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Abstract. This paper examines the stability of a 2D inviscid MHD system with
anisotropic damping near a background magnetic field. It is well known that
solutions of the incompressible Euler equations can grow rapidly in time and are
thus unstable while solutions of the Euler equations with full damping are stable.
Then naturally arises the question of whether solutions of the Euler equations
with partial damping are stable. The main purpose of this paper is to give an
affirmative answer to this question in the case when the fluid is coupled with the
magnetic field through the MHD system with one-component damping. The result
presented in this paper especially confirms the stabilizing effects of the magnetic
field on the electrically conducting fluids, a phenomenon that has been observed
in physical experiments and numerical simulations.

1. Introduction

The MHD system is composed of the Navier-Stokes equations of fluid dynamics
and Maxwell’s equations of electromagnetism. It describes the motion of electrically
conducting fluids such as plasmas, liquid metals and electrolytes in an electromag-
netic field and has a wide range of applications in astrophysics, geophysics, cos-
mology and engineering (see, e.g.,[5, 13, 39]). The MHD equations not only share
some mathematically important features with the Euler/Navier-Stokes equations,
but also exhibit many more fascinating properties than the fluids equations without
the magnetic field. Inspired by the phenomenon observed in physical experiments
and numerical simulations that the magnetic field can stabilize electrically conduct-
ing fluids (see, e.g., [2, 3, 22, 23]), we aim to explore the smoothing and stabilizing
effects of magnetic field on the fluid motion. For this purpose, we consider the
following 2D MHD equations with only partial damping in the velocity and the
magnetic field,

∂tU + U · ∇U +∇P + ν(U1, 0)> = B · ∇B, x ∈ R2, t > 0,

∂tB + U · ∇B + η(0, B2)
> = B · ∇U,

∇·U = ∇·B = 0,

(1.1)

where U = (U1, U2)
>, B = (B1, B2)

> and P are the velocity field, the magnetic
field, and the pressure, respectively. The positive constants ν > 0 and η > 0 are the
damping coefficients.
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There have been substantial developments on two fundamental problems concern-
ing the MHD equations, the global (in time) regularity and stability. In particular,
the stability problem near a background magnetic field have recently attracted con-
siderable interests. For the ideal MHD equations, Bardos-Sulem-Sulem [4] took
advantage of the Elsässer variables to establish the global regularity (in Hölder set-
ting) of perturbations near a strong background magnetic field. Cai-Lei [7] and
He-Xu-Yu [25], via different approaches, successfully solved the stability problem
on both the ideal MHD system and its fully dissipative counterpart (with iden-
tical viscosity and resistivity) near a background magnetic field. Wei-Zhang [48]
allowed the viscosity and resistivity coefficients to be slightly different. The paper
of Lin-Xu-Zhang [34] pioneered the study of the stability problem on the incom-
pressible non-resistive MHD equation near a background magnetic field. The 3D
problem together with the large-time behavior was solved by Abidi-Zhang [1] and
Deng-Zhang [14] in the whole spaces case. [38] dealt with this problem when the
spatial domain is a 3D periodic box T3. [43] examined the case with the hori-
zontally infinite flat layer R2 × (0, 1). The approach of Lin-Xu-Zhang [34] on the
2D non-resistive MHD problem is Lagrangian. Ren-Wu-Xiang-Zhang [40] revisited
the stability problem by resorting to the Eulerian energy estimates in anisotropic
Sobolev space and obtained explicit time decay rates. Ren-Xiang-Zhang [41] proved
the global stability in a strip domain, and Chen-Ren [12] considered two types of
periodic domains T × R and T × (0, 1). Zhang [57] proved the global existence of
strong solutions to the Cauchy problem with large initial perturbations, provided
that the background magnetic field is sufficiently large. Recently, Jiang-Jiang [28]
extended the results [57] to the 2D periodic domains T2 by using the Lagrangian
approach and the odevity conditions proposed in [38], and obtained the asymptotic
behaviors of global strong solutions with large initial perturbations. For the 2D
inviscid and resistive MHD equations, Zhou-Zhu [58] investigated the stability of
perturbations near a background magnetic field on the periodic domain. For the
ideal MHD system with velocity damping, Wu-Wu-Xu [53] studied the stability via
the approach of wave equations, and Du-Yang-Zou [18] proved the exponential sta-
bility of a stratified flow in the strip-type doamin R× [0, 1]. We also refer to [52] for
the stability and large-time behavior of the 2D compressible MHD system without
magnetic diffusion.

Due to its physical relevance and remarkable enhanced smoothing properties, the
stability problem for the incompressible MHD equations with partial dissipation has
recently generated a rich array of results. Lin-Ji-Wu-Yan [35] obtained the stability
of the 2D MHD equations with vertical velocity dissipation and horizontal magnetic
diffusion (see also [32]). A new stability result on 3D MHD equations with horizontal
dissipation and vertical magnetic diffusion was achieved by Wu-Zhu [54]. Boardman-
Lin-Wu [6] studied the stability of 2D inviscid and resistive MHD equations with
only vertical velocity damping. The stability and large-time behavior of the 2D
MHD equations with only vertical velocity dissipation and a damping magnetic
field was investigated in [21]. The paper [31] dealt with the anisotropic equations
with only (partially) vertical damping magnetic field. In comparison with [21] and
[31], the MHD system considered in this current paper contains the least dissipation
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and damping. It appears that the anisotropic damping required in this paper can
not be further reduced.

Many more results on the well-posedness and related issues concerning the in-
compressible MHD equations are available in the literature. For example, various
partial dissipation cases are dealt with in [8, 9, 16, 17, 37], the non-resistive case in
[29, 11, 20, 33, 46, 56], the only magnetic diffusion case in [10, 30] and the fractional
dissipation case in [15, 45, 51, 49, 50, 55].

This paper aims to understand the stability of the 2D ideal MHD system (1.1)
near the equilibrium state (U (0), B(0)),

U (0) ≡ 0, B(0) ≡ e1 := (1, 0).

Let (u, b) be the perturbation of (U,B) near the steady state (U (0), B(0)),

u := U − U (0), b := B − B(0).

The system governing the perturbation is taken to be the following system
∂tu+ u · ∇u+∇P + ν(u1, 0)> = b · ∇b+ ∂1b, x ∈ R2, t > 0,

∂tb+ u · ∇b+ η(0, b2)
> = b · ∇u+ ∂1u,

∇· u = ∇· b = 0.

(1.2)

We shall focus on an initial value problem of (1.2) with the Cauchy data:

u(x, 0) = u0(x), b(x, 0) = b0(x). (1.3)

The motivation for studying the stability problem of (1.2)–(1.3) is twofold. The
first is to reveal the phenomenon that the coupling and interaction between the
velocity and the magnetic field actually stabilize the fluid motion. Indeed, when
B = 0, (1.1) becomes the 2D incompressible Euler equation with only horizontally
damping velocity, 

∂tU1 + U · ∇U1 + ∂1P + νU1 = 0,

∂tU2 + U · ∇U2 + ∂2P = 0,

∇·U = 0.

(1.4)

The stability problem of (1.4) remains unsolved. To understand the difficulty, we
reformulate (1.4) in terms of the following vorticity equation{

∂tω + U · ∇ω = νR2
2ω,

U = ∇⊥∆−1ω,
(1.5)

whereRk = ∂k(−∆)−
1
2 with k = 1, 2 denotes the standard Riesz transform (see, e.g.,

[24, 42]) and the fractional Laplacian operator is defined via the Fourier transform,

̂(−∆)βf(ξ) = |ξ|2β f̂(ξ).

and ∇⊥ = (−∂2, ∂1). Unfortunately, the classical Yudovich’s approach used to study
the 2D incompressible Euler equations do not appear to work for (1.5), since the
Riesz transform R2 is not known to be bounded in L∞. In fact, as pointed out by
Elgindi [19], the Lq-norms of ω are bounded for any 1 < q <∞, but these Lq-norms
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may grow exponentially in q. Therefore, the question of whether the solutions of
(1.5) will develop singularity in finite time is an interesting and challenging problem.
The first and main purpose of this paper is to show that the magnetic field is able
to stabilize the velocity field through the MHD system (1.1). For the recent works
on the magnetic inhibition phenomenon (or stability result), we refer to [26, 27, 47]
and the references cited therein.

The second motivation is to explore the hidden wave structure and to understand
the stability mechanism. To explain this clearly, we apply the Leray projection
operator P = I −∇∆−1∇· to the equation (1.2) and separate it into the linear part
and the nonlinear part. Due to ∇ · u = ∇ · b = 0,

P(u1, 0)> = (u1, 0)> −∇∆−1∇ · (u1, 0)> = ∂22∆−1u = −R2
2u,

and

P(0, b2)
> = (0, b2)

> −∇∆−1∇ · (0, b2)> = ∂21∆−1b = −R2
1b.

Thus the system (1.2) can be written as
∂tu = νR2

2u+ ∂1b+ P(b · ∇b− u · ∇u),

∂tb = ηR2
1b+ ∂1u+ P(b · ∇u− u · ∇b),

∇· u = ∇· b = 0.

(1.6)

Differentiating (1.6) in t and making several substitutions, we find
∂ttu− (νR2

2 + ηR2
1)∂tu− ∂21u+ νηR2

1R2
2u = N1,

∂ttb− (νR2
2 + ηR2

1)∂tb− ∂21b+ νηR2
1R2

2b = N2,

∇· u = ∇· b = 0,

(1.7)

where N1 and N2 are the nonlinear terms,

N1 = (∂t − ηR2
1)P(b · ∇b− u · ∇u) + ∂1P(b · ∇u− u · ∇b),

N2 = (∂t − νR2
2)P(b · ∇u− u · ∇b) + ∂1P(b · ∇b− u · ∇u).

It is surprising that u, b satisfy the same degenerate damped wave equation. The
wave structure of (1.7) for (u, b) provides much more stabilization and regularization
properties than the original system (1.1). In fact, the wave equation (1.7) indicates
that there is a horizontal regularization via the coupling and interaction, and hence,
the stability result of the solutions becomes possible.

The main result of this paper is the following stability theorem of global solutions
to the Cauchy problem (1.2)–(1.3).

Theorem 1.1. Assume the initial data (u0, b0) ∈ H3 with ∇· u0 = ∇· b0 = 0. Then
there exists a positive constant ε > 0, depending only on ν and η, such that if

‖(u0, b0)‖H3 ≤ ε,

then the problem (1.2)–(1.3) has a unique global solution (u, b) on R2 × [0,∞),
satisfying

‖(u, b)(t)‖2H3 +

∫ t

0

(
‖(u1, b2)(τ)‖2H3 + ‖∂1u(τ)‖2H2

)
dτ ≤ Cε2, ∀ t ≥ 0,
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where C > 0 is a generic positive constant independent of ε and t.

