STABILIZING EFFECT OF MAGNETIC FIELD ON THE 2D
IDEAL MAGNETOHYDRODYNAMIC FLOW WITH MIXED
PARTIAL DAMPING
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ABSTRACT. This paper examines the stability of a 2D inviscid MHD system with
anisotropic damping near a background magnetic field. It is well known that
solutions of the incompressible Euler equations can grow rapidly in time and are
thus unstable while solutions of the Euler equations with full damping are stable.
Then naturally arises the question of whether solutions of the Euler equations
with partial damping are stable. The main purpose of this paper is to give an
affirmative answer to this question in the case when the fluid is coupled with the
magnetic field through the MHD system with one-component damping. The result
presented in this paper especially confirms the stabilizing effects of the magnetic
field on the electrically conducting fluids, a phenomenon that has been observed
in physical experiments and numerical simulations.

1. INTRODUCTION

The MHD system is composed of the Navier-Stokes equations of fluid dynamics
and Maxwell’s equations of electromagnetism. It describes the motion of electrically
conducting fluids such as plasmas, liquid metals and electrolytes in an electromag-
netic field and has a wide range of applications in astrophysics, geophysics, cos-
mology and engineering (see, e.g.,[5, 13, 39]). The MHD equations not only share
some mathematically important features with the Euler/Navier-Stokes equations,
but also exhibit many more fascinating properties than the fluids equations without
the magnetic field. Inspired by the phenomenon observed in physical experiments
and numerical simulations that the magnetic field can stabilize electrically conduct-
ing fluids (see, e.g., [2, 3, 22, 23]), we aim to explore the smoothing and stabilizing
effects of magnetic field on the fluid motion. For this purpose, we consider the
following 2D MHD equations with only partial damping in the velocity and the
magnetic field,

QU +U-VU+VP+v(U,00) =B-VB, zecR%t>0,
OB +U-VB+n(0,By)" =B-VU, (1.1)
V-U=V-B=0,

where U = (Uy,U,)", B = (B, By)" and P are the velocity field, the magnetic

field, and the pressure, respectively. The positive constants v > 0 and n > 0 are the
damping coefficients.
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There have been substantial developments on two fundamental problems concern-
ing the MHD equations, the global (in time) regularity and stability. In particular,
the stability problem near a background magnetic field have recently attracted con-
siderable interests. For the ideal MHD equations, Bardos-Sulem-Sulem [4] took
advantage of the Elsésser variables to establish the global regularity (in Holder set-
ting) of perturbations near a strong background magnetic field. Cai-Lei [7] and
He-Xu-Yu [25], via different approaches, successfully solved the stability problem
on both the ideal MHD system and its fully dissipative counterpart (with iden-
tical viscosity and resistivity) near a background magnetic field. Wei-Zhang [48]
allowed the viscosity and resistivity coefficients to be slightly different. The paper
of Lin-Xu-Zhang [34] pioneered the study of the stability problem on the incom-
pressible non-resistive MHD equation near a background magnetic field. The 3D
problem together with the large-time behavior was solved by Abidi-Zhang [1] and
Deng-Zhang [14] in the whole spaces case. [38] dealt with this problem when the
spatial domain is a 3D periodic box T?. [43] examined the case with the hori-
zontally infinite flat layer R? x (0,1). The approach of Lin-Xu-Zhang [34] on the
2D non-resistive MHD problem is Lagrangian. Ren-Wu-Xiang-Zhang [40] revisited
the stability problem by resorting to the Eulerian energy estimates in anisotropic
Sobolev space and obtained explicit time decay rates. Ren-Xiang-Zhang [41] proved
the global stability in a strip domain, and Chen-Ren [12] considered two types of
periodic domains T x R and T x (0,1). Zhang [57] proved the global existence of
strong solutions to the Cauchy problem with large initial perturbations, provided
that the background magnetic field is sufficiently large. Recently, Jiang-Jiang [28]
extended the results [57] to the 2D periodic domains T? by using the Lagrangian
approach and the odevity conditions proposed in [38], and obtained the asymptotic
behaviors of global strong solutions with large initial perturbations. For the 2D
inviscid and resistive MHD equations, Zhou-Zhu [58] investigated the stability of
perturbations near a background magnetic field on the periodic domain. For the
ideal MHD system with velocity damping, Wu-Wu-Xu [53] studied the stability via
the approach of wave equations, and Du-Yang-Zou [18] proved the exponential sta-
bility of a stratified flow in the strip-type doamin R x [0, 1]. We also refer to [52] for
the stability and large-time behavior of the 2D compressible MHD system without
magnetic diffusion.

Due to its physical relevance and remarkable enhanced smoothing properties, the
stability problem for the incompressible MHD equations with partial dissipation has
recently generated a rich array of results. Lin-Ji-Wu-Yan [35] obtained the stability
of the 2D MHD equations with vertical velocity dissipation and horizontal magnetic
diffusion (see also [32]). A new stability result on 3D MHD equations with horizontal
dissipation and vertical magnetic diffusion was achieved by Wu-Zhu [54]. Boardman-
Lin-Wu [6] studied the stability of 2D inviscid and resistive MHD equations with
only vertical velocity damping. The stability and large-time behavior of the 2D
MHD equations with only vertical velocity dissipation and a damping magnetic
field was investigated in [21]. The paper [31] dealt with the anisotropic equations
with only (partially) vertical damping magnetic field. In comparison with [21] and
[31], the MHD system considered in this current paper contains the least dissipation
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and damping. It appears that the anisotropic damping required in this paper can
not be further reduced.

Many more results on the well-posedness and related issues concerning the in-
compressible MHD equations are available in the literature. For example, various
partial dissipation cases are dealt with in [8, 9, 16, 17, 37], the non-resistive case in
29, 11, 20, 33, 46, 56], the only magnetic diffusion case in [10, 30] and the fractional
dissipation case in [15, 45, 51, 49, 50, 55].

This paper aims to understand the stability of the 2D ideal MHD system (1.1)
near the equilibrium state (U©®, BO®)),

U9 =0, BY=¢ :=(1,0).
Let (u,b) be the perturbation of (U, B) near the steady state (U®  B()),
w:=U—-U"Y, b:=B— BWY.
The system governing the perturbation is taken to be the following system

ou+u-Vu+ VP +v(u,0)" =b-Vb+0b, xcR? t>0,

b +u-Vb+n(0,by)" =b-Vu+ 0u, (1.2)
Veu=V-b=0.
We shall focus on an initial value problem of (1.2) with the Cauchy data:
u(zx,0) = ug(x), b(x,0) = by(x). (1.3)

The motivation for studying the stability problem of (1.2)—(1.3) is twofold. The
first is to reveal the phenomenon that the coupling and interaction between the
velocity and the magnetic field actually stabilize the fluid motion. Indeed, when
B =0, (1.1) becomes the 2D incompressible Euler equation with only horizontally
damping velocity,

8tU1 + U- VUl -+ 81P + VU1 = O,
Uy +U -VUy + 0, P =0, (1.4)
V-U =0.

