2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE) | 978-1-6654-5132-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/ISSRE55969.2022.00025

2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE)

Covariate Software Vulnerability Discovery Model
to Support Cybersecurity Test & Evaluation
(Practical Experience Report)

Julia Sorrentino, Priscila Silva, Gaspard Baye, Gokhan Kul, Lance Fiondella
University of Massachusetts Dartmouth
North Dartmouth, United States
{jsorrentino, psilva4, bgaspard, gkul, Ilfiondella} @umassd.edu

Abstract—Vulnerability discovery models (VDM) have been
proposed as an application of software reliability growth models
(SRGM) to software security related defects. VDM model the
number of vulnerabilities discovered as a function of testing time,
enabling quantitative measures of security. Despite their obvious
utility, past VDM have been limited to parametric forms that
do not consider the multiple activities software testers undertake
in order to identify vulnerabilities. In contrast, covariate SRGM
characterize the software defect discovery process in terms of one
or more test activities. However, data sets documenting multiple
security testing activities suitable for application of covariate
models are not readily available in the open literature.

To demonstrate the applicability of covariate SRGM to vul-
nerability discovery, this research identified a web application
to target as well as multiple tools and techniques to test for
vulnerabilities. The time dedicated to each test activity and the
corresponding number of unique vulnerabilities discovered were
documented and prepared in a format suitable for application of
covariate SRGM. Analysis and prediction were then performed
and compared with a flexible VDM without covariates, namely
the Alhazmi-Malaiya Logistic Model (AML). Our results indicate
that covariate VDM significantly outperformed the AML model
on predictive and information theoretic measures of goodness of
fit, suggesting that covariate VDM are a suitable and effective
method to predict the impact of applying specific vulnerability
discovery tools and techniques.

Index Terms—Software reliability, cybersecurity, penetration
testing, vulnerability discovery, covariate model

[. INTRODUCTION

Software is highly versatile, providing a wide variety of
functionality in applications and software-enabled systems.
However, the potentially negative impacts of software ex-
ploitation through latent vulnerabilities cast a dark shadow
over the otherwise promising nature of software, especially
those intended to monitor and control infrastructure, defend the
homeland, and support national security. Significant effort has
been dedicated to vulnerability taxonomies [1], [2] as well as
tools [3], [4] and techniques [S]-[7]. Some attention has been
allocated to models [8] that assess vulnerability discovery-
focused testing. However, these models only consider the

This research was supported by the Homeland Security Community of Best
Practices (HS CoBP) through the U.S. Department of the Air Force through
under award number SCR1158132. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the U.S. Department of Homeland
Security or U.S. Department of the Air Force.

amount of time spent testing, preventing more detailed guid-
ance on the relative effectiveness of alternative vulnerability
testing tools and techniques. In the absence of models that
link specific test activities and tools to vulnerability discovery,
organizations will struggle to understand which combination
of methods may be most effective for the system under test
and how to conduct detailed test planning.

Relevant past research may be categorized into three pri-
mary categories, including (i) software vulnerability tax-
onomies, (ii) testing techniques and tools, and (iii) vulnerabil-
ity discovery modeling. Taxonomies hierarchically organize
various classes of common weaknesses and attacks, while
vulnerability techniques and tools respectively define the ab-
stract concepts and concrete implementations of algorithmic
approaches to discover vulnerabilities for mitigation. Vul-
nerability discovery models quantify trends in the rate of
vulnerabilities discovered during testing, estimate the number
of vulnerabilities remaining, and metrics such as mean time
between discovery, which may be regarded as the security
analog of the traditional reliability, metric mean time to failure.
In the absence of more detailed methods to complement pro-
cesses such as the Risk Management Framework (RMF) [9],
organizations developing or acquiring software will struggle
to perform their diverse duties with the degree of diligence to
which they aspire.

This paper presents a study, comparing a software vulner-
ability defect model incorporating covariates [10] with the
AML model [8], which is one of the most flexible VDM
without covariates. Since covariate data on the amount of time
spent applying different tools and techniques in each interval
was not readily available, a target application was identified
and subjected to multiple vulnerability discovery tools and
techniques. To support equitable comparison, grouped data
expressions of the AML model as a nonhomogeneous Poisson
process (NHPP) are derived and two methods to express the
length of time intervals considered, including the total time
required to perform the work in each interval and the sum of
the times spent executing tools in each interval. Our results
indicate that the software VDM incorporating covariates (i)
more accurately tracks and predicts the number of vulnerabil-
ities discovered in future intervals as a function of penetration
testing activities performed and (ii) achieves better goodness

2332-6549/22/$31.00 ©2022 IEEE 157
DOI 10.1109/ISSRE55969.2022.00025

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

of fit, despite the fact that the information theoretic measures
penalize the covariate models for their additional parameters.
The AML model, in contrast, like other parametric VDMs that
do not incorporate covariates, can only capture the primary
trends embedded in their model forms. Thus, software VDMs
incorporating covariates offer a more detailed methodology
to assess the effectiveness of alternative tools and techniques
to discover vulnerabilities. The software VDM incorporating
covariates can, therefore, be used to allocate vulnerability
testing effort and guide process improvement.

The remainder of the paper is organized as follows: Sec-
tion II describes related research in the areas of vulnerability
taxonomies and discovery models. Section III describes the
process by which the target system was selected. Section IV
provides an overview of the vulnerability categorization em-
ployed. Section V explains the methodology, including test
environment and process by which the vulnerabilities dis-
covered were mapped to covariate data. Section VI presents
vulnerability discovery models with and without covariates.
Section VII reviews quantitative goodness of fit measures
employed. Section VIII present a comparative analysis of the
alternative vulnerability discovery models, while Section IX
summarizes the study and provides suggestions for future
research.

II. RELATED RESEARCH

This section reviews related research in the areas of software
vulnerability taxonomies and vulnerability discovery models.
For a review of software vulnerability techniques, the reader
is referred to [7].

A. Software vulnerability taxonomies

Efforts to identify, define, and catalog publicly disclosed
cybersecurity vulnerabilities include the MITRE Common
Vulnerabilities and Exposures (CVE) Program [11]. Prominent
vulnerability lists include the MITRE Common Weakness
Enumeration (CWE) [1] and the Open Web Application Se-
curity Project (OWASP) Top 10 [2]. The MITRE CWE is a
community-developed list of software and hardware weakness
types intended to provide a variety of services to security
teams, including as a baseline for weakness identification,
mitigation, and prevention efforts. The OWASP Top 10 rep-
resent major categories that can be further decomposed into
CWEs, identifying a broader security control area for vulner-
ability types. The OWASP Top 10 covers approximately 200
CWE, and a single OWASP category can contain as many as
three dozen CWEs. There are over 600 categories of CWEs,
meaning that some risks are not covered by the OWASP Top
10, since CWEs include both software and hardware issues.
The benefit of mapping discovered vulnerabilities to CWEs
is that the MITRE Common Attack Pattern Enumeration
and Classification (CAPEC) [5] relates CWEs to the most
common exploitation methods, which can help developers
better secure their software system by knowing what types
of attacks the system is prone to. To enable government
decision makers to make effective software assurance and

158

software supply chain risk management decisions [7], the
Institute for Defense Analyses combined several sources,
including the Center for Assured Software Static Analysis
Tool Study Methodology [12], National Vulnerability Database
(NVD) [13], CWE/SANS Top 25 [14], the Program Protection
Plan (PPP)/Defense Acquisition Guidebook [15], OWASP [16]
and the Web Application Security Consortium [17] into a
single categorization listing. Despite these efforts, it is always
possible that additional unknown risks remain.

