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Abstract

Huang, Lutwak, Yang, and Zhang introduced the Lp integral curvature and posed

the corresponding Lp Aleksandrov problem, the natural Lp extension of the classical

integral curvature and Aleksandrov problem respectively. The problem asks about the

existence of a convex body with prescribed Lp integral curvature measure. For the

case of given even measures, the question will be solved for p ∈ (−1, 0). Furthermore,

a su�cient measure concentration condition will be provided for the case of p ≤ −1,
again provided that the given measure is even.

1 Introduction

The integral curvature measure, also known as the �rst curvature measure introduced by
Federer [19] for sets of positive reach, was �rst de�ned by Aleksandrov [2]. The corre-
sponding classical Aleksandrov problem asks about constructing a convex body (a compact
convex set with nonempty interior) with prescribed integral curvature. This is a type of
Minkowski problem, a famous and in�uential question in Brunn-Minkowski theory with ties
to many other �elds in mathematics, including functional analysis, di�erential geometry, and
nonlinear partial di�erential equations. The Minkowski problem asks about the existence
of a convex body with predetermined surface area measure. The problem was solved by
Minkowski himself [44] for the polytope case using a variational argument. Aleksandrov [1]
and Fenchel-Jessen [20] also provided complete solutions with similar variational approaches.
Information on the regularity of the solution can be found in Cheng-Yau [16], Ca�arelli [11],
Nirenberg [46], Pogorelov [51], and Trudinger-Wang [54].

When the given measure has density f : Sn−1 → (0,∞), the Aleksandrov problem
amounts to solving the following Monge-Ampère-type partial di�erential equation

det
(
∇2

ijh+ hδij
)
=
f ·
(
|∇h|2 + h2

)n
2

h
,

where ∇h is the gradient of h, ∇2
ijh is the Hessian of h, and δij is the identity matrix with

respect to an orthonormal frame on Sn−1. The classical Aleksandrov problem was solved
by Aleksandrov [2] �rst for polytopes and then generalized via an approximation argument.
Oliker [49] gave an alternate solution to the existence question using mass transport for
the polytope case and then extended it to more general shapes with the same approxima-
tion approach. Huang-Lutwak-Yang-Zhang [30] provided another solution to the existence
problem for even measures with a direct variational proof. Results on the regularity of the
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solutions can be found in Guan-Li [24], Oliker [47, 48], and Li-Sheng-Wang [35] for more
general problems.

Huang-Lutwak-Yang-Zhang [30] introduced the Lp integral curvature measure and solved
the corresponding Lp Aleksandrov problem completely for p > 0 and obtained partial results
for p < 0. Zhao [58] proved existence of a solution for origin-symmetric discrete measures
and p ∈ (−1, 0). The goals of this paper are to extend the two aforementioned results by:
(i) completely proving existence of a solution for origin-symmetric measures and p ∈ (−1, 0)
and (ii) obtaining a su�cient measure concentration condition for existence in the case of
origin-symmetric measures and p ≤ −1. To discuss in detail the Lp Aleksandrov problem,
we will �rst provide some background information on Lp Brunn-Minkowski theory.

We de�ne a convex body in R
n to be a compact convex n-dimensional set. The set Kn

o is
the class of convex bodies in R

n with the origin in their interiors. For a compact convex subset
K ⊂ R

n, we de�ne its support function hK : Rn → R by hK(y) = max {x · y : x ∈ K}. The
support function is homogeneous of degree 1 and convex, and it uniquely de�nes a convex
body.

The Lp Brunn-Minkowski theory is an extension of the classical Brunn-Minkowski theory.
It was �rst initiated by Firey, when he introduced the Minkowski-Firey Lp-combination,
K +p t·L ∈ Kn

o , for K,L ∈ Kn
o and small nonzero t ∈ R. This Lp-sum is de�ned by

K +p t·L =
{
x ∈ R

n : x · v ≤ (hpK(v) + th
p
L(v))

1

p ∀v ∈ Sn−1
}
.

However, the theory was brought to life and actively researched when Lutwak [39] discovered
the concept of the Lp surface area measure, which subsequently led to the Lp Minkowski
problem. The Lp surface area measure Sp(K, ·) for each K ∈ Kn

o can be de�ned as the Borel
measure on Sn−1 that satis�es the following equation

d

dt
V (K +p t·L)

∣∣∣∣
t=0

=
1

p

∫

Sn−1

hL(u)
p dSp(K, u),

for all L ∈ Kn
o .

The corresponding Lp Minkowski problem asks: For all p ∈ R, what are the necessary and
su�cient conditions on a given Borel measure µ on Sn−1 so that there exists a K ∈ Kn

o with

µ = Sp(K, ·)? Notice that when p = 1, the Lp surface area measure becomes the classical
surface area measure, and hence the L1 Minkowski problem is the same as the classical
Minkowski problem. See [44, 1, 20, 16, 11, 46, 51, 54]. For the p > 1 case, a solution for
even measures was provided by Lutwak [39], and then Chou-Wang [17] proved existence for
general measures. More results on this can be found in [15, 14, 32]. Another important but
largely unsolved case of the Lp Minkowski problem is the case of p = 0, where the S0(K, ·) is
the cone volume measure of K with total measure equal to V (K). For more information on
this measure, see [5, 7, 27, 37, 38, 45, 50, 55]. The L0 Minkowski problem is also known as the
logarithmic Minkowski problem. The existence for even measures was proved in B�îr�îczky-
Lutwak-Yang-Zhang [8], and progress for more general cases can be found in [4, 53, 59, 13].
The p = −n case, also largely unsolved, is called the centro-a�ne Minkowski problem �rst
posed by Chou-Wang [17]. Results on this case can be found in [33, 36, 60]. The solution
to the Lp Minkowski problem, together with Lp-a�ne isoperimetric inequalities of convex
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bodies [40, 26], are critical to establishing sharp a�ne Sobolev inequalities of functions which
are stronger than the classical Euclidean Sobolev inequalities [18, 25, 41, 42, 56, 34].

Now the Lp Aleksandrov problem arose in Huang-Lutwak-Yang-Zhang [29], where the

concept of dual curvature measures C̃q(K, ·) and related variational formulas were discovered.
The dual Minkowski problem, which analogously asks about the existence and uniqueness
of a convex body with predetermined dual curvature measure, interpolates between some
previously disconnected questions mentioned earlier. The q = 0 case of the dual Minkowski
problem becomes the classical Aleksandrov problem, and the q = n case is the logarithmic
Minkowski problem. For progress on this problem, see [3, 6, 9, 12, 22, 28, 31, 35, 43, 57, 58].
Another extension of the classical Aleksandrov problem was discovered recently by B�îr�îczky-
Lutwak-Yang-Zhang-Zhao [10], when they �rst posed the Gauss image problem. In the case
of one of the submeasures being the spherical Lebesgue measure, the Gauss image problem
becomes the classical Aleksandrov problem.

