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Abstract

‘We update the capabilities of the open-knowledge software instrument Modules for Experiments in Stellar Astrophysics
(MESAR). The new auto_diff module implements automatic differentiation in MESA, an enabling capability that
alleviates the need for hard-coded analytic expressions or finite-difference approximations. We significantly enhance the
treatment of the growth and decay of convection in MESA with a new model for time-dependent convection, which is
particularly important during late-stage nuclear burning in massive stars and electron-degenerate ignition events. We
strengthen MESA’s implementation of the equation of state, and we quantify continued improvements to energy
accounting and solver accuracy through a discussion of different energy equation features and enhancements. To
improve the modeling of stars in MESA, we describe key updates to the treatment of stellar atmospheres, molecular
opacities, Compton opacities, conductive opacities, element diffusion coefficients, and nuclear reaction rates. We
introduce treatments of starspots, an important consideration for low-mass stars, and modifications for superadiabatic
convection in radiation-dominated regions. We describe new approaches for increasing the efficiency of calculating
monochromatic opacities and radiative levitation, and for increasing the efficiency of evolving the late stages of massive
stars with a new operator-split nuclear burning mode. We close by discussing major updates to MESA’s software
infrastructure that enhance source code development and community engagement.

Unified Astronomy Thesaurus concepts: Stellar physics (1621); Stellar evolution (1599); Stellar evolutionary
models (2046); Computational methods (1965)

1. Introduction
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A resurgence of stellar astrophysics research is being fueled
by the transformative capabilities in space- and ground-based

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

hardware instruments providing an unprecedented volume of
high-quality measurements of stars, significantly strengthening
and extending the observational data upon which stellar
astrophysics ultimately rests (National Research Council 2021).
Examples include the following.

Several individual stars at redshifts of ~1 have been
discovered by temporary magnification factors of ~1000 from
microlensing (Kelly et al. 2018; Rodney et al. 2018; Chen et al.
2019). A more persistent and highly magnified star at a redshift
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of 6.2 has also been discovered with the Hubble Space
Telescope (Welch et al. 2022a) by a fortuitous alignment with a
foreground galaxy cluster lens caustic (Windhorst et al. 2018).
The infrared instruments on board the James Webb Space
Telescope (Gardner et al. 2006; Beichman et al. 2012; Artigau
et al. 2014; Rieke et al. 2015; Labiano et al. 2021) will search
for confirmation and spectral classification of this distant star
(Welch et al. 2022b) to define its place on the Hertzsprung—
Russell diagram (HRD), assess how galaxies evolve from their
formation (Zackrisson et al. 2011; Robertson 2022), observe
the formation of stars (Senarath et al. 2018; Boquien &
Salim 2021), and measure the properties of stellar-planetary
systems including the solar system (Sarkar & Madhusudhan 2021;
Patapis et al. 2022).

In the late 2020s, kilometer-scale gravitational wave
detectors such as Advanced Laser Interferometer Gravitational
Observatory (LIGO Scientific Collaboration et al. 2015),
Advanced Virgo (Acernese et al. 2015), and Kamioka
Gravitational Wave Detector (Akutsu et al. 2021) will routinely
detect tens of binary neutron-star mergers with kilonovae
annually (Abbott et al. 2018), probe how kilonova r-process
nucleosynthetic yields vary with environment (e.g., Barnes
et al. 2021), and assess the populations that contribute to the
stellar black hole mass distribution, including the presence of
any gaps in the distribution (Perna et al. 2019; Renzo et al.
2020, 2021; Zevin et al. 2021; Mandel & Broekgaarden 2022).

The next core-collapse supernova in the Milky Way or its
satellites will be a unique opportunity to observe the explosion
of a star. The Supernova Early Warning System is a global
network of neutrino experiments sensitive to supernova
neutrinos (Al Kharusi et al. 2021) that includes multikiloton
detectors such as KamLLAND (Araki et al. 2005), Borexino
(Borexino Collaboration et al. 2018, 2020), SNO+ (Andringa
et al. 2016), Daya Bay (Guo et al. 2007), SuperKamiokande
(Simpson et al. 2019), and the upcoming HyperKamiokande
(Abe et al. 2016), DUNE (Acciarri et al. 2016), and JUNO
(JUNO Collaboration 2022). The search for presupernova
neutrinos is ongoing and of interest, as they allow tests of
stellar and neutrino physics (e.g., Kosmas et al. 2022)
and enable an early alert of an impending core-collapse
supernova to the electromagnetic and gravitational wave
communities (Beacom & Vogel 1999; Vogel & Beacom 1999;
Mukhopadhyay et al. 2020; Al Kharusi et al. 2021).

Sky surveys that probe ever-larger areas of the dynamic sky
and ever-fainter transient sources include the Imaging X-ray
Polarimetry Explorer (Soffitta et al. 2021), the Compton
Spectrometer and Imager (Tomsick 2022), eROSITA (Predehl
et al. 2021), Gaia (Gaia Collaboration et al. 2016, 2018, 2021),
the Sloan Digital Sky Survey (SDSS; York et al. 2000;
Abdurro’uf et al. 2022), the All-Sky Automated Survey for
Supernovae (Chen et al. 2022), Pan-STARRS1 (Flewelling
et al. 2020), the Zwicky Transient Factory (Bellm et al. 2019;
Dhawan et al. 2022), Gattini-IR (Moore et al. 2016), and the
Nancy Grace Roman Space Telescope (Akeson et al. 2019).
Roman will measure proper motions of stars several magni-
tudes fainter than the Gaia mission (Brandt et al. 2021; Dorn-
Wallenstein et al. 2021), which is sufficient to probe the main-
sequence (MS) turnoff to distances of ~10 kpc and red giants
throughout the Galactic halo (Spergel et al. 2015).

Wide-field spectroscopic surveys in the coming decade
will resolve stellar populations and the Milky Way’s struc-
ture (Bolton et al. 2019) at facilities such as Gaia DR3
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(Gaia Collaboration et al. 2021), SDSS-V (Kollmeier et al.
2017), FOBOS (Bundy et al. 2019), Maunakea Spectroscopic
Explorer (Marshall et al. 2019), and SpecTel (Ellis &
Dawson 2019). For example, FOBOS is a next-generation
spectroscopic facility at the W. M. Keck Observatory that will
provide multiepoch, high-multiplex, and deep spectroscopic
follow-up of panoramic deep-imaging surveys.

The Vera C. Rubin Observatory will conduct a multicolor
optical survey of the Southern Hemisphere sky, the Legacy
Survey of Space and Time (LSST Science Collaboration et al.
2017; Ivezic et al. 2019), to probe dark energy and dark matter
(Séanchez et al. 2022; Zhang et al. 2022), explore the transient
optical sky (Andreoni et al. 2022; Bellm et al. 2022; Bianco
et al. 2022; Hernitschek & Stassun 2022; Li et al. 2022; Raiteri
et al. 2022), and build a catalog of solar system objects with an
order of magnitude more objects (LSST Solar System Science
Collaboration et al. 2020; Schwamb et al. 2021).

The TESS mission (Ricker et al. 2016) is providing
systematic measurements of the radii, masses, and ages of
200,000 individual stars sampled at a 2 minute cadence to open
a new era of stellar variability exploration (e.g., Ball et al.
2018; Huang et al. 2018; Dragomir et al. 2019; Wang et al.
2019). Within the next decade, the Planetary Transits and
Oscillations of Stars mission (Rauer et al. 2014) will search for
planetary transits across up to 1 million stars, characterize
rocky extrasolar planets around yellow dwarf stars, subgiant
stars, and red dwarf stars (Montalto et al. 2021), and investigate
the seismology of stars (Miglio et al. 2017; Cunha et al. 2021;
Nascimbeni et al. 2022).

In partnership with this ongoing explosion of activity in
stellar astrophysics, revolutionary advances in software infra-
structure, computer processing power, data storage capability,
and open-knowledge software instruments are transforming
how stellar theory, modeling, and simulations interact with
experiments and observations. Examples include Astropy
(Astropy Collaboration et al. 2018, 2022), Athena++ (Stone
et al. 2020; Jiang 2021), Castro (Almgren et al. 2020),
Dedalus (Burns et al. 2020), emcee (Foreman-Mackey et al.
2013), Flash-X (Dubey et al. 2022), GYRE (Townsend &
Teitler 2013; Townsend et al. 2018), MAESTROeX (Fan et al.
2019), MESA2Hydro (Joyce et al. 2019), MSG (A. Townsend
& R. H. D. Lopez 2023, in preparation), Phantom (Price et al.
2018), PHOEBE (Conroy et al. 2020), Starlib (Sallaska
et al. 2013), TARDIS (Vogl et al. 2019), TULIPS
(Laplace 2022), and yt (Turk et al. 2011).

The previous Modules for Experiments in Stellar Astro-
physics (MESA) software instrument papers (Paxton et al.
2011, MESA; Paxton et al. 2013, MESA II; Paxton et al.
2015, MESA III; Paxton et al. 2018, MESA IV; Paxton et al.
2019, MESA V), as well as this one, describe new capabilities
and limitations of MESA while also comparing to other
available numerical or analytic results. We do not fully explore
the science implications in this software instrument paper. The
scientific potential of these new capabilities will be unlocked
by future efforts of the MESA research community.

This MESA VI software instrument paper is organized as
follows. Section 2 describes the implementation of automatic
differentiation, and Section 3 introduces a new model for time-
dependent convection. Section 4 describes improvements to
MESA’s implementation of the equation of state (EOS), and
Section 5 discusses treatments of the energy equation.
Section 6 describes treatments of the stellar atmosphere, and
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Section 7 introduces new models of starspots and a super-
adiabatic convection. Section 8 reports improvements to the
opacities, Section 9 to the element diffusion coefficients,
Section 10 to the nuclear physics, and Section 11 to the
physical constants. Section 12 discusses MESA’s infrastructure.
Finally, Section 13 summarizes MESA VL.

Important symbols are defined in Table 1. Acronyms are
defined in Table 2. Components of MESA, such as modules and
routines, are in typewriter font, e.g., tdc.

2. Automatic Differentiation

MESA solves the equations of stellar evolution implicitly
using a Newton—Raphson method, which requires the partial
derivatives of each equation with respect to the basic structure
variables in each cell (e.g., pr, Tx)- These derivatives need to be
computed accurately, typically to one part in 10° often
precluding use of finite differences. These derivatives have
historically been computed by hard-coding analytic expressions
for each equation. This has accounted for a large fraction of the
complexity and sources of error in MESA.

We have largely eliminated this source of error and the
associated complexity by using forward-mode operator-over-
loaded automatic differentiation (Bartholomew-Biggs et al.
2000) in the new auto_diff module. This functionality
provides partial derivatives of expressions automatically with
respect to their input variables. The auto_diff module
provides a number of Fortran derived types for this purpose.
For example, we define the type auto_diff_real_star_-
orderl, which contains a floating-point number as well as its
first partial derivative with respect to the basic stellar structure
variables. The number of partial derivatives is specified at
compile-time. If x is a variable of this type, then it contains
components x%val representing the value of x and x%
dlArray (j) for the value of Ox/0n;, where 7, is the jth
independent variable.

The auto_diff types overload operators to implement the
chain rule. This means that a source code line such as f =x * y
is equivalent to

f%val = x%val x yPval
f%d1Array(]j) = x%dlArray(j) * yhval
+v%dlArray(j) * x%val.

Basic arithmetic and all special and trigonometric functions
used in MESA including functions such as min, max, and abs
are provided. When these functions have discontinuities, we
evaluate their derivatives as zero; and where they have
discontinuous derivatives, we compute their derivatives as the
average between the two sides of the discontinuity.

Using auto_diff, expressions like

F = min (p,e’i/</70, cos h(ry — 7)) )]
can be written as
F = min(rhol * exp(T1l/sqgrt(rho0)), cosh(r2 — rl)).

Together with setup routines that link physical variables (e.g.,
T1) with the independent variables 7, this code automatically
provides correct partial derivatives of F.
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Table 1
Important Symbols

Name Description Appears
a Radiation constant 7.2
A 47 area of face 3
c Speed of light in a vacuum 8
D Element diffusion coefficient 9
e Specific internal energy 4
E Energy 5
Jspot Filling factor 7.1
g Gravitational acceleration 6
G Gravitational constant 6
h Pressure scale height 3
K Opacity 6
A Reaction rate 10
kg Boltzmann constant 9
L Luminosity 3
m Mass coordinate 3
M Stellar mass 3
n Number density 9
Na Avogadro’s number 8
P Pressure 3
0 Thermal expansion 3
r Radial coordinate 6
R Stellar radius 6
p Mass density 3
K Specific entropy 4
o Stefan—Boltzmann constant 3
t Time 3
T Temperature 3
u Velocity 5
w Turbulent velocity 3
Xspot Temperature contrast 7.1
X Hydrogen mass fraction 3
Y Helium mass fraction 3
y Superadiabaticity V—V 4 3
VA Charge 9
Z Metal mass fraction 9
a, Electron spacing (47n,/ 3)~1/3 9
@ Convective flux parameter 3
ap Convective flux parameter 3
a, Convective flux parameter 3
ap, Convective flux parameter 3
cp Specific heat at constant pressure 3
e Convective flux parameter 3
cy Specific heat at constant volume de/0T], 5
ot Numerical time step 5
dm Mass of cell 5
€ Energy generation rate 5
€aray Gravitational heating rate 4
€nuc Nuclear energy generation rate 10
[ Viscous heating rate 3
e Specific kinetic energy of turbulence 3
r Efficiency of convection 3
T First adiabatic exponent (OInP/01n p)yg 3
I3 Third adiabatic exponent 3
I'yvicp Multicomponent plasma coupling parameter 9
Vaa Adiabatic temperature gradient 3
Ve Temperature gradient of convective eddy 3
\%3 Ledoux temperature gradient 3
Viad Radiative temperature gradient 3
v Temperature gradient 3
K;; Resistance coefficients 9
Ae Electron screening length 9
L, Luminosity of turbulent kinetic energy 3
Leaa Eddington luminosity 7.2



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 265:15 (38pp), 2023 March

Table 1
(Continued)
Name Description Appears
Lo Radiative luminosity 7.2
0 Molecular weight 8
M Mass transfer rate 3
P, Turbulent pressure 3
qe Electric charge 9
T Optical depth 6
Tetr Effective temperature 6
u Cell velocity 5
Ve Convection velocity 3
Xp Adiabatic index (9logP/dlog p)|r.x 3
XT Adiabatic index (OlogP/0dlog 1), x 3
X; Mass fraction 3

Note. Single character symbols are listed first, and symbols with modifiers are
listed second. Some symbols may be further subscripted, for example, by ¢
(indicating a central quantity), by s (indicating a surface quantity), by a cell
index k, or by species index i.

Table 2
Acronyms Used in This Article

Acronym Description Appears
AGB Asymptotic giant branch 8
BCZ Base of the convection zone 3
DA White dwarf spectral type 8
DB White dwarf spectral type 6
EOS Equation of state 1
HRD Hertzsprung—Russell diagram 1
MLT Mixing length theory 3
RSG Red supergiant 72
TAMS Terminal-age main sequence 7.2
TDC Time-dependent convection 3
TP Thermal pulse 8
WD White dwarf 3
ZAMS Zero-age main sequence 8

By contrast, explicitly obtaining the partial derivatives of F
requires more complex and error-prone source code:

x0 = rhol % exp(T1l/sqrt(rho0))
x1 = cosh(r2 — rl)
F = min(x0, x1)
1f(x0 < x1)then
dF_drhol = x0/rhol
dF_drho0 = —T1 % x0/(2 * sqrt(rho0))
dF_dT1 = x0/sqrt(rho0)
dF_dr2 = 0
dF_drl = 0
else
dF_drhol = 0
dF_drho0 = 0
drF_ Tl = 0
dF_dr2 = sinh(r2 — rl)
dF_drl = —sinh(r2 — rl)
endif
The auto_diff module provides overloaded operators that

were generated using the SymPy (Meurer et al. 2017) library in
Python to compute power series and extract chain-rule
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Table 3
Ratio of Runtimes for Evaluating auto_diff Expressions Relative to the
Same Expressions with real (dp) (Double Precision real) Variables

* / log f N
real(dp) 1 1 1 1 0
auto_diff real lvar_orderl 3.8 6.1 1.3 1.4 1
auto_diff real_2var_orderl 4.3 11 1.4 1.7 2
auto_diff_real_2var_order3 12 34 2.3 2.6 9
auto_diff real_star_orderl 35 77 4 2.7 33

Note. The real (dp) operations did not calculate any derivatives. Runtimes
are averaged over 10° trials, performed on the integers 1—10° (cast as real
(dp) ), with intermediate results accumulated to prevent the compiler from
optimizing away the operations. Label “*” refers to the multiplication operator
x"x, labels “Xvar_orderY” refer to the number of independent variables X and
the maximum partial derivative order Y, label “‘f” refers to the function log(cosh
(tanh))), and the label “N” refers to the number of partial derivatives computed.
Timing data was obtained on a 2.4 GHz 8-Core Intel Core i9 running on a 2019
Macbook Pro.

Table 4
Same as Table 3, but Comparing auto_diff Performance against Explicit
real (dp) Routines That Include Partial Derivatives

* / log f N
real(dp) 1 1 1 1 0
auto_diff_real_lvar_orderl 2.3 1.9 1.2 0.75 1
auto_diff_real_2var_orderl 2.1 1.9 1.3 0.81 2
auto_diff_real_4var_orderl 1.9 1.3 1.3 0.74 4

Note. Partial derivative expressions were constructed and simplified using
Mathematica version 12, then implemented manually in Fortran.

expressions. We first optimized these expressions to eliminate
common subexpressions and minimize the number of division
operators. We then translated these into Fortran. This
functionality is built on top of the CR-LIBM software package
(Daramy-Loirat et al. 2006), which enables bit-for-bit identical
results across all platforms (see MESA III).

The auto_diff module also provides additional auto_-
diff_real types for alternative use cases. For convenience,
types are provided to support the different hooks in MESA. For
operations requiring higher-order derivatives, such as in the
EOS (see Section 4), additional auto_diff_real types
provide higher-order mixed partial derivatives. The chain-rule
expressions rapidly become more complicated for higher-order
derivatives, but the basic principle is the same. The auto_-
diff machinery was used to benchmark the Skye EOS
(Jermyn et al. 2021), with the result that the performance is
similar to explicit expressions. Here we provide more detailed
benchmarks.

Table 3 compares the runtime cost for several operations and
several auto_diff types to the cost of evaluating the same
expressions in real (dp) types calculating no partial
derivatives. For operations like multiplication and division,
this incurs an overhead of the order of the number of partial
derivatives returned. For more expensive operations, the
overhead is much less, as the auto_diff expressions are
optimized to reuse intermediate results.