B. Vulnerability discovery modeling

Alhazmi and Malaiya [8] compared the Anderson Ther-
modynamic Model [18], [19], the Alhazmi-Malaiya Logistic
Model [20], Rescola’s Linear and Exponential Models [21],
and the Logarithmic Poisson Model [22] on vulnerabilities
in three major operating systems, including Windows 95, Red
Hat Linux 6.2, and Windows XP, assessing goodness of fit with
the chi-squared statistic, residual sum of squares, and Akaike
information criterion. Alhazmi et al. [23] subsequently applied
the Alhazmi-Malaiya Logistic Model to a larger number of
Windows operating systems and versions of Red Hat Linux.
Kim et al. [24] generalized the Alhazmi-Malaiya Logistic
Model to a mixture of two successive versions of a software
and applied this mixture model to the Apache HTTP Web
server and Mysql DBMS, examining the relationship between
software evolution and vulnerability discovery. Condon et
al. [25] used the Laplace test [26] to guide NHPP model se-
lection from the Goel-Okumoto [27], Yamada S-Shaped [28],
Duane [29], and Khoshgoftaar K—stage Erlangian [30] models.
Okamura et al. [31] proposed an optimal security patch release
timing model under the assumption of a NHPP vulnerability
discovery process, considering costs such as those associated
with development and distribution of patches as well as the
burden of unpatched vulnerabilities. Additional models applied
include the Weibull [32] and folded [33] distributions as well
as an effort-based Weibull model [34] and an effort-based
model [35] considering numbers of vulnerabilities discovered
by reporters and number of reporters per unit time. Nguyen
and Massacci [36] presented a methodology to determine if a
model can adequately characterize the vulnerability discovery
process in terms of goodness of fit and predictive accuracy,
applying several of the models previously noted to 30 major
releases of four popular Internet browsers, including Explorer,
Firefox, Chrome, and Safari. Okamura et al. [37] proposed a
vulnerability lifecycle model possessing multiple stages from
discovery to resolution, characterizing the time to distribution
of a patch by the phase-type (PH) distribution. Kansal et
al. [38] developed a vulnerability discovery model considering
the operational effort and coverage rates, respectively defined
as the proportion of manpower required to discover vulnera-
bilities and the proportion of software covered by the effort to
discover vulnerabilities.

Unlike previous studies, this paper is the first to (i) create
a data set suitable for application of covariate SRGM to
the vulnerability discovery problem, (ii) carefully explain the

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

mapping process from penetration testing to a format suitable
for model application in order to encourage additional studies,
and (iii) illustrate the predictive performance of covariate
SRGM on the vulnerability discovery problem.

III. SELECTION OF TARGET APPLICATION

Prior to performing our experiments, it was necessary to
identify a specific application to subject to penetration test-
ing [39]. Three classes of applications were considered, includ-
ing web, mobile, and desktop applications. The OWASP Top
10 defines unique top ten security risks for the three classes
of applications considered, including web [2], mobile [40],
and desktop [41] applications. A web application runs on a
web server and is accessed by users through a web browser
via a network connection, and can therefore be accessed by
any user with a valid network connection on any device. In
contrast, a mobile application is a program designed to run on
a mobile device and can only be accessed via such devices,
while a desktop application can only be run by a computer.
US Government organizations such as the Department of De-
fense also distinguish between Major Automated Information
Systems (MAIS) and Weapon Systems, many of which are
software intensive. Similarly, NASA is especially interested in
the reliability and security of their core Flight System (cFS)
flight software [42]. However, the goal of this study was to
demonstrate how to map the results of security testing in order
to conduct quantitative assessments with covariate software
vulnerability discovery models [43] in any domain, so that
readers can understand how to perform a similar mapping in
their particular domain of interest.

Among the classes of systems described above, a web
application was chosen as the target for testing, due to
their complexity, including the high degree of connectedness
to internet components that provide functionality and their
corresponding vulnerabilities [44]. Moreover, use of web
applications is extremely widespread by people all over the
world to obtain information, perform financial transactions,
and communicate with one another. For example, an attacker
seeking financial gain may target credit card information, once
they have gained initial access to a network. This is especially
attractive to attackers, since financial losses from the 58 largest
web application security incidents reported in the last five
years [45] exceeded $7.6 billion USD. Another factor that
makes web applications a preferred target of attackers is the
ease of use of tools that expose and automatically exploit
vulnerabilities. Vulnerability analysis tools take advantage of
application specific code, which is often developed under
strict time constraints by programmers possessing little to no
security training. In addition to these factors, web applications
are also vulnerable to traditional desktop vulnerabilities that do
not contain internet components. Therefore, the relative ease
of access, availability of tools for exploitation, wide array of
vulnerability types and potential benefit of demonstrating the
proposed approach motivated our choice of conducting this
study in the context of a web application.

159

Four open source web applications were investigated as
possible targets, including VulnLab [46], Damn Vulnerable
Web Application (DVWA) [47], Xtreme Vulnerable Web Ap-
plication (XVWA) [48], and OWASP Juice Shop [49]. The
purpose of each of these vulnerable web applications is to
assist individuals possessing a range of backgrounds to learn
skills and test tools in a legal environment. VulnLab is a
web vulnerability lab project composed of labs divided into
specific categories of vulnerabilities including SQL injection,
cross site scripting, command injection, insecure direct object
reference, cross site request forgery, XML external entity,
insecure deserialization, file upload, file inclusion, and broken
authentication. DVWA is a PHP/MySQL web application for
individuals to practice discovering and exploiting some of the
most common web vulnerabilities at varying difficulty levels.
XVWA is another web application written in PHP/MySQL,
which was poorly coded on purpose for the sake of learning.
Similar to VulnLab, activities within DVWA and XVWA are
categorized and separated by vulnerability type. OWASP Juice
Shop emulates a modern day web application for an online
Juice Shop marketplace with complex functionality, containing
a wide variety of vulnerabilities. Ultimately, OWASP Juice
Shop was chosen because it was determined to bear the
greatest resemblance to a real world web application. In con-
trast, the alternative choices were relatively narrowly focused
assignments that do not require any form of web exploration,
explicitly pointing users to the vulnerabilities that could be
exploited.

IV. OPEN WEB APPLICATION SECURITY PROJECT
(OWASP)

The OWASP [16] is a nonprofit foundation established in
2001 that works to improve the security of software. The
OWASP Foundation is composed of 200 chapters worldwide
with tens of thousands of members. This community leads
open source software projects and holds educational and
training conferences. OWASP projects, tools, and documents,
are free and open to anyone interested in improving application
security, or supporting organizations develop, acquire, operate,
and maintain trusted applications.

