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A B S T R A C T   

Lightweight and thin electromagnetic interference (EMI) shielding materials with high shielding effectiveness 
(SE) have been investigated over the last decade to address the unreliability issue in all electronic technologies 
caused by EMI. Herein, we report the SE of the novel Ti3C2Tx MXene/doped-hexaferrite (hexagonal ferrite: 
BaCo0.3Ti0.3Fe11.4O19) composite. This composite suppresses electromagnetic (EM) waves dominantly via ab
sorption over the frequency range from 30 to 50 GHz for millimeter-wave (mmWave) applications. Two- 
dimensional inorganic compound Ti3C2Tx MXene was synthesized using the LiF-HCl etching process, and 
doped-hexaferrite particles were prepared using a conventional solid-state reaction. Then, the MXene/doped- 
hexaferrite composite was fabricated by mixing MXene/polyvinyl-pyrrolidone (PVP) containing solution with 
the hexaferrite particles. The composites were characterized by a vibrating sample magnetometer for static 
magnetic properties and a vector network analyzer for dynamic magnetic and dielectric properties and micro
wave absorbing performance. 

A high magnetocrystalline anisotropy of hexaferrite shifted the microwave absorption peak to mmWave bands 
such as Ka- and V-bands, unlike spinel ferrite. The 1.5 mm thick MXene/45 wt% doped-hexaferrite composite 
shows a broad effective bandwidth (reflection loss (RL) less than 10 dB) of 7 GHz in the frequency range from 38 
to 45 GHz. This excellent absorbing performance is mainly attributed to improved impedance matching and 
enhanced dielectric and magnetic losses of the composite. It was found that the SE was dominated by absorption 
instead of reflection. 

The experimental results demonstrate that the MXene/BaCo0.3Ti0.3Fe11.4O19 hexaferrite composite can be a 
promising and effective EM wave absorber material for millimeter-wave applications such as the fifth-generation 
(5G) network and opens up new opportunities for THz (6G network) EMI materials development.   

1. Introduction 

The growing scales and devices in the modern microwave spectrum 
(3–30 GHz) necessitate the cellular and telecommunication industries to 
look for other high-frequency ranges to support upcoming devices 
requiring large bandwidth and high data rates. Accordingly, electronic 
device operation frequency moves from Sub-6 GHz 5G (fifth generation) 
spectrum to the high GHz band (mmWave 5G). The millimeter-wave 
(mmWave) spectrum covers 30–300 GHz, and the radiation in the 
mmWave band causes more electromagnetic interference (EMI) than the 

lower frequency spectrum. The EMI causes data loss, data misinterpre
tation, and malfunction of electronic components near EMI sources due 
to cross-talk between devices or components in electronic systems. 
Therefore, lightweight and thin EMI shielding materials with high 
shielding effectiveness (SE) have been investigated over the last decade. 
Three interaction phenomena characterize shielding characteristics of 
EMI material [1]: Reflection of incident microwave; absorption; multi
ple reflections inside layered materials. Thus, the shielding materials 
must minimize reflected microwaves from the interface between the air 
and the material, enhancing microwave absorption and attenuating 
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transmitted microwaves. The total SE (SET) of EM absorbing material is 
a sum of reflection SE (SER), absorption SE (SEA), and multiple reflection 
SE (SEM). In general, the EM shielding by the multiple reflections is 
weaker than the other two, therefore making a negligible contribution to 
the total shielding. 

To attenuate EMI, microwave absorbing materials (MAM) in the S 
band (2–4 GHz), C (4–8 GHz), X (8–12 GHz), and Ku (12–18 GHz) bands 
are in great demand [2–5]. Highly electrically conductive SE materials 
have been quested during the last decade. Composition Ti3C2Tx (Tx =

surface moiety, i.e., a mixture of –OH, ––O, and –F), namely MXene, 
possesses the highest electrical conductivity among MXenes [6] and is a 
nano-layered structure such as flakes [7]. Thus, the MXene reflects the 
incident microwave at its surface and the interfaces between nanoflakes 
(laminated structure). High electrically conductive SE material weakly 
interacts with a microwave but reflects the incident microwave, while a 
low conductive SE material does pass the microwave, therefore, 
absorbing the wave [8]. 

