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Abstract

The dynamical properties of multi-terminal Josephson junctions have
recently attracted interest, driven by the promise of new insights into
synthetic topological phases of matter [1-9] and Floquet states [10-13].
This effort has culminated in the discovery of Cooper multiplets, in
which the splitting of a Cooper pair is enabled via a series of Andreev
reflections that entangle four (or more) electrons [10-16]. In this text,
we show conclusively that multiplet resonances can also emerge as a
consequence of the three terminal circuit model, similar to the the-
oretical prediction of Ref. [17]. The supercurrent appears due to the
correlated phase dynamics at values that correspond to the multiplet
condition nVs; = —mV2 of applied bias. The emergence of multi-
plet resonances is seen in i) a nanofabricated three-terminal graphene
Josephson junction, ii) an analog three terminal Josephson junction
circuit, and iii) a circuit simulation. The mechanism which stabilizes
the state of the system under those conditions is purely dynami-
cal, and a close analog to Kapitza’s inverted pendulum problem. We
describe parameter considerations that best optimize the detection of
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the multiplet lines both for design of future devices. Further, these
supercurrents have a classically robust cos2¢ energy contribution,
which can be used to engineer qubits based on higher harmonics.

Keywords: Josephson Junctions, Superconductivity, Nonlinear Dynamics,
Synchronization

1 Introduction

A two terminal Josephson junction can be well described by the RCSJ model,
whereby an imaginary particle representing the phase variable evolves in a
tilted washboard potential [18]. When the particle rests in a minimum of the
washboard, the phase is static and the device is superconducting. As a bias
is applied, the washboard tilts, until eventually the phase particle enters the
running state, resulting in a voltage between the contacts proportional to (ng)

When a third superconducting contact is added, the washboard potential
becomes two-dimensional, which expands the complexity of the phase trajec-
tories [19]. When a bias is applied to one of the contacts, it causes movement
along the associated phase axis. If the phase is evolving along one axis but
not the other, the junction associated with the stationary phase will generate
a supercurrent, while the other junctions will develop a finite voltage [20-22].

Stationary phase conditions may arise even when the voltage across every
pair of contacts is finite. For example, in a three terminal device such as the
one shown in Figure la, when Vi, = —Vgx # 0, (¢, + ¢R) is stationary with
respect to the grounded bottom contact. The microscopic origin of the resulting
supercurrent has commonly been attributed to “quartets” — an entangled set of
four electrons [14-16, 23]. Without loss of generality, supercurrents generated
by the static phase states exist for any combination of nVy + mVg = 0, with
integers n and m and involve the entanglement of multiplets consisting of four
or more electrons.

These multiplets have been an area of intense theoretical [10-13, 17, 24]
and experimental [14-16] study as they show promise to provide insights into
Floquet dynamical systems [10-13, 16]. However, it has recently been found
that quartets may classically emerge as a consequence of the mixing of strictly
sinusoidal current phase relations (CPR) [17]. Here, we demonstrate clas-
sical quartets in the case of a three terminal graphene Josephson junction
(Figure la), a three-terminal Josephson junction analogue (Figures 2,3), and
simulations of the multi-terminal circuit (Figures 4,5).

2 Results

2.1 Graphene Three Terminal Junction

The primary device studied here is Y-shaped (Figure 1a), with a 0.5 ym long
graphene channel separating the three superconducting contacts of widths
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Fig. 1 (a) SEM image of two three-terminal Josephson junctions patterned on an encap-
sulated BN /graphene device. Scale bar = 5 pm. (b) Differential resistance 0V, /01y, and c)
OVR/OIR as a function of both biases at Vg = 10 V. Three large superconducting branches
emerge corresponding to supercurrent between each pair of contacts. Additionally, a quartet
branch (labelled Q) appears for each combination of V; = —Vj. d) 0V, /0I, at Vg = -2 V.
Near the Dirac peak, the Q lines disappear and dissipative MAR lines parallel to the super-
conducting branches emerge. e) OVy, /01y, for a fixed Ir = 2 pA as a function of gate and
I1,. The Q reduces in visibility as the resistance is increased. Variations in the position of
the branch are due to electron interference in the ballistic cavity. f) The circuit model of the
device. All three superconducting contacts are connected via Josephson junctions, resistors
and capacitors.

between 6.5 and 7.5 um. The contacts are labelled left (L), bottom (B), and
right (R), forming three junctions. The device length is comparable to the
coherence length induced in graphene by MoRe [25, 26], placing it in the
intermediate length regime, where harmonics in the CPR should be relatively
small. This design should minimize any crossed Andreev reflections or mul-
tiple Andreev reflections between more than two contacts, as these processes
could only occur in the relatively small central region where the three junc-
tions meet. Also, the carriers would need to traverse the sample multiple times
in order to be reflected from several contacts. Additional fabrication details
are provided in Ref. [27].