OWASP is perhaps most well known for developing and
maintaining security standards and processes for web appli-
cations as well as providing technical information about key
security risks and countermeasures. One of the standards that
the foundation developed is the OWASP Top 10 [2], a list of
the top 10 most critical security risk categories related to web
applications. There are a number of reasons that developers
and web application security should classify vulnerabilities
based on this document. The primary justification is that there
is broad consensus among researchers [50] that the OWASP
Top 10 constitute the main security risks to web applica-
tions. The standard is based on contributor data created by
testing web applications for vulnerabilities and recording how
many web applications contained specific vulnerabilities and is
therefore community-driven. Additional reasons for using the

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

OWASP Top 10 list are that it can be used at each stage of
the software development life cycle, justify security activities
to management, and show progress over time toward industry
standard security and compliance, which aligns well with the
trend analysis enabled by software vulnerability discovery
models. Thus, while the OWASP is not exhaustive, focusing
on these Top 10 risks enables developers to mitigate the most
common types of security risks found in web applications.
The following subsections provide a brief description of
each of the OWASP Top 10 Web Application vulnerabilities.
AO01: Broken Access Control Access control [51] regulates how
the data and resources are accessed by users based on the
permissions specified by administrators. Broken access control
occurs when a user acts outside of these specified limits. When
an attacker bypasses these control measures, they may be able
to view sensitive data or perform tasks as a privileged user.
AO02: Cryptographic Failures A web application accesses,
sends and receives a variety of types of data, including
information governed by privacy laws and requiring additional
protection. Examples include passwords, credit card numbers,
and personal and health information. This category of vulnera-
bilities [52] refers to situations when sensitive data is exposed
as a direct result of improper implementation of cryptography.
AO03: Injection An injection attack [53] occurs when an
attacker provides malicious input to a web application and
changes the operation of the application, forcing it to execute
specific commands. There are several factors that may make
an application vulnerable to attack such as not validating, fil-
tering, or sanitizing user-supplied data, using dynamic queries,
and several others. Common types of injection include:
SQL [54], NoSQL [55], and operating system commands [56].
A04: Insecure Design Secure system and software develop-
ment requires considering possible threat models [57], im-
plementing secure design principles and patterns [58], and
adopting security best practices [59]. In contrast, insecure
implementation may be regarded as the source of the other
categories in the Top 10, possessing different root causes and
remedies.
AO05: Security Misconfiguration Vulnerabilities may manifest
as a direct result of security controls not being properly con-
figured. There are many places where misconfiguration may
occur in a web application [60] such as enabling unnecessary
features, not changing default passwords, providing users with
unnecessarily detailed error messages, and failure to update
security features in a timely manner. Security misconfiguration
vulnerabilities are much more likely to occur when developers
do not implement a repeatable security configuration process.
A06: Vulnerable and Outdated Components Software usu-
ally includes libraries required to accomplish certain tasks.
These libraries may be kept up-to-date with dependency man-
agers [61] or manually. However, when one of these packages
become vulnerable or left outdated [62], they become threats
to the security of the software.
AO07: Identification and Authentication Failures Authentica-
tion [63] is the process of verifying the identity of users prior
to granting them access to the web application. Failure of

160

these mechanisms could allow an attacker to gain access to
another user’s account [64], potentially giving them access
to sensitive data. The most common weaknesses that lead to
identification and authentication failures are related to how the
web application handles passwords [65]. Hence, applications
are more vulnerable, if an application allows an arbitrary
number of password attempts, default or weak passwords, im-
plements a weak credential recovery process, stores passwords
in plaintext, or serves URLs that expose the session identifier.
AO08: Software and Data Integrity Failures Integrity in cy-
bersecurity [66] refers to the techniques and tools employed
to safeguard against improper modification or destruction of
information. Application integrity can be violated if plugins,
libraries, or modules from untrusted sources are used or if a
structure where data has been encoded or serialized into can
be viewed and edited.

A09: Security Logging and Monitoring Failures In order for
security professionals to be able to determine the threat level
and consequences of an attacker’s actions, they must be
able to trace the movement of an attacker within the web
application [67]. Therefore, web applications should log every
action performed by all users in order to enable recovery and
audits [68], while facilitating monitoring and tracing in case of
malicious activities. A proper log should include: HTTP status
codes, time stamps, usernames, API endpoints/page location,
and IP addresses. Insufficient logging and monitoring of a
system means that suspicious activity will go undetected in
log files. Failures can occur if logs do not record events
for auditing, generate warnings or errors containing sufficient
information, actively monitor for suspicious activity, or receive
alerts to trigger dynamic application security testing tools.
Al0: Server-Side Request Forgery A server-side request
forgery vulnerability [69] can occur when a web application
retrieves a remote resource without first validating a user-
supplied URL. This lack of validation allows an attacker to
craft and send HTTP requests to a domain of their choosing,
including domains protected by a firewall or VPN.

V. METHODOLOGY

This section provides an overview of the methodology,
including the tools and techniques selected to identify vul-
nerabilities as well as the data collected.

Figure 1 summarizes the environment established to host
and attack a web application. Figure 1 indicates that the testing
environment consists of a vulnerable web application, OWASP
Juice Shop, hosted on a Docker container running on port
3000 within a VirtualBox. All penetration testing activities
were performed by the attacker from the host machine located
within the same network running Kali Linux [70], which was
chosen as the operating system because it combines a standard
Debian base with a wide variety of information security tools.
In this scenario, the attacker communicates with the web
application via HTTP. Specifically, the web application can
be accessed through the Mozilla Firefox browser via the

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

§¢ VirtualBox

Host
10.0.0.156

10.0.0.231
Kali Linux (2021.4)

Kali Linux (2021.4)
Mozilla Firefox Browser
91.5.0esr

-
Docker masas

Fig. 1. Environmental Setup

IP address of the VirtualBox and the port that the docker
container is running on.

Table I shows the tools used to identify each category
of vulnerability defined by the OWASP Top 10 as well as
the testing modes enabled, including A (automated) or M
(manual) to indicate if the tool can find the vulnerability type
automatically or if it requires manual user enumeration or
review, respectively.

TABLE 1
SELECTED TOOLS AND APPLICATION TO OWASP Top 10
OWASP Tools OWASP Tools
Top 10 | ZAP | Burp Suite Top 10 | ZAP | Burp Suite
A0l A/M AM A06 AM M
A02 A M A07 AM AM
A03 A/M M A08 A M
A04 A M A09 AM M
A0S AM M Al10 A M

In addition to the use of OWASP Zed Attack Proxy (ZAP) and
Burp Suite, it is also possible to directly inspect and test the
code for any of the OWASP Top 10 with manual techniques
directly within the web application. Thus, while the automated
techniques are primarily intended to improve the speed and
comprehensiveness with which search is performed, it is also
desirable to quantify the relative effectiveness of alternative
tools with respect to these vulnerability finding capabilities and
their thoroughness. Hence, automation does not necessarily
equate to a superior approach, if the automated techniques
are less comprehensive and fail to find vulnerabilities in
comparison to skilled manual inspection. Moreover, inexperi-
enced users may become excessively dependent on automated
tools, leading to overconfidence and reliance on automated
techniques that are inadequate. For these reasons, covariate
VDM are a potentially valuable complement to quantify the
relative effectiveness of alternative techniques and tools.

A. Tools

The following subsections provide a brief description of
the tools selected to find vulnerabilities, including OWASP
ZAP [71], Burp Suite [72], and manual inspection. Tool
workflows are also described to support reproducibility and
clarify the data collection process.

161

1) OWASP ZAP: The OWASP ZAP is a free and open
source vulnerability scanning tool developed and maintained
by the OWASP community. It is an integrated penetration
testing tool that can perform automated and manual scans
to identify vulnerabilities in web applications. ZAP’s main
feature is automated web application scanning, which scans a
web application passively and actively, builds a sitemap with
spidering, and discovers vulnerabilities which trigger alerts.
Spidering is an automated recursive process in which a web
crawler identifies hyperlinks on a web page and continues to
visit them as long as new resources are found resulting in the
construction of a graph data structure mapping of the website.

ZAP also implements an intercepting proxy that can be
used to manually perform tests on specific webpages. The
advantage of this proxy is that the tester can select specific
GET requests from the site map and open/resend them with
the request editor without needing to change windows to
forward individual requests, until they find the one they wish to
modify, simplifying the vulnerability inspection process. The
Z AP Intruder functionality enables unthrottled attacks that can
tax the attacking machine and web server to their maximum
capacity, assuming there are no safeguards implemented like
a limit on the number of attempts. This enables brute force
attacks which employ trial and error for a variety of end goals
such as to crack passwords, login credentials, and encryption
keys or browse for undiscovered directories.