The Lp integral curvature comes from a variational formula in Huang-Lutwak-Yang-
Zhang [30] for a certain entropy integral. For each K ∈ Kn

o , de�ne its entropy E by

E(K) = −
∫

Sn−1

log hK(v) dv.

Then for each p ̸= 0 and K ∈ Kn
o , we de�ne (see Huang-Lutwak-Yang-Zhang [30]) the Lp

integral curvature measure, Jp(K, ·), of K as the Borel measure on Sn−1 that satis�es

d

dt
E(K+̂pt·L)

∣∣∣∣
t=0

=
1

p

∫

Sn−1

ρL(u)
−p dJp(K, u)

for all L ∈ Kn
o , where the Lp harmonic combination is de�ned as K+̂pt ·L = (K∗ +p t ·L∗)∗,

and K∗ is the polar of K. It turns out that the Lp integral curvature measure is related to
the classical integral curvature measure in the following way

dJp(K, ·) = ρ
p
K dJ(K, ·).

Observe that when p = 0, J0(K, ·) = J(K, ·), the classical case.
The Lp Aleksandrov problem asks about the existence of a convex body with predeter-

mined Lp integral curvature. More speci�cally:

Problem. Fix a nonzero p ∈ R. What are the necessary and su�cient conditions on a given
Borel measure µ on Sn−1 so that there exists a convex body K ∈ Kn

o with µ = Jp(K, ·)?

It was shown that if µ has density f , this problem amounts to solving the Monge-Ampère-
type partial di�erential equation

det
(
∇2

ijh+ hδij
)
=
f ·
(
|∇h|2 + h2

)n
2

h1−p
,

where ∇h is the gradient of h (unknown function), ∇2
ijh is the Hessian of h, and δij is the

identity matrix with respect to an orthonormal frame on Sn−1. Huang-Lutwak-Yang-Zhang
[30] completely solved existence for when p > 0.
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Theorem (Huang-Lutwak-Yang-Zhang 2018). Suppose p ∈ (0,∞) and µ is a �nite Borel

measure on Sn−1. Then there exists K ∈ Kn
o such that µ is the Lp integral curvature measure

of K if and only if µ is not concentrated on any great subsphere.

Furthermore, Huang-Lutwak-Yang-Zhang [30] solved existence under some strong condi-
tions for the origin symmetric case and when p < 0. More speci�cally,

Theorem (Huang-Lutwak-Yang-Zhang 2018). Suppose p ∈ (−∞, 0) and µ is a �nite, even,

nonzero Borel measure on Sn−1 that vanishes on all great subspheres of Sn−1. Then there

exists K ∈ Kn
o such that µ is the Lp integral curvature measure of K.

Note that this result excludes many shapes, including polytopes. Zhao [58] addressed
part of this gap by proving existence for origin symmetric polytopes and p ∈ (−1, 0).

Theorem (Zhao 2019). Suppose p ∈ (−1, 0) and µ is a �nite, even, discrete, nonzero Borel

measure on Sn−1 . Then there exists an origin symmetric polytope K ∈ Kn
o such that µ

is the Lp integral curvature measure of K if and only if µ is not concentrated on any great

subsphere of Sn−1.

One goal of this paper is to extend the result by Zhao [58] by completely proving existence
for the origin-symmetric case of the Lp Aleksandrov problem, for p ∈ (−1, 0).

Theorem 1. Let −1 < p < 0 and µ be a nonzero even �nite Borel measure on Sn−1. Then

there exists an origin symmetric convex body K ∈ R
n such that µ = Jp(K, ·) if and only if µ

is not concentrated on any lower dimensional subspace.

For the remaining negative index cases (p ≤ −1), we will weaken the assumptions on the
p < 0 existence result by Huang-Lutwak-Yang-Zhang [30] from completely no concentration
to requiring some measure concentration condition. More speci�cally, we will show the
following:

Theorem 2. Let p ≤ −1 and µ be a nonzero even �nite Borel measure on Sn−1. Suppose,

on all great subspheres ξ ⊂ Sn−1, that

µ(ξ)

µ(Sn−1)
≤ C(n)p,

where C(n) = exp
[
1
2

(
ψ
(
n
2

)
− ψ

(
1
2

))]
is a constant depending only on n, and ψ is the

digamma function. Then there exists a K ∈ Kn
e such that µ = Jp(K, ·).

The approach for both of these results will be variational. We will �rst convert the
existence question into an optimization problem and then proceed to prove the existence of
an optimizer.

2 Background Information

In this section, we will provide some basic background on the theory of convex bodies and
explain the Lp integral curvature measure and the Lp Aleksandrov problem in more detail.
For further information and reference, see Schneider [52] and Gruber [23].
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2.1 General Information on Convex Bodies

We let Sn−1 denote the unit sphere centered about the origin o in R
n, and Bn denote the

unit ball centered about o in R
n. We will call the volume of the unit ball ωn and the surface

area of the unit ball on = nωn. We de�ne a convex body in R
n as a compact convex set with

non-empty interior. The set Kn
o is the class of convex bodies in R

n with the origin in their
interiors, and Kn

e is the class of origin-symmetric convex bodies in R
n. De�ne C(Sn−1) to

be the set of continuous functions on the unit sphere, and C+(Sn−1) to be the set of strictly
positive continuous functions on the unit sphere. Let K and L be compact convex sets, and
de�ne their Minkowski sum by

K + L = {k + l : k ∈ K, l ∈ L}
Suppose K ⊂ R

n is a compact, convex set. De�ne its support function hK : Rn → R by

hK(y) = max {x · y : x ∈ K} ,
where x · y is the standard inner product of x and y in R

n. Note that the support function
is convex and homogeneous of degree 1. Furthermore, the support function uniquely de�nes
a convex body. Now suppose K contains the origin in its interior, and de�ne the radial
function of K, ρK : Rn\ {0} → R, by

ρK(x) = max {λ : λx ∈ K} .
Every compact star-shaped (with respect to the origin) set is uniquely determined by its
radial function. We say that a sequence of convex bodies {Ki} converges to a compact
convex set K ∈ R

n if

sup
{
|hKi

(v)− hK(v)| : v ∈ Sn−1
}
→ 0, as i→ ∞,

or when o ∈ int K (the interior of K), {Ki} converges to K if

sup
{
|ρKi

(u)− ρK(u)| : u ∈ Sn−1
}
→ 0, as i→ ∞.

Also note that the boundary of K, which we denote by ∂K, is related to the radial function
in the following way,

∂K =
{
ρK(u)u : u ∈ Sn−1

}
.

It follows from these de�nitions that the support function and radial function are related by

hK(v) = max
u∈Sn−1

(u · v) ρK(u) , ∀v ∈ Sn−1

and

1

ρK(u)
= max

v∈Sn−1

(u · v)
hK(v)

, ∀u ∈ Sn−1.