Recently, it was reported that 45 μm thick Ti3C2Tx MXene exhibits a 
high SET of 92 dB in 8–12 GHz (X band) [9]. This high SET is attributed 
to the high intrinsic conductivity of 4600 Siemens/cm. About 60% of the 
SET comes from microwave absorption and 40% from the reflection. On 
the other hand, the 1.68 μm thick Ti3C2Tx MXene shows that the SET is 
dominated by a reflection contribution of about 98% [10]. This result is 
opposite to the SET result in [9]. This disagreement is not discussed in 
this paper. However, the reflection is undesirable because the reflected 
microwave affects neighboring components in the electronic systems or 
provides unreliability in electronic technologies. Therefore, an imped
ance matching of MXene is still an issue to be addressed to enhance 
magnetic and dielectric losses’ contribution to SET, thus, depressing the 
reflection. 

To improve the impedance matching of Ti3C2Tx MXene, magnetic 
particles are embedded in MXene flakes. The magnetic particle is a 
metallic element, spinel ferrite, or hexaferrite (hexagonal ferrite). The 
1.75 mm thick MXene/Ni composite shows the minimum reflection loss 
(RLmin) of 49.9 dB at 11.9 GHz [11]. When ferromagnetic Co replaces Ni, 
the 1.02 nm thick MXene/Co nanochain shows an RLmin of 46.48 dB at 
16.75 GHz [12]. It is noted that Co shifted the RLmin frequency to 16.75 
GHz from 11.9 GHz. This is because the magneto-crystalline anisotropy 
field (Ha) of Co is higher than that of Ni, i.e., higher ferromagnetic 
resonant frequency (fFMR). Electrically conductive and ferromagnetic Fe- 
Co alloy particles were embedded in MXene to obtain high-magnetic loss 
due to its high saturation magnetization [3]. As a result, the effective 
absorption band (EAB) of MXene/FeCo composite increased to 8.8 GHz 
(9.2–18.0 GHz) from 6.3 GHz of MXene/Ni composite. Deng et al. re
ported the RLmin of 45.5 dB and the EAB of 3.5 GHz (8–10.5 GHz) in the 
X-band for a 1.6 mm thick Ti3C2Tx/Fe3O4@C hybrid [13]. When spinel 
ferrite (Ni0.5Zn0.5Fe2O4) was incorporated in MXene, the RL peak 
(resonant frequency) shifted to 13.5 GHz from about 9 GHz of the 
MXene/Fe3O4 composite. Once again, this is attributed to the Ha of 
spinel ferrite than that of soft magnetite (Fe3O4). Accordingly, the 6.5 
mm thick Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composite shows an RLmin of 42.5 dB 
at 13.5 GHz and EAB of 3 GHz (12–15 GHz) in the Ku-band [14]. When 
Ni0.5Zn0.5Fe2O4 ferrite was replaced by ZnFe2O4 ferrite, the fFMR shifted 
to a higher frequency than 13 GHz. As a result, 7.5 mm thick Ti3C2Tx/ 
ZnFe2O4 composite shows an RLmin of 60.94 dB at 14.72 GHz and EAB of 
6.08 GHz (11.92–18 GHz) [15]. 

To realize EMI suppression in the mmWave band by microwave 
absorption, magnetic materials such as hexaferrite with a high Ha are 
needed. Magnetic loss, i.e., the imaginary part of complex permeability, 
rapidly increases near the fFMR. The fFMR is determined by Ha of a 
magnetic material and is adjustable by substituting Fe of M−type pure 
hexaferrite (SrFe12O19 or BaFe12O19) with other elements. M−type pure 
hexaferrite (SrFe12O19 or BaFe12O19) holds 17 kOe of Ha, corresponding 
to about 40–50 GHz of the fFMR. Hexaferrite is chemically stable and has 
a high Curie temperature, therefore a good component for microwave 
absorption material composites. Kim et al. doped a pure M−type 

SrFe12O19 with Zn and Zr to lower the Ha, adjusting the fFMR to the Ku- 
band. SrFe12-2x ZnxZrxO19 (x = 0.9) hexaferrite shows a high EM ab
sorption of the RLmin of 45 dB and EAB of 7 GHz in the X-band (8–12 
GHz) [16]. Dong et al. reported an RLmin of 45 dB and EAB of 9.5 GHz 
(29–38.5 GHz) of doped-hexaferrite [BaCoxTixFe12-2xO19 (x = 0.5)] in 
the Ka-band [17]. The above results imply that high magnetocrystalline 
anisotropy, saturation magnetization, and electrical resistive materials 
are desired for MXene composite, operating in Ka- and V-bands (5G 
mmWave frequency bands). However, no MXene/M−type hexaferrite 
composite and its shielding effectiveness in Ka- and V-bands were 
reported. 