ZAP version 2.11.1 is pre-installed on Kali Linux version
2021.4. On startup, ZAP asks the user to specify if they
desire to use session persistence, which stores a user’s session
locally so that it can be accessed at a later date. Benefits of
saving a session include not having to spend time re-running
a scan. Instead, the session can be opened enabling the user
to pick up where they left off and build upon their existing
work. The primary options are to perform an automated scan
or explore manually. To perform an automated scan, the
user must supply the URL to attack and select between a
traditional spider, an Ajax spider, or both to crawl the web
pages. The traditional spider begins with a list of URLs
to visit and then identifies and visits all the hyperlinks in
additional pages. Given a browser type parameter, the Ajax
spider performs a more in depth search of pages that rely on
JavaScript, discovering additional pages that are accessed in
the background or generated on the client side. In contrast, the
manual explore option takes a URL parameter and launches a
browser pre-configured to proxy through ZAP.

Vulnerabilities were identified primarily via the sitemap and
alert interfaces. The structure of the website is shown as a list
of GET requests and folders which contain additional requests
from sub-domains. Selecting a specific request displays it in
the work space where the user can view the response, and
file contents, if applicable. Right-clicking displays additional
functionality such as opening the specific request in the request
editor or opening the URL in the proxy browser. The alert
interface is a tab in the information window that displays any
flags that were raised during the automated scan. Selecting a
specific alert shows additional information such as the affected

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

URL, evidence, risk and confidence levels. Since these are
automated features, these results require further investigation
by the user to confirm the presence of an actual vulnerability.
Manual review of all alerts and requests enabled vulnerabilities
to be discovered and classified according to AO1-A10 in the
OWASP Top 10. Once the presence of specific vulnerabilities
were confirmed, log files of the session were reviewed to
identify the time taken by the scan to find the vulnerability.

2) Burp Suite: Burp Suite is not an open source tool, but
provides a free Community Edition version. There are also
Professional and Enterprise editions available for purchase,
which come with additional features and tools within the
application. The community edition may detect fewer vulner-
abilities and require more effort. However, use of the Com-
munity Edition provided an additional vector of observations
to apply the covariate software vulnerability discovery models,
illustrating the suitability of the approach to objectively assess
the relative effectiveness of alternative tools.

While Burp Suite Community offers fewer features relative
to the Professional or Enterprise editions, it contains essential
tools to perform manual security testing, including Proxy,
Repeater, Decoder, Sequencer, Comparer and a demo version
of Intruder.

Proxy is a central feature of Burp Suite, since it enables
the interception and modification of HTTP requests/responses
when interacting with the web application. This enables a user
to gain insight into the behavior of the web application in order
to infer potential vulnerabilities. From here, a request can be
forwarded to one of the other tools which may require a HTTP
request to perform additional inspection and manipulation of
the requests.

Repeater allows a request to be modified and resent multiple
times. This tool is useful for a variety of purposes such
as changing parameter values for input-based vulnerabilities,
issuing requests in a specific sequence to test for logic flaws,
or modifying request headers to test for cryptographic flaws.
Decoder has the ability to decode intercepted information or
encode a payload prior to sending it to the target. This function
takes text or hex data and can decode or encode into plaintext,
URL, HTML, Base64, ASCII hex, hex, octal, binary or gzip.
This data can be used to decode recovered data or encode
malicious payloads such as an SQL query string into a URL.
Sequencer is most commonly used when assessing the ran-
domness of tokens or other important data that are intended
to be unpredictable. This tool enables test of an application’s
session tokens or other important data items that are intended
to be unpredictable, including anti-CSRF tokens or password
reset tokens. If these values do not have an acceptable level
of randomness they may introduce serious cryptographic or
authentication failures as they can be easily forged by an
attacker.

Comparer enables the comparison of two pieces of data at the
word or byte level. This tool can be applied to find differences
in a variety of fields such as failed login responses when
looking for username enumeration conditions, comparing the

162

site maps generated by different types of users or comparing
responses of different injection conditions.
Intruder, which is severely rate-limited in the Community
Edition, allows for an endpoint to be sprayed with requests,
and can be used to perform a large range of tasks, but is most
commonly used to enumerate identifiers, harvest useful data or
fuzz for vulnerabilities. Depending on the position of the user
configured payload parameters can be injected allowing for
the brute force guessing of simple items such as directories, or
credentials or more complex items such as blind SQL injection
vulnerabilities.
Overall, the ability to capture and manipulate web requests
prior to sending them to the target web server made Burp Suite
an attractive tool to conduct manual web application testing.
Burp Suite version 11.0.14 is pre-installed on Kali Linux
version 2021.4. Configuration files enable options related
to the individual environment and user interface. The main
functionality of Burp Suite is located on the Proxy tab, where
the user is given the option to use the embedded Chromium
browser or configure an external browser with a proxy such
as FoxyProxy. Using Burp’s embedded browser requires no
additional configuration, whereas an external browser proxy
requires additional steps to set up and configure with Burp
Suite. As the user navigates the web application, the intercept
button can be toggled on or off to intercept requests. The
intercept may be turned on at any point, but the browser
will not load properly until it receives a response. Intercepted
requests can be forwarded to the destination server, dropped,
or sent to tools within Burp Suite for additional inspection or
manipulation. Burp Suite is a hands-on tool which requires
user control of the actions to be performed. The user must
manually toggle the intercept functionality and forward each
individual request. Therefore, they must use their own judg-
ment to determine if the request may have vulnerable elements
that need further inspection. To document the time at which
vulnerabilities were discovered, a manual timer was started
at the time Burp Suite was executed and recorded when the
vulnerability was uncovered.

3) Manual Inspection: The simplest form of penetration
testing involves browsing the web application and looking
for vulnerabilities. Not only is manual inspection a form of
reconnaissance which allows the tester to gather information
that may be helpful in the later stages of testing, it can
also be used to uncover vulnerabilities without the use of
additional vulnerability assessment tools. A tester can man-
ually fuzz input fields to test for injection vulnerabilities,
brute force directories to uncover sensitive information, and
make educated guesses for a user’s password or password
reset security questions to gain unauthorized access to their
accounts. In addition to being used independently, manual
inspection can complement information collected with tools.
A tester can use insecure cryptographic techniques to decode
sensitive information or encode and forge information. The
manual review of source code files can also uncover misconfig-
uration vulnerabilities. The time to vulnerability discovery was

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

collected by manually timing the reproduction of navigating
to find a specific vulnerability within the web application.

B. Data Collection

Each testing session began with set up and configuration
of one of the two penetration testing tools. Although setup
varies by tool, a human tester was required for both ZAP
and Burp Suite in order to review the results of automated
tests, ensure an acceptable level of assurance, and remove
false positives. The automated and manual functionality of
ZAP produced a site map with items to be individually
reviewed by the tester, whereas Burp Suite required the tester
to manually explore the web application and review HTTP
requests. Manual inspection complemented Burp Suite, since
it was possible to interact with items within the application,
view, and test before proxying specific functionality.

Table II summarizes the data collected during penetration
testing activities, in a format suitable for input into a covariate
vulnerability discovery tool. Each row corresponds to an
interval (t) in which approximately 5 hours were dedicated to
investigating the web application, attempting to discover vul-
nerabilities, and confirming their presence. The vulnerability
count (k) indicates the number of vulnerabilities discovered
in that interval. These vulnerabilities were also classified into
categories according to the OWASP Top 10 in columns A01-
A10. The last three columns document the time (in seconds)
the three tools and test activities (covariates) were applied,
including ZAP (Z), Burp Suite (B) and manual inspection (M).

