaves like heat kernel operator e‘"“\w, and

v~ has the damping effect for the high frequencies. 7 and u have similar behaviors as v

_d_og_
and v, respectively. This explains why we choose the critical Besov space B;jm " for u

. d
and Bj, for 7.

To accommodate the different behaviors of the solution (u,7) at low and high frequen-
cies, we adopt the hybrid Besov spaces (with different regularity indices for low and high
frequencies) as our functional setting. This explains the selection of the Besov spaces for
the initial data in Theorem 1.1. The proof of Theorem 1.1 focuses on establishing the
global bound on the solution. The framework of the proof is the bootstrapping argument.
This process starts with the definition of a suitable energy functional. As explained be-
fore, we need to make use of the stabilizing and smoothing effect of the wave structure in
(1.6). In addition, we also incorporate the hybrid Besov setting in the energy functional.
As detailed in the following section, we use ||quBp ] ’];; ) to represent the low and

high frequency pieces of the Besov norm B;q. Therefore, our energy functional E consists
of four parts

E(t) = E\(t) + EXt) + E'(t) + E"(¢), (1.13)

where EX(t) and E!(t) denote the low and high frequencies associated with the wave
structure, more precisely,

Ey(t) £ SHPIIUHZ sup A~ PV TH’

d+1 2

[l gt 1002l v

Eg(t)éSgPIIUHf;gm 1 +sup [PV - Tllhd ) /IIUth+1 t

2,1

d+1 28
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and E'(t) and E"(t) are the the low and high frequency pieces for the original system,

B0 2 sup ol g oy sl g+ [ Tl [ AT,

2,1

BM0) 2 sup g+ sup o / ol 08+ / Il g
2

2,1

It is clear from the definitions of E)(t), E!(t), E'(t) and E"(t) that
E(t) = E'(t)+ E"(t).

In addition, we also estimate the time integral of the lower frequency piece of 7, namely
! !
EL0) & splrll g,y + [l g0

To prove the global bound and the existence part of Theorem 1.1, our main efforts are
devoted to establishing the inequality

E(t) < C1Ey + Cy E*(t), (1.14)
where C and Cy are positive constants independent of ¢, and

Ey = HUOHB%-&-I—M,%-&-%—l + ”TOHBgH—w,%'

The bootstrapping argument applied to (1.14) implies the desired result. That is, there
exists a small constant € > 0 such that, if (1.8) holds or Ey < €2, then, for a pure constant
C >0,

E(t) < Ce? for all £ > 0.

This uniform upper bound, in particular, yields the global bound on the Besov norms of
(u, 7). Together with the local well-posedness which follows from a standard procedure
(see, e.g., [1, 8, 16]), we obtain the global existence part of Theorem 1.1. The proof of
(1.14) is very technical and takes advantage of the special wave structure. More details
can be found in Sections 3 and 4.

The proof of the uniqueness part of Theorem 1.1 is not trivial. Due to the lack of the
velocity dissipation in the original system (1.3), we also need to make use of the parabolic
smoothing or damping effect of the wave structure as well. We establish a priori bounds
on the difference of two solutions combining the wave equations and the original system.
More technical details can be found in Subsection 4.2.

To establish the high regularity part of Theorem 1.1, We replace the energy pieces
associated with the high frequencies in (1.13) by the following more regular pieces:

EL () 2 sup [l ., + sup [PV -7 / ol .0 (1.15)

+26
2 1

B0) & sup ull o+t ol + / ol 00+ / 7 g (110

2,1
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The key component of the proof is the following energy inequality
EJ(t) + E"™(t) < C1Ey + Co((E'g (t) + E™(1))E(t) + E*(t)). (1.17)

The proof of this energy inequality shares some similarities as the proof of (1.14), and is
a consequence of a tedious process of controlling many terms. The high regularity part
in (1.11) follows directly from (1.17). More details can be found in Section 5.

The rest of this paper is divided into four sections. Section 2 serves as a preparation.
It provides the definitions of the homogeneous hybrid Besov spaces and supplies various
inequalities such as bounds for products and triple products in Besov norms. Section 3
presents the proof of the key energy inequality, namely (1.14). The proof is long and
involves many tedious estimates. Section 4 proves the existence part of Theorem 1.1 by
applying the bootstrapping argument to (1.14). The proof of the uniqueness part is also
detailed in this section. The last section, Section 5, establishes the higher regularity part
of Theorem 1.1.

2. LITTLEWOOD-PALEY THEORY AND BESOV SPACES
We review several facts about the homogeneous Littlewood-Paley theory, Besov spaces,

hybrid Besov spaces, and products and triple product estimates in these spaces.

2.1. Littlewood-Paley decomposition. The definition of the homogeneous Littlewood-
Paley decomposition relies on the dyadic partition of unity (see, e.g., [1]). Let ¢ € C°°(R%)
be a radial functions supported in C = {€ € R%, 2 < |¢] < 22} satisfying

D 27 =1 if £#£0.

JEZL

We use f or F (f) to denotes the Fourier transform of f, and F~'(f) to denote the inverse
Fourier transform of f. We set

and define the dyadic blocks as follows
Bju=p27Dyu=2" | h@y)ulz -
R4
S U= Z A U
7'<j—1
Definition 2.1. We denote by S; the space of tempered distributions u such that
lim S w=0 im §.

]*)OO

Then the homogeneous Littlewood-Paley decomposition is defined as

u = Z Aju, for wes;.

jez
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With our choice of ¢, we have
AjAvu=0 if |j—k|>2, and A;(Sp_1ulgu) =0 if [j— k| > 4.
The following lemma provides Bernstein-type inequalities for fractional derivatives.

Lemma 2.1. Let > 0. Let 1 < p < q < +00.
(1) Let j € Z and m > 0. If [ satisfies

suppf C {€ € RY, |¢] < m 27},

then, for some constant C independent of f and j,

1A% Fll ey < C 299G £l o gy,

(2) Let j € Z and my,mq > 0. If [ satisfies

suppf C {€ € RY, mi27 < |€] < mo2’},

then, for two constants C7 and Cs independent of f and j,
C12%|| fllaceay < A% Fllpageey < Co2P 9070 fl| o e,
Especially, Lemma 2.1 holds for the dyadic blocks, namely for f = Aju

2.2. Homogeneous Besov spaces.

Definition 2.2. For s € R and 1 < p,r < oo, the homogeneous Besov space B;’r 18
defined as

B;,r = {u S S}IN HUHBZSM < OO}?
where the homogeneous Besov norm is given by

By, = {271 Ajull o Y5l

I
Clearly, the definition of the space B;T does not depend on the choice of .

2.3. Hybrid Besov spaces. The following hybrid Besov spaces allow different regularity
indices for low and high frequencies (see [17]).

Definition 2.3. For s,t € R, the hybrid Besov space B** is defined by
B £ {uc Sy, |ul

et < 00}

with the norm given by

lll o = D 21 Agullez + Y 27| Ajul| o
§<0 >0
We will use the notation
b 2 Aull, and [l 2327 Asul,
§<0 >0
For s,t € R and r € [1,00], L5(B*") = L"(0,T; B>") denotes the standard space-time
space with the norm

I

[l ey = el pocell 2r 0.7



10 JIAHONG WU AND JIEFENG ZHAO

In contrast, the norm of the space-time Besov space Z?}(B“) is defined by
HU\|ZTT(35¢) = Z 2js||AjUHL;L2 + Z 2js”AjUHLTTm-
§<0 5>0
By the Minkowski inequality, we easily find that LL(B*!) = LL(B*") and L(B*!) C
LL(B%Y) for r > 1 (see, e.g., [1]).
The following lemma is a direct consequence of the definition of the hybrid Besov space.
Please refer to [17] for more details.
Lemma 2.2. (i) We have B** = Bg,l.
(i) If s < t then B> = B3, N BY,. Otherwise, B> = B3, + B} |.
(111) If s1 < so and t; > ty, then Bsuvti —y B2tz
2.4. Paraproducts and product estimates in hybrid Besov spaces. We continue
to review more information on the Besov spaces and hybrid Besov spaces. Especially
product and triple product estimates in these spaces are provided. We start by recalling
the paraproduct decomposition
ww = Tv + Tyu + R(u,v),
where the homogeneous paraproduct of v by u is given by
To &Y 6, ubge.
q
and the homogeneous remainder of v and v by

R(u, v) 2 Z Aqquu, and Zq = Aq_l + Aq + AqH.
q

One useful property of the homogeneous Besov spaces is the Besov embedding.