The stability problem of (1.4) remains unsolved. To understand the difficulty, we
reformulate (1.4) in terms of the following vorticity equation
Ow + U - Vw = vRiw,
L (1.5)
U=V-A"w,
where Ry, = 0,(—A)~2 with k = 1, 2 denotes the standard Riesz transform (see, e.g.,
[24, 42]) and the fractional Laplacian operator is defined via the Fourier transform,

(AP f(&) = [l f(€).
and V+ = (—0,, 0;). Unfortunately, the classical Yudovich’s approach used to study
the 2D incompressible Euler equations do not appear to work for (1.5), since the
Riesz transform R, is not known to be bounded in L*°. In fact, as pointed out by
Elgindi [19], the L%-norms of w are bounded for any 1 < ¢ < oo, but these L%norms
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may grow exponentially in ¢g. Therefore, the question of whether the solutions of
(1.5) will develop singularity in finite time is an interesting and challenging problem.
The first and main purpose of this paper is to show that the magnetic field is able
to stabilize the velocity field through the MHD system (1.1). For the recent works
on the magnetic inhibition phenomenon (or stability result), we refer to [26, 27, 47|
and the references cited therein.

The second motivation is to explore the hidden wave structure and to understand
the stability mechanism. To explain this clearly, we apply the Leray projection
operator P = I — VA~V to the equation (1.2) and separate it into the linear part
and the nonlinear part. Due to V-u =V -b =0,

P(u1,0)" = (u1,0)" — VATV - (u1,0)" = 93A 'y = —R3u,
and
P(0,by)" = (0,by)" — VATV - (0,by)" = ?A7'0 = —R%.
Thus the system (1.2) can be written as
Ou = vR3u+ 01b+P(b- Vb —u-Vu),
O =nR3b+ du+P(b-Vu—u-Vb), (1.6)
V-u=V-0=0.
Differentiating (1.6) in ¢ and making several substitutions, we find
O — (VR3 + nRY)Oyu — 3u + vnRIRZu = Ny,
Oub — (VR3 + nR3)0tb — 03 + vnRIR3b = Ny, (1.7)
V-u=V-b=0,
where N; and Ny are the nonlinear terms,
Ny = (0 —ROP(b- Vb —u-Vu) + hP(b- Vu — u - Vb),
Ny = (0, —vR3)P(b- Vu —u-Vb) + O P(b- Vb —u- Vu).
It is surprising that u, b satisfy the same degenerate damped wave equation. The
wave structure of (1.7) for (u,b) provides much more stabilization and regularization
properties than the original system (1.1). In fact, the wave equation (1.7) indicates

that there is a horizontal regularization via the coupling and interaction, and hence,
the stability result of the solutions becomes possible.

The main result of this paper is the following stability theorem of global solutions
to the Cauchy problem (1.2)-(1.3).

Theorem 1.1. Assume the initial data (ug,by) € H? with V-ug = V-by = 0. Then
there exists a positive constant € > 0, depending only on v and n, such that if

(o, bo) || < ¢,

then the problem (1.2)-(1.3) has a unique global solution (u,b) on R* x [0,00),
satisfying

t
I 0) (1) % + / (I, b2) (M) s + 9|3 )dr < €2, ¥ ¢ >0,
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where C' > 0 is a generic positive constant independent of € and t.

Since the local-in-time existence result can be shown by the standard method
(see, e.g., [36]), our main task is to derive the global-in-time a prior estimates of
the solutions. The framework is the bootstrapping argument ([44]). Due to the lack
of full damping, some serious difficulties arise. To overcome these difficulties, we
construct a suitable energy functional. It consists of two parts. The first part is the
natural H3-energy functional & (t),

Et) == sup 1(u,b)(r) 3 +2 / (Vs () + nllba(D) I )ar, (1)

0<r<t

The second part E(t) includes the horizontal dissipation piece generated from 0;u
and indicated by the wave structure of (1.7),

When applying the standard LZ—method to estimate & (t) and & (t), we encounter
four of the most difficult terms:

lefl = /61U1|8§b1|2 d?[), lefg = /blag’bl@g@lul dl‘,

lefg = /b181u1|(9§’bl\2 dl’, lef4 = /bf@;blagalul d.I’,

which cannot be well controlled by &;(t) and & (t) directly. The strategy here is to
use (1.2)9 and (1.2); to replace 0yu; and 01b; by
31u1 :atbl—f—U'Vbl —b-Vul, (110)
81(?1 zatu1+u-Vu1+81P—i—1/u1 —b'Vbl. (111)
For example, with the help of (1.10) and (1.11), we find
lefl = /(815[71 +u- Vbl —b- Vul) |8§’b1|2 dx

d
T dt

+/u-Vb1|8§b1|2 dx—/b-Vullaé”blF dz,

b1|83b1|2 dr — /blag’blﬁg(?tbl dz

and

DIHQ = — /811)185’61831“ dr — /blﬁg’ulag’albl dx
—/81b18§b18§’u1 dz

— /blﬁg’ulﬁg (&gul +u- Vul -+ 01P +vup — b- Vbl) dx

1d

1
— /alblag’blag’ul dr — 5@ 61|8§u1|2 dx + 5/|8§U1|28tb1 dx
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— /blag’ulag (u-Vuy + 0P +vu —b-Vby) dr.

The items associated with 9;b; will be handled by using (1.10) again. This process
generates many terms. Based upon integration by parts and the anisotropic Sobolev
inequalities, it is incredible that all the terms can be bounded by & (¢) and &(t),
although the process is complicated and lengthy. For the details, we refer to the
treatments of D; with ¢ = 1,...,4 in Section 2. Collecting these estimates, we are
able to establish the energy inequalities stated in Proposition 2.1.

We also make efforts to exploit the full regularization and stabilization effects
from the wave structure to understand the large-time behavior of the linearized
system.. The linearized system of (1.6) reads

Ou — vR32u — 01b = 0,
b — nR3b — dyu = 0,

(1.12)
Vou=V-b=0,
U(I,O) = UO(I), b(l’,O) = bo(l’),
which can be converted to the linearized system of wave equations (1.7):
Opu — (VRE +nR?)0u — ?u + vnR3R3u = 0,

V-u=V-b=0,
u(z,0) = ug(x), b(x,0) = bo(x).
We first aim to establish the decay rate of solution for the linearized system (1.12)
in negative Sobolev space by careful energy estimates. To state our result precisely,

we first define the fractional partial derivative operator A} withi=1, 2 and v € R
by e
A F() = & F(©).
Theorem 1.2. For o > 0, assume that (ug, by) satisfies
(A7, A7 ug € HY7, (A7, A;%)bg € H, V-ug =V - by = 0.
Then the corresponding solution (u,b) of (1.12) satisfies
(u,b) € L=(0,00; H'), (Rou, R1b) € L*(0,00; H').

and moreover,
1w, b))l < C(L+1)7%, V>0,

where C' is a generic positive constant depending only on v,n, o and the initial norms.

When the initial data is not in any Sobolev space of negative indices, we can still
manage to show the precise decay rates for several quantities.

Theorem 1.3. Assume that
(uo, bo) € L2, (81u0, 81b0) € L2, Vi ug=V b= 0,
(RlRQUO, RlRQbO) € L2, (Rguo, R%b@) c L.
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Then for any t > 0, the solution (u,b) of (1.12) satisfies,

[0(D)]1z2 + 01u(t) 2 + [RyRou(®)z2 < C (1+1)72,

1

10b() |2 + [|010(E) |2 + [[RAR2b(E)|| 2 < C (L +1) 2,
where C'is a generic positive constant depending only on v,n and the initial norms.

Finally we show that any frequency away from a given area D decays exponen-
tially in time. To do this, we define D by

D= {cR?: |&]<aand [¢f > Bla|l&l b, (1.14)

where a > 0 and 8 > 2 are fixed positive constants. In addition, we set 12(&) to be
the following cutoff function in the frequency space,

[0, if ¢eD,
‘b(g)—{L if £e D

Obviously,

~

¥ F(€) = D(€) F(9): (1.15)
Theorem 1.4. Assume the initial data (ug,by) with V - ug =V - by = 0 satisfies

(¢ % ug, ¥ * by, P * Oyug, 1V *by) € L,
(¥ * R1Raug, ¥ * RiRabo, 1 * Riug, ¥ * Riby) € L*.

