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Abstract. This paper presents a new small data global well-posedness result on the

incompressible Oldroyd-B model with only dissipation in the equation of stress tensor

(without stress tensor damping or velocity dissipation). The dissipation is not necessarily

given by the standard Laplacian operator and any fractional dissipation with fractional

power equal to or greater than 1/2 suffices. The functional setting is the hybrid homo-

geneous Besov spaces, which allow us to maximize the functional spaces of the initial

data.

1. Introduction

The Oldroyd-B models, derived by J.G. Oldroyd, reflects one of the most popular

constitutive laws obeyed by viscoelastic fluids such as solvent with particles suspended in

it (see, e.g., [3, 12, 15, 34]). A general form of the d-dimensional incompressible Oldroyd-B

model is given by
ut + u · ∇u+ νΛ2αu+∇p = µ1∇ · τ, (t, x) ∈ R+ × Rd,

τt + u · ∇τ + aτ + ηΛ2βτ +Q(τ,∇u) = µ2D(u),

∇ · u = 0,

u(0, x) = u0(x), τ(0, x) = τ0(x),

(1.1)

where u(t, x) stands for the velocity, p(t, x) the pressure and τ(t, x) the non-Newtonian

part of the stress tensor (a d-by-d symmetric matrix), and 0 ≤ α, β ≤ 1 and ν, µ1, a,

µ2 are nonnegative constants. Here D(u) is the symmetric part of the velocity gradient,

namely

D(u) =
1

2

(
∇u+ (∇u)>

)
and the bilinear term Q assumes the following form

Q(τ,∇u) = τW (u)−W (u)τ − b
(
D(u)τ + τD(u)

)
(1.2)

with b ∈ [−1, 1] being a constant and W (u) being the skew-symmetric part of the ∇u,

W (u) =
1

2

(
∇u− (∇u)>

)
.
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In addition, Λ = (−∆)
1
2 is the Zygmund operator and the general fractional Laplacian

operator (−∆)γ is defined through the Fourier transform, namely

Λ̂γf(ξ) = |ξ|γ f̂(ξ).

When α = 1 and β = 1, (1.1) reduces to the standard Oldroyd-B model. For general

fractional powers α ≥ 0 and β ≥ 0, (1.1) allows us to examine a family of equations

simultaneously and helps us understand how the properties of the solutions vary with

respect to the sizes of α and β.

Due to its special structure and features, the Oldroyd-B models has recently attracted

considerable interests from the community of mathematical fluids. A rich array of results

have been established on the well-posedness and closely related problems. To place our

results into the context of existing research, we briefly describe some of related work. We

start with the case α = 1 and η = 0. When ν > 0 and a > 0, the existence and uniqueness

of local strong solutions have been established in Hilbert spaces Hs by Guillopé and Saut

[24]. If the coupling parameters and the initial data are sufficiently small, these solutions

are shown to be global [25]. Similar results in Ls−Lr space were obtained by Fernandez-

Cara, Guillén and Ortega [22]. The study of the existence and uniqueness in the critical

Besov setting was initiated by Chemin and Masmoudi [7]. Their results were improved in

the critical Lp framework for the case of the non-small coupling parameters by Zi, Fang

and Zhang [41]. In the corotational case, namely b = 0 in (1.2), the global existence of

weak solutions was established by Lions and Masmoudi [32].

Several more recent results dealt with the case when there is only kinematic dissipation

(no damping or dissipation in τ), namely (1.1) with ν > 0 and a = η = 0. Zhu [40]

obtained small global smooth solutions of the 3D Oldroyd-B model with α = 1 in time-

weighted Sobolev spaces. Chen and Hao [8] extended this small data global well-posedness

to the critical Besov setting, again for α = 1. The work of Wu and Zhao [36] were able

to establish the small data global well-posedness in critical Besov spaces for any α in the

range 1/2 ≤ α ≤ 1.

We now turn to the case when there is no kinematic dissipation, namely (1.1) with

ν = 0. The well-posedness problem becomes extremely difficult. When both the damping

mechanism and the Laplacian dissipation are present for τ , Elgindi and Rousset [18] were

able to establish a small data global well-posedness result in the Sobolev space for the

2D Oldroyd-B. The 3D case was resolved by Elgindi and Liu [19]. We remark that the

damping mechanism in τ plays a crucial role in [18, 19]. A recent work of Constantin,

Wu, Zhao and Zhu [15] were able to establish the small data global well-posedness for

(1.1) with ν = 0, a = 0 and 1
2
≤ β ≤ 1, the case of no damping and general fractional

dissipation in τ . This result is for general d-dimensional space in the Sobolev space

Hs(Rd) with s > 1 + d
2
. [15] offered a key observation that the non-Newtonian stress

tensor can actually regularize the viscoelastic fluids. We remark that there is a very large

literature on the Oldroyd-B model and interested readers may consult the references
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[2, 9, 11, 12, 13, 14, 15, 20, 21, 26, 27, 29, 30, 31, 33, 35, 36, 37, 38, 39]. This list is by no

means exhaustive.

This paper focuses on the following generalized Oldroyd-B model without dissipation

or damping mechanism
ut + u · ∇u+∇p = µ1∇ · τ, (t, x) ∈ R+ × Rd,

τt + u · ∇τ + ηΛ2βτ +Q(τ,∇u) = µ2D(u),

∇ · u = 0,

u(0, x) = u0(x), τ(0, x) = τ0(x),

(1.3)

Th goal of this paper is to extend the work of Constantin, Wu, Zhao and Zhu [15] to

critical Besov setting. The small data global well-posedness of [15] is in the Sobolev

setting Hs(Rd) with s > 1 + d
2
. The advantage of the critical Besov spaces is that they

weaken the regularity requirements on the initial data and maximize the functional setting

of the solutions.

Due to the lack of the kinematic dissipation, the global well-posedness and the stability

problem on (1.3) is not trivial. The first equation in (1.3) is a forced incompressible

Euler equation. As revealed in the work of Kiselev and Sverak [28], the gradient of the

vorticity (the curl of the velocity) to the 2D Euler equation in a unit disk can grow double

exponentially in time. These growth results on the Euler and forced Euler equations

appear to suggest that we should not expect the stability of (1.3) near the trivial solution

in any Sobolev or Besov settings. The results of this paper are possible due to a new

observation. Let P = I −∇∆−1∇· denote the standard Leray projection onto divergence-

free vector fields. It is easy to check from (1.3) that u and Λ−1P∇ · τ satisfy
∂tu−∇−1P∇ · τ = −P(u · ∇u), x ∈ Rd, t > 0,

∂tΛ
−1P∇ · τ + ηΛ2βΛ−1P∇ · τ + µ2

2
Λu

= −Λ−1P∇ · (u · ∇τ)− Λ−1P∇ ·Q(τ,∇u).

(1.4)

For the sake of clarity, we focus on the linearization of (1.4), which is given by{
∂tu−∇−1P∇ · τ = 0,

∂tΛ
−1P∇ · τ + ηΛ2βΛ−1P∇ · τ + µ2

2
Λu = 0.

(1.5)

By differentiating (1.5) in t and making suitable substitutions, we find that u and∇−1P∇·
τ satisfy exactly the same damped wave equation,{

∂ttu+ ηΛ2β∂tu− µ2
2

∆u = 0,

∂tt∇−1P∇ · τ + ηΛ2β∂t∇−1P∇ · τ − µ2
2

∆∇−1P∇ · τ = 0.
(1.6)

(1.6) reveals the hidden dissipation and dispersion regularization properties for u and

∇−1P∇·τ . We exploit the regularization of (1.6) by constructing suitable energy function-

als based on (1.6). This explains the prime reason why the small data global wellposedness

and stability are possible even when the velocity equation involves no dissipation and the

equation of τ has no damping.
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We choose the critical Besov space as the functional setup for our global solutions.

We explain how we select the precise regularity indices of the Besov spaces. For the

d-dimensional incompressible Navier-Stokes equations with general fractional dissipation

∂tu+ u · ∇u+∇p+ νΛ2αu = 0, x ∈ Rd, t > 0, (1.7)

one of the standard critical space is the homogeneous Besov space

Ḃ
1+ d

2
−2α

2,1 (Rd).

Critical spaces on the Navier-Stokes or generalized Navier-Stokes equations can be found

in many papers and books (see, e.g., [1, 4, 5, 6, 23]). Any solution (u, p) of (1.7) and its

naturally scaled counterpart (uλ, pλ)) with

uλ(t, x) = λ2α−1 u(λ2αt, λx), pλ(t, x) = λ4α−2 p(λ2αt, λx)

share the equivalent norm

‖u(t, ·)‖
Ḃ

1+ d2−2α

2,1 (Rd)
≈ ‖uλ(λ−2αt, ·)‖

Ḃ
1+ d2−2α

2,1 (Rd)
.

As can be seen from (1.6), both u and Λ−1P∇·τ are fractionally dissipated via the operator

(−∆)β in addition to the dispersion effect. As a consequence, the natural setup for u and

τ should involve the homogeneous critical Besov space

Ḃ
1+ d

2
−2β

2,1 (Rd).

The situation here is more complex due to the nonlinear coupling and the partial dissipa-

tion in (1.3). Strictly speaking, there is no scaling invariance for (1.3). As we explain later

in this introduction, the low frequencies and the high frequencies have different regularity

setting and we employ the hybrid Besovv spaces introduced by Danchin in [16, 17] and

used by Chen, Miao and Zhang [10] in their studies of the compressible Navier-Stokes

equations.

After explaining some of the basic ingredients of our main result, we are ready to

provide a precise statement.

Theorem 1.1. Let d ≥ 2 and µ1, µ2, η > 0. Assume

either
1

2
< β ≤ 1 or β =

1

2
with η2 ≥ Cµ1µ2,

where C > 0 is a pure constant. Then there exists a small constant ε such that if τ0 ∈
Ḃ

d
2

+1−2β

2,1 ∩ Ḃ
d
2
2,1, u0 ∈ Ḃ

d
2

+1−2β

2,1 ∩ Ḃ
d
2

+2β−1

2,1 satisfy ∇ · u0 = 0 and

‖u0‖
Ḃ
d
2+1−2β

2,1 ∩Ḃ
d
2+2β−1

2,1

+ ‖τ0‖
Ḃ
d
2+1−2β

2,1 ∩Ḃ
d
2
2,1

≤ ε, (1.8)

then (1.3) has a unique global solution (u, τ) satisfying

u ∈ C(R+; Ḃ
d
2

+1−2β

2,1 ∩ Ḃ
d
2

+2β−1

2,1 ) ∩ L1(R+; Ḃ
d
2

+1

2,1 );

τ ∈ C(R+; Ḃ
d
2

+1−2β

2,1 ∩ Ḃ
d
2
2,1), τ ∈ L1(R+; Ḃ

d
2

+1

2,1 ∩ Ḃ
d
2

+2β

2,1 ).
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In fact, we have

sup
t

(‖u‖
Ḃ
d
2+1−2β

2,1 ∩Ḃ
d
2+2β−1

2,1

+ ‖τ‖
Ḃ
d
2+1−2β

2,1 ∩Ḃ
d
2
2,1

)

+

∫ ∞
0

‖u‖
Ḃ
d
2+1

2,1

dt′ +

∫ ∞
0

‖τ‖h
Ḃ
d
2+2β

2,1

dt′ . ε (1.9)

and ∫ t

0

‖τ(t′)‖l
Ḃ
d
2+1

2,1

dt′ . ε+ εt. (1.10)

Furthermore, if (u0, τ0) is more regular and sufficiently small, say τ0 ∈ Ḃ
d
2

+1−2β

2,1 ∩ Ḃ
d
2

+s

2,1 ,

u0 ∈ Ḃ
d
2

+1−2β

2,1 ∩ Ḃ
d
2

+2β+s−1

2,1 with s > 0 and their norms are smaller than ε depending on

s, then we have

u ∈ C(R+; Ḃ
d
2

+1−2β

2,1 ∩ Ḃ
d
2

+2β+s−1

2,1 ) ∩ L1(R+; Ḃ
d
2

+1

2,1 ∩ Ḃ
d
2

+1+s

2,1 );

τ ∈ C(R+; Ḃ
d
2

+1−2β

2,1 ∩ Ḃ
d
2

+s

2,1 ), τ ∈ L1(R+; Ḃ
d
2

+1

2,1 ∩ Ḃ
d
2

+2β+s

2,1 ).
(1.11)

Our result establishes the small data global existence and regularity of (1.3) in critical

Besov spaces. It is not clear if the upper bound (1.10) for the time integral of the lower

frequency piece of τ can be improved to a time independent bound. In order to describe

our proof, we explain how the low frequencies and the high frequencies are set in different

regularity Besov spaces in order to suit the linearized system in (1.5) or equivalently in

(1.6). (1.5) can be written as

∂t

(
u

∇−1P∇ · τ

)
= A

(
u

∇−1P∇ · τ

)
, (1.12)

where

A(Λ) =

(
0 µ1Λ

−µ2
2

Λ −ηΛ2β

)
.

Let τ̃ = Λ−1P∇ · τ , then the solution can be expressed as

(u(t), τ̃(t))> = eA(Λ)t(u(0), τ̃(0))>,

In the frequency space, A becomes a multiplier and the eigenvalues of A(ξ) are given by

λ+ = −
η|ξ|2β +

√
η2|ξ|4β − 2µ1µ2|ξ|2

2
,

λ− = −
η|ξ|2β −

√
η2|ξ|4β − 2µ1µ2|ξ|2

2
.

The change of functions

v̂+(ξ) =
µ2

2
|ξ|û+ λ+

ˆ̃τ,

v̂−(ξ) = λ+û+ µ1|ξ|ˆ̃τ

diagonalize the system (1.12).
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For 1
2
≤ β ≤ 1 and as ξ → 0,

λ+ ∼ −1

2
η|ξ|2β and λ− ∼ −1

2
η|ξ|2β,

v+ and v− both behave like the heat kernel operator e−
1
2
ηtΛ2β

. Therefore, for low frequen-

cies, u and τ̃ have the parabolic behavior

u, τ̃ ∼ e−
1
2
ηtΛ2β

and this explains why we choose the critical Besov space Ḃ
d
2

+1−2β

2,1 for the low frequencies.