De�ne the polar body K∗ ∈ Kn
o of K ∈ Kn

o by
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K∗ = {x ∈ R
n : x · y ≤ 1, ∀y ∈ K} .

Thus, from the de�nition of the polar body and the relationship between the support and
radial functions, we can deduce the following two useful equalities

ρK(x) =
1

hK∗(x)

and

hK(x) =
1

ρK∗(x)
,

for all x ∈ R
n. Furthermore, observe that (K∗)∗ = K.

For every function f ∈ C+(Sn−1), de�ne the Wul� shape (also known as the Aleksandrov
body) associated with f by

[f ] =
{
x ∈ R

n : x · v ≤ f(v) ∀v ∈ Sn−1
}
∈ Kn

o .

One can check that for each f ∈ C+(Sn−1), we have that h[f ] ≤ f , and [hK] = K for every
K ∈ Kn

o . Now let ρ ∈ C+(Ω), where Ω ⊆ Sn−1 is closed. Then {ρ(u)u : ∀u ∈ Ω} is a
compact set. Now de�ne ⟨ρ⟩ by

⟨ρ⟩ = conv {ρ(u)u : u ∈ Ω} ∈ Kn
o .

So if K ∈ Kn
o , we observe that ⟨ρK⟩ = K.

To begin stating some necessary facts in Lp Brunn-Minkowski theory, we �rst start by
de�ning the Lp Minkowski combination. For every nonzero p ∈ R, K,L ∈ Kn

o , and a, b ≥ 0,
de�ne a·K +p b·L ∈ Kn

o by

a·K +p b·L = [(a·hpK + b·hpL)
1

p ],

and for the case of p = 0, de�ne

a·K+o b·L = [haKh
b
L].

Now we use the polar body to de�ne the Lp harmonic combination of K,L ∈ Kn
o . Again, �x

p ∈ R and let a, b ≥ 0. De�ne the Lp harmonic combination a·K+̂pb·L ∈ Kn
o by

a·K+̂pb·L = (a·K∗ +p b·L∗)∗ .

De�ne the supporting hyperplane with outer unit normal v ∈ Sn−1 tangent to K ∈ Kn
o

by

HK(v) = {x ∈ K : x · v = hK(v)} .
For σ ⊂ ∂K, we de�ne the spherical image νK(σ) ⊆ Sn−1 to be the following set

νK(σ) =
{
v ∈ Sn−1 : x ∈ HK(v) for some x ∈ σ

}
.

And for η ⊂ Sn−1, de�ne the reverse spherical image xK(η) ⊆ ∂K to be
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xK(η) = {x ∈ ∂K : x ∈ HK(v) for some v ∈ η} .
Call the set of all x ∈ ∂K for which νK({x}) consists of more than one element, σK ⊂
∂K. Then one can show that Hn−1(σK) = 0 (see Schneider [52]), where Hn−1 is the
(n− 1)-dimensional Hausdor� measure. The spherical image map is de�ned as follows:
νK : ∂K\σK → Sn−1 with

νK(x) = νK({x}) ∀x ∈ ∂K\σK .
Note that this function is continuous (see Schneider [52]). We similarly de�ne ηK ⊂ Sn−1

to be the set of all v ∈ Sn−1 such that xK({x}) contains more than one element. We also
have that ηK is Hn−1 measure 0 (see Schneider [52]). De�ne the reverse spherical image map
xK : Sn−1\ηK → ∂K by

xK(v) = xK({v}) ∀v ∈Sn−1\ηK .
This function is also continuous (see Schneider [52]). The radial map for K ∈ Kn

o , rK :
Sn−1 → ∂K is de�ned by

rK(u) = ρK(u)u ∀u ∈ Sn−1.

For ω ⊂ Sn−1, the radial Gauss image of ω is a subset of Sn−1 de�ned by

αK(ω) = νK(rK(ω)).

Rewriting this for u ∈ Sn−1,

αK({u}) =
{
v ∈ Sn−1 : rK(u) ∈ H(K, v)

}
.

Observe that αK(·) is positive homogeneous of degree 0. Now de�ne the reverse radial Gauss
image of η ⊂ Sn−1 to be

α
∗
K(η) = r−1

K (xK(η)),

which for u ∈ Sn−1 can can be rewritten as

α
∗
K(η) =

{
u ∈ Sn−1 : v·(ρK(u)u)= hK(v), for some v ∈ η

}
.

2.2 Lp Integral Curvature

We de�ne a geometric measure on a convex body �rst introduced by Aleksandrov [2]. The
integral curvature of K ∈ Kn

o is a Borel measure on Sn−1 de�ned as

J(K,ω) = Hn−1(αK(ω)),

for every Borel ω ⊂ Sn−1. Observe that the total integral curvature of any K ∈ Kn
o is the

surface area of Sn−1, i.e. J(K,Sn−1) = on, and it is positively homogeneous of degree 0.
The integral curvature is also known as the �rst curvature measure, where the latter family
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of measures was �rst introduced by Federer [19] for sets of positive reach. The classical
Aleksandrov problem asks: What are the necessary and su�cient conditions on a Borel

measure µ on Sn−1 so that µ = J(K, ·) for some K ∈ Kn
o?

Aleksandrov [2] solved the problem completely, and his theorem with the necessary and
su�cient conditions is stated below.

Theorem (Aleksandrov 1942). Suppose µ is a �nite Borel measure on Sn−1. Then µ =
J(K, ·) for some K ∈ Kn

o if and only if |µ| = on and

µ(ω) < Hn−1(Sn−1\ω∗) (2.1)

for each convex ω ⊂ Sn−1 and where ω∗ = {v ∈ Sn−1 : v · u ≤ 0 ∀u ∈ ω}.

Inequality (2.1) is also known as the Aleksandrov condition. Aleksandrov also proved
that the solution, if it exists, is unique up to scaling. The integral curvature measure for
K ∈ Kn

o can also be de�ned as the unique Borel measure on Sn−1 that satis�es the following
variational formula:

d

dt
E(K+̂ot·L)

∣∣∣∣
t=0

= −
∫

Sn−1

log(ρL(u)) dJ(K, u),

for each L ∈ Kn
o . Subsequently, Huang-Lutwak-Yang-Zhang [30] de�ned the Lp integral

curvature by the following variational formula. For each K ∈ Kn
o and p ̸= 0, the Lp integral

curvature of K is the unique Borel measure on Sn−1 that satis�es

d

dt
E(K+̂pt·L)

∣∣∣∣
t=0

=
1

p

∫

Sn−1

ρL(u)
−p dJp(K, u),

for each L ∈ Kn
o . It turns out the Lp integral curvature measure is related to the classical

integral curvature measure in the following way

dJp(K, ·) = ρ
p
K dJ(K, ·).