Table 4 compares three first-order auto_diff types and
explicit real (dp) routines evaluating the same partial
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derivatives. There is still overhead for simple operations, but
the relative cost no longer scales with the number of
derivatives. For sufficiently complex operations, such as
f = log(cosh(tan A (x))), the optimized auto_diff functions
outperform our explicit routines.

For use in stellar evolution calculations, we find the runtime
performance of hand-coded expressions are modestly better
than those from auto_diff, because most equations do not
depend on all of the independent variables. However, this
overhead is small compared with the full cost of a time step in
MESA. Moreover, runtime is often significantly reduced by
ensuring that all partial derivatives are correct, as inaccurate
derivatives result in slow convergence and a larger number of
small time steps. Some parts of the MESA source code do not
yet use auto_diff, but this is gradually transitioning.

Four applications of the profound enabling capability of
auto_diff are shown in Section 3 on time-dependent
convection, Section 4 on MESA’s implementation of the EOS,
Section 7.1 on starspots, and Section 7.2 on superadiabatic
convection. The auto_diff module can also be used in
run_star_extras, as well as for software development
outside of MESA.

3. Time-dependent Local Convection

The mixing length theory (MLT; Biermann 1932;
Vitense 1953) has been used to parameterize convection in
ID stellar models for decades. It assumes that convective
turbulence is in a steady state in which the energy input by the
convective instability balances damping due to turbulent
processes and radiative diffusion. This is a good approximation
when the composition and structure evolve on timescales that
are long compared to the characteristic timescales of
convection.

However, during particularly violent episodes of stellar
evolution, it is possible for the structure to evolve faster than
convection can reach a steady state. This is the case in late-
stage nuclear burning in massive stars (preceding core
collapse), as well as during electron-degenerate ignition events
(e.g., He shell flashes and Ne ignition). In such cases, the
dynamics of convective growth and decay must be
incorporated.

To model this, we employ the time-dependent convection
(TDC) formalism of Kuhfuf} (1986) in the local limit. We build
upon the implementation in Smolec & Moskalik (2008),
introduced in MESA 'V to model radial stellar pulsations in the
RSP module. More precisely, we use the one-equation version
of the Kuhfuf} (1986) model, both in the RSP module and now
for general use in stellar evolution calculations. We caution that
combining different mixing models in a stellar evolution
calculation might lead to physically inconsistent solutions,
because the different models have been developed separately,
and their underlying assumptions might not be compatible with
each other. Examples include combining the newly implemen-
ted time-dependent local limit convection model with an
overshooting model, or combining TDC with other models for
chemical composition gradients, rotation, etc.

We describe the TDC formalism in Section 3.1. In
Sections 3.2 and 3.3 we explain the modifications we have
made relative to the implementation in RSP to make TDC
numerically stable on long timescales. Section 3.4 then details
the TDC solver algorithm. In Section 3.5 we identify a change
to the implementation that makes TDC agree with MLT in the
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limit of long timescales. Finally, in Section 3.6 we explore the
impact of TDC on models of white dwarfs (WDs) accreting He.

3.1. Formalism

Following the Kuhfuf} (1986) model, TDC introduces a new
variable, the specific kinetic energy in turbulence e, which
evolves according to

De, Dp~! OL,

— 4+ apP, =¢+ C— —. 2

Dt Y 1 om @
Here P,=(2/3)pe, is the turbulent pressure, ap is a
dimensionless free parameter, ¢, is the viscous heating of bulk
motion, and L, accounts for advection of kinetic energy
between mass shells

72 9e

L, = —Aaq, phe,1 3)

This expression is the same as the turbulent flux F; in MESA V,
but multiplied by A to convert to a luminosity, «, is a
convective flux parameter, and 7 = P/(pg) is the pressure scale
height. Furthermore,

TPQ 8 [2)e?
C=ae?~Xy e
w76 O‘D(w Y
48ca,( T3
- = (—)e @)

«a pZcprh?

groups together sources and sinks of turbulent kinetic energy,
including a source/sink from the superadiabaticity

Y=V - V. (5)

The coefficients «, ap, and «, are free parameters, and
Q = dp ' /OT|pis the thermal expansion coefficient. By default
a, = 0, which means that TDC neglects radiative damping of
convective motions. We caution that using «,=0 is an
approximation that changes the physical contents and the
physical completeness of the model (Kuhful 1986, 1987;
Wauchterl & Feuchtinger 1998). This choice enables subsequent
modifications (Section 3.5) that make TDC reduce to MLT in
the limit of long time steps. Other defaults are o = 2, ap =1,
and ap=0. The choice ap=1 is equivalent to the Kuhful
(1986) choice of Cp = (8/3)4/2/3 for compatibility with
MLT, and ap = 0 implies P, = 0; see Table 3 of MESA V and
Wuchterl & Feuchtinger (1998).

The turbulent energy is incorporated into the other equations
of stellar structure via heat and momentum transport.
Specifically, in the momentum equation we include a turbulent
pressure term P,. In the luminosity equation, we incorporate

L= Lrad + Lconv, (6)

where L.,q is the radiative luminosity and

2y )

J6

is the convective luminosity. Here w = /e, is the turbulent

Leony = 4mr2apepT

velocity, and the factor of J6 arises from a choice of closure
constants. Note L, is set to zero in Equation (6); that is, the local
limit solution is assumed. Finally, the luminosity enters the
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total energy equation, which sets the time evolution of the
specific internal energy e in each cell.

To implement TDC in MESA, we drop the term ¢, from the
energy equation, simplifying our implementation. We do not
expect this term to matter in most cases, because bulk velocities
are typically much smaller than convective velocities. When
using the Ledoux criterion for convective stability, we further
modify TDC in MESA relative to RSP to set Y with the Ledoux
gradient Vi rather than the adiabatic gradient V., as in
Kuhfuf} (1986).

3.2. Numerical Stability

In MESA, RSP solves Equations (2), (6), and (7) implicitly
along with other structure equations to evolve e, and e. This
approach works well on short (convective/pulsational) time-
scales, but it is numerically unstable on long (evolutionary)
timescales. This poses a challenge, as we want a method that
can be used in both limits and smoothly transitions
between them.

We conjecture that this numerical instability arises when e; is
a solver variable. The superadiabaticity ) sets the time
evolution of e,, and hence L,,, and L. As L is very sensitive
to YV, small errors in Y result in large errors in L. These errors
are not important over time steps shorter than the thermal
timescale of a cell (as is the case in RSP), as an excess
luminosity through one face heats one adjacent cell and cools
the other, restoring thermal equilibrium. With much longer
time steps, errors in L significantly alter the entropy profile,
propagating into ) and producing even larger errors in L with
each iteration.

An alternative approach, taken by the MLT implementation
in MESA, is to treat the luminosity as a solver variable
determined implicitly by the energy equation (e.g.,
Equation (49)). From this, MESA derives the temperature
gradient needed to produce that luminosity, and requires that
the temperature gradient between cells match that computed by
MLT. In effect, this flips the logic around, so that MESA MLT
solves for Y given L whereas RSP solves for L given ).
Because L is very sensitive to YV, ) is relatively insensitive to
L; thus, errors in L produce smaller errors in ), making this
approach numerically stable.

3.3. Flipped Equations

To ensure numerical stability over long timescales, we
implement TDC in MESA in the same way as MLT, with L as a
solver variable. We flip Equation (7) to solve for )V, accounting
for the fact that w depends on Y via Equation (2). Doing so
requires a few simplifications and a number of new approaches.

We numerically invert Equations (2) and (7) to solve for Y
given L. To do this, we note that the time evolution of ¢, in a
single cell is nearly independent of e, in adjacent cells (see
Equation (2)). The only direct (rather than implicit) coupling
between e, and e, arises through L, For simplicity, we
currently set L, = 0. This makes De, /Dt independent of e
except implicitly via the other structure variables. This in turn
makes ) a function only of the local luminosity L; and solver
variables in the adjacent cells. We then solve for each ) using
only local information, and preserve the basic structure of the
Jacobian in MESA as well as the runtime performance.
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3.4. Numerical Method

Our goal is to numerically solve Equations (2) and (7) for
given L with L, = 0. We first construct machinery to evaluate L
given ), and then perform a numerical root-find to obtain )
given L.

34.1. L given Y
We use ¢, = w? to rewrite Equation (2) as

Dw
2=— =&+ §w + §wl 8
Dt So+ &w+ &w (8)

where &, &1, and & are coefficients that we obtain by
expanding the definitions of C and P, in Equation (2). We have
divided through by w, and so have implicitly excluded one

solution branch (w = 0). We will return to that branch shortly.
The coefficients are given by

§o= %CPTVMJ}, )

2
40T3 (20,3 2 Dp~!
gl—( o (af) + Zap 22 ) (10)

plcpr\  ah 3

_ (82 )
&= (3\@@' (11)

We fix these to their end-of-step values and solve for w at the
end of the time step given the initial value at the start of the
time step. This implicit approach is numerically stable, and the
required end-of-step values are readily available. The form of
the solution to Equation (8) depends on the sign of the
discriminant J2 = & — 4£)&,.

When J? > 0, the system is convectively unstable, with the
solution

W= —L(JtanhA +Jor gl), (12)
& 4

after a time step t, where A is a constant depending on the
initial value of w. With long time steps, the solution grows to a
plateau w — — (J + £1)/(2&,) independent of this initial condi-
tion. We show below that this is consistent with MLT.
When J? <0, the system is convectively stable, with the
solution
a
w = —| |J|tan (13)
2¢

A+ |J|ot
#_gl).
2

This solution eventually reaches w(ér)=0 at some time
6" ~ 1/J. Beyond that point the system remains fixed at w =0,
which is a valid solution to Equation (2) but which was
excluded in the form Equation (8) by dividing through by w.
When J? < 0 we must additionally check to see if the first root
of w occurs before the end of the time step and, if it occurs
before, set w = 0 at the end of the step rather than evaluating w
with Equation (13).

Given w, we evaluate L..,, at the end of the step via
Equation (7), and so now have L given ) as desired.
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3.4.2. Numerical Inversion
We now invert the relation between L and ) by solving
L(y’ N) = Lsolver, (14)

where Lgoyver is the desired luminosity produced by the
Newton—Raphson solver, L(}, N) is the relation we con-
structed using Equations (7) and (8), and N represents
additional structure variables.

To solve Equation (14), we write it in the form

RO =LY, N) — Lyopver = 0, (15)
and then expand L using Equations (6) and (7) as
R() = Lsolver — LoVL) — (Lo + cow) ). (16)
Here
16mac ( GmT* «
= - = 4ar’— pT 17
0 3(/<;P)CO Wr\/ngP (17)

are positive quantities set by local properties and independent
of Y. All quantities in Equation (16) are evaluated at the end of
the time step, determining the sign of the solution for ) in
advance. The factor Ly + cow is positive; hence, the sign of Y
matches that of the first term, which is independent of ).

We evaluate Lver — LoV to determine the sign of ),
followed by a change of variables from J — Z = In|))|. This
allows more resolution in )/, which can vary by many orders of
magnitude across a stellar model. We restrict our search to
—100 < Z < 100, covering 1074 < |V < 104, We choose
such a wide range because we have observed models that enter
the extremes of this range, typically involving shocks where
both TDC and MLT are suspect. We have not encountered
models with || approaching 10**, and those with || < 1043
are indistinguishable from Y = 0 for the purposes of calcula-
tions in MESA, so this window should cover all cases of
interest.

The TDC solver identifies and handles a variety of cases. It
takes advantage of the fact that dw/dY > 0, which follows
because the convective velocity always increases as a region
becomes more unstable.

We now discuss the different possible solutions. When
Y >0, the root-finding problem is monotonic because
dw/dY > 0 and dR/dY < 0. We approach this by perform-
ing a bisection search in Z followed by a Newton—Raphson
solve. The bisection search ensures that the Newton—Raphson
solve starts close to the true solution (we require the range
AZ < 1 for termination). The Newton—Raphson solve then
rapidly refines the solution to near machine precision and,
crucially, imbues the solution with a differentiable dependence
on the solver variables, tracked by auto_diff (Section 2).
Even if the bisection search finds an adequate solution, we still
require at least one Newton—Raphson iteration to ensure that
the result contains the partial derivatives needed for the MESA
Jacobian.

When Y < 0 and the initial w =0, the entropy gradient is
stable against convection. There is no preexisting turbulence,
and so w=0 for the entire step and L= L4 This makes
Equation (16) linear in ).

Finally, when Y < 0 and the initial w > 0, there can be up to
three solutions to Equation (16):

1. In one solution, ) becomes large and negative. This
forces w — 0 before the end of the time step (e.g., the first
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Figure 1. The residual of the luminosity equation PR (upper) and w at the end of
the time step (lower), plotted as functions of ) in a case where the correct
Y < 0 and the initial w > 0. Vertical dashed red lines denote the two special
points Yy (left) and ) (right). Input parameters were chosen so that there are
three solutions to $3())) = 0 (black dots), with Lgjyer = 0.1, Lo =2, Vg =1,
6‘0:20, é] =0, 52: -1, Winitial = 1, |j| =J—V,and ér=1— 10:5, all in

arbitrary units.

root of Equation (13) occurs before time dt passes), and
L =Ly

2. In the other two solutions, ) becomes small and negative,
and w declines but does not reach zero by the end of the
step. Here L is carried by a mix of radiation and
convection. There are two solutions because there is a
tradeoff between the magnitude of ) and the decline of
w, which compete in the w) term in Equation (7).

Multiple solutions exist because, for long time steps, both )
and w can evolve significantly in a single step. One could force
the time step to be smaller, such that there is just one solution.
However, a global time step limit is often undesirable,
especially in cases where the precise means by which
convection decays (e.g., for a retreating convective boundary
on the MS) is not usually of interest. Hence, it is often
preferable to select one of the multiple solutions.

We disfavor the solution that decays fastest (e.g., )V is large
and negative), as then convection decays on a dynamical
timescale, which we suspect is unphysical. Rather, we favor the
slower-decaying (e.g., smaller-magnitude ))) solution, which
connects smoothly to the ) = 0 limit. These preferences yield
this rule: we always select the solution with the smallest |))| and
thus the slowest-decaying convection speed.

To find this solution, it is useful to examine fR(})) in a
representative case, shown in Figure 1. Each solution is a
choice of Y such that $3()) = 0 (Equation (15)). Solutions are
convective when w > 0 and radiative otherwise.

The first (slowest-decaying) solution is convective, with
w=0.2 and Y~ —0.35. The second solution is also
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convective, with w~ 0.05 and Y ~ —0.75. Finally, the third
solution is purely radiative, with w =0 and J ~ —0.95. The
local maximum in fR is due to the fact that as ) becomes more
negative, w falls but |))| rises, so the product w) is not
monotonic.

However, we do not know a priori how many solutions there
are. There can be no more than three, but by changing L, yer
we can make the example shown in Figure 1 have just one
(convective) solution. Our approach is to first detect the
number of solutions and isolate the one of physical interest.

The three solutions must be separated by two special points.
The first (}}) is the smallest-magnitude Y with w =0, and the
second () is the )V such that w > 0 and dR/d)Y = 0. These
are highlighted in Figure 1. Solutions of the first kind must
occur at Y < ), solutions of the second kind must occur at
Y > ), and at most one solution of the second kind occurs on
either side of ).

Because dw/dY > 0, we search for ) using bisection in the
interval —100 < Z < 100. We likewise identify ); by a
bisection search over —100 < Z < In|)).

We use ), and Y to divide the interval —100 < Z < 100.
The discriminant R is monotonic over each subinterval by
construction, so in each case we can search for a root using a
combination of bisection search and Newton—Raphson
refinement. We check the intervals in order, from nearest to
Y = 0 to furthest, and terminate the search as soon as a root
is found.

3.4.3. Relation to Auto diff

TDC returns )Y given L and the other solver variables. It
additionally returns the partial derivatives of ) with respect to
each of those variables. This relies, fundamentally, on the new
automatic differentiation feature (see Section 2). In particular,
we used auto_diff to calculate and propagate partial
derivatives with respect to 33 variables of stellar structure
through a Newton—Raphson solver, producing the partial
derivatives of a root-finding procedure with respect to its
inputs. The auto_diff functionality enables the implemen-
tation of TDC.

3.5. Reduction to Cox MLT

We now derive the modifications needed to ensure that TDC
in MESA agrees with MLT in the limit of long time steps. While
we use the o, = 0 approximation in this section for clarity, the
need for the correction is not removed by setting o, > 0.

In TDC, the convective luminosity is given by Equation (7).
In MLT, the convective luminosity is

Leony = 47r%f, pep TveAN(V — V) A1 (18)

(Ludwig et al. 1999), where v.. is the convective velocity, and f>
is a parameter dependent on the choice of MLT prescription.
Finally, V, is the temperature gradient of a convective eddy,
which is related to the efficiency parameter

rzu. (19)
V. — W,
We may write
r r
V-V,=—NV-WVN)=—-=), 20
T V=Y @0
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SO
Leony = 2 a7r?f, pep Tv. AVR™ 1. 1)
14T
Next we identify w = m v, (in steady state) and A = ah, so
Leony = 4711’ (gfz2 )l/zpCp Tw). (22)
1+T'\3

This is nearly the same as Equation (7). In particular, in Cox?’
MLT (Cox & Giuli 1968) > =1/2 and

. 2 r w
Leony = 4mr al T pcPT\/Ey, (23)
so the only difference is the term involving I'.

That term, which controls the convective efficiency, is a
genuine difference between TDC-in-RSP and MLT. We want
TDC in MESA to match the outputs of MLT in the steady-state
limit, in agreement with Kuhfufl (1986); thus, we modify
Equation (7) to include the factor I'/(1 4+ T'), giving

Loony = 47rr2achP Ty (24)

1+7T J6

We evaluate I" by calling MLT with the same inputs as TDC.
We then treat this as fixed during the TDC iterations, which
allows us to still use the algorithm described in Section 3.4.

With these modifications, the luminosity equations now
agree, subject to w = /3/2v. in steady state. We now derive
the conditions required to make this hold.

