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Abstract

Huang, Lutwak, Yang, and Zhang introduced the LP integral curvature and posed
the corresponding LP Aleksandrov problem, the natural LP extension of the classical
integral curvature and Aleksandrov problem respectively. The problem asks about the
existence of a convex body with prescribed LP integral curvature measure. For the
case of given even measures, the question will be solved for p € (—1,0). Furthermore,
a sufficient measure concentration condition will be provided for the case of p < —1,
again provided that the given measure is even.

1 Introduction

The integral curvature measure, also known as the first curvature measure introduced by
Federer [19] for sets of positive reach, was first defined by Aleksandrov [2]. The corre-
sponding classical Aleksandrov problem asks about constructing a convex body (a compact
convex set with nonempty interior) with prescribed integral curvature. This is a type of
Minkowski problem, a famous and influential question in Brunn-Minkowski theory with ties
to many other fields in mathematics, including functional analysis, differential geometry, and
nonlinear partial differential equations. The Minkowski problem asks about the existence
of a convex body with predetermined surface area measure. The problem was solved by
Minkowski himself [44] for the polytope case using a variational argument. Aleksandrov [1]
and Fenchel-Jessen [20] also provided complete solutions with similar variational approaches.
Information on the regularity of the solution can be found in Cheng-Yau [16], Caffarelli [11],
Nirenberg [46], Pogorelov [51], and Trudinger-Wang [54].

When the given measure has density f : S"! — (0,00), the Aleksandrov problem
amounts to solving the following Monge-Ampére-type partial differential equation

£ (IVh? + h2)*
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where Vh is the gradient of h, V?jh is the Hessian of h, and ¢;; is the identity matrix with
respect to an orthonormal frame on S"~!. The classical Aleksandrov problem was solved
by Aleksandrov [2] first for polytopes and then generalized via an approximation argument.
Oliker [49] gave an alternate solution to the existence question using mass transport for
the polytope case and then extended it to more general shapes with the same approxima-
tion approach. Huang-Lutwak-Yang-Zhang [30] provided another solution to the existence
problem for even measures with a direct variational proof. Results on the regularity of the




solutions can be found in Guan-Li [24], Oliker [47, 48|, and Li-Sheng-Wang [35| for more
general problems.

Huang-Lutwak-Yang-Zhang [30] introduced the L? integral curvature measure and solved
the corresponding LP Aleksandrov problem completely for p > 0 and obtained partial results
for p < 0. Zhao [58] proved existence of a solution for origin-symmetric discrete measures
and p € (—1,0). The goals of this paper are to extend the two aforementioned results by:
(i) completely proving existence of a solution for origin-symmetric measures and p € (—1,0)
and (ii) obtaining a sufficient measure concentration condition for existence in the case of
origin-symmetric measures and p < —1. To discuss in detail the LP Aleksandrov problem,
we will first provide some background information on L” Brunn-Minkowski theory.

We define a convex body in R" to be a compact convex n-dimensional set. The set K] is
the class of convex bodies in R™ with the origin in their interiors. For a compact convex subset
K C R", we define its support function hg : R* — R by hg(y) = max{z-y: = € K}. The
support function is homogeneous of degree 1 and convex, and it uniquely defines a convex
body.

The L? Brunn-Minkowski theory is an extension of the classical Brunn-Minkowski theory.
It was first initiated by Firey, when he introduced the Minkowski-Firey LP-combination,
K 41t-L € K, for K, L € K} and small nonzero ¢t € R. This LP-sum is defined by

K+t L= {:c eR": x-v < (hh(v) —|—thi(v))% YORS S"’l}.

However, the theory was brought to life and actively researched when Lutwak [39] discovered
the concept of the LP surface area measure, which subsequently led to the LP Minkowski
problem. The L? surface area measure S,(K, -) for each K € K} can be defined as the Borel
measure on S™ ! that satisfies the following equation

d
K+t
V(K 4 t-L)

1
_1 / hi(w)? dS, (K, u),
t=0 P Jsn—1

forall L € K.

The corresponding L Minkowski problem asks: For all p € R, what are the necessary and
sufficient conditions on a given Borel measure u on S™™1 so that there exists a K € K" with
= S,(K,-)? Notice that when p = 1, the L? surface area measure becomes the classical
surface area measure, and hence the L' Minkowski problem is the same as the classical
Minkowski problem. See [44, 1, 20, 16, 11, 46, 51, 54]. For the p > 1 case, a solution for
even measures was provided by Lutwak [39], and then Chou-Wang [17] proved existence for
general measures. More results on this can be found in [15, 14, 32|. Another important but
largely unsolved case of the LP Minkowski problem is the case of p = 0, where the Sy(K,-) is
the cone volume measure of K with total measure equal to V(K'). For more information on
this measure, see [5, 7, 27, 37, 38, 45, 50, 55]. The L° Minkowski problem is also known as the
logarithmic Minkowski problem. The existence for even measures was proved in Boroczky-
Lutwak-Yang-Zhang [8], and progress for more general cases can be found in [4, 53, 59, 13].
The p = —n case, also largely unsolved, is called the centro-affine Minkowski problem first
posed by Chou-Wang [17]. Results on this case can be found in [33, 36, 60]. The solution
to the LP” Minkowski problem, together with LP-affine isoperimetric inequalities of convex



bodies [40, 26], are critical to establishing sharp affine Sobolev inequalities of functions which
are stronger than the classical Euclidean Sobolev inequalities [18, 25, 41, 42, 56, 34].