To clarify the process of mapping test results to the format
shown in Table II, we discuss the details of the vulnerabilities
discovered in the first interval here. The techniques employed
include an initial scan with the traditional spider in ZAP as
well as proxying several of the main pages with Burp Suite to
intercept and modify requested resources that the server sent
to the client.

The automated scan performed by ZAP created a site map
of Juice Shop, providing a view of requests and responses
for every piece of the site discovered by the spider. Sev-
eral of the responses directly exhibited vulnerabilities. For
example, the response from GET http://10.0.0.231:3000/ftp/
notes that /ftp/ is a listing directory. Therefore, the attacker
is able to gain access to a variety of files, including a
folder containing quarantined malware. This was classified
as AOI:Broken Access Control and can be further classified
as CWE-548: Exposure of Information Through Directory
Listing, since it provides an attacker with the complete index
of all resources located inside the directory. Next, the response
from GET http://10.0.0.231:3000/ftp/acquisitions.md displays
the contents of the markdown file. The document is explicitly
described as confidential because it contains details related to
the company’s planned acquisitions over the next year. This
vulnerability was classified as A0S5: Security Misconfiguration
as well as CWE-541: Inclusion of Sensitive Information in an
Include File.

163

Burp Suite required manual inspection of requests and
responses. A temporary email was used to create an account
and load the Juice Shop homepage with a variety of requests.
Sending GET /api/Challenges/?name=Score%20Board to the
Repeater enabled an attacker to modify the request to GET
/api/Challenges and receive all the challenge information,
including name, descriptions, difficulty level, and hints to find
the security weaknesses within the web application, which was
classified as AOI: Broken Access Control as well as CWE-
922: Insecure Storage of Sensitive Information, since this
information should be read limited based on the challenges
that have been completed or if the user requests a hint.
Moreover, sending GET /rest/basket/1 to the Intruder allowed
the identifier number to be targeted and changed to different
integers. The responses of this brute force attack revealed that
it was possible to access the contents of other user baskets.
This vulnerability was classified as A04: Insecure Design,
since the GET request contained the specific user basket
identification number. This vulnerability was also classified as
CWE-598: Use of GET Request Method With Sensitive Query
Strings because an attacker could change the identification
number included in the request and gain access to another
user’s information.

VI. VULNERABILITY DISCOVERY MODELS WITH AND
WITHOUT COVARIATES

This section presents vulnerability detection models with
and without covariates.

A. Covariate Software Vulnerability Detection Model based
on the Discrete Cox Proportional Hazards Model

The discrete Cox proportional hazards NHPP SRGM [10]
correlates m covariates to the number of events in each of n
intervals. In the context of software vulnerability discovery,
these covariates are the amounts of time dedicated to each
of the distinct vulnerability testing activities performed with
multiple tools or techniques. The matrix X, «,, quantifies the
amount of effort dedicated to each activity in each interval.
For example, x; = (z;1, 242, - . ., Zim) denotes the amount of
each activity (1 < j < m) performed in the ith interval.

The mean value function (MVF) predicts the number of
vulnerabilities discovered up to and including the n‘" interval
given covariates x according to

m(x) = pri,xi (D
i=1

where w > 0 denotes the number of vulnerabilities that would
be discovered with infinite testing and

i—1

Dix; = (1 -(1- h(z‘))g(xﬁﬁ)) [T - atk)yo=d 2

k=1

is the probability that a vulnerability is discovered in the ith
interval, given that it was not discovered in the first (i — 1)

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DATA COLLECTED DURING PENETRATION TESTING ACTIVITIES

OWASP Top 10 Tools
t | k [AOT [A02 | A03 | A04 | A0O5 | A06 | A07 | A0S | A09 | AIO Z B M
1] 4 2 0 0 1 1 0 0 0 0 0 147 | 42 0
2 1 12 2 1 3 1 1 1 2 0 1 0 375 | 402 | 104
3| 8 1 1 2 0 0 0 3 0 1 0 0 521 | 195
41 6 4 1 0 1 0 0 0 0 0 0 11 123 | 34
513 0 1 1 1 0 0 1 0 0 0 0 45 6
6| 4 2 0 0 1 0 0 0 1 0 0 0 71 97
713 1 0 1 0 0 0 1 0 0 0 0 214 0
8| 3 1 0 1 0 0 0 0 0 0 1 0 86 107

intervals, h(-) is the baseline hazard function, and 3 is the
vector of m parameters contained within the Cox proportional
hazards model

9(x:;8) = exp(frzi + Poxio + - + BmTim) (3)

B. Hazard functions

This section presents examples of hazard functions that can
be incorporated into Equation (2). The following three were
originally employed in the covariate software reliability model
of [43].

1) Geometric (GM):

h(b) =0 €]
where b € (0, 1) is the probability of detecting a defect.
2) Negative binomial of order two (NB2):
‘ ib?
h(i;b) = Troi—1) &)
where b € (0,1) and 2 indicates the order.
3) Discrete Weibull of order two (DW?2):
h(isb) =1 —bi° —(=D* (6)

Five additional hazard functions taken from the survey
of [73] have also been applied, including the Type III discrete
Weibull (DW3) [74], “S” distribution (S) [75], Truncated
logistic (TL) [76], Increasing Failure Rate Salvia and Bollinger
(IFRSB) [77], and IFR generalized Salvia and Bollinger
(IFRGSB) [74].

To estimate the parameters of the DCPH model with co-
variates, the log-likelihood function [10] is

~w Y Pix Y viln(w) (D)
i=1 i=1

Y uin(ix) — Y In(y)
i=1 i=1

where x = {Z, B, M} are the covariates, k is the number
of vulnerabilities discovered in each interval, ~ is the vector
of model parameters contained in the hazard function, and

LL(X7 k; ’77 ﬂ? w)

164

y; is the number of vulnerabilities discovered in the ith
interval. Substituting one of the hazard functions specified in
Section VI-B into Equation (2) produces unique log-likelihood
functions. Thus, given covariate data x and the vector of
vulnerabilities discovered in each of the n intervals (y,,), the
model fitting step identifies the numerical values of the total
number of vulnerabilities to be discovered (w), vector of m
covariate coefficients (3), and hazard function parameters ().

Letting 6 {7v,B,w} denote the vector of all model
parameters, the log-likelihood expression can be reduced from
|6] to |6| — 1 parameters by differentiating the log-likelihood
function with respect to w, equating the result to zero, solving
for w to produce

Z;L=1 Yi
Z;L:1 Pix;
and substituting Equation (8) into the log-likelihood function
to obtain a reduced log-likelihood (RLL) function.

The maximum likelihood estimates of the remaining 6] — 1
parameters is determined by computing partial derivatives

®)

o=

ORLL
B 0 ©)
and
ORLL _o (10)
Oy

These steps can be applied to the alternative hazard func-
tions in Section VI-B to obtain the corresponding maximum
likelihood estimates of the models. Solving this system of
equations and substituting the numerical values ﬁ and 4 into
Equation (8) produces the maximum likelihood estimate of w.

C. Alhazmi-Malaiya Logistic (AML) model

This section derives expressions for the Alhazmi-Malaiya
Logistic model [78] as a nonhomogeneous Poisson process.
The mean value function of the AML model is

B

m(t) = Bee ABI 11

an

where B is interpreted as the number of vulnerabilities that
would be discovered with indefinite testing, while A and ¢

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

are constants of proportionality characterizing the vulnerability
discovery rate. The corresponding failure intensity function is

B3cAe—ABt

M= =1y

(12)

To estimate the parameters of the AML model given vulner-
ability discovery data, the grouped data form of the likelihood
function is

n
Z ki log(m(t;) — m(ti—1)

i=1
- Zlog(kq;!) -
i=1

where < t.k >=< (t1,k1), (t2,k2),..., (tn, kn) >, t; the
time at which the i*" interval ended, k; is the number of
vulnerabilities discovered in interval 7, and 6 = {A, B, ¢} the
vector of model parameters.