Then the corresponding solution (u,b) of (1.12) obeys the following exponential decay
estimates,

[(¢ # u, )| 12 + [ (¥ * Oru, ¥ * O1D) | 12
+ H(w * R1R2U w * Rleb)HLz + ||(¢ * aﬂ,@d) * 8tb)||L2
< O ectvaB)t

where ¢ = c(v,n, a, ) > 0 depends on v,n,a and B, and C = C(uyg, by, v,n, o, ) > 0
depends additionally on the initial norms.

Remark 1.1. [t is an interesting problem to study the decay rates of the solutions
to the nonlinear system (1.2). Unfortunately, this seems not easy and is left for
the future. In fact, the large-time behavior of the solution depends crucially on
the eigenvalues of the wave equation (1.13). Indeed, the characteristic polynomial
associated with (1.13) reads

(i )i v

and the roots Ay are given by

V5§+77£1 2
S F VT Ve +nét &6
€] . 2 T 1S S182
A = th T := —4 .
i 2 . < I3k ) ( el +§1>
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By direct calculations, we find

251 <V77‘§|4 1) _52
1/6 775 ~ 1
VT + <|5|3 @)
provided I' > 0 and |&1| is sufficiently small. As a result, the heat kernel only admits
“one-component” decay. This is the inherent difficulty in the decay analysis of the

solutions. Actually, it is also the reason that why we can only obtain the exponential
decay away from the domain D.

)\+:

The rest of this paper is organized as follows. Theorem 1.1 is proven in Section
2. The proof of Theorem 1.2 will be carried out in Section 3. Section 4 is devoted
to the proofs of Theorems 1.3 and 1.4, based on the wave structure (1.13).

2. PROOF OF THEOREM 1.1

This section aims to prove Theorem 1.1. As aforementioned, to establish the
stability result in Theorem 1.1, it suffices to prove Proposition 2.1 below.

Proposition 2.1. Let & (t) and E(t) be the same ones as defined in (1.8) and (1.9),
respectively. Then there exists a generic positive constant C', depending only on v
and n, such that

el<t>sc(51<>+el< 0)% + 5<>)
+0(51 P&t ) +C (&) + & (1)) (2.1)
and
Ex(t) < CE(0) + CEL(L) + CEL(t)2 + CE(t)?. (2.2)

With Proposition 2.1 at our disposal, Theorem 1.1 can be easily achieved by the
bootstrapping argument. For simplicity, we denote by C' and C; (i = 1,2, 3) various
generic positive constants, which may depend only on v and 7, and may change
from line to line.

Proof of Theorem 1.1. Tt follows from (2.1) and (2.2) that
E(t) + &(1) < C1 (£(0) + E(0)F + £(0)°)

+ Oy (51 ()2 + 52(15)%> +C5 (&) + &(1)°). (2.3)

The bootstrapping argument then allows us to establish the stability result of The-
orem 1.1, provided the initial data £ (0) is chosen to be sufficiently small such that

C, (51( )+ &(0)2 + 51(0)2) < imin{%cg, (4%3)} (2.4)

In fact, if we make the ansatz that for 0 < T < o0,

1 12
<mind — [—
E1(t) + & (t) < min { I6c2" (403) } ,
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then (2.3) implies
E(t) + &) < Oy (51(0) L E&(0)F + 51(0)2)
4 Co (E1() + E(1)2 + Cs (E1(1) + & (1))
< (80 +&0)F +£0°) + % (E(t) + Ex(D)) .

E(t) + Ex(t) <201 (£4(0) + E(0)F + £(0)?) (2.5)

which, combined with the smallness assumption (2.4) on the initial data, leads to

1 1 1 2
&1(t) + &:(1) 2 i { 16C%’ <4C3) }

Thus, the bootstrapping argument then asserts that (2.5) holds for all time, provided
&1(0) fulfills (2.4). The proof of Theorem 1.1 is therefore complete. O

It remains to prove Proposition 2.1. To deal with the nonlinear terms, we need
to make use of the anisotropic inequalities (cf. Lemmas 2.1 and 2.2), whose proofs
rely on the basic one-dimensional Sobolev inequality

1 1
191 oo ®) < \/5”9”22(]1@)”91‘@2(3@)’

and the Minkowski inequality

A2y @y |z ey < WLF e ey g ey, ¥V 1 < g < p < o0,
where f = f(z,y) with € R™ and y € R™ is a measurable function on R” x R".
Lemma 2.1. Assume f, 01f, g and Oog are all in L*(R?). Then,

1 1 1 1
1f9llz2rey < ClF 72101222y 191 72 m2) 10291 2 2y -
Lemma 2.2. The following estimates hold when the right-hand sides are all bounded,
1 1 1 1
[f oo @2) < Cllf 2@y 101 || 22 me) 102f 1 22 ey 1012 N 12 2y -

In particular,

1 llzoe < CUANF MO N e

1 llzoe < AN 02 N o

We are now ready to prove Proposition 2.1. The proofs are split into two steps,
which are concerned with the derivations of (2.1) and (2.2), respectively.
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2.1. Proof of (2.1). Due to the equivalence of ||(u, b) || gz with ||(u, b)||L2+](w, b)|| z73,
it suffices to bound the L*norm and the homogeneous H3-norm of (u,b). First,
based on the divergence-free conditions V -u =V - b = 0, it is easy to check that

t
1Cu, D17 + 2/0 (Wlluslzz + nllb2l72) dr = [|(uo, bo)IZ-. (2.6)

Next, to estimate the H3-norm, applying 82(i = 1,2) to (1.2) and dotting them
with (9P, 92b) in L?, we have

1d 2 2 2
ST D M@, a0) |72 +v Y 10Fwllze +n Y 107027
i=1 i=1 i=1
= K1+K2+K3+K4+K5, (27)
where
2
K=Y / (82016 - BPu + 0201w - O2D) du,
i=1
2
Ky = —Z/E)?(u -Vu) - Ou d,
i=1
2
Ky = Z/ (32(b- Vb) — b- VD) - OPu du,
i=1
2
Ky:=— Z/@f’(u -Vb) - 9Pb dz,
i=1
2
K=Y / (&(b-Vu) — b- V) - 0% do.
i=1
We are now in a position of estimating K, ..., K5 term by term. First, integra-

tion by parts directly gives
K, =0. (2.8)
To bound K, we divide it into two parts,
Ky =— /Of(u V) - OPu dr — /8§(u V) - Osu do i= Ko + Koo.
Due to V - u = 0, by Holder’s and Sobolev’s inequalities, we obtain
Ky = — /((“ﬁ’u - Vu + 307u - Voju + 30u - Voiu) - Ou dx

< Cll0ull 2 (IVull = [VOFul 2 + (107wl 24l VOyul| 1)

< Cllullms[|0vullze, (2.9)
and similarly,

Koy < Cllullgs [|02ullZ2
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which, together with (2.9), yields
Ky < Cllullgs (101ullfz + 10:ully2) - (2.10)