Now the LP Aleksandrov problem arose in Huang-Lutwak-Yang-Zhang [29]|, where the
concept of dual curvature measures 5(1([( ,-) and related variational formulas were discovered.
The dual Minkowski problem, which analogously asks about the existence and uniqueness
of a convex body with predetermined dual curvature measure, interpolates between some
previously disconnected questions mentioned earlier. The ¢ = 0 case of the dual Minkowski
problem becomes the classical Aleksandrov problem, and the ¢ = n case is the logarithmic
Minkowski problem. For progress on this problem, see [3, 6, 9, 12, 22, 28, 31, 35, 43, 57, 58|.
Another extension of the classical Aleksandrov problem was discovered recently by Boéroczky-
Lutwak-Yang-Zhang-Zhao [10], when they first posed the Gauss image problem. In the case
of one of the submeasures being the spherical Lebesgue measure, the Gauss image problem
becomes the classical Aleksandrov problem.

The LP integral curvature comes from a variational formula in Huang-Lutwak-Yang-
Zhang [30] for a certain entropy integral. For each K € K, define its entropy & by

E(K) = — /S log hic(v) do.

Then for each p # 0 and K € K7, we define (see Huang-Lutwak-Yang-Zhang [30]) the L?

0’
integral curvature measure, J,(K,-), of K as the Borel measure on S"~! that satisfies

d .

—E(K+t-L)| = —/ pr(w)™? dJ, (K, u)

dt t=0 p Sn—1

for all L € K, where the LP harmonic combination is defined as K+,t-L = (K* +t-L*)*,
and K™ is the polar of K. It turns out that the L? integral curvature measure is related to
the classical integral curvature measure in the following way

1

dJ,(K,-) = ph dJ(K,-).

Observe that when p =0, Jo(K,-) = J(K,-), the classical case.
The LP Aleksandrov problem asks about the existence of a convex body with predeter-
mined LP integral curvature. More specifically:

Problem. Fix a nonzero p € R. What are the necessary and sufficient conditions on a given
Borel measure p on S™! so that there exists a convex body K € K with u = J,(K,-)?

It was shown that if ¢ has density f, this problem amounts to solving the Monge-Ampére-
type partial differential equation

- (VR +h?)*

det (V?Jh + héw) = Bi-p s

where Vh is the gradient of i (unknown function), VA is the Hessian of h, and d;; is the
identity matrix with respect to an orthonormal frame on S"~!. Huang-Lutwak-Yang-Zhang
[30] completely solved existence for when p > 0.



Theorem (Huang-Lutwak-Yang-Zhang 2018). Suppose p € (0,00) and p is a finite Borel
measure on S™1. Then there exists K € K such that pu is the LP integral curvature measure
of K if and only if p is not concentrated on any great subsphere.

Furthermore, Huang-Lutwak-Yang-Zhang [30] solved existence under some strong condi-
tions for the origin symmetric case and when p < 0. More specifically,

Theorem (Huang-Lutwak-Yang-Zhang 2018). Suppose p € (—o0,0) and u is a finite, even,
nonzero Borel measure on S™! that vanishes on all great subspheres of S"~1. Then there
exists K € KU such that p is the LP integral curvature measure of K.

Note that this result excludes many shapes, including polytopes. Zhao [58] addressed
part of this gap by proving existence for origin symmetric polytopes and p € (—1,0).

Theorem (Zhao 2019). Suppose p € (—1,0) and p is a finite, even, discrete, nonzero Borel
measure on S™™' . Then there exists an origin symmetric polytope K € K" such that u
s the LP integral curvature measure of K if and only if p is not concentrated on any great
subsphere of S"71.

One goal of this paper is to extend the result by Zhao [58] by completely proving existence
for the origin-symmetric case of the LP Aleksandrov problem, for p € (—1,0).

Theorem 1. Let —1 < p < 0 and p be a nonzero even finite Borel measure on S"1. Then
there exists an origin symmetric conver body K € R™ such that p = J,(K,-) if and only if p1
15 not concentrated on any lower dimensional subspace.

For the remaining negative index cases (p < —1), we will weaken the assumptions on the
p < 0 existence result by Huang-Lutwak-Yang-Zhang [30] from completely no concentration
to requiring some measure concentration condition. More specifically, we will show the
following;:

Theorem 2. Let p < —1 and u be a nonzero even finite Borel measure on S~ *. Suppose,
on all great subspheres € C S™ 1, that

(&)
— o S Cn)P,
(s =0
where C'(n) = exp [% (@/} (%) - (%))} is a constant depending only on n, and v is the
digamma function. Then there exists a K € K7 such that = J,(K,-).

The approach for both of these results will be variational. We will first convert the
existence question into an optimization problem and then proceed to prove the existence of
an optimizer.