Proposition 2.3. Assume s,s1,s9 € R and 1 < p,p1,ps, 7,711,720 < 400. Then we have
the following properties:

: s dyd
(i) If pr < p2, 11 < 1o, then By < Bp, 73 ™.
(1) If sy # so and 0 € (0,1), then

||U||Bg;1+(179)sz < lul ?_:';;}T |ul jlg;gr

(i) H* =~ B, and
1
Clsl+1

: . d
(iv) If s > 0, then B3, N L> (especially B3 ,) is an algebra.

e < CP1

lull s, < lul

Proposition 2.4. Assume s > 0,u € L™ ﬂle andv € L™ HBSJ. Then uv € L™ mBg,l

and
HUUHBS,l S H“HLwHUHB;l + HU”L""HuHBé,f
Let s1,55 < % such that s1 4+ s >0, u € stll and v € B§21 Then uv € B;IJFSQ—% and
lavll opsip—g S Null g llollgge -

2,1
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The two Propositions above can be found in [1]. The following estimates in hybrid Besov
spaces are very useful and their proofs can be found in [17]. For reader’s convenience, we

provide the proof.
Proposition 2.5. Let sy, 59,t1,t2 € R and 51 < & and sy < g

5 . Then following estimate
holds

[la%i]
If min(sy + t1, s2 + t3) > 0, then
|1R(u, )]

S llul

le+t1—%,32+t2—% ~

Bs1:52 UHBtLtz'

le+t1—%,82+t2—% 5 ”'U/’ BSIvSQ UHBtlth'
If u e L™, .
[Tl gra S llullzee o]l gerea

and, if min(ty,ty) > 0, then
1R (u, 0) | geras S lullpoel[0]l ger.eo -

Remark 2.6. When d > 2, we have [[uv 1g,1 554 S Hu||B% 0]l 4441204 (3 <B<).

Proof. Clearly,
ATws Y Ay(SiAgw).

lg—p|<3

When p <0, = p and s; < g, then

. Li .
1S rulli= S D 275 Agullre

q'<q—2
S 20 Al
q¢'<q—2
S 207 u oo
When p > 0,q = p and sy, 59 < 9, then
1Sl S > 2"2!|Aq/UI|L2
q’'<q—2
SED R e A R D DR et LVl
¢'<0 0<q’<q 2
S QU2 e+ 30 27 ull g
q'<0 0<q’'<q—2

d
S 2q(§—52)||u||331’52’
where the sequence ¢; satisfies ), ¢; < 1. Thus,

[lea®] < Z Qp(51+t1—%)||ApTuv||L2 + Z 2p(82+t2—%)||ApTuv||Lz

R I i e

p<0 p>0

5 ZQp(sl—l-tl—%) Z HSq_IUHLooHAqUHLz

p<0 lg—p|<3
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d - A
4 Z 2p(sg+t2—§) Z ||Sq_1uHLoo ||Aqv||L2

p>0 lg—p|<3
< ZQP(Slthl—%) Z 2q(5_51)||u| Bo1.s2 AqUHL2
p<0 lg—p|<3
+22p(82+t2 Z 24(3 SQ)HU”BSI 52||A vl
p>0 lg—p|<3
<l s ol

In addition,
ITullgne S 3208wl + 3 272 1A, Tl oo

p<0 p>0
< >0 N Smaull e |A] 12

p<0 lg—p|<3

+22pt2 Z 151l e | Aqu]| 2
p>0 lg—p|<3

S 2l | Al + > 272 ull o | Ay 2

p<0 p>0
S ullzee vl ger s -

Recall that

Z Al quAv

q>p—2
If min(s; + t1, s2 + t2) > 0, we have
s _Q . .
g desren g S D PO AR(u,0)]| 2

p<0

+ Z 2p(32+t2*%) ||ApR<u’ ’U)”LQ

p>0

Z op(s1+t1-9)ops Z A ul|2]| Aqu]| 2

p<0 q>p—2

N Z op(s3+t2— ) ops Z 1Agull 2| Agu]l 2

p>0 q>p—2

< ng(51+t1)( Z +Z)“AquHL2quUHL2

p<0 p—2<¢<0  ¢>0

i Z op(s2+t2) Z ||Aqu||L2 ||zqv||L2

p>0 q=>p—2

St (NT ettt N gmalatal e )y

p<0 p—2<q<0 >0

£ 2 Y 2 e ul

p>0 q=p—2

1R (u, )|

AN

AN

Bs1:52

Bs1:52 'UHB’SN2

vl gaea
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5 ||u||351~92||v||3t17t2-

If t1,t, > 0, we could get directly that

1R(w, 0) | e S D 27 IARR(u, )|z + D 2721 A, R(u, v)| 2

p<0 p>0
S Y2l 1 Agollze + D27 Yl [ Agu]| 2
p<0 q>p—2 p>0 q>p—2
S DT I OAwlelullze + 327 > Al flul
p<0 p—2<q<0  ¢>0 p>0 q>p—2
S DY 2 e+ )27 fulle o] e
p<0 p—2<q<0 q>0
+ 302 3 2 ul| e [0l s S ullze o] e
p>0 q>p—2
This completes the proof of Proposition 2.5. 0

2.5. Triple product estimates in hybrid Besov spaces. The following triple product
estimates will be used frequently.

Proposition 2.7. Let u be a vector with V - u = 0 and F' be a an homogeneous smooth
function of degree m. Suppose that —1 — g < S1,t1, 80,19 < 1+ g and ry,re > —1 — %’.
The following estimates hold

|(F(D)A,(u - Vv), F(D)A,)]

S 2(m_“)pcpIIUIIBZgJH||v|

|[(F(D)A,(u - Vv), F(D)A)]

S 2Ol

[ApF(D)]l g2,

-5
By

F(D)Avl| 12,

%+1”U‘ Bs1:s2
2.1

|(F(D>Ap<u : VU)>F(D)APU)‘

S Cp2”(m_”)(||U||B§1+1||v||Br1,r2 + ||U||B2%j1||u||3r1,r2)

x]\F(D)Avap for p>0,
|(F(D)Ap(u - V), pr) + (Ap(u -Vw), F(D)Apv)|

S opllull g (22D g
32,1

APUJHLQ

Bs1:52

+277 20 || gy | F(D) Aol 2),

where the function ¥ (p) define as v*#(p) = a if p < 0, v*P(p) = B, if p > 0, and
ZpGZ e < 1.
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Proof. We start with the following Bony decomposition

F(D)A,(u-Vv) = F(D)A, Z Sy 1u- VA

lg—p|<3
D)A, Y Apu-VS,_v
lg—p|<3
D)A, Z Agu - Vﬁqv
q>p—2
=1+ I, + Is.

First, we give estimates for I for sy, 5 < % + 1:

1Ll < 27 > | Agulr2]|Se-1 Vol L

~Y
lg—p|<3

< grm Z 2" q($+1) HUHBj+ d41-51) v B
lg—p|<3

S 20 lull g allol g,
2,1

When p < 0, we have

L2 < 27 > [[Agul 2l Sg-1 Vo 1

Y
lg—pl<3

S 2y 2™ +1)HUII 1) [0 5oy
lg—pI<3

S gp(m=s1 Cp||uHB%+1HU| Bs1s2-

9.1
When p > 0, then
1Ll < 27 > [|Agul 2l Sg-1 Vo 1

lg—p|<3

S 2 N 27 luf| g 206G
lg—p|<3 P

S 2p(m_52)CpIIUIIBg+1IIUIIle,sQ-

2,1

Next, we bound I3 for sy, sy > —g -1

L]z S 200mties PN 1Al el Aol

q>p—2
< 2 N 2 na Gy 2+12 ol s
q>p—2

S 20l g ol g,
2,1

S1
2,1
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When p <0, then

3] 2

<

S
S

S

m+1+

2p(m+1+

DY 1Azl Ayl

q>p—2

m d . .
DY+ )IAulell A e

p—2<q<0  ¢>0

(> 2maerhe e Y " gmalatle omee) |y WHU!

p—2<q<0 q>0

20y lull Jrest Clip-Sess

When p > 0, then

Notice that

I 13]l2 <

~

~Y

I

Thanks to V- u =0,

(1, A, F(D)o]
_ . Q . . .

202V ul| o [V Agu]| 12 + 272 | Apul| 2| Ay V F (D)o | 2 )| A F (D)ol 2

N

m—1
(272l gap2”

21

é . .
DN T A gull el Agu]l 2

) S Gl 27 o]
2,1

2y ] g o

2,1

127l g 27 ol g ) A F (D)ol 2

2,1

q=p—2

q>p—2

Bs1:52 ¢
2.1

> [F(D)A,, Sy-1u) - VA

lg—pl<3

+(S,1 — Sp1)u - VAA,F (D)

+S,_1u- VA, F(D)v.