To estimate K3, we rewrite it into three items,

2 2
K, = ZB/&b-V@?b-&fu dx+23/8i2b-vaib'afu da
i=1 i=1

2
—l—Z/@?be@?u dx 3:K31+K32+K33,
i=1

where the first term K3; on the right-hand side can be bounded as follows,
< C|010]| o< [V OB 2 (|07 2
+ C ([|0ab1[| o< []01050]| L2 + 10101 [| o< (|05 £2) |05 2
< Clollas (1010l 52 + |0vullfge + [|02ullf2) -
In a similar manner,

< C|07bl| s VOBl 4[| 07| L2 + C1019abl| 4 [|03b]] 4 | Oy 2
< Cllblla= (10101172 + 10vull72 + 192ull32)

and
< O V]| Lo [|070]| 2] 07 ]| 2
+ C (||Onb]| 2 [|05b1 || 12 4 [|0b]| oo [|0105b1 || 2) (| D3| 2
< Clbllgs (10101172 + 101ull 2 + 102l F2) -
Therefore,

Ky < C|Ibllzs (1001172 + 101ullze + [|02ull) - (2.11)
In order to estimate K, we write it in the form:
Ky =— /af(u Vb)) - 0}b dv — /ag’(u -Vb) - 95b dw := Ky + Ky,
where the first term Kj; can be easily bounded by
Ki = — / Du-Vb- 0% dz — 3 / (Pu- Vb + dru- VOR) - O da

< OV oo [|07D]] 22 [| 0| 2
+ C ([107ul| 4| V0|l 12 + (| Ovu| oo [ VOTO] 2 ) 107D 2
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The second term K4, needs more work. First, by virtue of the divergence-free
condition V - u = 0 we split it into three parts:

K42:—/Ggu-Vb-ﬁg’bdx—3/8§u-V82b-0§’bdx

- 3/82U : V(?%b : 8;’1) dr = K421 -+ K422 + K423.
For K491, we have

Ko = — / Purdnb - 92b d — / Pudnh - 920 d
= - / O3u101b - O3b dx + / D3un01b103by dx

+ /813§u102618§’bl dzv = Kyo11 + K212 + Kyo13.

where the first two terms K911 and Ky919 are bounded by
Ko + Kaio < C[|010]| oo [|05ul| 12|50 2
< C|bllas (10101172 + |10aul|72) -

For K013, integration by parts twice gives

K4213 = — /8§u16182b18§’bl dx + /ag’ul@gbl@l@;bl dx

+/8§U182261818§bl dx
< C|83ur || 14]|018501 | 4[| 9501 | L2
+ C (105uall 210201 || oo + (|05 || 4 1051 || ) | 01050 2
< C|bllas (10101172 + 102wl ) |
which, together with the estimates of K4911 and Ky919, shows that
Ko < C[bl[ s (1010772 + (| 02wl 72 - (2.13)
Analogously,
K422 == —3/822U18162b . 8235 dx + 3/8§u1815)§b . 83() dx
< C|b|| g (||31b||?{2 + ||azu||§{2) . (2.14)
For Kj4o3, due to V-u =V -b =0, we have

K423 = —3/82’&181322(7 . (93(9 dr — 3/8211,28132219181822(?1 dx

+ 3/81u185’513§b1 dx = Kyoz1 + Kagso + Dy

Based upon the Holder’s and Sobolev’s inequalities, it is easily deduced that
Kozt + Kaozy < C||0aul| 1 [|0105]| 12| V20| 12
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< C1bllas (1010132 + [ 02u]|72) - (2.15)

We now turn to deal with D;, which is one of the most difficult terms. The
strategy here is to replace dyu; by using the equation of magnetic field,

81u1 = 8tbl +u- Vbl —b- Vul. (216)

In terms of (2.16), we can rewrite D; in the form:
D, = 3/ (Opby +u - Vb —b-Vuy)|05b, | do
_ 3% / b1 0302 dr — 6 / by Oy 004by da
+ 3/ (u - Vby) 036, |* do — 3/ (b-Vuy) |03ty |* dz, (2.17)
where the second term associated with 0;b; on the right side can be written as
6 / by Oy 004y da
= —6/613§b18§(81u1 —u-Vb +b-Vuy) dz
= —6 / b103b,030,u, dx + 6 / b103b103u - Vb, dx
+ 18 / b103b105u - VOoby dx + 18 / b103b105u - VO3bdx
+ 3/b1u -V|03b,|* dx — G/blagblﬁg(b -Vuy)dz. (2.18)
Noting that
/blu - V|03b1 | dx + /u Vb |05b1)? d = 0,

we obtain after plugging (2.18) into (2.17) that
d

D, = 35 b1|03b1)? da — 6/()1(931)185’811“ dx
+6 / b10sb103u - Vby dw + 18 / b103b,03u - Vb dx
+ 18/618§’b182u1818§b1 d + 27/b182u2|8§’bl\2 dx
— 3/6282u1|a§’b1|2 dr — 6/b18§bla§b282u1 dx
— 18/b18§’b18§b -Vouy dx — 18/b18§’blagb -VO2u, dx

— 6/bla§blb.va§u1 dz. (2.19)
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Two of the most difficult terms on the right-hand side of (2.19) are the second
and sixth terms,

Dy = —G/blagblagalul dr, Ds:= 27/b182u2|a§b1|2 dz,

which will be handled by using (2.16) and the equation of velocity,
8161 = 8tu1 +u- Vu1 -+ 81P + vu; — b- Vbl (220)
For Dy, using (2.16), (2.20) and integrating by parts, we have

D2 :6/81b135’618§u1 dx + 6/b1(923u18§81b1 dx
I:J1 + 6/()1831/483 (8tu1 +u- Vu1 + 81P +rvup — b- Vbl) dx

d
=J; + 3E/b1|8§u1|2 dx — 3/ 05wy [*(Oruy + b - V) da

3
+ Gzcg/blag’ulagu . V@S_kul dx
k=1
+ G/blagulﬁg’(‘?lP dzx +6u/b1|8§u1|2 dzx

3
- Gch/blagulagb-vag-kbl dx — 6/b18§u1b-V8§b1 dr,  (2.21)
k=1

where the symbol C* denotes the standard combination number, and
Ji = 6/81b15’§’b13§’u1 dx.
Here, we have also used the divergence-free condition V - u = 0 to get that
/blu - V03w, |* dx + /u Vb |03us)? dx = 0.
To deal with D3, we first infer from (2.16) that

Ds ::27/b102u2|8§’b1|2 dr = —2'7/17131”L41|3§bl|2 dx

= — 27/b1|8§b1’2(8tb1 +u- Vbl —b- Vul) dx

27 d
- [ ar ot [Boiboton d
2
- 77/|8§'b1|2u - Vb} dx + 27/b1|a§b1\2b-vu1 dx, (2.22)

where, similarly to the derivation of (2.21), the second term on the right-hand side
can be written as

27 / D203, 030,by da = 27 / D080, Oy — - Vbt +b- V) da
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27
= 27/b§0§bla§alu1 de — = /biu -V |03by|* dx

3
—27> Cf / 2930105 - VI3 by da
k=1

3
+27) CH / V2031 05b - VO3 Fuy da + 27 / bi03bb - Voau, dov.  (2.23)
k=1
Thus, inserting (2.23) into (2.22) and noting that
/bgu V|0 de + /u VBRI 2 d — 0.
we find
27d

Dy =~ [ e do 27 [ oRniog0ru ds

3
+ 27 / b1|03b1 [*b - Vuy dx — 27~ C4 / V203b, 0% - VO3 b, dw
k=1

3
+27) Cf / b203b,08b - VO3 Ry da 4 27 / b20sbib - Vo, dv.  (2.24)
k=1

Clearly, we still need to deal with the second term on the right-hand side of (2.24).
In fact, using (2.16) and (2.20) again, we have from integration by parts that