2 Background Information

In this section, we will provide some basic background on the theory of convex bodies and
explain the L integral curvature measure and the LP Aleksandrov problem in more detail.
For further information and reference, see Schneider [52] and Gruber [23].
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2.1 General Information on Convex Bodies

We let S™~! denote the unit sphere centered about the origin o in R™, and B™ denote the
unit ball centered about o in R™. We will call the volume of the unit ball w,, and the surface
area of the unit ball o, = nw,. We define a convex body in R" as a compact convex set with
non-empty interior. The set K7 is the class of convex bodies in R™ with the origin in their
interiors, and K" is the class of origin-symmetric convex bodies in R™. Define C'(S"') to
be the set of continuous functions on the unit sphere, and CT(S™"™!) to be the set of strictly
positive continuous functions on the unit sphere. Let K and L be compact convex sets, and
define their Minkowski sum by

K+L={k+1: keK, lel}

Suppose K C R" is a compact, convex set. Define its support function hx : R® — R by

hix(y) =max{zx-y: z € K},
where x - y is the standard inner product of  and y in R™. Note that the support function
is convex and homogeneous of degree 1. Furthermore, the support function uniquely defines
a convex body. Now suppose K contains the origin in its interior, and define the radial
function of K, px : R™\ {0} — R, by

pr(x) =max{\: Az € K}.

Every compact star-shaped (with respect to the origin) set is uniquely determined by its
radial function. We say that a sequence of convex bodies {K;} converges to a compact
convex set K € R" if

sup {|hk,(v) — hx(v)]: v € S '} =0, as i — oo,
or when o € int K (the interior of K), {K;} converges to K if

sup { |px, (u) — px(u)| : we S" '} =0, as i — oco.

Also note that the boundary of K, which we denote by 0K, is related to the radial function
in the following way,

OK = {px(u)u: ue S"'}.
It follows from these definitions that the support function and radial function are related by
hi(v) = max (u-v) pr(u) , Yo € S
uesSn—1

and

1 (u-v) -1
= max , Vue 8"
pK(U) vesn—1 hK(U)

Define the polar body K* € K7 of K € K by




K'={zeR": z-y<1, Vye K}.

Thus, from the definition of the polar body and the relationship between the support and
radial functions, we can deduce the following two useful equalities

and 1
)= @y

for all x € R™. Furthermore, observe that (K*)" = K.

For every function f € C*(S"!), define the Wulff shape (also known as the Aleksandrov
body) associated with f by

[f]={z€eR": z-v< flv)Vwe S} ekl
One can check that for each f € CT(S™1), we have that hyy < f, and [hg] = K for every
K € K. Now let p € CT(Q), where Q C S™ ! is closed. Then {p(u)u: Yu € Q} is a
compact set. Now define (p) by
{p) = conv {p(u)u: ue N} ekl

So if K € K, we observe that (px) = K.
To begin stating some necessary facts in L” Brunn-Minkowski theory, we first start by

defining the LP? Minkowski combination. For every nonzero p € R, K, L € K?, and a,b > 0,
define a- K +,0-L € K by

0K 40 L = [(a- Wl + b-hE) 7],

and for the case of p = 0, define

a-K-4b-L = [h%h}).

Now we use the polar body to define the LP harmonic combination of K, L € K. Again, fix
p € R and let a,b > 0. Define the L? harmonic combination a-K+,b-L € K by

a-K+b- L= (a-K*+4b-L*)",

Define the supporting hyperplane with outer unit normal v € S"~! tangent to K € K"
by

Hx(w)={x e K: z-v=hg(v)}.
For o C 0K, we define the spherical image v (c) C S"™! to be the following set

vi(o) ={veS" " x € Hk(v) for some z €0} .

And for n € S™1, define the reverse spherical image xx(n) C 0K to be
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xx(n) ={r € 0K : x € Hk(v) for some v € n}.

Call the set of all x € 0K for which vk ({z}) consists of more than one element, ox C
OK. Then one can show that H" '(ox) = 0 (see Schneider [52]), where H"! is the
(n — 1)-dimensional Hausdorff measure. The spherical image map is defined as follows:
vk 1 OK\ox — S™! with

vi(z) = vg({z}) Vo € 0K \ok.

Note that this function is continuous (see Schneider [52]). We similarly define nx C S™~!
to be the set of all v € S"~! such that xx({x}) contains more than one element. We also
have that nx is H" ! measure 0 (see Schneider [52]). Define the reverse spherical image map
zr 2 S"N\nxg — 0K by
i (v) = 2 ({v}) Vo €S N\nk.
This function is also continuous (see Schneider [52]). The radial map for K € K7, rg :
St — QK is defined by
ri(u) = pr(u)u Yu € S™ 1.
For w C S™7!, the radial Gauss image of w is a subset of S"~! defined by
ag(w) = vi(rk(w)).
Rewriting this for u € S"7 1,
ar({u}) ={ves" " rr(u) € HK,v)}.
Observe that aig(+) is positive homogeneous of degree 0. Now define the reverse radial Gauss

image of n C S"! to be

ay(n) =i (xx(n)),

which for u € S ! can can be rewritten as

afe(n) = {ue S v(pk(u)u)= hi(v), for some v € n}.