Since the local-in-time existence result can be shown by the standard method
(see, e.g., [36]), our main task is to derive the global-in-time a prior estimates of
the solutions. The framework is the bootstrapping argument ([44]). Due to the lack
of full damping, some serious difficulties arise. To overcome these difficulties, we
construct a suitable energy functional. It consists of two parts. The first part is the
natural H3-energy functional E1(t),

E1(t) := sup
0≤τ≤t

‖(u, b)(τ)‖2H3 + 2

∫ t

0

(
ν‖u1(τ)‖2H3 + η‖b2(τ)‖2H3

)
dτ, (1.8)

The second part E2(t) includes the horizontal dissipation piece generated from ∂1u
and indicated by the wave structure of (1.7),

E2(t) :=

∫ t

0

‖∂1u(τ)‖2H2dτ. (1.9)

When applying the standard L2-method to estimate E1(t) and E2(t), we encounter
four of the most difficult terms:

Diff1 :=

∫
∂1u1|∂32b1|2 dx, Diff2 :=

∫
b1∂

3
2b1∂

3
2∂1u1 dx,

Diff3 :=

∫
b1∂1u1|∂32b1|2 dx, Diff4 :=

∫
b21∂

3
2b1∂

3
2∂1u1 dx,

which cannot be well controlled by E1(t) and E2(t) directly. The strategy here is to
use (1.2)2 and (1.2)1 to replace ∂1u1 and ∂1b1 by

∂1u1 = ∂tb1 + u · ∇b1 − b · ∇u1, (1.10)

∂1b1 = ∂tu1 + u · ∇u1 + ∂1P + νu1 − b · ∇b1. (1.11)

For example, with the help of (1.10) and (1.11), we find

Diff1 =

∫
(∂tb1 + u · ∇b1 − b · ∇u1) |∂32b1|2 dx

=
d

dt

∫
b1|∂32b1|2 dx− 2

∫
b1∂

3
2b1∂

3
2∂tb1 dx

+

∫
u · ∇b1|∂32b1|2 dx−

∫
b · ∇u1|∂32b1|2 dx,

and

Diff2 = −
∫
∂1b1∂

3
2b1∂

3
2u1 dx−

∫
b1∂

3
2u1∂

3
2∂1b1 dx

= −
∫
∂1b1∂

3
2b1∂

3
2u1 dx

−
∫
b1∂

3
2u1∂

3
2 (∂tu1 + u · ∇u1 + ∂1P + νu1 − b · ∇b1) dx

= −
∫
∂1b1∂

3
2b1∂

3
2u1 dx−

1

2

d

dt

∫
b1|∂32u1|2 dx+

1

2

∫
|∂32u1|2∂tb1 dx
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−
∫
b1∂

3
2u1∂

3
2 (u · ∇u1 + ∂1P + νu1 − b · ∇b1) dx.

The items associated with ∂tb1 will be handled by using (1.10) again. This process
generates many terms. Based upon integration by parts and the anisotropic Sobolev
inequalities, it is incredible that all the terms can be bounded by E1(t) and E2(t),
although the process is complicated and lengthy. For the details, we refer to the
treatments of Di with i = 1, . . . , 4 in Section 2. Collecting these estimates, we are
able to establish the energy inequalities stated in Proposition 2.1.

We also make efforts to exploit the full regularization and stabilization effects
from the wave structure to understand the large-time behavior of the linearized
system.. The linearized system of (1.6) reads

∂tu− νR2
2u− ∂1b = 0,

∂tb− ηR2
1b− ∂1u = 0,

∇· u = ∇· b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x),

(1.12)

which can be converted to the linearized system of wave equations (1.7):
∂ttu− (νR2

2 + ηR2
1)∂tu− ∂21u+ νηR2

1R2
2u = 0,

∂ttb− (νR2
2 + ηR2

1)∂tb− ∂21b+ νηR2
1R2

2b = 0,

∇· u = ∇· b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x).

(1.13)

We first aim to establish the decay rate of solution for the linearized system (1.12)
in negative Sobolev space by careful energy estimates. To state our result precisely,
we first define the fractional partial derivative operator Λγ

i with i = 1, 2 and γ ∈ R
by

Λ̂γ
i f(ξ) = |ξi|γ f̂(ξ).

Theorem 1.2. For σ > 0, assume that (u0, b0) satisfies

(Λ−σ1 ,Λ−σ2 )u0 ∈ H1+σ, (Λ−σ1 ,Λ−σ2 )b0 ∈ H1+σ, ∇ · u0 = ∇ · b0 = 0.

Then the corresponding solution (u, b) of (1.12) satisfies

(u, b) ∈ L∞(0,∞;H1), (R2u,R1b) ∈ L2(0,∞;H1).

and moreover,
‖(u, b)(t)‖H1 ≤ C(1 + t)−

σ
2 , ∀ t > 0,

where C is a generic positive constant depending only on ν, η, σ and the initial norms.

When the initial data is not in any Sobolev space of negative indices, we can still
manage to show the precise decay rates for several quantities.

Theorem 1.3. Assume that

(u0, b0) ∈ L2, (∂1u0, ∂1b0) ∈ L2, ∇ · u0 = ∇ · b0 = 0,

(R1R2u0,R1R2b0) ∈ L2, (R2
2u0,R2

1b0) ∈ L2.
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Then for any t ≥ 0, the solution (u, b) of (1.12) satisfies,

‖∂tu(t)‖L2 + ‖∂1u(t)‖L2 + ‖R1R2u(t)‖L2 ≤ C (1 + t)−
1
2 ,

‖∂tb(t)‖L2 + ‖∂1b(t)‖L2 + ‖R1R2b(t)‖L2 ≤ C (1 + t)−
1
2 ,

where C is a generic positive constant depending only on ν, η and the initial norms.

Finally we show that any frequency away from a given area D decays exponen-
tially in time. To do this, we define D by

D :=
{
ξ ∈ R2 : |ξ1| < α and |ξ|2 > β|ξ1||ξ2|

}
, (1.14)

where α > 0 and β > 2 are fixed positive constants. In addition, we set ψ̂(ξ) to be
the following cutoff function in the frequency space,

ψ̂(ξ) =

{
0, if ξ ∈ D,
1, if ξ ∈ Dc.

Obviously,

ψ̂ ∗ f(ξ) = ψ̂(ξ) f̂(ξ). (1.15)

Theorem 1.4. Assume the initial data (u0, b0) with ∇ · u0 = ∇ · b0 = 0 satisfies

(ψ ∗ u0, ψ ∗ b0, ψ ∗ ∂1u0, ψ ∗ ∂1b0) ∈ L2,

(ψ ∗ R1R2u0, ψ ∗ R1R2b0, ψ ∗ R2
2u0, ψ ∗ R2

1b0) ∈ L2.

Then the corresponding solution (u, b) of (1.12) obeys the following exponential decay
estimates,

‖(ψ ∗ u, ψ ∗ b)‖L2 + ‖(ψ ∗ ∂1u, ψ ∗ ∂1b)‖L2

+ ‖(ψ ∗ R1R2u, ψ ∗ R1R2b)‖L2 + ‖(ψ ∗ ∂tu, ψ ∗ ∂tb)‖L2

≤ C e−c(η,ν,α,β) t,

where c = c(ν, η, α, β) > 0 depends on ν, η, α and β, and C = C(u0, b0, ν, η, α, β) > 0
depends additionally on the initial norms.

Remark 1.1. It is an interesting problem to study the decay rates of the solutions
to the nonlinear system (1.2). Unfortunately, this seems not easy and is left for
the future. In fact, the large-time behavior of the solution depends crucially on
the eigenvalues of the wave equation (1.13). Indeed, the characteristic polynomial
associated with (1.13) reads

λ2 +

(
νξ22
|ξ|2

+
ηξ21
|ξ|2

)
λ+ νη

ξ21ξ
2
2

|ξ|4
+ ξ21 = 0,

and the roots λ∓ are given by

λ∓ :=
−νξ22+ηξ

2
1

|ξ|2 ∓
√

Γ

2
with Γ :=

(
νξ22 + ηξ21
|ξ|2

)2

− 4

(
νη
ξ21ξ

2
2

|ξ|4
+ ξ21

)
.
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By direct calculations, we find

λ+ = −
2ξ21

(
νη

ξ22
|ξ|4 + 1

)
√

Γ +
(
νξ22
|ξ|2 +

ηξ21
|ξ|2

) . −ξ21 ,
provided Γ ≥ 0 and |ξ1| is sufficiently small. As a result, the heat kernel only admits
“one-component” decay. This is the inherent difficulty in the decay analysis of the
solutions. Actually, it is also the reason that why we can only obtain the exponential
decay away from the domain D.

The rest of this paper is organized as follows. Theorem 1.1 is proven in Section
2. The proof of Theorem 1.2 will be carried out in Section 3. Section 4 is devoted
to the proofs of Theorems 1.3 and 1.4, based on the wave structure (1.13).

2. Proof of Theorem 1.1

This section aims to prove Theorem 1.1. As aforementioned, to establish the
stability result in Theorem 1.1, it suffices to prove Proposition 2.1 below.

Proposition 2.1. Let E1(t) and E2(t) be the same ones as defined in (1.8) and (1.9),
respectively. Then there exists a generic positive constant C, depending only on ν
and η, such that

E1(t) ≤ C
(
E1(0) + E1(0)

3
2 + E1(0)2

)
+ C

(
E1(t)

3
2 + E2(t)

3
2

)
+ C

(
E1(t)3 + E2(t)3

)
(2.1)

and

E2(t) ≤ CE1(0) + CE1(t) + CE1(t)
3
2 + CE2(t)

3
2 . (2.2)

With Proposition 2.1 at our disposal, Theorem 1.1 can be easily achieved by the
bootstrapping argument. For simplicity, we denote by C and Ci (i = 1, 2, 3) various
generic positive constants, which may depend only on ν and η, and may change
from line to line.