2mo0re, Jul g, ol g, 1A, F(D)oll 2

When p < 0, we get
|(I;,A,F(D
2|Vl e | VA 12 + 22| Apul| 12| A, VE(D)o]| 2) [ A, F (D)o 12

N

(2l a2 7V

2 |lu| Y /-

2,1

Yl

Bs1:52

+2—pcp||u||3g+l2p<m+l—sﬂ||v||331,32)||ApF<D>v||L2

2,1

21

A,F(D)v| 1.

B‘Sl S2

15
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When p > 0, we have

‘(]1, ApF(D)U| SQ(m_82)pCp||u”B%+1 ||U||BSLS2 HAPF(D)UHLZ'

Combing the estimates, we obtain the first two inequalities of the proposition. Similarly,
we can show the other two. This completes the proof. ([l

3. A PRIORI ESTIMATES

This section presents the proof of the key energy estimate, namely (1.14). To achieve
this, we need to overcome two main difficulties. The firs one is the lack of dissipation in the
velocity equation. This is dealt with by taking advantage of the wave structure described
in the introduction and involving suitable Lyapunov functional with inner product terms
in the energy estimates (see Lemmas 3.2 and 3.3). The second main complication is that
the proof of (1.14) estimates numerous terms and the dissipation is given by a general
fractional operator. To handle this issue, we make suitable combinations and make full
use of the fractional Laplacian.

More precisely, this section proves the proposition.

Proposition 3.1. Assume that (1,u) is a solution to the system (1.3) on [0,T). Then,
there exist two positive constants C, Cy independent of T such that

E(t) < C1Ey+ CyE*(t) and EL(t) < Ey+ (t + E(1))E(t), (3.1)
where Ey = HUOHB%+1—2E,%+2B—1 + HTOHB%H—%B,%'

In order to prove Proposition 3.1, we need the following two important lemmas. The
first lemma sets up the estimates for E}(t) + El(t), the low-frequency and the high-
frequency energy pieces associated with (u,PV - 7). As we have explained in the intro-
duction, (u,PV - 1) satisfies a system of wave equations, who exhibits extra smoothing
and stabilizing properties. This lemma exploits this extra regularization to gain time
integrability of w.

Lemma 3.2. Let (u,7) be the solution of system (1.3) on [0,T). Then there exist two
positive constants C1,Co independent of T such that

t
E(t) + E)(t) < C1Ey + Cs / > PEFNG (| Ajulle + |AATPY - 7 p2)dt
0 j<o

t
" 02/0 ZZJ% <|Hj’/(”A2'B71AjUHL2 +[[A;ATPY - THLZ))dt',

3>0
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where
G, = —%(Aﬂ?(u V), Aju)
— i (AJATIPY - (u- VT + Q(7, V), Aj(AT'PV - 7))
— Ky (AP7PA[P(u - Vu), A,ATTPY - 7)
— Ky (AP TAATIPY - (u- VT 4 Q(1, V), Aju)
and

Hy = —n(APTAP(u - V), A% 71A ju)
42 . )
- %(AjA—lpv S(u- V7T +Q(r, V), A,A7'PV - 7)

— i (APTAP(u - V), A;ATPY - 7)
— i (AATIPY - (u- VT + Q(7, V), AP 1A ju).

The second lemma completes the first-stage estimates on E'(t) + E"(t). We bound it
in terms of the initial data and the nonlinear terms.

Lemma 3.3. Let (u, ) be the solution of system (1.3) on [0,T"). There exist two constants
C1, Cy independent of T such that

t
ENt) + EMt) <C Ey + Cz/ ZQj(%Jrl_w)(|Gj|/(HAju||L2 +[|A;ATIPY - 7 12)
0 <o

Vil U Asullza + 1457 2) )t

t
+Co [ S (/A7 Al + 140729 - )

>0
+ Y51/ 1A 7] 22 ).
where G, H; are defined as in Lemma 3.2 and
Vi = —pa(Aj (- V), Aju) — pn (A (u - V7), Aj7) — 10 (A,Q(7, V), Ajr),
Vi=—(A;(u-V7),A;7) = (A;Q(7, Vu), ;7).

The rest of this section proves Lemmas 3.2 and 3.3, and then Proposition 3.1. For the
sake of the clarity, we divide the rest of this section into three subsections.

3.1. Proof of Lemma 3.2.

Proof of Lemma 3.2. Naturally we divide the proof into two major steps. The first step
focuses on the estimate of E}(¢) while the second step provides the estimate for E[(t).
Step 1: Estimate of E}(t).
Let Cy = 270 where jy € Z is a fixed constant which will be chosen in Step 2. By
Lemma 2.1, we can deduce that, for any function f, there exist two constants C, C5 such
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that
Ci2|Aj fller < A"Ajf e < Co27|| A fl| 1, (3.2)
where & € [0,m] (m is a large positive integer). Applying the operator A;P and A;A~'PV-
to the first equation and the second equation of the system (1.3) respectively, we obtain
(Aju)y — i AAATPY -7 = —A;P(u - V),
(AjJAT'PY - 7) + AP (A ATIPY - 7) + 2 AAu (3.3)
= —A; APV - (u- VT4 Q(T, Vu)).

Taking the L?-inner product of the first equation of (3.3) with Aju and of the second
with AjA_llP’V -7, we obtain the following two identities:

2 dt ||A UHLQ M1 (AAJ(A_IPV ’ T)v AJU) = _(A]P<u ) Vu)7 Aju)v (34)

and
2dt||A( TPV )20 + | AP A (ATPY )20 + 22 5 (AAju, APV - 7)
= —(AJATPY - (u- VT 4 Q(1, V), Aj(AT'PV - 7). (3.5)

Applying A%~ to the first equation of (3.3) and taking the inner product with A~'A;PV -
7, taking the L-inner product of the second equation of (3.3) with A2°~'Au, and then
summing them up, we have
d
L
(A7 Ay, AP AATPY - 1) + B ARl

AJATPY -7 AP A ) — | APAATIPY - 712,

= —(APTTAP(u- V), A;JATIPY - 7) (3.6)
—(AATIPY - (u- VT 4 Q(1, V), AP Aju).
A linear combination of (3.4), (3.5) and (3.6) with K to be determined later leads to

1
22(“2 1A ul2s + 1| A APV - 712, + 2K, (A, APV - 7, AZPLA, u))

N N
o 1||A/3A ull2e + (pun — K| APTTAPY - 7|2, (3.7)

—l—'r]Kl(Aw YAju, A A;ATPY - 7) = G
With % < 8 <1 and (3.2), we have, for j < jy and for any €y, e; > 0,
2K [(A;ATIPY - 7, AP A ju)|
< Ajull + al3C K APV s,
nK 1 |(A%P Y Aju, AP A APV - 7))

G2k

6177K1
o 261

— 1A Ajul7. + 1A APV - 7 2.
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Thanks to (3.2), choosing ¢, = /%,61 = g—;, K; small enough and inserting the two
inequalities above in (3.7), we obtain

Ha \ « . _ . B .
P2 Aguls + pllAATPY 7 + 2K (AP 7, A% A )
~ 1Al + |1AA Y - 7

and
1d M2 1 1 28-1
§£< ZNAsullEa + il AATPY - 3 + 2K0 (A ATV 7 ATTIA, u))
K 02(25— 02 ZK - o
RGP Al + (un — oy — 20 O A ARV -7
< |Gj|. (3.8)
We choose K; > 0 sufficiently small such that
C (28— 1)02 2K, 402D o2 g2
(pan — p Ky — ) > 0, (Nl — : 1) > 0.
2 2
Dividing by ||Ajul|z2 + [|A;APY - 7|2, (3.8) can be written as

d . . .
S NA Ul + | A AP 7], + 2K, (AAIPY -7, A1 A ) o)

¥ QQﬁj(HAjuan + A0V - 7l12) < ColGl/(IAsullze + | AA BT - 7lza).

Multiplying both sides of (3.9) by 2i(5+1-26) summing over j < jo (we can choose j, = 0,
see Step 2), and performing a time integration, we obtain

E(l)( ) <CI(||u0Hl d+1 28 + HTOHZ d+1 2[3)

| . . (3.10)
+ 0 [ SPGBl + 1AV )
0 j<jo

Step 2: Estimate of E}(t).