2.2 [P Integral Curvature
We define a geometric measure on a convex body first introduced by Aleksandrov [2]. The
integral curvature of K € K is a Borel measure on S"! defined as

J(K,w) = H""} o (w)),

for every Borel w C S™!. Observe that the total integral curvature of any K € K" is the
surface area of S"7 !, ie. J(K,S" 1) = o,, and it is positively homogeneous of degree 0.
The integral curvature is also known as the first curvature measure, where the latter family



of measures was first introduced by Federer [19] for sets of positive reach. The classical
Aleksandrov problem asks: What are the necessary and sufficient conditions on a Borel
measure j1 on S"' so that p = J(K,-) for some K € K'?

Aleksandrov [2] solved the problem completely, and his theorem with the necessary and
sufficient conditions is stated below.

Theorem (Aleksandrov 1942). Suppose u is a finite Borel measure on S™'. Then u =
J(K,-) for some K € K7 if and only if || = o, and

() < HH(S M) (21)
for each conver w C S™ ! and where w* ={v e S"1: v-u <0 Vu € w}.

Inequality (2.1) is also known as the Aleksandrov condition. Aleksandrov also proved
that the solution, if it exists, is unique up to scaling. The integral curvature measure for
K € K" can also be defined as the unique Borel measure on S"~! that satisfies the following
variational formula:

GEwHReD) == [ loglpu(w) dI(K.u)

dt =0 gn-1

for each L € K. Subsequently, Huang-Lutwak-Yang-Zhang [30] defined the L? integral
curvature by the following variational formula. For each K € K7 and p # 0, the L? integral
curvature of K is the unique Borel measure on S™~! that satisfies

d .
—E(K+4t- L
SE(Kh-L)

1
=—/ o) (K, u),
t=0 p Snf 1

for each L € K. It turns out the L? integral curvature measure is related to the classical
integral curvature measure in the following way

dJy(K,-) = pg dJ(K,").
Huang-Lutwak-Yang-Zhang [30] first posed the LP Aleksandrov problem:

Problem. Fix p € R. What are the necessary and sufficient conditions on a given Borel
measure g on S"! so that there exists a convex body K € K7 with p = J,(K,-)?

The case of p = 0 is the classical Aleksandrov problem. The p > 0 case for existence was
completely proved in Huang-Lutwak-Yang-Zhang [30]. Additionally, Huang-Lutwak-Yang-
Zhang [30] solved existence under the strong condition of no measure concentration on any
great subspheres, for the origin symmetric case of p < 0. Zhao [58] extended the result for
p € (—1,0) to existence for origin symmetric polytopes. We aim to extend the result by Zhao
[58] for p € (—1,0) by proving existence for any even measure not completely concentrated
on any great subsphere. We will also weaken the assumptions of the p < 0 existence result by
Huang-Lutwak-Yang-Zhang [30] to a nonzero measure concentration condition requirement
for origin-symmetric measures.



3 Optimization Problems

The purpose of this paper is to prove existence for the LP Aleksandrov problem for p < 0
cases and even Borel measures p on S"1. To solve the —1 < p < 0 case for even measures,
we consider the following optimization problem. For any nonzero, finite Borel measure i on

S™ 1 and p # 0, define

$)(Q) = exp (if:(@)) - ( | du(U)); .

We consider the maximization problem sup {&DI,(Q) N ONS ICQ}.

We first present a variational formula of the entropy integral. This result was proved in
Corollary 4.6 of [29].

Lemma 1 (Huang-Lutwak-Yang-Zhang 2016). Let Q C S™ ! be a closed set that is not
contained in any closed hemisphere, g : 1 — R be continuous, K € K7, and 6 > 0 be
sufficiently small. Define p,(v) = px(v) - €9 for each t € (—6,5). Then

d
(o))

= — /Sn_l g(u) dJ(K,u). (3.1)

t=0

We now apply this result to prove that the solution to the maximization problem is also
a solution to the LP Aleksandrov problem.

Lemma 2. Suppose p # 0 and p is an even Borel measure on S '. If K € K" satisfies

on= [ s du(w) (3.2
gn—1

and EIv>p(K) = sup {(I)p(Q) N ONS ICZ}, then = J,(K,-).

Proof. Define the functional ¥, : C*+(S"!) — R by

B (1) = (2-e4m) - ([ 1 dutw)

Then W,(f) is homogeneous of degree 0.
Notice that psy > f, and so

(o o) E ([ o) :

This combined with the fact that (p¢s) = (f) implies \Tfp(f) < \Tfp(p<f>). Thus, in searching
for the function that maximizes W,, we can restrict to considering just radial functions of

sets in K. Thus,
sup{\flp(f) . f€ C+(S"71)} = sup {&DP(Q) CQE /CZ}
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For g € CT(S"1) and t € (—4,d) where § > 0 is sufficiently small, define again

tg(v)

ou(v) = prc(v) - e
Thus, by (3.1), the definition of {Iv/p, and (3.4), we have that

X (eXp (oig <<pt>>> ' ( /S () dpl >);>
— _i (/sn_l g(u) dJ(K, u)> L exp ( ((pxe)) ) ( Sn | (u>)_;
+ (/SM Pl () - g(u) dp (u)) exp < (i) ) ( [ (u))_;_l_

Then by (3.2), pil du = dJ(K,-). Therefore, u = ph, J(K,-) = J,(K,"). O

For the p < —1 case, we consider the following optimization problem. For any nonzero,
finite Borel measure ;1 on S" ! and p # 0, define

0@ = stog ([ s auto)) + £

p On

where o, is the surface area of S"~!. We prove that the optimizer of this functional is also
a solution to the LP Aleksandrov problem.