Proof of Theorem 1.1. It follows from (2.1) and (2.2) that

E1(t) + E2(t) ≤ C1

(
E1(0) + E1(0)

3
2 + E1(0)2

)
+ C2

(
E1(t)

3
2 + E2(t)

3
2

)
+ C3

(
E1(t)3 + E2(t)3

)
. (2.3)

The bootstrapping argument then allows us to establish the stability result of The-
orem 1.1, provided the initial data E1(0) is chosen to be sufficiently small such that

C1

(
E1(0) + E1(0)

3
2 + E1(0)2

)
≤ 1

4
min

{
1

16C2
2

,

(
1

4C3

) 1
2

}
. (2.4)

In fact, if we make the ansatz that for 0 < T ≤ ∞,

E1(t) + E2(t) ≤ min

{
1

16C2
2

,

(
1

4C3

) 1
2

}
,
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then (2.3) implies

E1(t) + E2(t) ≤ C1

(
E1(0) + E1(0)

3
2 + E1(0)2

)
+ C2 (E1(t) + E2(t))

3
2 + C3 (E1(t) + E2(t))3

≤ C1

(
E1(0) + E1(0)

3
2 + E1(0)2

)
+

1

2
(E1(t) + E2(t)) ,

or

E1(t) + E2(t) ≤ 2C1

(
E1(0) + E1(0)

3
2 + E1(0)2

)
, (2.5)

which, combined with the smallness assumption (2.4) on the initial data, leads to

E1(t) + E2(t) ≤
1

2
min

{
1

16C2
2

,

(
1

4C3

) 1
2

}
.

Thus, the bootstrapping argument then asserts that (2.5) holds for all time, provided
E1(0) fulfills (2.4). The proof of Theorem 1.1 is therefore complete. �

It remains to prove Proposition 2.1. To deal with the nonlinear terms, we need
to make use of the anisotropic inequalities (cf. Lemmas 2.1 and 2.2), whose proofs
rely on the basic one-dimensional Sobolev inequality

‖g‖L∞(R) ≤
√

2‖g‖
1
2

L2(R)‖g
′‖

1
2

L2(R),

and the Minkowski inequality

‖‖f‖Lqy(Rn)‖Lpx(Rm) ≤ ‖‖f‖Lpx(Rm)‖Lqy(Rn), ∀ 1 ≤ q ≤ p ≤ ∞,

where f = f(x, y) with x ∈ Rm and y ∈ Rn is a measurable function on Rm × Rn.

Lemma 2.1. Assume f , ∂1f , g and ∂2g are all in L2(R2). Then,

‖fg‖L2(R2) ≤ C‖f‖
1
2

L2(R2)‖∂1f‖
1
2

L2(R2)‖g‖
1
2

L2(R2)‖∂2g‖
1
2

L2(R2).

Lemma 2.2. The following estimates hold when the right-hand sides are all bounded,

‖f‖L∞(R2) ≤ C‖f‖
1
4

L2(R2)‖∂1f‖
1
4

L2(R2)‖∂2f‖
1
4

L2(R2)‖∂12f‖
1
4

L2(R2).

In particular,

‖f‖L∞ ≤ C‖f‖
1
2

H1‖∂1f‖
1
2

H1 ,

‖f‖L∞ ≤ C‖f‖
1
2

H1‖∂2f‖
1
2

H1 .

We are now ready to prove Proposition 2.1. The proofs are split into two steps,
which are concerned with the derivations of (2.1) and (2.2), respectively.
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2.1. Proof of (2.1). Due to the equivalence of ‖(u, b)‖H3 with ‖(u, b)‖L2+‖(u, b)‖Ḣ3 ,

it suffices to bound the L2-norm and the homogeneous Ḣ3-norm of (u, b). First,
based on the divergence-free conditions ∇ · u = ∇ · b = 0, it is easy to check that

‖(u, b)‖2L2 + 2

∫ t

0

(
ν‖u1‖2L2 + η‖b2‖2L2

)
dτ = ‖(u0, b0)‖2L2 . (2.6)

Next, to estimate the Ḣ3-norm, applying ∂3i (i = 1, 2) to (1.2) and dotting them
with (∂3i u, ∂

3
i b) in L2, we have

1

2

d

dt

2∑
i=1

‖(∂3i u, ∂3i b)‖2L2 + ν
2∑
i=1

‖∂3i u1‖2L2 + η

2∑
i=1

‖∂3i b2‖2L2

:= K1 +K2 +K3 +K4 +K5, (2.7)

where

K1 :=
2∑
i=1

∫ (
∂3i ∂1b · ∂3i u+ ∂3i ∂1u · ∂3i b

)
dx,

K2 := −
2∑
i=1

∫
∂3i (u · ∇u) · ∂3i u dx,

K3 :=
2∑
i=1

∫ (
∂3i (b · ∇b)− b · ∇∂3i b

)
· ∂3i u dx,

K4 := −
2∑
i=1

∫
∂3i (u · ∇b) · ∂3i b dx,

K5 :=
2∑
i=1

∫ (
∂3i (b · ∇u)− b · ∇∂3i u

)
· ∂3i b dx.

We are now in a position of estimating K1, . . . , K5 term by term. First, integra-
tion by parts directly gives

K1 = 0. (2.8)

To bound K2, we divide it into two parts,

K2 = −
∫
∂31(u · ∇u) · ∂31u dx−

∫
∂32(u · ∇u) · ∂32u dx := K21 +K22.

Due to ∇ · u = 0, by Hölder’s and Sobolev’s inequalities, we obtain

K21 = −
∫

(∂31u · ∇u+ 3∂21u · ∇∂1u+ 3∂1u · ∇∂21u) · ∂31u dx

≤ C‖∂31u‖L2

(
‖∇u‖L∞‖∇∂21u‖L2 + ‖∂21u‖L4‖∇∂1u‖L4

)
≤ C‖u‖H3‖∂1u‖2H2 , (2.9)

and similarly,

K22 ≤ C‖u‖H3‖∂2u‖2H2 ,
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which, together with (2.9), yields

K2 ≤ C‖u‖H3

(
‖∂1u‖2H2 + ‖∂2u‖2H2

)
. (2.10)

To estimate K3, we rewrite it into three items,

K3 =
2∑
i=1

3

∫
∂ib · ∇∂2i b · ∂3i u dx+

2∑
i=1

3

∫
∂2i b · ∇∂ib · ∂3i u dx

+
2∑
i=1

∫
∂3i b · ∇b · ∂3i u dx := K31 +K32 +K33,

where the first term K31 on the right-hand side can be bounded as follows,

K31 = 3

∫ (
∂1b · ∇∂21b · ∂31u+ ∂2b1∂1∂

2
2b · ∂32u− ∂1b1∂32b · ∂32u

)
dx

≤ C‖∂1b‖L∞‖∇∂21b‖L2‖∂31u‖L2

+ C
(
‖∂2b1‖L∞‖∂1∂22b‖L2 + ‖∂1b1‖L∞‖∂32b‖L2

)
‖∂32u‖L2

≤ C‖b‖H3

(
‖∂1b‖2H2 + ‖∂1u‖2H2 + ‖∂2u‖2H2

)
.

In a similar manner,

K32 = 3

∫ (
∂21b · ∇∂1b · ∂31u+ ∂22b1∂1∂2b · ∂32u− ∂1∂2b1∂22b · ∂32u

)
dx

≤ C‖∂21b‖L4‖∇∂1b‖L4‖∂31u‖L2 + C‖∂1∂2b‖L4‖∂22b‖L4‖∂32u‖L2

≤ C‖b‖H3

(
‖∂1b‖2H2 + ‖∂1u‖2H2 + ‖∂2u‖2H2

)
,

and

K33 =

∫ (
∂31b · ∇b · ∂31u+ ∂32b1∂1b · ∂32u− ∂1∂22b1∂2b · ∂32u

)
dx

≤ C‖∇b‖L∞‖∂31b‖L2‖∂31u‖L2

+ C
(
‖∂1b‖L∞‖∂32b1‖L2 + ‖∂2b‖L∞‖∂1∂22b1‖L2

)
‖∂32u‖L2

≤ C‖b‖H3

(
‖∂1b‖2H2 + ‖∂1u‖2H2 + ‖∂2u‖2H2

)
.

Therefore,

K3 ≤ C‖b‖H3

(
‖∂1b‖2H2 + ‖∂1u‖2H2 + ‖∂2u‖2H2

)
. (2.11)

In order to estimate K4, we write it in the form:

K4 = −
∫
∂31(u · ∇b) · ∂31b dx−

∫
∂32(u · ∇b) · ∂32b dx := K41 +K42,

where the first term K41 can be easily bounded by

K41 = −
∫
∂31u · ∇b · ∂31b dx− 3

∫ (
∂21u · ∇∂1b+ ∂1u · ∇∂21b

)
· ∂31b dx

≤ C‖∇b‖L∞‖∂31b‖L2‖∂31u‖L2

+ C
(
‖∂21u‖L4‖∇∂1b‖L4 + ‖∂1u‖L∞‖∇∂21b‖L2

)
‖∂31b‖L2

≤ C‖b‖H3

(
‖∂1b‖2H2 + ‖∂1u‖2H2

)
. (2.12)
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The second term K42 needs more work. First, by virtue of the divergence-free
condition ∇ · u = 0 we split it into three parts:

K42 = −
∫
∂32u · ∇b · ∂32b dx− 3

∫
∂22u · ∇∂2b · ∂32b dx

− 3

∫
∂2u · ∇∂22b · ∂32b dx := K421 +K422 +K423.

For K421, we have

K421 = −
∫
∂32u1∂1b · ∂32b dx−

∫
∂32u2∂2b · ∂32b dx

= −
∫
∂32u1∂1b · ∂32b dx+

∫
∂32u2∂1b1∂

3
2b2 dx

+

∫
∂1∂

2
2u1∂2b1∂

3
2b1 dx := K4211 +K4212 +K4213.

where the first two terms K4211 and K4212 are bounded by

K4211 +K4212 ≤ C‖∂1b‖L∞‖∂32u‖L2‖∂32b‖L2

≤ C‖b‖H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2

)
.

For K4213, integration by parts twice gives

K4213 = −
∫
∂22u1∂1∂2b1∂

3
2b1 dx+

∫
∂32u1∂2b1∂1∂

2
2b1 dx

+

∫
∂22u1∂

2
2b1∂1∂

2
2b1 dx

≤ C‖∂22u1‖L4‖∂1∂2b1‖L4‖∂32b1‖L2

+ C
(
‖∂32u1‖L2‖∂2b1‖L∞ + ‖∂22u1‖L4‖∂22b1‖L4

)
‖∂1∂22b‖L2

≤ C‖b‖H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2

)
,

which, together with the estimates of K4211 and K4212, shows that

K421 ≤ C‖b‖H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2

)
. (2.13)

Analogously,

K422 = −3

∫
∂22u1∂1∂2b · ∂32b dx+ 3

∫
∂22u1∂1∂

2
2b · ∂22b dx

≤ C‖b‖H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2

)
. (2.14)

For K423, due to ∇ · u = ∇ · b = 0, we have

K423 = −3

∫
∂2u1∂1∂

2
2b · ∂32b dx− 3

∫
∂2u2∂1∂

2
2b1∂1∂

2
2b1 dx

+ 3

∫
∂1u1∂

3
2b1∂

3
2b1 dx := K4231 +K4232 +D1.