Huang-Lutwak-Yang-Zhang [30] �rst posed the Lp Aleksandrov problem:

Problem. Fix p ∈ R. What are the necessary and su�cient conditions on a given Borel
measure µ on Sn−1 so that there exists a convex body K ∈ Kn

o with µ = Jp(K, ·)?

The case of p = 0 is the classical Aleksandrov problem. The p > 0 case for existence was
completely proved in Huang-Lutwak-Yang-Zhang [30]. Additionally, Huang-Lutwak-Yang-
Zhang [30] solved existence under the strong condition of no measure concentration on any
great subspheres, for the origin symmetric case of p < 0. Zhao [58] extended the result for
p ∈ (−1, 0) to existence for origin symmetric polytopes. We aim to extend the result by Zhao
[58] for p ∈ (−1, 0) by proving existence for any even measure not completely concentrated
on any great subsphere. We will also weaken the assumptions of the p < 0 existence result by
Huang-Lutwak-Yang-Zhang [30] to a nonzero measure concentration condition requirement
for origin-symmetric measures.
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3 Optimization Problems

The purpose of this paper is to prove existence for the Lp Aleksandrov problem for p < 0
cases and even Borel measures µ on Sn−1. To solve the −1 < p < 0 case for even measures,
we consider the following optimization problem. For any nonzero, �nite Borel measure µ on
Sn−1 and p ̸= 0, de�ne

Φ̃p(Q) = exp

(
1

on
E(Q)

)
·
(∫

Sn−1

ρ
−p
Q (u) dµ(u)

)− 1

p

.

We consider the maximization problem sup
{
Φ̃p(Q) : Q ∈ Kn

e

}
.

We �rst present a variational formula of the entropy integral. This result was proved in
Corollary 4.6 of [29].

Lemma 1 (Huang-Lutwak-Yang-Zhang 2016). Let Ω ⊂ Sn−1 be a closed set that is not

contained in any closed hemisphere, g : Ω → R be continuous, K ∈ Kn
o , and δ > 0 be

su�ciently small. De�ne ρt(v) = ρK(v) · etg(v) for each t ∈ (−δ, δ). Then

d

dt
(E(⟨ρt⟩))

∣∣∣∣
t=0

= −
∫

Sn−1

g(u) dJ(K, u). (3.1)

We now apply this result to prove that the solution to the maximization problem is also
a solution to the Lp Aleksandrov problem.

Lemma 2. Suppose p ̸= 0 and µ is an even Borel measure on Sn−1. If K ∈ Kn
e satis�es

on =

∫

Sn−1

ρ
−p
K (u) dµ(u) (3.2)

and Φ̃p(K) = sup
{
Φ̃p(Q) : Q ∈ Kn

e

}
, then µ = Jp(K, ·).

Proof. De�ne the functional Ψ̃p : C
+(Sn−1) → R by

Ψ̃p (f) = exp

(
1

on
E(⟨f⟩)

)
·
(∫

Sn−1

f−p(u) dµ(u)

)− 1

p

.

Then Ψ̃p(f) is homogeneous of degree 0.
Notice that ρ⟨f⟩ ≥ f , and so

(∫

Sn−1

ρ
−p
⟨f⟩(v) dµ(v)

)− 1

p

≥
(∫

Sn−1

f−p(u) dµ(u)

)− 1

p

.

This combined with the fact that ⟨ρ⟨f⟩⟩ = ⟨f⟩ implies Ψ̃p(f) ≤ Ψ̃p(ρ⟨f⟩). Thus, in searching

for the function that maximizes Ψ̃p, we can restrict to considering just radial functions of
sets in Kn

e . Thus,

sup
{
Ψ̃p(f) : f ∈ C+(Sn−1)

}
= sup

{
Φ̃p(Q) : Q ∈ Kn

e

}
.

9



For g ∈ C+(Sn−1) and t ∈ (−δ, δ) where δ > 0 is su�ciently small, de�ne again

ρt(v) = ρK(v) · etg(v).

Thus, by (3.1), the de�nition of Ψ̃p, and (3.4), we have that

0 =
d

dt

(
Ψ̃p(ρt)

)∣∣∣∣
t=0

=
d

dt

(
exp

(
1

on
E(⟨ρt⟩)

)
·
(∫

Sn−1

ρ
−p
t (u) dµ(u)

)− 1

p

)∣∣∣∣∣
t=0

= − 1

on

(∫

Sn−1

g(u) dJ(K, u)

)
· exp

(
1

on
E(⟨ρK⟩)

)
·
(∫

Sn−1

ρ
−p
K (u) dµ(u)

)− 1

p

+

(∫

Sn−1

ρ
−p
K (u) · g(u) dµ (u)

)
· exp

(
1

on
E(⟨ρK⟩)

)
·
(∫

Sn−1

ρ
−p
K (u) dµ(u)

)− 1

p
−1

.

Then by (3.2), ρ−p
K dµ = dJ(K, ·). Therefore, µ = ρ

p
K J(K, ·) = Jp(K, ·).

For the p < −1 case, we consider the following optimization problem. For any nonzero,
�nite Borel measure µ on Sn−1 and p ̸= 0, de�ne

Φp(Q) = −1

p
log

(∫

Sn−1

ρ
−p
Q (v) dµ(v)

)
+

1

on
E(Q),

where on is the surface area of Sn−1. We prove that the optimizer of this functional is also
a solution to the Lp Aleksandrov problem.

Lemma 3. Let p, q ̸= 0 and µ an even Borel measure on Sn−1. If K ∈ Kn
e satis�es

on =

∫

Sn−1

ρ
−p
K (u) dµ(u) (3.3)

and the maximization problem Φp(K) = sup {Φp(Q) : Q ∈ Kn
e }, then µ = Jp(K, ·).

Proof. De�ne the functional Ψp : C
+(Sn−1) → R by

Ψp(f) = −1

p
log

(∫

Sn−1

f−p(u) dµ(u)

)
+

1

on
E(⟨f⟩).

Then Ψp(f) is homogeneous of degree 0.
Notice that ρ⟨f⟩ ≥ f , and so

−1

p
log

(∫

Sn−1

ρ
−p
⟨f⟩(v) dµ(v)

)
≥ −1

p
log

(∫

Sn−1

f−p(u) dµ(u)

)
.

This combined with the fact that ⟨ρ⟨f⟩⟩ = ⟨f⟩ implies Ψp(f) ≤ Ψp(ρ⟨f⟩). Thus, in searching
for the function that maximizes Ψp, we can restrict to considering just radial functions of
sets in Kn

e . Thus,
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sup
{
Ψp(f) : f ∈ C+(Sn−1)

}
= sup {Φp(Q) : Q ∈ Kn

e } .
For g ∈ C+(Sn−1) and t ∈ (−δ, δ) where δ > 0 is su�ciently small, de�ne

ρt(v) = ρK(v)e
tg(v) (3.4)

Thus, by (3.1), the de�nition of Ψp, and (3.4),

0 =
d

dt
(Ψp(ρt))

∣∣∣∣
t=0

=
d

dt

(
1

on
E(⟨ρt⟩)−

1

p
log

(∫

Sn−1

ρ
−p
t (u) dµ(u)

))∣∣∣∣
t=0

= − 1

on

∫

Sn−1

g(u) dJ(K, u)

+

(∫

Sn−1

ρ
−p
K (u) · g(u) dµ(u)

)
·
(∫

Sn−1

ρ
−p
K (u) dµ(u)

)−1

.