Similarly, for 1
2
≤ β ≤ 1 and as ξ →∞,

λ+ ∼ −η|ξ|2β and λ− ∼ −µ1µ2

2η
|ξ|2−2β,

and v+ and v− behave like the heat kernel operator e−ηtΛ
2β

and e−
µ1µ2
2η

tΛ2−2β

, respectively,

for the high frequencies. In the case when β = 1, λ+ ∼ −η|ξ|2 and λ− ∼ −µ1µ2
2η

as ξ →∞,

v+ has the parabolic smoothing effect that behaves like heat kernel operator e−ηtΛ
2β

, and

v− has the damping effect for the high frequencies. τ̃ and u have similar behaviors as v+

and v−, respectively. This explains why we choose the critical Besov space Ḃ
d
2

+2β−1

2,1 for u

and Ḃ
d
2
2,1 for τ .

To accommodate the different behaviors of the solution (u, τ) at low and high frequen-

cies, we adopt the hybrid Besov spaces (with different regularity indices for low and high

frequencies) as our functional setting. This explains the selection of the Besov spaces for

the initial data in Theorem 1.1. The proof of Theorem 1.1 focuses on establishing the

global bound on the solution. The framework of the proof is the bootstrapping argument.

This process starts with the definition of a suitable energy functional. As explained be-

fore, we need to make use of the stabilizing and smoothing effect of the wave structure in

(1.6). In addition, we also incorporate the hybrid Besov setting in the energy functional.

As detailed in the following section, we use ‖u‖l
Ḃsp,q

and ‖u‖h
Ḃsp,q

to represent the low and

high frequency pieces of the Besov norm Ḃs
p,q. Therefore, our energy functional E consists

of four parts

E(t) = El
0(t) + Eh

0 (t) + El(t) + Eh(t), (1.13)

where El
0(t) and Eh

0 (t) denote the low and high frequencies associated with the wave

structure, more precisely,

El
0(t) , sup

t
‖u‖l

Ḃ
d
2+1−2β

2,1

+sup
t
‖Λ−1P∇·τ‖l

Ḃ
d
2+1−2β

2,1

+

∫ t

0

‖u‖l
Ḃ
d
2+1

2,1

dt′+

∫ t

0

‖Λ−1P∇·τ‖l
Ḃ
d
2+1

2,1

dt′,

Eh
0 (t) , sup

t
‖u‖h

Ḃ
d
2+2β−1

2,1

+ sup
t
‖P∇ · τ‖h

Ḃ
d
2−1

2,1

+

∫ t

0

‖u‖h
Ḃ
d
2+1

2,1

dt′,
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and El(t) and Eh(t) are the the low and high frequency pieces for the original system,

El(t) , sup
t
‖u‖l

Ḃ
d
2+1−2β

2,1

+ sup
t
‖τ‖l

Ḃ
d
2+1−2β

2,1

+

∫ t

0

‖u‖l
Ḃ
d
2+1

2,1

dt′ +

∫ t

0

‖Λ−1P∇ · τ‖l
Ḃ
d
2+1

2,1

dt′,

Eh(t) , sup
t
‖u‖h

Ḃ
d
2+2β−1

2,1

+ sup
t
‖τ‖h

Ḃ
d
2
2,1

+

∫ t

0

‖u‖h
Ḃ
d
2+1

2,1

dt′ +

∫ t

0

‖τ‖h
Ḃ
d
2+2β

2,1

dt′.

It is clear from the definitions of El
0(t), Eh

0 (t), El(t) and Eh(t) that

E(t) ≈ El(t) + Eh(t).

In addition, we also estimate the time integral of the lower frequency piece of τ , namely

El
τ (t) , sup

t
‖τ‖l

Ḃ
d
2+1−2β

2,1

+

∫ t

0

‖τ‖l
Ḃ
d
2+1

2,1

dt′.

To prove the global bound and the existence part of Theorem 1.1, our main efforts are

devoted to establishing the inequality

E(t) ≤ C1E0 + C2 E
2(t), (1.14)

where C1 and C2 are positive constants independent of t, and

E0 = ‖u0‖
Ḃ
d
2+1−2β, d2+2β−1 + ‖τ0‖

Ḃ
d
2+1−2β, d2

.

The bootstrapping argument applied to (1.14) implies the desired result. That is, there

exists a small constant ε > 0 such that, if (1.8) holds or E0 ≤ ε2, then, for a pure constant

C > 0,

E(t) ≤ C ε2 for all t > 0.

This uniform upper bound, in particular, yields the global bound on the Besov norms of

(u, τ). Together with the local well-posedness which follows from a standard procedure

(see, e.g., [1, 8, 16]), we obtain the global existence part of Theorem 1.1. The proof of

(1.14) is very technical and takes advantage of the special wave structure. More details

can be found in Sections 3 and 4.

The proof of the uniqueness part of Theorem 1.1 is not trivial. Due to the lack of the

velocity dissipation in the original system (1.3), we also need to make use of the parabolic

smoothing or damping effect of the wave structure as well. We establish a priori bounds

on the difference of two solutions combining the wave equations and the original system.

More technical details can be found in Subsection 4.2.

To establish the high regularity part of Theorem 1.1, We replace the energy pieces

associated with the high frequencies in (1.13) by the following more regular pieces:

E
′h
0 (t) , sup

t
‖u‖h

Ḃ
d
2+2β

2,1

+ sup
t
‖P∇ · τ‖h

Ḃ
d
2
2,1

+

∫ t

0

‖u‖h
Ḃ
d
2+2

2,1

dt′, (1.15)

E
′h(t) , sup

t
‖u‖h

Ḃ
d
2+2β

2,1

+ sup
t
‖τ‖h

Ḃ
d
2+1

2,1

+

∫ t

0

‖u‖h
Ḃ
d
2+2

2,1

dt′ +

∫ t

0

‖τ‖h
Ḃ
d
2+2β+1

2,1

dt′. (1.16)
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The key component of the proof is the following energy inequality

E
′h
0 (t) + E ′

h
(t) ≤ C1E

′

0 + C2((E ′
h
0(t) + E

′h(t))E(t) + E2(t)). (1.17)

The proof of this energy inequality shares some similarities as the proof of (1.14), and is

a consequence of a tedious process of controlling many terms. The high regularity part

in (1.11) follows directly from (1.17). More details can be found in Section 5.

The rest of this paper is divided into four sections. Section 2 serves as a preparation.

It provides the definitions of the homogeneous hybrid Besov spaces and supplies various

inequalities such as bounds for products and triple products in Besov norms. Section 3

presents the proof of the key energy inequality, namely (1.14). The proof is long and

involves many tedious estimates. Section 4 proves the existence part of Theorem 1.1 by

applying the bootstrapping argument to (1.14). The proof of the uniqueness part is also

detailed in this section. The last section, Section 5, establishes the higher regularity part

of Theorem 1.1.

2. Littlewood-Paley theory and Besov spaces

We review several facts about the homogeneous Littlewood-Paley theory, Besov spaces,

hybrid Besov spaces, and products and triple product estimates in these spaces.

2.1. Littlewood-Paley decomposition. The definition of the homogeneous Littlewood-

Paley decomposition relies on the dyadic partition of unity (see, e.g., [1]). Let ϕ ∈ C∞(Rd)

be a radial functions supported in C = {ξ ∈ Rd, 5
6
≤ |ξ| ≤ 12

5
} satisfying∑

j∈Z

ϕ(2−jξ) = 1 if ξ 6= 0.

We use f̂ or F(f) to denotes the Fourier transform of f , and F−1(f) to denote the inverse

Fourier transform of f . We set

h(x) = F−1
(
ϕ(ξ)

)
and define the dyadic blocks as follows

∆̇ju = ϕ(2−jD)u = 2jd
∫
Rd
h(2jy)u(x− y)dy,

Ṡju =
∑
j′≤j−1

∆̇j′u.

Definition 2.1. We denote by S ′h the space of tempered distributions u such that

lim
j→−∞

Ṡju = 0 in S ′.

Then the homogeneous Littlewood-Paley decomposition is defined as

u =
∑
j∈Z

∆̇ju, for u ∈ S ′h.
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With our choice of ϕ, we have

∆̇j∆̇ku = 0 if |j − k| ≥ 2, and ∆̇j(Ṡk−1u∆̇ku) = 0 if |j − k| ≥ 4.

The following lemma provides Bernstein-type inequalities for fractional derivatives.

Lemma 2.1. Let β ≥ 0. Let 1 ≤ p ≤ q ≤ +∞.

(1) Let j ∈ Z and m > 0. If f satisfies

suppf̂ ⊆ {ξ ∈ Rd, |ξ| ≤ m 2j},

then, for some constant C independent of f and j,

‖Λβf‖Lq(Rd) ≤ C 2j|β|+jd( 1
p
− 1
q

)‖f‖Lp(Rd),

(2) Let j ∈ Z and m1,m2 > 0. If f satisfies

suppf̂ ⊆ {ξ ∈ Rd, m12j ≤ |ξ| ≤ m22j},

then, for two constants C1 and C2 independent of f and j,

C12βj‖f‖Lq(Rd) ≤ ‖Λβf‖Lq(Rd) ≤ C22βj+jd( 1
p
− 1
q

)‖f‖Lp(Rd).

Especially, Lemma 2.1 holds for the dyadic blocks, namely for f = ∆̇ju.

2.2. Homogeneous Besov spaces.

Definition 2.2. For s ∈ R and 1 ≤ p, r ≤ ∞, the homogeneous Besov space Ḃs
p,r is

defined as

Ḃs
p,r , {u ∈ S ′h, ‖u‖Ḃsp,r <∞},

where the homogeneous Besov norm is given by

‖u‖Ḃsp,r , ‖{2
js‖∆̇ju‖Lp}j‖lr .

Clearly, the definition of the space Ḃs
p,r does not depend on the choice of ϕ.

2.3. Hybrid Besov spaces. The following hybrid Besov spaces allow different regularity

indices for low and high frequencies (see [17]).

Definition 2.3. For s, t ∈ R, the hybrid Besov space Ḃs,t is defined by

Ḃs,t , {u ∈ S ′h, ‖u‖Ḃs,t <∞}

with the norm given by

‖u‖Ḃs,t =
∑
j≤0

2js‖∆̇ju‖L2 +
∑
j>0

2jt‖∆̇ju‖L2 .

We will use the notation

‖u‖l
Ḃs2,1
,
∑
j≤0

2js‖∆̇ju‖p and ‖u‖h
Ḃs2,1
,
∑
j>0

2js‖∆̇ju‖p.

For s, t ∈ R and r ∈ [1,∞], LrT (Ḃs,t) = Lr(0, T ; Ḃs,t) denotes the standard space-time

space with the norm

‖u‖LrT (Ḃs,t) = ‖‖u‖Ḃs,t‖Lr(0,T ).
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In contrast, the norm of the space-time Besov space L̃rT (Ḃs,t) is defined by

‖u‖L̃rT (Ḃs,t) =
∑
j≤0

2js‖∆̇ju‖LrTL2 +
∑
j>0

2js‖∆̇ju‖LrTL2 .

By the Minkowski inequality, we easily find that L̃1
T (Ḃs,t) = L1

T (Ḃs,t) and L̃rT (Ḃs,t) ⊆
LrT (Ḃs,t) for r ≥ 1 (see, e.g., [1]).

The following lemma is a direct consequence of the definition of the hybrid Besov space.

Please refer to [17] for more details.

Lemma 2.2. (i) We have Ḃs,s = Ḃs
2,1.

(ii) If s ≤ t then Ḃs,t = Ḃs
2,1 ∩ Ḃt

2,1. Otherwise, Ḃs,t = Ḃs
2,1 + Ḃt

2,1.

(iii) If s1 ≤ s2 and t1 ≥ t2, then Ḃs1,t1 ↪→ Ḃs2,t2.

2.4. Paraproducts and product estimates in hybrid Besov spaces. We continue

to review more information on the Besov spaces and hybrid Besov spaces. Especially

product and triple product estimates in these spaces are provided. We start by recalling

the paraproduct decomposition

uv = Ṫuv + Ṫvu+ Ṙ(u, v),

where the homogeneous paraproduct of v by u is given by

Ṫuv ,
∑
q

Ṡq−1u∆̇qv.

and the homogeneous remainder of u and v by

Ṙ(u, v) ,
∑
q

∆̇qu
˙̃

∆qv, and
˙̃

∆q = ∆̇q−1 + ∆̇q + ∆̇q+1.

One useful property of the homogeneous Besov spaces is the Besov embedding.

Proposition 2.3. Assume s, s1, s2 ∈ R and 1 ≤ p, p1, p2, r, r1, r2 ≤ +∞. Then we have

the following properties:

(i) If p1 ≤ p2, r1 ≤ r2, then Ḃs
p1,r1

↪→ Ḃ
s− d

p1
+ d
p2

p2,r2 .

(ii) If s1 6= s2 and θ ∈ (0, 1), then

‖u‖
Ḃ
θs1+(1−θ)s2
p,r

≤ ‖u‖θ
Ḃ
s1
p,r
‖u‖1−θ

Ḃ
s2
p,r
.

(iii) Ḣs ≈ Ḃs
2,2 and

1

C |s|+1
‖u‖Ḃs2,2 ≤ ‖u‖Ḣs ≤ C |s|+1‖u‖Ḃs2,2 .

(iv) If s > 0, then Ḃs
2,1 ∩ L∞ (especially Ḃ

d
2
2,1) is an algebra.

Proposition 2.4. Assume s > 0, u ∈ L∞∩ Ḃs
2,1 and v ∈ L∞∩ Ḃs

2,1. Then uv ∈ L∞∩ Ḃs
2,1

and

‖uv‖Ḃs2,1 . ‖u‖L∞‖v‖Ḃs2,1 + ‖v‖L∞‖u‖Ḃs2,1 .