Applying A?’~1 to the first equation of (3.3) and taking the L? inner product with
A?P=1Au, we have

2dt||A2ﬂ LAull% — (A2 Aju, AP A APV - 7)

= —(APPTAP(u- Vu), AP A ). (3.11)
A linear combination of (3.11), (3.6) and (3.5) (for some positive constant K, to be
determined later) gives
1d
2dt
+ B2 A Al + (s — i) AT APV -7l + B Ko(ALju, A;ATPY 1) = Hj.
(3.12)

( A2 Aul 20 + Kol | A, APV - 725 + 200 (A ATTPY - 7, AZP1A, u)>
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It is easy to check that for any €y, €; > 0, we have

. . 2012 . .
2 |(AATBY - 7 A% )| < =AY Al + SAATEY -7,
€o

(3.13)
. ) K .
L Kol(MAju, A APV - 7)) < B2 AR AulE + 22
Using 7 > jo+ 1 and % < B <1, we have
K: po Ko ~o ~o1_ ,
= T INPARY 7 < 26120;503(1 DNAPLAPY 73 (3.14)

Combining (3.12), (3.13) and (3.14), and choosing

K 4pi H1
= €n = I €1 = -,
2 0 n 1 KQ

we obtain
IAP T AgullFe + K| AATTPY - 7)[3s + 201 (A ATTPY 7 AP A )
~ I A G 4+ |AATIPY 7|7

and

1d
2dt
4 1 42

( AP A ju) 25 + K| A;ATIPY - 7|20 + 20 (A APV - 7, AZPTA, u))

. 4 o .
AP A jul|2. + (342 — ’j;“lc%cé“ ) APA APV - 7|3 < |H).

We then choose jy or Cy to ensure that (3u2 — 4“1722”?1) C2C2072) > 0 for i<B <L

However, in the case when 8 = =, we need

n” > Cpapi (3.15)

for a suitable constant C' > 0 in order to have

4
(302 — ’?“1020 1-28)y -

This explains why we need (3.15) in the case when 8 = 5 in Theorem 1.1. Without loss of
generality, we set jo = 0. Thanks to 3 < 8 <1, d1v1d1ng by [|A 1 Ajul| 2 + |A;ATTPY -
7|22, we have

d

S (1A A, + Kol ;AT - 72, + 2y (AATTBY - 7, A% A )

+ 20D A% Agul| g2 + A APV -7 2) (3.16)

< GolHyl /(1A% Ajullze + | AAT'PV - 7 2).
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Multiplying both sides of (3.16) by 27 %, summing over j > 0, and integrating in time, we
have

E('}()—SHPIIUH RS 1 +sup [PV - T||hd : / |IUI|hd+1dt
21

- d 1 . _
S ol s + Il + / S 23 H /(A Ajull o + A ATIPY -7 g )dt

21 0 >0
(3.17)
Combining (3.10) and (3.17), we establish the proof of Lemma 3.2. O
3.2. Proof of Lemma 3.3.
Proof of Lemma 3.3. We again divide the proof into two steps.
Step 1: Estimate of E'(t).
Thanks to
(Aij, AJU> == O,
we obtain from (1.3) that
1d . . . . .
5 Al = (A9 7, Aje) = (A V), Agu) (3.15)
and
= NATI A Ay
= MQ(A]-D(U), AjT) — (Aj(u V1), A7) — (A;Q(1, Vu), AjT). (3.19)

Adding (3.18) and (3.19) and making use of
(A5 -7, Aju) + (A;D(u), Aj7) = 0

we obtain
1d
2dt

Multiplying by 2(271-293 and summing over j < 0 lead to the following estimates for the

(1Al ez + 18571122 ) < CalVil/(NAzullz2 + 1457 152).

low frequencies,

sup ||u||l d+1—2ﬁ+sup ||T||l di1-28 < Cl(HuU”l di1-2p + ||7—0||l dyi- 2,6)
t 327,1 3 Bzg,1 21 21

t
0 [ T 2EN (Al + 1Al
0 j<o
which, together with (3.10), yields
B0 <Gl g1+ ol g +02/ S gitii-a
J<0

x (|Gj|/<||Aju||L2 + 1AATPY - 7llz2) + ViI/(1Agullze + 1Ay 2) )
(3.20)
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Step 2: Estimate of E"(t).
By (3.19),

d . . o .
priaia P 22| Ajrll2 < C2 | Ajulla + CIY;1/ 1 A7 2. (3.21)

This leads to the following estimate for the high frequencies

suplell + [l g

< ||7-0||hd +C’/ ||u||hd+ldt +C/ Z22J|Y|/||A 7| 2dt’. (3.22)

7>0

To eliminate the term C fot |u|™ ;. dt’ on the right side of the inequality above, we cal-
B

d
2+
2.1

culate (3.17) 4 75(3.21) with 7, small enough such that 7,C' < 1 to get

B0 <Ol g+l )+ Co [ 2 (1 010 Byl
7>0 (323)

+ [ AA7PY - 712) + |Yj|/||AjT||L2>dt'-
Combining (3.23) with (3.20) finishes the proof of Lemma 3.3. O

3.3. Proof of Proposition 3.1. With the two lemmas at our disposal, this subsection
proves Proposition 3.1. We need an identity stated in the following lemma. A proof of
this lemma can be found in [40].

Lemma 3.4. For any smooth tensor [1%9]4xq and d dimensional vector u, it always holds
that

PV (u-V7)=Pu-VPV . -7)+P(Vu -V7) —P(Vu-VAT'V.V.7),

where the ith component of Vu - V1 is

Vu - VT Zau VT”

and

[Vu-VA™'V.V.7]'=0u-VA'V.V. 1.

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. The proof makes use of Lemmas 3.2 and 3.3, The main efforts
are devoted to bounding G, H;, V; and Y. To bound G, and H; suitably, we divide G;
and H; each into three parts,

G;=G,+G+G, H;=H+H; +H}
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with
G} == 2 (A,P(u- Vu), Aju) = ju (A,A7'PY - Q(, Vu), A,A7'PY - 7)
— K (A¥72APY - Q(7, Vu), Aju),
G? = —p (AJAT'PY - (u- VT), A; APV - 7),
G3 = —K (AP AP(u - Vu), A APV - 1) — K (AP 2APY - (u- V7), Aju),

442 . .
H]1 - _%(AjA_l]IDV ’ Q(T> VU’)» AJA_l]IDV ) T)

— i (AATPY - Q(7, Vi), AP A u)
— (AP THAP(u - V), AP Au),

42 . .
H? = —%(AJAIPV (u-V7), AATPY - 7),
H? = —py(APPAP(u - Vu), AJAT'PY - 7) — 1 (A APV - (u- V), A% A ).
For the sake of clarity, we divide the rest of the proof into several steps.
Step 1: Estimate for G}, Hj, V;, ;.

We first deal with the terms in Gjl-, Hjl, V;, Y; that do not involve Q(7, Vu). Due to
V.-u=0,
(AP(u-Vu), Aju) = (Aj(u - Vu), Aju).
By Propositions 2.5 and 2.7, for j <0,

. . s é _ .
|(AJ(U : VU), A]u)\ S Cj2 i+ Qﬁ)HuHB%H ||u||B%+1726,%+2ﬁ71 ||Aju||L2
2,1

and, for j > 0,

_ . _ . 72 _ .
AP A (u- V), AP A )| S 27 lull gl yginoan g aa o 1A% Al o
2,1
In addition,

. . o d+1_25,i . .
|(A(u-V7), M)l S 27 Dllullgaall7ll g gaasg 1127122
2,1

We now turn to the terms that contain Q(7, Vu). By Lemma 2.1 and Hélder’s inequality,
for j <0,

| — 11 (AATIPY - Q(7, Vu), AjAT'PY - 1) — Ky (AP2APY - Q(7, Vu), Aju)|
S (14287 A;Q(r, V)l 2 (| Ajull 2 + [|A;ATPY - 7] 2)

S 1A;Q(r V)| 2 (|1Ajul 2 + | A ARV - 7 2),

| — 1 (A;Q(7, Vu), Ajr)| S I1A;Q(r, V)| 2| A7 2

For 7 > 0, we have

42 . . . .
- %(AJA‘IPV L Q(r, V), A;ATPY - ) — iy (A APV - Q(r, V), A% A )|



24 JIAHONG WU AND JIEFENG ZHAO
S ||AjQ(T V)l 2 (A% Ajul g2 + |A;AT'PY - 7| 2),
| = (A;Q(7,Vu), &) S 18,Q(7, V) | g2 | Ay | 2.
Combining estimates above, we conclude that

t
|2 (G318l 18,0V ol +V (Al o+ 712 e

0 j<o

[ o2 (A7 gl 1A BT ) ¥ sl

7>0
t

S (517l g a-ng + 5Pl ygrzagian) |l gt
2,1
+/ ||Q(7—7 vu)” ‘4+1,2B72dt/
0

S (5D 17l o120 + 500 0l g / .1 (3.24)
where we have used Remark 2.6 in the second inequality.
Step 2: Estimate for G%,G3.
To bound the difficult term GJQ-, we divide it into three terms according to Lemma 3.4,
G =G+ G+ G
where
G = — (A AT'P(u - VPV - 1), A;ATTPY - 7)),