Based upon the Hölder’s and Sobolev’s inequalities, it is easily deduced that

K4231 +K4232 ≤ C‖∂2u‖L∞‖∂1∂22b‖L2‖∇3b‖L2
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≤ C‖b‖H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2

)
. (2.15)

We now turn to deal with D1, which is one of the most difficult terms. The
strategy here is to replace ∂1u1 by using the equation of magnetic field,

∂1u1 = ∂tb1 + u · ∇b1 − b · ∇u1. (2.16)

In terms of (2.16), we can rewrite D1 in the form:

D1 = 3

∫
(∂tb1 + u · ∇b1 − b · ∇u1) |∂32b1|2 dx

= 3
d

dt

∫
b1|∂32b1|2 dx− 6

∫
b1∂

3
2b1∂

3
2∂tb1 dx

+ 3

∫
(u · ∇b1) |∂32b1|2 dx− 3

∫
(b · ∇u1) |∂32b1|2 dx, (2.17)

where the second term associated with ∂tb1 on the right side can be written as

− 6

∫
b1∂

3
2b1∂

3
2∂tb1 dx

= −6

∫
b1∂

3
2b1∂

3
2(∂1u1 − u · ∇b1 + b · ∇u1) dx

= −6

∫
b1∂

3
2b1∂

3
2∂1u1 dx+ 6

∫
b1∂

3
2b1∂

3
2u · ∇b1 dx

+ 18

∫
b1∂

3
2b1∂

2
2u · ∇∂2b1 dx+ 18

∫
b1∂

3
2b1∂2u · ∇∂22b1dx

+ 3

∫
b1u · ∇|∂32b1|2 dx− 6

∫
b1∂

3
2b1∂

3
2(b · ∇u1) dx. (2.18)

Noting that ∫
b1u · ∇|∂32b1|2 dx+

∫
u · ∇b1|∂32b1|2 dx = 0,

we obtain after plugging (2.18) into (2.17) that

D1 = 3
d

dt

∫
b1|∂32b1|2 dx− 6

∫
b1∂

3
2b1∂

3
2∂1u1 dx

+ 6

∫
b1∂

3
2b1∂

3
2u · ∇b1 dx+ 18

∫
b1∂

3
2b1∂

2
2u · ∇∂2b1 dx

+ 18

∫
b1∂

3
2b1∂2u1∂1∂

2
2b1 dx+ 27

∫
b1∂2u2|∂32b1|2 dx

− 3

∫
b2∂2u1|∂32b1|2 dx− 6

∫
b1∂

3
2b1∂

3
2b2∂2u1 dx

− 18

∫
b1∂

3
2b1∂

2
2b · ∇∂2u1 dx− 18

∫
b1∂

3
2b1∂2b · ∇∂22u1 dx

− 6

∫
b1∂

3
2b1b · ∇∂32u1 dx. (2.19)
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Two of the most difficult terms on the right-hand side of (2.19) are the second
and sixth terms,

D2 := −6

∫
b1∂

3
2b1∂

3
2∂1u1 dx, D3 := 27

∫
b1∂2u2|∂32b1|2 dx,

which will be handled by using (2.16) and the equation of velocity,

∂1b1 = ∂tu1 + u · ∇u1 + ∂1P + νu1 − b · ∇b1. (2.20)

For D2, using (2.16), (2.20) and integrating by parts, we have

D2 =6

∫
∂1b1∂

3
2b1∂

3
2u1 dx+ 6

∫
b1∂

3
2u1∂

3
2∂1b1 dx

:=J1 + 6

∫
b1∂

3
2u1∂

3
2 (∂tu1 + u · ∇u1 + ∂1P + νu1 − b · ∇b1) dx

=J1 + 3
d

dt

∫
b1|∂32u1|2 dx− 3

∫
|∂32u1|2(∂1u1 + b · ∇u1) dx

+ 6
3∑

k=1

Ck3
∫
b1∂

3
2u1∂

k
2u · ∇∂3−k2 u1 dx

+ 6

∫
b1∂

3
2u1∂

3
2∂1P dx+ 6ν

∫
b1|∂32u1|2 dx

− 6
3∑

k=1

Ck3
∫
b1∂

3
2u1∂

k
2 b · ∇∂3−k2 b1 dx− 6

∫
b1∂

3
2u1b · ∇∂32b1 dx, (2.21)

where the symbol Ckn denotes the standard combination number, and

J1 := 6

∫
∂1b1∂

3
2b1∂

3
2u1 dx.

Here, we have also used the divergence-free condition ∇ · u = 0 to get that∫
b1u · ∇|∂32u1|2 dx+

∫
u · ∇b1|∂32u1|2 dx = 0.

To deal with D3, we first infer from (2.16) that

D3 :=27

∫
b1∂2u2|∂32b1|2 dx = −27

∫
b1∂1u1|∂32b1|2 dx

=− 27

∫
b1|∂32b1|2(∂tb1 + u · ∇b1 − b · ∇u1) dx

=− 27

2

d

dt

∫
b21|∂32b1|2 dx+ 27

∫
b21∂

3
2b1∂

3
2∂tb1 dx

− 27

2

∫
|∂32b1|2u · ∇b21 dx+ 27

∫
b1|∂32b1|2b · ∇u1 dx, (2.22)

where, similarly to the derivation of (2.21), the second term on the right-hand side
can be written as

27

∫
b21∂

3
2b1∂

3
2∂tb1 dx = 27

∫
b21∂

3
2b1∂

3
2(∂1u1 − u · ∇b1 + b · ∇u1) dx
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= 27

∫
b21∂

3
2b1∂

3
2∂1u1 dx−

27

2

∫
b21u · ∇|∂32b1|2 dx

− 27
3∑

k=1

Ck3
∫
b21∂

3
2b1∂

k
2u · ∇∂3−k2 b1 dx

+ 27
3∑

k=1

Ck3
∫
b21∂

3
2b1∂

k
2 b · ∇∂3−k2 u1 dx+ 27

∫
b21∂

3
2b1b · ∇∂32u1 dx. (2.23)

Thus, inserting (2.23) into (2.22) and noting that∫
b21u · ∇|∂32b1|2 dx+

∫
u · ∇b21|∂32b1|2 dx = 0,

we find

D3 = −27

2

d

dt

∫
b21|∂32b1|2 dx+ 27

∫
b21∂

3
2b1∂

3
2∂1u1 dx

+ 27

∫
b1|∂32b1|2b · ∇u1 dx− 27

3∑
k=1

Ck3
∫
b21∂

3
2b1∂

k
2u · ∇∂3−k2 b1 dx

+ 27
3∑

k=1

Ck3
∫
b21∂

3
2b1∂

k
2 b · ∇∂3−k2 u1 dx+ 27

∫
b21∂

3
2b1b · ∇∂32u1 dx. (2.24)

Clearly, we still need to deal with the second term on the right-hand side of (2.24).
In fact, using (2.16) and (2.20) again, we have from integration by parts that

D4 :=27

∫
b21∂

3
2b1∂

3
2∂1u1 dx

=− 54

∫
b1∂1b1∂

3
2b1∂

3
2u1 dx− 27

∫
b21∂

3
2u1∂

3
2∂1b1 dx

:=J2 − 27

∫
b21∂

3
2u1∂

3
2 (∂tu1 + u · ∇u1 + ∂1P + νu1 − b · ∇b1) dx

=J2 −
27

2

d

dt

∫
b21|∂32u1|2 dx+ 27

∫
|∂32u1|2b1(∂1u1 − u · ∇b1 + b · ∇u1) dx

− 27

∫
b21∂

3
2u1u · ∇∂32u1 dx− 27

3∑
k=1

Ck3
∫
b21∂

3
2u1∂

k
2u · ∇∂3−k2 u1 dx

− 27

∫
b21∂

3
2u1∂

3
2∂1P dx− 27ν

∫
b21|∂32u1|2 dx

+ 27

∫
b21∂

3
2u1b · ∇∂32b1 dx+ 27

3∑
k=1

Ck3
∫
b21∂

3
2u1∂

k
2 b · ∇∂3−k2 b1 dx, (2.25)

where J2 is given by

J2 := −54

∫
b1∂1b1∂

3
2b1∂

3
2u1 dx.
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Now, plugging (2.21), (2.24) and (2.25) into (2.19), we obtain after careful re-
arrangement that

D1 =3
d

dt

∫
b1
(
|∂32b1|2 + |∂32u1|2

)
dx− 27

2

d

dt

∫
b21
(
|∂32b1|2 dx+ |∂32u1|2

)
dx

+ J1 + J2 + 6

∫
b1∂

3
2b1∂

3
2u · ∇b1 dx+ 18

∫
b1∂

3
2b1∂

2
2u · ∇∂2b1 dx

+ 24

∫
b1∂

3
2b1∂2u1∂1∂

2
2b1 dx− 3

∫
b2∂2u1|∂32b1|2 dx

− 18

∫
b1∂

3
2b1∂

2
2b · ∇∂2u1 dx− 18

∫
b1∂

3
2b1∂2b · ∇∂22u1 dx

+ 6

∫
b · ∇b1(∂32u1∂32b1) dx− 3

∫
|∂32u1|2(∂1u1 + b · ∇u1) dx

+ 6
3∑

k=1

Ck3
∫
b1∂

3
2u1∂

k
2u · ∇∂3−k2 u1 dx+ 6

∫
b1∂

3
2u1∂

3
2∂1P dx

+ 6ν

∫
b1|∂32u1|2 dx− 6

3∑
k=1

Ck3
∫
b1∂

3
2u1∂

k
2 b · ∇∂3−k2 b1 dx (2.26)

+ 27

∫
|∂32u1|2b1(∂1u1 − u · ∇b1 + b · ∇u1) dx− 27

∫
b21∂

3
2u1u · ∇∂32u1 dx

− 27
3∑

k=1

Ck3
∫
b21∂

3
2u1∂

k
2u · ∇∂3−k2 u1 dx− 27

∫
b21∂

3
2u1∂

3
2∂1P dx

− 27ν

∫
b21|∂32u1|2 dx+ 27

3∑
k=1

Ck3
∫
b21∂

3
2u1∂

k
2 b · ∇∂3−k2 b1 dx

+ 27

∫
b1|∂32b1|2b · ∇u1 dx− 27

3∑
k=1

Ck3
∫
b21∂

3
2b1∂

k
2u · ∇∂3−k2 b1 dx

+ 27
3∑

k=1

Ck3
∫
b21∂

3
2b1∂

k
2 b · ∇∂3−k2 u1 dx− 54

∫
b · ∇b1(b1∂32u1∂32b1) dx

:=I ′(t) + J1 + J2 + . . .+ J24,

where we have also used ∇ · b = 0 and the following simple facts that

27

∫
b21∂

3
2b1b · ∇∂32u1 dx+ 27

∫
b21∂

3
2u1b · ∇∂32b1 dx

= 27

∫
b21b · ∇(∂32u1∂

3
2b1) dx = −54

∫
b · ∇b1(b1∂32u1∂32b1) dx,

and

−6

∫
b1∂

3
2b1b · ∇∂32u1 dx− 6

∫
b1∂

3
2u1b · ∇∂32b1 dx

= −6

∫
b1b · ∇(∂32u1∂

3
2b1) dx = 6

∫
b · ∇b1(∂32u1∂32b1) dx.
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Next, we need to bound J1, J2, . . . and J24 one by one. First, it follows from the
Sobolev’s embedding inequality that

J1 + J2 ≤ C‖∂1b‖L∞‖∂32u‖L2‖∂32b‖L2(1 + ‖b1‖L∞)

≤ C(‖b‖H3 + ‖b‖2H3)
(
‖∂1b‖2H2 + ‖∂2u‖2H2

)
.