Let s1, s2 ≤ d
2

such that s1 + s2 > 0, u ∈ Ḃs1
2,1 and v ∈ Ḃs2

2,1. Then uv ∈ Ḃs1+s2− d2
2,1 and

‖uv‖
Ḃ
s1+s2−

d
2

2,1

. ‖u‖Ḃs12,1‖v‖Ḃs22,1 .
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The two Propositions above can be found in [1]. The following estimates in hybrid Besov

spaces are very useful and their proofs can be found in [17]. For reader’s convenience, we

provide the proof.

Proposition 2.5. Let s1, s2, t1, t2 ∈ R and s1 ≤ d
2

and s2 ≤ d
2
. Then following estimate

holds

‖Ṫuv‖
Ḃs1+t1−

d
2 ,s2+t2−

d
2
. ‖u‖Ḃs1,s2‖v‖Ḃt1,t2 .

If min(s1 + t1, s2 + t2) > 0, then

‖Ṙ(u, v)‖
Ḃs1+t1−

d
2 ,s2+t2−

d
2
. ‖u‖Ḃs1,s2‖v‖Ḃt1,t2 .

If u ∈ L∞,

‖Ṫuv‖Ḃt1,t2 . ‖u‖L∞‖v‖Ḃt1,t2 ,
and, if min(t1, t2) > 0, then

‖Ṙ(u, v)‖Ḃt1,t2 . ‖u‖L∞‖v‖Ḃt1,t2 .

Remark 2.6. When d ≥ 2, we have ‖uv‖
Ḃ
d
2+1−2β, d2

. ‖u‖
Ḃ
d
2
2,1

‖v‖
Ḃ
d
2+1−2β, d2

(1
2
≤ β ≤ 1).

Proof. Clearly,

∆̇pṪuv ,
∑
|q−p|≤3

∆̇p(Ṡq−1∆̇qv).

When p ≤ 0, q ≈ p and s1 ≤ d
2
, then

‖Ṡq−1u‖L∞ .
∑
q′≤q−2

2q
′ d
2‖∆̇q′u‖L2

.
∑
q′≤q−2

2q
′( d

2
−s1)2q

′s1‖∆̇q′u‖L2

. 2q(
d
2
−s1)‖u‖Ḃs1,s2 .

When p > 0, q ≈ p and s1, s2 ≤ d
2
, then

‖Ṡq−1u‖L∞ .
∑
q′≤q−2

2q
′ d
2‖∆̇q′u‖L2

.
∑
q′≤0

2q
′( d

2
−s1)2q

′s1‖∆̇q′u‖L2 +
∑

0<q′≤q−2

2q
′( d

2
−s2)2q

′s2‖∆̇q′u‖L2

. (
∑
q′≤0

2q
′( d

2
−s1)cq′ +

∑
0<q′≤q−2

2q
′( d

2
−s2)cq′)‖u‖Ḃs1,s2

. 2q(
d
2
−s2)‖u‖Ḃs1,s2 ,

where the sequence cj satisfies
∑

j∈Z cj ≤ 1. Thus,

‖Ṫuv‖
Ḃs1+t1−

d
2 ,s2+t2−

d
2
.

∑
p≤0

2p(s1+t1− d2 )‖∆̇pṪuv‖L2 +
∑
p>0

2p(s2+t2− d2 )‖∆̇pṪuv‖L2

.
∑
p≤0

2p(s1+t1− d2 )
∑
|q−p|≤3

‖Ṡq−1u‖L∞‖∆̇qv‖L2
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+
∑
p>0

2p(s2+t2− d2 )
∑
|q−p|≤3

‖Ṡq−1u‖L∞‖∆̇qv‖L2

.
∑
p≤0

2p(s1+t1− d2 )
∑
|q−p|≤3

2q(
d
2
−s1)‖u‖l

Ḃs1,s2
‖∆̇qv‖L2

+
∑
p>0

2p(s2+t2− d2 )
∑
|q−p|≤3

2q(
d
2
−s2)‖u‖Ḃs1,s2‖∆̇qv‖L2

. ‖u‖Ḃs1,s2‖v‖Ḃt1,t2 .

In addition,

‖Ṫuv‖Ḃt1,t2 .
∑
p≤0

2pt1‖∆̇pṪuv‖L2 +
∑
p>0

2pt2‖∆̇pṪuv‖L2

.
∑
p≤0

2pt1
∑
|q−p|≤3

‖Ṡq−1u‖L∞‖∆̇qv‖L2

+
∑
p>0

2pt2
∑
|q−p|≤3

‖Ṡq−1u‖L∞‖∆̇qv‖L2

.
∑
p≤0

2pt1‖u‖L∞‖∆̇pv‖L2 +
∑
p>0

2pt2‖u‖L∞‖∆̇pv‖L2

. ‖u‖L∞‖v‖Ḃt1,t2 .

Recall that

∆̇pṘ(u, v) =
∑
q≥p−2

∆̇p(∆̇qu
˙̃

∆qv).

If min(s1 + t1, s2 + t2) > 0, we have

‖Ṙ(u, v)‖
Ḃs1+t1−

d
2 ,s2+t2−

d
2
.
∑
p≤0

2p(s1+t1− d2 )‖∆̇pṘ(u, v)‖L2

+
∑
p>0

2p(s2+t2− d2 )‖∆̇pṘ(u, v)‖L2

.
∑
p≤0

2p(s1+t1− d2 )2p
d
2

∑
q≥p−2

‖∆̇qu‖L2‖ ˙̃
∆qv‖L2

+
∑
p>0

2p(s2+t2− d2 )2p
d
2

∑
q≥p−2

‖∆̇qu‖L2‖ ˙̃
∆qv‖L2

.
∑
p≤0

2p(s1+t1)
( ∑
p−2≤q≤0

+
∑
q>0

)
‖∆̇qu‖L2‖ ˙̃

∆qv‖L2

+
∑
p>0

2p(s2+t2)
∑
q≥p−2

‖∆̇qu‖L2‖ ˙̃
∆qv‖L2

.
∑
p≤0

2p(s1+t1)
( ∑
p−2≤q≤0

2−q(s1+t1)cq +
∑
q>0

2−q(s2+t2)cq
)
‖u‖Ḃs1,s2‖v‖Ḃt1,t2

+
∑
p>0

2p(s2+t2)
∑
q≥p−2

2−q(s2+t2)cq‖u‖Ḃs1,s2‖v‖Ḃt1,t2
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. ‖u‖Ḃs1,s2‖v‖Ḃt1,t2 .

If t1, t2 > 0, we could get directly that

‖Ṙ(u, v)‖Ḃt1,t2 .
∑
p≤0

2pt1‖∆̇pṘ(u, v)‖L2 +
∑
p>0

2pt2‖∆̇pṘ(u, v)‖L2

.
∑
p≤0

2pt1
∑
q≥p−2

‖u‖L∞‖
˙̃

∆qv‖L2 +
∑
p>0

2pt2
∑
q≥p−2

‖u‖L∞‖
˙̃

∆qv‖L2

.
∑
p≤0

2pt1
( ∑
p−2≤q≤0

+
∑
q>0

)
‖ ˙̃
∆qv‖L2‖u‖L∞ +

∑
p>0

2pt2
∑
q≥p−2

‖ ˙̃
∆qv‖L2‖u‖L∞

.
∑
p≤0

2pt1
( ∑
p−2≤q≤0

2−qt1cq +
∑
q>0

2−qt2cq
)
‖u‖L∞‖v‖Ḃt1,t2

+
∑
p>0

2pt2
∑
q≥p−2

2−qt2cq‖u‖L∞‖v‖Ḃt1,t2 . ‖u‖L∞‖v‖Ḃt1,t2 .

This completes the proof of Proposition 2.5. �

2.5. Triple product estimates in hybrid Besov spaces. The following triple product

estimates will be used frequently.

Proposition 2.7. Let u be a vector with ∇ · u = 0 and F be a an homogeneous smooth

function of degree m. Suppose that −1 − d
2
< s1, t1, s2, t2 ≤ 1 + d

2
and r1, r2 > −1 − d

2
.

The following estimates hold∣∣(F (D)∆̇p(u · ∇v), F (D)∆̇pv)
∣∣

. 2(m−s1)pcp‖u‖
Ḃ
d
2+1

2,1

‖v‖Ḃs12,1‖∆̇pF (D)v‖L2 ,∣∣(F (D)∆̇p(u · ∇v), F (D)∆̇pv)
∣∣

. cp2
pm2−pψ

s1,s2 (p)‖u‖
Ḃ
d
2+1

2,1

‖v‖Ḃs1,s2‖F (D)∆̇pv‖L2 ,∣∣(F (D)∆̇p(u · ∇v), F (D)∆̇pv)
∣∣

. cp2
p(m−r2)(‖u‖

Ḃ
d
2+1

2,1

‖v‖Ḃr1,r2 + ‖v‖
Ḃ
d
2+1

2,1

‖u‖Ḃr1,r2 )

×‖F (D)∆̇pv‖L2 for p > 0,∣∣(F (D)∆̇p(u · ∇v), ∆̇pw) + (∆̇p(u · ∇w), F (D)∆̇pv)
∣∣

. cp‖u‖
Ḃ
d
2+1

2,1

(2pm2−pψ
s1,s2 (p)‖v‖Ḃs1,s2‖∆̇pw‖L2

+2−pψ
t1,t2 (p)‖w‖Ḃt1,t2‖F (D)∆̇pv‖L2),

where the function ψα,β(p) define as ψα,β(p) = α if p ≤ 0, ψα,β(p) = β, if p > 0, and∑
p∈Z cp ≤ 1.
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Proof. We start with the following Bony decomposition

F (D)∆̇p(u · ∇v) = F (D)∆̇p

∑
|q−p|≤3

Ṡq−1u · ∇∆̇qv

+ F (D)∆̇p

∑
|q−p|≤3

∆̇qu · ∇Ṡq−1v

+ F (D)∆̇p

∑
q≥p−2

∆̇qu · ∇
˙̃

∆qv

= I1 + I2 + I3.

First, we give estimates for I2 for s1, s2 ≤ d
2

+ 1:

‖I2‖L2 . 2pm
∑
|q−p|≤3

‖∆̇qu‖L2‖Ṡq−1∇v‖L∞

. 2pm
∑
|q−p|≤3

cq2
−q( d

2
+1)‖u‖

Ḃ
d
2+1

2,1

2q(
d
2

+1−s1)‖v‖Ḃs12,1

. 2p(m−s1)cp‖u‖
Ḃ
d
2+1

2,1

‖v‖Ḃs12,1 .

When p ≤ 0, we have

‖I2‖L2 . 2pm
∑
|q−p|≤3

‖∆̇qu‖L2‖Ṡq−1∇v‖L∞

. 2pm
∑
|q−p|≤3

cq2
−q( d

2
+1)‖u‖

Ḃ
d
2+1

2,1

2q(
d
2

+1−s1)‖v‖Ḃs1,s2

. 2p(m−s1)cp‖u‖
Ḃ
d
2+1

2,1

‖v‖Ḃs1,s2 .

When p > 0, then

‖I2‖L2 . 2pm
∑
|q−p|≤3

‖∆̇qu‖L2‖Ṡq−1∇v‖L∞

. 2pm
∑
|q−p|≤3

cq2
−q( d

2
+1)‖u‖

Ḃ
d
2+1

2,1

2q(
d
2

+1−s2)‖v‖Ḃs1,s2

. 2p(m−s2)cp‖u‖
Ḃ
d
2+1

2,1

‖v‖Ḃs1,s2 .

Next, we bound I3 for s1, s2 > −d
2
− 1:

‖I3‖L2 . 2p(m+1+ d
2

)
∑
q≥p−2

‖∆̇qu‖L2‖∆̇qv‖L2

. 2p(m+1+ d
2

)
∑
q≥p−2

cq2
−q( d

2
+1)‖u‖

Ḃ
d
2+1

2,1

2−qs1‖v‖Ḃs12,1

. 2p(m−s1)cp‖u‖
Ḃ
d
2+1

2,1

‖v‖Ḃs12,1 .
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When p ≤ 0, then

‖I3‖L2 . 2p(m+1+ d
2

)
∑
q≥p−2

‖∆̇qu‖L2‖∆̇qv‖L2

. 2p(m+1+ d
2

)(
∑

p−2≤q≤0

+
∑
q>0

)‖∆̇qu‖L2‖∆̇qv‖L2

. 2p(m+1+ d
2

)(
∑

p−2≤q≤0

2−q(
d
2

+1)cq2
−qs1 +

∑
q>0

2−q(
d
2

+1)cq2
−qs2)‖u‖

Ḃ
d
2+1

2,1

‖v‖Ḃs1,s2

. 2p(m−s1)cp‖u‖
Ḃ
d
2+1

2,1

‖v‖Ḃs1,s2 .

When p > 0, then

‖I3‖L2 . 2p(m+1+ d
2

)
∑
q≥p−2

‖∆̇qu‖L2‖∆̇qv‖L2

. 2p(m+1+ d
2

)
∑
q≥p−2

cq2
−q( d

2
+1)‖u‖

Ḃ
d
2+1

2,1

2−qs2‖v‖Ḃs1,s2

. 2p(m−s2)cp‖u‖
Ḃ
d
2+1

2,1

‖v‖Ḃs1,s2 .

Notice that

I1 =
∑
|q−p|≤3

[F (D)∆̇p, Ṡq−1u] · ∇∆̇qv

+(Ṡq−1 − Ṡp−1)u · ∇∆̇q∆̇pF (D)v

+Ṡp−1u · ∇∆̇pF (D)v.

Thanks to ∇ · u = 0,∣∣(I1, ∆̇pF (D)v
∣∣

. (2(m−1)p‖∇u‖L∞‖∇∆̇qv‖L2 + 2p
d
2‖∆̇pu‖L2‖∆̇p∇F (D)v‖L2)‖∆̇pF (D)v‖L2

.
(

2(m−1)p‖u‖
Ḃ
d
2+1

2,1

cp2
−p(s1−1)‖v‖Ḃs12,1

+2−pcp‖u‖
Ḃ
d
2+1

2,1

2p(m+1−s1)‖v‖Ḃs12,1
)
‖∆̇pF (D)v‖L2

. 2(m−s1)pcp‖u‖
Ḃ
d
2+1

2,1

‖v‖Ḃs12,1‖∆̇pF (D)v‖L2 .