Then by (3.3), ρ−p
K dµ = dJ(K, ·). Therefore, µ = ρ

p
K dJ(K, ·) = dJp(K, ·).

4 Existence of Solutions

We will prove the existence of a solution to the optimization problem in Lemma 2 for
p ∈ (−1, 0), under the assumption of origin symmetry. First, we begin with showing the

continuity of the optimization function Φ̃p.

Lemma 4. Suppose µ is an even Borel measure on Sn−1 that is not concentrated on any

great subspheres. Let Ql ∈ Kn
e be a sequence of origin-symmetric convex bodies such that Ql

converges to Q0, an origin-symmetric compact convex set, in the Hausdor� metric. Then,

for p < 0, after possibly taking a subsequence {Qlk},

lim
k→∞

Φ̃p(Qlk) = Φ̃p(Q
0).

Proof. Since Φ̃p is homogeneous of degree 0, we rescale so that maxu∈Sn−1 ρQl
(u) = 1. For

each l ∈ N, de�ne ul ∈ Sn−1 to be the unit vector that satis�es ρQl
(ul) = 1. Since Ql is

origin-symmetric, observe that

|ul · v| ≤ hQl
(v) ≤ 1,

for each v ∈ Sn−1. Then

|log (hQl
(v))| ≤ − log |ul · v| . (4.1)

We apply the generalized dominated convergence theorem to prove the convergence of
E(Ql) to E(Q0). The generalized dominated convergence theorem is stated as follows (see

11



Folland [21]): Let {fl}∞l=1 be a sequence of measurable functions and {gl}∞l=1 be a sequence

of nonnegative measurable functions. Suppose that |fl| ≤ |gl| for all l, {fl}∞l=1 converges

pointwise almost everywhere to f and {gl}∞l=1 converges pointwise almost everywhere to g,

and liml→∞

∫
Sn−1 gl →

∫
Sn−1 g <∞. Then liml→∞

∫
Sn−1 fl =

∫
Sn−1 f .

From Inequality (4.1), we let gl(v) = − log |ul · v| and fl(v) = log (hQl
(v)) for all v ∈ Sn−1.

Recall the assumption that Ql → Q0 in the Hausdor� metric, and so hQl
→ hQ0 point-

wise. Since hQ0 > 0 almost everywhere, we have that log hQl
→ log hQ0 almost every-

where. The assumption that Ql → Q0 in the Hausdor� metric and Bolzano-Weierstrass
implies that there exists a subsequence such that ρQlk

(ulk)ulk → ρQ0(u0)u0, which means

that ulk → u0, and so |ulk · v| → |u0 · v| for all v ∈ Sn−1. Since |u0 · v| > 0 almost every-
where, log |ulk · v| → log |u0 · v| almost everywhere. Since Sn−1 is rotationally symmetric, we
have that limk→∞

∫
Sn−1 log |ulk · v| dv =

∫
Sn−1 log |u0 · v| dv <∞. Hence, by the generalized

dominated convergence theorem,

lim
k→∞

∫

Sn−1

log
(
hQlk

(u)
)
du =

∫

Sn−1

log (hQ0(u)) du. (4.2)

To prove convergence of the radial function terms, notice that since Ql → Q0 in the
Hausdor� metric, ρQl

→ ρQ0 pointwise. Since p < 0, this implies that ρ−p
Ql

→ ρ
−p
Q0 . Recall

also the assumption that ρQl
≤ 1. Applying again the fact that p < 0, we have ρ−p

Ql
≤ 1.

Hence, by the dominated convergence theorem,

lim
l→∞

∫

Sn−1

ρ
−p
Ql
(u) dµ(u) =

∫

Sn−1

ρ
−p
Q0(u) dµ(u). (4.3)

Equations 4.2 and 4.3 with the de�nition of Φ̃p imply that

lim
k→∞

Φ̃p(Qlk) = Φ̃p(Q
0).

Lemma 5. Let L be a k-dimensional origin-symmetric convex body that spans a subspace

called ξ, and consider a corresponding cylindrical thickening for t > 0, Lt = L+ tBn−k where

Bn−k is the unit ball in the complementary subspace of ξ. Then there exists an r > 0 such

that

exp
(

1
on
E
((
rBk

)t))

exp
(

1
on
E (rBk)

) ≤
exp

(
1
on
E (Lt)

)

exp
(

1
on
E (L)

) . (4.4)

Proof. Observe that Inequality (4.4) is equivalent to




exp
(

1
on
E (L)

)

exp
(

1
on
E (rBk)

)


 ≤




exp
(

1
on
E (Lt)

)

exp
(

1
on
E
(
(rBk)t

))


.

Or after rewriting the right side of the above inequality,
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exp

(−1

on

[∫

Sn−1

log ((hL + thBn−k) (u)) du−
∫

Sn−1

log ((hrBk + thBn−k) (u))

]
du

)
. (4.5)

We now compare the derivatives of the two integrals

d

dt

∫

Sn−1

log ((hL + thBn−k) (u)) du =

∫

Sn−1

(hL + thBn−k)−1 (u) · hBn−k(u) du (4.6)

and

d

dt

∫

Sn−1

log ((hrBk + thBn−k) (u)) du =

∫

Sn−1

(hrBk + thBn−k)−1 (u) · hBn−k(u) du. (4.7)

If rBk ⊂ L, we notice that from (4.6) and (4.7), the exponent of (4.5) increases at every
point t > 0. Therefore, we have the desired inequality.

Let L be a k-dimensional origin-symmetric convex body that spans a k-dimensional
subspace called ξ. Henceforth, we denote the ratio of the support function terms of Φ̃p(L

t)

and Φ̃p(L) by ∆1,

∆1(L, t) :=
exp

(
1
on
E(Lt)

)

exp
(

1
on
E(L)

)

= exp

(−1

on

∫

Sn−1

(log (hL + thBn−k)− log (hL(u))) du

)

and the ratio of the radial function terms of Φ̃p(L
t) and Φ̃p(L) by ∆2. For L and µ such that∫

Sn−1 ρ
−p
L (u) dµ(u) ̸= 0, de�ne

∆2(L, t) :=

(∫
Sn−1 ρ

−p
Lt (u) dµ(u)∫

Sn−1 ρ
−p
L (u) dµ(u)

)− 1

p

=

(∫
Sn−1 ρ

−p
L+tBn−k(u) dµ(u)∫

Sn−1 ρ
−p
L (u) dµ(u)

)− 1

p

.