D4 :27/bf8§b18§’81u1 dx

i:JQ - 27/()%8311483 (&ul +u- Vu1 + (91P + vuy — b- Vbl) dx

27 d
:J2 — ;% b§|8§’u1\2 dxr + 27/ |8§’u1|2b1(81u1 —Uu- Vbl +b- Vul) dx

3
- 27/b§3§u1u - VO3uy dx — 27ZC§€ / b203u 05 - VO3 Fuy dx

k=1
- 27/b§8§’u18§’81P dx — 27V/b%|823u1|2 dx

3
+o7 / Bourh - VOl do+273 Ch / D00k - Vb, dz,  (2.25)
k=1

where J5 is given by

JQ = —54/51816103[)183%1 dx.
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Now, plugging (2.21), (2.24) and (2.25) into (2.19), we obtain after careful re-
arrangement that

d 27 d
Dy =3— /bl (105611 + |05uq [?) da — 2d bt (10561 dx + |05y |?) da
dt 2 dt
+Ji+J2+6 / b103b1Osu - Vb, dx + 18 / b103b,05u - Vb, dx
+ 24/[)18361022“818%()1 dx — 3/b282U1|a§b1|2 dx

+6/b-Vb1(8§u18§b1) dx—3/|8§u1|2(81u1+b-Vu1) dx

3
+ 6 chf/bl@gul@gu . V@S’_kul dx + 6/b18§’u18§’81P dzx
k=1

3

+ 61//bl|0§’u1|2 dx — 620§/b18§u18§b VO3 *b, dx (2.26)
k=1

+ 27/ |05u1 261 (O1uy — u - Vby + b+ Vuy) doe — 27/b%8§u1u - Vsu, dx

3
— 27Zc§ / b2 05u 08 - VO3 Fuy do — 27 / b305u 050, P dx
k=1
3
— 27 / 0|05 |* da 427 Ch / V23 05D - VO3 b, dx
k=1
3
+ 27 / b1|03b1 [*b - Vuy dx — 27~ C4 / V203b, 0% - VO3 b, da
k=1

3
+27) C / b203b,08b - VO3 Fuy dr — 54 / b- Vb (b105u105by) dx
k=1

=I'(t)+ Ji+ o+ ..+ o,

where we have also used V - b = 0 and the following simple facts that

27 / BoEbib - VObuy dr + 27 / Db - VoRby do

and



MHD EQUATIONS 17

Next, we need to bound .Ji, Js, ... and Joy one by one. First, it follows from the
Sobolev’s embedding inequality that

Ji+ 2 < C||01b| o= [|05u| 22|06 22 (1 + [[b1]| )
< C([[bllms + 16l 7) (10101172 + 1| O2ullZ;2) -
For Js, Jg and Jy, by Lemma 2.2, we have
Tz + Js + Jy < Cl[bl[ L= [ VOl L= [|051 || 12 VO3 u| 2
1 1 1 1
< C10l 72 19101 72 1V 01| 72 101 V0| F [10]] 3 19 2
< Colfs (1010]172 + [|02ull2) -
For Jy and J7, we use Lemmas 2.1 and 2.2 to deduce
Jy+ J7 < O|[b|| oo ||05b|| 12 (|| 05w - VOobr || 12 + [|05b - VOaus | 12)
< Col 71010l 71 101l s | V Ozl | 72 [ VOl 22|V 3abl 22| V 91020 72
< Clollzs (10:0]17: + 1102ull2) -
Using V - b = 0 and the Sobolev’s embedding inequality, we obtain
J5 + Jo < Cllba || £ [| 0561 [| 21| Opwr || oo [| 95Do | 2
+ C|ba | < [|9au1 || = | 0501 | 72
< Clollzs (Ib2llZs + 1102ull2) -
For Jyg, Ji3, J15 and Jpg, the Sobolev’s embedding inequality yields
Jio + Jiz + Jis + Jig
< Clld3ullzz (10vuall e + 10l noe | Ve [ poe + [[0a][ 2o + [[b1]] 7<)
+ Cl105unl|72 101 | oe (full oo | V01 | e + 1|8l oo [ Vet | )
< C (I, bz + | (u, b)[g2 + [[Bll ) 11000l Fe
and similarly,
Ji < Cllo5ul |2 |ba || L= (| Vull L= [ VO3ull 2 + [|05ul| 14|V Dau]| 4)
< Cl(u, 0) [ 102 T2

To estimate Jio and Jyg, we first need to deal with ||0103 P||z2. In fact, operating
V- to (1.2), yields

AP=V-(b-Vb) =V - (u-Vu) —vou,
from which it follows that
0105P = 0105ATV - (b-Vb) — 0105ATV - (u- Vu) — vo 3 A 0wy (2.27)
Due to V - b =0, one has
V- (b-Vb) = 0;(b;0;b;) = 0;b;0;b;.
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So, using the well known fact that the Riesz operator 8;(—A)~2 with i = 1,2 is
bounded in L" for any 1 < r < oo, we deduce

10105A7IV - (b V) || 12 = (0107 (90:0:0;) [ 22 < [|0102(9;0:0:b)) | 2
Noting that
0102(0;0;0;b;) = 01020;b;0;b; + 020;b;010;b; + 010;0;020;b; + 0;b;01020;b;,
and hence,
1010587V - (b~ V)2 < [|010(9;0:0:b;) || 12
< C([|Vb]| = [|010:VD| 2 + [|02V|| 14|01 V| 14)
< C[|Vb| 2|01 72 (2.28)
The analogous estimate also holds for ||[903A7V - (u - Vu)|| 12, that is,
[0105A7V - (u - V)| 2 < C(||Vul| < 1010, Vul| 12 + |02Vl 4[| 01 Vul| 1)
< ClIVull 2| O2ul| 2. (2.29)
Thus, inserting (2.28) and (2.29) into (2.27), we arrive at
10105 P |12 < [|0102(0;050ib; ) | 12 + [|0102(051:0515) || 12 + v| 0 Doun | 12
< C(IVOl 12[|010] 1> + |V ul 2] O2ull 2 + 1| O2ul 12).- (2.30)
With (2.30) at our disposal, we can now bound J;5 and Jig by
Jiz + Jis < Cll05u[|12]0501 P2 (1161 [l e + b1l Z<)
< C([1blls + 11 (s 07 + 101172 + [16]|72) (010072 + |02ull2) -
For Jy4, using Lemma 2.1 and Lemma 2.2, we find
Juu < Cl| 03wl g2 [[br]l e (IV0]] 1 [[VOF0] L2 + |56 - VDobi || 2)
el P A A PR R EA A e
+ Cl0Rur b1 |9ub s 9501152191 0501 2 [V 02 | 7, 050
< ClIoll7s (1010l 72 + [|02ullF2) -

For Jyg, it is easily seen that

27
Jig = -5 biu - V|0su, |* de = 27/ 03wy [*byu - Vb, da

< Cl105urllz [1ball oo [[el| oo [ Vb1 ] o
< C (|lullfgs + 1Bll32) 10272
As in the treatment of Jy4, we have
Jir < Cllbull T 105wl 2 (V]| oo [ VO30l 2 + (105l 14[|V Oy || 4)
< C (lullfgs + 16l[32) 102172,
and

