
Covariate Software Vulnerability Discovery Model
to Support Cybersecurity Test & Evaluation

(Practical Experience Report)

Julia Sorrentino, Priscila Silva, Gaspard Baye, Gokhan Kul, Lance Fiondella
University of Massachusetts Dartmouth

North Dartmouth, United States

{jsorrentino, psilva4, bgaspard, gkul, lfiondella}@umassd.edu

Abstract—Vulnerability discovery models (VDM) have been
proposed as an application of software reliability growth models
(SRGM) to software security related defects. VDM model the
number of vulnerabilities discovered as a function of testing time,
enabling quantitative measures of security. Despite their obvious
utility, past VDM have been limited to parametric forms that
do not consider the multiple activities software testers undertake
in order to identify vulnerabilities. In contrast, covariate SRGM
characterize the software defect discovery process in terms of one
or more test activities. However, data sets documenting multiple
security testing activities suitable for application of covariate
models are not readily available in the open literature.

To demonstrate the applicability of covariate SRGM to vul-
nerability discovery, this research identified a web application
to target as well as multiple tools and techniques to test for
vulnerabilities. The time dedicated to each test activity and the
corresponding number of unique vulnerabilities discovered were
documented and prepared in a format suitable for application of
covariate SRGM. Analysis and prediction were then performed
and compared with a flexible VDM without covariates, namely
the Alhazmi-Malaiya Logistic Model (AML). Our results indicate
that covariate VDM significantly outperformed the AML model
on predictive and information theoretic measures of goodness of
fit, suggesting that covariate VDM are a suitable and effective
method to predict the impact of applying specific vulnerability
discovery tools and techniques.

Index Terms—Software reliability, cybersecurity, penetration
testing, vulnerability discovery, covariate model

I. INTRODUCTION

Software is highly versatile, providing a wide variety of

functionality in applications and software-enabled systems.

However, the potentially negative impacts of software ex-

ploitation through latent vulnerabilities cast a dark shadow

over the otherwise promising nature of software, especially

those intended to monitor and control infrastructure, defend the

homeland, and support national security. Significant effort has

been dedicated to vulnerability taxonomies [1], [2] as well as

tools [3], [4] and techniques [5]–[7]. Some attention has been

allocated to models [8] that assess vulnerability discovery-

focused testing. However, these models only consider the

This research was supported by the Homeland Security Community of Best
Practices (HS CoBP) through the U.S. Department of the Air Force through
under award number SCR1158132. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the U.S. Department of Homeland
Security or U.S. Department of the Air Force.

amount of time spent testing, preventing more detailed guid-

ance on the relative effectiveness of alternative vulnerability

testing tools and techniques. In the absence of models that

link specific test activities and tools to vulnerability discovery,

organizations will struggle to understand which combination

of methods may be most effective for the system under test

and how to conduct detailed test planning.

Relevant past research may be categorized into three pri-

mary categories, including (i) software vulnerability tax-

onomies, (ii) testing techniques and tools, and (iii) vulnerabil-

ity discovery modeling. Taxonomies hierarchically organize

various classes of common weaknesses and attacks, while

vulnerability techniques and tools respectively define the ab-

stract concepts and concrete implementations of algorithmic

approaches to discover vulnerabilities for mitigation. Vul-

nerability discovery models quantify trends in the rate of

vulnerabilities discovered during testing, estimate the number

of vulnerabilities remaining, and metrics such as mean time

between discovery, which may be regarded as the security

analog of the traditional reliability, metric mean time to failure.

In the absence of more detailed methods to complement pro-

cesses such as the Risk Management Framework (RMF) [9],

organizations developing or acquiring software will struggle

to perform their diverse duties with the degree of diligence to

which they aspire.

This paper presents a study, comparing a software vulner-

ability defect model incorporating covariates [10] with the

AML model [8], which is one of the most flexible VDM

without covariates. Since covariate data on the amount of time

spent applying different tools and techniques in each interval

was not readily available, a target application was identified

and subjected to multiple vulnerability discovery tools and

techniques. To support equitable comparison, grouped data

expressions of the AML model as a nonhomogeneous Poisson

process (NHPP) are derived and two methods to express the

length of time intervals considered, including the total time

required to perform the work in each interval and the sum of

the times spent executing tools in each interval. Our results

indicate that the software VDM incorporating covariates (i)

more accurately tracks and predicts the number of vulnerabil-

ities discovered in future intervals as a function of penetration

testing activities performed and (ii) achieves better goodness

157

2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/22/$31.00 ©2022 IEEE
DOI 10.1109/ISSRE55969.2022.00025

20
22

 IE
EE

 3
3r

d
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

So
ft

w
ar

e
Re

lia
bi

lit
y

En
gi

ne
er

in
g

(IS
SR

E)
 |

 9
78

-1
-6

65
4-

51
32

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

SR
E5

59
69

.2
02

2.
00

02
5

Authorized licensed use limited to: University of Massachusetts ­ Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

of fit, despite the fact that the information theoretic measures

penalize the covariate models for their additional parameters.

The AML model, in contrast, like other parametric VDMs that

do not incorporate covariates, can only capture the primary

trends embedded in their model forms. Thus, software VDMs

incorporating covariates offer a more detailed methodology

to assess the effectiveness of alternative tools and techniques

to discover vulnerabilities. The software VDM incorporating

covariates can, therefore, be used to allocate vulnerability

testing effort and guide process improvement.

The remainder of the paper is organized as follows: Sec-

tion II describes related research in the areas of vulnerability

taxonomies and discovery models. Section III describes the

process by which the target system was selected. Section IV

provides an overview of the vulnerability categorization em-

ployed. Section V explains the methodology, including test

environment and process by which the vulnerabilities dis-

covered were mapped to covariate data. Section VI presents

vulnerability discovery models with and without covariates.

Section VII reviews quantitative goodness of fit measures

employed. Section VIII present a comparative analysis of the

alternative vulnerability discovery models, while Section IX

summarizes the study and provides suggestions for future

research.

II. RELATED RESEARCH

This section reviews related research in the areas of software

vulnerability taxonomies and vulnerability discovery models.

For a review of software vulnerability techniques, the reader

is referred to [7].

A. Software vulnerability taxonomies

Efforts to identify, define, and catalog publicly disclosed

cybersecurity vulnerabilities include the MITRE Common

Vulnerabilities and Exposures (CVE) Program [11]. Prominent

vulnerability lists include the MITRE Common Weakness

Enumeration (CWE) [1] and the Open Web Application Se-

curity Project (OWASP) Top 10 [2]. The MITRE CWE is a

community-developed list of software and hardware weakness

types intended to provide a variety of services to security

teams, including as a baseline for weakness identification,

mitigation, and prevention efforts. The OWASP Top 10 rep-

resent major categories that can be further decomposed into

CWEs, identifying a broader security control area for vulner-

ability types. The OWASP Top 10 covers approximately 200

CWE, and a single OWASP category can contain as many as

three dozen CWEs. There are over 600 categories of CWEs,

meaning that some risks are not covered by the OWASP Top

10, since CWEs include both software and hardware issues.

The benefit of mapping discovered vulnerabilities to CWEs

is that the MITRE Common Attack Pattern Enumeration

and Classification (CAPEC) [5] relates CWEs to the most

common exploitation methods, which can help developers

better secure their software system by knowing what types

of attacks the system is prone to. To enable government

decision makers to make effective software assurance and

software supply chain risk management decisions [7], the

Institute for Defense Analyses combined several sources,

including the Center for Assured Software Static Analysis

Tool Study Methodology [12], National Vulnerability Database

(NVD) [13], CWE/SANS Top 25 [14], the Program Protection

Plan (PPP)/Defense Acquisition Guidebook [15], OWASP [16]

and the Web Application Security Consortium [17] into a

single categorization listing. Despite these efforts, it is always

possible that additional unknown risks remain.