When p ≤ 0, we get∣∣(I1, ∆̇pF (D)v
∣∣

. (2(m−1)p‖∇u‖L∞‖∇∆̇qv‖L2 + 2p
d
2‖∆̇pu‖L2‖∆̇p∇F (D)v‖L2)‖∆̇pF (D)v‖L2

.
(

2(m−1)p‖u‖
Ḃ
d
2+1

2,1

cp2
−p(s1−1)‖v‖Ḃs1,s2

+2−pcp‖u‖
Ḃ
d
2+1

2,1

2p(m+1−s1)‖v‖Ḃs1,s2
)
‖∆̇pF (D)v‖L2

. 2(m−s1)pcp‖u‖
Ḃ
d
2+1

2,1

‖v‖Ḃs1,s2‖∆̇pF (D)v‖L2 .
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When p > 0, we have∣∣(I1, ∆̇pF (D)v
∣∣ .2(m−s2)pcp‖u‖

Ḃ
d
2+1

2,1

‖v‖Ḃs1,s2‖∆̇pF (D)v‖L2 .

Combing the estimates, we obtain the first two inequalities of the proposition. Similarly,

we can show the other two. This completes the proof. �

3. A Priori estimates

This section presents the proof of the key energy estimate, namely (1.14). To achieve

this, we need to overcome two main difficulties. The firs one is the lack of dissipation in the

velocity equation. This is dealt with by taking advantage of the wave structure described

in the introduction and involving suitable Lyapunov functional with inner product terms

in the energy estimates (see Lemmas 3.2 and 3.3). The second main complication is that

the proof of (1.14) estimates numerous terms and the dissipation is given by a general

fractional operator. To handle this issue, we make suitable combinations and make full

use of the fractional Laplacian.

More precisely, this section proves the proposition.

Proposition 3.1. Assume that (τ, u) is a solution to the system (1.3) on [0, T ). Then,

there exist two positive constants C1, C2 independent of T such that

E(t) ≤ C1E0 + C2E
2(t) and El

τ (t) . E0 + (t+ E(t))E(t), (3.1)

where E0 = ‖u0‖
Ḃ
d
2+1−2β, d2+2β−1 + ‖τ0‖

Ḃ
d
2+1−2β, d2

.

In order to prove Proposition 3.1, we need the following two important lemmas. The

first lemma sets up the estimates for El
0(t) + Eh

0 (t), the low-frequency and the high-

frequency energy pieces associated with (u,P∇ · τ). As we have explained in the intro-

duction, (u,P∇ · τ) satisfies a system of wave equations, who exhibits extra smoothing

and stabilizing properties. This lemma exploits this extra regularization to gain time

integrability of u.

Lemma 3.2. Let (u, τ) be the solution of system (1.3) on [0, T ). Then there exist two

positive constants C1, C2 independent of T such that

El
0(t) + Eh

0 (t) ≤C1E0 + C2

∫ t

0

∑
j≤0

2j(
d
2

+1−2β)|Gj|/(‖∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2)dt′

+ C2

∫ t

0

∑
j>0

2j
d
2

(
|Hj|/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2)
)

dt′,
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where

Gj = −µ2

2
(∆̇jP(u · ∇u), ∆̇ju)

− µ1(∆̇jΛ
−1P∇ · (u · ∇τ +Q(τ,∇u)), ∆̇j(Λ

−1P∇ · τ))

−K1(Λ2β−1∆̇jP(u · ∇u), ∆̇jΛ
−1P∇ · τ)

−K1(Λ2β−1∆̇jΛ
−1P∇ · (u · ∇τ +Q(τ,∇u)), ∆̇ju)

and

Hj = −η(Λ2β−1∆̇jP(u · ∇u),Λ2β−1∆̇ju)

− 4µ2
1

η
(∆̇jΛ

−1P∇ · (u · ∇τ +Q(τ,∇u)), ∆̇jΛ
−1P∇ · τ)

− µ1(Λ2β−1∆̇jP(u · ∇u), ∆̇jΛ
−1P∇ · τ)

− µ1(∆̇jΛ
−1P∇ · (u · ∇τ +Q(τ,∇u)),Λ2β−1∆̇ju).

The second lemma completes the first-stage estimates on El(t) + Eh(t). We bound it

in terms of the initial data and the nonlinear terms.

Lemma 3.3. Let (u, τ) be the solution of system (1.3) on [0, T ). There exist two constants

C1, C2 independent of T such that

El(t) + Eh(t) ≤C1E0 + C2

∫ t

0

∑
j≤0

2j(
d
2

+1−2β)
(
|Gj|/(‖∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2)

+ |Vj|/(‖∆̇ju‖L2 + ‖∆̇jτ‖L2)
)

dt′

+ C2

∫ t

0

∑
j>0

2j
d
2

(
|Hj|/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2)

+ |Yj|/‖∆̇jτ‖L2

)
dt′,

where Gj, Hj are defined as in Lemma 3.2 and

Vj = −µ2(∆̇j(u · ∇u), ∆̇ju)− µ1(∆̇j(u · ∇τ), ∆̇jτ)− µ1(∆̇jQ(τ,∇u), ∆̇jτ),

Yj = −(∆̇j(u · ∇τ), ∆̇jτ)− (∆̇jQ(τ,∇u), ∆̇jτ).

The rest of this section proves Lemmas 3.2 and 3.3, and then Proposition 3.1. For the

sake of the clarity, we divide the rest of this section into three subsections.

3.1. Proof of Lemma 3.2.

Proof of Lemma 3.2. Naturally we divide the proof into two major steps. The first step

focuses on the estimate of El
0(t) while the second step provides the estimate for Eh

0 (t).

Step 1: Estimate of El
0(t).

Let C̃0 = 2j0 , where j0 ∈ Z is a fixed constant which will be chosen in Step 2. By

Lemma 2.1, we can deduce that, for any function f , there exist two constants C̃1, C̃2 such
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that

C̃12κj‖∆̇jf‖Lp ≤ ‖Λκ∆̇jf‖Lp ≤ C̃22κj‖∆̇jf‖Lp , (3.2)

where κ ∈ [0,m] (m is a large positive integer). Applying the operator ∆̇jP and ∆̇jΛ
−1P∇·

to the first equation and the second equation of the system (1.3) respectively, we obtain
(∆̇ju)t − µ1Λ∆̇jΛ

−1P∇ · τ = −∆̇jP(u · ∇u),

(∆̇jΛ
−1P∇ · τ)t + ηΛ2β(∆̇jΛ

−1P∇ · τ) + µ2
2

Λ∆̇ju

= −∆̇jΛ
−1P∇ · (u · ∇τ +Q(τ,∇u)).

(3.3)

Taking the L2-inner product of the first equation of (3.3) with ∆̇ju and of the second

with ∆̇jΛ
−1P∇ · τ , we obtain the following two identities:

1

2

d

dt
‖∆̇ju‖2

L2 − µ1(Λ∆̇j(Λ
−1P∇ · τ), ∆̇ju) = −(∆̇jP(u · ∇u), ∆̇ju), (3.4)

and

1

2

d

dt
‖∆̇j(Λ

−1P∇ · τ)‖2
L2 + η‖Λβ∆̇j(Λ

−1P∇ · τ)‖2
L2 +

µ2

2
(Λ∆̇ju, ∆̇jΛ

−1P∇ · τ)

= −(∆̇jΛ
−1P∇ · (u · ∇τ +Q(τ,∇u)), ∆̇j(Λ

−1P∇ · τ)). (3.5)

Applying Λ2β−1 to the first equation of (3.3) and taking the inner product with Λ−1∆̇jP∇·
τ , taking the L2-inner product of the second equation of (3.3) with Λ2β−1∆̇ju, and then

summing them up, we have

d

dt
(∆̇jΛ

−1P∇ · τ,Λ2β−1∆̇ju)− µ1‖Λβ∆̇jΛ
−1P∇ · τ‖2

L2

+η(Λ2β−1∆̇ju,Λ
2β∆̇jΛ

−1P∇ · τ) +
µ2

2
‖Λβ∆̇ju‖2

L2

= −(Λ2β−1∆̇jP(u · ∇u), ∆̇jΛ
−1P∇ · τ) (3.6)

−(∆̇jΛ
−1P∇ · (u · ∇τ +Q(τ,∇u)),Λ2β−1∆̇ju).

A linear combination of (3.4), (3.5) and (3.6) with K1 to be determined later leads to

1

2

d

dt

(µ2

2
‖∆̇ju‖2

L2 + µ1‖∆̇jΛ
−1P∇ · τ‖2

L2 + 2K1(∆̇jΛ
−1P∇ · τ,Λ2β−1∆̇ju)

)
+
µ2K1

2
‖Λβ∆̇ju‖2

L2 + (µ1η − µ1K1)‖Λβ−1∆̇jP∇ · τ‖2
L2 (3.7)

+ηK1(Λ2β−1∆̇ju,Λ
2β∆̇jΛ

−1P∇ · τ) = Gj.

With 1
2
≤ β ≤ 1 and (3.2), we have, for j ≤ j0 and for any ε0, ε1 > 0,

2K1|(∆̇jΛ
−1P∇ · τ,Λ2β−1∆̇ju)|

≤ 1

ε0
‖∆̇ju‖2

2 + ε0C̃
2
2 C̃

2(2β−1)
0 K2

1‖∆̇jΛ
−1P∇ · τ‖2

L2 ,

ηK1|(Λ2β−1∆̇ju,Λ
2β∆̇jΛ

−1P∇ · τ)|

≤ ε1ηK1

2
‖Λβ∆̇ju‖2

L2 +
C̃

2(2β−1)
0 C̃2

2ηK1

2ε1
‖Λβ−1∆̇jP∇ · τ‖2

L2 .
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Thanks to (3.2), choosing ε0 = 4
µ2
, ε1 = µ2

2η
, K1 small enough and inserting the two

inequalities above in (3.7), we obtain

µ2

2
‖∆̇ju‖2

L2 + µ1‖∆̇jΛ
−1P∇ · τ‖2

L2 + 2K1(∆̇jΛ
−1P∇ · τ,Λ2β−1∆̇ju)

≈ ‖∆̇ju‖2
L2 + ‖∆̇jΛ

−1P∇ · τ‖2
L2

and

1

2

d

dt

(µ2

2
‖∆̇ju‖2

L2 + µ1‖∆̇jΛ
−1P∇ · τ‖2

L2 + 2K1(∆̇jΛ
−1P∇ · τ,Λ2β−1∆̇ju)

)
+

µ2K1

4
C̃2

122βj‖∆̇ju‖2
L2 + (µ1η − µ1K1 −

C̃
2(2β−1)
0 C̃2

2η
2K1

µ2

)C̃2
122βj‖∆̇jΛ

−1P∇ · τ‖2
L2

≤ |Gj|. (3.8)

We choose K1 > 0 sufficiently small such that

(µ1η − µ1K1 −
C̃

2(2β−1)
0 C̃2

2η
2K1

µ2

) > 0,
(
µ1 −

4C̃
2(2β−1)
0 C̃2

2K
2
1

µ2

)
> 0.

Dividing by ‖∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2 , (3.8) can be written as

d

dt

√
µ2

2
‖∆̇ju‖2

L2 + µ1‖∆̇jΛ−1P∇ · τ‖2
L2 + 2K1(∆̇jΛ−1P∇ · τ,Λ2β−1∆̇ju)

+ 22βj
(
‖∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2

)
≤ C2|Gj|/(‖∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2).

(3.9)

Multiplying both sides of (3.9) by 2j(
d
2

+1−2β), summing over j ≤ j0 (we can choose j0 = 0,

see Step 2), and performing a time integration, we obtain

El
0(t) ≤C1(‖u0‖l

Ḃ
d
2+1−2β

2,1

+ ‖τ0‖l
Ḃ
d
2+1−2β

2,1

)

+ C2

∫ t

0

∑
j≤j0

2j(
d
2

+1−2β)|Gj|/(‖∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2)dt′.

(3.10)

Step 2: Estimate of Eh
0 (t).

Applying Λ2β−1 to the first equation of (3.3) and taking the L2 inner product with

Λ2β−1∆̇ju, we have

1

2

d

dt
‖Λ2β−1∆̇ju‖2

L2 − µ1(Λ2β−1∆̇ju,Λ
2β∆̇jΛ

−1P∇ · τ)

= −(Λ2β−1∆̇jP(u · ∇u),Λ2β−1∆̇ju). (3.11)

A linear combination of (3.11), (3.6) and (3.5) (for some positive constant K2 to be

determined later) gives

1

2

d

dt

(
η‖Λ2β−1∆̇ju‖2

L2 +K2‖∆̇jΛ
−1P∇ · τ‖2

L2 + 2µ1(∆̇jΛ
−1P∇ · τ,Λ2β−1∆̇ju)

)
+
µ1µ2

2
‖Λβ∆̇ju‖2

L2 + (ηK2 − µ2
1)‖Λβ−1∆̇jP∇ · τ‖2

L2 +
µ2

2
K2(Λ∆̇ju, ∆̇jΛ

−1P∇ · τ) = Hj.

(3.12)
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It is easy to check that for any ε0, ε1 > 0, we have

2µ1|(∆̇jΛ
−1P∇ · τ,Λ2β−1∆̇ju)| ≤ 2µ2

1

ε0
‖Λ2β−1∆̇ju‖2

2 +
ε0
2
‖∆̇jΛ

−1P∇ · τ‖2
L2 ,

µ2

2
K2|(Λ∆̇ju, ∆̇jΛ

−1P∇ · τ)| ≤ ε1µ2K2

4
‖Λβ∆̇ju‖2

L2 +
µ2K2

4ε1
‖Λ−β∆̇jP∇ · τ‖2

L2 .