The maximum likelihood estimates the AML model param-
eters are determined by solving the system of equations

OLL

00 0
In addition to solving the system of equations defined by
Equation (14) with algorithms such as Newton’s method [79],
alternative techniques include Bayesian methods [80], evo-
lutionary algorithms [81], machine learning [82], and the
expectation maximization (EM) [83] algorithm.

LL(t,k;0) = (13)

n

> (m(ti) = m(ti-))

i=1

(14)

VII. MODEL ASSESSMENT

This section describes quantitative goodness of fit measures
to assess how well a model performs on a given data set.
In practice, it is rare that a single model performs best on
all measures. Therefore, model selection often requires a
subjective choice based on the preferences of a decision-maker.
Regardless of these preferences, a primary consideration is the
tradeoff between model complexity and predictive accuracy.
Sum of squares error (SSE) is calculated by fitting a model
with n observations with maximum likelihood estimation and
then computing the sum of squares difference between the
observations and model predictions.

n
SSE = (N(i) — m(i))®

i=1

5)

where N (t;) is the number of vulnerabilities discovered in the
first ¢ intervals and 712(7) is the fitted model’s estimate of the
number of vulnerabilities discovered.

Predictive sum of squares error (PSSE)) fits a model with the
first n — £ observations and then computes the sum of squares
of the prediction residuals for the remaining ¢ observations
not used to fit the model.

n

>

i=(n—l+1)

PSSE = (N (i) — m(i))? (16)

165

Akaike information criterion (AIC) quantifies the tradeoff
between a model’s complexity and characterization of the
observed data.

AIC = 2v — 2LL(6) (17)

where v penalizes models with more parameters.
Bayesian information criterion (BIC) is similar to the AIC.
However, the penalty term includes the sample size (n).

BIC = vlog(n) — 2LL(0) (18)

VIII. ANALYSIS

This section performs a comparative analysis of software
vulnerability discovery models with and without covariates,
including their goodness of fit and predictive accuracy on the
data created as part of this study (Table II).

A. Goodness of fit model assessment

For the vulnerability model with covariates, all three covari-
ates specified in Table II were employed by substituting the
values into Equation (7). A hazard function was then substi-
tuted into Equation (2) and the likelihood maximized. For the
AML, which cannot include covariates, each time interval (¢;)
was set to five, since this was the amount of time (in hours)
required to setup and execute the vulnerability discovery tools.
To avoid unfairly disadvantaging the AML model, intervals of
length t; = Z; + B; + M; were also considered, as this was
the most straightforward method of incorporating information
on the test activities into the AML model. However, this
approach makes the simplifying assumption that each activity
contributed equally to vulnerability discovery.

Table III summarizes the goodness of fit of the AML
model and the covariate vulnerability discovery model with
alternative hazard rate functions described is Section VI-B.
For each measure, lower values are more favorable and the
preferred model is indicated in bold.

TABLE III
GOODNESS OF FIT OF VULNERABILITY DISCOVERY MODELS WITH AND
WITHOUT COVARIATES

[Model ‘ SSE PSSE AIC BIC
AML 34.2007 | 5.6025 | 47.0145 | 47.2528
AML (Z; + B; + M;) | 21.5502 | 1.7770 | 41.8812 | 42.1195
GM 6.6004 | 2.7028 | 35.5228 | 35.9200
NB2 0.9573 | 0.1007 | 34.9565 | 35.3537
DW2 13.8840 | 2.8550 | 40.8420 | 41.2390
DW3 1.2286 | 0.3201 | 36.0901 | 37.4667
S 0.8891 | 0.0857 | 36.9387 | 37.4153
TL 6.4349 | 2.5106 | 37.5281 | B38.0047
TFRSB 95.1872 | 8.0720 | 65.7081 | 66.1053
TFRGSB 6.4503 | 2.5154 | 37.5306 | 38.0072

The variant of the covariate model incorporating the S distribu-
tion as the hazard function achieved the lowest SSE and PSSE,
while the NB2 hazard function was a close second on both of

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

these measures and also performed best with respect to AIC
and BIC. The covariate vulnerability discovery model with
IFRSB hazard function and AML model without covariates
ranked lowest on all measures, The AML model incorporating
covariates by setting ¢; = Z; + B; + M, performed slightly
better, but still ranked third worst on the SSE, AIC, and BIC
measures, suggesting that the vulnerability discovery model
with covariates performed substantially better, despite the
fact that the AIC and BIC measures penalized the inclusion
of additional parameters for the covariates associated with
vulnerability discovery activities. It should also be noted that
covariates Z, B, and M were not treated as model parameters
in the calculation of the AIC and BIC for the AML model,
making the results in favor of the covariate VDM even more
compelling for these measures, since a difference of two is
consider to be statistically significant.

B. Assessment of model fit and vulnerability intensity

Figure 2 shows the empirical vulnerability count in each
interval as reported in Table II as well as the overall best
fitting software vulnerability discovery model incorporating
covariates with second order negative binomial hazard function
and the AML model with intervals characterized by ¢; =
Z; + B; + M;. The dashed vertical line at interval ¢ = 7
indicates that this and intervals to the left were used for model
fitting and the last interval (12.5% of the intervals) was used
to compute predictive accuracy measures.

45 T ; " " " " T
— Observed data | F
[|—&— AML (Z+B+M) Model fit
—6— NB2 Model fit

i
o

w
[4;]

w
o

N
[4;]

nN
o

Cumulative Vulnerabilities
o

-
o

[4;]

R e =

4 5
Time interval

3

Fig. 2. Empirical vulnerability discovery process and best fitting models with
and without covariates

Here, the number of vulnerabilities predicted in each inter-
val were obtained from Equation (1) and Equation (11) for
covariate and AML models respectively.

To further illustrate the enhanced fit and predictions attained
by the software VDM incorporating covariates over the AML
model, Figure 3 shows the number of vulnerabilities discov-
ered in each interval as well as the vulnerability discovery

166

intensity of the fitted models. Figure 3 clearly indicates that

14

Vulnerabilities
—&— NB2 Vulnerability intensity

12y —&— AML (Z+B+M) Vulnerability intensity | |

10

Vulnerabilities per interval

Time interval

Fig. 3. Vulnerabilities discovered in each interval of the data set

the software VDM with covariates not only tracks the intervals
used to fit models much better, but is also capable of predicting
the future intervals much more accurately, whereas models
without covariates such as the AML are only capable of
capturing trends implicit in their parametric forms.

IX. CONCLUSIONS AND FUTURE RESEARCH

This paper presented a comparative study of a software
vulnerability discovery model incorporating covariates with
the Alhazmi-Malaiya Logistic model, one of the most flex-
ible VDM without covariates. Our results indicated that the
software VDM incorporating covariates (i) more accurately
tracked and predicted the number of vulnerabilities discovered
in future intervals as a function of penetration testing activities
performed and (ii) achieved significantly better goodness of
fit, despite the fact that the information theoretic measures
penalized the covariate models for their additional parameters.
The AML model, on the other hand, could only charac-
terize primary trends embedded in its model form. Thus,
software VDMs incorporating covariates offer a more detailed
methodology to assess the effectiveness of alternative tools
and techniques to discover vulnerabilities as well as guide the
allocation of test activities and process improvement efforts.