Jao < Cllb1 [T l105ual| 22 ([ VIl o2 | VO3Bl 2 + (03611 14| VDb [ 4)
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< C|bllzs 1101l 2 [101]| 111 | O3] 2
< C|bllzs (01611772 + [102ullZ2) -
Due to V - u = 0, it holds that ||Vuy| e = ||O2u|[r~. Thus,
o1 + Joa < ClIb]| 7 950117 [ Varn | o
+ CO[bl| 20 10521 | 221|036 || 2 [ VD1 [ o=
< CJJbll g1 1010 21 (161 Frs || Do 2
< Clbll7s (10101172 + 1| O2ullzy2) .

and
oz + oz < Clba][ 700 [[0501 | 22| Ve[| o< [[ VO 2
+ C[ba][7 10561 || 22| V Ol 4| VoD 4
+ Clba[[700 10261 [ 2|V O3] 2] VB o
< Clbll7gs 1161172 1010 L[| Oz e
< Cbll7s (101011772 + 1|02ull72) -
Thus, noting that [|01b]|g2 = ||Vbe| g2, we conclude after inserting the above
estimates of Ji, ..., Jos in (2.26) and using the Cauchy-Schwarz’s inequality that
d 27 d
D, < 3%/&)1 (10301 * + 05w |*) da — oW b} (103b1]* + |O5us |?) da
+C (1w 0) s + 11, D) I3g5) (1102175 + 1|O2ullZ2) - (2.31)
In view of (2.12), (2.13), (2.14), (2.15) and (2.31), we obtain
d 27 d
+ O (1)l + 11, b)) (el + 19vale + N0oul) . (2.32)

It remains to estimate K5. To do this, noting that

Ks = / (3 (b-Vu) —b-Voju) - 9b d

+ / (5(b-Vu) —b-Vosu) - 95b da = K51 + Kz,
where the first term on the right-hand side can be easily bounded by
K5 = /(38117 -VOiu+ 307b - Voyu + 0b - Vu) - 0ib dx

< C ([|01b]| 1|V OFul| 12 + [|07b]| 14| VO1ul| 14 + [[Vul| 10 ]|07D] 12) [|O7b]| 12
< C||ul| g |01 32 (2.33)

To deal with K5, we rewrite it as

Ky = / (305h - VOB - 82b + 302b - Vou - b + 8Bb - V- 3b) da
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:3/82b-V8§u-6§’b dx+3/a§b-va2u-a§bda;

- /alﬁgblagu : 05’() dx — /83[)18111,2818;[)1 dx

1
+ /81u1|8§b1|2 dz := K1 + Ksao + Kso3 + K21 + §D1.

Based upon integration by parts and the divergence-free condition V - b = 0, we
deduce from the Sobolev’s inequalities that

K521 = 3/821)18182271, . 8236 dx -+ 3/82[)282371, . 6’5’() dx

< C||010b1 || 1|03 ul| 14 ]|03b] 2 + C||03b1 || 14 |05 || £4]|0105D]| 12
+ C|| 0o || oo |05 ]| £2]]0105D| 12 + C/|01b1 || Lo || O3 ]| 12 ]| D50 ]| 2
< C|bllgs ([|01b]72 + [|02ull32) (2.34)

and similarly,
Ksy =3 / 93610105 - O3b dx + 3 / D3by03u - O3b dx

43 / BB - hRb da — 3 / OnDoby 02 - b d
< C([|0195b]| 2|0l o + [|01Dab1 [| 21|05l 1) (| 95| 2
+ C|9301 | || O3 ul| 14 101950 2
< Clbllas (10101172 + l|0aul|72) - (2.35)
For Ks93 and K594, we have
Ksos + Ksaa < Cl|0193b1 ]| 121|050]| 22 ([| 02wl oo + [|Oruz]| o)
< C|bllas (10101172 + |0au]| 7z + [|Ovu|2) - (2.36)
Thus, combining (2.33), (2.34), (2.35), (2.36) with (2.31) gives

d 9d
Ks < E/bl (103b.]2 + |08, ?) di — M/bg (1036, + 03 |?) de
+C (1w b)ll 2 + 1w, )1 3gs) (I1b2llzs + [Orulls + 92ullfz) - (2.37)
Now, substituting (2.8), (2.10), (2.11), (2.32) and (2.37) into (2.7), we find
1d

5 1 (VPu, VD) [ + vI[VPua| 72 + nl[ Vb7
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<ag [ b (o + 10hu?) do— 185 [ 8 (080 + 03w ) ds
+C (1w, 0)ll 2 + 11w, D) [ 35) ([1B2llFs + 1 O2ullzz + 101ull2) -
which, integrated over [0,t] and combined with the Sobolev’s inequalities, yields
IV )OI +2 [ (A + 2l dr
< C ([ (uo, 00) I3 + [l (w0, bo) 1775 + [ (w0, bo) [ 772 )

+ 8/1)1 (105611 + |05uq|?) da — 36/1)% (10561] + |05u|?) da

t
e / (11at, B2 -+ 11 D)) (11Belis + Gatal + 1Brul) i
< C (|| (o, o) s + a0 Bo) s + 110, Bo) )
O (b + [ba(B)3ee) a3
t
+C sup (I, 8) s + () ) / (s, b3 + 0rul3) dr, (238)

due to the fact that [|Osul|gz = ||Vui||gz. Thus, it readily follows from (2.6) and
(2.38) that

E(t) < CE(0) + CE(0)2 + CE(0)?
+ &) + CE(t)2 + CE (1) + CE(H)>.
The proof of the first assertion (2.1) in Proposition 2.1 is therefore complete.

2.2. Proof of (2.2). Since ||01ul|gz ~ ||01ul|z2 + [[V2O1u 12, it suffices to establish
the estimates of the following two items:

t t
/ |O1u(7)||22d7  and / | V20yu(T)|3.dr,
0 0
whose proofs are based on the special struture of equation (1.2),,
Ou=0b+u-Vb+n(0,by)" —b-Vu. (2.39)

First, to bound ||01u(7)||z2, we multiply (2.39) by diu in L? and integrate by
parts over R? to get

01|72 :/81u - Ob dx + /u -Vb- 0 dx

+77/5231U2 dw—/b-Vu-E)lu dx
=01+ Lo+ L3+ Ly. (240)
Using the velocity equation in (1.2), and the fact that V - b = 0, we have

Ly :%/alu-bdx—/b-al (Olb—l/(ul,O)T+b-Vb—u-Vu)d:v
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=Ly + Lio + Ly + Liy + Lys.
It is easily seen that
L12 + L13 = /81() . alb dx — V/@lblul dx
< Clowb]| 3 + Cll01D] g2 fun || 2
Integrating by parts and using Sobolev’s embedding inequality, we find

L14:—/b-61(b-Vb) dxz/@lb-(b-Vb) da

= /blﬁlb . 81(? dx + /anQb : (91b dx
< Clbal| 1010/ + Cllba || [|92b]] 221|010 2
< Cl[bll 2 1b2 72

where we have used the fact that ||01b||z2 = [|[Vbz||z2 due to V - b = 0. By virtue of
Lemma 2.1, we have

L15:/b-81(u-Vu) dxz—/@lb-(u-Vu) dx

1 1 1 1
< Cl|Oubl| 2 [lull £ | Oxwll 22 [ Vurl| 22102 Va7
< Cllull = (0101171 + |02l 7> + [0vull3) -
Thus, collecting the estimates of Lis, ..., L15 together, we obtain
d
+Cll(w,0) 2 (1272 + 102l F2 + 101l 70)
since ||010]| g1 < ||b2]|g2. In a similar manner,
1 1 1 1
Ly < C||0vul| g2l 72 102wl 72 | VO]l 72101 VO
< CI(u, b)llz2 (1010117 + 1|02ullZr> + [|OvullZn)
1
Ly < Cllba| 2|0l 22 < Sl10vullZ2 + ClballZ2,
and
Ly < Cl|0vul| 2 [1bl| 72 101 22 [ Vul 72102Vl ;.
< Cll(u, b)ll = (1010l + [102ullzrz + l|OvullF)
which, combined with the estimate of L; and (2.40), shows that
d
Jovults <25 [ ot do +C (Il + )