(3.13)

Using j ≥ j0 + 1 and 1
2
≤ β ≤ 1, we have

µ2K2

4ε1
‖Λ−β∆̇jP∇ · τ‖2

L2 ≤
µ2K2

4ε1
C̃2

2 C̃
2(1−2β)
0 ‖Λβ−1∆̇jP∇ · τ‖2

L2 . (3.14)

Combining (3.12), (3.13) and (3.14), and choosing

K2 = ε0 =
4µ2

1

η
, ε1 =

µ1

K2

,

we obtain

η‖Λ2β−1∆̇ju‖2
L2 +K2‖∆̇jΛ

−1P∇ · τ‖2
L2 + 2µ1(∆̇jΛ

−1P∇ · τ,Λ2β−1∆̇ju)

≈ ‖Λ2β−1∆̇ju‖2
L2 + ‖∆̇jΛ

−1P∇ · τ‖2
L2

and

1

2

d

dt

(
η‖Λ2β−1∆̇ju‖2

L2 +K2‖∆̇jΛ
−1P∇ · τ‖2

L2 + 2µ1(∆̇jΛ
−1P∇ · τ,Λ2β−1∆̇ju)

)
+
µ1µ2

4
‖Λβ∆̇ju‖2

L2 + (3µ2
1 −

4µ2µ
3
1

η2
C̃2

2 C̃
2(1−2β)
0 )‖Λβ∆̇jΛ

−1P∇ · τ‖2
L2 6 |Hj|.

We then choose j0 or C̃0 to ensure that (3µ2
1 −

4µ2µ31
η2

C̃2
2 C̃

2(1−2β)
0 ) > 0 for 1

2
< β ≤ 1.

However, in the case when β = 1
2
, we need

η2 ≥ Cµ1µ2 (3.15)

for a suitable constant C > 0 in order to have

(3µ2
1 −

4µ2µ
3
1

η2
C̃2

2 C̃
2(1−2β)
0 ) > 0.

This explains why we need (3.15) in the case when β = 1
2

in Theorem 1.1. Without loss of

generality, we set j0 = 0. Thanks to 1
2
≤ β ≤ 1, dividing by ‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ ·
τ‖L2 , we have

d

dt

√(
η‖Λ2β−1∆̇ju‖2

L2 +K2‖∆̇jΛ−1P∇ · τ‖2
L2 + 2µ1(∆̇jΛ−1P∇ · τ,Λ2β−1∆̇ju)

)
+ 22(1−β)j(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2)

≤ C2|Hj|/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2).

(3.16)
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Multiplying both sides of (3.16) by 2j
d
2 , summing over j > 0, and integrating in time, we

have

Eh
0 (t) = sup

t
‖u‖h

Ḃ
d
2+2β−1

2,1

+ sup
t
‖P∇ · τ‖h

Ḃ
d
2−1

2,1

+

∫ t

0

‖u‖h
Ḃ
d
2+1

2,1

dt′

. ‖u0‖h
Ḃ
d
2+2β−1

2,1

+ ‖τ0‖h
Ḃ
d
2
2,1

+

∫ t

0

∑
j>0

2j
d
2 |Hj|/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2)dt′.

(3.17)

Combining (3.10) and (3.17), we establish the proof of Lemma 3.2. �

3.2. Proof of Lemma 3.3.

Proof of Lemma 3.3. We again divide the proof into two steps.

Step 1: Estimate of El(t).

Thanks to

(∆̇j∇p, ∆̇ju) = 0,

we obtain from (1.3) that

1

2

d

dt
‖∆̇ju‖2

L2 = µ1(∆̇j∇ · τ, ∆̇ju)− (∆̇j(u · ∇u), ∆̇ju) (3.18)

and

1

2

d

dt
‖∆̇jτ‖2

L2 + η‖Λβ∆̇jτ‖2
L2

= µ2(∆̇jD(u), ∆̇jτ)− (∆̇j(u · ∇τ), ∆̇jτ)− (∆̇jQ(τ,∇u), ∆̇jτ). (3.19)

Adding (3.18) and (3.19) and making use of

(∆̇j∇ · τ, ∆̇ju) + (∆̇jD(u), ∆̇jτ) = 0,

we obtain
1

2

d

dt

(
‖∆̇ju‖L2 + ‖∆̇jτ‖L2

)
≤ C2|Vj|/(‖∆̇ju‖L2 + ‖∆̇jτ‖L2).

Multiplying by 2( d
2

+1−2β)j and summing over j ≤ 0 lead to the following estimates for the

low frequencies,

sup
t
‖u‖l

Ḃ
d
2+1−2β

2,1

+ sup
t
‖τ‖l

Ḃ
d
2+1−2β

2,1

≤ C1(‖u0‖l
Ḃ
d
2+1−2β

2,1

+ ‖τ0‖l
Ḃ
d
2+1−2β

2,1

)

+ C2

∫ t

0

∑
j≤0

2j(
d
2

+1−2β)|Vj|/(‖∆̇ju‖L2 + ‖∆̇jτ‖L2)dt′,

which, together with (3.10), yields

El(t) ≤C1(‖u0‖l
Ḃ
d
2+1−2β

2,1

+ ‖τ0‖l
Ḃ
d
2+1−2β

) + C2

∫ t

0

∑
j≤0

2j(
d
2

+1−2β)

×
(
|Gj|/(‖∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2) + |Vj|/(‖∆̇ju‖L2 + ‖∆̇jτ‖L2)
)

dt′.

(3.20)
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Step 2: Estimate of Eh(t).

By (3.19),

d

dt
‖∆̇jτ‖2 + 22βj‖∆̇jτ‖2 ≤ C2j‖∆̇ju‖2 + C|Yj|/‖∆̇jτ‖L2 . (3.21)

This leads to the following estimate for the high frequencies

sup
t
‖τ‖h

Ḃ
d
2
2,1

+

∫ t

0

‖τ‖h
Ḃ
d
2+2β

2,1

dt′

≤ ‖τ0‖h
Ḃ
d
2
2,1

+ C

∫ t

0

‖u‖h
Ḃ
d
2+1

2,1

dt′ + C

∫ t

0

∑
j>0

2
d
2
j|Yj|/‖∆̇jτ‖L2dt′. (3.22)

To eliminate the term C
∫ t

0
‖u‖h

Ḃ
d
2+1

2,1

dt′ on the right side of the inequality above, we cal-

culate (3.17) + η2(3.21) with η2 small enough such that η2C ≤ 1
2

to get

Eh(t) ≤C1(‖u0‖h
Ḃ
d
2+2β−1

2,1

+ ‖τ0‖h
Ḃ
d
2
2,1

) + C2

∫ t

0

∑
j>0

2j
d
2

(
|Hj|/(‖Λ2β−1∆̇ju‖L2

+ ‖∆̇jΛ
−1P∇ · τ‖L2) + |Yj|/‖∆̇jτ‖L2

)
dt′.

(3.23)

Combining (3.23) with (3.20) finishes the proof of Lemma 3.3. �

3.3. Proof of Proposition 3.1. With the two lemmas at our disposal, this subsection

proves Proposition 3.1. We need an identity stated in the following lemma. A proof of

this lemma can be found in [40].

Lemma 3.4. For any smooth tensor [τ i,j]d×d and d dimensional vector u, it always holds

that

P∇ · (u · ∇τ) = P(u · ∇P∇ · τ) + P(∇u · ∇τ)− P(∇u · ∇∆−1∇ · ∇ · τ),

where the ith component of ∇u · ∇τ is

[∇u · ∇τ ]i =
∑
j

∂ju · ∇τ i,j,

and

[∇u · ∇∆−1∇ · ∇ · τ ]i = ∂iu · ∇∆−1∇ · ∇ · τ.

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. The proof makes use of Lemmas 3.2 and 3.3, The main efforts

are devoted to bounding Gj, Hj, Vj and Yj. To bound Gj and Hj suitably, we divide Gj

and Hj each into three parts,

Gj = G1
j +G2

j +G3
j , Hj = H1

j +H2
j +H3

j
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with

G1
j =− µ2

2
(∆̇jP(u · ∇u), ∆̇ju)− µ1(∆̇jΛ

−1P∇ ·Q(τ,∇u), ∆̇jΛ
−1P∇ · τ)

−K1(Λ2β−2∆̇jP∇ ·Q(τ,∇u), ∆̇ju),

G2
j = −µ1(∆̇jΛ

−1P∇ · (u · ∇τ), ∆̇jΛ
−1P∇ · τ),

G3
j = −K1(Λ2β−1∆̇jP(u · ∇u), ∆̇jΛ

−1P∇ · τ)−K1(Λ2β−2∆̇jP∇ · (u · ∇τ), ∆̇ju),

H1
j = −4µ2

1

η
(∆̇jΛ

−1P∇ ·Q(τ,∇u), ∆̇jΛ
−1P∇ · τ)

− µ1(∆̇jΛ
−1P∇ ·Q(τ,∇u),Λ2β−1∆̇ju)

− η(Λ2β−1∆̇jP(u · ∇u),Λ2β−1∆̇ju),

H2
j = −4µ2

1

η
(∆̇jΛ

−1P∇ · (u · ∇τ), ∆̇jΛ
−1P∇ · τ),

H3
j = −µ1(Λ2β−1∆̇jP(u · ∇u), ∆̇jΛ

−1P∇ · τ)− µ1(∆̇jΛ
−1P∇ · (u · ∇τ),Λ2β−1∆̇ju).

For the sake of clarity, we divide the rest of the proof into several steps.

Step 1: Estimate for G1
j , H

1
j , Vj, Yj.

We first deal with the terms in G1
j , H

1
j , Vj, Yj that do not involve Q(τ,∇u). Due to

∇ · u = 0,

(∆̇jP(u · ∇u), ∆̇ju) = (∆̇j(u · ∇u), ∆̇ju).

By Propositions 2.5 and 2.7, for j ≤ 0,

|(∆̇j(u · ∇u), ∆̇ju)| . cj2
−j( d

2
+1−2β)‖u‖

Ḃ
d
2+1

2,1

‖u‖
Ḃ
d
2+1−2β, d2+2β−1‖∆̇ju‖L2

and, for j > 0,

|Λ2β−1(∆̇j(u · ∇u),Λ2β−1∆̇ju)| . cj2
−j d

2‖u‖
Ḃ
d
2+1

2,1

‖u‖
Ḃ
d
2+1−2β, d2+2β−1‖Λ2β−1∆̇ju‖L2 .

In addition,

|(∆̇j(u · ∇τ), ∆̇jτ)| . cj2
−jψ

d
2+1−2β, d2 (j)‖u‖

Ḃ
d
2+1

2,1

‖τ‖
Ḃ
d
2+1−2β, d2

‖∆̇jτ‖L2 .

We now turn to the terms that contain Q(τ,∇u). By Lemma 2.1 and Hölder’s inequality,

for j ≤ 0,∣∣− µ1(∆̇jΛ
−1P∇ ·Q(τ,∇u), ∆̇jΛ

−1P∇ · τ)−K1(Λ2β−2∆̇jP∇ ·Q(τ,∇u), ∆̇ju)
∣∣

. (1 + 2(2β−1)j)‖∆̇jQ(τ,∇u)‖L2(‖∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2)

. ‖∆̇jQ(τ,∇u)‖L2(‖∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2),∣∣− µ1(∆̇jQ(τ,∇u), ∆̇jτ)

∣∣ . ‖∆̇jQ(τ,∇u)‖L2‖∆̇jτ‖L2 .

For j ≥ 0, we have∣∣− 4µ2
1

η
(∆̇jΛ

−1P∇ ·Q(τ,∇u), ∆̇jΛ
−1P∇ · τ)− µ1(∆̇jΛ

−1P∇ ·Q(τ,∇u),Λ2β−1∆̇ju)
∣∣
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. ‖∆̇jQ(τ,∇u)‖L2(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2),∣∣− (∆̇jQ(τ,∇u), ∆̇jτ)

∣∣ . ‖∆̇jQ(τ,∇u)‖L2‖∆̇jτ‖L2 .

Combining estimates above, we conclude that∫ t

0

∑
j≤0

2j(
d
2

+1−2β)
(
|G1

j |/(‖∆̇ju‖2+‖∆̇jΛ
−1P∇ · τ‖L2)+|Vj|/(‖∆̇ju‖L2 +‖∆̇jτ‖L2

)
dt′

+

∫ t

0

∑
j>0

2j
d
2

(
|H1

j |/(‖Λ2β−1∆̇ju‖L2 +‖∆̇jΛ
−1P∇·τ‖L2)+|Yj|/‖∆̇jτ‖L2

)
dt′

.
(

sup
t
‖τ‖

Ḃ
d
2+1−2β, d2

+ sup
t
‖u‖

Ḃ
d
2+1−2β, d2+2β−1

) ∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′

+

∫ t

0

‖Q(τ,∇u)‖
Ḃ
d
2+1−2β, d2

dt′

.
(

sup
t
‖τ‖

Ḃ
d
2+1−2β, d2

+ sup
t
‖u‖

Ḃ
d
2+1−2β, d2+2β−1

) ∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′, (3.24)

where we have used Remark 2.6 in the second inequality.

Step 2: Estimate for G2
j , G

3
j .

To bound the difficult term G2
j , we divide it into three terms according to Lemma 3.4,

G2
j = G2,1

j +G2,2
j +G2,3

j ,

where

G2,1
j = −µ1(∆̇jΛ

−1P(u · ∇P∇ · τ), ∆̇jΛ
−1P∇ · τ),

G2,2
j = −µ1(∆̇jΛ

−1P(∇u · ∇τ), ∆̇jΛ
−1P∇ · τ),

G2,3
j = µ1(∆̇jΛ

−1P(∇u · ∇∆−1∇ · ∇ · τ), ∆̇jΛ
−1P∇ · τ).

By Proposition 2.7,∫ t

0

∑
j≤0

2j(
d
2

+1−2β)|G2,1
j |/(‖∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2)dt′

.
∫ t

0

∑
j≤0

2j(
d
2

+1−2β)cj2
−j2−j(

d
2
−2β)‖u‖

Ḃ
d
2+1

2,1

‖∇ · τ‖
Ḃ
d
2−2β, d2−1dt

′

. sup
t
‖τ‖

Ḃ
d
2+1−2β, d2

∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′. (3.25)

Next we estimate the terms G2,2
j and G2,3

j . Thanks to ∇ · u = 0,

[∇u · ∇τ ]i ,
∑
j,k

∂ju
k∂kτ

i,j =
∑
j,k

∂k(∂ju
kτ i,j),

[∇u · ∇∆−1∇ · ∇ · τ ]i ,
∑
k

∂iu
k∂k∆

−1∇ · ∇ · τ =
∑
k

∂k(∂iu
k∇∆−1∇ · ∇ · τ).