In MLT, the convective velocity is given by

v =[085V — Nk, (25)
where f; is a parameter determined by the choice of MLT and
_ _Olmp | _Xxr ‘ 26)

olnT |p X,

Using A = ah we can write Equation (25) as

V2 = a2fihg (v — V). @7
p

Next, with Equation (20) we find

2 2 xr T
V: = afihg=———=Y). (28)
h X, 1 +T

In TDC, we have identified the convection speed with
v. = 42/3w, so we now proceed to prove that this is
equivalent to that given by Equation (28). When the TDC
discriminant J?> < 0, then IV < 0 so the system is subadiabatic.
Hence, at long times w=0, and therefore v.=0, which
matches the MLT answer. When the discriminant is positive,
the system is convectively unstable, so we use Equation (12)

and find
Ve = \EL(J anh 2t gl). 29)
326, 4

This solution was constructed assuming not only that J* > 0 but
also that the relevant root is J > 0. As 6t — oo, the tanh term

27 If desired, TDC may be modified to match other variants of MLT or other
choices of f>.
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approaches unity. In this limit

11
o=~ L Lure. (30)
k s TN

and we also have & =0 because Dp/Dt=0 and a,=0
(Equation (10)). Inserting the definition of J and expanding
with Equations (9) and (11), we find

v2:lJ_2:f2_£0:M 31
C 68 3¢, 8ap
Comparing this with Equation (28), for equality
a’cpTV
aZepTNaa Vit _ a?f, hgﬁ YVrpe. (32)
8ap X, 1 +T

As before, to obtain equivalence between MLT and TDC, we
need to substitute YI'/(1 + T') for YV in the velocity equation.
In addition, we need to have

cpT Vg

— fihg™L. (33)
80[D

P
With some rearranging, and using & = P/pg, we find
1 Px,

= . (34)
8apfy  X,pcpT Vi
With I's = 1 + (P/peyD X
e n—v_ Lot (35)
8ap fi X,CP Vad Ti1Vig

In Cox MLT f; =1/8, and in TDC by default ap = 1, so the
two sides are equal.

The net result is that in the limit of long time steps, TDC and
Cox MLT solve the same luminosity equation with the same
inputs and so are mathematically identical. We find they agree
numerically to around seven decimal places in ), even when
Y < 1. The need for the correction is not removed by setting
a,>0. The asymptotic scaling in the inefficient limit is
qualitatively different between (TDC with no correction and
a,>0) and (TDC with correction and o, =0). We further
implement the calculation of convective mixing diffusivity and
all other derived quantities using v, in the same way in both
TDC and Cox MLT.

Figure 2 shows the importance of the YV — YI'/(1 4+ )
correction. In both panels, the solutions for TDC and MLT lie
on top of each other. The solution for TDC without the
correction of ) in the equations, by contrast, deviates
significantly in both panels. This deviation is starkest in the
lower panel, which shows a different v, scaling in the
inefficient (V,,q—Vag < 1) limit.

3.6. Accreting White Dwarfs

WDs accreting He at rates <107° M., yr ' undergo He shell
flashes (Iben & Tutukov 1989). These flashes can lead to
He nova (e.g., V445 Puppis; Ashok & Banerjee 2003), or
even double-detonation type la supernovae (e.g., Shen &
Bildsten 2009; Woosley & Kasen 2011; Kupfer et al. 2022).
The time-dependent burning is controlled by three timescales:
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Figure 2. The values of ) (upper) and v, (lower) plotted as functions of
Viad — Vg for MLT, TDC, and TDC without the correction ) — JI'/(1 + T)
in the convective velocity and luminosity equations. The time step was chosen
to be long enough that TDC reaches equilibrium.

the local nuclear heating time,
cpT
Theat = P P (36)

6HUC

being the characteristic timescale for temperature changes due
to nuclear burning; the convective acceleration time,

4 3h
faccel = — = ——/———= (37

N 2apcpT VY |

being the timescale over which convection varies (see
Equation (12)); and the local dynamical time,

h
fagn = . (38)

Cs
In steady state, 7,..e; is proportional to the eddy turnover time

h
oty = =, (39)

Ve

but in cases of interest, fyccer and feqqy can be quite different.

Shen & Bildsten (2009) showed that He shell masses of
20.03 M, on a ~1 M, WD can yield a fy,, comparable to or
shorter than #,...; Or even t4y, near the base of the convection
zone (BCZ). TDC will yield different results than MLT in this
limit.

We construct these He flash models by accreting material
comprising 99% “He and 1% '*N by mass (as expected for
solar metallicity stars that have undergone CNO burning) onto
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Figure 3. Evolution of Tgcz and Ppcz during an He flash on a 1 M., WD with
various He shell masses. Solid and dashed lines correspond to models run with
TDC and Cox MLT, respectively. The values in parentheses indicate the
masses in solar units enclosed within and exterior to the BCZ, respectively.
Dotted lines are contours of fixed logarithmic ratio between fye, and f,.ce;, from
—2 to 1. The dotted—dashed line gives the radiation pressure.

a 1M, carbon-oxygen WD at constant log(M/M. yr~))
between —7.1 and —7.4 in steps of 0.1 dex. Compressional
heating results in a local temperature increase until the He shell
ignites. Lower M results in weaker compressional heating and
a more massive He shell at ignition. Because heat is transported
from the temperature peak toward both the core and the
surface, ignition occurs above the base of the freshly accreted
layer. We stop the accretion once a convective zone appears at
the ignition site, and continue evolving through the He flash.
Both the total accumulated He shell mass and location of
ignition are impacted by the included reaction chain
14N(e™, 1)*C(a, 7)'® 0 (NCO; Hashimoto et al. 1986; Bauer
et al. 2017).

In Figure 3, we label our models 14 at different M (with 1
corresponding to —7.1, 2 to —7.2, etc.) and note the masses
enclosed by and exterior to the BCZ, which set the pressure
Pgcz at ignition. The total accumulated He shell mass ranges
from 0.03-0.08 M....

Figure 3 shows the evolution of Tgcz and Pgcz for models
1-4 with both TDC and Cox MLT. All models initially evolve
at nearly constant Pgcz, which increases with He shell mass.
As temperature increases in the convection zone, the envelope
expands and reduces Pgcz. Concurrently, Tgcz reaches a
maximum (Shen & Bildsten 2009). Thicker He shells reach
higher peak Tgcz and larger ratios between tpeq and #yecer. FOr
the contours here, fycce1~ 1014y, (e.g., model 4 reaches
theat/Taccel = 0.01, and correspondingly fyea/fayn ~ 0.1.) When
models ShOW fpear < faccel (Models 3 and 4) and start expanding,
TDC starts to deviate from Cox MLT, with greater deviations
for thicker He shells. TDC shows higher Tz than Cox MLT
at fixed Pgcz because TDC results in more superadiabatic
convection. In contrast, when #,y 2 taccer (models 1 and 2),
TDC and Cox MLT show good agreement in the evolution of
Pgcz and Tgcz.

The upper panel of Figure 4 compares several timescales for
TDC models 1 and 3. The heating timescale, fpeq, trends
similarly with |d In T /dt|~", but the latter is larger than ;. by

10
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Figure 4. Evolution of various timescales in the convection zone (upper), the
time derivative of convective velocity at a fixed mass coordinate (middle), and
the superadiabaticity at the same location (lower). The upper panel compares
the heating timescale (solid line), actual timescale for temperature change
(dashed line), convective acceleration timescale (dotted—dashed line), and
dynamical timescale (dotted line), for models 1 and 3 (TDC only). The first
three timescales are evaluated at the BCZ, and the last at maximum convective
velocity. Line styles in the middle and lower panels follow that of Figure 3, and
in the middle panel we show the gravitational acceleration at the BCZ (gpcz,
dotted line) for comparison.

factors of a few, because heat released by nuclear burning is
distributed throughout some portion of the convection zone.
Due to the sharp dependence of €,,c on 7, both timescales
decrease sharply with Tz until the WD starts to expand. To
reduce the noise in |d In T /dt |~ displayed in Figure 4, we fit it
with a polylogarithmic function. The difference between ey
and |dInT/dt|~" decreases with thicker He shells, as heat
released by nuclear burning is increasingly trapped locally.
Another relevant timescale is #,...;, evaluated at maximum
Ve At log(Tzcz/K) < 8.4, taceel = (3/Bleady- At
log(Tscz/K) 2 8.4, fyccet €volves more quickly than 744y,
becoming up to 3 (6) times smaller than f.qqy, in model 3 (4).
This is because convection is no longer in steady state, as
theat < faccel TOr 10g(Tpcz /K) 2 8.4-8.5 (see also Glasner et al.
2018). At minimum #,.,., the hierarchy of timescales changes
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Figure 5. Profiles of 7" and P within model 3 at different moments, when both
TDC (solid) and Cox MLT (dashed) reach the same Tgc,. Curves of the same
color correspond to identical Tgcz. Dotted and dotted—dashed lines take the
same meaning as in Figure 3.

from

|dInT/dt|™" 2 theat 2 taccel > tayn
to

taccel 2 1A InT/dt|™' 2 theat 2 Layn
from model 1 to model 3, and ultimately to

faccel 2, tayn 2 1A InT/dt]™! 2 thea

in model 4. The fact that convection is not able to reach a
steady state on the evolutionary timescale of the He flash
explains the difference between TDC and Cox MLT in models
3 and 4 (see Figure 3).

We illustrate the difference in the evolution of v. and Y
between TDC and Cox MLT in the middle and lower panels of
Figure 4. For each TDC and Cox MLT pair, we locate the mass
coordinate at which v, peaks when log(Lyu./Lo) = 9 (arbi-
trarily chosen), and evaluate Dv,./Dt and ) during the initial
acceleration phase. Initially, TDC and Cox MLT show good
agreement when frep > tfaccer  (108(The, /K) < 8.4). When
theat S faccel 10€(The, /K) 2 8.5), TDC shows slower evolution
in v, and larger Y than Cox MLT. As v, is lower in TDC, heat
is less efficiently transported out of the BCZ, resulting in higher
Tgcz and Y near maximum. With a thicker He shell, Dv../Dt
may become comparable to g (especially for Cox MLT
model 4).

We now study the evolution of model 3 in detail. In Figure 5,
we compare seven snapshots of the TDC and Cox MLT models
in T— P space, when both reach the same Tgcz. The three
coolest pairs of curves show good agreement and little
superadiabaticity (third panel of Figure 4). For the subsequent
three hotter pairs, ) grows up to order unity near peak Tgcz.
once fhear S facces heat is trapped more locally in TDC
compared to Cox MLT. Therefore, TDC reaches the same
Tscz earlier in the evolution, and has a higher Pgcz due to
comparably colder outer layers. Likewise, TDC shows less
evolution in 7 — P near the top of the convection zone and
more superadiabaticity near the BCZ, again because of stronger
heat-trapping near the BCZ.

Figure 6 compares TDC and Cox MLT in model 3 as a
function of mass coordinate. The two show reasonable
agreement in v, when log(Tacz /K) < 8.5. At this point, fey
drops below ... (see Figure 4), which leads to TDC yielding
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Figure 6. The same as Figure 5, but instead showing 7, s, v., and X(IZC) as a
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for comparison. The colors match the color bar in Figure 5.

—2.00 F

1.02

lower v. than Cox MLT. For the same reason, v. near the
top of the convection zone appears frozen in TDC
for 8.6 < log(Tzcz/K) < 8.8.
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Figure 7. Default EOS boundaries for a solar-like composition (Z = 0.02, left) and for a pure-metal composition (Z = 1, 50% 12C and 50% 'O by mass, right panel).
The colors and labels indicate an ideal gas approximation, Skye, FreeEOS, OPAL, SCVH, HELM, and blends between two EOSs. The black curve in the left panel

shows a model for the present-day Sun.

At fixed Tgcz, TDC shows lower T throughout the
convection zone, reflecting a local buildup of heat at the
BCZ. Since TDC carries heat out of the BCZ less efficiently, it
also shows a stronger entropy gradient, and for
8.6 < log(Tzcz/K) < 8.8, T and s show little evolution near
the top of the convection zone.

Both TDC and Cox MLT show appreciable abundance
gradients, as '2C is produced near the BCZ, but there is
insufficient time for it to be transported outward. Cox MLT
shows higher 12C abundance overall, as it has more time to
reach the same Tz and larger v.. As TDC modifies both the T’
and X; profiles, it may impact the potential for the ignition to
develop into a detonation that would result in a thermonuclear
transient.

In summary, we see that convection in TDC adjusts more
slowly to changes in heating than in Cox MLT. This results in
slower, more superadiabatic convection during rapidly burning
phases of evolution. The incorporation of the dynamics of how
convection grows and decays is now possible and enabled by
default in MESA via TDC.

4. Equation of State

MESA models require thermodynamic quantities over a large
span of 7, p, and X;. This involves calling the MESA EOS
~10%-10"" times, depending on the chosen local physics and
the number of iterations, cells, and time steps. It would be ideal
to have a single EOS that accurately represents the relevant
physics in all regimes, obeys all thermodynamic consistency
relations to the limits of the arithmetic, and is as efficient in
storage and execution as possible. Below we report progress
toward this ideal.

Figure 7 shows the default MESA EOS boundaries for solar
and pure-metal (50% '°C, 50% '°O by mass) compositions.
Broadly, we prioritize HELM (Timmes & Swesty 2000) at high
T and low p for handling of the electron-positron plasma.
Elsewhere we prioritize Skye (Jermyn et al. 2021), limited by
partial ionization at lower T and p. We then prioritize
FreeEOS,”® then OPAL (Rogers & Nayfonov 2002) and
SCVH (Saumon et al. 1995), and finally, when there are no

8 http: / /freeeos.sourceforge.net/
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other options, we use an ideal gas with radiation. Blending
boundaries between the different EOS prescriptions are set to
defaults that have been motivated by specific use cases. For
example, we have chosen the boundaries between FreeEOS and
Skye such that solar models at the age of the Sun stay fully on
FreeEOS and do not encounter the FreeEOS-Skye blend.

4.1. Skye

Skye is an EOS for fully ionized matter (Jermyn et al. 2021).
A motivation for developing Skye was eliminating the blend
between HELM and PC (Potekhin & Chabrier 2010). There is a
blend between HELM and Skye that occurs at much higher T
and lower p (see Figure 7), where the two agree. Skye includes
the effects of positrons, relativity, and electron degeneracy
(Timmes & Swesty 2000; Baturin et al. 2019), Coulomb
interactions (Ichimaru et al. 1987; Farouki & Hamaguchi 1993;
Dewitt & Slattery 1999; Potekhin & Chabrier 2000; Baiko et al.
2001; Potekhin & Chabrier 2010), nonlinear mixing effects
(Ogata et al. 1993; Caillol 1999; Potekhin et al. 2009; Medin &
Cumming 2010; Potekhin & Chabrier 2013), and quantum
corrections (Carr et al. 1961; Hansen & Vieillefosse 1975;
Nagara et al. 1987; Potekhin & Chabrier 2000, 2010;
Baiko 2019; Baiko & Chugunov 2022). Skye determines the
point of Coulomb crystallization in a self-consistent manner,
accounting for mixing and composition effects. A defining
feature of Skye is the use of analytic Helmholtz free energy
terms and automatic differentiation (see Section 2) to provide
thermodynamic quantities. Skye is thus readily extendable to
new physics by including additional terms in the free energy
(Jermyn & Timmes 2022).

Skye is both a standalone software instrument and integrated
into MESA. The two implement the same input physics and
options. At times, this has required modifications of other parts
of MESA. Here we describe the most important of these
modifications.

4.1.1. Crystallization

Skye determines the crystallization phase transition by
minimizing the Helmholtz free energy, which permits deriva-
tives to be discontinuous at the transition. For instance, the
entropy discontinuity reflects the latent heat of crystallization.
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This posed a challenge in MESA. Consider the expression
(40)

The entropy s =—0F/0T|, undergoes a discontinuity at the
phase transition. If Ds/Dr is evaluated by finite differences,
then no time step will be small enough to produce a converged
result for €g,y. We could write

&_as

s | DT s
Dt oT

s | Dp
Dt 0Op

, (41)
, Dr

P

but this form misses the latent heat of the phase transition
because, except for the infinitesimal vicinity of crystallization,
thermodynamic derivatives of s contain no information about
the transition. At the phase transition, derivatives of s contain a
Dirac delta contribution, which cannot be directly implemented
in numerical calculations. The choice is between poor
convergence (finite differences of s) or neglecting the latent
heat (Equation (41)).

To address crystallization, Skye returns a parameter ¢ that
provides a smoothed representation of the phase. Specifically,
¢ =1 in the solid phase, ¢ = 0 in the liquid phase, and near the
phase transition ¢ smoothly interpolates between these limits.
The transition in ¢ is tuned so that the crystallization boundary
is numerically resolved and yet spans a small fraction of a
stellar model. Using ¢, Skye then constructs a smoothed
version of the latent heat of crystallization, which is only
significant in the transition region. This allows use of
Equation (41) to avoid numerical issues near the phase
transition, but requires that we include an extra heat source
in the energy equation to capture the latent heat:

Dlnp
Dt~

DInT

Dt “2)

€laent = Lt + Lp
where Ly and L, represent the differences between smoothed
and original versions of the entropy derivatives 70s/01In T and
TOs/01n p. The original derivatives lack the latent heat, while
the smoothed ones contain it, so Ly and L, produce additional
heating. With this procedure, MESA is able to model phase
transitions, remain numerically converged, and accurately
capture the latent heat of crystallization. This procedure smears
only the latent heat of crystallization and does not smear the
thermodynamics of the phase transition, which would produce
unphysical results such as negative sound speeds.

The Skye EOS approach represents a significant improve-
ment for the MESA latent heat treatment. Previously, MESA
relied on a finite difference of the entropy calculated in the PC
EOS for solid and liquid phases so that latent heat could be
included in €y, via Equation (40), smoothing this quantity
near the phase transition for numerical convergence
(MESA1V). Another common approach is to include latent
heat release with an explicit heating term using
le ~0.77kgT/(A)m, based on the calculation of Salaris et al.
(2000). Our new approach based on Skye has the advantage
that the phase diagram and latent heat release are both
calculated from first principles and are self-consistent with
the underlying thermodynamics of the EOS. Jermyn et al.
(2021) showed that the net latent heat release is commensurate
with the Salaris et al. (2000) value.
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4.2. FreeEOS

We use FreeEOS version 2.2.1 to expand the chemical
composition parameter space covered by partial ionization, as
compared to the OPAL tables. This replaces the eosPTEH
tables of MESA V. FreeEOS minimizes a Helmholtz free
energy to span essentially the same thermodynamic range
as OPAL.

The FreeEOS tables generated for MESA use the “EOS1”
mode, which is the highest level of physical accuracy provided
by FreeEOS. The tables are parameterized by the metal mass
fraction Z=0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.30, 0.40,
0.50, 0.60, 0.70, 0.80, 0.90, and 1.00. All tables assumed a
scaled-solar chemical composition based on Grevesse & Sauval
(1998). For Z>0.80, there is also a set of tables with
X(*?C) = X(*°0) for use with WD interiors. For each Z, a range
of H mass fraction values between 0 and 1 — Z are provided,
allowing for a complementary range of He mass fractions. The
tools to generate a new set of MESA EOS tables for an arbitrary
chemical composition using FreeEOS are provided in MESA_
DIR/eos/eosFreeEOS_builder with the exception of
the FreeEOS library, which can be downloaded from the
FreeEOS repository.