In this paper, we studied the SE of the novel Ti3C2Tx MXene/doped- 
hexaferrite (BaCo0.3Ti0.3Fe11.4O19) composite by measuring the fre
quency dependence of both complex permittivity and permeability and 
reflection loss (RL) in Ka- and V-bands (30–50 GHz: 5G mmWave fre
quency bands). The Ha of M−type pure BaFe12O19 hexaferrite is adjusted 
to a Ha suitable for Ka- and V-bands by doping M−type BaFe12O19 with a 
couple of Co and Ti elements. Doped-hexaferrite (BaCo0.3Ti0.3Fe11.4O19) 
particles are synthesized and incorporated into MXene flakes, making an 
MXene/hexaferrite composite. 

2. Materials and methods 

2.1. Preparation of Ti3C2Tx MXene 

Ti3AlC2 powder (purity ≥ 99.0 %) was purchased from Nanoshel-UK 
Ltd, UK. Hydrochloric acid (HCl, 12 M) and lithium fluoride (LiF, purity 
≥ 99.99 %) were obtained from VWR International, USA. BaCO3 (purity 
≥ 99.0%) and Fe2O3 (purity ≥ 99.0%) were purchased from Sigma 
Aldrich, USA, while TiO2 and Co2O3 were obtained from Alfa Aesar, 
USA, and SkySpring Nanomaterials, Inc, USA, respectively. Lastly, PVP 
was purchased from G-Biosciences, USA. 

Ti3C2Tx MXene were synthesized via the LiF-HCl etching process. 
Two grams of LiF powder were slowly poured into 40 mL 9 M HCl so
lution in a Teflon container. The LiF containing HCl solution was stirred 
with a magnetic stirrer for 30 min at room temperature. Then, 2 g of 
Ti3AlC2 MAX-phase powder was added slowly into the solution while 
magnetic stirring for 24 h at 35 ◦C. After stirring, the reaction mixture 
was repeatedly washed with deionized water by centrifugation at 3500 
rpm until its pH reached 6 to separate multilayer MXene. The suspension 
was ultrasonicated for 20 min to exfoliate the MXene nanosheet and 
centrifuged at 3500 rpm to obtain the exfoliated nanosheets. 

2.2. Preparation of Doped-Hexaferrites (BaCo0.3Ti0.3Fe11.4O19) 

Doped-hexaferrite (BaCo0.3Ti0.3Fe11.4O19) powder was prepared by 
the conventional solid-state process [17]. The precursors, BaCO3, TiO2, 
Co2O3, and Fe2O3, were mixed in an appropriate stoichiometric ratio 
and wet milled for 2 h using a high-energy ball milling machine (Spex 
SamplePrep 8000D) at 1725 rpm. Then, the well-mixed powder was 
calcined at 1315 ◦C for 2 h in air. After being grounded thoroughly, the 
mixture was sintered at 1310 ◦C for 2 h in the air. The sintering heat rate 
was 3 ◦C/min. 

2.3. Preparation of Ti3C2Tx MXene/Doped-Hexaferrite 
(BaCo0.3Ti0.3Fe11.4O19) composite 

The obtained MXene was dispersed into 50 mL of deionized water. 
Then, 2.5 g of PVP was dissolved into the solution and ultrasonicated for 
20 min. After ultrasonication, BaCo0.3Ti0.3Fe11.4O19 hexaferrite was 
added to the mixture and stirred for 12 h with a nonmagnetic stirrer. 
Finally, the mixture was centrifuged and dried in a vacuum oven to 
MXene/BaCo0.3Ti0.3Fe11.4O19 composite. Fig. 1 illustrates the overall 
fabrication process. 
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2.4. Characterization 