J
G = — (A AP(Vu - V), AjJAT'PY - 1),
G7 = (A AT'P(Vu - VATV -V - 7), AJATPY - 7).
By Proposition 2.7,
/ S PEENGEY (| Ajull e + ANV - 7| 2)dt

7<0

/ S Py IV g g

i<0
Sowpllrlygon g [l 4007 (3.25)
2,1
Next we estimate the terms G2-’2 and G2’3. Thanks to V - u = 0,

u- VT u O = ku
Vu- V7] 2N 0k (O,

J:k Jik

[Vu VATV V-7 23 b ATV -V r =) 0p(0uf VATV -V - 7).
k k

(3.26)



GLOBAL REGULARITY FOR THE OLDROYD-B MODEL 25
Then we have

t
| PG G Al + 1A ol a)a

7<0

/ [V - VTHZ 4 2ﬁ+||vu VATV .V THl t

d 25
21

/ ||Vu®7'|| piri-26.4 +||VU®A V.V 7'|| 4y 2det
S sup 7l . pd+1-26.¢ ||u||B%+1dt/ (3.27)
0 2,1
by Remark 2.6. (3.25) and (3.27) imply
/ N GG /(| Ajulle + | AATIPY - 72 )dE S ER(2). (3.28)
7<0
To deal with G;’?, we decompose it into three terms according to Lemma 3.4
G =G+ G+ G
where
G = =K (AP AP(u- Vu), A;JAT'PY - 7) + (AP 2AP(u - VPV - 7), Aju)),
GP? = —K (A2 A;P(Vu - VT), Aju),
G = K (NP2AP(Vu - VATV -V - 7), Aju).
Observing that j < 0 and using Proposition 2.7, we have

(21— —2 A
GH S ellull g (2 SEHINul| g g oo [IAPT2APY - 7)o

21

—i(d4o— A —
Scj||u||3%+12 i(z+2 45)(HUHB%H&ﬁ,%Hﬁfl”AjA 1]P)V'THB

2,1

HIPY g g [ Agullz2),

Thanks to % < p <1,

/22] NG (1A jul 2 + | A APV - 7| 2)dt

3<0

< / S il g 29 (full s gnss + IBY 7l g g )
0 §<0 32,1

t
S (SUPHUH d41-25g 425 1+sup||T||BQ+172ﬁ,g) i |IUIIB§1+1dt’- (3.29)
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As in the estimates of G2-’2 and G2-’3 we have

/Zzﬂ 2P0 GH2 4 G /(I Asull e + |A ATV - 7l 2 )t

3<0
t
/
S Slip"T’lB%+1—2ﬁ,% . Hu“Bﬁlﬂdt

~

Combining this with (3.29), we obtain
/ S GG (| Ajul| 2 + |AATIPY - 7| 2)dt S E2(2).
7<0
Step 3: Estimate for H?, H?.
In order to estimate HJZ7 we apply Lemma 3.4 to write
2 _ g2 2,2 2,3
HY =H” +H;”+ H;",
where

402 . .
B2 = —%(AlAj]P’(u VPV - 7), A,AT'PY - 7),

402 . ,
12 = == AT AR(Vu: V), AN BV 1),

2 . .
2 = LN A P(Vu - VATV -V 1), AJATRY 7).
"

By Proposition 2.7,
H| S 2772796 D Ju], vaIIP’v 7|l 4

Bf 2[3§ 1‘

which implies

t
. d s . _
/2232|Hf’1|/(|!/\25 FAGull e + |AGATIPY - 7| 2)dt
0 >0
t
[l 0.

~Y

S Slzp HTHB%H&B,%

Then we deal with Hf’2 and ng,g_ Using Remark 2.6 and (3.26), we obtain

t
| 2 1A Bl + AP )

7>0

< /||vu®¢||hd FITHE ATVl ar

< /||Vu®7|| girzng T IVU@ ATV V-7 sde1as g dt’
0

t
S Sltlp“THB%wa,% o ||U||B%+1dt/.

|AATIPY - 7| e,

(3.30)

(3.31)
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Combining this with (3.31), we obtain

t
/ Z 2Jg|HJ2|/(||AQB_1A]UHL2 4+ ||A]A—1]P>V . THLz)dt/ 5 E2(t) (332)

0 j>o

By Lemma 3.4, H? can be rewritten as
3 7731 3,2 3,3
where

H' = - (AP1(A (- V), A,A BV )
AT A (u- VPV - 1), AT A ),

H? = — i (A AP(Vu - V), A2 A ),

HY = (A AP(Vu - VATV -V - 7), A% LA ).

By Proposition 2.7,

—j(d428— : -
(2775428 1)||u||34+1725%+2[371||AjA25 PV - 7|2

3,1
‘Hj ‘ < Cj”UHB; g

o+l
,1

+2 DTGPV 7| g g [ Ajullr2)

4
_jd AoA—
S 62 ]2HUHB#(\IUI\Bg+1_2ﬁ,g+za-1HAJ'A PV -7l
HIBV - 7l g aog 2 A% Aju]2),

which implies

t
[ S PN Ayule + 1A BY
0 j>0
t
S (Slzp HUHB%H*M‘%“B* + Slip ||T||B%+172B%) ||u||B%+1dtl‘ (3.33)
0 2,1

. : 2.2 2,3 .
As in the estimates of H;" and H;™, we derive

t
/ S| HP? o+ HP /(AP Ajul g2+ |AGATIPY - 7o)t
0 j>o
t
/
S s el ggonsng | ol gt

Combining this with (3.33), we conclude

t
d o . B
/22J2|H§'\/(|!A25 Ajullze + | AATPY - 7] ) dt S ER (). (3.34)
0

7>0
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Gathering (3.24), (3.28), (3.30), (3.32) and (3.34), we obtain (3.1). From (3.22), we have
the following estimates for low frequencies of 7,

£ =l g+ [ Il g < Dl g+ [ Tl

+C/ ZQ( 3+ 2ﬁ>ﬂ|Y|/||A || 2t

3<0

Thanks to Proposition 2.5 and Proposition 2.7, we have

E(t) < IIToIIin+1 2 JrltSHPIIUIIin+1 2

2,1 2,1

/ (S il gl ygersg + 1O V0l g, )0

7<0

S ol s+t ull gD [ g0 / Jul g
2,1

2,1 2,1

< Eo+ (t+ E(1)E(®).

We complete the proof of Proposition 3.1. O

4. THE GLOBAL EXISTENCE AND THE UNIQUENESS

This section proves the existence and uniqueness part of Theorem 1.1. The high regu-
larity part will be established in Section 5. The existence part applied the bootstrapping
argument to the a priori energy inequality obtained in Proposition 3.1. Due to the lack
of velocity dissipation and the general fractional dissipation, the proof of the uniqueness
part is not trivial. We need to make use of the parabolic smoothing or damping effect
of the wave structure in order to establish the uniqueness. The rest of this section is
naturally divided into two sections.

4.1. The global existence. The local existence can be established via a standard pro-
cedure. In fact, we could modify the methods in [16] or [8] to achieve the local existence.
It then suffices to establish the global bound on the Besov norm of (u, 7).

Proof of the existence part of Theorem 1.1. By Proposition 3.1, the energy functional de-
fined in (1.13) satisfies

E(t) < Ci1Ey + CoE*(t), t>0 (4.1)
for some positive constants C; and Cs. An application of the bootstrapping argument to

(4.1) implies that, if the initial norm

<e

||“0||BQ+1 28 BQ+2B T ||7'0||le+1 28 Bi

for sufficiently small € > 0 or Ey < €2, then, for any ¢t > 0,

E(t) < 20€%,
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which, especially, yields the desired global upper bound on the norms of (u, 7). In fact, if
we take

and make the ansatz that

then (4.1) implies that

1
Fit) < CiE —FE(t
(t) <y 0+C2202 (t)

or

1
4C%

The bound in (4.3) is only half of the one in the ansatz (4.2). The bootstrapping argument
then implies (4.3) indeed holds for any ¢ > 0. Especially, (1.9) holds. The upper bound
in (1.10) is a consequence of the following inequality from Proposition 3.1,

EL(t) S Ey+ (t +e)e. (4.4)
This completes the proof of the existence part of Theorem 1.1. O

4.2. The uniqueness. Due to the lack of velocity dissipation and the inclusion of a
range of fractional dissipation in 7, the proof of the uniqueness is not direct. We need
the extra smoothing and damping effect of the wave structure. We use some of the ideas
implemented in Section 3.