(3.26)



GLOBAL REGULARITY FOR THE OLDROYD-B MODEL 25

Then we have ∫ t

0

∑
j≤0

2j(
d
2

+1−2β)
∣∣G2,2

j +G2,3
j

∣∣/(‖∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2)dt′

.
∫ t

0

‖∇u · ∇τ‖l
Ḃ
d
2−2β

2,1

+ ‖∇u · ∇∆−1∇ · ∇ · τ‖l
Ḃ
d
2−2β

2,1

dt′

.
∫ t

0

‖∇u⊗ τ‖
Ḃ
d
2+1−2β, d2

+ ‖∇u⊗∆−1∇ · ∇ · τ‖
Ḃ
d
2+1−2β, d2

dt′

. sup
t
‖τ‖

Ḃ
d
2+1−2β, d2

∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′ (3.27)

by Remark 2.6. (3.25) and (3.27) imply∫ t

0

∑
j≤0

2j(
d
2

+1−2β)|G2
j |/(‖∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2)dt′ . E2(t). (3.28)

To deal with G3
j , we decompose it into three terms according to Lemma 3.4

G3
j = G3,1

j +G3,2
j +G3,3

j ,

where

G3,1
j = −K1

(
(Λ2β−1∆̇jP(u · ∇u), ∆̇jΛ

−1P∇ · τ) + (Λ2β−2∆̇jP(u · ∇P∇ · τ), ∆̇ju)
)
,

G3,2
j = −K1(Λ2β−2∆̇jP(∇u · ∇τ), ∆̇ju),

G3,3
j = K1(Λ2β−2∆̇jP(∇u · ∇∆−1∇ · ∇ · τ), ∆̇ju).

Observing that j ≤ 0 and using Proposition 2.7, we have

|G3,1
j | . cj‖u‖

Ḃ
d
2+1

2,1

(
2−j(

d
2

+1−2β)‖u‖
Ḃ
d
2+1−2β, d2+2β−1‖Λ2β−2∆̇jP∇ · τ‖L2

+2(2β−2)j2−( d
2
−2β)j‖P∇ · τ‖

Ḃ
d
2−2β, d2−1‖∆̇ju‖L2

)
. cj‖u‖

Ḃ
d
2+1

2,1

2−j(
d
2

+2−4β)
(
‖u‖

Ḃ
d
2+1−2β, d2+2β−1‖∆̇jΛ

−1P∇ · τ‖L2

+‖P∇ · τ‖
Ḃ
d
2−2β, d2−1‖∆̇ju‖L2

)
.

Thanks to 1
2
≤ β ≤ 1,∫ t

0

∑
j≤0

2j(
d
2

+1−2β)|G3,1
j |/(‖∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2)dt′

.
∫ t

0

∑
j≤0

cj‖u‖
Ḃ
d
2+1

2,1

2(2β−1)j
(
‖u‖

Ḃ
d
2+1−2β, d2+2β−1 + ‖P∇ · τ‖

Ḃ
d
2−2α, d2−1

)
.

(
sup
t
‖u‖

Ḃ
d
2+1−2β, d2+2β−1 + sup

t
‖τ‖

Ḃ
d
2+1−2β, d2

) ∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′. (3.29)
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As in the estimates of G2,2
j and G2,3

j , we have∫ t

0

∑
j≤0

2j(
d
2

+1−2β)
∣∣G3,2

j +G3,3
j

∣∣/(‖∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2)dt′

. sup
t
‖τ‖

Ḃ
d
2+1−2β, d2

∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′.

Combining this with (3.29), we obtain∫ t

0

∑
j≤0

2j(
d
2

+1−2β)|G3
j |/(‖∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2)dt′ . E2(t). (3.30)

Step 3: Estimate for H2
j , H

3
j .

In order to estimate H2
j , we apply Lemma 3.4 to write

H2
j = H2,1

j +H2,2
j +H2,3

j ,

where

H2,1
j = −4µ2

1

η
(Λ−1∆̇jP(u · ∇P∇ · τ), ∆̇jΛ

−1P∇ · τ),

H2,2
j = −4µ2

1

η
(Λ−1∆̇jP(∇u · ∇τ), ∆̇jΛ

−1P∇ · τ),

H2,3
j =

4µ2
1

η
(Λ−1∆̇jP(∇u · ∇∆−1∇ · ∇ · τ), ∆̇jΛ

−1P∇ · τ).

By Proposition 2.7,

|H2,1
j | . cj2

−j2−j(
d
2
−1)‖u‖

Ḃ
d
2+1

2,1

‖P∇ · τ‖
Ḃ
d
2−2β, d2−1‖∆̇jΛ

−1P∇ · τ‖L2 ,

which implies ∫ t

0

∑
j>0

2j
d
2 |H2,1

j |/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2)dt′

. sup
t
‖τ‖

Ḃ
d
2+1−2β, d2

∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′. (3.31)

Then we deal with H2,2
j and H2,3

j . Using Remark 2.6 and (3.26), we obtain∫ t

0

∑
j>0

2j
d
2

∣∣H2,2
j +H2,3

j

∣∣/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2)dt′

.
∫ t

0

‖∇u⊗ τ‖h
Ḃ
d
2
2,1

+ ‖∇u⊗∆−1∇ · ∇ · τ‖h
Ḃ
d
2
2,1

dt′

.
∫ t

0

‖∇u⊗ τ‖
Ḃ
d
2+1−2β, d2

+ ‖∇u⊗∆−1∇ · ∇ · τ‖
Ḃ
d
2+1−2β, d2

dt′

. sup
t
‖τ‖

Ḃ
d
2+1−2β, d2

∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′.
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Combining this with (3.31), we obtain∫ t

0

∑
j>0

2j
d
2 |H2

j |/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2)dt′ . E2(t). (3.32)

By Lemma 3.4, H3
j can be rewritten as

H3
j = H3,1

j +H3,2
j +H3,3

j ,

where

H3,1
j = −µ1

(
Λ2β−1(∆̇j(u · ∇u), ∆̇jΛ

−1P∇ · τ)

+(Λ−1∆̇j(u · ∇P∇ · τ),Λ2β−1∆̇ju)
)
,

H3,2
j = −µ1(Λ−1∆̇jP(∇u · ∇τ),Λ2β−1∆̇ju),

H3,3
j = µ1(Λ−1∆̇jP(∇u · ∇∆−1∇ · ∇ · τ),Λ2β−1∆̇ju).

By Proposition 2.7,∣∣H3,1
j

∣∣ . cj‖u‖
Ḃ
d
2+1

2,1

(
2−j(

d
2

+2β−1)‖u‖
Ḃ
d
2+1−2β, d2+2β−1‖∆̇jΛ

2β−2P∇ · τ‖L2

+2j(2β−2)2−j(
d
2
−1)‖P∇ · τ‖

Ḃ
d
2−2β, d2−1‖∆̇ju‖L2

)
. cj2

−j d
2‖u‖

Ḃ
d
2+1

2,1

(
‖u‖

Ḃ
d
2+1−2β, d2+2β−1‖∆̇jΛ

−1P∇ · τ‖L2

+‖P∇ · τ‖
Ḃ
d
2−2β, d2−1‖Λ2β−1∆̇ju‖L2

)
,

which implies ∫ t

0

∑
j>0

2j
d
2 |H3,1

j |/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2)dt′

.
(

sup
t
‖u‖

Ḃ
d
2+1−2β, d2+2β−1 + sup

t
‖τ‖

Ḃ
d
2+1−2β, d2

) ∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′. (3.33)

As in the estimates of H2,2
j and H2,3

j , we derive∫ t

0

∑
j>0

2j
d
2

∣∣H3,2
j +H3,3

j

∣∣/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2)dt′

. sup
t
‖τ‖

Ḃ
d
2+1−2β, d2

∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′.

Combining this with (3.33), we conclude∫ t

0

∑
j>0

2j
d
2 |H3

j |/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2)dt′ . E2(t). (3.34)
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Gathering (3.24), (3.28), (3.30), (3.32) and (3.34), we obtain (3.1). From (3.22), we have

the following estimates for low frequencies of τ ,

El
τ (t) = sup

t
‖τ‖l

Ḃ
d
2+1−2β

2,1

+

∫ t

0

‖τ‖l
Ḃ
d
2+1

2,1

dt′ ≤ ‖τ0‖l
Ḃ
d
2+1−2β

2,1

+ C

∫ t

0

‖u‖l
Ḃ
d
2+2−2β

2,1

dt′

+ C

∫ t

0

∑
j≤0

2( d
2

+1−2β)j|Yj|/‖∆̇jτ‖L2dt′.

Thanks to Proposition 2.5 and Proposition 2.7, we have

El
τ (t) . ‖τ0‖l

Ḃ
d
2+1−2β

2,1

+ t sup
t
‖u‖l

Ḃ
d
2+1−2β

2,1

+

∫ t

0

(
∑
j≤0

cj‖u‖
Ḃ
d
2+1

2,1

‖τ‖
Ḃ
d
2+1−2β, d2

+ ‖Q(τ,∇u)‖l
Ḃ
d
2+1−2β

2,1

)dt′

. ‖τ0‖l
Ḃ
d
2+1−2β

2,1

+ t sup
t
‖u‖l

Ḃ
d
2+1−2β

2,1

+ sup
t
‖τ‖

Ḃ
d
2+1−2β, d2

∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′

. E0 + (t+ E(t))E(t).

We complete the proof of Proposition 3.1. �

4. The global existence and the uniqueness

This section proves the existence and uniqueness part of Theorem 1.1. The high regu-

larity part will be established in Section 5. The existence part applied the bootstrapping

argument to the a priori energy inequality obtained in Proposition 3.1. Due to the lack

of velocity dissipation and the general fractional dissipation, the proof of the uniqueness

part is not trivial. We need to make use of the parabolic smoothing or damping effect

of the wave structure in order to establish the uniqueness. The rest of this section is

naturally divided into two sections.

4.1. The global existence. The local existence can be established via a standard pro-

cedure. In fact, we could modify the methods in [16] or [8] to achieve the local existence.

It then suffices to establish the global bound on the Besov norm of (u, τ).

Proof of the existence part of Theorem 1.1. By Proposition 3.1, the energy functional de-

fined in (1.13) satisfies

E(t) ≤ C1E0 + C2E
2(t), t > 0 (4.1)

for some positive constants C1 and C2. An application of the bootstrapping argument to

(4.1) implies that, if the initial norm

‖u0‖
Ḃ
d
2+1−2β

2,1 ∩Ḃ
d
2+2β−1

2,1

+ ‖τ0‖
Ḃ
d
2+1−2β

2,1 ∩Ḃ
d
2
2,1

≤ ε

for sufficiently small ε > 0 or E0 ≤ ε2, then, for any t > 0,

E(t) ≤ 2C1ε
2,



GLOBAL REGULARITY FOR THE OLDROYD-B MODEL 29

which, especially, yields the desired global upper bound on the norms of (u, τ). In fact, if

we take

ε ≤ 1√
8C1C2

and make the ansatz that

E(t) ≤ 1

2C2

, (4.2)

then (4.1) implies that

E(t) ≤ C1E0 + C2
1

2C2

E(t)

or

E(t) ≤ 2C1 E0 ≤ 2C1ε
2 ≤ 1

4C2

(4.3)

The bound in (4.3) is only half of the one in the ansatz (4.2). The bootstrapping argument

then implies (4.3) indeed holds for any t > 0. Especially, (1.9) holds. The upper bound

in (1.10) is a consequence of the following inequality from Proposition 3.1,

El
τ (t) . E0 + (t+ ε)ε. (4.4)

This completes the proof of the existence part of Theorem 1.1. �

4.2. The uniqueness. Due to the lack of velocity dissipation and the inclusion of a

range of fractional dissipation in τ , the proof of the uniqueness is not direct. We need

the extra smoothing and damping effect of the wave structure. We use some of the ideas

implemented in Section 3.

Proof of the uniqueness part of Theorem 1.1. Assume (u1, τ1) and (u2, τ2) are two solu-

tions of (1.3) with the same initial data. Denote δu = u1 − u2, δτ = τ1 − τ2, δp = p1 − p2.

Then (δu, δτ) satisfies
(δu)t +∇δp = µ1∇ · δτ − u1 · ∇δu− δu · ∇u2,

(δτ)t + u1 · ∇δτ + ηΛ2βδτ = µ2D(δu)− δu · ∇τ2 −Q(τ1,∇δu)−Q(δτ,∇u2),

∇ · δu = 0,

δu(0, x) = 0, δτ(0, x) = 0.