Lemma 3. Let p,q # 0 and p an even Borel measure on S™™'. If K € K" satisfies

on = / o (u) dps(u) (3.3)
gn—1

and the mazimization problem ®,(K) = sup{P,(Q): Q € K}, then u= J,(K,-).
Proof. Define the functional ¥, : C*(S" ') - R by

v =tow ([ e dut)) + e,

Then ¥, (f) is homogeneous of degree 0.
Notice that psy > f, and so

o ([ p@an) = —os( [ o).

This combined with the fact that (p(sy) = (f) implies ¥,,(f) < ¥,(p(sy). Thus, in searching
for the function that maximizes W,, we can restrict to considering just radial functions of
sets in K. Thus,

10



sup {W,(f): fe CT(S" )} =sup{P,(Q): Qe K},
For g € CT(S™"1) and t € (—4,d) where § > 0 is sufficiently small, define

pe(v) = prc(v)e) (3.4)

Thus, by (3.1), the definition of ¥, and (3.4),

d

0= g (o)

= 8 (Letan - Loa ([ s auw))

= —Oi s g(u) dJ(K,u)
H([owwswan)- ([ o adw)
Then by (3.3), p du = dJ(K, ). Therefore, u = ph, dJ(K,-) = dJ,(K,-). O

4 Existence of Solutions

We will prove the existence of a solution to the optimization problem in Lemma 2 for
p € (—1,0), under the assumption of origin symmetry. First, we begin with showing the
continuity of the optimization function ®,,.

Lemma 4. Suppose i is an even Borel measure on S™' that is not concentrated on any
great subspheres. Let () € KU be a sequence of origin-symmetric convez bodies such that Q)
converges to QV, an origin-symmetric compact convex set, in the Hausdorff metric. Then,
for p <0, after possibly taking a subsequence {Q, },

Jim @,(Q1,) = 2,(Q°).

Proof. Since <T>p is homogeneous of degree 0, we rescale so that max,cgn—1 pg,(u) = 1. For
each [ € N, define u; € S™! to be the unit vector that satisfies pg,(u;) = 1. Since Q; is
origin-symmetric, observe that

|ul : U| < th<U) < 17
for each v € S"1. Then

[log (hq, (v))] < —log fu; - v]. (4.1)

We apply the generalized dominated convergence theorem to prove the convergence of
E(Q)) to £(QY). The generalized dominated convergence theorem is stated as follows (see
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Folland [21]): Let {fi},°, be a sequence of measurable functions and {g;},=, be a sequence
of nonnegative measurable functions. Suppose that |fi| < |gi| for all I, {fi},2, converges
pointwise almost everywhere to f and {g/};-, converges pointwise almost everywhere to g,

and im0 [gu 1 1 = [gur g < 00. Then im0 [gu s i = [gur [-

From Inequality (4.1), we let g;(v) = —log |u; - v| and f;(v) = log (hg, (v)) for allv € S™~ 1.
Recall the assumption that @, — Q° in the Hausdorff metric, and so hg, — hgo point-
wise. Since hgo > 0 almost everywhere, we have that loghg, — loghge almost every-
where. The assumption that Q; — Q° in the Hausdorff metric and Bolzano-Weierstrass
implies that there exists a subsequence such that pg, (uy,)u, — pgo(uo)ug, which means
that w;, — wug, and so |uy, - v| — |ug - v| for all v € S™1. Since |ug - v| > 0 almost every-
where, log |uy, - v| = log |ug - v| almost everywhere. Since S™~! is rotationally symmetric, we
have that limy_, o fsw—l log |uy,, - v| dv = fSn_l log |ug - v| dv < co. Hence, by the generalized
dominated convergence theorem,

lim log (thk (u)) du = /S  log (hgo(u)) du. (4.2)

k—o0 gn—1

To prove convergence of the radial function terms, notice that since Q; — Q° in the
Hausdorff metric, pg, — pgo pointwise. Since p < 0, this implies that p,” — p(j?{)’ . Recall

also the assumption that pg, < 1. Applying again the fact that p < 0, we have péf < 1.
Hence, by the dominated convergence theorem,

fim [ o) dutu) = [ pghu) du(w) (43)

l—o00 gn—1 gn—1

Equations 4.2 and 4.3 with the definition of (T)p imply that
lim @,(Qy,) = &,(Q°).
—00
O

Lemma 5. Let L be a k-dimensional origin-symmetric convex body that spans a subspace
called &, and consider a corresponding cylindrical thickening fort > 0, L' = L+tB"* where
B"F is the unit ball in the complementary subspace of &. Then there exists an v > 0 such