We will now obtain an estimate for the di�erential of ∆1(L, t) in the limit as t→ 0+.

Lemma 6. Let −1 < p < 0, µ be a nonzero even �nite Borel measure on Sn−1 that is

not completely concentrated on any lower dimensional subspace, and L ∈ Kn
e span a k < n

dimensional subspace called ξ, and t > 0. Then there exists a function ∆̃1(L, t) such that

∆1(L, t) ≥ ∆̃1(L, t) with

lim
t→0+

∆̃1(L, t) = 1 (4.8)

and

lim
t→0+

d

dt
∆̃1(L, t) ≳ log(t). (4.9)
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Proof. By Lemma 5, there exists an R > 0 such that ∆1(L, t) ≥ ∆1(RB
k, t). We will denote

∆̃1(L, t) := ∆1(RB
k, t). Then we have

∆̃1(L, t) = exp

(
− 1

on

[∫ π
2

0

(
cosk−1 ϕ

) (
sinn−k−1 ϕ

)
log (R cosϕ+ t sinϕ) dϕ

−
∫ π

2

0

(
cosk−1 ϕ

) (
sinn−k−1 ϕ

)
log (R cosϕ) dϕ

])

= exp

(
− 1

on

∫ π
2

0

(
cosk−1 ϕ

) (
sinn−k−1 ϕ

)
log

(
(R2 + t2)

1

2

R
· cos (ϕ−∆)

cosϕ

)
dϕ

)
,

where we use the identity (R2 + t2)
1

2 ·cos(ϕ−∆) = R ·cos(ϕ)+t ·sin(ϕ), with ∆ = arctan
(

t
R

)

and on is the surface area of Sn−1. So,

lim
t→0+

∆̃1(L, t) = lim
t→0+

exp

(
− 1

on
log

(
(R2 + t2)

1

2

R

)∫ π
2

0

(
cosk−1 ϕ

) (
sinn−k−1 ϕ

)
dϕ

+
1

on

∫ π
2

0

(
cosk−1 ϕ

) (
sinn−k−1 ϕ

)
log

(
cosϕ

cos(ϕ−∆)

)
dϕ

)
.

(4.10)

We focus on the limit of the second integral. Notice that we can bound the absolute value
of the integrand

∣∣∣∣
(
cosk−1 ϕ

) (
sinn−k−1 ϕ

)
log

(
cosϕ

cos(ϕ−∆)

)∣∣∣∣ ≤
∣∣∣∣log

(
cosϕ

cos(ϕ−∆)

)∣∣∣∣
= |log (cosϕ)− log (cos(ϕ−∆))|
≤ |log (cosϕ)|+ |log (cos(ϕ−∆))|
= − log (cosϕ)− log (cos(ϕ−∆)) .

(4.11)

For su�ciently small t > 0, we observe that − log (cos(ϕ−∆)) ≤ − log (cosϕ) + 1 for each
ϕ ∈

[
0, π

2

]
. Hence, the left side of (4.11) is bounded by an integrable function in the interval[

0, π
2

]
. So by the dominated convergence theorem, we can switch the order of the limit and

the integral in (4.10). We then have (4.8)

lim
t→0+

∆̃1(L, t) = exp(0)

= 1.

Now we take the derivative
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d

dt
∆̃1(L, t) = exp

(
− 1

on
log

(
(R2 + t2)

1

2

R

)∫ π
2

0

(
cosk−1 ϕ

) (
sinn−k−1 ϕ

)
dϕ

− 1

on

∫ π
2

0

(
cosk−1 ϕ

) (
sinn−k−1 ϕ

)
log

(
cos(ϕ−∆)

cosϕ

)
dϕ

)

·
{
−1

on
·
(

R2

R2 + t2

) 1

2

· 1
2
· (R

2 + t2)
− 1

2

R
· 2t ·

∫ π
2

0

(
cosk−1 ϕ

) (
sinn−k−1 ϕ

)
dϕ

− 1

on

∫ π
2

0

(
cosk−1 ϕ

) (
sinn−k−1 ϕ

)( cosϕ

cos(ϕ−∆)

)(
sin(ϕ−∆)

cosϕ

)
∆

′

dϕ

}
.

(4.12)
Performing an integration by parts on the last integral of (4.12),

− 1

on

∫ π
2

0

(
cosk−1 ϕ

) (
sinn−k−1 ϕ

)( sin(ϕ−∆)

cos(ϕ−∆)

)
∆

′

dϕ

=
1

on

(
cosk−1 ϕ

) (
sinn−k−1 ϕ

)
∆

′ · log (cos(ϕ−∆))

∣∣∣∣
π/2

0

− 1

on

∫ π
2

0

(k − 1)
(
cosk−2 ϕ

) (
sinn−k ϕ

)
∆

′

log (cos(ϕ−∆))dϕ

+
1

on

∫ π
2

0

(n− k − 1)
(
cosk ϕ

) (
sinn−k−2 ϕ

)
∆

′

log (cos(ϕ−∆))dϕ.

Hence, in the limit limt→0+ , we have (4.9)

lim
t→0+

d

dt
∆̃1(L, t) = lim

t→0+

1

on

(
cosk−1 π

2

)(
sinn−k−1 π

2

)
∆

′

log
(
cos
(π
2
−∆

))
+ C

≳ lim
t→0+

log t,

where C is a �nite negative constant. The inequality above is from the fact that the right
side of the equality is minimized when k = 1.

We will now obtain an estimate for the di�erential of ∆2(L, t) in the limit as t→ 0+.

Lemma 7. Let −1 < p < 0, µ be a nonzero even �nite Borel measure on Sn−1 that is

not completely concentrated on any lower dimensional subspace, and L ∈ Kn
e span a k < n

dimensional subspace called ξ, and t > 0. Suppose also that
∫
Sn−1 ρ

−p
L (u) dµ(u) ̸= 0. Then

there exists a function ∆̃2(L, t) such that ∆2(L, t) ≥ ∆̃2(L, t) with

lim
t→0+

∆̃2(L, t) = 1 (4.13)

and

lim
t→0+

d

dt
∆̃2(L, t) ∼ t−p−1. (4.14)
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Proof. Recall the de�nition of ∆2(L, t),

∆2(L, t) =

(∫
Sn−1 ρ

−p
L+tBn−k(u) dµ(u)∫

Sn−1 ρ
−p
L (u) dµ(u)

)− 1

p

,

with
∫
Sn−1 ρ

−p
L (u) dµ(u) ̸= 0. Recall also that ξ is the k-dimensional subspace such that

L ⊂ ξ. Then for su�ciently small t > 0,

∆2(L, t) ≥
(∫

ξ
ρ
−p
L (u) dµ(u) +

∫
Sn−1\ξ

t−p dµ(u)
∫
Sn−1 ρ

−p
L (u) dµ(u)

)− 1

p

=

(∫
ξ
ρ
−p
L (u) dµ(u) + t−p · µ(Sn−1\ξ)

∫
ξ
ρ
−p
L (u) dµ(u)

)− 1

p

=

(
1 +

t−p · µ(Sn−1\ξ)∫
ξ
ρ
−p
L (u) dµ(u)

)− 1

p

=: ∆̃2(L, t).