4.3. EOS Blends

The MESA EOS blends several EOS prescriptions. Each EOS
returns fundamental quantities and the partial derivatives of
those quantities. The blends of fundamental quantities and
derivatives are treated differently because they are used by
MESA for different purposes. Fundamental quantities enter into
physical equations, and so must be physical (e.g., positive
sound speed), while their derivatives are used to construct the
solver Jacobian, and so must represent accurate derivatives of
the fundamental quantities.

The EOS returns a vector res containing fundamental EOS
quantities such as e, s, and cy (see MESA I, Table 3), as well as
blending fractions for the various EOS components. The EOS
also returns corresponding vectors d_dlnd and d_d1nT of
partial derivatives of each of the quantities in res with respect
to p and T.

At the boundary between a pair of EOS prescriptions (EOS1
and EOS2), we calculate blends of res, d_d1nd, and d_d1nT
independently. The EOS at a point in the blending region
between EOS1 and EOS2 is evaluated with blending
coefficient « € [0, 1] representing the fraction of EOSI, and
1 —« representing the fraction of EOS2. We construct
blending coefficients using the quintic polynomial

o = 6x° — 15x* + 10x3, (43)

which maps the interval x € [0, 1] (representing distance across
a blend in p or T) onto the interval « € [0, 1] with zero slope at
the blending boundaries. The blending coefficients therefore
have nonzero derivatives with respect to p and 7 in blending
regions. Quantities in the resulting respe,q vector are
evaluated as a linear mix using the blending coefficient,

respend = @ res; + (I — a)res;. (44)

Our choice of a quintic polynomial for the blending coefficient
ensures that both a and (1 — «) are nonnegative everywhere in
the blending region, and therefore the EOS blending never
introduces negative quantities into blends of nonnegative
values for the EOS res vector. For the derivative vectors,
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Figure 8. The logarithm of the thermodynamic consistency measure dse for the MESA EOS computed with PC and OPAL (left) and Skye and FreeEOS (right) with
X =0.7, Y=028, and Z = 0.02, with Z comprising equal mass fractions of '>C and '°O.

we include additional terms to account for the derivatives of the
blending coefficients,

0
d_dlndpemg = a d_d1lnd; + ala res

np

+ (1 — a)d_dlnd, — 2%
Olnp

(45)

resy,

and similarly for d_d1nT. Including these terms for the
blending coefficients in the derivative blends provides correct
derivatives for the solver, reducing the number of Newton
iterations.

Some quantities in the fundamental EOS res vector are
themselves derivatives of other EOS quantities, such as
cv = (0e/0T),. The different blending treatments for EOS
quantities and their derivatives mean that thermodynamic
identities may be violated in blending regions. Physical
equations such as the energy equation must use quantities
such as ¢y from res rather than the theoretically equivalent but
numerically different derivative quantities from the d_d1nT
vector. The latter can lead to unphysical results such as
negative heat capacities or negative sound speeds. This
inconsistency is unavoidable so long as we must blend between
different EOS prescriptions.

4.4. Thermodynamic Consistency

One desirable feature in an EOS is thermodynamic
consistency, which ensures that the Maxwell relations hold—
e.g., mathematically equivalent forms of the equations of stellar
structure are also numerically equivalent within the floating-
point precision of the arithmetic. Unfortunately, several of the
EOS prescriptions in MESA are not fully thermodynamically
consistent. This can cause errors in energy conservation,
making mathematically equivalent formulations of the structure
equations behave differently.

Here we report on the current state of thermodynamic
consistency in MESA. Figure 8 compares the consistency
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measure

ds /0T,
0e/0T],

dse =T — (46)

for the MESA EOS with PC and OPAL (left, former default)
and with Skye and FreeEOS (right, current default). The
quantity “dse” is zero in thermodynamically consistent
systems.

As Skye derives all quantities from partial derivatives of a
Helmholtz free energy, it is thermodynamically consistent to
near machine precision. Without Skye, the corresponding
regions of the EOS are covered by PC and HELM. The regions
with Skye active show thermodynamic consistency to near
machine precision, representing a significant improvement for
log(p/g cm=3) > 3. The band at log(T/K) ~ 9 — 10 in the
right panel is due to a blend in the EOS from Skye to HELM,
which is required to remedy a floating-point loss-of-precision
issue in Skye when electron-positron pairs dominate the EOS.
In the left panel, the PC region shows a stripe of high error due
to Coulomb crystallization. FreeEOS is thermodynamically
consistent to near machine precision. Our current method of
interpolating the MESA FreeEOS tables does not preserve this
property. Still, these tables show significant improvement
relative to OPAL.

5. Energy Equations

Section3 of MESAV highlighted the importance of
numerical energy conservation in MESA models, and intro-
duced a new form of the energy equation aimed at improving
energy conservation. This new form motivated several solver
improvements, leading to tighter tolerances for equation
residuals and corrections. We now advance that discussion
by further explaining the multiple formulations of the energy
equations in MESA. We contrast the advantages conferred by
each formulation across different applications. We also clarify
the meaning of the quantities rel _FE_err and rel_ru-
n_E_err reported for MESA runs, and elucidate what these
quantities do and do not tell us about the quality of the MESA
solutions.
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After reviewing the energy equation fundamentals and recent
implementation improvements in Section 5.1, we explore an
idealized example problem without any composition changes
or EOS complexities in Section 5.2. This example motivates a
new time-centered approach for evaluating the eps_grav
form of the energy equation, and demonstrates that a lower
value of rel_run_E_err does not always indicate evolution
that is more physically accurate. In Section 5.3 we describe the
additional complexities introduced by thermodynamic incon-
sistencies that can be present in the EOS, especially in EOS
blending regions, and how these manifest in different ways for
different energy equation implementations.

Finally, in Section 5.4 we illustrate the various contributions
to energy error terms through the example of a 1M, star
including both composition changes due to nuclear burning and
EOS blends and inconsistencies. This example demonstrates
that the quantity rel run E_err must be interpreted
differently for different forms of the energy equation. When
using the dedt form of the energy equation, the energy error
reflects the quality of the residuals from the MESA solver, even
though larger energy errors associated with the EOS are still
present in the model. When using the eps_grav form of the
energy equation, the energy error reports much larger values
that reflect the presence of these EOS errors, even when the
quality of solutions may be comparable to or better than the
dedt form.

Convergence tests and comparisons between multiple forms
of the energy equation remain vital for understanding the
reliability and accuracy of solutions in different regimes.
Significant progress has been made in ensuring that different
forms of the energy equation converge to the same result. In
degenerate conditions, the eps_grav forms generally perform
better (i.e., they are closer to the converged answer at a given
time resolution). With the dedt form, the numerical energy
conservation error often measures the quality of the solution
(i.e., the size of the residuals). Focusing on improving that
quantity has driven significant solver improvements and
motivated the development of an accurate energy accounting
infrastructure. This energy accounting work has also motivated
improving the eps_grav form to account for composition
changes, as well as an implicit trapezoidal time-centering
scheme. MESA now includes these changes by default when
using the eps_grav form of the energy equation. Further
progress rests on improvements to the quality of the EOS.

5.1. Fundamentals and Implementations

MESA has two primary energy equations. One, called the
“eps_grav form,”* is the standard stellar structure energy
equation (e.g., Kippenhahn et al. 2012) and is the equation
introduced in MESA 1. This equation is

oL

— 4
- (47)

= €+ €gay,

29 In MESA V, we referred to this equation as the “dLdm form.” That was an
unfortunate choice as a L/Om term occurs in all versions of the equation.
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where L is the luminosity, € is a specific energy generation
source term (e.g., nuclear reactions, and neutrinos), and

De D1
—_ + P—| -
Dt Dt\ p
Ds ( e ) DX;

i aX’ s, p.{X=X;} Dt

=_T== —
Dt

In practice, the total Lagrangian time derivative of e is
expanded and further manipulated to reach the final form
evaluated in MESA (see MESA 1V, Section 8).

The other, called the “dedt form,” is an energy equation for
the time evolution of the total specific energy of a Lagrangian
cell,

Coray =

(48)

=c— i(L + PAu), (49)
om

where u is cell velocity and A = 47r? is the area of the cell

face. The relationship between these two forms was derived in

MESA IV (Section 8.3), and the dedt form was introduced as

a powerful tool in support of improved numerical energy

conservation in MESA V (Section 3).

When solutions are numerically converged (i.e., have
sufficient space/time resolution to give resolution-independent
results) and the EOS is thermodynamically consistent and
provides correct partial derivatives (see Section 5.3), these two
equations should give identical results. Conversely, the
solutions may differ when unconverged.

The error in numerical energy conservation during a step,
ESP, is evaluated as the difference between the change in total
energy of the model across the time step and the expected
change in total energy due to known energy sources and sinks
(e.g., nuclear reactions, neutrinos, and surface luminosity).
Total energy is defined as

E Ef(e + lu2 - G_m) dm
2 r

= dek(ek + luf — —),
X 2

Tk

(50)

where dmy, is the mass contained within cell k. Additional terms
for rotational kinetic energy can also be included in
Equation (50) when rotation is enabled, and turbulent energy
is included for RSP models.

A cumulative sum of the per-step energy errors, E.y', is
tracked during a run. When divided by the total energy at the
end of the step, ESP and EX", respectively, become the
quantities rel_E_err and rel run E_err that are
reported by MESA. As stated in MESA V, these quantities are
primarily meant to represent a measure of the numerical
reliability of solutions accepted for MESA evolution steps,
rather than a measure of physical validity and completeness of
MESA models. In Sections 5.3 and 5.4, we focus on further
clarifying the meaning of these energy error quantities, which
require a different interpretation when using the eps_grav
form of the energy equation than when using the dedt form.

MESA does not solve its discretized, finite-mass form of the
stellar structure equations exactly. When a trial solution is
accepted, the residual difference between the left- and right-
hand sides of the equation becomes an error in numerical
energy conservation. Therefore, one necessary step in ensuring
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good numerical energy conservation is to select tight tolerances
for the acceptance of a solution. This requires sufficiently high-
quality derivatives in the Jacobian so that the solver can reach
these tolerances in a reasonable number of Newton iterations
(see Section 3 of MESA V).

However, even achieving zero residuals is not sufficient to
ensure numerical energy conservation. When MESA modifies
the stellar model outside of the Newton solve, the resulting
changes in total energy must be correctly included in the
accounting. When physically appropriate, compensating energy
source terms must be included in the equations that are solved
during the Newton iterations.

For example, mass changes of the stellar model are one such
process, and the procedure that ensures numerical energy
conservation is described in Section 3.3 of MESA V. At that
time, this procedure was applied only when using the dedt
form of the equation. Now, it is used with all forms of the
energy equation, and the less general approach originally used
with the eps_grav form (MESAIII, Section 7) has been
removed from MESA.

The composition changes associated with element diffusion
(Section 3 of MESAIV) and convective premixing (Section 5
of MESA V) are also incorporated in an operator-split manner
(i.e., adjustments to the model made outside of the Newton
iterations for the implicit structure solve during an evolutionary
step; see also Section 10), and so require special accounting.
The energy changes due to these composition changes are now
tracked, and compensating source terms are added to the
equations, improving numerical energy conservation.

Nonconservation of numerical energy can also occur when
the equations being solved are approximated in ways that do
not conserve energy. Historically, the default MESA imple-
mentation of €4,y (MESA I, Equation (12)) dropped the term
associated with composition changes. While the energy
associated with composition changes is dwarfed by the energy
released by nuclear reactions (see MESA1V), the integrated
energy error introduced by dropping this term is not negligible
compared to the value of E, by the end of the MS.

In MESA'V, Figure 25, the “dLdm-form” calculation (right
panel) did not include composition changes in €y, and so the
large values of the relative energy error shown during core He
burning effectively quantify the impact of dropping the
composition term rather than characterizing the numerical
quality of the MESA solution. In this case, the scale of the
reported error appears significant because MESA adopts E, as
the reference value for checking cumulative numerical energy
conservation. A larger reference value, like the time-integrated
radiated energy of the star, is typically used to justify dropping
the composition term from €gyyy.

A continued focus on numerical energy conservation
requires equations that are energy conserving, so MESA now
includes the composition term in its default implementation of
€grav- With (p, T) as the thermodynamic structure variables, we

have
DInT de) P|Dlnp
p ap), p| Dt

—cyT
i

Cgrav —

+ €grav.x; (51
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where ¢, = (0e/0T),. As shown in MESA TV, Equation (65),
MESA implements the equivalent expression

DInT Dlnp
Cgrav — _CPTI:(1 - vadXT) Dt - apr Dt ]

+ 6g1'av,X,-a (52)
where cp = (0e/0T)p — (P/p*)(Op/OT)p and
Vid = (O0InT /01n P);. The composition term is

Oe DX,
€erav,X; = Z(—) . (53)
i 0X; p.T X=X} Dt

When implemented in MESA, the quantity €,y x, is evaluated as
a finite-difference approximation to the directional derivative
along the change in the composition vector over the time step:

P —é[em T (X)) — e(p. T X aa)]. (54

This is analogous to the approach used in evaluating the spatial
composition derivatives that enter into the Brunt—Viisild
frequency (see Section 3.3 of MESA II). In addition to being
simpler to evaluate, this approximation is numerically con-
venient because it only requires first derivatives of e with
respect to composition in order to form the Jacobian. The MESA
eos module and its interface with MESAstar have been
upgraded either to provide these partial derivatives when
available, or to construct approximations to these partial
derivatives for the Jacobian based on finite differences using
small variations of the composition when analytic derivatives
are not available.

The total derivatives of the structure variables in
Equation (52) are evaluated as their differences over the time
step. In previous implementations of the eps_grav form of
the energy equation, the thermodynamic quantities that multi-
ply the total derivative quantities were evaluated at the end of
the step (in the standard MESA backward-Euler approach). As a
means of further improving numerical energy conservation
when using the eps_grav form, we have now introduced a
higher-order (in time) version of ¢y, using the implicit
trapezoidal rule. This replaces end-of-step quantities with time-
centered versions (i.e., averages of the values at the start and
end of the step). We refer to this as “eps_grav (centered)” in
contrast to the previous implementation, which we indicate as
“eps_grav (end of step).” As we shall show in the following
sections, including both composition changes and time-
centering in the eps_grav implementation greatly improves
energy conservation, so we now include both of these
improvements by default in MESA when using the eps_grav
form.

In the following sections, we use test cases to demonstrate
the performance and physical meaning of numerical energy
conservation under the various forms of the energy equation in
MESA. We also show that in some circumstances, such as
degenerate stars, the eps_grav form of the energy equation
converges to accurate entropy and temperature evolution
substantially faster than the dedt form does, even while
reporting larger errors in numerical energy conservation.
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5.2. Results: Carbon_kh

As an illustrative test case, we follow an initially low-
density, 1.3 M, sphere of pure carbon as it undergoes Kelvin—
Helmbholtz contraction. The model begins at a central density of
log(p./gcm 3) = 1, and we follow the contraction over a
factor >10" increase in p.. Nuclear reactions are not
considered. For simplicity, we assume that the radiative
opacities are given by electron scattering and include standard
thermal neutrino losses. This model does not experience
convection. We exclusively use the HELM EQOS, as the use of a
single EOS that is formulated from the Helmholtz free energy
avoids most of the EOS inconsistencies that we discuss in
Section 5.3.

This case is not meant to model a real object, but provides a
simple example problem that has neither mass changes nor
composition changes. It is nonetheless demanding as the
conditions in the star vary tremendously during the evolution as
material goes from nondegenerate conditions to conditions of
relativistic electron degeneracy, and the dominant energy-loss
mechanism transitions from radiative diffusion to optically thin
neutrino cooling.

We explore three different versions of the energy equation:
the dedt form, the eps_grav form (end of step), and the
eps_grav form (centered). We use a temporal convergence
study to illustrate the performance of the different variants of
the energy equation. For each equation, we show three time
resolutions, and compare against a family of ultra-resolution
runs that serve as reference solutions. These ultra-resolution
reference runs still show small differences depending on which
form of the energy equation is selected, so we also show that
smaller level of disagreement to indicate the level of
differences that should be interpreted as significant. We
interpret the small magnitude of disagreement between ultra-
resolution runs as evidence that the different versions of the
energy equation are converging to the same result for
sufficiently high resolution.

Figure 9 shows the trajectory of T, versus p.. While this
calculation does not consider nuclear reactions, in calculations
that do, the T and p sensitivity of the nuclear reaction rates
motivates obtaining solutions that are converged in these
quantities (e.g., Schwab et al. 2015). This example does include
thermal neutrinos, which lead to central cooling at high density.
The top panel shows that the two eps_grav versions agree (to
within the line width) at all resolutions, while the dedt form
shows visible differences during the evolution after the model
has reached its maximum 7. The level of difference from the
reference solution is shown in the middle panel. All forms
exhibit first-order convergence, where a 1 dex reduction in the
time step leads to a 1 dex reduction in the error in 7.. However,
at a fixed resolution, the eps_grav forms show similar
performance to each other and superior performance relative to
the dedt form.

In order to understand why the eps_grav forms perform
better under degenerate conditions, consider an adiabatic
change, de+ Pd(1/p)=Tds=0, at fixed composition. This
expression is satisfied exactly for infinitesimal changes and a
perfect EOS. When we integrate across a time step, we know
the integral of total time derivatives (e.g., De/Dt or D In p/Dt)
exactly, but approximate the integral over the time step for
quantities that are not total time derivatives. The extent to
which our scheme will fail to reproduce an adiabatic evolution
is the error in approximating these other integrated quantities
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Figure 9. Convergence tests of the evolution of the central quantities for the
contracting 1.3 M., sphere of pure carbon using different forms of the energy
equation. The central density is a proxy for time. The top panel shows T.. The
middle panel shows the 7, difference from a reference solution. The three line
styles represent the three levels of resolution as indicated by the legend in the
top-left corner of the upper panel. The gray region marks the level of agreement
between the set of reference solutions. The lower panel shows the time step for
each resolution, with the time step of the runs used in the ultra-resolution
reference set indicated as the solid gray line.

appearing in the energy equation (e.g., P or cy). Recall that the
usual backward Euler approach in MESA is effectively like
assuming that the non-total-time-derivative part is constant and
equal to the end-of-time step value (e.g., P = Penq)-

For nearly adiabatic evolution in electron-degenerate condi-
tions, we have a cancellation between large de and Pd(1/p)
terms, but this cancellation ends up incomplete in MESA
because the evaluation of the former term is exact while the
latter has error. The error is usually small compared to the order
of the terms being subtracted, and so imperfect cancellation
often will not introduce large errors. But in degenerate material,
the scale of the canceling terms is larger than the thermal
energy by roughly the degeneracy parameter 1= yu./kgT,
where g, is the electron chemical potential. Therefore,
otherwise small cancellation errors can be amplified by a
factor of 7 for the temperature evolution.*

By contrast, when we write the ¢,y form, this cancellation
for adiabatic evolution instead occurs in [p(de/0p)r — P/p]
(Equation (51)), which is replaced with cpTV,qX, in the form
of Equation (52) that MESA wuses for its eps_grav

3% Numerical cancellation errors are a common pitfall for evolution in electron-
degenerate material. See Brassard et al. (1991) for a detailed discussion of an
analogous problem in evaluating the Brunt-Viisild frequency in WD interiors.