" o (2 () _exw (e 09)
exp (0%5 (er)) T exp (0%5 (L)> '
Proof. Observe that Inequality (4.4) is equivalent to
exp (ig (L)) [ e (0%5 (Lt))

exp (%E (TBk)> ~ \exp <i€ ((er)t)>

Or after rewriting the right side of the above inequality,

(4.4)
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exp (;—nl [ /S log (b + thi) () du /S 10 (e + i) (u))] du) (45)

We now compare the derivatives of the two integrals

d _
7 log ((hr + thgn—«) (u)) du = / (hy + thgn-x) ! (u) - hgn-r(u) du (4.6)
Snfl Snfl
and
d 1
pr log ((hygr + thgn—+) (1)) du = / (hpgr +thgn—r)" (u) - hgn-r(u) du.  (4.7)
S'n—l Sn—l

If rB¥ C L, we notice that from (4.6) and (4.7), the exponent of (4.5) increases at every
point ¢ > 0. Therefore, we have the desired inequality. O

Let L be a k-dimensional origin-symmetric convex body that spans a k-dimensional
subspace called £. Henceforth, we denote the ratio of the support function terms of ®,(L?)
and ©,(L) by Ay,

exp <i€(Lt)>
exp <i€(L))

—oxp (2 [ Qo+ thi) ~1og () )

On

Ay (L, t) =

and the ratio of the radial function terms of Cfp(Lt) and ZI;p(L) by As. For L and p such that
Jgn—1 pp" (u) du(u) # 0, define

Ballt) = <f5n—1 pr” (u) dp(u)

1

_ fsn71 PZLBn_k(U) d:u(u) g
Jn-s p2" (W) dpa(u)

We will now obtain an estimate for the differential of A;(L,t) in the limit as ¢t — 0.

fsw—l pri (1) dﬂ(“)) E

Lemma 6. Let —1 < p < 0, p be a nonzero even finite Borel measure on S™ 1 that is
not completely concentrated on any lower dimensional subspace, and L € K7 span a k <n
dimensional subspace called &, and t > 0. Then there exists a function Al(L,t) such that

lim Ay (L, t) =1 (4.8)
t—0+
and
lim LA (L,t) > log(t) (4.9)
ok gt 1t A~ OB ‘
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Proof. By Lemma 5, there exists an R > 0 such that Ay(L,t) > Ay (RB*,t). We will denote
Ay(L,t) = Ay (RB*t). Then we have

/2 (cos* ™ @) (sin™* " ¢) log (Rcos ¢ + tsing) do
0

)

= exp (—i /2 (cosk_l qﬁ) (sin"_k_l ¢) log <(R2 ;tQ)Q & (60— A)> d¢> ,

on Jo cos ¢

On

Ay (L,t) = exp (—i

— /02 (cosk_1 gzﬁ) (simn_k_1 qﬁ) log (Rcos @) d¢

where we use the identity (R? + tZ)% -cos(¢p—A) = R-cos(¢) +1t-sin(¢), with A = arctan (%)
and o, is the surface area of S"~!. So,

lim Ay(L,t) = lim exp (—ilog (M) /2 ((:os]“’1 9) (sin"’k’1 ¢) do
0

t—0+ t—0+ oy, R
(4.10)
[z _ ke
—b—a ; (cosk ! gb) (sm k 1(]5) log (%) d(b) .

We focus on the limit of the second integral. Notice that we can bound the absolute value
of the integrand

o) i+ s (525 )| = o ()

= [log (cos ¢) — log (cos(¢ — A))| (4.11)
< [log (cos ¢)| + [log (cos(¢ — A))|
= —log (cos ¢) — log (cos(¢p — A)).

For sufficiently small ¢ > 0, we observe that — log (cos(¢ — A)) < —log (cos ¢) + 1 for each
¢ € |0, g} Hence, the left side of (4.11) is bounded by an integrable function in the interval
[0,% . S0 by the dominated convergence theorem, we can switch the order of the limit and
the integral in (4.10). We then have (4.8)

lim A, (L,t) = exp(0)
t—0+

=1.

Now we take the derivative

14



d - 1 R2 2 % %
%Al([/,t) =exp | —— log (%) /0 (cos"“’1 ¢) (sin”’k’1 (b) d¢o

L o g) (s ) log (M) d¢>

cos ¢

-1 R2 > 1 (RQ—l—tz)i% B k—1 - p—k—1
{Z(RQ—W) -E-T-Qt-/o (cos" ! ) (sin ¢) do

i o) (a1 (COS((:ZS _d)A)) (sm(qﬁ - A))A dqb}.

on Jo cos ¢
(4.12)
Performing an integration by parts on the last integral of (4.12),
L [3 k—1 s on—k—1 sin(¢ — A) !
_ = n A d
on Jo (cos q§) (sm ¢) cos(6 = ) [0)

w/2

= oi (cos*! ¢) (sin™*' ¢) A’ -log (cos(¢p — A))

n

0

+ /- (n—k —1) (cos” ¢) (sin %2 ¢) A" log (cos(¢ — A))de.

on Jo
Hence, in the limit lim; .o+, we have (4.9)

d ~ 1 ,
tli%fi —tAl(L,t) = tl_i)ré1+ o <cosk_1 g) (sinn_k_1 g) A log <COS (g — A)) +C
2 lim logt,
t—0+

where C' is a finite negative constant. The inequality above is from the fact that the right
side of the equality is minimized when k£ = 1. n

We will now obtain an estimate for the differential of Ay(L,t) in the limit as ¢ — 0.