So we have ∆̃2(L, t) → 1 as t→ 0+. And di�erentiating ∆̃2(L, t), we have that

d

dt
∆̃2(L, t) =

(
1 +

t−p · µ(Sn−1\ξ)∫
ξ
ρ
−p
L (u) dµ(u)

)− 1

p
−1

· t−p−1 ·
(

µ(Sn−1\ξ)∫
ξ
ρ
−p
L (u) dµ(u)

)
,

which means that µ not concentrated on ξ implies that d
dt
∆̃2(L, t) → ∞ as t → 0+, at rate

∼ t−p−1.

We combine Lemmas 6 and 7 to obtain the existence of a solution to the optimization

problem sup
{
Φ̃p(Q) : Q ∈ Kn

e

}
.

Lemma 8. Let −1 < p < 0 and µ be a nonzero even �nite Borel measure on Sn−1 that is

not completely concentrated on any lower dimensional subspace. Then there exists K ∈ Kn
e

such that Φ̃p(K) = sup
{
Φ̃p(Q) : Q ∈ Kn

e

}
.

Proof. Suppose {Ql} is a maximizing sequence, i.e.

lim
l→∞

Φ̃p(Ql) = sup
{
Φ̃p(Q) : Q ∈ Kn

e

}
.

Since Φ̃p is homogeneous of degree 0, we can rescale every term of the sequence so that
maxu∈Sn−1 ρQl

(u) = 1. Then by the Blaschke selection theorem, after taking a subsequence,
we can assume there exists an origin-symmetric compact convex set Q0 such that Ql → Q0

in the Hausdor� metric. By Lemma 4, we have that after taking a subsequence,

lim
l→∞

Φ̃p(Ql) = Φ̃p(Q
0).
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Now to show nondegeneracy of the limit, i.e. that o ∈ int Q0, we proceed by contradiction.
Suppose there exists a k-dimensional subspace ξ such that Q0 ⊆ ξ and span(Q0) = ξ with

k < n. Taking advantage again of the fact that Φ̃p is homogeneous of degree 0, we can
rescale Q0 so that minu∈ξ∩Sn−1 ρQ0(u) = 1.

First consider the case of
∫
Sn−1 ρ

−p
Q0(u) dµ(u) = 0. Observe that this implies

Φ̃p(Q
0) = exp

(
1

on
E(Q0)

)
·
(∫

Sn−1

ρ
−p
Q0(u) dµ(u)

)−1

p

= 0

< Φ̃p(B
n).

This a contradiction to the assumption that Ql is a maximizing sequence.
From here on, we investigate the case of

∫
Sn−1 ρ

−p
Q0(u) dµ(u) ̸= 0. Now consider the same

cylindrical thickening of Q0 as in Lemma 5, given by Kt = Q0 + tBn−k, where Bn−k is the
(n− k)-dimensional unit ball in the complementary subspace of ξ, and t > 0. We will reach

a contradiction by showing that Φ̃p(K
t) > Φ̃p(Q

0) for su�ciently small t > 0. By Lemmas
6 and 7, we observe that there exist functions ∆̃1 and ∆̃2 such that

Φ̃p(K
t)

Φ̃p(Q0)
= ∆1(Q

0, t) ·∆2(Q
0, t) ≥ ∆̃1(Q

0, t) · ∆̃2(Q
0, t) → 1

as t→ 0+. Furthermore,

d

dt

(
∆̃1(t) · ∆̃2(t)

)
=

d

dt
∆̃1(t) · ∆̃2(t) +

d

dt
∆̃2(t) · ∆̃1(t). (4.15)

Recall that limt→0+
d
dt
∆̃1(t) ≳ log(t), d

dt
∆̃2(t) ∼ t−p−1 , ∆̃1(t) → 1, and ∆̃2(t) → 1 as t→ 0+,

which implies that (4.15) will be positive for small t if −1 < p < 0. Therefore, there exists
a small t0 > 0 such that

Φ̃p(K
t)

Φ̃p(Q0)
> 1, (4.16)

which is a contradiction to the assumption that Ql is a maximizing sequence.

We now prove the existence of a solution to the optimization problem in Lemma 3 for
p ≤ −1, under the assumptions of a measure concentration condition and origin symmetry.
Namely, we will provide a su�cient condition on how the given measure µ can be distributed
along Sn−1 to guarantee a solution to the aforementioned optimization problem. This is
an expansion to the p < 0 existence result by Huang-Lutwak-Yang-Zhang [30], since, for
example, some discrete measures can now be included.

Lemma 9. Let p ≤ −1 and µ be a nonzero even �nite Borel measure on Sn−1. Suppose, on

all great subspheres ξ ⊂ Sn−1, that

µ(ξ)

µ(Sn−1)
≤ C(n)p,
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where C(n) = exp
(
1
2

(
ψ
(
n
2

)
− ψ

(
1
2

)))
is a constant depending only on n, and ψ is the

digamma function. Then there exists a K ∈ Kn
e such that Φp(K) = sup {Φp(Q) : Q ∈ Kn

e }.

Proof. Suppose {Ql} is a maximizing sequence for Φp, i.e.

lim
l→∞

Φp(Ql) = sup {Φp(Q) : Q ∈ Kn
e } .

Since Φp is homogeneous of degree 0, we can rescale every term of the sequence so that

(∫

Sn−1

log (hQl
(u)) du

)
= 0.

We now prove thatQl is uniformly bounded. De�ne vl ∈ Sn−1 by ρQl
(vl) := maxu∈Sn−1 ρQl

(u).
Then

0 = −
∫

Sn−1

log (hQl
(u)) du

≥
∫

Sn−1

log (ρQl
(vl) |vl · u|) du

=

∫

Sn−1

log (ρQl
(vl)) du+

∫

Sn−1

log (|vl · u|) du

= log (ρQl
(vl)) · on +

∫

Sn−1

log (|vl · u|) du.

Thus,

log (ρQl
(vl)) ≤ −

∫

Sn−1

log (|vl · u|) du, (4.17)

and so since the right side of Inequality (4.17) is �nite, we conclude that ρQl
(vl) uniformly

is bounded. Thus, ∀l, Ql ⊂MBn, for some M > 0.
By Blaschke's selection theorem, Ql converges to some origin-symmetric compact convex

set Q0 ⊂ R
n. Now we show nondegeneracy of the limit, i.e. that Q0 contains the origin in its

interior. Proceed by contradiction, and assume ∃u0 ∈ Sn−1 such that hQ0
(±u0) = 0. Now

∀δ > 0, de�ne ωδ(u0) := {v ∈ Sn−1 : |v · u0| > δ}, and note that ρQl
→ 0 uniformly on ωδ.