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 265:15 (38pp), 2023 March

%D Foveeens, low /// 1
— oo == mid -
5 7 F--- high - ;
g : - ]
E 19 - // dedt (total energy) T
.g 10 3 // eps_grav (end of step) }
= r 7 - eps_grav (centered) ]
| E n/ L 1 L L L 1 L L L 1 L L L 1 L 3
o — 777
= 1071 7
S
5
=
A TR
o 107*} \ 1
'4'3 ' JRCCTTTPRPRI //1’ \\\.\:'-.'
5 e R
-7 sl T T S IR S I 1
10 ———— —————
o -3k -
10
O | T e
] e -
o O -
[=] [, -
H
—~ -9L -
o 10 | .
~ z .
1012 re ey

log(pe/gcm™3)

Figure 10. Convergence tests of the evolution of the total energy for the
contracting 1.3 M, sphere of pure carbon using different forms of the energy
equation. The top panel shows the negative total energy. The middle panel
shows the difference from a reference solution. The gray region marks the level
of agreement between the set of reference solutions. The lower panel shows the
relative cumulative energy error for each run.

implementation. This captures adiabatic density evolution in
terms of EOS derivative quantities that are not subject to
cancellation errors. Instead, accuracy in this form is limited by
the accuracy of our approximations over finite time steps for
thermodynamic quantities like V,4 appearing in the energy
equation. The error associated with time discretization,
[epT (1 — valdXT)]endAlnT+ [CPTVapr]endAlnp’ is at least
a factor of ~m smaller than the cancellation error, and in
practice can be even better.

Figure 10 shows the total energy of the model. The top panel
shows that all runs agree in this quantity within the line width,
while the middle panel reveals the level of relative difference.
We emphasize that even though the dedt runs report by far the
best cumulative energy error as a measure of step-to-step
internal energy consistency (lower panel of Figure 10), they
nevertheless show less-accurate evolution of the total energy
and temperature relative to the ultra-high-resolution reference
runs (middle panel of Figure 10). This is because the
cumulative energy error reports the degree to which energy is
conserved by evolution steps, while the total energy is a
function of the global stellar structure, which can slowly
diverge even with zero reported energy error. This reflects the
fact that “energy error” as reported by MESA is primarily a
measure of the internal consistency of the stellar structure
solver, and should not be construed as always reflecting
globally accurate energy evolution. This reported error is still a
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useful diagnostic for MESA models, but must be interpreted
with caution.

All forms of the energy equation in Figure 10 approximately
show first-order convergence in the total energy. The lower
panel shows that the different forms exhibit notably different
behaviors with increasing time resolution. The dedt form has
excellent numerical energy conservation that does not depend
on time resolution. The error is roughly the error due to the
nonzero residuals in the solution of the energy equation. The
eps_grav forms display worse performance in this quantity,
though the error shrinks as the time step decreases. The “end of
step” form shows first-order convergence, while the “centered”
variant exhibits more rapid, second-order convergence with
smaller numerical energy conservation errors at fixed resolu-
tion. We would expect these trends to continue until the
numerical energy conservation error is no longer dominated by
errors due to the temporal discretization, at which point it
reaches the floor set by nonzero residuals or imperfect EOS
thermodynamics.

The pure carbon case shows that the time-centered
eps_grav form of the energy equation is the best choice
for models evolving under degenerate conditions, with the best
balance between accurate temperature evolution and step-to-
step energy conservation according to Figures 9 and 10. This
case was idealized to focus on the effects of finite equation
residuals and time discretization. We now move on to
discussing the additional complexities introduced by EOS
imperfections.

5.3. Quantifying EOS Shortcomings

The value of e returned by the EOS is an essential ingredient
in evaluating the total energy of the model, and high-quality
partial derivatives of EOS quantities are critical for accurate
and efficient solver performance. We now discuss three
primary EOS issues that influence energy conservation and
solver performance.

First, an EOS may return low-quality partial derivatives that
degrade convergence of the implicit solver. We now mitigate
this with more careful derivative accounting described in
Section 5.3.1.

Second, an EOS may have internal inconsistencies in its
reported thermodynamics. We have mitigated this by upgrad-
ing the MESA EOS patchwork with Skye (Jermyn et al. 2021)
and FreeEOS as described in Section 4.

Third, even when individual EOS components yield
excellent thermodynamic consistency, the necessity of blending
between EOS components to provide continuous coverage
across different regimes inevitably introduces additional
thermodynamic inconsistency. We have mitigated this last
issue by minimizing the number and severity of EOS blends as
much as possible, but unavoidable energy inconsistencies
remain, and we discuss their implications for energy conserva-
tion in Section 5.3.2.

5.3.1. EOS Derivatives

In MESA V, we addressed the quality of the EOS derivatives
by introducing new options that used bicubic spline interpola-
tion in high-resolution tables of Py, s, and e. This provided
accurate first and second partial derivatives by evaluating
analytic derivatives of the interpolating polynomials rather than
by interpolating values of tabulated derivatives. While this
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approach successfully ensured that the partial derivatives
corresponded to how the interpolated EOS values actually
changed in response to small changes of the parameters, it
inevitably led to small, interpolation-related artifacts in partial
derivative quantities such as V,q or I';. In asteroseismic
applications that require smooth profiles of the Brunt—Viisila
frequency, this approach proved unsatisfactory.

MESA now adopts an approach that separately treats
quantities that appear in the equations (and happen to be
partial derivatives) and the places where these theoretically
equivalent, but numerically different quantities appear in the
Jacobian (as partial derivatives of other quantities that appear in
the equations). That is, the Jacobian uses the partial derivatives
of bicubic spline interpolants, while the equations use the
bicubic spline interpolants of partial derivatives. This enables
both efficient numerics and smoother solutions at the cost of
some additional bookkeeping. A potential pitfall is that
negative values for nonnegative quantities can be encountered.
In practice, we find that we do not encounter negative
interpolants for the physical quantities that enter the equations.
While we may encounter negative values from the derivatives
of the interpolants used for the Jacobian, these only guide the
Newton iterations in converging toward a solution. In this
scheme, negative derivatives of interpolants cannot introduce
physical errors into the equations used for model solutions.

5.3.2. Thermodynamic Consistency and EOS Blends

In order to quantify how models employing the different
forms of the energy equation experience inconsistencies in the
EOS differently, we establish a measure of the quality of the
MESA EOS during the evolution of a model as follows. In the
(p, T, {X;}) basis, the total derivative of the specific internal
energy, e, mathematically satisfies

De (e @%&) DT
Dt Jdp r.x) Dt T ), x, Dt

)L

~\0X Dt

i/p,T,{X=X;}

= 0.

(55)

For a Lagrangian volume corresponding to a cell k, we
evaluate the time integral of the left-hand side of Equation (55)
across a time step. We replace the sum over individual
composition derivatives with a single directional derivative
along the direction of composition change over the time step, as
in the evaluation of €,y x,. We approximate terms that are not
the integral of total derivatives using the implicit trapezoidal
rule. Weighting by dm, and summing over all cells, this gives,

for a single step,
P (&) Alnp
),

— [ch]AlnT — AEX[}](,

EStep

€IT,C08

=Y dmi{Ae —

k=1

(56)

where overline quantities are the trapezoidal rule estimates
corresponding to the average at the start and end of the time
step. The value Aey, = e({X;}) — e({Xikun) is the change in
specific internal energy due to composition changes alone at a
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given p and 7, so

— 1
Aex,- = 5[€(Psmp Tarts {Xi}) — e(Psmp Titarts 1Xi} star)

+ e(p, T, {XI}) - e(p’ T, {Xi}slarl)]-
(57)

Summing the per-step errors over a MESA run, then at the nth
time step, we have

n
Efun E step, i
err,eos eIT,e0s"

i=1

(58)

As the time step is reduced, the error from the temporal
discretization shrinks, and Eg;"..s converges to a measure of the
energy error incurred as a result of EOS shortcomings.

We define two other energy errors. By limiting the sum in
Equation (56) to those zones that are in an EOS blend during a
particular time step, we can isolate the per-step energy error

due to the blend and so analogously define EjP.., and

EX blena- We define the per-step residual energy error Eg;P,. as
the mass-weighted sum of the energy equation residuals over
the model and also track its cumulative value Eg;" .

To understand how these different forms of error might
manifest under different treatments of the energy equation, it is
helpful to consider the idealized case of an EOS that is a blend
of EOS1 and EOS2, identical except for their definition of
where the energy zero-point lies, so that egos; = €gos2 + €offsets
where e 1S some constant. Physically, either EOS should
produce the same evolution, and all EOS derivatives will be the
same. However, evolution through the blend between EOS1
and EOS2 will not satisfy Equation (55), and therefore must
lead to nonzero values of ESSP - regardless of which form of
the energy equation is used. In particular, the thermodynamic
identity ¢y = (0e/0T), is violated in the blending region
because the blending coefficient derivatives are not included as
part of the blended value of cy (see Section 4.3).

In practice, such energy offsets (in addition to other
inconsistencies) always occur at the locations of MESA EOS
blends because it is impossible to construct a blending region in
which two distinct EOS treatments agree exactly. Due to
different input physics assumptions in different EOS compo-
nents, energy offsets have more complexity than simple
constant zero-point differences across the range of parameters
where blending is necessary. As far as possible, we have
chosen blending locations to minimize the differences between
EOS components and to minimize the residual amount of
unavoidable offset (e.g., by adjusting the definitions of internal
energy to be as consistent as possible about where the zero-
point lies). However, no general solution is currently available
to completely eliminate inconsistencies for blends between our
current EOS components, and EOS blends therefore remain
one of the largest potential sources of energy error when
present in MESA models.

When evolving using the dedt form of the energy equation,
Equation (49) will lead to ey being folded into the De/Dt
term of the energy equation for regions of the model evolving
through the blend, injecting spurious heating/cooling into
those regions. However, the energy error reported by MESA in
these regions may still be 0, because MESA evaluates energy
error according to the blended e from the EOS. It is therefore
possible to have models for which ESP_is significantly larger

err,eos

than E_err reported by MESA when using the dedt form of
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the energy equation, as we shall see in the following
subsection. On the other hand, in this idealized scenario, the
eps_grav form of the energy equation (Equations (51) and
(52)) would give the physically correct evolution since it is
evaluated in terms of derivatives that are unaffected by the
energy offset in the blending region. However, both ES®  and
rel_run_E_err will report large values under the eps_-
grav form in this scenario, reflecting the thermodynamic
inconsistency of e in the blended EOS rather than inaccuracy in
the evolution.

5.4. Results: IM_pre_ms_to_ITP

Having demonstrated the performance of the various forms
of the energy equation in idealized circumstances in
Section 5.2, we now model the evolution of a 1 M, star from
the pre-MS to its first He thermal pulse on the AGB. This
example includes composition changes due to nuclear
reactions, and it uses the current default MESA EOS (blending
together FreeEOS and Skye for the (p, T) regions encountered
by this model). A small portion of the envelope of this model
encounters the FreeEOS-OPAL/SCVH blend near ZAMS,
then the model lies entirely on FreeEOS for most of the first
~5 Gyr of MS evolution (see Section 4 and Figure 7), after
which the core evolves toward higher density and encounters
the FreeEOS-Skye blend. The approach described in
Section 5.3 allows us to quantify the various sources of energy
errors, identifying how much error comes from EOS incon-
sistencies and blends, and how much is due to residuals of the
equation solutions.

Figure 11 summarizes the energy errors defined in
Section 5.3 when using different forms of the energy equation.
Because the models are approximately converged and the
different forms of the energy equation converge to the same
solution, the colored lines at a given time resolution are similar
in all panels. In particular, the measure of the energy error
associated with the EOS blend has approximately converged
(agreement among orange lines in the middle of each panel).
However, the measure of the EOS inconsistency in places
where this quantity is not dominated by the blend (i.e., where
the blue lines are above the orange lines) continues to shrink
with increasing time resolution, showing that this measure is
not converged and that the true inconsistency is less than that
indicated by the highest-resolution line.

In the top panel, the dedt form shows a numerical energy
error (black lines) that is roughly the energy error associated
with the equation residuals (green lines). The EOS energy
errors are present in the model, but do not show up in the
reported rel_run_E_err for this form of the energy
equation, as explained in Section 5.3. In the middle panel,
the end-of-step eps_grav form shows that the numerical
energy conservation error remains above the energy errors
associated with the EOS, while these in turn are generally well
above the errors associated with the equation residuals. In the
bottom panel, the centered eps_grav form shows a numerical
energy error (black lines) that is roughly the energy error
associated with the EOS inconsistencies. In particular, by the
end of the MS, the numerical energy error is dominated by the
blend error. Further resolution increases or improvements to the
energy equation will not improve the numerical energy
conservation. Progress can only come through improvements
to the EOS.
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Figure 11. Comparison of types of energy errors for a 1 M., model. Each panel
shows a different form of the energy equation. Each line color indicates a
different type of energy error. Each line style indicates a different time
resolution. The thick black lines show the error in numerical energy
conservation that MESA reports as rel_run_E_err. The thinner colored
lines show the errors due to the EOS, EOS blends, and equation residuals. The
composition term €gray,x; is included for both of the eps_grav panels in this
figure.

6. Atmosphere

The MESA atm module uses an atmosphere model to
evaluate the pressure P and temperature 7 at the outermost
(k=1) cell boundary. These “model surface” values are in turn
incorporated in the outer boundary conditions applied to the
stellar model, as specified in Equation (10) of MESA 1. Here
we describe various improvements and fixes in the atm module
since MESA T and MESAIL

In older MESA releases, the choice of atmosphere model was
controlled by the which_atm_option inlist parameter. In
recent releases, this parameter is renamed atm_option, with
three possible choices:

1. atm_option="'T_tau’: atmosphere based on 7(7)
relations, as discussed in Section 6.1.

2. atm_option="'irradiated’:
phere, as discussed in Section 6.2.

3. atm_option="'table’: tabulated atmosphere, as
discussed in Section 6.3.

irradiated  atmos-

In addition, MESA now offers two complementary approaches
to including the atmosphere structure in model data passed as
input into pulsation codes. These are described in Sections 6.4
and 6.5.
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6.1. Atmospheric T(T) Relations

Setting atm_option="'T_tau’ builds an atmosphere in
which temperature at each optical depth 7 is specified by a
function T(7); P; and T, are obtained by evaluating the
atmosphere thermodynamic state at an optical depth T
corresponding to the nominal model surface. This optical
depth can be much smaller or much greater than the optical
depth 7~ 2/3 typically associated with stellar photospheres;
that is, the model surface need not correspond to the
photosphere.

The T(7) functions have the form

T4 = SThlr + (L (59)
Selection of 7(7) is set by the atm_T_tau_relation inlist
parameter, with four possible choices:

1. atm_T_tau_relation='Eddington’: the gray,
Eddington-approximation relation, where g(7) =2/3.

2. atm_T_tau_relation="'solar_Hopf’: the ¢(7)
function described in Equation (A9) of MESA II, which
is a fit to Model C of the solar atmosphere by Vernazza
et al. (1981), often referred to as VAL C.

3. atm_T_tau_relation='Krishna_Swamy’: the
relation from Equation (33) of Krishna Swamy (1966).

4. atm_T_tau_relation='Trampedach_solar’:
the relation from Ball (2021), itself a fit to the solar
atmosphere simulation by Trampedach et al. (2014).

For a given T(7) relation, the corresponding P(7) throughout
the atmosphere is obtained by integrating the hydrostatic
balance equation
oP _ g (60)
or K
from 7 < 1 inward to 7= 7. In this integration, the gravity is
set to the constant value g = GM, /Rz, in accordance with the
assumption that the atmosphere is geometrically thin and
contains negligible mass. The opacity evaluation is controlled
by the atm_T_tau_opacity inlist parameter, with three
possible choices:

1. atm_T_tau_opacity="'fixed’ —uniform K
throughout the atmosphere, with a value set by the
current opacity ; in the outermost cell.

2. atm_T_tau_opacity="'iterated’ —uniform &
throughout the atmosphere, with a value obtained from
the kap module for (P, T;). As indicated by its name,
this choice requires iteration because P, is not known
a priori.

3. atm_T_tau_opacity="'varying’—varying K
throughout the atmosphere, with a value obtained from
the kap module for (P,T) at the local 7.

With the last choice, the dopri5 (fifth-order Dormand-Prince)
differential equation integrator from the num module is
employed with specifiable error tolerance and maximum
number of steps. With the first and second choices, however,
the fact that x does not depend on 7 means that Equation (60)
can be integrated analytically to yield

L) 1)

P(r) = §T(1 + Pextra_factor X
K 6mGMcT
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The second term in the parentheses arises as a constant of
integration, and accounts for nonzero radiation pressure in the
limit of small 7. The term is obtained from Equation (20.16) of
Cox & Giuli (1968). The parameter Pextra_factor
depends on the assumed angular dependence of the radiation
specific intensity, with the default value of unity corresponding
to isotropic-outward, and a value of 1.5 corresponding to radial-
outward. While unphysical, setting Pextra_factor >
1.5 can sometimes be a useful numerical strategy to improve
convergence in models that are close to the Eddington limit.
However, caution is warranted as this strategy can produce
incorrect stellar radii.

For T(r) atmospheres, Table 5 summarizes the mapping
between the which_atm_option parameter choices sup-
ported in older MESA releases, and the combinations of
atm_T_tau_relation and atm_T_tau_opacity para-
meter choices that provide the replacement functionality.

In implementing the changes described here, we uncovered
two issues that impacted the accuracy and performance of the
atm module in older releases.

First, calls to the eos and kap modules to evaluate p(P, T)
and k(p, T) did not use the same tables and/or configuration
options as the interior model, leading to possible inconsisten-
cies at the surface where the atmosphere and the interior join.
To fix this problem, we implemented a callback system so that
the star module can pass appropriately configured EOS and
opacity wrapper routines to the atm module.

Second, in cases where atm T tau_opacity=
"iterated’, the partial derivatives of P and T with respect
to dependent variables (Ly, ry, p1, T1) in the outermost cell were
incorrectly evaluated; in some cases, this caused the global
Newton solver to converge slowly or not at all. To fix this
problem, we implemented the correct expressions, which
follow from application of the chain rule to the 7(7) relation
and the hydrostatic solution (Equation (61)).