Lemma 7. Let —1 < p < 0, p be a nonzero even finite Borel measure on S™ 1 that is
not completely concentrated on any lower dimensional subspace, and L € K7 span a k <n
dimensional subspace called &, and t > 0. Suppose also that [g, . p;"(u) du(u) # 0. Then

there ezists a function Ao(L,t) such that Ay(L,t) > Ay(L,t) with

lim Ay(L.t) =1 4.1
Jim 2(L, 1) (4.13)
and
im LA (L, t) ~ P! (4.14)
10+ dt 2N ' '
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Proof. Recall the definition of Ay(L,1),

fS”‘l pZithk(u) dp(u) b
Ao(L,t) = 2 |
(L t) ( fsnfl pr(U) d,&(u) )

with [g,_, p;"(u) du(u) # 0. Recall also that ¢ is the k-dimensional subspace such that
L C &, Then for sufficiently small ¢ > 0,

Ao(L,t) > Je e (w) dp(u) + [gur\ 77 dp(u )) 2
Jsums p2" () dpa(w)
= fﬁpL d:“( )—Ft*p- (Snl\g));
Je i (w) du(u)
ARETESIGI
U Je P (w) dp(u ))
= A2(L,t).

So we have Ay(L,t) — 1 as t — 0. And differentiating Ay(L,t), we have that

d - P p(SmINE) _%_1. R TGt
a2 = (“+gpL mm>) t (LPL wm>>’

which means that p not concentrated on £ implies that EAQ(L,t) — oo ast — 0T, at rate
~ t_p_l. ]

We combine Lemmas 6 and 7 to obtain the existence of a solution to the optimization

problem sup {EIVDP(Q) N ONS /CZ}

Lemma 8. Let —1 < p < 0 and p be a nonzero even finite Borel measure on S"~! that is
not completely concentrated on any lower dimensional subspace. Then there exists K € K}

such that ®,(K) = sup{ H(Q): Q€ IC”}

Proof. Suppose {Q,} is a maximizing sequence, i.e.

hm P »(Q1) = Sup{ Q) Q€ IC”}

Since EIv)p is homogeneous of degree 0, we can rescale every term of the sequence so that
max,egn-1 pg,(u) = 1. Then by the Blaschke selection theorem, after taking a subsequence,
we can assume there exists an origin-symmetric compact convex set Q° such that Q; — Q°
in the Hausdorff metric. By Lemma 4, we have that after taking a subsequence,

lllglo (510(@1) = (5:0(@0»
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Now to show nondegeneracy of the limit, i.e. that o € int Q°, we proceed by contradiction.
Suppose there exists a k-dimensional subspace ¢ such that Q° C ¢ and span(Q°) = £ with
k < n. Taking advantage again of the fact that (f)p is homogeneous of degree 0, we can
rescale Q" so that min,cengn—1 poo(u) = 1.

First consider the case of [, , Poo(u) du(u) = 0. Observe that this implies

(@) = exp (-e@)) - ([ gt dutw))

=0
< ®,(B").
This a contradiction to the assumption that (); is a maximizing sequence.
From here on, we investigate the case of [g,, Poo(u) du(u) # 0. Now consider the same
cylindrical thickening of Q° as in Lemma 5, given by K! = Q" + tB"*, where B" ¥ is the
(n — k)-dimensional unit ball in the complementary subspace of £, and ¢t > 0. We will reach

a contradiction by showing that ®,(K?') > &)p(go) for sufficiently small £ > 0. By Lemmas
6 and 7, we observe that there exist functions A; and A, such that

P

P, (K") 0 4. 0 A (0 . A (O
E)Z)(QO) - AI(Q 7t> AQ(Q 7t) Z Al(Q 7t) AQ(Q 7t) —1
as t — 0. Furthermore,
d /~ . d < d - -
7 (Al(t) : Az(t)> = %Al(t) S Ao(t) + EAQ(t) A (). (4.15)

Recall that lim; o+ %Al(t) 2 log(t), %Ag(t) ~t P AL (t) = 1, and Ay(t) — Last — 07,

which implies that (4.15) will be positive for small ¢ if —1 < p < 0. Therefore, there exists
a small ¢y > 0 such that

o, (K?
~p< ) > 1, (4.16)
D,(Q°)

which is a contradiction to the assumption that (); is a maximizing sequence. O

We now prove the existence of a solution to the optimization problem in Lemma 3 for
p < —1, under the assumptions of a measure concentration condition and origin symmetry.
Namely, we will provide a sufficient condition on how the given measure u can be distributed
along S™! to guarantee a solution to the aforementioned optimization problem. This is
an expansion to the p < 0 existence result by Huang-Lutwak-Yang-Zhang |30|, since, for
example, some discrete measures can now be included.