Similar to Lemma 3.2 and Lemma 3.3, we have

sup
t
‖δu‖

Ḃ
d
2+1−2β, d2+2β−2 + sup

t
‖δτ‖

Ḃ
d
2+1−2β, d2−1 +

∫ t

0

‖δu‖
Ḃ
d
2+1, d2

dt′

+

∫ t

0

(‖Λ−1P∇ · δτ‖l
Ḃ
d
2+1

2,1

+ ‖τ‖h
Ḃ
d
2+2β−1

2,1

)dt′

. C2

∫ t

0

∑
j≤0

2j(
d
2

+1−2β)
(
|G′j|/(‖∆̇jδu‖L2 + ‖∆̇jΛ

−1P∇ · δτ‖L2)

+|V ′j |/(‖∆̇jδu‖L2 + ‖∆̇jδτ‖L2)
)

dt′

+C2

∫ t

0

∑
j>0

2j(
d
2
−1)
(
|H ′j|/(‖Λ2β−1∆̇jδu‖L2
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+‖∆̇jΛ
−1P∇ · δτ‖L2) + |Y ′j |/‖∆̇jδτ‖L2

)
dt′,

where

G
′

j = G
′1
j +G

′2
j +G

′3
j , H

′

j = H
′1
j +H

′2
j +H

′3
j

with

G
′1
j =− µ2

2
((∆̇jP(u1 · ∇δu), ∆̇jδu) + (∆̇jP(δu · ∇u2), ∆̇jδu))

− µ1((∆̇jΛ
−1P∇ ·Q(τ1,∇δu), ∆̇jΛ

−1P∇ · δτ)

+ (∆̇jΛ
−1P∇ ·Q(δτ,∇u2), ∆̇jΛ

−1P∇ · δτ))

−K1((Λ2β−2∆̇jP∇ ·Q(τ1,∇δu), ∆̇jδu)

+ (Λ2β−2∆̇jP∇ ·Q(δτ,∇u2), ∆̇jδu)),

G
′2
j =− µ1((∆̇jΛ

−1P∇ · (u1 · ∇δτ), ∆̇jΛ
−1P∇ · δτ)

+ (∆̇jΛ
−1P∇ · (δu · ∇τ2), ∆̇jΛ

−1P∇ · τ)),

G
′3
j =−K1(Λ2β−1(∆̇jP(u1 · ∇δu), ∆̇jΛ

−1P∇ · δτ)

+ (Λ2β−1∆̇jP(δu · ∇u2), ∆̇jΛ
−1P∇ · δτ))

−K1((Λ2β−2∆̇jP∇ · (u1 · ∇δτ), ∆̇jδu)

+ (Λ2β−2∆̇jP∇ · (δu · ∇τ2), ∆̇jδu)),

H
′1
j =− 4µ2

1

η
((∆̇jΛ

−1P∇ ·Q(τ1,∇δu), ∆̇jΛ
−1P∇ · δτ)

+ (∆̇jΛ
−1P∇ ·Q(δτ,∇u2), ∆̇jΛ

−1P∇ · δτ))

− µ1((∆̇jΛ
−1P∇ ·Q(τ1,∇δu),Λ2β−1∆̇jδu)

+ (∆̇jΛ
−1P∇ ·Q(δτ,∇u2),Λ2β−1∆̇jδu))

− η((Λ2β−1∆̇jP(u1 · ∇δu),Λ2β−1∆̇jδu)

+ (Λ2β−1∆̇jP(δu · ∇u2),Λ2β−1∆̇jδu)),

H
′2
j =− 4µ2

1

η
((∆̇jΛ

−1P∇ · (u1 · ∇δτ), ∆̇jΛ
−1P∇ · δτ)

+ (∆̇jΛ
−1P∇ · (δu · ∇τ2), ∆̇jΛ

−1P∇ · δτ)),

H
′3
j =− µ1(Λ2β−1∆̇jP(u1 · ∇δu), ∆̇jΛ

−1P∇ · δτ)

− µ1(∆̇jΛ
−1P∇ · (u1 · ∇δτ),Λ2β−1∆̇jδu)

− µ1(Λ2β−1∆̇jP(δu · ∇u2), ∆̇jΛ
−1P∇ · δτ)

− µ1(∆̇jΛ
−1P∇ · (δu · ∇τ2),Λ2β−1∆̇jδu),

and

V
′
j = −µ2((∆̇j(u1 · ∇δu), ∆̇jδu) + (∆̇j(δu · ∇u2), ∆̇jδu))
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−µ1((∆̇j(u1 · ∇δτ), ∆̇jδτ) + (∆̇j(δu · ∇τ2), ∆̇jδτ))

−µ1((∆̇jQ(τ1,∇δu), ∆̇jδτ) + (∆̇jQ(δτ,∇u2), ∆̇jδτ)),

Y
′
j = −((∆̇j(u1 · ∇δτ), ∆̇jδτ) + (∆̇j(δu · ∇τ2), ∆̇jδτ))

−((∆̇jQ(τ1,∇δu), ∆̇jδτ) + (∆̇jQ(δτ,∇u2), ∆̇jδτ)).

According to Proposition 2.5 and Proposition 2.7, for j ≤ 0,

|(∆̇j(u1 · ∇δu), ∆̇jδu)| . cj2
−j( d

2
+1−2β)‖u1‖

Ḃ
d
2+1

2,1

‖δu‖
Ḃ
d
2+1−2β, d2+2β−2‖∆̇jδu‖L2 ,

|(∆̇j(δu · ∇u2), ∆̇jδu)| . cj2
−j( d

2
+1−2β)‖u2‖

Ḃ
d
2+1

2,1

‖δu‖
Ḃ
d
2+1−2β, d2+2β−2‖∆̇jδu‖L2 ;

and for j > 0,

|(Λ2β−1∆̇j(u1 · ∇δu),Λ2β−1∆̇jδu)|

. cj2
−j( d

2
−1)‖u1‖

Ḃ
d
2+1

2,1

‖δu‖
Ḃ
d
2+1−2β, d2+2β−2‖Λ2β−1∆̇jδu‖L2 ,

|(Λ2β−1∆̇j(δu · ∇u2),Λ2β−1∆̇jδu)|

. cj2
−j( d

2
−1)‖u2‖

Ḃ
d
2+1

2,1

‖δu‖
Ḃ
d
2+1−2β, d2+2β−2‖Λ2β−1∆̇jδu‖L2 ;

and for all j,

|(∆̇j(u1 · ∇δτ), ∆̇jδτ)| . cj2
−jψ

d
2+1−2β, d2−1(j)‖u1‖

Ḃ
d
2+1

2,1

‖δτ‖
Ḃ
d
2+1−2β, d2−1‖∆̇jδτ‖L2 ,

|(∆̇j(δu · ∇τ2), ∆̇jδτ)| . cj2
−jψ

d
2+1−2β, d2−1(j)‖δu‖

Ḃ
d
2
2,1

‖∇τ2‖
Ḃ
d
2+1−2β, d2−1‖∆̇jδτ‖L2 .

For j ≤ 0, we have∣∣− µ1(∆̇jΛ
−1P∇ ·Q(τ1,∇δu), ∆̇jΛ

−1P∇ · δτ)−K1(Λ2β−2∆̇jP∇ ·Q(τ1,∇δu), ∆̇jδu)
∣∣

. ‖∆̇jQ(τ1,∇δu)‖L2(‖∆̇jδu‖L2 + ‖∆̇jΛ
−1P∇ · δτ‖L2),∣∣− µ1(∆̇jΛ

−1P∇ ·Q(δτ,∇u2), ∆̇jΛ
−1P∇ · δτ)−K1(Λ2β−2∆̇jP∇ ·Q(δτ,∇u2), ∆̇jδu)

∣∣
. ‖∆̇jQ(δτ,∇u2)‖L2(‖∆̇jδu‖L2 + ‖∆̇jΛ

−1P∇ · δτ‖L2),

and ∣∣− µ1(∆̇jQ(τ1,∇δu), ∆̇jδτ)
∣∣ . ‖∆̇jQ(τ1,∇δu)‖L2‖∆̇jδτ‖L2 ,∣∣− µ1(∆̇jQ(δτ,∇u), ∆̇jδτ)
∣∣ . ‖∆̇jQ(δτ,∇u2)‖L2‖∆̇jδτ‖L2 .

And for j ≥ 0, we have∣∣− 4µ2
1

η
(∆̇jΛ

−1P∇ ·Q(τ1,∇δu), ∆̇jΛ
−1P∇ · δτ)− µ1(∆̇jΛ

−1P∇ ·Q(τ1,∇δu),Λ2β−1∆̇jδu)
∣∣

. ‖∆̇jQ(τ1,∇δu)‖L2(‖Λ2β−1∆̇jδu‖L2 + ‖∆̇jΛ
−1P∇ · δτ‖L2),∣∣− 4µ2

1

η
(∆̇jΛ

−1P∇ ·Q(δτ,∇u2), ∆̇jΛ
−1P∇ · δτ)− µ1(∆̇jΛ

−1P∇ ·Q(δτ,∇u2),Λ2β−1∆̇jδu)
∣∣

. ‖∆̇jQ(δτ,∇u2)‖L2(‖Λ2β−1∆̇jδu‖L2 + ‖∆̇jΛ
−1P∇ · δτ‖L2),
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and ∣∣− (∆̇jQ(τ1,∇δu), ∆̇jδτ)
∣∣ . ‖∆̇jQ(τ1,∇δu)‖L2‖∆̇jδτ‖L2 ,∣∣− (∆̇jQ(δτ,∇u2), ∆̇jδτ)
∣∣ . ‖∆̇jQ(δτ,∇u2)‖L2‖∆̇jδτ‖L2 .

Combining the estimates above, we obtain∫ t

0

∑
j≤0

2j(
d
2

+1−2β)
(
|G′1j |/(‖∆̇jδu‖2+‖∆̇jΛ

−1P∇ · δτ‖L2)+|V ′j |/(‖∆̇jδu‖L2 +‖∆̇jδτ‖L2

)
dt′

+

∫ t

0

∑
j>0

2j(
d
2
−1)
(
|H ′1j |/(‖Λ2β−1∆̇jδu‖L2 +‖∆̇jΛ

−1P∇·δτ‖L2)+ |Y ′j |/‖∆̇jδτ‖L2

)
dt′

. sup
t

(
‖δτ‖

Ḃ
d
2+1−2β, d2−1 + ‖δu‖

Ḃ
d
2+1−2β, d2+2β−2

) ∫ t

0

‖(u1, u2)‖
Ḃ
d
2+1

2,1

dt′

+

∫ t

0

‖δu‖
Ḃ
d
2
2,1

‖∇τ2‖
Ḃ
d
2+1−2β, d2−1dt

′ +

∫ t

0

‖(Q(τ1,∇δu), Q(δτ,∇u2))‖
Ḃ
d
2+1−2β, d2−1dt

′

. sup
t

(
‖δτ‖

Ḃ
d
2+1−2β, d2−1 + ‖δu‖

Ḃ
d
2+1−2β, d2+2β−2

) ∫ t

0

‖(u1, u2)‖
Ḃ
d
2+1

2,1

dt′

+ sup
t

(‖τ1‖
Ḃ
d
2+1−2β, d2

+ ‖τ2‖
Ḃ
d
2+1−2β, d2

)

∫ t

0

‖δu‖
Ḃ
d
2
2,1

dt′.

G
′2
j and G

′3
j can be bounded directly via Proposition 2.5,∫ t

0

∑
j≤0

2j(
d
2

+1−2β)|G′2j |/(‖∆̇jδu‖L2 + ‖∆̇jΛ
−1P∇ · δτ‖L2)dt′

.
∫ t

0

(‖u1 · ∇δτ‖l
Ḃ
d
2+1−2β

2,1

+ ‖δu · ∇τ2‖l
Ḃ
d
2+1−2β

2,1

)dt′

.
∫ t

0

(‖u1δτ‖l
Ḃ
d
2+1−2β

2,1

+ ‖δuτ2‖l
Ḃ
d
2+1−2β

2,1

)dt′

. sup
t
‖δτ‖

Ḃ
d
2+1−2β, d2−1

∫ t

0

‖u1‖
Ḃ
d
2
2,1

dt′ + t sup
t

(‖τ2‖
Ḃ
d
2+1−2β, d2

‖δu‖
Ḃ
d
2+1−2β, d2+2β−2),

and ∫ t

0

∑
j≤0

2j(
d
2

+1−2β)|G′3j |/(‖∆̇jδu‖L2 + ‖∆̇jΛ
−1P∇ · δτ‖L2)dt′

.
∫ t

0

(‖u1δu‖l
Ḃ
d
2+1−2β

2,1

+ ‖δu∇u2‖l
Ḃ
d
2+1−2β

2,1

+ ‖u1δτ‖l
Ḃ
d
2+1−2β

2,1

+ ‖δuτ2‖l
Ḃ
d
2+1−2β

2,1

)dt′

. sup
t

(‖δu‖
Ḃ
d
2+1−2β, d2+2β−2 + ‖δτ‖

Ḃ
d
2+1−2β, d2−1)

∫ t

0

(‖u1‖
Ḃ
d
2
2,1

+ ‖u2‖
Ḃ
d
2+1

2,1

)dt′

+t sup
t

(‖τ2‖
Ḃ
d
2+1−2β, d2

‖δu‖
Ḃ
d
2+1−2β, d2+2β−2).
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To estimate H
′2
j , we rewrite it as H

′2
j = H

′2,1
j +H

′2,2
j +H

′2,3
j +H

′2,4
j according to Lemma

3.4, where

H
′2,1
j = −4µ2

1

η
(∆̇jΛ

−1P(u1 · ∇P∇ · δτ), ∆̇jΛ
−1P∇ · δτ),

H
′2,2
j = −4µ2

1

η
(∆̇jΛ

−1P(∇u1 · ∇δτ), ∆̇jΛ
−1P∇ · δτ),

H
′2,3
j =

4µ2
1

η
(∆̇jΛ

−1P(∇u1 · ∇∆−1∇ · ∇ · δτ), ∆̇jΛ
−1P∇ · δτ),

H
′2,4
j = −4µ2

1

η
(∆̇jΛ

−1P∇ · (δu · ∇τ2), ∆̇jΛ
−1P∇ · δτ).

By Proposition 2.7, we obtain∫ t

0

∑
j>0

2j(
d
2
−1)|H

′2,1
j |/(‖Λ2β−1∆̇jδu‖L2 + ‖∆̇jΛ

−1P∇ · δτ‖L2)dt′

. sup
t
‖δτ‖

Ḃ
d
2+1−2β, d2−1

∫ t

0

‖u1‖
Ḃ
d
2+1

2,1

dt′.

It follows from Proposition 2.5 that∫ t

0

∑
j>0

2j(
d
2
−1)
∣∣H ′2,2j +H

′2,3
j

∣∣/(‖Λ2β−1∆̇jδu‖L2 + ‖∆̇jΛ
−1P∇ · δτ‖L2)dt′

.
∫ t

0

‖∇u1 ⊗ δτ‖h
Ḃ
d
2−1

2,1

+ ‖∇u1 ⊗∆−1∇ · ∇ · δτ‖h
Ḃ
d
2−1

2,1

dt′

. sup
t
‖δτ‖

Ḃ
d
2+1−2β, d2−1

∫ t

0

‖u1‖
Ḃ
d
2+1

2,1

dt′,

and ∫ t

0

∑
j>0

2j(
d
2
−1)
∣∣H ′2,4j

∣∣/(‖Λ2β−1∆̇jδu‖L2 + ‖∆̇jΛ
−1P∇ · δτ‖L2)dt′

.
∫ t

0

‖δu⊗∇τ2‖h
Ḃ
d
2−1

2,1

dt′ . sup
t
‖τ2‖

Ḃ
d
2
2,1

∫ t

0

‖δu‖
Ḃ
d
2
2,1

dt′.