An X-ray diffractor (XRD: Bruker D8 Discover) using Cu Kα radiation 
(λ = 0.154 nm) was used to identify the crystalline phases of MXene 
(Ti3C2Tx), doped-hexaferrite (BaCo0.3Ti0.3Fe11.4O19), and MXene/ 
doped-hexaferrite composite. Microstructures of the developed com
posite were characterized with a field-emission scanning electron mi
croscope (FE-SEM: JEOL 7000FE). A vibrating sample magnetometer 
(VSM: MicroSense EV9) was used to measure the static magnetic prop
erties of the composites. The powder samples were mixed with paraffin 
wax at a weight ratio of 5:1 and then pressed into a rectangular shape 
with a length of 5.69 mm and width of 2.84 mm. A vector network 
analyzer (VNA: Agilent PNA-E8361A) with a WR-22 rectangular wave
guide as a test fixture was used to measure complex magnetic perme
ability (μr = μ′+μ′′) and dielectric (electrical) permittivity (εr = ε′+ε′′) in 
30 to 50 GHz. The Nicolson-Ross-Weir approach [18] was implemented 
to extract μr and εr from the measured S-parameters. 

3. Results AND DISCUSSION 

3.1. X-ray diffraction and scanning electron microscopy 

Fig. 2 shows the measured XRD patterns of the Ti3AlC2 MAX, Ti3C2Tx 
MXene, doped-hexaferrite (BaCo0.3Ti0.3Fe11.4O19), and MXene/doped- 
hexaferrite composite. The diffraction peaks at 2θ values of 9.7, 39, 
41.2, and 60.5◦ correspond to the (002), (104), (105), and (110) 
planes, respectively. These planes match the reported MAX phase 
(JCPDS card no. 52-0875). After the LiF/HCl mixture solution treat
ment, the characteristic peaks at 2θ of 39◦ disappeared; therefore, Al 
elements were removed [19]. Further, the characteristic diffraction peak 
(002) of MAX is shifted to 7.3◦ from 9.7◦, implying the enlarged 
interlayer spacing and formation of laminated and exfoliated MXene 
[19]. The XRD pattern also showed that doped-hexaferrites are formed 
well as the diffraction peaks appear at 2θ = 22.9, 30.3, and 63.1◦ [17]. 
For the MXene/doped-hexaferrite (BaCo0.3Ti0.3Fe11.4O19) composite, 
the main diffraction peaks of the MXene and doped-hexaferrite were also 

confirmed, demonstrating the successful synthesis of the desired com
posite without any crystal structure changes. 

The microstructure and morphology of the synthesized MXene and 
MXene/doped-hexaferrite (BaCo0.3Ti0.3Fe11.4O19) composite were 
characterized by a scanning electron microscope (SEM). Fig. 3(a) shows 
an accordion-like morphology of the synthesized MXene. This result 
confirms the removal of the Al layer from the MAX phase [2]. It is seen 
that hexagonal-shaped doped-hexaferrite particles with an average 
particle size of 1–3 μm are embedded in and attached firmly to the 
surface of the laminated MXene. The XRD and SEM characterization 
results confirm MXene/doped-hexaferrite composite is well formed. 

3.2. Static magnetic properties 

Fig. 4 shows the magnetic M−H hysteresis loops of MXene, doped- 
hexaferrite (BaCo0.3Ti0.3Fe11.4O19), and MXene/doped-hexaferrite 
composites with different contents of doped-hexaferrite (20, 30, and 
45 wt%) measured in the range of applied magnetic field from −20 kOe 
to + 20 kOe. The saturation magnetization (σs) and intrinsic coercivity 
(Hci) of the doped-hexaferrite are 66.5 emu/g and 401 Oe, respectively, 
close to the reported data [17]. As the content of doped-hexaferrite in
creases from 0 to 45 wt%, the σs increases from 0 emu/g to 4.5 emu/g 
(20 wt%) to 9.7 emu/g (30 wt%) to 21.5 emu/g (45 wt%), and Hci also 
increases from 0 Oe to 186 Oe (20 wt%) to 245 Oe (30 wt%) to 285 Oe 
(45 wt%). An increase in the σs and Hci of the composite is mainly 
attributed to the reduction of paramagnetic MXene content, demon
strating MXene/doped-hexaferrite composite. As a result, it is seen that 
the magnetic hysteresis loop gradually becomes more significant as the 
content of doped-hexaferrite increases, implying that magnetic hyster
esis loss increases. 