The device is cooled to a base temperature of 30 mK. We apply current
biases from the L and R contacts, while measuring differential resistances from
both leads to ground (B). We find results consistent with previous studies [20—
22] (Figure 1b,c). Large superconducting branches correspond to supercurrent
between each pair of contacts. Additionally, we observe quartet resonances at
all combinations of V; = —V; (labelled Q).

Next, we vary the gate voltage on the device, depleting the graphene. Near
the Dirac peak (Figure 1d), the contact transparency is significantly reduced,
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causing a simultaneous reduction of critical current and increase of R,,. In this
region, the quartet lines disappear, while dissipative multiple Andreev reflec-
tion (MAR) lines emerge parallel to the primary superconducting branches.
This observation is a strictly microscopic effect, consistent with Ref. [24],
and will not be captured by any of our modelling later on in the text. The-
ory and earlier work [14] predict the emergence of quartet resonances due to
nondissipative MAR between multiple transparent contacts. We believe, for
several reasons, this is an unlikely explanation of the quartet resonances in our
device. First, the distance between the contacts is too large to support even
two-terminal higher harmonic supercurrents, which require carriers travers-
ing between the contacts multiple times [19]. Indeed, multiplet resonances are
robust to elevated temperatures (see [27]). Second, the multi-terminal MAR
trajectories resulting in quartets would be confined to the central area of the
sample (< 1lpm) and should be even further suppressed. Instead, as we will
discuss later, the resonances we observe are a dynamical effect that is expected
from the RCSJ model. Specifically, the variation of R, and I. is directly
responsible for the loss of quartet lines and not the microscopics pertaining to
nondissipative nonlocal MAR.

In Figure le, we fix Ip at 2 pA, while sweeping I, and varying the gate
voltage. The critical currents of the LR and LB junctions oscillate as a function
of the gate voltage, which we attribute to electron interference within the
ballistic cavity. These variations in critical current shift the location in current
bias of the V, = —Vg condition and are reflected in variations of the quartet
line. For this value of I, the quartet line is no longer visible near Vg =1 V.

Fig. 2 a) Simplified schematic of the analog three terminal junction. b) Map of the effective
differential resistance d¢r, /OVL, as a function of biases VI, and Vg. ¢) Map of the effective
differential resistance d¢r/OVR as a function of both biases.

We model the three terminal junction by the current biased network of
three shunted junctions shown in Figure 1f. The biased left and right contacts
have superconducting phases ¢, and ¢, while the bottom contact is grounded
with a phase of zero. Using Josephson equations and Kirchhoff laws, we can



Springer Nature 2021 B TEX template

Dynamical stabilization of Multiplet Supercurrents in Multi-terminal Josephson Junctions

write the system of differential equations that the two phases obey. These can

be cleanly written in matrix form if one defines ® = <£L> and I = (?“) P
R R

can be shown to follow this differential equation:

no. B .
—CP+ —Go+1.(®)=1 1
5 CP+ 5 G+ Lo(®) (1)

C and G are 2x2 matrices that depend on the junctions shunting resistances and
capacitances. I.(®) depends on the junction’s current phase relation, which for
simplicity are assumed to be sinusoidal[27]. In the rest of the paper, we develop
two approaches to understand the dynamical properties of that equation. We
first study a classical analog circuit that verifies the same equation, then turn
to a powerful numerical scheme to solve it.

2.2 Analog Three Terminal Junction

An analog circuit whose dynamical properties are identical to those of a three
terminal junction is shown in Figure 2a [29-32]. The two main observables are
the main operational amplifiers’ outputs which are proportional to qb 1, and gb R-
Voltage-controlled oscillators provide the sinusoidal nonlinearity: if a voltage
proportional to (b is applied to their input, the output scales like sin(¢). It is
thus possible to show that ¢, and ¢ follow a system of differential equations
formally identical to (1)[27, 28]. The circuit is therefore a classical implemen-
tation of the three terminal RCSJ model, and is expected to demonstrate the
same dynamical effects as a multi-terminal junction, but free from any micro-
scopic “artifacts”. We show in Ref. [27] that the two input voltages Vi, and Vg
play the same role as input currents I;, and Ir in Figure 1f.

In a conventional junction, the oscillations of (b occur on sub-nanosecond
time-scales. This dynamic is inevitably time-averaged in conventional trans-
port measurements by the slower response of the setup, and in practice only
the DC component <¢) is measured. This is not the case in our analog circuit,
since phases evolve on ms time-scales and can therefore be recorded. This junc-
tion analogue thus provides a wealth of information on phase dynamics which
is experimentally inaccessible in a conventional junction.