For J3, J8 and J9, by Lemma 2.2, we have

J3 + J8 + J9 ≤ C‖b‖L∞‖∇b‖L∞‖∂32b1‖L2‖∇∂22u‖L2

≤ C‖b‖
1
2

H1‖∂1b‖
1
2

H1‖∇b‖
1
2

H1‖∂1∇b‖
1
2

H1‖b‖H3‖∂2u‖H2

≤ C‖b‖2H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2

)
.

For J4 and J7, we use Lemmas 2.1 and 2.2 to deduce

J4 + J7 ≤ C‖b‖L∞‖∂32b‖L2(‖∂22u · ∇∂2b1‖L2 + ‖∂22b · ∇∂2u1‖L2)

≤ C‖b‖
1
2

H1‖∂1b‖
1
2

H1‖b‖H3‖∇∂2u‖
1
2

L2‖∇∂22u‖
1
2

L2‖∇∂2b‖
1
2

L2‖∇∂1∂2b‖
1
2

L2

≤ C‖b‖2H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2

)
.

Using ∇ · b = 0 and the Sobolev’s embedding inequality, we obtain

J5 + J6 ≤ C‖b1‖L∞‖∂32b1‖L2‖∂2u1‖L∞‖∂32b2‖L2

+ C‖b2‖L∞‖∂2u1‖L∞‖∂32b1‖2L2

≤ C‖b‖2H3

(
‖b2‖2H3 + ‖∂2u‖2H2

)
.

For J10, J13, J15 and J19, the Sobolev’s embedding inequality yields

J10 + J13 + J15 + J19

≤ C‖∂32u1‖2L2

(
‖∂1u1‖L∞ + ‖b‖L∞‖∇u1‖L∞ + ‖b1‖L∞ + ‖b1‖2L∞

)
+ C‖∂32u1‖2L2‖b1‖L∞(‖u‖L∞‖∇b1‖L∞ + ‖b‖L∞‖∇u1‖L∞)

≤ C
(
‖(u, b)‖H3 + ‖(u, b)‖2H3 + ‖b‖4H3

)
‖∂2u‖2H2 ,

and similarly,

J11 ≤ C‖∂32u1‖L2‖b1‖L∞(‖∇u‖L∞‖∇∂22u‖L2 + ‖∂22u‖L4‖∇∂2u‖L4)

≤ C‖(u, b)‖2H3‖∂2u‖2H2 .

To estimate J12 and J18, we first need to deal with ‖∂1∂32P‖L2 . In fact, operating
∇· to (1.2)1 yields

∆P = ∇ · (b · ∇b)−∇ · (u · ∇u)− ν∂1u1,

from which it follows that

∂1∂
3
2P = ∂1∂

3
2∆−1∇ · (b · ∇b)− ∂1∂32∆−1∇ · (u · ∇u)− ν∂1∂32∆−1∂1u1. (2.27)

Due to ∇ · b = 0, one has

∇ · (b · ∇b) = ∂j(bi∂ibj) = ∂jbi∂ibj.
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So, using the well known fact that the Riesz operator ∂i(−∆)−
1
2 with i = 1, 2 is

bounded in Lr for any 1 < r <∞, we deduce

‖∂1∂32∆−1∇ · (b · ∇b)‖L2 = ‖∂1∂32∆−1(∂jbi∂ibj)‖L2 ≤ ‖∂1∂2(∂jbi∂ibj)‖L2 .

Noting that

∂1∂2(∂jbi∂ibj) = ∂1∂2∂jbi∂ibj + ∂2∂jbi∂1∂ibj + ∂1∂jbi∂2∂ibj + ∂jbi∂1∂2∂ibj,

and hence,

‖∂1∂32∆−1∇ · (b · ∇b)‖L2 ≤ ‖∂1∂2(∂jbi∂ibj)‖L2

≤ C(‖∇b‖L∞‖∂1∂2∇b‖L2 + ‖∂2∇b‖L4‖∂1∇b‖L4)

≤ C‖∇b‖H2‖∂1b‖H2 . (2.28)

The analogous estimate also holds for ‖∂1∂32∆−1∇ · (u · ∇u)‖L2 , that is,

‖∂1∂32∆−1∇ · (u · ∇u)‖L2 ≤ C(‖∇u‖L∞‖∂1∂2∇u‖L2 + ‖∂2∇u‖L4‖∂1∇u‖L4)

≤ C‖∇u‖H2‖∂2u‖H2 . (2.29)

Thus, inserting (2.28) and (2.29) into (2.27), we arrive at

‖∂1∂32P‖L2 ≤ ‖∂1∂2(∂jbi∂ibj)‖L2 + ‖∂1∂2(∂jui∂iuj)‖L2 + ν‖∂21∂2u1‖L2

≤ C(‖∇b‖H2‖∂1b‖H2 + ‖∇u‖H2‖∂2u‖H2 + ‖∂2u‖H2). (2.30)

With (2.30) at our disposal, we can now bound J12 and J18 by

J12 + J18 ≤ C‖∂32u1‖L2‖∂32∂1P‖L2

(
‖b1‖L∞ + ‖b1‖2L∞

)
≤ C

(
‖b‖H3 + ‖(u, b)‖2H3 + ‖b‖3H3 + ‖b‖4H3

) (
‖∂1b‖2H2 + ‖∂2u‖2H2

)
.

For J14, using Lemma 2.1 and Lemma 2.2, we find

J14 ≤ C‖∂32u1‖L2‖b1‖L∞
(
‖∇b‖L∞‖∇∂22b‖L2 + ‖∂22b · ∇∂2b1‖L2

)
≤ C‖∂32u1‖L2‖b1‖

1
2

H1‖∂1b1‖
1
2

H1‖∇b‖
1
2

H1‖∂1∇b‖
1
2

H1‖∇∂22b1‖L2

+ C‖∂32u1‖L2‖b1‖
1
2

H1‖∂1b1‖
1
2

H1‖∂22b‖
1
2

L2‖∂1∂22b‖
1
2

L2‖∇∂2b1‖
1
2

L2‖∇∂22b1‖
1
2

L2

≤ C‖b‖2H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2

)
.

For J16, it is easily seen that

J16 = −27

2

∫
b21u · ∇|∂32u1|2 dx = 27

∫
|∂32u1|2b1u · ∇b1 dx

≤ C‖∂32u1‖2L2‖b1‖L∞‖u‖L∞‖∇b1‖L∞

≤ C
(
‖u‖2H3 + ‖b‖4H3

)
‖∂2u‖2H2 .

As in the treatment of J14, we have

J17 ≤ C‖b1‖2L∞‖∂32u1‖L2(‖∇u‖L∞‖∇∂22u‖L2 + ‖∂22u‖L4‖∇∂2u1‖L4)

≤ C
(
‖u‖2H3 + ‖b‖4H3

)
‖∂2u‖2H2 ,

and

J20 ≤ C‖b1‖2L∞‖∂32u1‖L2(‖∇b‖L∞‖∇∂22b‖L2 + ‖∂22b‖L4‖∇∂2b1‖L4)
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≤ C‖b‖2H3‖b‖H1‖∂1b‖H1‖∂32u1‖L2

≤ C‖b‖3H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2

)
.

Due to ∇ · u = 0, it holds that ‖∇u1‖L∞ = ‖∂2u‖L∞ . Thus,

J21 + J24 ≤ C‖b‖2L∞‖∂32b1‖2L2‖∇u1‖L∞

+ C‖b‖2L∞‖∂32u1‖L2‖∂32b1‖L2‖∇b1‖L∞

≤ C‖b‖H1‖∂1b‖H1‖b‖2H3‖∂2u‖H2

≤ C‖b‖3H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2

)
,

and

J22 + J23 ≤ C‖b1‖2L∞‖∂32b1‖L2‖∇u1‖L∞‖∇∂22b‖L2

+ C‖b1‖2L∞‖∂32b1‖L2‖∇∂2u‖L4‖∇∂2b‖L4

+ C‖b1‖2L∞‖∂32b1‖L2‖∇∂22u‖L2‖∇b‖L∞

≤ C‖b‖2H3‖b‖H1‖∂1b‖H1‖∂2u‖H2

≤ C‖b‖3H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2

)
.