To estimate H
′3
j , we rewrite it as H

′3
j = H

′3,1
j + H

′3,2
j + H

′3,3
j + H

′3,4
j + H

′3,5
j by Lemma

3.4, where

H
′3,1
j = −µ1

(
(Λ2β−1∆̇jP(u1 · ∇δu), ∆̇jΛ

−1P∇ · δτ)

+(∆̇jΛ
−1P(u1 · ∇P∇ · δτ),Λ2β−1∆̇jδu)),

H
′3,2
j = −µ1(∆̇jΛ

−1P(∇u1 · ∇δτ),Λ2β−1∆̇jδu),

H
′3,3
j = µ1(∆̇jΛ

−1P(∇u1 · ∇∆−1∇ · ∇ · δτ),Λ2β−1∆̇jδu),

H
′3,4
j = −µ1(Λ2β−1∆̇jP(δu · ∇u2), ∆̇jΛ

−1P∇ · δτ),

H
′3,5
j = −µ1(∆̇jΛ

−1P∇ · (δu · ∇τ2),Λ2β−1∆̇jδu).
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By Proposition 2.7, we obtain∫ t

0

∑
j>0

2j(
d
2
−1)|H

′3,1
j |/(‖Λ2β−1∆̇jδu‖L2 + ‖∆̇jΛ

−1P∇ · δτ‖L2)dt′

.
(

sup
t
‖δu‖

Ḃ
d
2+1−2β, d2+2β−2 + sup

t
‖δτ‖

Ḃ
d
2+1−2β, d2−1

) ∫ t

0

‖u1‖
Ḃ
d
2+1

2,1

dt′.

Similar to the estimates for H
′2,2
j , H

′2,3
j and H

′2,4
j , we have∫ t

0

∑
j>0

2j(
d
2
−1)|H

′3,2
j +H

′3,3
j |/(‖Λ2β−1∆̇jδu‖L2 + ‖∆̇jΛ

−1P∇ · δτ‖L2)dt′

. sup
t
‖δτ‖

Ḃ
d
2+1−2β, d2−1

∫ t

0

‖u1‖
Ḃ
d
2+1

2,1

dt′,

and ∫ t

0

∑
j>0

2j(
d
2
−1)|H

′3,5
j |/(‖Λ2β−1∆̇jδu‖L2 + ‖∆̇jΛ

−1P∇ · δτ‖L2)dt′

. sup
t
‖τ2‖

Ḃ
d
2
2,1

∫ t

0

‖δu‖
Ḃ
d
2
2,1

dt′.

By Proposition 2.5, we have∫ t

0

∑
j>0

2j(
d
2
−1)|H

′3,4
j |/(‖Λ2β−1∆̇jδu‖L2 + ‖∆̇jΛ

−1P∇ · δτ‖L2)dt′

.
∫ t

0

‖δu · ∇u2‖h
Ḃ
d
2+2β−2

2,1

dt′ . sup
t
‖δu‖

Ḃ
d
2+1−2β, d2+2β−2

∫ t

0

‖u2‖
Ḃ
d
2+1

2,1

dt′.

Combining the estimates above, we obtain

sup
t
‖δu‖

Ḃ
d
2+1−2β, d2+2β−2 + sup

t
‖δτ‖

Ḃ
d
2+1−2β, d2−1 +

∫ t

0

‖δu‖
Ḃ
d
2+1, d2

dt′

. sup
t

(
‖δτ‖

Ḃ
d
2+1−2β, d2−1 + ‖δu‖

Ḃ
d
2+1−2β, d2+2β−2

) ∫ t

0

(‖(u1, u2)‖
Ḃ
d
2+1

2,1

+ ‖u1‖
Ḃ
d
2
2,1

)dt′

+ sup
t
‖(τ1, τ2)‖

Ḃ
d
2+1−2β, d2

∫ t

0

‖δu‖
Ḃ
d
2
2,1

dt′ + t sup
t

(‖τ2‖
Ḃ
d
2+1−2β, d2

‖δu‖
Ḃ
d
2+1−2β, d2+2β−2).

Notice that ∫ t

0

‖δu‖
Ḃ
d
2
2,1

dt′ . t sup
t
‖δu‖

Ḃ
d
2+1−2β, d2+2β−2 +

∫ t

0

‖δu‖
Ḃ
d
2+1, d2

dt′.

Thanks to the uniform a priori estimates, we have supt ‖(τ1, τ2)‖
Ḃ
d
2+1−2β, d2

. ε. Then we

can choose ε and t small such that

sup
t
‖δu‖

Ḃ
d
2+1−2β, d2+2β−2 + sup

t
‖δτ‖

Ḃ
d
2+1−2β, d2−1 6 0.

This completes the proof of the uniqueness part of Theorem 1.1. �
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5. High regularity properties for more regular data

This section is devoted to proving the higher regularity part of Theorem 1.1. More

precisely, we show that, if the initial datum (u0, τ0) is in a more regular Besov space and

sufficiently small,

‖u0‖
Ḃ
d
2+1−2β

2,1 ∩Ḃ
d
2+2β+s−1

2,1

+ ‖τ0‖
Ḃ
d
2+1−2β

2,1 ∩Ḃ
d
2+s

2,1

≤ ε,

then the corresponding solution (u, τ) of (1.3) is in a more regular space,

u ∈ C(R+; Ḃ
d
2

+1−2β

2,1 ∩ Ḃ
d
2

+2β+s−1

2,1 ) ∩ L1(R+; Ḃ
d
2

+1

2,1 ∩ Ḃ
d
2

+1+s

2,1 );

τ ∈ C(R+; Ḃ
d
2

+1−2β

2,1 ∩ Ḃ
d
2

+s

2,1 ), τ ∈ L1(R+; Ḃ
d
2

+1

2,1 ∩ Ḃ
d
2

+2β+s

2,1 ).
(5.1)

The proof shares some similarities with the proof of the existence part. The key com-

ponent of the proof is the energy inequality stated in the following proposition.

Proposition 5.1. Assume that (u, τ) solves (1.3). Then, there exist two positive constants

C1 and C2 such that, for t > 0,

E
′h
0 (t) + E ′

h
(t) ≤ C1E

′

0 + C2((E ′
h
0(t) + E

′h(t))E(t) + E2(t)).

where E
′h
0 (t) is defined in (1.15) and E ′h(t) in (1.16), and E(t) is defined in (1.13) as

before.

In the rest of this section, we first assume Proposition 5.1 and provide the proof for the

higher regularity part of Theorem 1.1, and then prove Proposition 5.1.

Proof for the higher regularity part of Theorem 1.1. By Proposition 5.1, we have

E
′h
0 (t) + E ′

h
(t) ≤ C1E

′

0 + C2((E ′
h
0(t) + E

′h(t))E(t) + E2(t)).

Therefore, thanks to the results in Subsection 4.1, we can choose ε small such that

C2E(t) ≤ 1
2

such that

E
′h
0 (t) + E ′

h
(t) . E

′

0 + ε.

Combining this inequality with the results in Subsection 4.1 and inequality (4.4) yields

sup
t
‖u‖

Ḃ
d
2+1−2β. d2+2β + sup

t
‖τ‖

Ḃ
d
2+1−2β, d2+1 +

∫ t

0

‖u‖
Ḃ
d
2+1, d2+2dt

′ +

∫ t

0

‖τ‖
Ḃ
d
2+1, d2+2β+1dt

′

. E
′

0 + ε(ε+ t).

Similarly, we can choose ε depending on s sufficiently small to get further regularity,

sup
t
‖u‖

Ḃ
d
2+1−2β. d2+2β+s−1 + sup

t
‖τ‖

Ḃ
d
2+1−2β, d2+s

+

∫ t

0

‖u‖
Ḃ
d
2+1, d2+1+sdt

′ +

∫ t

0

‖τ‖
Ḃ
d
2+1, d2+2β+sdt

′

. ‖u‖h
Ḃ
d
2+2β+s−1

2,1

+ ‖τ‖h
Ḃ
d
2+s

2,1

+ ε(ε+ t).

This completes the proof of the higher regularity in (5.1) or in (1.9). �
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We now turn to the proof of Proposition 5.1. The proof of Proposition 5.1 relies on the

following lemma, which is the higher regularity version of Lemma 3.2 and Lemma 3.3.

Due to its similarity with Lemmas 3.2 and 3.3, we omit its proof.

Lemma 5.2. Let (u, τ) be the solution to the system (1.3) on [0, T ), we have the following

estimates

E
′h
0 (t) + E

′h(t) ≤ C1E
′

0 + C2

∫ t

0

∑
j>0

2j(
d
2

+1)
(
|Hj|/(‖Λ2β−1∆̇ju‖L2

+ ‖∆̇jΛ
−1P∇ · τ‖L2) + |Yj|/‖∆̇jτ‖L2

)
dt′,

where C1 and C2 are independent of T and E
′
0 = ‖u0‖

Ḃ
d
2+1−2β, d2+2β + ‖τ0‖

Ḃ
d
2+1−2β, d2+1.

Proof of Proposition 5.1. According to Proposition 2.5 and Proposition 2.7, for j > 0,

|(Λ2β−1∆̇j(u · ∇u),Λ2β−1∆̇ju)| . cj2
−j( d

2
+1)‖u‖

Ḃ
d
2+1

2,1

‖u‖
Ḃ
d
2+1−2β, d2+2β‖Λ2β−1∆̇ju‖L2 ,

|(∆̇j(u · ∇τ), ∆̇jτ)| . cj2
−( d

2
+1)j‖u‖

Ḃ
d
2+1

2,1

‖τ‖
Ḃ
d
2+1−2β, d2+1‖∆̇jτ‖L2 .

Similar to the inequality (3.24), we have∫ t

0

∑
j>0

2j(
d
2

+1)
(
|H1

j |/(‖Λ2β−1∆̇ju‖L2 +‖∆̇jΛ
−1P∇·τ‖L2)+ |Yj|/‖∆̇jτ‖L2

)
dt′

.
(

sup
t
‖τ‖

Ḃ
d
2+1−2β, d2+1 + sup

t
‖u‖

Ḃ
d
2+1−2β, d2+2β

) ∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′

+

∫ t

0

‖Q(τ,∇u)‖h
Ḃ
d
2+1

2,1

dt′

.
(

sup
t
‖τ‖

Ḃ
d
2+1−2β, d2+1 + sup

t
‖u‖

Ḃ
d
2+1−2β, d2+2β

) ∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′

+ sup
t
‖τ‖

Ḃ
d
2+1−2β, d2

∫ t

0

‖u‖h
Ḃ
d
2+2

2,1

dt′

. (E
′h
0 (t) + E

′h(t))E(t) + E2(t). (5.2)

By Proposition 2.7, we obtain

|H2,1
j | . cj2

−j2−j
d
2‖u‖

Ḃ
d
2+1

2,1

‖P∇ · τ‖
Ḃ
d
2−2β, d2

‖∆̇jΛ
−1P∇ · τ‖L2 ,

which implies ∫ t

0

∑
j>0

2j(
d
2

+1)|H2,1
j |/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2)dt′

. sup
t
‖τ‖

Ḃ
d
2+1−2β, d2+1

∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′.

(5.3)
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By Proposition 2.5,∫ t

0

∑
j>0

2j(
d
2

+1)
∣∣H2,2

j +H2,3
j

∣∣/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2)dt′

.
∫ t

0

‖∇u⊗ τ‖h
Ḃ
d
2+1

2,1

+ ‖∇u⊗∆−1∇ · ∇ · τ‖h
Ḃ
d
2+1

2,1

dt′

.
(

sup
t
‖τ‖

Ḃ
d
2+1−2β, d2+1 + sup

t
‖u‖

Ḃ
d
2+1−2β, d2+2β−1

) ∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′

+ sup
t
‖τ‖

Ḃ
d
2+1−2β, d2

∫ t

0

‖u‖h
Ḃ
d
2+2

2,1

dt′

. (E
′h
0 (t) + E

′h(t))E(t) + E2(t).

Combining this with (5.3), we obtain∫ t

0

∑
j>0

2j(
d
2

+1)|H2
j |/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2)dt′

. (E
′h
0 (t) + E

′h(t))E(t) + E2(t). (5.4)

By Proposition 2.7,∣∣H3,1
j

∣∣ . cj‖u‖
Ḃ
d
2+1

2,1

(
2−j(

d
2

+2β)‖u‖
Ḃ
d
2+1−2β, d2+2β‖∆̇jΛ

2β−2P∇ · τ‖L2

+ 22β−22−j
d
2‖P∇ · τ‖

Ḃ
d
2−2β, d2

‖∆̇ju‖L2

)
.

Then, we have ∫ t

0

∑
j>0

2j(
d
2

+1)|H3,1
j |/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2)dt′

.
(

sup
t
‖u‖

Ḃ
d
2+1−2β, d2+2β + sup

t
‖τ‖

Ḃ
d
2+1−2β, d2+1

) ∫ t

0

‖u‖
Ḃ
d
2+1

2,1

dt′

. (E
′h
0 (t) + E

′h(t))E(t) + E2(t). (5.5)

As in the estimates of the terms H2,2
j and H2,3

j , we have∫ t

0

∑
j>0

2j(
d
2

+1)
∣∣H3,2

j +H3,3
j

∣∣/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ
−1P∇ · τ‖L2)dt′

. (E
′h
0 (t) + E

′h(t))E(t) + E2(t).

Combining this with (5.5), we obtain∫ t

0

∑
j>0

2j(
d
2

+1)|H3
j |/(‖Λ2β−1∆̇ju‖L2 + ‖∆̇jΛ

−1P∇ · τ‖L2)dt′

. (E
′h
0 (t) + E

′h(t))E(t) + E2(t).

(5.6)

Putting (5.2), (5.4) and (5.6) together, we complete the proof of Proposition 5.1. �
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