We first discuss the time-average of ¢ to compare it to previously described
Josephson junction measurements. The amplifier outputs (b 1, and qb R are time-
averaged with low-pass filters. Since V}, and Vi mathematically play the same
role as current biases, we plot the quantities d¢r, /0V, and Odr /O0Vg which are
formally equivalent to the differential resistances of the left and right junction,
even though these quantities are technically dimensionless. We obtain the maps
presented in Figure 2b and 2c¢, which are strongly reminiscent of prior transport
measurements on three terminal junctions.

Indeed, we notice the three widest diagonal arms of suppressed differential
resistance, which each correspond to one of the analog junctions being locked
into the zero-voltage state. In Figure 2b, the darkest branch corresponds to
the LB junction, whereas in Figure 2c, it corresponds to the RB junction.
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Fig. 3 (a-d) Time evolution of ¢ (t) and ¢r(t), respectively in light and dark blue, mea-
sured at bias values along the vertical dashed line in Figure 2c. These plots are obtained:
(a) when junction LB is in the zero voltage state (V=1 V), (b) on top of the quartet reso-
nance (V,=1.57 V), (c) on top of one of the sextet resonances (V7 =1.36 V), and (d) close
to the transition to the RB zero voltage state (V,=2.18 V). (e) Map of the frequency spec-
trum of (;.SL (t) as a function of the bias V1, from 0.8 V to 2.5 V, while the other bias Vg is
held constant at -1.8 V (white dashed line in Figure 2¢). A time trace of ¢, (¢) is acquired
with an oscilloscope at each bias value, and the fast Fourier transform is then calculated for
that bias. The fundamental frequency of the left junction is constant at 600 Hz when it is
in the zero voltage state up to Vz, = 1.2 V, but it then increases monotonically with bias
up to 1000 Hz as the junction enters the resistive state [28]. Period doubling and tripling
are evident on the quartet and sextet branch respectively. Bottom panel: Cross section of
the differential resistance 9(¢r,)/0Vy, for the same bias values. f) Simulation of trajectories
in phase space, superimposed on the washboard potential. Trajectories are shown on the
quartet resonance (red) and away from it (black).
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Remarkably, the data also show narrower resonances of suppressed differential
resistance when <¢L + é)R> =0, (gbL + ¢T> =0, and <q5R + czST) = 0. These
correspond to quartet resonances which are obviously not a microscopic effect
and solely stem from classical phase dynamics. Note that the circuit even
generates classical sextet resonances along lines such as <¢L + 24) r) = 0 and
(201 + ¢r) = 0.

To further explore these classical multiplet resonances, we turn to the non-
averaged time evolution of gﬁL and gf)R. For a three-terminal junction, the
washboard potential is:

U(¢r,¢r) = —Er cos(¢r) — Ercos(¢r) — ELr cos(¢r — ¢r) (2)

FE;, Er and Ep R represent the Josephson energies of the left, right and trans-
verse junctions. U(¢yr, ¢r) is plotted on Figure 3f in the particular case where
the three Josephson energies are identical, which turns out to be the case in
the analog circuit presented here. If the left junction is in the zero-voltage
state, its phase oscillates around zero and the trajectory would be nearly ver-
tical on Figure 3f. Figure 3a shows the time evolution of the ¢, (t) and ¢gr(t)
in this scenario: ¢, oscillates around 0, while (qS.R) # 0. Similarly, if the right
junction were in the zero voltage state, ¢g(t) would oscillate around zero and
the trajectory would be nearly horizontal in Figure 3f.

We now turn to the phase dynamics when none of the three junctions
are in their respective zero-voltage state. Figure 3e represents the frequency
spectrum of ¢, (t) as a function of the bias Vr,, but the corresponding map for
éR(t) is nearly identical. Vg is held constant at -1.8 V. This corresponds to a
vertical cut on Figure 2b where the device starts in the zero-voltage arm LB (at
Vi, = 0.8 V), then cuts through dissipative regions and multiplet resonances
before it ends in the zero-voltage arm RB (at Vi, = 2.5 V). In order to acquire
the frequency spectrum, a 1.4 s time trace of 7 x 10° points is acquired at every
bias value with an oscilloscope. We then compute the fast Fourier transform
at each bias value to obtain the map 3e.