B. Vulnerability discovery modeling

Alhazmi and Malaiya [8] compared the Anderson Ther-

modynamic Model [18], [19], the Alhazmi-Malaiya Logistic

Model [20], Rescola’s Linear and Exponential Models [21],

and the Logarithmic Poisson Model [22] on vulnerabilities

in three major operating systems, including Windows 95, Red

Hat Linux 6.2, and Windows XP, assessing goodness of fit with

the chi-squared statistic, residual sum of squares, and Akaike

information criterion. Alhazmi et al. [23] subsequently applied

the Alhazmi-Malaiya Logistic Model to a larger number of

Windows operating systems and versions of Red Hat Linux.

Kim et al. [24] generalized the Alhazmi-Malaiya Logistic

Model to a mixture of two successive versions of a software

and applied this mixture model to the Apache HTTP Web

server and Mysql DBMS, examining the relationship between

software evolution and vulnerability discovery. Condon et

al. [25] used the Laplace test [26] to guide NHPP model se-

lection from the Goel-Okumoto [27], Yamada S-Shaped [28],

Duane [29], and Khoshgoftaar K–stage Erlangian [30] models.

Okamura et al. [31] proposed an optimal security patch release

timing model under the assumption of a NHPP vulnerability

discovery process, considering costs such as those associated

with development and distribution of patches as well as the

burden of unpatched vulnerabilities. Additional models applied

include the Weibull [32] and folded [33] distributions as well

as an effort-based Weibull model [34] and an effort-based

model [35] considering numbers of vulnerabilities discovered

by reporters and number of reporters per unit time. Nguyen

and Massacci [36] presented a methodology to determine if a

model can adequately characterize the vulnerability discovery

process in terms of goodness of fit and predictive accuracy,

applying several of the models previously noted to 30 major

releases of four popular Internet browsers, including Explorer,

Firefox, Chrome, and Safari. Okamura et al. [37] proposed a

vulnerability lifecycle model possessing multiple stages from

discovery to resolution, characterizing the time to distribution

of a patch by the phase-type (PH) distribution. Kansal et

al. [38] developed a vulnerability discovery model considering

the operational effort and coverage rates, respectively defined

as the proportion of manpower required to discover vulnera-

bilities and the proportion of software covered by the effort to

discover vulnerabilities.

Unlike previous studies, this paper is the first to (i) create

a data set suitable for application of covariate SRGM to

the vulnerability discovery problem, (ii) carefully explain the

158

Authorized licensed use limited to: University of Massachusetts ­ Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

mapping process from penetration testing to a format suitable

for model application in order to encourage additional studies,

and (iii) illustrate the predictive performance of covariate

SRGM on the vulnerability discovery problem.

III. SELECTION OF TARGET APPLICATION

Prior to performing our experiments, it was necessary to

identify a specific application to subject to penetration test-

ing [39]. Three classes of applications were considered, includ-

ing web, mobile, and desktop applications. The OWASP Top

10 defines unique top ten security risks for the three classes

of applications considered, including web [2], mobile [40],

and desktop [41] applications. A web application runs on a

web server and is accessed by users through a web browser

via a network connection, and can therefore be accessed by

any user with a valid network connection on any device. In

contrast, a mobile application is a program designed to run on

a mobile device and can only be accessed via such devices,

while a desktop application can only be run by a computer.

US Government organizations such as the Department of De-

fense also distinguish between Major Automated Information

Systems (MAIS) and Weapon Systems, many of which are

software intensive. Similarly, NASA is especially interested in

the reliability and security of their core Flight System (cFS)

flight software [42]. However, the goal of this study was to

demonstrate how to map the results of security testing in order

to conduct quantitative assessments with covariate software

vulnerability discovery models [43] in any domain, so that

readers can understand how to perform a similar mapping in

their particular domain of interest.

Among the classes of systems described above, a web

application was chosen as the target for testing, due to

their complexity, including the high degree of connectedness

to internet components that provide functionality and their

corresponding vulnerabilities [44]. Moreover, use of web

applications is extremely widespread by people all over the

world to obtain information, perform financial transactions,

and communicate with one another. For example, an attacker

seeking financial gain may target credit card information, once

they have gained initial access to a network. This is especially

attractive to attackers, since financial losses from the 58 largest

web application security incidents reported in the last five

years [45] exceeded $7.6 billion USD. Another factor that

makes web applications a preferred target of attackers is the

ease of use of tools that expose and automatically exploit

vulnerabilities. Vulnerability analysis tools take advantage of

application specific code, which is often developed under

strict time constraints by programmers possessing little to no

security training. In addition to these factors, web applications

are also vulnerable to traditional desktop vulnerabilities that do

not contain internet components. Therefore, the relative ease

of access, availability of tools for exploitation, wide array of

vulnerability types and potential benefit of demonstrating the

proposed approach motivated our choice of conducting this

study in the context of a web application.

Four open source web applications were investigated as

possible targets, including VulnLab [46], Damn Vulnerable

Web Application (DVWA) [47], Xtreme Vulnerable Web Ap-

plication (XVWA) [48], and OWASP Juice Shop [49]. The

purpose of each of these vulnerable web applications is to

assist individuals possessing a range of backgrounds to learn

skills and test tools in a legal environment. VulnLab is a

web vulnerability lab project composed of labs divided into

specific categories of vulnerabilities including SQL injection,

cross site scripting, command injection, insecure direct object

reference, cross site request forgery, XML external entity,

insecure deserialization, file upload, file inclusion, and broken

authentication. DVWA is a PHP/MySQL web application for

individuals to practice discovering and exploiting some of the

most common web vulnerabilities at varying difficulty levels.

XVWA is another web application written in PHP/MySQL,

which was poorly coded on purpose for the sake of learning.

Similar to VulnLab, activities within DVWA and XVWA are

categorized and separated by vulnerability type. OWASP Juice

Shop emulates a modern day web application for an online

Juice Shop marketplace with complex functionality, containing

a wide variety of vulnerabilities. Ultimately, OWASP Juice

Shop was chosen because it was determined to bear the

greatest resemblance to a real world web application. In con-

trast, the alternative choices were relatively narrowly focused

assignments that do not require any form of web exploration,

explicitly pointing users to the vulnerabilities that could be

exploited.

IV. OPEN WEB APPLICATION SECURITY PROJECT

(OWASP)

The OWASP [16] is a nonprofit foundation established in

2001 that works to improve the security of software. The

OWASP Foundation is composed of 200 chapters worldwide

with tens of thousands of members. This community leads

open source software projects and holds educational and

training conferences. OWASP projects, tools, and documents,

are free and open to anyone interested in improving application

security, or supporting organizations develop, acquire, operate,

and maintain trusted applications.

OWASP is perhaps most well known for developing and

maintaining security standards and processes for web appli-

cations as well as providing technical information about key

security risks and countermeasures. One of the standards that

the foundation developed is the OWASP Top 10 [2], a list of

the top 10 most critical security risk categories related to web

applications. There are a number of reasons that developers

and web application security should classify vulnerabilities

based on this document. The primary justification is that there

is broad consensus among researchers [50] that the OWASP

Top 10 constitute the main security risks to web applica-

tions. The standard is based on contributor data created by

testing web applications for vulnerabilities and recording how

many web applications contained specific vulnerabilities and is

therefore community-driven. Additional reasons for using the

159

Authorized licensed use limited to: University of Massachusetts ­ Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

OWASP Top 10 list are that it can be used at each stage of

the software development life cycle, justify security activities

to management, and show progress over time toward industry

standard security and compliance, which aligns well with the

trend analysis enabled by software vulnerability discovery

models. Thus, while the OWASP is not exhaustive, focusing

on these Top 10 risks enables developers to mitigate the most

common types of security risks found in web applications.