6.2. Irradiated Atmospheres

Setting atm_option="'irradiated’ provides func-
tionality similar to ’ T_tau’, but adopting the 7T(r) relation for
an externally irradiated atmosphere given in Equation (6) of
Guillot & Havel (2011). Equation (60) is integrated analyti-
cally, with opacity evaluation controlled by the atm_irra-
diated_opacity inlist parameter; the possible choices
"fixed’ and ’iterated’ behave the same as described
in Section 6.1. The ' iterated’ case replaces the which_
atm_option='gray_irradiated’ choice described in
MESATI, and fixes a bug related to incorrect 7T.¢ evaluation.

6.3. Tabulated White Dwarf Atmospheres

When atm_option="'table’, P, and T; are obtained by
interpolating in precomputed atmosphere tables. In addition to
the options described in MESAT and MESATI, MESA now
provides a new set of atmosphere tables for WDs with He-
dominated surfaces (DB WDs). These tables provide P and 7
data over the ranges 5000K < T.<40,000K and
6.0 < log(g/cms™2) < 9.4, They assume an He-dominated
composition of ny= 1075nHe, and are based on model
atmospheres calculated using the Koester (2010) code and
evaluated at 7="25. The limits of this grid are now explained.
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Table 5
Mapping between which_atm_option Parameter Choices in Releases of MESA up to r11701 (See Section 12.4), and the Corresponding Parameter Choices in
Releases Since r12115 (to Be Used in Tandem with atm_option="'T_tau’)

Release r11701 and Earlier

Release r12115 and Later

which_atm_option

atm_T_tau_relation

atm_T_tau_opacity

" simple_photosphere’
"gray_and_kap’
’Eddington _gray’
’Krishna_Swamy’
’solar_Hopf’

’Eddington’
’Eddington’
’Eddington’
’Krishna_Swamy’
’"solar_Hopf’

" fixed’
"iterated’
’'varying’
'varying’
'varying’

At Tor 2 40,000 K, He undergoes its second ionization, and
non-LTE effects that are not included in the atmosphere code
become important. The lower limit of 7. = 5000 K is imposed
by the Koester (2010) code’s EOS. Studies of spectroscopic
samples of DBs (e.g., Eisenstein et al. 2006; Genest-Beaulieu
& Bergeron 2019) have shown that DBs are well described for
surface gravities lower than log(g/cm s72) = 9.5. The lower
limit of log(g/cm s72) = 6.0 is imposed by the convergence
of the models at T.;=40,000K, since radiation pressure
competes with gravity in this regime.

As a diagnostic for these new tables, we use the depth of
the surface convection zone in cooling DB WD models,
which is primarily sensitive to the atmospheric boundary
condition and the stellar model EOS in the convective
region. Figure 12 demonstrates the improvements brought
by these new tables, plotting the mass M., of the surface
convection zone versus T.g. Also shown are results from the
atmosphere and envelope models of Koester et al. (2020),
as well as the outcome from using atm_option=
'T_tau’ with atm_T_tau_relation='Eddington’
and atm_T_tau_opacity="'fixed’.

The new tables reproduce the Koester et al. (2020)
calculations much better at low T, than the Eddington 7(7)
atmospheres. The latter diverge for T¢ < 15,000 K because the
conditions at the surface cross the boundaries of the He opacity
table coverage in MESA. The tabulated atmospheres agree with
Koester et al. (2020) to T, =~ 7000 K. For cooler temperatures,
the uncertainty in M., is due to the uncertain EOS at the BCZ
(Saumon et al. 1995).

6.4. Atmosphere Reconstruction for Pulsation Codes

As discussed in MESAII and MESAIII, MESA can pass
models to the ADIPLS (Christensen-Dalsgaard 2008) or GYRE
(Townsend & Teitler 2013) linear pulsation codes, either in-
memory during an astero-module optimization or via files
written to disk in a variety of formats. Often, it is desirable to
reconstruct the atmosphere structure from 7= 7 out to 7 <K 1
before passing them to the pulsation codes. This has no impact
on the interior model, but can improve asteroseismic modeling.

For T(r) atmospheres (Section 6.1), setting add_atmo-
sphere_to_pulse_data=.true. enables this recon-
struction. The radial coordinate r throughout the atmosphere
is then determined by integrating the 7 equation

or |
= = 62
or Kp (62)

31 See  discussion at  hitp://www1.astrophysik.uni-kiel.de /- koester/
astrophysics /astrophysics.html, where the full tables of convection zone
depths based on Koester et al. (2020) are hosted.
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Figure 12. Depth of the surface convection zone (measured as fractional
convection zone mass M.,,/M) for a 0.57 M., log(gcm 's 2) =~ 8.0 WD
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et al. (2020).
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outward from 7=7, to 7< 1. For this integration, x is
evaluated in accordance with the atm_T_tau_opacity
parameter discussed previously, while p(P, T) is obtained from
the eos module for the local 7.

In releases of MESA prior to r12115, the outward integration
used an explicit Euler scheme with a default step size too large
to accurately follow r(7). Together with the eos/kap table
inconsistency highlighted in Section 6.1, this led to departures
from hydrostatic balance in the reconstructed atmosphere, as
highlighted in Figure D.1 of Christensen-Dalsgaard et al.
(2020) for »/R > 1. To fix this issue, release r12115 and later
use the doprib5 integrator for the outward integration, with a
specifiable error tolerance, step size, and outermost optical
depth. Figure 13 demonstrates these improvements by showing
hydrostatic balance for GYRE-format models of the present-day
Sun calculated using releases r11701 (pre-fix) and 122.05.1.

6.5. Atmospheres as Part of the Interior

The optically thin outer layers of a star are usually treated
separately from the interiors of stars because they do not satisfy
the assumptions under which the interior structure equations
are derived. Given a T(r) relation, however, it is possible to
correct the equation for radiative heat transport so that the
temperature stratification produced by solving the stellar
structure equations matches the desired 7(7) (Trampedach
et al. 2014; Mosumgaard et al. 2018). The radiative temper-
ature gradient V, of an atmosphere that follows a given 7(7)
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Figure 13. The hydrostatic term p~'dP/dr (in units of the surface gravity GM/
R?) as a function of r/R for GYRE-format models of the present-day Sun that
include reconstructed atmospheres with atm_option=’'T_tau’,
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fix) and r22.05.1; only the latter reproduces the correct behavior p’ldP/
dr = — GM/R® throughout the reconstructed atmosphere /R > 1.
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relation is

valm = rad(1 + (63)

dq )
dr )
We can therefore recover any 7(7) relation by scaling the
canonical V4 by 1+ dg/dr. This procedure is enabled with
the new option use_T_tau_gradr_factor. For the gray,
Eddington-approximation relation, g(7) is constant and no
correction is necessary.

To include the optically thin layers in the interior model, the
surface boundary should be set or relaxed to a smaller 7 using
the flags set_tau_factor or relax_tau_factor and
their associated controls. The surface boundary conditions, now
at smaller T, still follow Section 6.1. They are evaluated at
T,=tau_factor X 7.y rather than 7.g, Where 7.5 is the
optical depth at which the 7(7) relation is equal to Ty

This approach has several advantages. First, like
atmospheres reconstructed with atm_T_tau_opacity=
"varying’, the atmospheric structure is kept consistent with
MESA’s EOS and opacity routines. Second, the computation
can leverage the parallelization of MESA. Finally, this approach
accounts for the fact that g is not exactly constant throughout
the atmosphere (Section 6.4), which is assumed by 7(7)
atmospheres.

Figure 14 shows the ratio of the left- and right-hand sides of
Equation (59) in a 1M, ZAMS model with the ' solar_
Hopf’ T(7) relation when the atmosphere is either recon-
structed as in Section 6.4 or included as part of the interior.
Both models deviate at 722 because convection starts to
transport heat.

The reconstructed atmosphere deviates in 7o <7< 2
because dg/dr=0 just below the photosphere, which is
treated as part of the interior without correcting V4. When
using analytic 7() relations, this can be corrected by using the
use_T_tau_gradr_factor option but not when using
tabulated atmospheres, for which the correction factors 1 4 dg/
dt have not been provided. Though inconsequential for tables
at 75> 1, where dgq/dT — 0 anyway, it introduces inaccuracy
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Figure 14. Ratio of the left- and right-hand sides of Equation (59), by which
we compare the temperature structure of two models in FGONG format, one
with the atmosphere reconstructed as in Section 6.4 (integrated) and the other
with the atmosphere modeled with the interior as in Section 6.5 (interior).

in the temperature stratification when using tables at small 7.
This inaccuracy may be acceptable, depending on the scientific
problem. This inaccuracy is not present if dg/dT=0 in the
affected regions, which includes the Eddington 7(7) relation.

6.6. Choosing Atmosphere Options

There is limited consensus on when to use which atmosphere
options, but we nevertheless offer a few guiding remarks.

The most commonly used and current default in MESA is a
gray Eddington atmosphere with the surface boundary at
T, =2/3, with « fixed throughout the atmosphere. If the precise
behavior of the stellar atmosphere is not important, this should
suffice.

There is a hierarchy of accuracy at the expense of greater
computational cost among the choices for atm_T_tau_opa-
city. On the basis of the self-consistency of x, ' varying’
is more accurate than ' iterated’, which is in turn more
accurate than ’ fixed’.

For the calculation of pulsations that have significant
amplitude near the surface (e.g., solar p modes), it is important
to choose an option that allows the atmosphere to be
reconstructed for the equilibrium stellar model (Section 6.4).

Tabulated atmospheres provide boundary conditions that are
typically computed using more complete physics (e.g., non-
LTE) than can be described by the stellar structure equations.
As shown in Figure 14, tabulated atmospheres at 7 < 2 lead to a
stellar model in which the near-surface temperature stratifica-
tion is equivalent to an Eddington atmosphere. The models in
Figure 14 differ by ~50K at 7.y This inaccuracy might be
outweighed by the benefits of a complete atmosphere model.
The correct structure could in principle be recovered by
extracting the appropriate 7(7) relations (Trampedach et al.
2014) from the detailed atmosphere models, but these are not
generally available.

Ideally, we would have access to grids of 7(7) relations and
corresponding bolometric corrections extracted from advanced
simulations of stellar atmospheres, with parameters that cover
the HR diagram. Until this ideal is realized, stellar modelers
must decide which aspects of the atmospheric boundary
condition are most important for their calculations and choose
appropriate options.
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7. Convection in the Outer Layers of Stars
7.1. Starspots

Starspots are common for stars with M < M. Models of M
dwarfs that include starspots and surface magnetism have
inflated radii close to those inferred by observation (e.g.,
Feiden & Chaboyer 2013; Mann et al. 2015).

We thus implement in MESA the treatment of starspots
introduced in the SPOTS models of Somers et al. (2020; also
see Cao & Pinsonneault 2022), which are based on the Yale
Rotating Stellar Evolution Code (YREC; Demarque et al. 2008;
Spada et al. 2013) and described in detail in Somers &
Pinsonneault (2015) and Somers et al. (2020).

7.1.1. Starspots Formalism

Somers et al. (2020) parameterize the variance of the surface
flux due to magnetic pressure from starspots by modifying the
atmospheric boundary condition. Somers & Pinsonneault
(2015) characterized the degree of “spottiness” on the stellar
surface by two parameters:

1. SPOTF (hereafter fy,o), a coverage fraction, or “spot
filling factor,” and

2. SPOTX (hereafter xy,), representing the temperature
contrast between the spotted and unspotted regions at
r=R: Xspot = ];pol/%hotosphere-

Numerically, values from 0.0 to 1.0 are permitted for both
parameters. Observationally constrained coverage fractions f,o
are described in Cao et al. (2022), who found that a value
fspot = 0.34 is a reasonable fit to observations of subsolar-mass
stars in the A Ori cluster.

The spot-induced temperature contrast, X, 1S restricted to
physically meaningful values of 0.5-1.0. A value of xpo = 1.0
indicates that the effective temperature in the spotted region,
Tspor» does not differ from the surrounding, unspotted effective
temperature, T,,,,(r) (the “ambient temperature,” or ATEFF in
YREC). At the surface, Tymy(r = R) = Tphotosphere- A value of
Xgpot = 0.5, on the other hand, corresponds to the statement that
Typor differs from Ty, by the maximum degree permitted by
magnetic equipartition: namely, when the magnetic pressure
contribution constitutes half of the total pressure.

The temperature contrast xgpo perturbs the radiative gradient,
Viad, spot» 10 the surface convection zone. This effect can be
made depth-dependent via

Tomp (r
xspol(r) =1- (1 - xspot) a}n::)),
where 7(r) is the temperature at r, and the quantity
];;)hotosphere - ];pol = Ta'imb(R) - 7;pot is held constant as a
function of r. In Equation (64), X, is a scalar parameter.
Per Equations (1)—(4) in Somers & Pinsonneault (2015), the
“spotted” luminosity is set to

Lspotled = L/[fs‘pm x;}l)ol + (1 _f;pot)]‘

(64)

(65)

YREC models the suppression of convective flux at the stellar
surface via a two-part lookup in its atmospheric boundary
tables, invoking “ambient” versus “spotted” effective tempera-
tures that differ by a factor of

1), (66)

4
Qispot = 1 +f;pot (xspol -
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where X0 can optionally be a function of the local temperature
at a given depth within the convective envelope.

7.1.2. MESA Implementation

MESA’s implementation is equivalent, but modifies the
surface boundary conditions in terms of pressure rather than
Terr, as Topr is strictly an output in MESA. Through the
specification of the magnetic pressure term, Pg, the temperature
contrast is given by

P(r) — Pg
X ry=———, 67
spot () 0 (67)
where Pg is assigned at the start of the step via
Py = (kgNap/ ) (1 — Xspor (R)) Tegr. (68)

Choosing xgpo = 1 corresponds to Pg =0; hence, there is no
magnetic pressure and no perturbation to P. Choosing Xpe = 0
yields the other extreme: Pg = P. Once again, a practical limit
on Pg is set by the assignment X, = 0.5, which corresponds to
magnetic equipartition.

Using auto_diff (Section 2), we account for the modified
pressure term and its partial derivatives at every mass shell. In
Equations (67) and (68), P and Py are auto_diff variables.
Likewise, the radiative temperature gradient due to the
presence of spots (i.e., magnetic inhibition of the convective
flux),

vrad, spot — vrad/(fspol xspot(r)4 + 1 _fspol)a (69)
is an auto_diff variable, since it is a function of the
auto_diff quantities Vi, P, Xspoi(r), and scalars.

The quantity Py is assigned once at the beginning of every
evolutionary step and held constant over all Newton iterations
within that step. The use of auto_diff data types ensures
that the Newton solver automatically receives correct partial
derivatives of the modified radiative temperature gradient with
respect to, e.g., depth and other stellar structure variables. The
modification to V4 is evaluated once per Newton iteration. To
obtain the spotted luminosity, L is adjusted by a factor of o
(Equation (66)).

7.1.3. MESA Models

We demonstrate the starspots functionality by comput-
ing a grid of spotted evolutionary tracks for M =0.2 — 1.3 M,
and Z=0.014. We use the photosphere table option for
atmospheric boundary conditions across all tracks, though for
the lowest-mass stars (e.g., M <S0.5M.), a choice of
tau_1lml would be more appropriate. We use the Henyey
MLT prescription with apypt = 1.95.

Figure 15 shows tracks using fipoc = {0.2, 0.4, 0.6, 0.8} and
Xspot = 0.85. When comparing MESA models to the YREC-
based SPOTS models of Somers et al. (2020), we observe the
following features:

1. Tracks computed with MESA starspots shift
smoothly by the same magnitude and in the same
direction as a function of fy,.

2. We also find that the lower the initial value of Xy, (i.€.,
more extreme in terms of magnetism), the greater the
impact of an increased coverage fraction.
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Figure 15. Evolutionary tracks showing the effects of star spots for
Xgpot = 0.85. Color indicates mass. Within clusters of identical mass, fipor
values are ordered lowest (leftmost) to highest (rightmost).

3. Below =0.6 M., the SPOTS models are cooler than the
MESA starspots models. This is due to differences in
our choice of the atmospheric boundary condition.

4. The degree of radial inflation for an 0.3 M. M dwarf
predicted by MESA starspots, using fi,o = 0.34 and
Xspot = 0.8, is of the order of 3%—5%, in agreement with
the SPOTS models.

The MESA starspots test case can be found in
MESA_DIR/star/test_suite/starspots.

7.2. Superadiabatic Convection in Radiation-dominated
Regions

Modeling stars near the Eddington limit is a complex
numerical problem. Under such conditions, convective regions
with density inversions are expected (Joss et al. 1973; Paxton
et al. 2013) and 1D models using standard MLT can develop
extended low-density envelopes, becoming red supergiants
before finishing their MS evolution (e.g., Sanyal et al. 2015;
Szécsi et al. 2015). Three-dimensional radiative hydrodynamic
simulations are just starting to explore the physics of energy
transport near the Eddington limit (Jiang et al. 2015; Tsang &
Milosavljevic 2015; Schultz et al. 2020; Goldberg et al. 2022;
Moens et al. 2022), and will hopefully provide a way to
accurately model these regions in 1D stellar evolution
instruments. In the meantime, 1D simulations using MLT near
the Eddington limit are expensive, requiring small time steps
down to the point that some calculations become impractical.
Enhanced convective energy transport in these regions can
inhibit the formation of density inversions and facilitate
calculations. One such approach is the use of a density scale
height rather than a pressure scale height in MLT (Nishida &
Schindler 1967; Stothers & Chin 1973; Maeder 1987).

The MLT++4 formalism is a stellar-engineering approach
that has been commonly used in MESA to reduce super-
adiabaticity in regions nearing the Eddington limit (MESA TII).
Although convection is expected to operate in regions of the
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star approaching the Eddington limit, the efficiency of
convective energy transport is uncertain. By reducing the
expected superadiabaticity, MLT+4 provides an ad hoc
enhancement. Such an enhancement is supported by results
from 3D simulations (Jiang et al. 2015; Schultz et al. 2020), but
the method is not calibrated to detailed simulations or
observations. The main motivation for MLT++ is to enable
computations of massive star evolution up to late stages, and
users need to assess if the deviations from a more physical
model such as MLT are relevant to their results. One important
limitation of MLT++ is that it is a nonlocal explicit method,
which can lead to large step-to-step variations that produce
unphysical results and prevent the solver from finding a valid
solution. By making use of auto_diff (Section 2), we have
implemented a fully implicit and local alternative to MLT++-,
which allows the modeling of a larger range of masses and
metallicities. Setting the option use_superad_reduction
activates this method.