Thus, noting that ‖∂1b‖H2 = ‖∇b2‖H2 , we conclude after inserting the above
estimates of J1, . . . , J24 in (2.26) and using the Cauchy-Schwarz’s inequality that

D1 ≤ 3
d

dt

∫
b1
(
|∂32b1|2 + |∂32u1|2

)
dx− 27

2

d

dt

∫
b21
(
|∂32b1|2 + |∂32u1|2

)
dx

+ C
(
‖(u, b)‖H3 + ‖(u, b)‖4H3

) (
‖b2‖2H3 + ‖∂2u‖2H2

)
. (2.31)

In view of (2.12), (2.13), (2.14), (2.15) and (2.31), we obtain

K4 ≤ 3
d

dt

∫
b1
(
|∂32b1|2 + |∂32u1|2

)
dx− 27

2

d

dt

∫
b21
(
|∂32b1|2 + |∂32u1|2

)
dx

+ C
(
‖(u, b)‖H3 + ‖(u, b)‖4H3

) (
‖b2‖2H3 + ‖∂1u‖2H2 + ‖∂2u‖2H2

)
. (2.32)

It remains to estimate K5. To do this, noting that

K5 =

∫ (
∂31(b · ∇u)− b · ∇∂31u

)
· ∂31b dx

+

∫ (
∂32(b · ∇u)− b · ∇∂32u

)
· ∂32b dx := K51 +K52,

where the first term on the right-hand side can be easily bounded by

K51 =

∫
(3∂1b · ∇∂21u+ 3∂21b · ∇∂1u+ ∂31b · ∇u) · ∂31b dx

≤ C
(
‖∂1b‖L∞‖∇∂21u‖L2 + ‖∂21b‖L4‖∇∂1u‖L4 + ‖∇u‖L∞‖∂31b‖L2

)
‖∂31b‖L2

≤ C‖u‖H3‖∂1b‖2H2 . (2.33)

To deal with K52, we rewrite it as

K52 =

∫ (
3∂2b · ∇∂22u · ∂32b+ 3∂22b · ∇∂2u · ∂32b+ ∂32b · ∇u · ∂32b

)
dx
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= 3

∫
∂2b · ∇∂22u · ∂32b dx+ 3

∫
∂22b · ∇∂2u · ∂32b dx

−
∫
∂1∂

2
2b1∂2u · ∂32b dx−

∫
∂32b1∂1u2∂1∂

2
2b1 dx

+

∫
∂1u1|∂32b1|2 dx := K521 +K522 +K523 +K524 +

1

3
D1.

Based upon integration by parts and the divergence-free condition ∇ · b = 0, we
deduce from the Sobolev’s inequalities that

K521 = 3

∫
∂2b1∂1∂

2
2u · ∂32b dx+ 3

∫
∂2b2∂

3
2u · ∂32b dx

= −3

∫
∂1∂2b1∂

2
2u · ∂32b dx+ 3

∫
∂22b1∂

2
2u · ∂1∂22b dx

+ 3

∫
∂2b1∂

3
2u · ∂1∂22b dx− 3

∫
∂1b1∂

3
2u · ∂32b dx

≤ C‖∂1∂2b1‖L4‖∂22u‖L4‖∂32b‖L2 + C‖∂22b1‖L4‖∂22u‖L4‖∂1∂22b‖L2

+ C‖∂2b1‖L∞‖∂32u‖L2‖∂1∂22b‖L2 + C‖∂1b1‖L∞‖∂32u‖L2‖∂32b‖L2

≤ C‖b‖H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2

)
, (2.34)

and similarly,

K522 = 3

∫
∂22b1∂1∂2u · ∂32b dx+ 3

∫
∂22b2∂

2
2u · ∂32b dx

= −3

∫
∂1∂

2
2b1∂2u · ∂32b dx+ 3

∫
∂32b1∂2u · ∂1∂22b dx

+ 3

∫
∂22b1∂

2
2u · ∂1∂22b dx− 3

∫
∂1∂2b1∂

2
2u · ∂32b dx

≤ C(‖∂1∂22b‖L2‖∂2u‖L∞ + ‖∂1∂2b1‖L4‖∂22u‖L4)‖∂32b‖L2

+ C‖∂22b1‖L4‖∂22u‖L4‖∂1∂22b‖L2

≤ C‖b‖H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2

)
. (2.35)

For K523 and K524, we have

K523 +K524 ≤ C‖∂1∂22b1‖L2‖∂32b‖L2 (‖∂2u‖L∞ + ‖∂1u2‖L∞)

≤ C‖b‖H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2 + ‖∂1u‖2H2

)
. (2.36)

Thus, combining (2.33), (2.34), (2.35), (2.36) with (2.31) gives

K5 ≤
d

dt

∫
b1
(
|∂32b1|2 + |∂32u1|2

)
dx− 9

2

d

dt

∫
b21
(
|∂32b1|2 + |∂32u1|2

)
dx

+ C
(
‖(u, b)‖H3 + ‖(u, b)‖4H3

) (
‖b2‖2H3 + ‖∂1u‖2H2 + ‖∂2u‖2H2

)
. (2.37)

Now, substituting (2.8), (2.10), (2.11), (2.32) and (2.37) into (2.7), we find

1

2

d

dt
‖(∇3u,∇3b)‖2L2 + ν‖∇3u1‖2L2 + η‖∇3b2‖2L2
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≤ 4
d

dt

∫
b1
(
|∂32b1|2 + |∂32u1|2

)
dx− 18

d

dt

∫
b21
(
|∂32b1|2 + |∂32u1|2

)
dx

+ C
(
‖(u, b)‖H3 + ‖(u, b)‖4H3

) (
‖b2‖2H3 + ‖∂2u‖2H2 + ‖∂1u‖2H2

)
,

which, integrated over [0, t] and combined with the Sobolev’s inequalities, yields

‖∇3(u, b)(t)‖2L2 + 2

∫ t

0

(
ν‖∇3u1‖2L2 + η‖∇3b2‖2L2

)
dτ

≤ C
(
‖(u0, b0)‖2H3 + ‖(u0, b0)‖3H3 + ‖(u0, b0)‖4H3

)
+ 8

∫
b1
(
|∂32b1|2 + |∂32u1|2

)
dx− 36

∫
b21
(
|∂32b1|2 + |∂32u1|2

)
dx

+ C

∫ t

0

(
‖(u, b)‖H3 + ‖(u, b)‖4H3

) (
‖b2‖2H3 + ‖∂2u‖2H2 + ‖∂1u‖2H2

)
dτ

≤ C
(
‖(u0, b0)‖2H3 + ‖(u0, b0)‖3H3 + ‖(u0, b0)‖4H3

)
+ C

(
‖b1(t)‖L∞ + ‖b1(t)‖2L∞

)
‖(u, b)(t)‖2H3

+ C sup
0≤τ≤t

(
‖(u, b)‖H3 + ‖(u, b)‖4H3

) ∫ t

0

(
‖(u1, b2)‖2H3 + ‖∂1u‖2H2

)
dτ, (2.38)

due to the fact that ‖∂2u‖H2 = ‖∇u1‖H2 . Thus, it readily follows from (2.6) and
(2.38) that

E1(t) ≤ CE1(0) + CE1(0)
3
2 + CE1(0)2

+ CE1(t)
3
2 + CE2(t)

3
2 + CE1(t)3 + CE2(t)3.

The proof of the first assertion (2.1) in Proposition 2.1 is therefore complete.

2.2. Proof of (2.2). Since ‖∂1u‖H2 ∼ ‖∂1u‖L2 + ‖∇2∂1u‖L2 , it suffices to establish
the estimates of the following two items:∫ t

0

‖∂1u(τ)‖2L2dτ and

∫ t

0

‖∇2∂1u(τ)‖2L2dτ,

whose proofs are based on the special struture of equation (1.2)2,

∂1u = ∂tb+ u · ∇b+ η(0, b2)
> − b · ∇u. (2.39)

First, to bound ‖∂1u(τ)‖L2 , we multiply (2.39) by ∂1u in L2 and integrate by
parts over R2 to get

‖∂1u‖2L2 =

∫
∂1u · ∂tb dx+

∫
u · ∇b · ∂1u dx

+ η

∫
b2∂1u2 dx−

∫
b · ∇u · ∂1u dx

:=L1 + L2 + L3 + L4. (2.40)

Using the velocity equation in (1.2)1 and the fact that ∇ · b = 0, we have

L1 =
d

dt

∫
∂1u · b dx−

∫
b · ∂1

(
∂1b− ν(u1, 0)> + b · ∇b− u · ∇u

)
dx
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:=L11 + L12 + L13 + L14 + L15.

It is easily seen that

L12 + L13 =

∫
∂1b · ∂1b dx− ν

∫
∂1b1u1 dx

≤ C‖∂1b‖2H1 + C‖∂1b‖L2‖u1‖L2 .

Integrating by parts and using Sobolev’s embedding inequality, we find

L14 = −
∫
b · ∂1(b · ∇b) dx =

∫
∂1b · (b · ∇b) dx

=

∫
b1∂1b · ∂1b dx+

∫
b2∂2b · ∂1b dx

≤ C‖b1‖L∞‖∂1b‖2L2 + C‖b2‖L∞‖∂2b‖L2‖∂1b‖L2

≤ C‖b‖H2‖b2‖2H2 ,

where we have used the fact that ‖∂1b‖L2 = ‖∇b2‖L2 due to ∇ · b = 0. By virtue of
Lemma 2.1, we have

L15 =

∫
b · ∂1(u · ∇u) dx = −

∫
∂1b · (u · ∇u) dx

≤ C‖∂1b‖L2‖u‖
1
2

L2‖∂2u‖
1
2

L2‖∇u‖
1
2

L2‖∂1∇u‖
1
2

L2

≤ C‖u‖H2

(
‖∂1b‖2H1 + ‖∂2u‖2H2 + ‖∂1u‖2H1

)
.

Thus, collecting the estimates of L12, . . . , L15 together, we obtain

L1 ≤
d

dt

∫
∂1u · b dx+ C

(
‖b2‖2H2 + ‖u1‖2L2

)
+ C‖(u, b)‖H2

(
‖b2‖2H2 + ‖∂2u‖2H2 + ‖∂1u‖2H1

)
,

since ‖∂1b‖H1 ≤ ‖b2‖H2 . In a similar manner,

L2 ≤ C‖∂1u‖L2‖u‖
1
2

L2‖∂2u‖
1
2

L2‖∇b‖
1
2

L2‖∂1∇b‖
1
2

L2

≤ C‖(u, b)‖H2

(
‖∂1b‖2H1 + ‖∂2u‖2H2 + ‖∂1u‖2H1

)
,

L3 ≤ C‖b2‖L2‖∂1u2‖L2 ≤ 1

2
‖∂1u‖2L2 + C‖b2‖2L2 ,

and

L4 ≤ C‖∂1u‖L2‖b‖
1
2

L2‖∂1b‖
1
2

L2‖∇u‖
1
2

L2‖∂2∇u‖
1
2

L2

≤ C‖(u, b)‖H2

(
‖∂1b‖2H1 + ‖∂2u‖2H2 + ‖∂1u‖2H1

)
,

which, combined with the estimate of L1 and (2.40), shows that

‖∂1u‖2L2 ≤ 2
d

dt

∫
∂1u · b dx+ C

(
‖b2‖2H2 + ‖u1‖2L2

)
+ C‖(u, b)‖H2

(
‖b2‖2H2 + ‖∂2u‖2H2 + ‖∂1u‖2H1

)
. (2.41)

This leads to the desired estimate of ‖∂1u‖L2 .
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Next, we proceed to estimate ‖∇2∂1u‖L2 . To do this, applying ∇2 to (2.39), and
dotting it with ∇2∂1u in L2, we deduce

‖∇2∂1u‖2L2 =

∫
∇2∂1u · ∂t∇2b dx+

∫
∇2(u · ∇b) · ∇2∂1u dx

+ η

∫
∇2∂1u2 · ∇2b2 dx−

∫
∇2(b · ∇u) · ∇2∂1u dx

:=M1 +M2 +M3 +M4. (2.42)

Owing to (1.2)1 and ∇ · b = 0, we see that

M1 =
d

dt

∫
∇2∂1u · ∇2b dx

−
∫
∇2b · ∇2∂1

(
∂1b− ν(u1, 0)> + b · ∇b− u · ∇u

)
dx

:= M11 +M12 +M13 +M14 +M15.