+Cll(w,0) 2 (122 + 102l 52 + 101l 7)) - (2.41)

This leads to the desired estimate of ||0yul|zz.
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Next, we proceed to estimate || V29 u||z2. To do this, applying V? to (2.39), and
dotting it with V20,u in L%, we deduce

V20, ul]72 —/V281u -0, V?b dx + /VQ(u - Vb) - V20u dx

+77/V281uz - V2by dx — /V2(b - Vu) - V20u dx

2:M1 +M2+M3+M4. (242)
Owing to (1.2), and V - b = 0, we see that
d
M1 = %/VQBW : Vzb dx

- /v‘% V20, (01b — v(u,0)" +b-Vb—u-Vu) da
= My + Mg + Mz + My + M;s.
Integrating by parts gives
M12 + M13 == /V28lb . V201b dr — V/81v2b1 . V2u1 dz
< C|01bl[32 + Cl 01Dl 2w | 2
Due to ||Vbyl||gr = ||010]| g+ for k = 1,2, we have

My, = —/Vzb-vzﬁl(b-Vb) dr = /01V26-V2(6-Vb) dx
= / O1V?b - (V2b101b + Vby0sb) da
+2 / O V?b - (Vb10,Vb + Vby0,Vb) dx

+/(61\81V2b|2+b282v2b-alv2b) dx

< O10V2] 2 (191011 Ll V2B [| L4+ [|92D| 4] Vbl | 1)
+ Cll01V?0]| 2 (IV01 || 4|01V s + ([ VDo L[| 02 VD] 14)
+ C ([1ball < 10:V2b172 + [|b2l oo [|02V20]| 2 |01 V20| 1.2)
< C[b]l g5 | b2l 5
Analogously, noting that ||Vua||gr = [|O1u]|gr and ||Vuy || gr = [|Ogul| g for k =
1,2, we obtain

M5 = /Vzb V20, (u - Vu) do = —/81V2b -V (u - Vu) dz

< C|01V?0| 2 ([|0vul| pa] [V || o + (|G| o || Vo 1)
+ ClloVVEb 2 ([[Vua || |01Vl pa + ([ Vs 4[| 02Vl 14)
+ CllOV2b 2 (lua | oo 100V ul| 2 + [Jus | £ |05V 12)
< Cllullus (11b2]l7s + 10vull7z + [|0aul|e) -
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Hence, in terms of the estimates of My; with ¢ = 2,...,5, we can bound M; by
d
M, < %/V%’lu V% dx + C (||b2||%,3 + ||u1||§{3)

+ Ol (w, b)l[ s (1102l + 101l 2 + [|O2ullZ2) -
For M,, by Lemma 2.1 we infer from integration by parts that

My = /VQ(U - Vb) - V*Ou dx
= /v2u Vb - V?01u dr + 2/Vui - 0;Vb - V*0u dx
+ /u181V2b -0V dx — /31u282v2b -V?u dz
+ / o0 V?b - Vu dx + / s, V2b - 0,V?u da

1 1 1 1
< Cll01V2ul| 12]|VPul| 2 [|0: V| 22| VD] 22|01V D 2.
1 1 1 1
+ Cl|oVul| 2| Vul| 2. 102 Vul| 2, | V2b] 22|01 V2| 2.
+ Cllur || 2|0V VPul| 12|01 Vb 12 + C||Ovus|| 4[| 02V 12]| V]| 14
+ C||O2us || 14|01 V26| 2| V?ul| 14 + Clual| o |01 Vb 12]|02 V]| 2
< C|(u, b)|| = ([|Ovul| T + [|O2ul| T2 + [|016]|72) -
Obviously, M3, M, can be bounded as follows.
1
My < C||[V2bsl| 12| V?Orus | 12 < 5“81V2u|]%2 + C|| Vb 172,
and

1 1 1 1
< Yo ula 19 s |or bl s 10l .
1 1 1 1
+ Cl101V2ul 2 [ VO] 221100 V0|72 | V2ul 72 102V 2ul 7
+ CObl| o [[VZ0rul| 2|V Pu| 2
< Cl(u,0) || s (10:0l[772 + |92ull7pz + [[OvullFe) -
Thus, it follows from (2.42) and the estimates of M; (i = 1,...,4) that

d
||81V2u||L2 S 2£/V281u . Vzb dSE + O (Hbz”%ls + ||U1||%13)

+ Cll(w, 0) s (1021772 + 10vullz2 + [102ull7) - (2.43)
Now, adding up (2.41) and (2.43), we deduce

d
|l < 2 / (Oyu - b dx + V20u - V2b) da + C (lus |25 + [|b2l%)

+Cll(w, 0) s (12l s + [l + 1OvullZ;2)
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where we have also used ||Vbs||gr = ||010]| g+ and ||Oou||gr = [|[Vuq || gr for k =1, 2.
As an immediate result,

t t
| Noruledr < Clu o)l + Cllu ) + € [ (luslBes + ulfs)
0 0

t
+C sup ||(u, b)llm/ (IBalls + lluallzgs + Ovull32) dr
0

0<r<t
from which it readily follows that

3
2

E(t) < CE(0) + CEL(L) + CE(L)? + CE(t)?.
The proof of (2.2) is therefore complete.

3. PROOF OF THEOREM 1.2

This section is devoted to the proof of Theorem 1.2 by making full use of the
symmetric structure of linearized system (1.12).

Proof of Theorem 1.2. Taking the inner product of (1.12) with (u,b) in H', we have
d

A+ B(t) = 0, (3.1)

where
At) = [[(w, b)(O)I72 + [|(Vu, VD) (1) 7,
B(t) = 2v||Rau(t) |7 + 20| Rib(t) |22 + 20| VR2u(t) |22 + 2n[| VR1b(t) | 2.
Next, we compute the norm of (u,b) in anisotropic Sobolev space with negative

indices. Applying A7° and A;7 to (1.12) and dotting them with (A;%u, A77b) and
(A5 %u, A;7b) in H'*9 respectively, we find
d

7 (0 + 20 Ra(AL7, A7 )u() 172 + 20)Ra(AT7, A 7)b(0)] 2

+ 2[R A7 (AT A7 )u(t)l[7 + 20l RIA(AT7, Ay 7)b(1) |72 = 0,

where

(3.2)

H(t) = [[(Ar7, Ay )u(®)lIZ2 + [[(AT7, A3 7)b(D) 122
+ AT AT, A a2 + A7 (A7, A7 7)b(E) 122

We claim that there exists a generic positive constant C' > 0, depending only on
v and 7, such that

A(t) < CB(t) 5 H(t) . (3.3)

In fact, using Plancherel theorem and Holder’s inequality, we have from direct cal-
culations that

20 2 .
lu®lF2 < CIVRau(t) |7 [1A; (B[ < CB(1)T H(t) .