For V, < 1.2 V, the left junction is in the zero voltage state while the
right junction is in the running state. (;.SR(t) thus oscillates with a non-zero
average, as shown in Figure 3a. Those oscillations are also seen in (;5L (t) as a
result of the coupling between the two junctions. In that regime, the oscillation
frequency only depends on the bias in the R direction, and the resonance seen
at 580 Hz on Figure 3e is therefore flat until V;, = 1.2 V. When V, exceeds 1.2
V, ¢, enters the running state and new resonances appear. The drift of the
phase in the L direction is very slow at first, but speeds up with increasing
V1. It therefore results in a frequency component in the spectrum, labeled L,
which starts close to 0 Hz at Vi, = 1.2 V and increases up to ~ 800 Hz at
VL = 2.2 V [Figure 3e]. Meanwhile, as V7, approaches 2.2 V the right junction
gets closer to its zero-voltage state and oscillations caused by qﬁR slow down.
This corresponds to the frequency component that decreases from 580 Hz at
1.2 V to 0 at 2.2 V, labeled R. Very close to 2.2 V, the trajectory along the
washboard potential in Figure 3f is nearly horizontal, but phase-slips in ¢gr
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occur every few oscillations of ¢, which causes a spike in c;S r. The oscillations
of gf)L are thus expected to be modulated at a very slow frequency by the
ratcheting of ¢r. This scenario is shown in Figure 3d, and it corresponds to a
region of the FFT map close to the right edge of the diffusive region (= 2.2 V).
Finally, we note that the nonlinear coupling between the two junctions causes
a third strong resonance at the sum of the first two frequencies, and labeled
L + R. Note that other frequency combinations, such as L — R and R — L are
also generated but not labeled, so as not to crowd the map.

Multiplet resonances emerge when the L and R frequency components are
commensurate. For example, when Vi, ~ 1.55 V, L = R and the cut intersects
the classical quartet resonance in 2b. An excerpt of the corresponding time
trace is shown in Figure 3b. Here L 4+ R simply corresponds to a frequency
doubling of the main resonance, which explains the double-peaked profile of
the time trace. Similarly, sextet states are observed when L = 2R or R = 2L,
around biases 1.35 V and 1.85 V. A relevant time-trace is shown on Figure
3c. For both quartet and sextet resonances, the commensurate condition per-
sists over a finite range of bias Vi, which explains the finite width of those
resonances in 2b. We prove this result analytically in Ref.[27] in the quartet
case.

3 Simulations

We now turn to numerical simulations of Equation (1). We chose to study the
multi-terminal generalization of the conventional RCSJ model, rather than to
use the full model which takes into account the lead resistance and the capac-
itance of the bonding pads [33]. Indeed, the full model effectively reduces to
RCSJ model in our range of parameters (high critical currents). Furthermore,
the analog system studied in Figures 2 and 3 directly corresponds to RCSJ
without extra circuit elements.

Consistent with previous experimental work, we find superconducting
branches corresponding to supercurrents between each pair of contacts for
V; = 0 (Figure 4a,b). We also observe the additional multiplet resonant
branches at voltage values corresponding to V; = —V; and V; = —2V;. These
resonances are thus confirmed to be a purely dynamical effect that results from
the RCSJ model.

To understand the dynamics, we plot the trajectory in phase space when
biases are such that the device is in the quartet dynamical state I (in red on
Figure 3f). Understandably, the overall trajectory follows a contour of constant
¢r + ¢r, although oscillations along that contour are noticeable. Note that
this trajectory is calculated slightly off the the center of the quartet resonance
to better emphasize its stability. When the bias drives the junction out of the
classical quartet resonance, the trajectory in phase space loses its symmetry
and consists of more random phase jumps in the ¢;, and ¢ direction (in black
on Figure 3f). Intuitively, one expects the red trajectory to be robust against
small perturbations in the bias.
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Along the quartet resonance, a)
the phase space trajectory approx-
imates ¢;, + ¢r = 0 mod 27. The
potential energy along that cross 25
section can thus be rewritten as:

av, /ol

1.2 3.4
[ —

U(¢) =~ —(EL + Eg) cos(¢r,r)
_ELR COS(2¢L7R)

This potential energy has two
local maximas per period. It is 5 25
therefore understandable that the b)
angular velocity ¢ has a double- 5—
peak profile for both channels in
Figure 3b.

While multiple higher order res-
onances are observed in the sim-
ulation, experimentally these reso-
nances are extremely weak (Figure
2). We attribute this suppression to 2.5
the sub-optimal tuning of the circuit
elements. Indeed, the stability of 5
these multiplet resonances strongly -5 2.5 0 25

N lz (WA)
depends on circuit parameters, and
in particular on the quality factor of

0 2.5 5
(;\F} (/Sﬁ) 50 150 250
R'™R | —

Fig. 4 Numerical simulation of the dif-
. . ferential resistance OV /0Ip (panel a) and
the junctions. OVRr/0IRr (panel b) as a function of both
biases. Primary superconducting branches
emerge corresponding to  supercurrents
between each pair of contacts. Additional res-

- onances emerge showing quartet and higher
The stability of the quartet reso-  multiplet supercurrents.

nance and its dependence on cir-

cuit parameters can be understood

analytically within the framework

of equation (1). If, for simplicity,

all shunting capacitances and resis-

tances are assumed to be identical, we can define ¢ = d’LJQ”bR, n = ¢L;¢R,
I, =1+ Ig, I =1 — Ig, and show that:

4 Discussion

€+ %é + w? cos(n) sin(e) = I (3)