The following subsections provide a brief description of

each of the OWASP Top 10 Web Application vulnerabilities.

A01: Broken Access Control Access control [51] regulates how

the data and resources are accessed by users based on the

permissions specified by administrators. Broken access control

occurs when a user acts outside of these specified limits. When

an attacker bypasses these control measures, they may be able

to view sensitive data or perform tasks as a privileged user.

A02: Cryptographic Failures A web application accesses,

sends and receives a variety of types of data, including

information governed by privacy laws and requiring additional

protection. Examples include passwords, credit card numbers,

and personal and health information. This category of vulnera-

bilities [52] refers to situations when sensitive data is exposed

as a direct result of improper implementation of cryptography.

A03: Injection An injection attack [53] occurs when an

attacker provides malicious input to a web application and

changes the operation of the application, forcing it to execute

specific commands. There are several factors that may make

an application vulnerable to attack such as not validating, fil-

tering, or sanitizing user-supplied data, using dynamic queries,

and several others. Common types of injection include:

SQL [54], NoSQL [55], and operating system commands [56].

A04: Insecure Design Secure system and software develop-

ment requires considering possible threat models [57], im-

plementing secure design principles and patterns [58], and

adopting security best practices [59]. In contrast, insecure

implementation may be regarded as the source of the other

categories in the Top 10, possessing different root causes and

remedies.

A05: Security Misconfiguration Vulnerabilities may manifest

as a direct result of security controls not being properly con-

figured. There are many places where misconfiguration may

occur in a web application [60] such as enabling unnecessary

features, not changing default passwords, providing users with

unnecessarily detailed error messages, and failure to update

security features in a timely manner. Security misconfiguration

vulnerabilities are much more likely to occur when developers

do not implement a repeatable security configuration process.

A06: Vulnerable and Outdated Components Software usu-

ally includes libraries required to accomplish certain tasks.

These libraries may be kept up-to-date with dependency man-

agers [61] or manually. However, when one of these packages

become vulnerable or left outdated [62], they become threats

to the security of the software.

A07: Identification and Authentication Failures Authentica-

tion [63] is the process of verifying the identity of users prior

to granting them access to the web application. Failure of

these mechanisms could allow an attacker to gain access to

another user’s account [64], potentially giving them access

to sensitive data. The most common weaknesses that lead to

identification and authentication failures are related to how the

web application handles passwords [65]. Hence, applications

are more vulnerable, if an application allows an arbitrary

number of password attempts, default or weak passwords, im-

plements a weak credential recovery process, stores passwords

in plaintext, or serves URLs that expose the session identifier.

A08: Software and Data Integrity Failures Integrity in cy-

bersecurity [66] refers to the techniques and tools employed

to safeguard against improper modification or destruction of

information. Application integrity can be violated if plugins,

libraries, or modules from untrusted sources are used or if a

structure where data has been encoded or serialized into can

be viewed and edited.

A09: Security Logging and Monitoring Failures In order for

security professionals to be able to determine the threat level

and consequences of an attacker’s actions, they must be

able to trace the movement of an attacker within the web

application [67]. Therefore, web applications should log every

action performed by all users in order to enable recovery and

audits [68], while facilitating monitoring and tracing in case of

malicious activities. A proper log should include: HTTP status

codes, time stamps, usernames, API endpoints/page location,

and IP addresses. Insufficient logging and monitoring of a

system means that suspicious activity will go undetected in

log files. Failures can occur if logs do not record events

for auditing, generate warnings or errors containing sufficient

information, actively monitor for suspicious activity, or receive

alerts to trigger dynamic application security testing tools.

A10: Server-Side Request Forgery A server-side request

forgery vulnerability [69] can occur when a web application

retrieves a remote resource without first validating a user-

supplied URL. This lack of validation allows an attacker to

craft and send HTTP requests to a domain of their choosing,

including domains protected by a firewall or VPN.

V. METHODOLOGY

This section provides an overview of the methodology,

including the tools and techniques selected to identify vul-

nerabilities as well as the data collected.

Figure 1 summarizes the environment established to host

and attack a web application. Figure 1 indicates that the testing

environment consists of a vulnerable web application, OWASP

Juice Shop, hosted on a Docker container running on port

3000 within a VirtualBox. All penetration testing activities

were performed by the attacker from the host machine located

within the same network running Kali Linux [70], which was

chosen as the operating system because it combines a standard

Debian base with a wide variety of information security tools.

In this scenario, the attacker communicates with the web

application via HTTP. Specifically, the web application can

be accessed through the Mozilla Firefox browser via the

160

Authorized licensed use limited to: University of Massachusetts ­ Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Environmental Setup

IP address of the VirtualBox and the port that the docker

container is running on.

Table I shows the tools used to identify each category

of vulnerability defined by the OWASP Top 10 as well as

the testing modes enabled, including A (automated) or M

(manual) to indicate if the tool can find the vulnerability type

automatically or if it requires manual user enumeration or

review, respectively.

TABLE I
SELECTED TOOLS AND APPLICATION TO OWASP TOP 10

OWASP Tools OWASP Tools
Top 10 ZAP Burp Suite Top 10 ZAP Burp Suite

A01 A/M A/M A06 A/M M
A02 A M A07 A/M A/M
A03 A/M M A08 A M
A04 A M A09 A/M M
A05 A/M M A10 A M

In addition to the use of OWASP Zed Attack Proxy (ZAP) and

Burp Suite, it is also possible to directly inspect and test the

code for any of the OWASP Top 10 with manual techniques

directly within the web application. Thus, while the automated

techniques are primarily intended to improve the speed and

comprehensiveness with which search is performed, it is also

desirable to quantify the relative effectiveness of alternative

tools with respect to these vulnerability finding capabilities and

their thoroughness. Hence, automation does not necessarily

equate to a superior approach, if the automated techniques

are less comprehensive and fail to find vulnerabilities in

comparison to skilled manual inspection. Moreover, inexperi-

enced users may become excessively dependent on automated

tools, leading to overconfidence and reliance on automated

techniques that are inadequate. For these reasons, covariate

VDM are a potentially valuable complement to quantify the

relative effectiveness of alternative techniques and tools.

A. Tools

The following subsections provide a brief description of

the tools selected to find vulnerabilities, including OWASP

ZAP [71], Burp Suite [72], and manual inspection. Tool

workflows are also described to support reproducibility and

clarify the data collection process.

1) OWASP ZAP: The OWASP ZAP is a free and open

source vulnerability scanning tool developed and maintained

by the OWASP community. It is an integrated penetration

testing tool that can perform automated and manual scans

to identify vulnerabilities in web applications. ZAP’s main

feature is automated web application scanning, which scans a

web application passively and actively, builds a sitemap with

spidering, and discovers vulnerabilities which trigger alerts.

Spidering is an automated recursive process in which a web

crawler identifies hyperlinks on a web page and continues to

visit them as long as new resources are found resulting in the

construction of a graph data structure mapping of the website.

ZAP also implements an intercepting proxy that can be

used to manually perform tests on specific webpages. The

advantage of this proxy is that the tester can select specific

GET requests from the site map and open/resend them with

the request editor without needing to change windows to

forward individual requests, until they find the one they wish to

modify, simplifying the vulnerability inspection process. The

ZAP Intruder functionality enables unthrottled attacks that can

tax the attacking machine and web server to their maximum

capacity, assuming there are no safeguards implemented like

a limit on the number of attempts. This enables brute force

attacks which employ trial and error for a variety of end goals

such as to crack passwords, login credentials, and encryption

keys or browse for undiscovered directories.