Future research will combine the techniques presented here
with other reliability engineering techniques to provide more
comprehensive, accurate, and usable methods that support
systematic test and evaluation of software.

ACKNOWLEDGMENT

This research was supported by the National Science Foun-
dation under Grant Number 1749635 and the Homeland
Security Community of Best Practices (HS CoBP) through
the U.S. Department of the Air Force under award number

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

SCR1158132. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation, U.S. Department of Homeland
Security or U.S. Department of the Air Force.

[6]

[7]

[9]

[10]

[11]
[12]
[13]

[14

[15]

[16
[17

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

“Common weakness enumeration,” https://cwe.mitre.org/, accessed:
2021-05-22.

“OWASP top 10,” https://owasp.org/www-project-top-ten/, accessed:
2022-05-22.

M. Vieira, N. Antunes, and H. Madeira, “Using web security scanners
to detect vulnerabilities in web services,” in Proc. of International
Conference on Dependable Systems & Networks. 1EEE/IFIP, 2009,
pp. 566-571.

N. Antunes and M. Vieira, “Assessing and comparing vulnerability
detection tools for web services: Benchmarking approach and examples,”
IEEE Transactions on Services Computing, vol. 8, no. 2, pp. 269-283,
2014.

“Common attack pattern enumeration
https://capec.mitre.org/, accessed: 2021-05-22.
S. S. Alqahtani, E. E. Eghan, and J. Rilling, “Sv-af—a security vul-
nerability analysis framework,” in Proc. of International Symposium on
Software Reliability Engineering. 1EEE, 2016, pp. 219-229.

E. Fong, D. A. Wheeler, and A. E. Henninger, “State-of-the-Art Re-
sources (SOAR) for software vulnerability detection, test, and evalua-
tion,” Institute for Defense Analyses Alexandria, Tech. Rep., 2016.

0. H. Alhazmi and Y. K. Malaiya, “Modeling the vulnerability discovery
process,” in Proc. of International Symposium on Software Reliability
Engineering, 2005, pp. 10-pp.

“NIST risk management framework,” https://csrc.nist.gov/projects/risk-
management/, accessed: 2022-05-22.

V. Nagaraju, C. Jayasinghe, and L. Fiondella, “Optimal test activity
allocation for covariate software reliability and security models,” Journal
of Systems and Software, vol. 168, p. 110643, 2020.

“Common vulnerabilities and exposure,” https://cve.mitre.org/, accessed:
2021-05-22.

“CAS static analysis tool study - methodology,” National Security
Agency Center for Assured Software, Tech. Rep., 2012.

“National vulnerability database,” https://nvd.nist.gov/, accessed: 2021-
05-22.

“CWE/SANS top 25 most dangerous software errors,”
https://www.sans.org/top25-software-errors/, accessed: 2022-05-22.
“Defense acquisition guidebook,” https://www.dau.edu/tools/dag, ac-
cessed: 2022-05-22.

“OWASP,” https://owasp.org/, accessed: 2022-05-22.

“Web Application Security Consortium,” http://www.webappsec.org/,
accessed: 2022-05-22.

R. M. Brady, R. J. Anderson, and R. C. Ball, “Murphy’s law, the fitness
of evolving species, and the limits of software reliability,” University of
Cambridge, Computer Laboratory, Tech. Rep., 1999.

R. Anderson, “Security in open versus closed systems—the dance of
boltzmann, coase and moore,” 2002.

O. H. Alhazmi and Y. K. Malaiya, “Quantitative vulnerability assessment
of systems software,” in Proc. of Annual Reliability and Maintainability
Symposium, 2005, pp. 615-620.

E. Rescorla, “Is finding security holes a good idea?” IEEE Security &
Privacy, vol. 3, no. 1, pp. 14-19, 2005.

J. D. Musa and K. Okumoto, “A logarithmic poisson execution time
model for software reliability measurement,” in Proc. of the Interna-
tional Conference on Software Engineering. Citeseer, 1984, pp. 230—
238.

O. H. Alhazmi, Y. K. Malaiya, and I. Ray, “Measuring, analyzing and
predicting security vulnerabilities in software systems,” Computers &
Security, vol. 26, no. 3, pp. 219-228, 2007.

J. Kim, Y. K. Malaiya, and 1. Ray, “Vulnerability discovery in multi-
version software systems,” in Proc. of High Assurance Systems Engi-
neering Symposium. 1EEE, 2007, pp. 141-148.

E. Condon, M. Cukier, and T. He, “Applying software reliability models
on security incidents,” in Proc. of International Symposium on Software
Reliability. 1EEE, 2007, pp. 159-168.

and classification,”

167

[26]

(28]

[29]

[30

[32]

[33]

[34]

K. Kanoun, M. R. de Bastos Martini, and J. M. De Souza, “A method for
software reliability analysis and prediction application to the tropico-r
switching system,” IEEE Transactions on Software Engineering, vol. 17,
no. 4, p. 334, 1991.

A. L. Goel and K. Okumoto, “Time-dependent error-detection rate
model for software reliability and other performance measures,” IEEE
Transactions on Reliability, vol. 28, no. 3, pp. 206-211, 1979.

S. Yamada, M. Ohba, and S. Osaki, “S-shaped software reliability
growth models and their applications,” IEEE Transactions on Reliability,
vol. 33, no. 4, pp. 289-292, 1984.

J. Duane, “Learning curve approach to reliability monitoring,” IEEE
transactions on Aerospace, vol. 2, no. 2, pp. 563-566, 1964.

T. Khoshgoftaar, “Nonhomogeneous poisson processes for software reli-
ability growth,” in Proc. of International Conference on Computational
Statistics, 1988, pp. 13-14.

H. Okamura, M. Tokuzane, and T. Dohi, “Optimal security patch release
timing under non-homogeneous vulnerability-discovery processes,” in
Proc. of International Symposium on Software Reliability Engineering.
IEEE, 2009, pp. 120-128.

H. Joh, J. Kim, and Y. K. Malaiya, “Vulnerability discovery modeling
using weibull distribution,” in Proc. of International Symposium on
Software Reliability Engineering. TEEE, 2008, pp. 299-300.

A. Younis, H. Joh, and Y. Malaiya, “Modeling learningless vulnerability
discovery using a folded distribution,” in Proc. of SAM, vol. 11.
Citeseer, 2011, pp. 617-623.

X. Wang, R. Ma, B. Li, D. Tian, and X. Wang, “E-wbm: an effort-based
vulnerability discovery model,” IEEE Access, vol. 7, pp. 44276-44 292,
2019.

A. Anand, N. Bhatt, and O. H. Alhazmi, “Modeling software vulnerabil-
ity discovery process inculcating the impact of reporters,” Information
Systems Frontiers, vol. 23, no. 3, pp. 709-722, 2021.

V. H. Nguyen and F. Massacci, “A systematically empirical evaluation
of vulnerability discovery models: A study on browsers’ vulnerabilities,”
arXiv preprint arXiv:1306.2476, 2013.

H. Okamura, M. Tokuzane, and T. Dohi, “Quantitative security evalua-
tion for software system from vulnerability database,” 2013.

Y. Kansal, P. Kapur, U. Kumar, and D. Kumar, “Effort and coverage
dependent vulnerability discovery modeling,” in Proc. of International
Conference on Telecommunication and Networks. 1EEE, 2017, pp. 1-6.
D. Stuttard and M. Pinto, The web application hacker’s handbook:
Finding and exploiting security flaws. John Wiley & Sons, 2011.
“OWASP mobile top 10,” https://owasp.org/www-project-mobile-top-
10/, accessed: 2022-05-22.

“OWASP desktop app security top 10,” https://owasp.org/www-project-
desktop-app-security-top-10/, accessed: 2022-05-22.