Now

Φp(Ql) = −1

p
log

(∫

Sn−1

ρ
−p
Q (v) dµ(v)

)

= −1

p
log

(∫

ωδ

ρ
−p
Q (v) dµ(v) +

∫

Sn−1\ωδ

ρ
−p
Q (v) dµ(v)

)

≤ −1

p
log

((
sup
ωδ

ρ
−p
Ql
(v)

)
µ(ωδ) +M−pµ(Sn−1\ωδ)

)

= −1

p
log

((
sup
ωδ

ρ
−p
Ql
(v)−M−p

)
µ(ωδ) +M−pµ(Sn−1)

)
.

Taking the limit l → ∞, we have
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lim
l→∞

Φp(Ql) ≤ −1

p
log
(
M−pµ(Sn−1)−M−pµ(ωδ)

)

= −1

p
log

(
M−pµ(Sn−1)−M−pµ(Sn−1) · µ(ωδ)

µ(Sn−1)

)
.

Take the limit δ → 0+ to obtain

lim
l→∞

Φp(Ql) ≤ −1

p
log

(
M−pµ(Sn−1)−M−pµ(Sn−1) · µ(S

n−1\ξ)
µ(Sn−1)

)

= −1

p
log

(
M−pµ(Sn−1) · µ(ξ)

µ(Sn−1)

)
,

where ξ is a great subsphere of Sn−1. Suppose C(n) = exp
(

−1
on

∫
Sn−1 log |v0 · u| du

)
, then

lim
l→∞

Φp(Ql) ≤ −1

p
log

(
M−p · µ(Sn−1) · exp

(−p
on

∫

Sn−1

log |v0 · u| du
))

. (4.18)

Recall that we rescaled Ql so that
(∫

Sn−1 log(hQl
(u)) du

)
= 0. Then

0 ≥
∫

Sn−1

log(M · |v0 · u|) du.

Thus,

0 ≥ on · log(M) +

∫

Sn−1

log |v0 · u| du.

And so

M ≤ exp

(−1

on

∫

Sn−1

log |v0 · u| du
)
.

Applying this to Inequality (4.18), we have

lim
l→∞

Φp(Ql) ≤ −1

p
log(µ(Sn−1))

= Φp(B
n).

This contradicts the assumption that {Ql} is a maximizing sequence.
We will now calculate C(n). First notice that

C (n) = exp

(−1

on

∫

Sn−1

log |v0 · u| du
)

= exp

(
−2 · on−1

on

∫ π
2

0

(
sinn−2 ϕ

)
log (cosϕ) dϕ

)

= lim
q→0

exp

[
1

q
log

(
2 · on−1

on

∫ π
2

0

(
sinn−2 ϕ

) (
cos−q ϕ

)
dϕ

)]
,
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where on is the surface area of Sn−1. Focusing on the exponent, we apply a change of
variables to obtain

lim
q→0

1

q
log

(
2 · on−1

on

∫ π
2

0

(
sinn−2 ϕ

) (
cos−q ϕ

)
dϕ

)

= lim
q→0

1

q
log

(
on−1

on

∫ 1

0

(1− t)
n−3

2 t
−q−1

2 dt

)

= lim
q→0

1

q
log

(
on−1

on
B

(
1− q

2
,
n− 1

2

))

= lim
q→0

1

q
log

(
on−1

on
· Γ
(
1−q
2

)
Γ
(
n−1
2

)

Γ
(
n−q
2

)
)

= lim
q→0

1

q
log

(
Γ
(
n
2

)
√
πΓ
(
n−1
2

) · Γ
(
1−q
2

)
Γ
(
n−1
2

)

Γ
(
n−q
2

)
)
.

Applying L'Hopital's rule, we have

lim
q→0

1

q
log

(
Γ
(
n
2

)
√
πΓ
(
n−1
2

) · Γ
(
1−q
2

)
Γ
(
n−1
2

)

Γ
(
n−q
2

)
)

=
Γ
(
n
2

)
√
πΓ
(
n−1
2

) · lim
q→0

−1
2
Γ
(
n−q
2

)
Γ′
(
1−q
2

)
Γ
(
n−1
2

)
+ 1

2
Γ
(
1−q
2

)
Γ
(
n−1
2

)
Γ′
(
n−q
2

)
[
Γ
(
n−q
2

)]2

=
Γ
(
n
2

)

2
√
π

· Γ
(
1
2

)
Γ′
(
n
2

)
− Γ

(
n
2

)
Γ′
(
1
2

)
[
Γ
(
n
2

)]2

=
1

2

(
ψ
(n
2

)
− ψ

(
1

2

))
,

where ψ is the digamma function.

We will now make some remarks on C(n). For even n, ψ
(
n
2

)
=
∑n

2
−1

i=1
1
i
− γ, and for odd

n, ψ
(
n
2

)
= −γ − 2 ln 2 +

∑n−1

2

i=1
2

2i−1
(where γ is the Euler-Mascheroni constant). So,

exp

[
1

2

(
ψ
(n
2

)
− ψ

(
1

2

))]
=




exp

(
1
2

(
2 ln 2 +

∑n
2
−1

i=1
1
i

))
, k even

exp
(∑n−1

2

i=1
1

2i−1

)
, k odd

.

Notice that for all n ∈ N, 0 < C(n)p ≤ 1. For large n, C(n)p = exp
[
p
2

(
ψ
(
n
2

)
− ψ

(
1
2

))]
=

O(n
p

2 ). Since p < 0, we observe that the measure concentration bound approaches 0 as
n→ ∞.

From Lemmas 2 and 8, we have the following.

Theorem 3. Let −1 < p < 0 and µ be a nonzero even �nite Borel measure on Sn−1. Then

there exists an origin symmetric convex body K ∈ R
n such that µ = Jp(K, ·) if and only if µ

is not completely concentrated on any lower dimensional subspace.
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Proof. Necessity is obvious, and su�ciency follows from combining Lemmas 2 and 8.

Lemmas 3 and 9 imply the following.

Theorem 4. Let p ≤ −1 and µ be a nonzero even �nite Borel measure on Sn−1. Suppose,

on all great subspheres ξ ⊂ Sn−1, that

µ(ξ)

µ(Sn−1)
≤ C(n)p,

where C(n) = exp
[
1
2

(
ψ
(
n
2

)
− ψ

(
1
2

))]
is a constant depending only on n, and ψ is the

digamma function. Then there exists a K ∈ Kn
e such that µ = Jp(K, ·).

Proof. Combine Lemmas 3 and 9.
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