ZAP version 2.11.1 is pre-installed on Kali Linux version

2021.4. On startup, ZAP asks the user to specify if they

desire to use session persistence, which stores a user’s session

locally so that it can be accessed at a later date. Benefits of

saving a session include not having to spend time re-running

a scan. Instead, the session can be opened enabling the user

to pick up where they left off and build upon their existing

work. The primary options are to perform an automated scan

or explore manually. To perform an automated scan, the

user must supply the URL to attack and select between a

traditional spider, an Ajax spider, or both to crawl the web

pages. The traditional spider begins with a list of URLs

to visit and then identifies and visits all the hyperlinks in

additional pages. Given a browser type parameter, the Ajax

spider performs a more in depth search of pages that rely on

JavaScript, discovering additional pages that are accessed in

the background or generated on the client side. In contrast, the

manual explore option takes a URL parameter and launches a

browser pre-configured to proxy through ZAP.

Vulnerabilities were identified primarily via the sitemap and

alert interfaces. The structure of the website is shown as a list

of GET requests and folders which contain additional requests

from sub-domains. Selecting a specific request displays it in

the work space where the user can view the response, and

file contents, if applicable. Right-clicking displays additional

functionality such as opening the specific request in the request

editor or opening the URL in the proxy browser. The alert

interface is a tab in the information window that displays any

flags that were raised during the automated scan. Selecting a

specific alert shows additional information such as the affected

161

Authorized licensed use limited to: University of Massachusetts ­ Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

URL, evidence, risk and confidence levels. Since these are

automated features, these results require further investigation

by the user to confirm the presence of an actual vulnerability.

Manual review of all alerts and requests enabled vulnerabilities

to be discovered and classified according to A01-A10 in the

OWASP Top 10. Once the presence of specific vulnerabilities

were confirmed, log files of the session were reviewed to

identify the time taken by the scan to find the vulnerability.

2) Burp Suite: Burp Suite is not an open source tool, but

provides a free Community Edition version. There are also

Professional and Enterprise editions available for purchase,

which come with additional features and tools within the

application. The community edition may detect fewer vulner-

abilities and require more effort. However, use of the Com-

munity Edition provided an additional vector of observations

to apply the covariate software vulnerability discovery models,

illustrating the suitability of the approach to objectively assess

the relative effectiveness of alternative tools.

While Burp Suite Community offers fewer features relative

to the Professional or Enterprise editions, it contains essential

tools to perform manual security testing, including Proxy,

Repeater, Decoder, Sequencer, Comparer and a demo version

of Intruder.

Proxy is a central feature of Burp Suite, since it enables

the interception and modification of HTTP requests/responses

when interacting with the web application. This enables a user

to gain insight into the behavior of the web application in order

to infer potential vulnerabilities. From here, a request can be

forwarded to one of the other tools which may require a HTTP

request to perform additional inspection and manipulation of

the requests.

Repeater allows a request to be modified and resent multiple

times. This tool is useful for a variety of purposes such

as changing parameter values for input-based vulnerabilities,

issuing requests in a specific sequence to test for logic flaws,

or modifying request headers to test for cryptographic flaws.

Decoder has the ability to decode intercepted information or

encode a payload prior to sending it to the target. This function

takes text or hex data and can decode or encode into plaintext,

URL, HTML, Base64, ASCII hex, hex, octal, binary or gzip.

This data can be used to decode recovered data or encode

malicious payloads such as an SQL query string into a URL.

Sequencer is most commonly used when assessing the ran-

domness of tokens or other important data that are intended

to be unpredictable. This tool enables test of an application’s

session tokens or other important data items that are intended

to be unpredictable, including anti-CSRF tokens or password

reset tokens. If these values do not have an acceptable level

of randomness they may introduce serious cryptographic or

authentication failures as they can be easily forged by an

attacker.

Comparer enables the comparison of two pieces of data at the

word or byte level. This tool can be applied to find differences

in a variety of fields such as failed login responses when

looking for username enumeration conditions, comparing the

site maps generated by different types of users or comparing

responses of different injection conditions.

Intruder, which is severely rate-limited in the Community

Edition, allows for an endpoint to be sprayed with requests,

and can be used to perform a large range of tasks, but is most

commonly used to enumerate identifiers, harvest useful data or

fuzz for vulnerabilities. Depending on the position of the user

configured payload parameters can be injected allowing for

the brute force guessing of simple items such as directories, or

credentials or more complex items such as blind SQL injection

vulnerabilities.

Overall, the ability to capture and manipulate web requests

prior to sending them to the target web server made Burp Suite

an attractive tool to conduct manual web application testing.

Burp Suite version 11.0.14 is pre-installed on Kali Linux

version 2021.4. Configuration files enable options related

to the individual environment and user interface. The main

functionality of Burp Suite is located on the Proxy tab, where

the user is given the option to use the embedded Chromium

browser or configure an external browser with a proxy such

as FoxyProxy. Using Burp’s embedded browser requires no

additional configuration, whereas an external browser proxy

requires additional steps to set up and configure with Burp

Suite. As the user navigates the web application, the intercept

button can be toggled on or off to intercept requests. The

intercept may be turned on at any point, but the browser

will not load properly until it receives a response. Intercepted

requests can be forwarded to the destination server, dropped,

or sent to tools within Burp Suite for additional inspection or

manipulation. Burp Suite is a hands-on tool which requires

user control of the actions to be performed. The user must

manually toggle the intercept functionality and forward each

individual request. Therefore, they must use their own judg-

ment to determine if the request may have vulnerable elements

that need further inspection. To document the time at which

vulnerabilities were discovered, a manual timer was started

at the time Burp Suite was executed and recorded when the

vulnerability was uncovered.

3) Manual Inspection: The simplest form of penetration

testing involves browsing the web application and looking

for vulnerabilities. Not only is manual inspection a form of

reconnaissance which allows the tester to gather information

that may be helpful in the later stages of testing, it can

also be used to uncover vulnerabilities without the use of

additional vulnerability assessment tools. A tester can man-

ually fuzz input fields to test for injection vulnerabilities,

brute force directories to uncover sensitive information, and

make educated guesses for a user’s password or password

reset security questions to gain unauthorized access to their

accounts. In addition to being used independently, manual

inspection can complement information collected with tools.

A tester can use insecure cryptographic techniques to decode

sensitive information or encode and forge information. The

manual review of source code files can also uncover misconfig-

uration vulnerabilities. The time to vulnerability discovery was

162

Authorized licensed use limited to: University of Massachusetts ­ Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

collected by manually timing the reproduction of navigating

to find a specific vulnerability within the web application.

B. Data Collection

Each testing session began with set up and configuration

of one of the two penetration testing tools. Although setup

varies by tool, a human tester was required for both ZAP

and Burp Suite in order to review the results of automated

tests, ensure an acceptable level of assurance, and remove

false positives. The automated and manual functionality of

ZAP produced a site map with items to be individually

reviewed by the tester, whereas Burp Suite required the tester

to manually explore the web application and review HTTP

requests. Manual inspection complemented Burp Suite, since

it was possible to interact with items within the application,

view, and test before proxying specific functionality.

Table II summarizes the data collected during penetration

testing activities, in a format suitable for input into a covariate

vulnerability discovery tool. Each row corresponds to an

interval (t) in which approximately 5 hours were dedicated to

investigating the web application, attempting to discover vul-

nerabilities, and confirming their presence. The vulnerability

count (k) indicates the number of vulnerabilities discovered

in that interval. These vulnerabilities were also classified into

categories according to the OWASP Top 10 in columns A01-

A10. The last three columns document the time (in seconds)

the three tools and test activities (covariates) were applied,

including ZAP (Z), Burp Suite (B) and manual inspection (M).