Lemma 9. Let p < —1 and p be a nonzero even finite Borel measure on S"1. Suppose, on
all great subspheres € C S™ 1, that

1(§) »
WS 1) <C(n)",
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where C'(n) = exp (% (w (%) - (%))) is a constant depending only on n, and Y s the

digamma function. Then there exists a K € K7 such that ®,(K) =sup{®,(Q) : Q € KI}.

Proof. Suppose {Q,;} is a maximizing sequence for ®,, i.e.

lliglo Q,(Q)) =sup{P,(Q): QeK}.

Since @, is homogeneous of degree 0, we can rescale every term of the sequence so that

(/s log (h (u)) du) — 0.

We now prove that @, is uniformly bounded. Define v; € S™ ! by pg, (v1) = max,cgn—1 pg, ().
Then

0= —/ log (hg,(u)) du
Sn—1
> [ Joglpou(w) - ul) du
Sn—1

= [ om(pa o) dut [ oz (o) du

Snfl
— log (P, (v1)) - 0n + / log (Jur - ul) du.
Sn—l
Thus,

8 (g (0)) < = [ Tog (Ju -l (417)

and so since the right side of Inequality (4.17) is finite, we conclude that pg,(v;) uniformly
is bounded. Thus, VI, Q; C M B", for some M > 0.

By Blaschke’s selection theorem, ); converges to some origin-symmetric compact convex
set Qg C R™. Now we show nondegeneracy of the limit, i.e. that )g contains the origin in its
interior. Proceed by contradiction, and assume Jug € S™ ! such that hg,(+up) = 0. Now
Vo > 0, define ws(ug) = {v € S" ' : |v-ug| >}, and note that pg, — 0 uniformly on w;.

Now
0,(@) = —tog ([ o0 dut)
= o ([ o+ [ o)
i

Taking the limit [ — oo, we have
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gg@ﬁ@)S—%bgM%WMSWH—JWwMWQ)
1 _ — _ n— p(ws) >
=—-1 M~P B P h. :
,los p(S™) p(S™) (571

Take the limit & — 01 to obtain

n—1
hm(I) Ql < _llog M~ p,u Sn 1 M_p,u(Sn_l) . N(S \f))
p

( p(Sm1)

where ¢ is a great subsphere of S"~1. Suppose C(n) = exp <;—7} Jgn-1log |vo - ul du), then

1 _
lim ®,(Q;) < ——log (M_p cu(S™Y) - exp (O—p/ log |vo - ul du)) :
n Sn—1

l—o00

Recall that we rescaled Q; so that (fsn,l log(hg,(u)) du) = (0. Then

0> / log(M - |vg - ul) du
Sn—1

Thus,

0> o, -log(M) +/ log |vg - u| du.

n—1

—1
M < exp (—/ log |vg - ul du> :
On Sn—1

Applying this to Inequality (4.18), we have

And so

£g®g@)§—%bQM5”U)
— ®,(B").

This contradicts the assumption that {Q;} is a maximizing sequence.
We will now calculate C'(n). First notice that

—1
C(n) = exp (o_/ log |vg - u| du)
n Sn—1

= exp (—2 On-t /2 (sin"~? @) log (cos ¢) d¢>
0

On

— E_I)I[l) exp E log <2 '00:—1 /02 (sin" > @) (cos™ ¢) dgb)] ,
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where o0, is the surface area of S" . Focusing on the exponent, we apply a change of
variables to obtain

(lll_r%élog (2 On- /2 (sin"* @) (cos™ ¢) d(b)

)

= lim — log
q—0 q

On-1 (1—q n—l))
—hm log ,
q—0q 2

where 1) is the digamma function. O

We will now make some remarks on C(n). For even n, ¢ (%) = ?:_11 1 —~, and for odd

n, (%) =-y—-2mh2+ ZZ | 305 (where 7 is the Euler-Mascheroni constant). So,

eXpF@(@)_w(;))}: exp (4 (n2_11n2+z ) -k even.

2 2 2

exp (szl 21‘171) , k odd

Notice that for all n € N, 0 < C(n)? < 1. For large n, C(n)? = exp [£ (v (2) — ¢ (3))] =
O(n%). Since p < 0, we observe that the measure concentration bound approaches 0 as

n — oo.
From Lemmas 2 and 8, we have the following.

Theorem 3. Let —1 < p < 0 and p be a nonzero even finite Borel measure on S"1. Then
there exists an origin symmetric convezr body K € R"™ such that p = J,(K, ) if and only if p
1s not completely concentrated on any lower dimensional subspace.
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Proof. Necessity is obvious, and sufficiency follows from combining Lemmas 2 and 8. [
Lemmas 3 and 9 imply the following.

Theorem 4. Let p < —1 and p be a nonzero even finite Borel measure on S™~t. Suppose,
on all great subspheres € C S™ 1, that

() »
u(S™1) < o)’

where C(n) = exp [% (@/} (%) - (%))} is a constant depending only on n, and v is the

digamma function. Then there exists a K € K7 such that = J,(K,-).

Proof. Combine Lemmas 3 and 9. [
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