In hydrostatic equilibrium, the ratio between the radiative
luminosity and the local Eddington luminosity is

_ 4qT*
3P

(70)

For a particular model of energy transfer (e.g., TDC as
discussed in Section 3, or MLT), the expected Eddington factor
is

4aT*
—Vexpa

P (71)

I‘Edd,exp =

where V;y, is the temperature gradient predicted by the energy
transfer model. As in MLT++4-, we artificially enhance energy
transport in convective regions where the expected Eddington
factor is high by adjusting V.. The difference between the
radiative and the Ledoux gradient is reduced to

Viaa — VL

VL =
Ir

vrad,new - (72)

where V,,4.new 1 the adjusted radiative temperature gradient,
and fr > 1 determines the reduction of V .4— Vr in the
convective region. Such a scaling of V4 can be interpreted
as an effective lowering of « in regions near the Eddington
limit. Results from Schultz et al. (2020) suggest that the
impact on radiative transfer of a vigorously convecting
region supports this choice. The adjusted Vi ugnew is then
used instead of V.4 to recompute Vaccording to the
convection model.

The functional form of fr is arbitrary, and was determined
empirically so that Equation (72) can be applied in a large
number of cases while minimizing adjustments in the limit
I&dd, exp — 0. Just as with MLT++-, it serves as a stellar-
engineering method to circumvent complex evolutionary
stages, rather than a specific physical model that accounts for
how convection is modified near the Eddington limit. While
exploring different options for fr, auto_diff played a critical
role by removing the need to directly specify partial
derivatives.
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Our choice for fr is as follows:
=1
+ alg(FEdd,exp /Fc -1+ CVZg(Fexp /Finv -1

NG

X h((Vexp — VL) /60), (73)

where [ is the ratio of gas to total pressure, and
Dy =4(1 — 8)/(4 — 30) is the Eddington factor at which an
ideal gas with radiation develops a density inversion (Joss et al.
1973, MESAIII). The parameters I'¢, o, as, and 8. regulate
the enhancement of energy transport. The function

0 x<0
gx) = {x%/2 0<x<1 (74)
x—1/2 x>1

is continuous with a continuous first derivative. No correction
will be applied if It,, < It and Ity < Liy. If either of those
thresholds is exceeded, «; and a, set the strength of the
enhancement in energy transport for each. The 1 / \/B term
further enhances the effect in regions dominated by radiation
pressure. The function A(x) is chosen as

0 x<0
h(x) = 16x5 — 15x* + 10x® 0 <x < I, (75)
1 x>1

such that it is equal to zero for x < 0 and equal to one for x > 1,
while monotonically increasing in between with a zero
derivative at x =0 and x=1. This choice ensures significant
corrections are only applied in cases where a superadiabaticity
comparable to 6. would be expected.

Figure 16 illustrates the evolution of stars up to 10° M, at
high metallicities (Z=0.0142) using this new approach. The
very-high-mass models are not necessarily meant to represent
real stars, but serve as an extreme test of this new approach.
In particular, realistic models of supermassive stars need
to also take into account general relativistic effects
(Chandrasekhar 1964; Fricke 1973), which are not included
in these simulations. The calculations all used I'.=0.5,
a;=a>,=5, and 6,=10"% which we found to perform
consistently across a broad range of masses.

A comparison between the new method, MLT++ and a
simulation without any enhancement of energy transport is
shown for a 30 M. model in Figure 17. Overall, the new
method provides smoother evolution while remaining closer to
the result obtained without enhancing energy transport. MLT+
+ introduces undesirable numerical variations that are
particularly visible when the model moves from the blue to
the red at TAMS, and when it evolves from the red to the blue
after being stripped of most of its H envelope. Lowering «; or
Qu, or increasing I, or ., will produce results closer to those
without energy-transport enhancement. Figure 17 also shows
two different simulations with the new method using
aj=a;=5 and 2. The simulations performed with
ap =ap =2 take almost triple the number of steps and
computation wall time. Selection of these parameters requires
balancing performance and similarity to the unenhanced
behavior. Users need to carefully assess if such variations
have a meaningful impact on their conclusions.
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Figure 16. Evolution of stars ranging from 10-10° M, at solar metallicity,
using the implicit method to increase the efficiency of energy transport in
regions approaching the Eddington limit.
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Figure 17. Evolution of a 30 M., star at solar metallicity. The different tracks
use the implicit method to enhance energy transport near the Eddington limit
(with different choices for oy and «;), MLT++, and the MESA default, which
includes no energy-transport enhancement. Both simulations with the new
method use T, = 0.5 and &, = 1072 The MESA default simulation stalls when
evolving toward the blue after an RSG phase. Inset plots are made to highlight
variations between the runs at TAMS and at the end of the RSG phase.

The stability of this implicit method is particularly useful in
simulations of binary systems, where small step-to-step
variations in R can result in large changes to M during Roche
lobe overflow. This makes the previous MLT++ method
inappropriate.

Figure 18 shows the evolution of a 40 M. model with a
30 M, point mass companion at an initial orbital period of 50
days. Simulations are performed using no enhancement of
energy transfer, MLT++, and the implicit method. In all cases,
the models experience an initial mass transfer phase during the
MS, and a second mass transfer phase right after TAMS. The
simulation without enhanced energy transfer stalls during this
second mass transfer phase, exemplifying the computational
complexity of modeling stars near the Eddington limit.
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Figure 18. Evolution of a 40 M, star with a 30 M, point mass companion with
an initial orbital period of 50 days. Models are computed for solar metallicity
and using different methods to enhance energy transport in regions near the
Eddington limit.

Figure 19 demonstrates that although the MLT++ model
evolves beyond detachment, large step-to-step variations lead
to large changes in mass transfer rates. In contrast, the new
implicit method provides a smooth solution throughout the
mass transfer phase. An early example of this implicit method
enabling the successful computation of massive binary
evolution is the models of ¢ Ophiuchi computed by Renzo &
Gotberg (2021).

8. Opacity
8.1. Molecular Opacities

Molecules contribute significantly to stellar opacity for
T<5000K (Alexander & Ferguson 1994; Ferguson et al.
2005). The MESA kap module has been expanded to include
low-temperature molecular opacities from Lederer & Aringer
(2009) and £ SOPUS (Marigo & Aringer 2009). Both opacity
sets allow for varying CNO levels. CNO-enhanced molecular
opacities find applications in models of red giants, AGB stars,
and R Coronae Borealis stars (Schwab 2019).

Lederer & Aringer (2009) provided Rosseland mean opacity
tables for 14 metallicities ranging from Z=10"" to
Z=4x 10’2, and three H mass fractions X=20.5, 0.7, or
0.8. One can specify seven Z-dependent levels of C enhance-
ment and three Z-dependent levels of N enhancement, all with
Lodders (2003) solar abundances. The tables span
32 <log(T/K) < 405 and —7 < log(pTs/gem™3) < L.
These opacities are enabled by setting kappa_low_
T_prefix=kapCN'

ASOPUS (Marigo & Aringer 2009) allows for the
computation of opacity tables for a variety of solar composi-
tions with the optional inclusion of enhancements (and
depletions) to C, N, and C/O on top of the basic mixture.
We provide a set of £ SOPUS opacity tables. Additional &
SOPUS opacity tables can be generated through the £ SOPUS
web interface,’> and MESA_DIR/kap/preprocessor/
AESOPUS contains information on preparing the tables
for MESA.

32 http: / /stev.oapd.inaf.it/cgi-bin /aesopus
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Figure 19. Mass transfer rate Myyszer as a function of donor mass for the binary
system shown in Figure 18. All simulations have two significant phases of
mass transfer corresponding to interaction during the MS (Case A) and after
TAMS (Case AB).

To compare MESA and the Monash stellar evolution code
(Lattanzio 1986; Frost & Lattanzio 1996; Karakas &
Lattanzio 2007), custom A SOPUS tables were generated
with 3.2 <log(T/K) < 4.5 in steps of 0.01 dex and
—7 < log(pTg3/gem3) < 1 in steps of 0.05 dex. We use
steps of 0.5 dex at higher 7, the Lodders (2003) solar
composition, reference metallicities of Z=0.01-0.10 in steps
of 0.01 dex and 0.5 < X < 0.8 in steps of 0.1. We set the CNO
abundance variation factors fc=-1, 0.2, 04, 0.6, 1, 1.5,
fco=—1, —0.5,0, 0.5, 1, 1.5, and £n=0, 0.4, 0.7, 1.

These tables were installed in MESA and the Monash code.
The physics used in the Monash code is reconstructed as
closely as possible in MESA (Cinquegrana et al. 2022;
Cinquegrana & Joyce 2022). This includes the basic.net
reaction network, treatment of MLT convection (with inde-
pendently calibrated apt parameters of aypr=1.931 in
MESA, apmpr=1.86 in Monash), high temperature and
molecular opacities (Iglesias & Rogers 1996; Marigo &
Aringer 2009), an Eddington gray atmosphere, and mass-loss
approximations (Reimers 1975; Blocker 1995). We use an
NRreimers = 0.477 efficiency factor, and 7)gj5.4er = 0.01 in MESA
and 7geer = 0-02 in the Monash code (Cinquegrana et al.
2022). Functionality that is not available in both includes the
process of defining the border between convective and radiative
regions. Here, a relaxation method is used in the Monash code
(Lattanzio 1986), and the predictive mixing algorithm in MESA
(MESA1V).

We evolve a 3 M., Z=0.014 model with MESA and the
Monash code. Both models use the same initial conditions and
are terminated at the 11th thermal pulse. Figure 20 compares
the L, Te, and R histories of the two models during the TP-
AGB phase. The MESA model reaches higher peak L, smaller
peak T.g, and larger peak R than the Monash model. The
differences decrease as the evolution proceeds. Both have very
similar interpulse periods, ~7.2 x 10* yr, after the first few
pulses.

8.2. Compton Opacities

At temperatures log(7/K) 2 8.7, beyond the boundary of
the standard opacity tables, the radiative opacity is set by
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Figure 20. Evolution of L, T, and R, respectively, during the TP-AGB phase
of 3 M, Z=0.014 models from MESA (solid) and the Monash code (dashed).
The age of the MESA (Monash) stellar model is shown on the bottom (top)
X-axis.

Compton scattering (MESA 1, Section 4.3). Such conditions are
often realized in simulations of massive stars and thermo-
nuclear bursts on neutron stars. MESA now calculates the
Compton scattering opacity using the prescription of Poutanen
(2017), which improves upon the previous approach from
Buchler & Yueh (1976). See Section 4 in Poutanen (2017) for a
detailed comparison of the two approaches.

8.3. Conductive Opacities

Energy transport via electron conduction plays an important
role, especially in degenerate stellar interiors. The conductive
opacities in MESA are expanded versions of the tables from
Cassisi et al. (2007); see MESA II, Appendix A.3. Blouin et al.
(2020) improved the conductive opacities for H and He in
the regime of moderate Coulomb coupling and moderate
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Figure 21. Cooling tracks for 0.9 M., DA WD models using the conductive
opacities of Cassisi et al. (2007) and Blouin et al. (2020).

degeneracy, primarily relevant for the envelopes of DA and DB
WDs. We implement their analytical fits for conductive
opacities for H and He in MESA.

Figure 21 shows the effect of these new opacities on MESA
WD cooling calculations for a 0.9M. WD with an H
atmosphere, confirming the result of Blouin et al. (2020) that
the cooling time to reach T.;=4000K can be reduced by
~2 Gyr. The difference in cooling times is somewhat smaller
for WDs with He atmospheres, as also confirmed in MESA
models for AM CVn accretors (Wong & Bildsten 2021).
Salaris et al. (2022) provide a more detailed study of the impact
of these updated opacities on WD cooling timescales. The
conductive opacities including the Blouin et al. (2020)
corrections are now the default in MESA.

8.4. Radiative Accelerations from the OP Monochromatic
Opacities

The radiative acceleration g.,q; of a given species i
represents the acceleration caused by the radiation field.
MESATII (Section 9) describes the inclusion of radiative
levitation from Hu et al. (2011), which includes evaluation of
the Rosseland mean opacity kg and g4, using the Opacity
Project (OP) monochromatic opacity tables (Seaton 2005). The
computation of both of these quantities requires wavelength
integrations of monochromatic opacities according to the local
mixture, introducing a significant amount of extra time.
MESA 'V (Section 6.2) briefly describes the steps taken to
reduce the time required to evaluate kg and gpq,; We now
describe a new implementation from Mombarg et al. (2022).
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The OP tables provide monochromatic cross sections o,
equally spaced in

15 uo xte™
v(u) = — ——ax,
474 Jo (1 — e™)3

(76)
with a step size Av, where 1073 <u = hwv/kgT < 20. The OP
tables contain data for H, He, C, N, O, Ne, Na, Mg, Al Si, S,
Ar, Ca, Cr, Mn, Fe, and Ni. The Rosseland mean opacity for
cell k is then given by

-1
1

1
1 A
Z Zf,",k 0; (vy)

— a7
Hie|

RRk = v s

where i is the mean molecular weight and f; is the fractional
element abundance of species i. The monochromatic opacities
are sampled at 10,000 points in the frequency parameter v,,
denoted by index n.

In the new implementation, the OP monochromatic data are
converted from (7, n,) space to (7, p) space with

log(p/g cm ™) = log(n, /cm ™) + log

—log=E — log(Na/g), (78)

where = =3 _f;Z, is the average number of electrons per atom
(given by the OP tables), and N, is Avogadro’s constant. The
tables contain data for 3.5<log(7T/K)< 8.0 and
log(p/g cm™3) bounds that depend on log(T/K). An error is
returned for 7 and p beyond these limits.

We select the point in the OP tables with the smallest value
of

(log o — log p.)?

, 79
0.25 79

\/aog T logT;)?
0.0025

where the different denominators reflect the different OP table
spacings.

From this OP data point, we select nearest neighbor points
and construct a spline interpolant with a maximum degree of
three, i.e., a bicubic interpolant. The interpolants are stored
such that the opacity can be re-interpolated at the next time step
as long as log(7/K) has changed by less than twice the grid
spacing (0.01 dex), log(p/g cm™>) has changed less than twice
its grid spacing (0.1 dex), and the fractional abundances all
satisfy

|ﬁ,t o ﬁ,t—ll

ﬁ,tfl

<€, (80)

where ¢ and ¢ — 1 indicate the current and previous time steps,
respectively. Empirically, we find for MS models that e = 10™*
optimizes the computational efficiency without sacrificing
accuracy in kg and g..q; (Hui-Bon-Hoa 2021).

The radiative acceleration of a species is given by

1)

HER
8rad,i = _f’yi’

1

29

Jermyn et al.

where (; is the molecular weight of the species and F is the
radiative flux. The factor ~; is given by

=3 g [l — e — a;(va)

Av,
n Zf; Uj (V”)
J

(82)

where the index j runs over all species. The correction terms
aiv,) are provided by the OP data. The numerator in
Equation (82) is precomputed and stored.

In the new implementation, optimized for models with a
convective core and radiative envelope, the envelope is divided
into two equal regions based on the number of cells (regardless
of the outer convection cells). For each region, the ~; factors are
precomputed using an average mixture of the region

-1
ks ks
(£) =(Zﬁ,k](22ﬁ,k) , (83)
k=k i k=k
where k; and k, are the first and last cell index of a region. Near
the boundary of these two regions, 15 cells on each side, the

value of log g4, is blended

loggrad,i = Q; loggrad,i,l + (1 - ai)loggrad,i,Z’ (84)
where log g,,4; 1 is computed using the average mixture (f; ) of
the first region, and log g4, , from the average mixture of the
second region. The parameter «; varies linearly between 0 and
1 as a function of cell number in the region where blending
takes place.

Figure 22 compares kg and gq; from MESATII and the
present method. The cell-averaged difference and maximum
difference (| log ng:c‘l‘ — log ggé"mbargl / log 8 a}dlu) for '°0 are
0.007 and 0.042, respectively, and for "Ar are 0.02 and
0.03, respectively. The differences in g,.q for '°O are typical for
most isotopes. The new implementation is about five times
faster for MS stars.

Enabling this capability requires a data file containing the
manipulated OP monochromatic data, see doi:10.5281/
zenodo.6858178.

9. Diffusion Coefficients

MESATIII and MESAIV describe the implementation
of element diffusion in MESA using the Burgers (1969)
equations with diffusion coefficients based on Paquette et al.
(1986), and updated with the coefficients of Stanton & Murillo
(2016). For strong plasma coupling in the liquid regime
(where the multicomponent plasma coupling parameter
Dvce = g (Z%/3) Jacks T 2 1), these coefficients disagree by
a factor of a few with more accurate molecular dynamics (MD)
methods (MESA III; Bauer et al. 2020; Caplan et al. 2022).

Until recently, it was unclear how to generalize these results
to the arbitrary plasma mixtures needed for stellar models.
However, Caplan et al. (2022) showed that in the liquid regime
(10 < T'mcp < 200), diffusion coefficients are approximated to
within ~10% accuracy by using a fit to an equivalent one-
component plasma (OCP) coefficient calculated with MD, and
then scaling with charge as

7. 06
D; = (é) Docp, (85)
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Figure 22. Rosseland mean opacity (g, upper) and the radiative accelerations
(8raa» lower) of 1°0 and *°Arin a2 M., model with an initial Z = 0.02 at a core
H mass fraction of X, = 0.2. Green dotted curves show the MESA III (Hu)
treatment, and black solid curves show the current treatment (Mombarg).
Shaded areas indicate convective regions.

where D; is the diffusion coefficient of species j, Z; is the charge
of species j, (Z) = 2.1,Z;/Nions is the average charge of ions in
the liquid, and Dgcp is the diffusion coefficient for an
equivalent OCP with coupling and screening set by the mixture
averages. This scaling is justified by the fact that in the liquid
regime, ion diffusion can be described in terms of spheres
experiencing Stokes—Einstein drift through a viscous liquid
(Bildsten & Hall 2001; Daligault 2006), with the effective radii
of different ions set by their charge relative to the background
plasma (Bauer et al. 2020; Caplan et al. 2022). The Dgcp term
therefore captures the physics of the global viscosity
experienced by all ions, while the scaling with charge captures
the different effective radii of ions experiencing Coulomb
interactions with the background plasma.

Since the diffusion solver in MESA is cast in terms of the
Burgers (1969) equations, coefficients must be recast in terms
of the binary resistance coefficients K;; between species i and j
rather than the net diffusion coefficients D;. At strong plasma
couplin% (I'mcep 2 10), these coefficients must satisfy the
relation™

. njkBT

D; = .
TN Ky
i

(86)

33 As noted by Caplan et al. (2022), this expression for D; in terms of Kj; is
accurate for strong plasma coupling, but neglects a higher-order correction for
thermal diffusion that can reach up to about 20% for I'y;cp < 10 (Baalrud &
Daligault 2014).
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The resistance coefficients Kj; must also be symmetric
(Kj; = Kj;), motivating

K. — n,-nj(Z,-Zj)O'6kBT g7
U 706y (7\06 D o (87)
nlOl’lS< > < > oCP

where (Z°6) =7, nZ° /nions. The resistance coefficients of
Equation (87) reduce to the desired net diffusion coefficients of
Equation (85) under the summation required in Equation (86).