Close to the quartet resonance, =~ ¢, r changes very rapidly and is in
fact nearly linear in time: n ~ wt with w = e(VL—E_VR) This approximation
makes equation (3) equivalent to Kapitza’s inverted rigid pendulum problem
(in the absence of gravity). The rapid oscillations of cos(n) stabilize € near
an equilibrium at € = 0 or 7, and therefore lock the phase around a contour

of constant ¢y, + ¢g = 0 mod 27, which is the quartet trajectory in phase
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Fig. 5 a,b) Numerical simulation of the differential resistance dVr, /01y, vs. biases Iy, R,
which are limited to the top left quadrant. For simplicity, all parameters are kept identical
for the three junctions: critical currents are I'c = 600 nA, shunting resistances are R = 1602,
shunting capacitances C' are all equal to a) 30 {F in panel (a), and 300 {F in panel (b). c)
The width of the quartet resonance d1 as a function of C'. The widths are measured at biases
indicated by white arrows in panel b: I, — Ir = 3.2uA (black), 4.4pA (dark blue), and
5.6pA (light blue). Inset: Width of the resonance for It, — Ir = 3.2uA as a function of 1/C.

space. With minimal changes to the canonical solution of Kapitza’s problem,
we show that (¢) stays zero for a small, but nonzero range of |I;| < 61, with

2
- Mo @)
4eC (VL - VR)Q

Within this range, the corresponding differential resistance, o< d{€)/dI, is
equal to zero, which explains why those classical multiplet trajectories result
in superconducting branches in the differential resistance maps [27].

In Figures 5a and 5b we plot the simulated differential resistance d¢y, /O],
as a function of I, g for two values of capacitance, C' = 30fF and C' = 300fF.
Multiplet resonances are very clearly seen in 5a when pq.&L + qé)R = 0, with
(p,q) < 5. We labeled the first few values of (p,q) in white. However, those
resonances are heavily suppressed at higher capacitances, Figure 5b.

We next simulate the width of the quartet resonance 01 for three different
values of bias (I_ = I, — Ir) over a wide range of C. As expected, dI decreases
with bias. The width is also found to be proportional to 1/C at high C' (Figure
5c), in agreement with eq. (4). Interestingly, 6/ is nonmonotonic in C' and
reaches a local maximum at very low capacitance. This trend is not captured
by the derivation above, which required a clear separation of the time scales
w >> wp. When the capacitance drops, wy becomes too large for this condition
to hold. Indeed the position of the local maximum shifts to lower capacitance
values when w increases with bias.

Our results show that oscillator synchronization can produce stable super-
currents while all junctions in the device are in the running state. This
counterintuitive result provides evidence that multi-terminal Josephson junc-
tions may host a number of macroscopic quantum phenomena (such as a
supercurrent) based solely on the classical nonlinear equations that dictate

ol
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their dynamics. This concept may prove to be useful as Josephson junctions
rise to prominence as a fundamental building block of quantum computers.

More specifically, the robust classical 2¢ periodicity of the multiplet res-
onances may be useful in developing cos2¢ qubits [17, 34, 35]. In this case,
coherence could be generated using flux biasing with superconducting loops,
which have been used to probe topological states in diffusive multiterminal
junctions [8, 9]. The robust cos 2¢ energy can then be achieved by appropriately
varying the contact phase through the ¢ = —¢g condition.

5 Methods

Graphene and boron nitride flakes are separately exfoliated on a thermally
oxidized silicon substrate. The graphene is then encapsulated between BN lay-
ers using a dry-transfer method, and deposited on a doped silicon substrate
with a 280 nm thick oxide. This protects the sample against contaminants
and allows for ballistic transport [36, 37], including ballistic supercurrent over
several microns [25, 26, 38]. The structure is then annealed in atmosphere at
500°C for one hour. The device region is defined using electron beam lithogra-
phy and is etched using a CHF5 / O reactive ion etching process. The three
superconducting electrodes consist of 70 nm thick molybdenum rhenium alloy,
a material known to make high transparency contacts to graphene [26, 38].
The MoRe is sputtered at 7T0W in an argon atmosphere at a pressure of 3
mTorr, and directly after a reactive ion etch.

The device is cooled in a Leiden Cryogenics dilution refrigerator and
measured using standard lock-in techniques.

Numerical simulations involve a fourth-order Runge-Kutta scheme written
in tensor form so that the computation of ®(¢) at all bias points can be paral-
lelized over a large number of GPU cores in PyTorch [19, 27]. Maps shown in
Figure 4 are thus generated in under 20 s [27]. Once the time evolution ®(t)
is determined, we compute the time-average of <I>(t) to determine DC voltages
across each junctions. This allows us to compute the differential resistances
0¢r,/0IL, and OpRr/IIR as a function of both biases (Figure 4a,b). Additional
details on the numerical scheme are shown in Ref.[27].
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7 Supplementary Information

7.1 Heating

We showed in Figure 1 of the
main paper that quartet reso-
nances appear in the differential
resistance measured on graphene-
based three terminal junctions.
Here we discuss the temperature
dependence of those resonances.
Indeed, temperature-dependent
measurements are a means to dis-
tinguish microscopic mechanisms
and macroscopic circuit effects that
could generate quartet resonances.
As the temperature is elevated,
the Andreev bound state structure
from higher harmonics in the CPR
or nondissipative multiple Andreev
reflection states should rapidly fade
away [39]. However, features that
arise due to the larger energy scales
of the circuit should be more robust
[19].