Proof of the uniqueness part of Theorem 1.1. Assume (uy, ) and (ug,72) are two solu-
tions of (1.3) with the same initial data. Denote du = uy — ug, d7 = 171 — 79, 0p = p1 — Po.
Then (0u,d7) satisfies

(0u)y + Vop = 11V - 67 — ug - Vou — du - Vug,

(67)¢ +uy - VOT + nA»57 = iy D(6u) — du - Vo — Q(71, Vu) — Q(67, Vuy),

V:ou=0,

ou(0,z) =0, 07(0,2) = 0.

Similar to Lemma 3.2 and Lemma 3.3, we have

t
Sl;/lp HéuHB%-s-l—zﬁ,%ﬁﬁ—z + Sl;p |‘6THB%+1_26,%_1 + / HduHB%H’%dt’
0

t
[P BTy el g
0 B2 B2

. s ,1
SCo [ S 2 (16118 8l + | ANV o7l )
0 j<o
HV) 1/ (IAs0ullzz + 1467 2) )t
t
+02/ ZQJ(%*U(\H;|/(HA25*1AJ~5UHL2
0

3>0
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HIAATPY - b7l12) + 1Y 1/ A7 2 ) at

where
G, =G'+G}+G?, H,=H'+H?+H}
with
Gl =— %((Ajmul - Vou), Ajou) + (AP(Su - Vus), Aséu))
— i ((A;ATYPY - Q(11, Vou), A;ATMPY - 67)
+ (A;AIPY - Q(67, Vug), A;ATIPV - 67))
— K ((A*72A,PV - Q(11, Véu), Ajou)
+ (A272A,PV - Q(07, Vuy), A6u)),

G? == ((AJAT'PY - (uy - Vi7), AjJAT'PY - 67)
+ (A;ATIPY - (du - V1), A;JATIPY - 7)),

G? = — K (AP AP (uy - Véu), A;AT'PY - 67)
+ (APTA P(6u - Vug), A;ATPY - 67))
— K1 ((A*72A,PV - (uy - V6T), Aj6u)
+ (AP2APY - (Ju - V), Ajou)),

/ 4: 2 . A
H' = %((AjA‘lPV - Q(r1, Vou), A; APV - 67)
+ (AATPY - Q(07, V), A;ATPY - 67))
— m((AAT'PY - Q(r1, Vou), A1 A 5u)
+ (AATPY - Q(07, Vug), A1 A 6u))
— (AP TAP(uy - Vou), AP~ A 6u)
+ (A2PLA P(6u - Viug), AP 1A j6u)),

, 4 2 X .
H} == (AN - (- Vo7, A NPT - o7

J
+ (A;ATIPY - (du - V), A;ATIPY - 67)),

/

Hp = — i (A7 AjP(uy - Véu), AjAT'PY - )
— ,ul(AjA_I]P’V (uy - VOT), Aw_lAjéu)
— i (APTLAP(du - Vug), AjAT PV - 67)
— 1 (AJATIPY - (Su - V), APTHA Gu),
and

J
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— (A (uy - VO7), A;67) + (A;(6u - V72), A;67))
_,U/I((AjQ(Tla V&u), Aj(ST) + (AjQ(éT, VUQ), Aj57')),

Y; = —((Aj(ul . V(ST), Aj(s’?') + (AJ((S’U/ : VTQ), A357)>
_((AjQ(Tl7 V(SU), Aj(ST) + (AjQ((STa VUQ), AJ(ST))
According to Proposition 2.5 and Proposition 2.7, for 7 < 0,

. . s g _ .
[(Aj(ur - Vou), Ajou)| S ¢;2 G+ 25)”141”3%“||5U||B%+172ﬁ,%+2672||Aj5u||L2;
2,1
. . Card 1 A
(A;(0u - Vus), Ajou)| S ¢;279GH 25)HU2||B%+1||5U||B%+1_w,%+w-zHAJMHL?;
2,1

and for j > 0,
](AQﬁ’lAj(ul . Vdu),AQﬁ’lAj(Su)\

—i(d_ —1 A
< ¢j2 7 I)HUIHBleﬂ||5UHB%+17213,%+2/372HAZB 1Aj5u”L27

[(AP7LA(6u - Vug), AP 1A 6u))|

_(d_ —1 A
N c;2 /G I)HUZHB%-H”6uHB%+1—2ﬂ,%+2ﬂ—2HAQﬂ 1Aj6uHL2;
2,1

and for all 7,

. . 4412841, .
(A (ur - Vo), Ajor)| S 277 7 (j)Hu1HB2%1+1HaTHB%‘H—?ﬁ,%—lHAjéTHLQa

(Ay(6u-Tm), A,0m) S 27 Ooull g 19720 a0y | A0
For 7 <0, we have
| — 11 (AATIPY - Q(7y, Viu), A;ATIPY - 67) — K1 (A 2APY - Q(1, Vi), Ajéu)|
S 12,Q(m. Vou)ll 2 (1A;0ull 2 + [ A;ATPY - 67| 12),
| — 1 (AJATIPY - Q(67, Vi), AjAT'PY - §7) — Ky (AP 2A PV - Q(67, Vus), Aj6u)|
S 14,Q(0m, Vus) |2 (1 Ay6ul 12 + |A;AT'PY - 67| 12),

and
| = 1 (A;Q(71, Vou), Ajor)| S 11A;Q(m, Vou) || 2| A;07 | 2,

| = (A;Q(07, Vu), A;67)| S [|A;Q(07, Vug) || 2| A7 || 2.
And for j > 0, we have

2 . . . .
_ %(A]‘A*PV - Q(11, Vou), AjAT'PY - 67) — i (A APV - Q(71, Véu), A7 A 6u) |
S 11A;Q(r, Vou)| 2 (A% Ajoul 2 + | AATPY - 67| 12),
2 . . . .
a %(Aﬂ\lw - Q(O7, Vup), AjATIPY - 07) — p (A APV - Q(67, Vug), A* 1A j0u) |

S 127, Vuo) [l 2 (1A% Ajdullz2 + | A APV - 07| 2),
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and

|- (A'Q(ThV(SU) Ajor)| S 114,Q(m1, Véu) || 2l Ao 2,
‘ — JQ 57‘ VUQ) A )} 5 ||A]Q((5T, VU2>||L2HA]‘57‘HL2.

Combining the estimates above, we obtain

t

rd _ ’ . . _ , . . ,
/0 S0 29 (IG/(1A8ullo+ | AA BV <67 12)+ V] /(1A 80l 2+ | 4,67 12 ) i
§<0

- / > 2D (| /(1A% Agdulla+ | A AT PV 67 12)+ 1] 1/ 1Ao7 2 )

7>0

5 SuP (H(STH d+1 28, 7—1 + H(SUHBTH 28, §+2ﬁ 2 / ” ul?“’?)HB dt/

2,1

/ ”CSUH 4 HVTQ”BzH 28,4~ 1dt +/0 ||(Q(7'1,V5U),Q(5T, vu?))”B%Jrl—Qﬁ,%—ldt/

t
S Slip (H57-”3%+1—26,%—1 + ‘|6UHB%+1—2[3,%+2[3—2)/0 |!(U17U2)HBg+1dt'

2,1

t
+Sup(||7-1||32+1 25 d + ||7-2||BZ+126’5)/ ||5U|| % dt/
t 0 B2,1

G;-Q and G’;»S can be bounded directly via Proposition 2.5,
t
. d _ 12 . . _
/O S 202962 (|| Asbul| 2 + | AATIPY 672t
J<0

t
5 /(Hul v57—” d+1 25+||5u V7—2|| d+1 Qﬁ)dt/
0
t
S [ el g+ loumll g
0

5 Sup||57'||32+1 28, dl/ ||U1|| %dt +tsup(||7—2||32+1 28, 2“6””32“ 28,4 +26— 2)
B3

and

t
/ S PEIINGE (A 5ul| 2 + | A ATV - o7 )dt
0 j<o

t
l l l l
S R R 0 TR P AT

2,1 2,1 2,1 2,1

t
S osup([l0ull g1 os giose 107N sgiias i) [ (luall g + lluall g,0)dt
t B 0 B3, B

2,1

)t

+i Sltlp(”T?HB%wa,% HCSu”B%H%B,%Hﬁf?)'
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To estimate HJ/?, we rewrite it as HJ/-2 = H]/?’l + H;2’2 + H;Q’S + H;2’4 according to Lemma
3.4, where
/ 4
2 = 4 PLAATP(uy - VPV - 67), A,AT'PY - 67),
n
/ 4
e 4 LAATP(Vuy - Vo), A, APV - 67),
n

J

4p2

H> = ZLAAP(Vu, - VATV -V - 67), A;APY - 1),
Ui

J

/

2 .
2 _%(AJAT’V (6u- V), A,A7'PY - 67).