Integrating by parts gives

M12 +M13 =

∫
∇2∂1b · ∇2∂1b dx− ν

∫
∂1∇2b1 · ∇2u1 dx

≤ C‖∂1b‖2H2 + C‖∂1b‖H2‖u1‖H2 .

Due to ‖∇b2‖Hk = ‖∂1b‖Hk for k = 1, 2, we have

M14 = −
∫
∇2b · ∇2∂1(b · ∇b) dx =

∫
∂1∇2b · ∇2(b · ∇b) dx

=

∫
∂1∇2b ·

(
∇2b1∂1b+∇2b2∂2b

)
dx

+ 2

∫
∂1∇2b · (∇b1∂1∇b+∇b2∂2∇b) dx

+

∫ (
b1|∂1∇2b|2 + b2∂2∇2b · ∂1∇2b

)
dx

≤ C‖∂1∇2b‖L2

(
‖∂1b‖L4‖∇2b1‖L4 + ‖∂2b‖L4‖∇2b2‖L4

)
+ C‖∂1∇2b‖L2 (‖∇b1‖L4‖∂1∇b‖L4 + ‖∇b2‖L4‖∂2∇b‖L4)

+ C
(
‖b1‖L∞‖∂1∇2b‖2L2 + ‖b2‖L∞‖∂2∇2b‖L2‖∂1∇2b‖L2

)
≤ C‖b‖H3‖b2‖2H3 .

Analogously, noting that ‖∇u2‖Hk = ‖∂1u‖Hk and ‖∇u1‖Hk = ‖∂2u‖Hk for k =
1, 2, we obtain

M15 =

∫
∇2b · ∇2∂1(u · ∇u) dx = −

∫
∂1∇2b · ∇2(u · ∇u) dx

≤ C‖∂1∇2b‖L2

(
‖∂1u‖L4‖∇2u1‖L4 + ‖∂2u‖L4‖∇2u2‖L4

)
+ C‖∂1∇2b‖L2 (‖∇u1‖L4‖∂1∇u‖L4 + ‖∇u2‖L4‖∂2∇u‖L4)

+ C‖∂1∇2b‖L2

(
‖u1‖L∞‖∂1∇2u‖L2 + ‖u2‖L∞‖∂2∇2u‖L2

)
≤ C‖u‖H3

(
‖b2‖2H3 + ‖∂1u‖2H2 + ‖∂2u‖2H2

)
.
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Hence, in terms of the estimates of M1i with i = 2, . . . , 5, we can bound M1 by

M1 ≤
d

dt

∫
∇2∂1u · ∇2b dx+ C

(
‖b2‖2H3 + ‖u1‖2H3

)
+ C‖(u, b)‖H3

(
‖b2‖2H3 + ‖∂1u‖2H2 + ‖∂2u‖2H2

)
.

For M2, by Lemma 2.1 we infer from integration by parts that

M2 =

∫
∇2(u · ∇b) · ∇2∂1u dx

=

∫
∇2u · ∇b · ∇2∂1u dx+ 2

∫
∇ui · ∂i∇b · ∇2∂1u dx

+

∫
u1∂1∇2b · ∂1∇2u dx−

∫
∂1u2∂2∇2b · ∇2u dx

+

∫
∂2u2∂1∇2b · ∇2u dx+

∫
u2∂1∇2b · ∂2∇2u dx

≤ C‖∂1∇2u‖L2‖∇2u‖
1
2

L2‖∂2∇2u‖
1
2

L2‖∇b‖
1
2

L2‖∂1∇b‖
1
2

L2

+ C‖∂1∇2u‖L2‖∇u‖
1
2

L2‖∂2∇u‖
1
2

L2‖∇2b‖
1
2

L2‖∂1∇2b‖
1
2

L2

+ C‖u1‖L∞‖∂1∇2u‖L2‖∂1∇2b‖L2 + C‖∂1u2‖L4‖∂2∇2b‖L2‖∇2u‖L4

+ C‖∂2u2‖L4‖∂1∇2b‖L2‖∇2u‖L4 + C‖u2‖L∞‖∂1∇2b‖L2‖∂2∇2u‖L2

≤ C‖(u, b)‖H3

(
‖∂1u‖2H2 + ‖∂2u‖2H2 + ‖∂1b‖2H2

)
.

Obviously, M3, M4 can be bounded as follows.

M3 ≤ C‖∇2b2‖L2‖∇2∂1u2‖L2 ≤ 1

2
‖∂1∇2u‖2L2 + C‖∇2b2‖2L2 ,

and

M4 = −
∫
∇2∂1u ·

(
∇2b · ∇u+ 2∇bi · ∂i∇u+ bi∂i∇2u

)
dx

≤ C‖∂1∇2u‖L2‖∇2b‖
1
2

L2‖∂1∇2b‖
1
2

L2‖∇u‖
1
2

L2‖∂2∇u‖
1
2

L2

+ C‖∂1∇2u‖L2‖∇b‖
1
2

L2‖∂1∇b‖
1
2

L2‖∇2u‖
1
2

L2‖∂2∇2u‖
1
2

L2

+ C‖b‖L∞‖∇2∂1u‖L2‖∇3u‖L2

≤ C‖(u, b)‖H3

(
‖∂1b‖2H2 + ‖∂2u‖2H2 + ‖∂1u‖2H2

)
.

Thus, it follows from (2.42) and the estimates of Mi (i = 1, . . . , 4) that

‖∂1∇2u‖L2 ≤ 2
d

dt

∫
∇2∂1u · ∇2b dx+ C

(
‖b2‖2H3 + ‖u1‖2H3

)
+ C‖(u, b)‖H3

(
‖b2‖2H3 + ‖∂1u‖2H2 + ‖∂2u‖2H2

)
. (2.43)

Now, adding up (2.41) and (2.43), we deduce

‖∂1u‖2H2 ≤ 2
d

dt

∫ (
∂1u · b dx+∇2∂1u · ∇2b

)
dx+ C

(
‖u1‖2H3 + ‖b2‖2H3

)
+ C‖(u, b)‖H3

(
‖b2‖2H3 + ‖u1‖2H3 + ‖∂1u‖2H2

)
,
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where we have also used ‖∇b2‖Hk = ‖∂1b‖Hk and ‖∂2u‖Hk = ‖∇u1‖Hk for k = 1, 2.
As an immediate result,∫ t

0

‖∂1u‖2H2dτ ≤ C‖(u0, b0)‖2H3 + C‖(u, b)‖2H3 + C

∫ t

0

(
‖u1‖2H3 + ‖b2‖2H3

)
dτ

+ C sup
0≤τ≤t

‖(u, b)‖H3

∫ t

0

(
‖b2‖2H3 + ‖u1‖2H3 + ‖∂1u‖2H2

)
dτ,

from which it readily follows that

E2(t) ≤ CE1(0) + CE1(t) + CE1(t)
3
2 + CE2(t)

3
2 .

The proof of (2.2) is therefore complete.

3. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2 by making full use of the
symmetric structure of linearized system (1.12).

Proof of Theorem 1.2. Taking the inner product of (1.12) with (u, b) in H1, we have

d

dt
A(t) + B(t) = 0, (3.1)

where

A(t) = ‖(u, b)(t)‖2L2 + ‖(∇u,∇b)(t)‖2L2 ,

B(t) = 2ν‖R2u(t)‖2L2 + 2η‖R1b(t)‖2L2 + 2ν‖∇R2u(t)‖2L2 + 2η‖∇R1b(t)‖2L2 .

Next, we compute the norm of (u, b) in anisotropic Sobolev space with negative
indices. Applying Λ−σ1 and Λ−σ2 to (1.12) and dotting them with (Λ−σ1 u,Λ−σ1 b) and
(Λ−σ2 u,Λ−σ2 b) in H1+σ, respectively, we find

d

dt
H(t) + 2ν‖R2(Λ

−σ
1 ,Λ−σ2 )u(t)‖2L2 + 2η‖R1(Λ

−σ
1 ,Λ−σ2 )b(t)‖2L2

+ 2ν‖R2Λ
1+σ(Λ−σ1 ,Λ−σ2 )u(t)‖2L2 + 2η‖R1Λ

1+σ(Λ−σ1 ,Λ−σ2 )b(t)‖2L2 = 0,
(3.2)

where

H(t) = ‖(Λ−σ1 ,Λ−σ2 )u(t)‖2L2 + ‖(Λ−σ1 ,Λ−σ2 )b(t)‖2L2

+ ‖Λ1+σ(Λ−σ1 ,Λ−σ2 )u(t)‖2L2 + ‖Λ1+σ(Λ−σ1 ,Λ−σ2 )b(t)‖2L2 .

We claim that there exists a generic positive constant C > 0, depending only on
ν and η, such that

A(t) ≤ CB(t)
σ

1+σH(t)
1

1+σ . (3.3)

In fact, using Plancherel theorem and Hölder’s inequality, we have from direct cal-
culations that

‖u(t)‖2L2 ≤ C‖∇R2u(t)‖
2σ
1+σ

L2 ‖Λ−σ2 u(t)‖
2

1+σ

L2 ≤ CB(t)
σ

1+σH(t)
1

1+σ ,

‖∇u(t)‖2L2 ≤ C‖∇R2u(t)‖
2σ
1+σ

L2 ‖Λ1+σΛ−σ2 u(t)‖
2

1+σ

L2 ≤ CB(t)
σ

1+σH(t)
1

1+σ ,
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‖b(t)‖2L2 ≤ C‖∇R1b(t)‖
2σ
1+σ

L2 ‖Λ−σ1 b(t)‖
2

1+σ

L2 ≤ CB(t)
σ

1+σH(t)
1

1+σ ,

‖∇b(t)‖2L2 ≤ C‖∇R1b(t)‖
2σ
1+σ

L2 ‖Λ1+σΛ−σ1 b(t)‖
2

1+σ

L2 ≤ CB(t)
σ

1+σH(t)
1

1+σ ,

from which the assertion (3.3) follows.
It is easily seen from (3.2) that H(t) is non-increasing, and H(t) ≤ H(0). Hence,

by (3.3) we have

A(t) ≤ CB(t)
σ

1+σH(0)
1

1+σ or B(t) ≥ CH(0)−
1
σA(t)1+

1
σ ,

which, inserted in(3.1), yields

d

dt
A(t) + CH(0)−

1
σA(t)1+

1
σ ≤ 0,

so that

A(t) ≤
(
A(0)−

1
σ +

C

σ
H(0)−

1
σ t

)−σ
.