We apply current biases from
the left and right contacts while
measuring the differential resistance
of the left contact to ground. The
gate was set to 0 V (approximately
2 V away from the Dirac peak.) We
track the quartet resonance between
the LB and LR branches and com-
pare the visibility of the quartet
resonance as we increase tempera-
ture. At base temperature (Figure
Sla), the quartet line is clearly visi-
ble. As temperature is raised, there
is a distinct reduction of visibility I (uA)
in the quartet line (Figure Slb,c). R

This culminates in the complete Fig. 6 The effects of heating on the visibility
of the quartet resonance. a) At the base tem-

IOS_S of quartet visibility at 1.75 K perature the resonance is clearly seen. b,c) As
(Flgure Sld)- We are thus able to temperature is raised the resonance becomes
observe the quartet resonance at rel- more faint before d) the resonance disappears.
atively elevated temperatures. This The robustness to elevated temperature indi-

cates that the origin of the resonance is not
suggests that they result from the due to a complicated microscopic mechanism.
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dynamical properties of the RCSJ
model, and not from higher har-
monics in the CPR.

7.2 Shapiro Steps

To show the coherence of the quar-
tet resonances we apply 5 dBm of
5.2 GHz microwave radiation to our

R(Q)

device. We can see the emergence of 60
Shapiro steps, which result from the

locking of the two superconducting < 40
phases onto the microwave drive. I

It generates quantized voltage steps - 20
at 'V, = n2h€f , where n is typically

an integer. Higher harmonics in the

0

CPR generate additional steps at
voltages Vi, m = ;‘—iﬁf;, with both n
and m as integers. m represents the
harmonic of the current phase rela-  Fig. 7 Bias-bias differential resistance map
i ip - — i of the LB junction with 5 dBm of 5.2 GHz
g(:f}\l;gul dI E:i)pe;t %{;t{cgfosll:gl TTtl}(iﬁe zzp}ili.ed miciowave sigr.lal. Arrows marked with
> Q” indicate the Shapiro steps of the Quartet.
quartet resonance, the robust sin 2¢
supercurrent contribution from the
energy landscape would give rise to half integer steps. Alternatively, in the case
of entangled Cooper quartets (corresponding to transport of a 4e charge) and
barring any harmonics in the supercurrent contribution, the plateau values
would take V,, = ”fef , which would also appear as half integer steps.
Unfortunately, the small supercurrents make quantitative discussion of the
plateau values meaningless - the branches are too small to resolve the volt-
age step on top of the dissipative background. However, the existence of the
Shapiro branches demonstrates that the multi-phase potential is coherent. We
note however that this only means that the superconducting phases of the
contacts are synchronized and implies nothing about the entanglement of the
transport.

Iy (uA)

7.3 Numerical scheme

Equation (1) in the main paper was solved numerically using a fourth order
Runge-Kutta scheme. The phase ®(t) can be calculated for each value of bias
sequentially, but that procedure is extremely slow and maps such as the ones
shown in the main paper would take several hours to compute. Alternatively,
we describe here how to rewrite the differential equation using tensor notation
from the Python package Pytorch, so that the computation for all bias values
can be done in parallel, and distributed over the GPUs of a graphic card. In our
case, this procedure sped up the computation by over two orders of magnitude.



Springer Nature 2021 B TEX template

Dynamical stabilization of Multiplet Supercurrents in Multi-terminal Josephson Junctions

First, we can rewrite equation 1 as a set of two first order differential
equations:

d=T
: -1 2e 4
I'=-CGI'+ fc (I —1.(®))

We have: I, sin(dy) + Ip sin(é or)
Lsin(or, ) + I sin(or, — Or
Ic(q)) o <IR Sin(¢R) — IT Sin((b[, — gbR)) (5)
We first note that since @ and I' are both two row vectors, in the absence of
the nonlinear term I.(®), this system of differential equation could be rewritten
as a single first order differential equation involving a 4 x 4 matrix operating
on a 4-row vector.
We then define a third-order tensor ¥(t) of dimension [N;, N;, 4] such that
Ui, j,:](t) corresponds to the following four row vector for two specific values
of the biases Iy [i] and Ir[j]:

oL
Ui, () = fjj (6)
¢

The system of differential equations at all bias values can then be written
as a set of tensor operations acting on ¥ as a whole:

¥ = F(D) (7)

The function F operates on tensors of dimension [N;, N;, 4]. For example,
in the absence of the nonlinear term I..(®), we would just write F(¥) = AUV+B
where A is a tensor of dimension [1,1,4,4] such that 4]0, 0] is a 4 x 4 matrix
operating on the 4-row vector U[i, j,:](t), and B is a [IV;, N;, 4] constant tensor.