3.3. Dynamic magnetic, dielectric, and absorption properties 

EM wave absorption and RL were calculated by the following 
equations based on the transmission line theory: 

RL(dB) = 20log|(Zin − Z0)/(Zin + Z0) | (1)  

Zin = Z0
̅̅̅̅̅̅̅̅̅̅̅
μr/εr

√
tanh

[
j(2πfd/c)

̅̅̅̅̅̅̅̅μrεr
√ ]

(2)  

where Zin is the input impedance, Z0 represents the free-space imped
ance of 377 Ω, f is the frequency in Hz, c is the speed of light in free 
space, and d is the thickness of the material. Fig. 5 shows the measured 
frequency-dependent relative permittivity (εr) and relative permeability 
(μr) of MXene/doped-hexaferrite composite. The real part of εr (εʹ) de
creases as the content of doped-hexaferrite increases from 20 to 45 wt% 
for f below 38 GHz. For f above 38 GHz, the εʹ slightly increases and then 
significantly decreases as shown in Fig. 5(a). As for the imaginary 
permittivity (ε”) in Fig. 5(b), MXene/doped-hexaferrite (20 wt%) 
composite shows a significantly higher ε” of 3.0–3.5 than 0–1.5 of 30 or 
45 wt% doped-hexaferrite composite in the range of 30 to 50 GHz. This 
decrease in εr with respect to an increase of the content of doped- 
hexaferrite is because hexaferrite is an electrical insulator. It is re
ported that when the content of semiconductor-like Fe3O4 increased in 
MXene/Fe3O4 composite, both electrical conductivity and εr decreased 
[20]. According to the free electron theory, the higher the electrical 

Fig. 1. Schematic illustration of MXene/doped-hexafererite (BaCo0.3Ti0.3Fe11.4O19: CoTi-BaM) composite synthetic process.  

Fig. 2. XRD patterns of Ti3AlC2 MAX, MXene, doped-hexaferrite (BaCo0.3

Ti0.3Fe11.4O19: CoTi-BaM), and MXene/doped-hexaferrite composite. 
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conductivity, the higher the εr [20]. Thus, adding the insulator-like 
hexaferrite to highly conductive MXene lowers the conductivity of the 
MXene/hexaferrite composite. Therefore, the composite’s εr decreases. 
This decrease in εr with spinel ferrite was observed in many MXenes/ 
magnetic material composites such as MXene/NiFe2O4 [4] and MXene/ 
CoFe2O4 [5]. Further, the ε” signifies the dielectric energy loss in a 
medium. A decrease in ε” with the content of doped-hexaferrite implies 
that the contribution of mitigating EMI by the dielectric energy loss is 
reduced. Moreover, εʹ and ε” fluctuations are attributed to the dipole 
polarization in MXene, which cannot catch up with the change of elec
tric field in the frequency of interests [4]. 

Fig. 5(c) and (d) show that the frequency-dependent real (μʹ) and 
imaginary permeability (μ”) of MXene/doped-hexaferrite (20, 30, 45 wt 
%) composites are much more dispersed or fluctuated than the relative 
permittivity. This is attributed to multiple ferromagnetic resonances of 
hexaferrite, especially in MXene/45 wt% doped-hexaferrite composite. 
The μʹ of the composite increases up to 38 GHz as the content of doped- 
hexaferrite increases and then decreases due to ferromagnetic reso
nance. The imaginary part μ” in Fig. 5(d) shows a similar response to 
applied frequency to the μʹ. It is noted, however, that 45 wt% doped- 
hexaferrite composite shows the highest magnetic loss over the fre
quency range of 30 to 43 GHz. 

RL was measured for MXene, MXene/doped-hexaferrite (20, 30, and 

45 wt%) composite, and doped-hexaferrite (BaCo0.3Ti0.3Fe11.4O19) to 
estimate how much power is reflected from EMI material. Fig. 6 shows 
the measured RL. There is no significant effective absorption for MXene 
and MXene/20–30 wt% doped-hexaferrite composites. However, the 
absorbing and transmission losses were significantly increased with 
increasing the doped-hexaferrite content. Among the measured com
posites, the MXene/45 wt% doped-hexaferrite composite showed the 
widest effective bandwidth (RL less than 10 dB) of 7 GHz (38–45 GHz). 
This implies the impedance matching is better than other MXene/doped- 
hexaferrite composites, according to Eq. (2). 