IVu®)l7: < CIIVRu(®)l 137 A7 A Tult)l| ;37 < CB(t) ™ H(t) ™,
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6(6) 32 < CITRb3 7B 5 < CB(t 1T H (),

IVB(0)]12: < CIVRBOILT A AT O < OB H(t) s,

(¢
from which the assertion (3.3) follows.
It is easily seen from (3.2) that H(t) is non-increasing, and H(t) < H(0). Hence,
by (3.3) we have

1

A(t) < CB({#)T5 H(0)= or B(t) > CH(0) = A(t)"t7,
which, inserted in(3.1), yields

d
dﬁﬂ)+CHmViMUH5§Q
so that
1 C 1\ 7
At) < (A(O) o+ —H(0) at) .
o
This finishes the proof of Theorem 1.2. 0

4. PROOFS OF THEOREM 1.3 AND THEOREM 1.4

This section aims to prove Theorems 1.3 and 1.4, based on the special wave
structure of the linearized system (1.13). To begin, we first recall the following
elementary lemma, which provides a precise decay rate for a nonnegative integrable
function when it decreases in a generalized sense.

Lemma 4.1. For given positive constants Cy > 0 and Cy > 0, assume that f = f(t)
is a nonnegative function defined on [0,00) and satisfies,

/Oof(T)dT§00<OO, and f(t) <Cif(s), V0O<s<t.
0

Then there ezists a positive constant Cy := max{2C f(0),4CoC1} such that
f&)<Co(1+t)7' vit>0.
Proof. On the one hand, when 0 <t < 1, it holds that

f(t) < CLf(0).
On the other hand, when ¢t > 1, one has

G > /f ) dr > /f — 5610

which implies that
f(t) <20,Cit™', Vit>1.

Combining the above two cases leads to the desired decay estimate. O

We are now ready to prove Theorem 1.3.
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Proof of Theorem 1.3. Dotting (1.13); with d;u in L? we obtain

(0l + vnlRRoul3s + ovul)
+ V[0 Raul 72 + 0ll0Rulf7: =0, (4.1)
and hence,
(1903 + nl[ R Rl + 0vul}) <0 (42)
Multiplying (1.13); by u in L? and integrating by parts, we have
%% (nIR1ul|72 + V|| Roull72 + 2(dpu, u))
+ [[01ullz2 + vnl|RiRaul 2 — [|9pull72 = 0. (4.3)

where (-,-) denotes the standard L?-inner product.
Let 0 := min{v,n}. For a constant p > 0 to be specified later, we obtain after
adding (4.1) and px(4.3) together that

(103 + ol Ruulfs + Rl + vl RaRoul + 003 + 200 )
+ (0 = @l Owullz> + pnlRiRaul 72 + pl|Orullz> <0, (4.4)
since [|0;Roul|22 + [|0R1ul|22 = [|Osu|22. By choosing pn = 2, we see that
S0l + 0% ults < 9l -+ il + 2(0m,w)
< 10wullz> + pnl Ruul|z> + vl Roullzs + 2u(0iu,u),  (4.5)
Thus, by virtue of (4.5), we deduce after integrating (4.4) over (0,t) that

1 1
SlOllze + 0% lullze + vnlRaRullze + (101l

+2 [ (L0l + wnlReRouls + nloval: )
< O ([19suoll L2, [[uoll L2, [[RaRauo| 2, [|Oruol £2)
and consequently,
/OOO ([[0eull72 + [[R1R2ul|F2 + ||Ovul|72) dt < co. (4.6)
In view of (4.2) and (4.6), it readily follows from Lemma 4.1 that
10wl 72 + |RiRaull72 + [|01ul|7. < C(L+¢) "

Based upon (1.13)9, one can obtain the same result for b. The proof of Theorm 1.3
is thus complete. O

We proceed to prove Theorem 1.4.
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Proof of Theorem 1.4. Let 1 be the Fourier cutoff operator defined in (1.15). Taking
the convolution of ¥ with (1.13); leads to

Ou(tp xu) — (VRS +nRY) (v x w) — 97 (¥ * u) + vyRIR3 (¢ = u) = 0. (4.7)
Dotting (4.7) by 0;(¢ * u) in L? and integrating it by parts, we obtain

d
= (10u(@ W)l + 101 (¢ * w172 + vl RaR(e * w)I72)
+ 2[|0/Ra( * w)|| 72 + 20| 0R (4 + )72 = 0. (4.8)

Similarly, multiplying (4.7) by ¢ x u in L%, we have

d
= WIIR2(¢ # WIE> + 0l R (W w72 + 2 (0u(t % ), x u))
+2[|01(¢ * w)l[72 + 2vnl|RAR2 (¢ * w)||72 — 2(|0,(¢ * )72 = 0. (4.9)

Let § := min{v,n}, and A > 0 be a positive constant to be determined later.
Then, operating (4.8)+Ax(4.9) yields

d

(1) +2(0 = V)90 u)][72

+ 20|01 (W * w) |72 + 22vn||R1Ra (¢ * u) |72 <0, (4.10)
where

F(t) = 10t * w12 + 101 * w)llZ2 + vl RiR2(¥ # u)| 72
+ AR (¢ u)|[72 + M| Ra (v x w)ll7z + 22 (0 () w), ¥+ ).

Let D be the frequency domain defined in (1.14) and D¢ be its complement.
Moreover, we divide D¢ into two regions:

={(eR?: G| >}, A={{cR": |[a] <aand [¢]* < Fl&lS] }-
We can now bound [[¢) * ul|3, by [|01(¢ * u)]|7. and |RiRa(¢ * u)||7.. Indeed,

L P Ly

_ . £ .
2 2 Qd 2 152 2d
A €1|’¢U| §+/B /A2 |£|4 |77ZJU| g

< a?|0n (¥ x w72 + B RiRa (¢ * u)|[ . (4.11)
Then, multiplying (4.11) by A? and then adding with (4.10), we obtain

d _
S (@) +2(0 = M9 + w72 + @A = Na™) |01 (¢ * )17

+ (22 — A28 |[R1Ra (v * u) |22 + N2 # ul|22 < 0. (4.12)
Thus, if A > 0 is chosen to be such that

)xgmin{ 35,02, ;Z}
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then we infer from (4.12) that

SR+ 510,06 )32 + Aor (0 )
+ A RiR2(¢ * w)l[72 + N[ * ul|7> < 0. (4.13)
Recalling the definition of F' and noting that
27 (0u(t * u), ¥ u) < NG (¥ % w)||72 + Al + w2, (4.14)
we obtain after operating (4.13)+A?x (4.14) that (¢ := max {v,n})

d
—F+ NF 4 (6 =N = N)][0(v*u)||72 + (A= N) [|01(¢ * )72
+ (Avn = Xvn) [RiR2 (¢ x w)||72 + A*(1 — I = N[ xuf|72 <0,  (4.15)

If A > 0 is taken to be sufficiently small such that

N S 7/ I |
)\:mln{zé,& ,1,@,79—_{_1}, (416)
then it follows from (4.15) that
d 2 —A%t
—F+MF<0 or F(t) <F0)e ™" (4.17)

dt

In view of the simple inequality,

1
2X (0t ), x w) < S0 % w7 + 20700 wlle,
one easily has
1 1
0@ w)llZz + SAdY s ullZe + vmRaRa (¢ x w72 + 101 (¢ * w7 < F(2).
As an immediate consequence of (4.17), we conclude that for A satisfying (4.16),

1 wlfe + 100w+ )72 + 1014 w) |72 + [RIR2( + w)[72 < Cemelhradl

where

1 1 ?
C(’r], V,Oé,ﬁ) = (min{zé,O},l,%,ﬁ—H}) .
The same result also holds for b. The proof of Theorem 1.4 is therefore finished. [
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