J

By Proposition 2.7, we obtain

/ S 20D 2 (A% A ou g2 + | A ATTPY - 672 )de
7>0
t
582p||67||3%+1726,%71 . ||u1||3%+1dt/~

It follows from Proposition 2.5 that

/ > PSP HP /(AP A bullpe + | A;ATTPY - 67 12)dt

7>0

< / |Vuy @ 67)|" o+ [|Vuy @ ATV -V - 67", dt
0 327,1 sz,l

t
!
S sup 107 st / o0
and

/ 223(7—1 ]H/M‘/ A LA6ul| 2 + |A;ATIPY - 67| 2)dt

7>0

5/ e Vrall g ,at S suplml g Hdu”_%dt’.
0 3221 0 B2,1

21

To estimate H.*, we rewrite it as [’ H],-?”1 + Hj?”2 + H]/-g’?’ + HJ/-?”4 + H;3’5 by Lemma
3.4, where
H = 1 (A AP (uy - Véu), A;AT'PY - 67)
H(AAT'P(uy - VPV - 67), A% A6u)),
H? = — 1 (AjA"P(Vuy - Vo), AL A6u),
HP = (A AT B(Vuy - VATV -V - 0m), A4 A ),
HY = —py (AP7TAP(6u - Vug), AjAT'PY - 67),

H?® =~ (AjAT'PY - (6u - V7o), A% Ajdu).
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By Proposition 2.7, we obtain

t
/ PRIl A
J
0

3>0

SN A 6u) 2 + || A APV - 67| L2)dt

t
N (Sltlp ||5u||B%+172B’%+2672 + Slip ||§T||B%+1726,%71) w1 |IB%+1dt/-
0 2,1

o . 22 17/23 '2,4
Similar to the estimates for H;>", H;”" and H;~", we have

/ S PEIHE 4 HP /(AT Agdullye + [ A ATV - 67 2t

7>0

t
S sup 971 g vcang s [ ] .
0 2,1

and

[ S B A Ayl + ATV )

7>0
Ssulinl g /H5u|| LAt

By Proposition 2.5, we have

/ > G PN Aydull s + | A ATPY - 07| 2)dt

7>0
N t
/ [0 Fuall' 4yt < SUD 100l g1 / Jusl| g dt'
0 2,1

Combining the estimates above, we obtain

t
Sltlp ||5u||B%+172B,%+26—2 + Slip H(STHB%H%B,%A + / ||5u||3%+1,gdt/
0

t
S 50 (107 g 1-smg s+ 10l pgia g ) [ ()l gos + ] g ot
0

o 7oy | 160l g 00+ 60Tl g 00l 110
Notice that
t t
180y 0 S s gt [ Dl g

Thanks to the uniform a priori estimates, we have sup |[(71, 72)[| ;41254 < €. Then we
can choose ¢ and ¢ small such that

Sup||5u|] BE+1-28,¢+28-2 +Sup||57—||B§+1 28,4 -1 < 0.

This completes the proof of the uniqueness part of Theorem 1.1. O
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5. HIGH REGULARITY PROPERTIES FOR MORE REGULAR DATA

This section is devoted to proving the higher regularity part of Theorem 1.1. More
precisely, we show that, if the initial datum (ug, 79) is in a more regular Besov space and
sufficiently small,

N

||u0||B§:r1725m3221+25+5 s HTOHBEIH 28 BQJS > g,

then the corresponding solution (u,7) of (1.3) is in a more regular space,

dy1-28

we CRY B A B n LRY BE 0 BETT),

(5.1)
re CRY B P ABY), re RN B N B,

The proof shares some similarities with the proof of the existence part. The key com-
ponent of the proof is the energy inequality stated in the following proposition.

Proposition 5.1. Assume that (u, T) solves (1.3). Then, there exist two positive constants
C1 and Cs such that, fort >0,

El(t) + E"(t) < CLE, + Co((E'M(t) + E™())E(t) + E*(t)).

where EJ(t) is defined in (1.15) and E'"(t) in (1.16), and E(t) is defined in (1.13) as
before.

In the rest of this section, we first assume Proposition 5.1 and provide the proof for the
higher regularity part of Theorem 1.1, and then prove Proposition 5.1.

Proof for the higher regularity part of Theorem 1.1. By Proposition 5.1, we have
Ef'(t) + E"(t) < C1Ey+ Co((E5 (1) + E™(6)) B(t) + B*(1)).

Therefore, thanks to the results in Subsection 4.1, we can choose £ small such that
CyE(t) < 3 such that

El(t)+ E™(t) S E, +e.
Combining this inequality with the results in Subsection 4.1 and inequality (4.4) yields

t t
S‘ip ||u||B%+l—26.%+2B + Sgp ”THB%+172B,%+1 + / ||u||B%+1,%+2dt, + / ||T||B%+1,%+2B+ldt,
0 0
S Eyte(e+t).
Similarly, we can choose ¢ depending on s sufficiently small to get further regularity,

Slip HUHB%H%B.%H/H&‘A + Sltlp HTHB%HJB,%H

t t
# [ ullygngord? + [ rlgiagian.dt

Sl gy + W7 g (e )
2

2,1 1

This completes the proof of the higher regularity in (5.1) or in (1.9). OJ
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We now turn to the proof of Proposition 5.1. The proof of Proposition 5.1 relies on the
following lemma, which is the higher regularity version of Lemma 3.2 and Lemma 3.3.
Due to its similarity with Lemmas 3.2 and 3.3, we omit its proof.

Lemma 5.2. Let (u, ) be the solution to the system (1.3) on [0,T"), we have the following
estimates

t
EP () + EM0) < CEy+ Cy |52 (| /(1A Ayl

0 >0

T+ IAATPY - 7llz2) + Y31/ A7l )

where Cy and Cy are independent of T and Ey = |luo|| .4 sdr12sdvos + 170l 541128 941

Proof of Proposition 5.1. According to Proposition 2.5 and Proposition 2.7, for j > 0,
. . d .
(AP0 (- Vu), A7 Au) | S ¢ 277G ull L gullul ygiaa gaas A2 Ajull 2,
2,1
. . d1ns .
(B V), A S 27 ull g allml pgnasgoa DA

Similar to the inequality (3.24), we have

/Zﬁ““OHWmW1AMHWAvawm Y31/1857 2)

7>0

t
S (sup ||T||B%+1—2ﬂ,%+1 + sup HU’HB%+172/3,%+2,8> /0 HUHB%ﬂdt/
51
+ [l o
t
S (Sltlp ”7_||B%+1—26,%+1 + sup HUHB%+1—2B,%+2[%) / HUHB%Hdt,
0 2,1

Ly N T
S (B (t) + E" (1) E(t) + E*(t). (5.2)
By Proposition 2.7, we obtain
[ S e2772 ”2HUH +1HPV Tl 425 g 1A APV - 7]l 2,

which implies

[ S P A B+ |8
J>0 (5.3)
<&mwgﬁmﬁﬂfnwdﬂa
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By Proposition 2.5,

/ S PEEP 4 HP /(N Agull e + [ A APV - 72t

7>0

/ [Vu g HIVuE ATVt df
BZ,l
t

S (SUP”TH 4128441 +sup||uH pe+1-28¢+26- 1) ||U||B%+1dt,
0 2,1

+SupH7—” 1284 / Hu“h d+2dt
< (E'(t) + E"(t) E(t) + E*(t).
Combining this with (5.3), we obtain

/ S PEDH2 /(| Al 2 + | A APV 7| p2)dt

7>0
< (B'(t) + EM(1)B(t) + E(1).
By Proposition 2.7,

3,1 —j(4 A -
|Hj | S CjHuHB%H (2 ](2+26)HUHB%+1—25»%+26||AjA2ﬁ PV - 7|2
2,1

—95—jd '
+ 22022 ISPV 7 g g A ullr).

Then, we have

/ ST AEDH (A Agul g2 + A ATIPY )

7>0
S (500 10l g1 s + 50D 7y 1 / 0
S (EJ'(t) + EM(0)E(t) + E2(t).
As in the estimates of the terms H; 22 and H 2’3, we have

/223 SO\EP? 4 Y (AP Al + 1A ATPY - 7l 2)dt

>0
S (Bg'(t) + B™ (1) B(t) + E*(t).
Combining this with (5.5), we obtain
[ S BV Byl + A7V )
S (E'(t) + E"(t) E(t) + E*(t).
Putting (5.2), (5.4) and

(5.6) together, we complete the proof of Proposition 5.1.