We calculate the OCP diffusion coefficient Docp using the
Caplan et al. (2022) fit to high-resolution MD, which is given
in terms of ['ycp and electron screening length .. To calculate
the value of ), as input for the diffusion coefficients, we follow
the method described in MESA IV based on Stanton & Murillo
(2016) for nonrelativistic electrons at p < 10°gem™. Elec-
trons become relativistic at higher densities, and we therefore
switch to the relativistic screening length A\, = (kg a/7)!
for densities p>10°gcem™, where a is the fine-structure
constant and kg = (37%n,)!/3.

Figure 23 shows the “*Ne diffusion coefficient in a MESA
model of a 0.6 M, C/O WD, which has historically been a key
source of uncertainty in the rate at which **Ne settles toward
the center of the WD (Bildsten & Hall 2001; Deloye &
Bildsten 2002; Garcia-Berro et al. 2008). Such C/O mixtures
with trace **Ne are in the liquid phase for I'ycp < 200 (Caplan
et al. 2020; Blouin & Daligault 2021), though distillation of
22Ne may also occur for sufficient ?Ne concentration (Blouin
et al. 2021).

Figure 23 also shows the MD coefficients from Caplan et al.
(2022; these closely match the MD coefficients of Hughto et al.
2010) along with diffusion coefficients obtained from
Equations (86) and (87) for MESA profiles of our C/O WD
model with a similar interior composition. The coefficients
based on Stanton & Murillo (2016) vary from the MD results
by a factor of 2 or more, while the residuals for our
implementation of the Caplan et al. (2022) coefficients are
10% or less. This represents an order-of-magnitude improve-
ment on the uncertainties for diffusion coefficients in the
strongly coupled regime relative to the previous MESA
implementation, while also providing a procedure that is
generalizable to compositions other than just C/O/Ne mixtures
(Equation (87)).

We have implemented these Caplan et al. (2022) diffusion
coefficients as the default coefficients in MESA for ['vicp > 10,
with a smooth transition from the Stanton & Murillo (2016)
coefficients over the range 3 < I'yicp < 10. The diffusion
coefficients in the liquid WD regime are now accurate to
~10% for 10 <SI'vep 200, a substantial improvement
compared to our previous methods.

When crystallization occurs for I'vicp 2 200, we assume that
freezing into the solid phase causes the diffusion coefficient to
go to zero. We implement this with a smooth turnoff near the
crystallization boundary using the smoothed phase parameter ¢
from Skye (Section 4.1), so that the diffusion velocities are zero
for ¢ > 0.5.

10. Nuclear Physics

MESA models calculate the energy generation rates and
composition changes due to nuclear burning over a large range
of T, p, and X;. The nuclear evolution of the chemical
composition dominates the total cost of a model (memory +
CPU) when the number of isotopes is 230. Here we report
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Figure 23. Diffusion coefficient of *’Ne in the liquid interior profile of a
cooling C/O WD model. The residuals in the lower panel are relative to the
Caplan et al. (2022) MD for a C/O/Ne plasma mixture shown in the top panel.

progress on nuclear reaction rates, a new operator-split burning
option, and enhanced reaction rate outputs.

10.1. Reaction Rates Updates

MESA’s default reaction rate for 'Be(e—, 1,)’Li came from
REACLIB (Cyburt et al. 2010). However, REACLIB is only
defined for T> 107 K, and assumes that all atoms are
ionized. While this is a reasonable assumption for reactions
that occur deep in the stellar interior, significant Li
production can occur in stellar envelopes with 7'< 10" K
where the reaction rate then depends on the ionization
balance (Schwab 2020). The new default (as of 122.05.1) for
this rate is Simonucci et al. (2013), which incorporates
ionization contributions.

REACLIB defines a reverse reaction as the endothermic
direction. However, this direction depends on the nuclear
masses assumed during the evaluation. For consistency
with the nuclear masses used in MESA, we define the
reverse rate based on the nuclear masses from massli-
b_library_5.data. This affects reactions with uncer-
tain nuclear masses; for instance, the reaction
3Cu(y, p)*Ni has a Q=0.293MeV (exothermic) from
“rpsm” (Rauscher 1999, private communication) and a
0= —-0.07256 MeV (endothermic) from “ths8”** (Cyburt
et al. 2010). Incorrectly determining which reaction is
endothermic leads to large errors when the reverse rate is
computed from detailed balance.

34 For full details of the source of the REACLIB data, see https://reaclib.
jinaweb.org /labels.php.
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10.2. Operator-split Nuclear Burning

By default, MESA uses a nuclear reaction network that is
fully coupled to the stellar hydrodynamics (MESA I), solving
for the changes in the composition simultaneously with the
changes in stellar structure quantities. This approach provides
consistency between the nuclear physics and stellar hydro-
dynamics, but can place limits on the maximum time step.
When 7> 3 x 10° K, the time step is limited by the nuclear
burning timescale, and the composition enters a dynamic
equilibrium state where large forward and reverse reaction rates
nearly cancel each other, potentially leading to numerical errors
when subtracting large values from one another (MESA III).
During the final stages of evolution to core-collapse, time steps
of 6t< 107" s are common (Farmer et al. 2016). This can
make evolution to core collapse a resource-consuming
endeavor.

MESA has the capability to perform an operator-split
procedure (op_split_burn) to compute the composition
change and energy generation. Cells with high 7 use operator
splitting. For each such cell, MESA computes the change in
composition over the time step 6f with a semi-implicit midpoint
rule (Bader & Deuflhard 1983). An operator-split cell can then
take multiple substeps, allowing the composition to evolve at
fixed T and p with an adaptive time step. The nuclear energy
generated €,,. is calculated by taking the difference between
the starting and final compositions, and energy loss due to
neutrinos from nuclear reactions ¢, is accounted for.

This scheme allows for accurate tracking of the net nuclear
energy generation rate and composition changes. However,
operator-split burning cannot calculate the partial derivatives of
these terms with respect to 7" or p for the matrix solver. These
partial derivative matrix terms are thus set to zero. This
removes the difficulty of the partial derivatives varying in sign
and magnitude over short timescales, and enables the solver to
more robustly find a solution within the requested tolerances.

Figure 24 compares the fully coupled (unsplit) and operator-
split solutions in the central 7—p plane for a 30 M., solar
metallicity model evolved from the ZAMS to the formation of
the iron core. We enable op_split_burn for any cell with a
T>10° K. The evolutions are nearly identical up to
T.~3 x 10” K, after which the fully coupled solution evolves
to a slightly larger p. These differences are comparable to
variations arising from other physics choices, such as the
nuclear reaction rate screening prescription (see Appendix A.2
of MESA V). Evolution up to the formation of the iron core
took an approximately equal number of time steps. Evolving
the models further to the onset of core-collapse with “gold”
tolerances (MESA V), the operator-split model only required
an additional ~200 time steps, while the fully coupled model
failed to reach the onset of core collapse after an additional
~140,000 time steps.

Operator splitting can provide a significant speedup during
Si and Fe burning by reducing the number of time steps
needed, and may be the only way to make certain problems
tractable. It is however less efficient than a fully coupled model
during earlier stages of evolution due to the additional substeps
taken by each operator-split cell. Thus, we suggest considering
operator splitting only for models evolving beyond core
C-depletion. It is difficult to say which treatment is more
accurate; fully coupled calculations include more physics but
can be subject to numerical errors, while our operator-split
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Figure 24. Central 7—p tracks of a 30 M, star evolved from ZAMS to
formation of the iron core.

9'05 8.0

calculations ignore the physics in the partial derivatives, but
provide a more numerically stable solution.

10.3. Reaction Rate Output

MESA has the new capability to output individual nuclear
reaction rates and related quantities to the history or profile data
files. Using add raw rates will output the rates of all
reactions. Alternatively, raw rate with the name of a
specific reaction will report only that reaction. Similarly,
add eps neu rates, add eps nuc rates, and
add_screened rates provide neutrino energy rates,
nuclear energy rates, and screened reaction rates.

As an example, Figure 25 shows the total reaction rates of a
1 M, model evolved to the solar age, and the profiles of the
reaction rates at the solar age. Figure 26 further shows the
evolution of the solar electron neutrino fluxes and a comparison
with the observed solar electron neutrino fluxes (see also Farag
et al. 2020) after correction for flavor mixing (Bergstrom et al.
2016). The model agreement with measurements is similar to
that obtained using the ASTEC stellar evolution code
(Bellinger & Christensen-Dalsgaard 2022).

11. Constants

The MESA const module provides mathematical, physical,
and astronomical constants relevant to stellar astrophysics
(MESA, Section 4.1). The values in this module have been
updated to reflect new definitions and conventions. Some
microphysics inputs (e.g., opacity, EOS, and reaction rates) use
slightly different constants in constructing their tables or
expressions. Such cases are usually beyond our control, and the
updates in this section do not apply to those instances.

As part of the revision of the SI, the values of the physical
constants e, h, kg, and N, are now exact (Newell et al. 2018). We
have adopted these values and ensured that other constants composed
of these and other exact values (e.g., the Stefan-Boltzmann constant)
are defined in a consistent manner. For other physical constants, (e.g.,
G) we use CODATA 2018 (Tiesinga et al. 2021).

MESA follows IAU recommendations for astronomical
constants, currently adopting nominal solar and planetary
quantities from IAU 2015 Resolution B3 (Mamajek et al.
2015). We follow the recommended procedure of deriving
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Figure 26. The evolution of solar electron neutrino flux at Earth. The predicted
values for the present Sun are in satisfactory agreement with the observed
values after correction for flavor effects: ®(pp)/ 10° =5.934 (MESR),
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nominal solar and planetary masses from the mass parameters
(GM) and the adopted value of G. We also adopt the
convention that the nominal radii of planetary bodies are the
equatorial radii.

12. Infrastructure

12.1. Migration to GitHub

MESA development began in 2007 with a Subversion (SVN)
repository hosted on SourceForge, and from 2017-2020, this
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SVN repository was hosted by Assembla. Beginning in 2020
December, development shifted to GitHub, with the root of the
new Git repository corresponding to SVN r15140. An archival
copy of the SVN development history is available at
doi:10.5281/zenodo.4745225. The shift to GitHub paves the
way for a new era of collaborative MESA development and
expanded interaction with the astrophysics community.

As Git repositories can have a nonlinear commit history, we
will no longer denote public releases with a revision number. In
SVN, this counted the number of commits from the beginning
of MESA’s development. Instead, public releases will now be
identified by the date, in the format YY.MM.I, where YY is the
final two digits of the year, MM is the two-digit month number,
and I is a version (usually 1) to distinguish multiple releases in
a given month. While we do not recommend publishing an
article based on nonreleased versions of MESA, if necessary we
suggest using the first seven characters of the Git commit hash
as the version number.

12.2. MESA TestHub

With the transition from SVN to Git, the versioning and
branching scheme used in the development of MESA changed
substantially. A major overhaul of the collection and distribu-
tion of continuous integration test results on TestHub®> was
necessary. We now highlight these and other changes made
since MESA V.

With Git, understanding the relationship of a commit to other
commits requires knowledge of the commit graph. To
dynamically obtain and update this information, TestHub uses
GitHub webhooks and APIs. Upon pushing to the GitHub
remote, GitHub now sends a request to TestHub to update its
internal tree of commits. This is done by querying the GitHub
API for a current list of branches and the head commits of each.
TestHub removes any references to branches that are no longer
in GitHub and updates the branches table in the TestHub
database, adding commits as needed even if they have not had
any tests conducted. This allows for easy identification of
commits that have not yet been tested. We also now store data
about commits, such as the authors, commit messages, and
commit times directly in the TestHub database for more
convenient access.

To view the detailed changes made in a given commit, each
commit-specific page on TestHub links to the appropriate page
on GitHub. Additionally, most views in TestHub now have a
branch selector dropdown so developers can look at commits
on a specific branch, and we rely on the GitHub API to order
these commits within a branch.

Figure 27 shows the total number of individual test instances
(i.e., results for a single test case from a single computer) and
daily commits submitted since the launch of TestHub in late
2017. Unsurprisingly, the rate of test submissions is strongly
correlated with the rate of commits. Substantial deviations
occur due to different testing computers coming on- and
offline, and because some commits focus on documentation
and do not trigger testing runs on automated testing setups.
Figure 27 also shows the dates of public releases and key
milestones. The switch from SVN to Git was shortly after
release r15140, and there is a smooth transition between
the eras.

3 https: //testhub.mesastar.org
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Figure 27. Daily tests submitted since the instantiation of TestHub, spanning
the SVN and Git eras. To smooth over the day-to-day variability, we also show
30-day rolling averages of submitted tests and pushed commits. Below the x-
axis are dates of public releases and other milestones such as instrument papers
and the SVN-to-Git transition.

The MESA test suite takes ~ 100 core hours to complete
when run on a modern workstation. To reduce this runtime
while still providing diagnostic information, many tests have
optional steps that can be skipped, with the next inlist loading a
saved model. The total time for a test suite run is roughly
halved when these parts are skipped. Skipping optional inlists
has drawbacks in requiring saved models, which can generate
spurious failures when skipping inlists. At least one computer
runs all inlists on all tests on the main branch.

We now assess how quickly our distributed and automated
continuous integration workflow can identify a failure.
Figure 28 shows that most failures are detected within an hour
of the commit, and more than a third are detected within 30
minutes. This prompt turnaround comes from computing
clusters configured to check for new commits every few
minutes, and then launch a full test suite run upon detecting a
new commit. Some clusters are configured to detect and test
commits on any branch of the MESA GitHub repository,
allowing for full testing coverage during feature development
and ensuring that new features pass the test suite before being
merged into the main branch.

Awareness of test failure and the commit responsible is
useful, but having the detailed output of a failing test is often
essential in quickly identifying and rectifying the regression.
TestHub now collects information on the runtime, computer
architecture, broad failure type (such as a compilation error or a
runtime error), and the stdout and stderr logs of the
compilation and/or test case in the event of a failure. When
present, these logs are accessible by links next to the failure
indicator. This allows developers to quickly identify what led
to the unexpected behavior without having to request more data
from the owner of the computer that submitted it. These
updates to TestHub improve the pace, efficiency, and quality of
MESA source code development.

12.3. User Contributions

MESA has a Zenodo community®® to encourage users to
publicly archive their input and output files. To make user-

36 hitps: //zenodo.org /communities /mesa/
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Figure 28. Distribution of delay times from when a commit is pushed to when
a failure is first reported.

contributed routines easier to share while minimizing main-
tenance, we have additionally created the mesa-contrib
repository.”’

Routines in mesa-contrib can be implemented via
MESA’s hooks with a few Fortran include statements. If
the build environment defines the location of mesa-con-
trib, then it is included by default as a search path when
MESA is compiled. Currently, mesa-contrib contains
routines for the atmospheric 7(7) relations and corresponding
MLT parameters implemented by Mosumgaard et al. (2018)
and for angular momentum transport by the enhanced Tayler—
Spruit dynamo described by Fuller et al. (2019). To ease the
burden of maintenance, mesa-contrib is only intended to
work with the latest public MESA release.

12.4. NuDocker

Reproducibility is a goal of open science and a tenet of
scientific research. Provenance, as the term relates to software
instruments (Buneman et al. 2001; Carata et al. 2014; Stodden
et al. 2018), is the ability to record the full history of a result.
Scientific research is generally held to be of good provenance
when previous results, perhaps decades old, can be reproduced.
The aim is to preserve the final knowledge object and the
capability to perform the scientific actions that are the
foundation of the knowledge object. Thus, we seek to preserve
not only the numerical calculation, but accelerate future
research by archiving the computational environment.

Provenance enables reproducing past simulations and
performing new calculations with different physics or numer-
ical options. A challenge is that compilers change, linked
libraries evolve, and operating systems progress. Many science
results have been obtained with older versions of MESA, which
in most cases are not obsolete and therefore remain valuable.
NuDocker®® (Herwig 2020) provides a solution to the
provenance challenge by being able to run older versions of
MESA with age-appropriate compilers, libraries, and operating
system using light-weight, OS-level virtualization (e.g.,
Docker). NuDocker provides four Docker images that

37 https://github.com/MESAHub/mesa-contrib
3 https: //github.com/NuGrid /NuDocker
® https:/ /www.docker.com

34

Jermyn et al.
4.1
- (Q/chit) ~00
4.0_ - (Q/chlt) ~ 0'2
3.9
©
—I
2 338;
[e14]
i)
3.7
3.6
3.5 T T T T
4.2 4.0 3.8 3.6
log(Tert/K)

Figure 29. Reproduction of Figure 13 from Farmer et al. (2015) using release
16794 in NuDocker: HRD of two 8 M, models—one nonrotating (blue) and
one rotating at €2/ ~ 0.2 (red). The evolutions span from H depletion to He
depletion.

can be launched with one terminal command, and has been
tested and used in 14 out-of-the-box MESA versions from r4942
to 1r22.05.1. A hallmark of Docker virtualization is the
minimal performance penalty compared to running natively
(Felter et al. 2014, 2015).

As an example of the ability to provide almost decade-old
results with NuDocker, Figure 29 reproduces Figure 13 from
Farmer et al. (2015) using the same MESA version 6794 from
2014 July and inlists (Farmer et al. 2019) as in Farmer et al.
(2015). The virtual containers allow older versions of MESA to
be run with bit-for-bit consistency for all versions after 7503
(see MESA III), thereby enabling older versions of MESA to be
run on modern hardware, and preserving the required system
environment to enable new research.

13. Summary

We explain significant new capabilities and improvements
implemented in MESA since the publication of MESA I through
MESA V. Advances in automatic differentiation (Section 2)
and time-dependent convection (Section 3) will open oppor-
tunities for future investigations in stellar evolution. Discussion
of the current treatment of the energy equation (Section 5),
stellar atmospheres (Section 6), and new formalisms for
treating starspots and superadiabatic convection (Section 7)
will enhance the study of stellar physics. Upgrades to the EOS
(Section 4), opacity (Section 8), element diffusion coefficients
(Section 9), nuclear reaction rates (Section 10), and physical
constants (Section 11) will increase the robustness of stellar
evolution models. The transition to GitHub, upgrades to the
MESA TestHub continuous integration framework (Section 12),
the opening of a mesa-contrib repository, and NuDock~
er’s ability to run older versions of MESA will lead to an
efficient and distributed model of source code development.
Inlists and related materials for all of the figures are available at
doi:10.5281 /zenodo.6968760.
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