In the present case, however, the function F is nonlinear but it can still be
written using tensor-compatible operations in Pytorch. For example, one can
write:

F(¥) =AW
_ %@é—l(ssm@) + Irsin(D¥) — T)
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Where we used these notations:

00| 10 0000 0
00| 01 0000 - 0

A= 00| _o1g B=1rooo| T03l={rp
00 01r00 Irlj]
00[00 1 =100

1 | oo0joo -1 100

= 00, P=10 000
00 0 000

Note that two singleton dimensions must be appended to the left of all
4 x 4 matrices, to turn them into tensors of dimension [1 x 1 x 4 x 4] which can
operate on W. Note that Z is also a third order tensor of dimension [Ni,Nj,4].
In that equation, the ”sin(¥)” should be understood as the operation torch.sin
in Pytorch which returns a tensor of identical dimension with the sine of each
element.

With those notations, the tensor ¥ can thus be updated as a whole at each
time step, which avoids two for-loops iterating over current bias values Iy [i]
and Ig[j]. The rest of the code is more akin to a conventional fourth-order
Runge-Kutta scheme, but the tensor notation allows it to be parallelized over
the GPU cores of the computer’s graphic card (a2 4000 cores in our case). This
speeds up the computation by over two orders of magnitude, and simulated
maps shown in this work only take ~ 20s to compute for a 400 by 400 pixel
map.

The parameters that are used for the simulations presented in Figure 4 of
the main paper are the following:

I Ir Ir Ry Rp Rr CL CR CT
600 nA | 950 nA | 750nA | 72Q | 32Q | 43Q | 50 fF | 50 fF | 50 fF

In Figure 5, we chose symmetric circuit parameters in order to focus on
the capacitance dependence of the width of the quartet resonance:

Ip=1Igr=1Ir | R = Rr = Rr CLZCR:CT
600 nA 160 5 fF to 500 fF

Those values correspond to a quality factor ranging from 0.48 to 4.8.

7.4 Three terminal Josephson junction analogue and its
characterization

We show on Figure S3 a more complete schematic of the circuit. The voltage
controlled oscillators that it includes are home-made and described in greater
details in Ref. [28].
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1kQ VR vzcu

n VZFl‘ul
R,
R ? 47nF 10uF
@ v I wnesSL
L 3T il
1| b a2 #
-+ sa

Fig. 8 A more detailed diagram of the analog circuit. The detailed structure of the voltage
controlled oscillators (in red) is not shown here.

We define the output voltages of amplifiers A3 and A2 as é%c and 5;—}2,
where k is the voltage to frequency gain of the VCO. With those notations,
the voltages at the outputs of the oscillators in the feedback loops of amplifiers
A3 and A2 are respectively asin(¢r) and asin(¢r), where « is the voltage
amplitude of the output of the oscillators.

We call I the current in the bottom branch of the circuit before the invert-
ing terminal of Al. Al is setup as a current to voltage converter and A5 as a
unity gain inverting amplifier. Both amplifiers include shunting capacitors of
47nF to suppress high frequency noise, but those are irrelevant to the dynam-
ics of the junctions which occurs on much longer timescales. We therefore
ignore them for simplicity in the following derivation. This allows us to supply
currents I at the inverting input of A2, and — I at the inverting input of A3.

Assuming that the amplifiers A2 and A3 have a vanishing current input,
we apply Kirchhoff rules at their inverting input and find:

Vi a oL oL
— T I I R
T RL2 + RLg Sln(¢L) + 27T/€RL + CL 21k 0 (8)
Vr a Or Or
I _—
TF o T R SO+ o 4 O =0 )

The amplifier A4 is setup as a differential amplifier, it thus generates a
voltage (¢, — ¢r)/(27k), which is then fed to the subcircuit emulating the
transverse junction. The 47nF capacitors are again suppressing high frequency
noise but do not alter the dynamics of the junction. We find that:

a bL — dr oL — O
Ip = o—sin(¢r —¢r)+ S 75— +Or—5—7—

1
RT3 27T]€RT 21k ( 0)
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Using the same matrix notation as before, we finally get:
Leir Lghyr@) =1 (11)
21k 2rk ¢ B

Where we defined I, = RLLS’ Ir = RLTB’ and Ip = Rim’ and:

T ((I)) _ ILSin(¢L)+ITSin(¢L 7(’253)
7 \Ursin(or) + It sin(ér — ¢1)

j —Vi/Rpa
—Vr/Rp2
We thus recover the same system of differential equations as for a three

terminal shunted Josephson junction network, where the constant fi/2e was
replaced by 1/(27k)