“Core Flight System: A paradigm shift in flight software development,”
https://cfs.gsfc.nasa.gov/, accessed: 2022-05-22.

K. Shibata, K. Rinsaka, and T. Dohi, “Metrics-based software reliability
models using non-homogeneous poisson processes,” in Proc. of Interna-
tional Symposium on Software Reliability Engineering, 2006, pp. 52-61.
M. Cova, V. Felmetsger, and G. Vigna, “Vulnerability analysis of web-
based applications,” in Test and Analysis of Web Services. Springer,
2007, pp. 363-394.

“The state of the state of application exploits in security incidents,”
Cyentia Intstitute, and F5 Labs, Report, 2021.

“Vulnlab,” https://github.com/Yavuzlar/VulnLab, accessed: 2022-05-22.
“Damn vulnerable web application,”
https://github.com/digininja/DVWA, accessed: 2022-05-22.

“Xtreme vulnerable web application,” https:/github.com/s4n7h0/xvwa,
accessed: 2022-05-22.

“OWASP juice shop,” https://github.com/juice-shop/juice-shop, ac-
cessed: 2022-05-22.

S. Rafique, M. Humayun, B. Hamid, A. Abbas, M. Akhtar, and
K. Igbal, “Web application security vulnerabilities detection approaches:
A systematic mapping study,” in Proc. of International Conference on
Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing. TEEE/ACIS, 2015, pp. 1-6.

R. S. Sandhu and P. Samarati, “Access control: principle and practice,”
IEEE communications magazine, vol. 32, no. 9, pp. 40-48, 1994.

L. Burkhalter, N. Kiichler, A. Viand, H. Shafagh, and A. Hithnawi,
“Zeph: Cryptographic enforcement of end-to-end data privacy,” in
Proc. of Symposium on Operating Systems Design and Implementation.
USENIX, 2021, pp. 387-404.

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

[53]

[55]

(56

[61]

3

G. Deepa and P. S. Thilagam, “Securing web applications from injection
and logic vulnerabilities: Approaches and challenges,” Information and
Software Technology, vol. 74, pp. 160-180, 2016.

W. G. Halfond, J. Viegas, A. Orso et al., “A classification of sql-injection
attacks and countermeasures,” in Proc. of International Symposium on
Secure Software Engineering, vol. 1. 1EEE, 2006, pp. 13-15.

A. Ron, A. Shulman-Peleg, and A. Puzanov, “Analysis and mitigation
of nosql injections,” IEEE Security & Privacy, vol. 14, no. 2, pp. 30-39,
2016.

T. P. Vuong, G. Loukas, D. Gan, and A. Bezemskij, “Decision tree-based
detection of denial of service and command injection attacks on robotic
vehicles,” in Proc. of International Workshop on Information Forensics
and Security. 1EEE, 2015, pp. 1-6.

A. Shostack, Threat modeling: Designing for security.
Sons, 2014.

A. Apvrille and M. Pourzandi, “Secure software development by exam-
ple,” IEEE Security & Privacy, vol. 3, no. 4, pp. 10-17, 2005.

H. Nina, J. A. Pow-Sang, and M. Villavicencio, “Systematic mapping
of the literature on secure software development,” IEEE Access, vol. 9,
pp. 36852-36 867, 2021.

B. Eshete, A. Villafiorita, and K. Weldemariam, “Early detection of
security misconfiguration vulnerabilities in web applications,” in Proc.
of International Conference on Availability, Reliability and Security.
IEEE, 2011, pp. 169-174.

M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife
collection: A review of open source software supply chain attacks,”
in Proc. of International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2020, pp. 23-43.
T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
javascript libraries on the web,” arXiv preprint arXiv:1811.00918, 2018.
R. Bird, 1. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and
M. Yung, “Systematic design of two-party authentication protocols,” in
Proc. of Annual International Cryptology Conference. Springer, 1991,
pp. 44-61.

D. Wang and P. Wang, “On the usability of two-factor authentication,”
in Proc. of International Conference on Security and Privacy in Com-
munication Networks. Springer, 2014, pp. 141-150.

J. Bonneau and S. Preibusch, “The password thicket: Technical and
market failures in human authentication on the web.” in WEIS. Citeseer,
2010.

P. A. Hallgren, D. T. Mauritzson, and A. Sabelfeld, “Glasstube: A
lightweight approach to web application integrity,” in Proc. of ACM
SIGPLAN Workshop on Programming Languages and Analysis for
Security, 2013, pp. 71-82.

M. Babiker, E. Karaarslan, and Y. Hoscan, “Web application attack
detection and forensics: A survey,” in Proc. of International Symposium
on Digital Forensic and Security. 1EEE, 2018, pp. 1-6.

J. Arulraj, M. Perron, and A. Pavlo, “Write-behind logging,” Proc. of
the VLDB Endowment, vol. 10, no. 4, pp. 337-348, 2016.

B. Jabiyev, O. Mirzaei, A. Kharraz, and E. Kirda, “Preventing server-side
request forgery attacks,” in Proc. of Symposium on Applied Computing.
ACM, 2021, pp. 1626-1635.

R. Hertzog, J. O’Gorman, and M. Aharoni, “Kali linux revealed,”
Mastering the Penetration Testing Distribution, 2017.

“OWASP Zed Attack Proxy,” https://www.zaproxy.org/, accessed: 2022-
05-22.

“Burp Suite,” https://portswigger.net/burp, accessed: 2022-05-22.

C. Bracquemond and O. Gaudoin, “A survey on discrete lifetime
distributions,” International Journal of Reliability, Quality and Safety
Engineering, vol. 10, no. 1, pp. 69-98, 2003.

W. Padgett and J. Spurrier, “On discrete failure models,” IEEE Trans-
actions on Reliability, vol. R-34, no. 3, pp. 253-256, aug 1985.

J. Soler, “Croissance de fiabilite des versions d’un logiciel,” Revue de
statistique appliquée, vol. 44, no. 1, pp. 5-20, 1996.

G. Adams and R. Watson, “A discrete time parametric model for the
analysis of failure time data,” Australian Journal of Statistics, vol. 31,
no. 3, pp. 365-384, 1989.

A. Salvia and R. Bollinger, “On discrete hazard functions,” IEEE
Transactions on Reliability, vol. R-31, no. 5, pp. 458-459, 1982.

O. H. Alhazmi and Y. K. Malaiya, “Application of vulnerability dis-
covery models to major operating systems,” Transactions on Reliability,
vol. 57, no. 1, pp. 14-22, 2008.

John Wiley &

168

[79]

[80]

[81]

[82]

[83]

R. L. Burden and J. D. Faires, Numerical Analysis. Boston, MA:
BrooksCole, 2011.

B. Littlewood and J. L. Verrall, “A Bayesian reliability model with a
stochastically monotone failure rate,” IEEE Transactions on Reliability,
vol. 23, no. 2, pp. 108-114, 1974.

T. Minohara and Y. Tohma, “Parameter estimation of hyper-geometric
distribution software reliability growth model by genetic algorithms,”
in Proc. International Symposium on Software Reliability Engineering.
IEEE, 1995, pp. 324-329.

N. Karunanithi, D. Whitley, and Y. K. Malaiya, “Prediction of software
reliability using connectionist models,” IEEE Transactions of Software
Engineering, vol. 18, no. 7, pp. 563-574, jul 1992.

H. Okamura, Y. Watanabe, and T. Dohi, “An iterative scheme for maxi-
mum likelihood estimation in software reliability modeling,” in Proc.
IEEE International Symposium on Software Reliability Engineering,
2003, pp. 246-256.

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