To clarify the process of mapping test results to the format

shown in Table II, we discuss the details of the vulnerabilities

discovered in the first interval here. The techniques employed

include an initial scan with the traditional spider in ZAP as

well as proxying several of the main pages with Burp Suite to

intercept and modify requested resources that the server sent

to the client.

The automated scan performed by ZAP created a site map

of Juice Shop, providing a view of requests and responses

for every piece of the site discovered by the spider. Sev-

eral of the responses directly exhibited vulnerabilities. For

example, the response from GET http://10.0.0.231:3000/ftp/

notes that /ftp/ is a listing directory. Therefore, the attacker

is able to gain access to a variety of files, including a

folder containing quarantined malware. This was classified

as A01:Broken Access Control and can be further classified

as CWE-548: Exposure of Information Through Directory
Listing, since it provides an attacker with the complete index

of all resources located inside the directory. Next, the response

from GET http://10.0.0.231:3000/ftp/acquisitions.md displays

the contents of the markdown file. The document is explicitly

described as confidential because it contains details related to

the company’s planned acquisitions over the next year. This

vulnerability was classified as A05: Security Misconfiguration
as well as CWE-541: Inclusion of Sensitive Information in an
Include File.

Burp Suite required manual inspection of requests and

responses. A temporary email was used to create an account

and load the Juice Shop homepage with a variety of requests.

Sending GET /api/Challenges/?name=Score%20Board to the

Repeater enabled an attacker to modify the request to GET

/api/Challenges and receive all the challenge information,

including name, descriptions, difficulty level, and hints to find

the security weaknesses within the web application, which was

classified as A01: Broken Access Control as well as CWE-
922: Insecure Storage of Sensitive Information, since this

information should be read limited based on the challenges

that have been completed or if the user requests a hint.

Moreover, sending GET /rest/basket/1 to the Intruder allowed

the identifier number to be targeted and changed to different

integers. The responses of this brute force attack revealed that

it was possible to access the contents of other user baskets.

This vulnerability was classified as A04: Insecure Design,

since the GET request contained the specific user basket

identification number. This vulnerability was also classified as

CWE-598: Use of GET Request Method With Sensitive Query
Strings because an attacker could change the identification

number included in the request and gain access to another

user’s information.

VI. VULNERABILITY DISCOVERY MODELS WITH AND

WITHOUT COVARIATES

This section presents vulnerability detection models with

and without covariates.

A. Covariate Software Vulnerability Detection Model based
on the Discrete Cox Proportional Hazards Model

The discrete Cox proportional hazards NHPP SRGM [10]

correlates m covariates to the number of events in each of n
intervals. In the context of software vulnerability discovery,

these covariates are the amounts of time dedicated to each

of the distinct vulnerability testing activities performed with

multiple tools or techniques. The matrix xn×m quantifies the

amount of effort dedicated to each activity in each interval.

For example, xi = (xi1, xi2, . . . , xim) denotes the amount of

each activity (1 ≤ j ≤ m) performed in the ith interval.

The mean value function (MVF) predicts the number of

vulnerabilities discovered up to and including the nth interval

given covariates x according to

m(x) = ω
n∑

i=1

pi,xi (1)

where ω > 0 denotes the number of vulnerabilities that would

be discovered with infinite testing and

pi,xi =
(
1− (1− h(i))g(xi;β)

) i−1∏
k=1

(1− h(k))g(xk;β) (2)

is the probability that a vulnerability is discovered in the ith
interval, given that it was not discovered in the first (i − 1)

163

Authorized licensed use limited to: University of Massachusetts ­ Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DATA COLLECTED DURING PENETRATION TESTING ACTIVITIES

OWASP Top 10 Tools
t k A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 Z B M
1 4 2 0 0 1 1 0 0 0 0 0 147 42 0
2 12 2 1 3 1 1 1 2 0 1 0 375 402 104
3 8 1 1 2 0 0 0 3 0 1 0 0 521 195
4 6 4 1 0 1 0 0 0 0 0 0 11 123 34
5 3 0 1 1 1 0 0 1 0 0 0 0 45 6
6 4 2 0 0 1 0 0 0 1 0 0 0 71 97
7 3 1 0 1 0 0 0 1 0 0 0 0 214 0
8 3 1 0 1 0 0 0 0 0 0 1 0 86 107

intervals, h(·) is the baseline hazard function, and β is the

vector of m parameters contained within the Cox proportional

hazards model

g(xi;β) = exp(β1xi1 + β2xi2 + · · ·+ βmxim) (3)

B. Hazard functions

This section presents examples of hazard functions that can

be incorporated into Equation (2). The following three were

originally employed in the covariate software reliability model

of [43].

1) Geometric (GM):

h(b) = b (4)

where b ∈ (0, 1) is the probability of detecting a defect.

2) Negative binomial of order two (NB2):

h(i; b) =
ib2

1 + b(i− 1)
(5)

where b ∈ (0, 1) and 2 indicates the order.

3) Discrete Weibull of order two (DW2):

h(i; b) = 1− bi
2−(i−1)2 (6)

Five additional hazard functions taken from the survey

of [73] have also been applied, including the Type III discrete

Weibull (DW3) [74], “S” distribution (S) [75], Truncated

logistic (TL) [76], Increasing Failure Rate Salvia and Bollinger

(IFRSB) [77], and IFR generalized Salvia and Bollinger

(IFRGSB) [74].

To estimate the parameters of the DCPH model with co-

variates, the log-likelihood function [10] is

LL(x,k;γ,β, ω) = −ω
n∑

i=1

pi,xi +

n∑
i=1

yi ln(ω) (7)

+
n∑

i=1

yi ln(pi,xi)−
n∑

i=1

ln(yi!)

where x = {Z,B,M} are the covariates, k is the number

of vulnerabilities discovered in each interval, γ is the vector

of model parameters contained in the hazard function, and

yi is the number of vulnerabilities discovered in the ith
interval. Substituting one of the hazard functions specified in

Section VI-B into Equation (2) produces unique log-likelihood

functions. Thus, given covariate data x and the vector of

vulnerabilities discovered in each of the n intervals (yn), the

model fitting step identifies the numerical values of the total

number of vulnerabilities to be discovered (ω), vector of m
covariate coefficients (β), and hazard function parameters (γ).

Letting θ = {γ,β, ω} denote the vector of all model

parameters, the log-likelihood expression can be reduced from

|θ| to |θ| − 1 parameters by differentiating the log-likelihood

function with respect to ω, equating the result to zero, solving

for ω to produce

ω̂ =

∑n
i=1 yi∑n

i=1 pi,xi

(8)

and substituting Equation (8) into the log-likelihood function

to obtain a reduced log-likelihood (RLL) function.

The maximum likelihood estimates of the remaining |θ|−1
parameters is determined by computing partial derivatives

∂RLL

∂β
= 0 (9)

and
∂RLL

∂γ
= 0 (10)

These steps can be applied to the alternative hazard func-

tions in Section VI-B to obtain the corresponding maximum

likelihood estimates of the models. Solving this system of

equations and substituting the numerical values β̂ and γ̂ into

Equation (8) produces the maximum likelihood estimate of ω̂.

C. Alhazmi-Malaiya Logistic (AML) model

This section derives expressions for the Alhazmi-Malaiya

Logistic model [78] as a nonhomogeneous Poisson process.