This finishes the proof of Theorem 1.2. �

4. Proofs of Theorem 1.3 and Theorem 1.4

This section aims to prove Theorems 1.3 and 1.4, based on the special wave
structure of the linearized system (1.13). To begin, we first recall the following
elementary lemma, which provides a precise decay rate for a nonnegative integrable
function when it decreases in a generalized sense.

Lemma 4.1. For given positive constants C0 > 0 and C1 > 0, assume that f = f(t)
is a nonnegative function defined on [0,∞) and satisfies,∫ ∞

0

f(τ) dτ ≤ C0 <∞, and f(t) ≤ C1 f(s), ∀ 0 ≤ s < t.

Then there exists a positive constant C2 := max{2C1f(0), 4C0C1} such that

f(t) ≤ C2(1 + t)−1, ∀ t ≥ 0.

Proof. On the one hand, when 0 ≤ t ≤ 1, it holds that

f(t) ≤ C1f(0).

On the other hand, when t ≥ 1, one has

C0 ≥
∫ t

t
2

f(τ) dτ ≥ C−11

∫ t

t
2

f(t) dτ =
t

2C1

f(t),

which implies that

f(t) ≤ 2C0C1t
−1, ∀ t ≥ 1.

Combining the above two cases leads to the desired decay estimate. �

We are now ready to prove Theorem 1.3.
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Proof of Theorem 1.3. Dotting (1.13)1 with ∂tu in L2, we obtain

1

2

d

dt

(
‖∂tu‖2L2 + νη‖R1R2u‖2L2 + ‖∂1u‖2L2

)
+ ν‖∂tR2u‖2L2 + η‖∂tR1u‖2L2 = 0, (4.1)

and hence,
d

dt

(
‖∂tu‖2L2 + νη‖R1R2u‖2L2 + ‖∂1u‖2L2

)
≤ 0. (4.2)

Multiplying (1.13)1 by u in L2 and integrating by parts, we have

1

2

d

dt

(
η‖R1u‖2L2 + ν‖R2u‖2L2 + 2〈∂tu, u〉

)
+ ‖∂1u‖2L2 + νη‖R1R2u‖2L2 − ‖∂tu‖2L2 = 0. (4.3)

where 〈·, ·〉 denotes the standard L2-inner product.
Let δ := min {ν, η}. For a constant µ > 0 to be specified later, we obtain after

adding (4.1) and µ×(4.3) together that

1

2

d

dt

(
‖∂tu‖2L2 + µη‖R1u‖2L2 + µν‖R2u‖2L2 + νη‖R1R2u‖2L2 + ‖∂1u‖2L2 + 2µ〈∂tu, u〉

)
+ (δ − µ)‖∂tu‖2L2 + µνη‖R1R2u‖2L2 + µ‖∂1u‖2L2 ≤ 0, (4.4)

since ‖∂tR2u‖2L2 + ‖∂tR1u‖2L2 = ‖∂tu‖2L2 . By choosing µ = δ
4
, we see that

1

2
‖∂tu‖2L2 +

1

8
δ2‖u‖2L2 ≤ ‖∂tu‖2L2 + µδ‖u‖2L2 + 2µ〈∂tu, u〉

≤ ‖∂tu‖2L2 + µη‖R1u‖2L2 + µν‖R2u‖2L2 + 2µ〈∂tu, u〉, (4.5)

Thus, by virtue of (4.5), we deduce after integrating (4.4) over (0, t) that

1

2
‖∂tu‖2L2 +

1

8
δ2‖u‖2L2 + νη‖R1R2u‖2L2 + ‖∂1u‖2L2

+ 2

∫ t

0

(
3δ

4
‖∂tu‖2L2 + µνη‖R1R2u‖2L2 + µ‖∂1u‖2L2

)
dτ

≤ C (‖∂tu0‖L2 , ‖u0‖L2 , ‖R1R2u0‖L2 , ‖∂1u0‖L2) ,

and consequently,∫ ∞
0

(
‖∂tu‖2L2 + ‖R1R2u‖2L2 + ‖∂1u‖2L2

)
dt <∞. (4.6)

In view of (4.2) and (4.6), it readily follows from Lemma 4.1 that

‖∂tu‖2L2 + ‖R1R2u‖2L2 + ‖∂1u‖2L2 ≤ C(1 + t)−1.

Based upon (1.13)2, one can obtain the same result for b. The proof of Theorm 1.3
is thus complete. �

We proceed to prove Theorem 1.4.
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Proof of Theorem 1.4. Let ψ be the Fourier cutoff operator defined in (1.15). Taking
the convolution of ψ with (1.13)1 leads to

∂tt(ψ ∗ u)−
(
νR2

2 + ηR2
1

)
∂t(ψ ∗ u)− ∂21(ψ ∗ u) + νηR2

1R2
2(ψ ∗ u) = 0. (4.7)

Dotting (4.7) by ∂t(ψ ∗ u) in L2 and integrating it by parts, we obtain

d

dt

(
‖∂t(ψ ∗ u)‖2L2 + ‖∂1(ψ ∗ u)‖2L2 + νη‖R1R2(ψ ∗ u)‖2L2

)
+ 2ν‖∂tR2(ψ ∗ u)‖2L2 + 2η‖∂tR1(ψ ∗ u)‖2L2 = 0. (4.8)

Similarly, multiplying (4.7) by ψ ∗ u in L2, we have

d

dt

(
ν‖R2(ψ ∗ u)‖2L2 + η‖R1(ψ ∗ u)‖2L2 + 2 〈∂t(ψ ∗ u), ψ ∗ u〉

)
+ 2‖∂1(ψ ∗ u)‖2L2 + 2νη‖R1R2(ψ ∗ u)‖2L2 − 2‖∂t(ψ ∗ u)‖2L2 = 0. (4.9)

Let δ := min {ν, η}, and λ > 0 be a positive constant to be determined later.
Then, operating (4.8)+λ×(4.9) yields

d

dt
F (t) + 2(δ − λ)‖∂t(ψ ∗ u)‖2L2

+ 2λ‖∂1(ψ ∗ u)‖2L2 + 2λνη‖R1R2(ψ ∗ u)‖2L2 ≤ 0, (4.10)

where

F (t) := ‖∂t(ψ ∗ u)‖2L2 + ‖∂1(ψ ∗ u)‖2L2 + νη‖R1R2(ψ ∗ u)‖2L2

+ λν‖R2(ψ ∗ u)‖2L2 + λη‖R1(ψ ∗ u)‖2L2 + 2λ 〈∂t(ψ ∗ u), ψ ∗ u〉 .

Let D be the frequency domain defined in (1.14) and Dc be its complement.
Moreover, we divide Dc into two regions:

A1 =
{
ξ ∈ R2 : |ξ1| ≥ α

}
, A2 =

{
ξ ∈ R2 : |ξ1| < α and |ξ|2 ≤ β|ξ1||ξ2|

}
.

We can now bound ‖ψ ∗ u‖2L2 by ‖∂1(ψ ∗ u)‖2L2 and ‖R1R2(ψ ∗ u)‖2L2 . Indeed,

‖ψ ∗ u‖2L2 =
∥∥∥ψ̂û∥∥∥2

L2
=

∫
A1

|ψ̂û|2dξ +

∫
A2

|ψ̂û|2dξ

≤ α−2
∫
A1

ξ21 |ψ̂û|2dξ + β2

∫
A2

ξ21ξ
2
2

|ξ|4
|ψ̂û|2dξ

≤ α−2‖∂1(ψ ∗ u)‖2L2 + β2‖R1R2(ψ ∗ u)‖2L2 . (4.11)

Then, multiplying (4.11) by λ2 and then adding with (4.10), we obtain

d

dt
F (t) + 2(δ − λ)‖∂t(ψ ∗ u)‖2L2 + (2λ− λ2α−2)‖∂1(ψ ∗ u)‖2L2

+ (2λνη − λ2β2)‖R1R2(ψ ∗ u)‖2L2 + λ2‖ψ ∗ u‖2L2 ≤ 0. (4.12)

Thus, if λ > 0 is chosen to be such that

λ ≤ min

{
1

2
δ, α2,

νη

β2

}
,
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then we infer from (4.12) that

d

dt
F (t) + δ‖∂t(ψ ∗ u)‖2L2 + λ‖∂1(ψ ∗ u)‖2L2

+ λνη‖R1R2(ψ ∗ u)‖2L2 + λ2‖ψ ∗ u‖2L2 ≤ 0. (4.13)

Recalling the definition of F and noting that

2λ (∂t(ψ ∗ u), ψ ∗ u) ≤ λ‖∂t(ψ ∗ u)‖2L2 + λ‖ψ ∗ u‖2L2 , (4.14)

we obtain after operating (4.13)+λ2×(4.14) that (ϑ := max {ν, η})

d

dt
F + λ2F + (δ − λ2 − λ3)‖∂t(ψ ∗ u)‖2L2 +

(
λ− λ2

)
‖∂1(ψ ∗ u)‖2L2

+
(
λνη − λ2νη

)
‖R1R2(ψ ∗ u)‖2L2 + λ2(1− ϑλ− λ)‖ψ ∗ u‖2L2 ≤ 0, (4.15)

If λ > 0 is taken to be sufficiently small such that

λ = min

{
1

4
δ, α2, 1,

νη

β2
,

1

ϑ+ 1

}
, (4.16)

then it follows from (4.15) that

d

dt
F + λ2F ≤ 0 or F (t) ≤ F (0)e−λ

2t. (4.17)

In view of the simple inequality,

2λ (∂t(ψ ∗ u), ψ ∗ u) ≤ 1

2
‖∂t(ψ ∗ u)‖2L2 + 2λ2‖ψ ∗ u‖2L2 ,

one easily has

1

2
‖∂t(ψ ∗ u)‖2L2 +

1

2
λδ‖ψ ∗ u‖2L2 + νη‖R1R2(ψ ∗ u)‖2L2 + ‖∂1(ψ ∗ u)‖2L2 ≤ F (t).

As an immediate consequence of (4.17), we conclude that for λ satisfying (4.16),

‖ψ ∗ u‖2L2 + ‖∂t(ψ ∗ u)‖2L2 + ‖∂1(ψ ∗ u)‖2L2 + ‖R1R2(ψ ∗ u)‖2L2 ≤ Ce−c(η,ν,α,β)t

where

c(η, ν, α, β) :=

(
min

{
1

4
δ, α2, 1,

νη

β2
,

1

ϑ+ 1

})2

.

The same result also holds for b. The proof of Theorem 1.4 is therefore finished. �
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