37

(5.5)

(5.6)



38 JIAHONG WU AND JIEFENG ZHAO

Acknowledgements. The work of Wu was partially supported by NSF grant DMS
2104682 and the AT&T Foundation at Oklahoma State University. Zhao was partially
supported by the National Natural Science Foundation of China (No.11901165, No.11971446)
and the Doctoral Fund of HPU (No.B2016-61). This work was completed during Zhao’s
visit to the Department of Mathematics at Oklahoma State University and he thanks the
department for its hospitality.

REFERENCES

[1] H. Bahouri, J. Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,
Springer, Berlin/BerlinHeidelberg, (2011).
[2] O. Bejaoui, M. Majdoub, Global weak solutions for some Oldroyd models, J. Differential Equations,
254 (2013), 660-685.
[3] R. B. Bird, C. F. Curtiss, R. C. Armstrong, O. Hassager, Dynamics of Polymetric Liquids, vol. 1,
Fluid Mechanics, 2nd edn., Wiley, New York, (1987).
[4] M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations, Hand-
book of Mathematical fluid Dynamics, Vol. III, North-Holland, Amsterdam, (2004).
[5] M. Cannone, A generalization of a theorem by Kato on Naiver-Stokes equations, Revista Matemética
Iberoamericana, 13 (1997), 515-541.
[6] M. Cannone, Y. Meyer and F. Planchon, Solutions autosimilaires des équations de Navier-Stokes,
Séminaire “Equations aux Dérivées Partielles” de 1'Ecole polytechnique, Exposé VIII, 1993-1994.
[7] J. Y. Chemin, N. Masmoudi, About lifespan of reqular solutions of equations related to viscoelastic
fluids, STAM J. Math. Anal., 33 (2001), 84-112.
[8] Q. Chen, X. Hao, Global well-posedness in the critical Besov spaces for the incompressible Oldroyd-B
model without damping mechanism, J. Math. Fluid Mech., 21 (2019), Paper No. 42, 23 pp.
[9] Q. Chen, C. Miao, Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces, Non-
linear Anal., 68 (2008), 1928-1939.
[10] Q. Chen, C. Miao, Z. Zhang, Global well-posedness for compressible Navier-Stokes equations with
highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.
[11] P. Constantin, Lagrangian-Eulerian methods for uniqueness in hydrodynamic systems, Adv. Math.,
278 (2015), 67-102.
[12] P. Constantin, Analysis of Hydrodynamic Models CBMS-NSF Regional Conference Series in Applied
Mathematics, 90 STAM (2017).
[13] P. Constantin, M. Kliegl, Note on global regularity for two dimensional Oldroyd-B fluids stress, Arch.
Ration. Mech. Anal., 206 (2012), 725-740.
[14] P. Constantin, W. Sun, Remarks on Oldroyd-B and related complex fluid models, Commun. Math.
Sci., 10 (2012), 33-73.
[15] P. Constantin, J. Wu, J. Zhao, Y. Zhu, High Reynolds number and high Weissenberg number Oldroyd-
B model with dissipation, J. Evol. Equ. (2020). https://doi.org/10.1007/s00028-020-00616-8.
[16] R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent.
Math., 141 (2000), 579-614.
[17] R. Danchin, Global existence in critical spaces for flows of compressible viscous and heatl-conductive
gases , Arch. Ration. Mech. Anal., 160 (2001), 1-39.
[18] T. M. Elgindi, F. Rousset, Global regularity for some Oldroyd-B type models, Comm. Pure Appl.
Math., 68 (2015), 2005-2021.
[19] T. M. Elgindi, J. Liu, Global wellposeness to the generalized Oldroyd type models in R3. J. Differential
Equations, 259 (2015), 1958-1966.
[20] D. Fang, M. Hieber, R. Zi, Global existence results for Oldroyd-B fluids in exterior domains: the
case of non-small coupling parameters, Math. Ann., 357 (2013), 687-709.



GLOBAL REGULARITY FOR THE OLDROYD-B MODEL 39

[21] D. Fang, R. Zi, Global solutions to the Oldroyd-B model with a class of large initial data, STAM
J.Math. Anal., 48 (2016), 1054-1084.

[22] E. Fernandez-Cara, F. Guillén, R. R. Ortega, Eristence et unicité de solution forte locale en temps
pour des fluides non newtoniens de type Oldroyd (version L® — L"), C. R. Acad. Sci. Paris Sér. I
Math., 319 (1994), 411-416.

[23] H. Fujita, T. Kato, On the Navier-Stokes initial value problem I, Archive for Rational Mechanics
and Analysis, 16 (1964), 269-315.

[24] C. Guillopé, J. C. Saut, Existence results for the flow of viscoelastic fluids with a differential consti-
tutive law, Nonlinear Anal., 15 (1990), 849-869.

[25] C. Guillopé, J. C. Saut, Global existence and one-dimensional nonlinear stability of shearing motions
of viscoelastic fluids of Oldroyd type, RAIRO Modél. Math. Anal.Numér., 24 (1990), 369-401.

[26] M. Hieber, H. Wen, R. Zi, Optimal decay rates for solutions to the incompressible Oldryod-B model
in R3, Nonlinearity, 32 (2019), 833-852.

[27] D. Hu, T. Lelievre, New entropy estimates for Oldroyd-B and related models, Commun. Math. Sci.,
5 (2007), 909-916.

[28] A. Kiselev and V. Sverak, Small scale creation for solutions of the incompressible two-dimensional
Euler equation, Ann. of Math., 180 (2014), 1205-1220.

[29] J. La, On diffusive 2D Fokker-Planck-Navier-Stokes systems, Arch. Ration. Mech. Anal., 235 (2020),
1531-1588.

[30] J. La, Global well-posedness of strong solutions of Doi model with large viscous stress, J. Nonlinear
Sci., 29 (2019), 1891-1917.

[31] F. Lin, C. Liu, P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58
(2005), 1437-1471.

[32] P. L. Lions, N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chin.
Ann. Math. Ser. B, 21 (2000), 131-146.

[33] Z. Lei, N. Masmoudi, Y. Zhou, Remarks on the blowup criteria for Oldroyd models, J. Differential
Equations, 248 (2010), 328-341.

[34] J. G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids,
Proc. Roy. Soc. Edinburgh Sect. A, 245 (1958), 278-297.

[35] R. Wan, Some new global results to the incompressible Oldroyd-B model, Z. Angew. Math. Phys., 70
(2019), Art. 28, 29 pp.

[36] J. Wu, J. Zhao, Global regularity for the generalized incompressible Oldroyd-B model with only
velocity dissipation and no stress tensor damping, preprint.

[37] Z. Ye, On the global regularity of the 2D Oldroyd-B-type model, Ann. Mat. Pura Appl., 198 (2019),
465-4809.

[38] Z. Ye, X. Xu, Global regularity for the 2D Oldroyd-B model in the corotational case, Math. Methods
Appl. Sci., 39 (2016), 3866-3879.

[39] X. Zhai, Global solutions to the n-dimensional incompressible Oldroyd-B model without damping
mechanism, arXiv:1810.08048v2 [math.AP].

[40] Y. Zhu, Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism,
Journal of Functional Analysis, 274 (2017), 2039-2060.

[41] R. Zi, D. Fang, T. Zhang, Global solution to the incompressible Oldroyd-B type model in the critical
L? framework: the case of the non-small coupling paramrter, Arch. Ration. Mech. Anal., 213 (2014),
651-687.

! DEPARTMENT OF MATHEMATICS, OKLAHOMA STATE UNIVERSITY, STILLWATER, OK 74078,
UNITED STATES
Email address: jiahong.wu@okstate.edu



40 JIAHONG WU AND JIEFENG ZHAO

2 SCHOOL OF MATHEMATICS AND INFORMATION SCIENCE, HENAN POLYTECHNIC UNIVERSITY,
Jiaozuo 454003, P. R. CHINA
Email address: zhaojiefeng003@hpu.edu.cn



	1. Introduction
	2. Littlewood-Paley theory and Besov spaces
	2.1. Littlewood-Paley decomposition
	2.2. Homogeneous Besov spaces
	2.3. Hybrid Besov spaces
	2.4. Paraproducts and product estimates in hybrid Besov spaces
	2.5. Triple product estimates in hybrid Besov spaces

	3. A Priori estimates
	3.1. Proof of Lemma 3.2
	3.2. Proof of Lemma 3.3
	3.3.  Proof of Proposition 3.1

	4. The global existence and the uniqueness
	4.1. The global existence
	4.2. The uniqueness

	5. High regularity properties for more regular data
	References