The mean value function of the AML model is

m(t) =
B

Bce−ABt + 1
(11)

where B is interpreted as the number of vulnerabilities that

would be discovered with indefinite testing, while A and c

164

Authorized licensed use limited to: University of Massachusetts ­ Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

are constants of proportionality characterizing the vulnerability

discovery rate. The corresponding failure intensity function is

λ(t) =
B3cAe−ABt

(Bce−ABt + 1)2
(12)

To estimate the parameters of the AML model given vulner-

ability discovery data, the grouped data form of the likelihood

function is

LL(t,k;θ) =
n∑

i=1

ki log(m(ti)−m(ti−1) (13)

−
n∑

i=1

log(ki!)−
n∑

i=1

(m(ti)−m(ti−1))

where < t,k >=< (t1, k1), (t2, k2), . . . , (tn, kn) >, ti the

time at which the ith interval ended, ki is the number of

vulnerabilities discovered in interval i, and θ = {A,B, c} the

vector of model parameters.

The maximum likelihood estimates the AML model param-

eters are determined by solving the system of equations

∂LL

∂θ
= 0 (14)

In addition to solving the system of equations defined by

Equation (14) with algorithms such as Newton’s method [79],

alternative techniques include Bayesian methods [80], evo-

lutionary algorithms [81], machine learning [82], and the

expectation maximization (EM) [83] algorithm.

VII. MODEL ASSESSMENT

This section describes quantitative goodness of fit measures

to assess how well a model performs on a given data set.

In practice, it is rare that a single model performs best on

all measures. Therefore, model selection often requires a

subjective choice based on the preferences of a decision-maker.

Regardless of these preferences, a primary consideration is the

tradeoff between model complexity and predictive accuracy.

Sum of squares error (SSE) is calculated by fitting a model

with n observations with maximum likelihood estimation and

then computing the sum of squares difference between the

observations and model predictions.

SSE =
n∑

i=1

(N(i)− m̂(i))
2

(15)

where N(ti) is the number of vulnerabilities discovered in the

first i intervals and m̂(i) is the fitted model’s estimate of the

number of vulnerabilities discovered.

Predictive sum of squares error (PSSE)) fits a model with the

first n− � observations and then computes the sum of squares

of the prediction residuals for the remaining � observations

not used to fit the model.

PSSE =
n∑

i=(n−�+1)

(N(i)− m̂(i))
2

(16)

Akaike information criterion (AIC) quantifies the tradeoff

between a model’s complexity and characterization of the

observed data.

AIC = 2ν − 2LL(θ̂) (17)

where ν penalizes models with more parameters.

Bayesian information criterion (BIC) is similar to the AIC.

However, the penalty term includes the sample size (n).

BIC = ν log(n)− 2LL(θ̂) (18)

VIII. ANALYSIS

This section performs a comparative analysis of software

vulnerability discovery models with and without covariates,

including their goodness of fit and predictive accuracy on the

data created as part of this study (Table II).

A. Goodness of fit model assessment

For the vulnerability model with covariates, all three covari-

ates specified in Table II were employed by substituting the

values into Equation (7). A hazard function was then substi-

tuted into Equation (2) and the likelihood maximized. For the

AML, which cannot include covariates, each time interval (ti)
was set to five, since this was the amount of time (in hours)

required to setup and execute the vulnerability discovery tools.

To avoid unfairly disadvantaging the AML model, intervals of

length ti = Zi + Bi +Mi were also considered, as this was

the most straightforward method of incorporating information

on the test activities into the AML model. However, this

approach makes the simplifying assumption that each activity

contributed equally to vulnerability discovery.

Table III summarizes the goodness of fit of the AML

model and the covariate vulnerability discovery model with

alternative hazard rate functions described is Section VI-B.

For each measure, lower values are more favorable and the

preferred model is indicated in bold.

TABLE III
GOODNESS OF FIT OF VULNERABILITY DISCOVERY MODELS WITH AND

WITHOUT COVARIATES

Model SSE PSSE AIC BIC

AML 34.2907 5.6025 47.0145 47.2528
AML (Zi +Bi +Mi) 21.5592 1.7770 41.8812 42.1195
GM 6.6994 2.7028 35.5228 35.9200
NB2 0.9573 0.1007 34.9565 35.3537
DW2 13.8840 2.8550 40.8420 41.2390
DW3 1.2286 0.3291 36.9901 37.4667
S 0.8891 0.0857 36.9387 37.4153
TL 6.4349 2.5106 37.5281 38.0047
IFRSB 95.1872 8.9720 65.7081 66.1053
IFRGSB 6.4503 2.5154 37.5306 38.0072

The variant of the covariate model incorporating the S distribu-

tion as the hazard function achieved the lowest SSE and PSSE,

while the NB2 hazard function was a close second on both of

165

Authorized licensed use limited to: University of Massachusetts ­ Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

these measures and also performed best with respect to AIC

and BIC. The covariate vulnerability discovery model with

IFRSB hazard function and AML model without covariates

ranked lowest on all measures, The AML model incorporating

covariates by setting ti = Zi + Bi + Mi performed slightly

better, but still ranked third worst on the SSE, AIC, and BIC

measures, suggesting that the vulnerability discovery model

with covariates performed substantially better, despite the

fact that the AIC and BIC measures penalized the inclusion

of additional parameters for the covariates associated with

vulnerability discovery activities. It should also be noted that

covariates Z, B, and M were not treated as model parameters

in the calculation of the AIC and BIC for the AML model,

making the results in favor of the covariate VDM even more

compelling for these measures, since a difference of two is

consider to be statistically significant.

B. Assessment of model fit and vulnerability intensity

Figure 2 shows the empirical vulnerability count in each

interval as reported in Table II as well as the overall best

fitting software vulnerability discovery model incorporating

covariates with second order negative binomial hazard function

and the AML model with intervals characterized by ti =
Zi + Bi + Mi. The dashed vertical line at interval t = 7
indicates that this and intervals to the left were used for model

fitting and the last interval (12.5% of the intervals) was used

to compute predictive accuracy measures.

Fig. 2. Empirical vulnerability discovery process and best fitting models with
and without covariates

Here, the number of vulnerabilities predicted in each inter-

val were obtained from Equation (1) and Equation (11) for

covariate and AML models respectively.

To further illustrate the enhanced fit and predictions attained

by the software VDM incorporating covariates over the AML

model, Figure 3 shows the number of vulnerabilities discov-

ered in each interval as well as the vulnerability discovery

intensity of the fitted models. Figure 3 clearly indicates that

Fig. 3. Vulnerabilities discovered in each interval of the data set

the software VDM with covariates not only tracks the intervals

used to fit models much better, but is also capable of predicting

the future intervals much more accurately, whereas models

without covariates such as the AML are only capable of

capturing trends implicit in their parametric forms.

IX. CONCLUSIONS AND FUTURE RESEARCH

This paper presented a comparative study of a software

vulnerability discovery model incorporating covariates with

the Alhazmi-Malaiya Logistic model, one of the most flex-

ible VDM without covariates. Our results indicated that the

software VDM incorporating covariates (i) more accurately

tracked and predicted the number of vulnerabilities discovered

in future intervals as a function of penetration testing activities

performed and (ii) achieved significantly better goodness of

fit, despite the fact that the information theoretic measures

penalized the covariate models for their additional parameters.

The AML model, on the other hand, could only charac-

terize primary trends embedded in its model form. Thus,

software VDMs incorporating covariates offer a more detailed

methodology to assess the effectiveness of alternative tools

and techniques to discover vulnerabilities as well as guide the

allocation of test activities and process improvement efforts.

Future research will combine the techniques presented here

with other reliability engineering techniques to provide more

comprehensive, accurate, and usable methods that support

systematic test and evaluation of software.

ACKNOWLEDGMENT

This research was supported by the National Science Foun-

dation under Grant Number 1749635 and the Homeland

Security Community of Best Practices (HS CoBP) through

the U.S. Department of the Air Force under award number

166

Authorized licensed use limited to: University of Massachusetts ­ Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

SCR1158132. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the

National Science Foundation, U.S. Department of Homeland

Security or U.S. Department of the Air Force.