The MXene/45 wt% doped-hexaferrite composites with different 
thicknesses were prepared and characterized for the RL over the range of 
30 to 50 GHz to understand the thickness dependence of RL. Fig. 7 shows 
a two-dimensional plot to visualize three-dimensional data (thickness- 
frequency-RL). It was reported that EAB shifts to a lower frequency as 
the thickness increases [2]. According to the quarter wavelength theory, 
the matching thickness is inversely proportional to the matching fre
quency [21]. 

Lastly, the SET, SEA, and SER of 1.5 mm thick MXene and MXene/45 
wt% BaCo0.3Ti0.3Fe11.4O19 composite are calculated in dB according to 
the following equations [22]. The results are presented in Fig. 8. 

SET = 10log
(
1/|S21|

2 )
(3)  

SEA = 10log
((

1 − |S11|
2 )/

|S21|
2 )

(4)  

SER = 10log
(
1/(1 − |S11|

2
)

)
(5) 

The calculated average SET of the composite was 12 dB (equivalent 
to 94% shielding), and the composite absorbs EM wave 83.2 % and re
flects 16.8%. The composite showed 0.46–2.21 dB higher SET and 28.9% 
higher SEA than MXene. 

A comparison of this work with the reported results is made in 
Table 1. The novelty of this work includes the use of high magneto
crystalline anisotropy hexaferrite for composite, covering Ka and V 
bands (mmWave spectrum), and enhancement of magnetic loss at Ka and 
V bands. The studied composite significantly reduced reflection. Thus, 
absorption was dominated in the SET in mmWave bands. 

4. Conclusions 

Microwave absorption property of Ti3C2Tx MXene/doped- 
hexaferrite (BaCo0.3Ti0.3Fe11.4O19) composites with various contents 
(20, 35, and 45 wt%) of doped-hexaferrite was investigated in the fre
quency range from 30 to 50 GHz for millimeter-wave applications. The 

Fig. 3. SEM images of (a) MXene and (b) MXene/doped-hexaferrite (BaCo0.3Ti0.3Fe11.4O19: CoTi-BaM) composite.  

Fig. 4. Magnetic hysteresis loops of MXene, doped-hexaferrite (BaCo0.3Ti0.3

Fe11.4O19: CoTi-BaM), and MXene/doped-hexaferrite (20, 30, and 45 wt 
%) composite. 
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1.5 mm thick MXene/doped-hexaferrite (45 wt%) composite shows the 
highest microwave absorption and shielding effectiveness among the 
studied composite compositions. An effective absorption bandwidth of 
7 GHz (35–45 GHz) was obtained in mmWave bands from the 1.5 mm 

thick composite. A high-magnetocrystalline anisotropy of hexaferrite 
contributes to shifting microwave absorption frequency to Ka- and V- 
bands. Accordingly, the microwave shielding effectiveness was domi
nated by absorption rather than reflection. Therefore, the reflection 

Fig. 5. Dynamic performance of (a) real permittivity, (b) imaginary permittivity, (c) real permeability, and (d) imaginary permeability of MXene/BaCo0.3Ti0.3

Fe11.4O19 (20, 30, and 45 wt%) composites. 

Fig. 6. Reflection loss (S11) of Ti3C2Tx MXene, MXene/BaCo0.3Ti0.3Fe11.4O19 
(20, 30, and 45 wt%) composites, and BaCo0.3Ti0.3Fe11.4O19 (CoTi-BaM) with 
the thickness of 1.5 mm. 

Fig. 7. Reflection loss contour of Ti3C2Tx MXene/45 wt% BaCo0.3Ti0.3Fe11.4O19 
composite with various thicknesses. 
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issue of MXene is addressed. The experimental results demonstrate that 
the doped-hexaferrite (BaCo0.3Ti0.3Fe11.4O19) composite can apply to 
EMI shielding in mmWave bands (Ka- and V-bands) and opens up new 
opportunities for THz EMI materials development. 
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