7.5 Analytical solution

As discussed earlier, the time evolution of the phase is determined by the
following matrix equation:

d+C71GD + QBC 1. (®) = %‘3641 (12)

For simplicity we assume that all capacitances are equal to C, all conduc-
tances are equal to G, and all critical currents are equal to I.. The matrices
involved in equation (8) can thus be rewritten as follows::

B sin(¢r) + sin(¢r, — dg)
I(®) = L <sin(¢)R) + sin(¢r — ¢L)>

2 1 _ 1 /21

c=e(55)ome(th) et ()
Equation (8) can be rewritten as:
o) L «s)
<¢R> " Ro (¢R
42 2e I, (2 1) (sm )+ sin(¢y, — qSR))
h 30 Sln + sin ¢R — (bL)
I

2e 1
_h3C
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Now we use the change of variables: n = % and € = %

We have:
()= () () ®

So:

7 N
o 3:
N———
+
Q‘ ~
VRS
e 3.
N——

R
n el. (1 -1\ (21 (sin(n+e) +sin(2n)
h3C \1 1 1 2) \sin(e —n) — sin(2n)
el (1-1 1 I
T h3C\1 1)\12

This becomes:

(500

RC

el (sin(n +e€) —sin(e —n) + 2 sin(277))

h3C 3sin(e —n) + 3sin(n + €)
_cl < e )

hC \IL+ IR

Using trigonometric identities we finally get:

(2) e ()
e I. (2sin(n)cos(e) + 2sin(2n)
h3C ( 6sin(e) cos(n) )

el (Loin
e <IL +IR)

The equation for € becomes:

1 %el, _
€+ ﬁ + he—c cos(n) sin(e) = %(IL +IR) (14)
On the quartet resonance we have Iy + Ir = 0 given the symmetry of

the system. We define I, = ;%5 (I + Ir) the deviation perpendicular to the
quartet resonance, wg = 2;‘%6, @ = woRC. With these notations:

£+ e+ uf cos(n)sin(0) = I+ (15
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We want to show that if I, o 150
is small, then (¢) remains zero. If I~ 15=6KA
that is the case that means the dif- 100 ~
ferential resistance at the quartet 3 S
resonance is zero and the proof is Y f_;
complete. Recall that n = @ 3 50
Along the quartet line, € is small
and 7 varies rapidly since it is close - 0
ton = ¢r. In fact n ~ wt with w = 1-15=30A
L{VR), up to an oscillating term 100~
which is negligible for high enough - '8
bias and Q factor. Two examples of g0 =
the error which is made with this 3 20
approximation are shown on Figure
9. Equation (23) becomes: - ; . . 0

0 50 100 150 200
Time (ps)
. Wo. 2 . . . ) .
€+ 56 + wg cos(wt) sin(e) = I Fig. 9 a) Simulated time evolution of n(t)

plotted over 200 ps when I}, — Ip = 6 pA
(16) (blue). Difference dn between 1 and its linear
This equation is the same fit (black). Simulation parameters are identi-

as Kapitza’s pendulum problem, cal to those us.ed in Figure 5. b) Same curves
describing the angle of an inverted for a smaller bias asymmetry I, —Ir =3 pA.
rigid pendulum with an oscillat-

ing base. The only difference is the

absence of a gravity term.

Although the formalism to solve (12) has been extensively discussed else-
where, we reproduce the solution here for completeness in the undamped case.
We look for a solution as € = eg(t) + A cos(wt) + Bsin(wt), where eg, A and B
vary over much longer timescales than 27/w. A and B are also assumed to be
small. We use this Ansatz in equation (12) and impose for (12) to be verified
independently by slow-moving terms and cos(wt) terms and sin(wt) terms:

A 2
€s + % cos(eg) = It

A—w?A+2Bw + wlsin(es) = 0
—2Aw+ B - Buw? =0

Keeping only highest order terms in w we get:

B=0

2 .
_ wisin(egs)
A= ——5—

w
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The equation for eg becomes:

4

. Wy .
€s + ﬁ sin(2eg) = I+ (17)

When Iy =0, e5(t) tends to oscillate around two possible equilibria at both
0 and 7, which implies that ¢;, = —¢r mod 27. Equation (13) clearly has an
equilibrium as long as I is sufficiently small. This implies that (¢) = 0 even
for small nonzero values of I;. The differential resistance along the quartet
line is therefore zero, which explains the resonance within this approximation.

Finally, we note that equation 13 only has an equilibrium for small values
of I.. Specifically:

w,
< 22 (18)
This translates to:
hIZ
TAE (19)

4€C(VL — VR)2

While other mechanisms might also be at play, for example self-heating,
this trend alone is enough to explain the decrease of the quartet supercurrent
at high bias. We see that the switching current is inversely proportional to the
capacitance, which is seen in Figure 5c.
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