REFERENCES

[1] “Common weakness enumeration,” https://cwe.mitre.org/, accessed:
2021-05-22.

[2] “OWASP top 10,” https://owasp.org/www-project-top-ten/, accessed:
2022-05-22.

[3] M. Vieira, N. Antunes, and H. Madeira, “Using web security scanners
to detect vulnerabilities in web services,” in Proc. of International
Conference on Dependable Systems & Networks. IEEE/IFIP, 2009,
pp. 566–571.

[4] N. Antunes and M. Vieira, “Assessing and comparing vulnerability
detection tools for web services: Benchmarking approach and examples,”
IEEE Transactions on Services Computing, vol. 8, no. 2, pp. 269–283,
2014.

[5] “Common attack pattern enumeration and classification,”
https://capec.mitre.org/, accessed: 2021-05-22.

[6] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “Sv-af—a security vul-
nerability analysis framework,” in Proc. of International Symposium on
Software Reliability Engineering. IEEE, 2016, pp. 219–229.

[7] E. Fong, D. A. Wheeler, and A. E. Henninger, “State-of-the-Art Re-
sources (SOAR) for software vulnerability detection, test, and evalua-
tion,” Institute for Defense Analyses Alexandria, Tech. Rep., 2016.

[8] O. H. Alhazmi and Y. K. Malaiya, “Modeling the vulnerability discovery
process,” in Proc. of International Symposium on Software Reliability
Engineering, 2005, pp. 10–pp.

[9] “NIST risk management framework,” https://csrc.nist.gov/projects/risk-
management/, accessed: 2022-05-22.

[10] V. Nagaraju, C. Jayasinghe, and L. Fiondella, “Optimal test activity
allocation for covariate software reliability and security models,” Journal
of Systems and Software, vol. 168, p. 110643, 2020.

[11] “Common vulnerabilities and exposure,” https://cve.mitre.org/, accessed:
2021-05-22.

[12] “CAS static analysis tool study - methodology,” National Security
Agency Center for Assured Software, Tech. Rep., 2012.

[13] “National vulnerability database,” https://nvd.nist.gov/, accessed: 2021-
05-22.

[14] “CWE/SANS top 25 most dangerous software errors,”
https://www.sans.org/top25-software-errors/, accessed: 2022-05-22.

[15] “Defense acquisition guidebook,” https://www.dau.edu/tools/dag, ac-
cessed: 2022-05-22.

[16] “OWASP,” https://owasp.org/, accessed: 2022-05-22.
[17] “Web Application Security Consortium,” http://www.webappsec.org/,

accessed: 2022-05-22.
[18] R. M. Brady, R. J. Anderson, and R. C. Ball, “Murphy’s law, the fitness

of evolving species, and the limits of software reliability,” University of
Cambridge, Computer Laboratory, Tech. Rep., 1999.

[19] R. Anderson, “Security in open versus closed systems—the dance of
boltzmann, coase and moore,” 2002.

[20] O. H. Alhazmi and Y. K. Malaiya, “Quantitative vulnerability assessment
of systems software,” in Proc. of Annual Reliability and Maintainability
Symposium, 2005, pp. 615–620.

[21] E. Rescorla, “Is finding security holes a good idea?” IEEE Security &
Privacy, vol. 3, no. 1, pp. 14–19, 2005.

[22] J. D. Musa and K. Okumoto, “A logarithmic poisson execution time
model for software reliability measurement,” in Proc. of the Interna-
tional Conference on Software Engineering. Citeseer, 1984, pp. 230–
238.

[23] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, “Measuring, analyzing and
predicting security vulnerabilities in software systems,” Computers &
Security, vol. 26, no. 3, pp. 219–228, 2007.

[24] J. Kim, Y. K. Malaiya, and I. Ray, “Vulnerability discovery in multi-
version software systems,” in Proc. of High Assurance Systems Engi-
neering Symposium. IEEE, 2007, pp. 141–148.

[25] E. Condon, M. Cukier, and T. He, “Applying software reliability models
on security incidents,” in Proc. of International Symposium on Software
Reliability. IEEE, 2007, pp. 159–168.

[26] K. Kanoun, M. R. de Bastos Martini, and J. M. De Souza, “A method for
software reliability analysis and prediction application to the tropico-r
switching system,” IEEE Transactions on Software Engineering, vol. 17,
no. 4, p. 334, 1991.

[27] A. L. Goel and K. Okumoto, “Time-dependent error-detection rate
model for software reliability and other performance measures,” IEEE
Transactions on Reliability, vol. 28, no. 3, pp. 206–211, 1979.

[28] S. Yamada, M. Ohba, and S. Osaki, “S-shaped software reliability
growth models and their applications,” IEEE Transactions on Reliability,
vol. 33, no. 4, pp. 289–292, 1984.

[29] J. Duane, “Learning curve approach to reliability monitoring,” IEEE
transactions on Aerospace, vol. 2, no. 2, pp. 563–566, 1964.

[30] T. Khoshgoftaar, “Nonhomogeneous poisson processes for software reli-
ability growth,” in Proc. of International Conference on Computational
Statistics, 1988, pp. 13–14.

[31] H. Okamura, M. Tokuzane, and T. Dohi, “Optimal security patch release
timing under non-homogeneous vulnerability-discovery processes,” in
Proc. of International Symposium on Software Reliability Engineering.
IEEE, 2009, pp. 120–128.

[32] H. Joh, J. Kim, and Y. K. Malaiya, “Vulnerability discovery modeling
using weibull distribution,” in Proc. of International Symposium on
Software Reliability Engineering. IEEE, 2008, pp. 299–300.

[33] A. Younis, H. Joh, and Y. Malaiya, “Modeling learningless vulnerability
discovery using a folded distribution,” in Proc. of SAM, vol. 11.
Citeseer, 2011, pp. 617–623.

[34] X. Wang, R. Ma, B. Li, D. Tian, and X. Wang, “E-wbm: an effort-based
vulnerability discovery model,” IEEE Access, vol. 7, pp. 44 276–44 292,
2019.

[35] A. Anand, N. Bhatt, and O. H. Alhazmi, “Modeling software vulnerabil-
ity discovery process inculcating the impact of reporters,” Information
Systems Frontiers, vol. 23, no. 3, pp. 709–722, 2021.

[36] V. H. Nguyen and F. Massacci, “A systematically empirical evaluation
of vulnerability discovery models: A study on browsers’ vulnerabilities,”
arXiv preprint arXiv:1306.2476, 2013.

[37] H. Okamura, M. Tokuzane, and T. Dohi, “Quantitative security evalua-
tion for software system from vulnerability database,” 2013.

[38] Y. Kansal, P. Kapur, U. Kumar, and D. Kumar, “Effort and coverage
dependent vulnerability discovery modeling,” in Proc. of International
Conference on Telecommunication and Networks. IEEE, 2017, pp. 1–6.

[39] D. Stuttard and M. Pinto, The web application hacker’s handbook:
Finding and exploiting security flaws. John Wiley & Sons, 2011.

[40] “OWASP mobile top 10,” https://owasp.org/www-project-mobile-top-
10/, accessed: 2022-05-22.

[41] “OWASP desktop app security top 10,” https://owasp.org/www-project-
desktop-app-security-top-10/, accessed: 2022-05-22.

[42] “Core Flight System: A paradigm shift in flight software development,”
https://cfs.gsfc.nasa.gov/, accessed: 2022-05-22.

[43] K. Shibata, K. Rinsaka, and T. Dohi, “Metrics-based software reliability
models using non-homogeneous poisson processes,” in Proc. of Interna-
tional Symposium on Software Reliability Engineering, 2006, pp. 52–61.

[44] M. Cova, V. Felmetsger, and G. Vigna, “Vulnerability analysis of web-
based applications,” in Test and Analysis of Web Services. Springer,
2007, pp. 363–394.

[45] “The state of the state of application exploits in security incidents,”
Cyentia Intstitute, and F5 Labs, Report, 2021.

[46] “Vulnlab,” https://github.com/Yavuzlar/VulnLab, accessed: 2022-05-22.

[47] “Damn vulnerable web application,”
https://github.com/digininja/DVWA, accessed: 2022-05-22.

[48] “Xtreme vulnerable web application,” https://github.com/s4n7h0/xvwa,
accessed: 2022-05-22.

[49] “OWASP juice shop,” https://github.com/juice-shop/juice-shop, ac-
cessed: 2022-05-22.

[50] S. Rafique, M. Humayun, B. Hamid, A. Abbas, M. Akhtar, and
K. Iqbal, “Web application security vulnerabilities detection approaches:
A systematic mapping study,” in Proc. of International Conference on
Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing. IEEE/ACIS, 2015, pp. 1–6.

[51] R. S. Sandhu and P. Samarati, “Access control: principle and practice,”
IEEE communications magazine, vol. 32, no. 9, pp. 40–48, 1994.

[52] L. Burkhalter, N. Küchler, A. Viand, H. Shafagh, and A. Hithnawi,
“Zeph: Cryptographic enforcement of end-to-end data privacy,” in
Proc. of Symposium on Operating Systems Design and Implementation.
USENIX, 2021, pp. 387–404.

167

Authorized licensed use limited to: University of Massachusetts ­ Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

[53] G. Deepa and P. S. Thilagam, “Securing web applications from injection
and logic vulnerabilities: Approaches and challenges,” Information and
Software Technology, vol. 74, pp. 160–180, 2016.

[54] W. G. Halfond, J. Viegas, A. Orso et al., “A classification of sql-injection
attacks and countermeasures,” in Proc. of International Symposium on
Secure Software Engineering, vol. 1. IEEE, 2006, pp. 13–15.

[55] A. Ron, A. Shulman-Peleg, and A. Puzanov, “Analysis and mitigation
of nosql injections,” IEEE Security & Privacy, vol. 14, no. 2, pp. 30–39,
2016.

[56] T. P. Vuong, G. Loukas, D. Gan, and A. Bezemskij, “Decision tree-based
detection of denial of service and command injection attacks on robotic
vehicles,” in Proc. of International Workshop on Information Forensics
and Security. IEEE, 2015, pp. 1–6.

[57] A. Shostack, Threat modeling: Designing for security. John Wiley &
Sons, 2014.

[58] A. Apvrille and M. Pourzandi, “Secure software development by exam-
ple,” IEEE Security & Privacy, vol. 3, no. 4, pp. 10–17, 2005.

[59] H. Nina, J. A. Pow-Sang, and M. Villavicencio, “Systematic mapping
of the literature on secure software development,” IEEE Access, vol. 9,
pp. 36 852–36 867, 2021.

[60] B. Eshete, A. Villafiorita, and K. Weldemariam, “Early detection of
security misconfiguration vulnerabilities in web applications,” in Proc.
of International Conference on Availability, Reliability and Security.
IEEE, 2011, pp. 169–174.

[61] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife
collection: A review of open source software supply chain attacks,”
in Proc. of International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2020, pp. 23–43.

[62] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
javascript libraries on the web,” arXiv preprint arXiv:1811.00918, 2018.

[63] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and
M. Yung, “Systematic design of two-party authentication protocols,” in
Proc. of Annual International Cryptology Conference. Springer, 1991,
pp. 44–61.

[64] D. Wang and P. Wang, “On the usability of two-factor authentication,”
in Proc. of International Conference on Security and Privacy in Com-
munication Networks. Springer, 2014, pp. 141–150.

[65] J. Bonneau and S. Preibusch, “The password thicket: Technical and
market failures in human authentication on the web.” in WEIS. Citeseer,
2010.

[66] P. A. Hallgren, D. T. Mauritzson, and A. Sabelfeld, “Glasstube: A
lightweight approach to web application integrity,” in Proc. of ACM
SIGPLAN Workshop on Programming Languages and Analysis for
Security, 2013, pp. 71–82.

[67] M. Babiker, E. Karaarslan, and Y. Hoscan, “Web application attack
detection and forensics: A survey,” in Proc. of International Symposium
on Digital Forensic and Security. IEEE, 2018, pp. 1–6.

[68] J. Arulraj, M. Perron, and A. Pavlo, “Write-behind logging,” Proc. of
the VLDB Endowment, vol. 10, no. 4, pp. 337–348, 2016.

[69] B. Jabiyev, O. Mirzaei, A. Kharraz, and E. Kirda, “Preventing server-side
request forgery attacks,” in Proc. of Symposium on Applied Computing.
ACM, 2021, pp. 1626–1635.

[70] R. Hertzog, J. O’Gorman, and M. Aharoni, “Kali linux revealed,”
Mastering the Penetration Testing Distribution, 2017.

[71] “OWASP Zed Attack Proxy,” https://www.zaproxy.org/, accessed: 2022-
05-22.

[72] “Burp Suite,” https://portswigger.net/burp, accessed: 2022-05-22.

[73] C. Bracquemond and O. Gaudoin, “A survey on discrete lifetime
distributions,” International Journal of Reliability, Quality and Safety
Engineering, vol. 10, no. 1, pp. 69–98, 2003.

[74] W. Padgett and J. Spurrier, “On discrete failure models,” IEEE Trans-
actions on Reliability, vol. R-34, no. 3, pp. 253–256, aug 1985.

[75] J. Soler, “Croissance de fiabilite des versions d’un logiciel,” Revue de
statistique appliquée, vol. 44, no. 1, pp. 5–20, 1996.

[76] G. Adams and R. Watson, “A discrete time parametric model for the
analysis of failure time data,” Australian Journal of Statistics, vol. 31,
no. 3, pp. 365–384, 1989.

[77] A. Salvia and R. Bollinger, “On discrete hazard functions,” IEEE
Transactions on Reliability, vol. R-31, no. 5, pp. 458–459, 1982.

[78] O. H. Alhazmi and Y. K. Malaiya, “Application of vulnerability dis-
covery models to major operating systems,” Transactions on Reliability,
vol. 57, no. 1, pp. 14–22, 2008.

[79] R. L. Burden and J. D. Faires, Numerical Analysis. Boston, MA:
BrooksCole, 2011.

[80] B. Littlewood and J. L. Verrall, “A Bayesian reliability model with a
stochastically monotone failure rate,” IEEE Transactions on Reliability,
vol. 23, no. 2, pp. 108–114, 1974.

[81] T. Minohara and Y. Tohma, “Parameter estimation of hyper-geometric
distribution software reliability growth model by genetic algorithms,”
in Proc. International Symposium on Software Reliability Engineering.
IEEE, 1995, pp. 324–329.

[82] N. Karunanithi, D. Whitley, and Y. K. Malaiya, “Prediction of software
reliability using connectionist models,” IEEE Transactions of Software
Engineering, vol. 18, no. 7, pp. 563–574, jul 1992.

[83] H. Okamura, Y. Watanabe, and T. Dohi, “An iterative scheme for maxi-
mum likelihood estimation in software reliability modeling,” in Proc.
IEEE International Symposium on Software Reliability Engineering,
2003, pp. 246–256.

168

Authorized licensed use limited to: University of Massachusetts ­ Dartmouth. Downloaded on May 14,2023 at 21:26:51 UTC from IEEE Xplore. Restrictions apply.

