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SUMMARY & CONCLUSIONS

The optimal time to release a software is a common
problem of broad concern to software engineers, where the goal
is to minimize cost by balancing the cost of fixing defects
before or after release as well as the cost of testing. However,
the vast majority of these models are based on defect discovery
models that are a function of time and can therefore only
provide guidance on the amount of additional effort required.
To overcome this limitation, this paper presents a software
optimal release model based on cost criteria, incorporating the
covariate software defect detection model based on the Discrete
Cox Proportional Hazards Model. The proposed model
provides more detailed guidance recommending the amount of
each distinct test activity performed to discover defects.

1 INTRODUCTION

Software reliability growth models (SRGM) [1-3] predict
future defects discovered as a function of testing time as well as
decreasing trends in defect discovery intensity and increasing
trends in mean time to failure. They can also be used to gauge
schedule and cost risk as well as guide release planning
strategies [4] with models to minimize cost and satisfy
reliability constraints. However, the traditional
nonhomogeneous Poisson process (NHPP) SRGM upon which
these release planning models are based are generally
unappealing to software engineers because they only tell the
user of such models how much additional testing effort to
perform, yet both reliability and security focused software
testing is a rich and multi-faceted activity that can benefit from
multiple testing techniques and tools. As a result, release
problems based on traditional NHPP SRGM lack the practical
ability to provide more detailed guidance to software engineers
on how much of each activity to perform during the release
planning process, which would align more closely with efforts
undertaken by practicing software engineers.

Past research on the optimal release time of software
systems, includes the work of Okumoto and Goel [4] who
developed release models based on reliability and cost criterion,
considering factors such as the number of defects discovered
before and after release as well as the cost of testing. Yamada
and Osaki [5] extended this to an optimal software release
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problem for both cost and reliability requirements. Dozens of
papers have derived methods similar to [4] for alternative
NHPP SRGM, including models incorporating test coverage
[6], environmental factors [7], and testing effort [8], and test
efficiency [9]. Pham and Wang [10] introduced software
reliability and cost models based on quasi-renewal processes,
while Pham and Zhang [11] developed a model with warranty
cost, implementing the equations in Excel.

Other early statistical studies include the work of Ross [12]
who presented a method to estimate the error rate of software at
a given time ¢ and developed a stopping rule to determine when
to discontinue the testing and declare that the software is ready
for use. Dalal and Mallows [13] considered two variations of
the optimal release problem where the distribution underlying
defect discovery is not entirely known. Singpurwalla [14]
described an approach based on the principles of decision
making under uncertainty and maximization of expected utility
to determine how long to test and debug software prior to
release. Yang and Chao [15] compared various stopping rules
according to their ability to identify an optimal release time and
proposed two new rules, discovering that rules based on cost
were more stable than other rules for a variety of bug structures.

Optimal release problems based on architecture-based
software reliability [16], where the application reliability is
computed in terms of the component reliabilities and transition
probabilities among the components include Lyu etal. [17] who
formulated reliability and cost optimization for software based
on its architecture, characterizing the failure rates of
components and cost to decrease this rate with SRGM.
Pietrantuono et al. [18] proposed a test resource allocation
model to provide solutions at various levels of detail, depending
upon the information available to the engineer about the system
in order to identify the most critical components within the
software architecture so that testing resources can be assigned
to proportional to their criticality.

Optimal release problems incorporating uncertain or
iterative adaptation include Zhao and Xie [19] who studied the
robustness of optimum release time procedures computing the
variation of the optimum release time as a function of the
variation of the estimated parameters. Yang et al. [20] studied
the uncertainty in software cost and its impact on optimal
software release in terms of variance and risk functions. Xie et



al. [21] developed an approach for optimal software release
under parameter uncertainty and performed simulation studies
to demonstrate its ability to consider multiple risk levels.
Nagaraju and Fiondella [22] developed an online optimal
release planning strategy in which one or more models are
periodically during testing to assess if the optimal release time
has passed or if additional testing should be performed.

This paper presents a software optimal release model based
on cost criteria, incorporating the covariate software defect
detection model based on the Discrete Cox Proportional
Hazards Model (DCPH) [23]. In contrast to past formulations
based on a NHPP model that only consider a single dimension
of time or other measures such as testing effort or coverage, the
proposed model is multivariate. Specifically, the covariate
software defect detection model based on the DCPH considers
the number of defects detected as a function of one or more
testing activities (covariates). Therefore, the problem is to
allocate a constrained budget to these multiple alternative test
activities of potentially different unit cost in order to maximize
defect discover, so that they can be removed prior to release.
This model is based on the assumption that resolving defects
after release is more costly than those discovered to release. The
practical advantage of this generalized approach is that the
optimal policy identified by the model can provide direct
guidance to software engineers on how to allocate efforts across
multiple activities, instead of simply advising on the additional
amount of time required to minimize costs. The approach is
demonstrated through a data set from the literature [24]. Our
results indicate that the approach can be utilized to allocate
effort among alternative test activities in order to minimize cost.

The remainder of the paper is organized as follows: Section
2 reviews defect discovery models incorporating covariates.
Section 3 formulates a model to minimize life cycle cost in
terms of testing activities within the covariate model. Section 4
illustrates the cost minimization model with numerical
examples. Section 5 concludes and suggests future research.

2 COVARIATE DEFECT DISCOVERY MODELS

This section presents defect detection models with
covariates.

2.1 Covariate Software Defect Detection Model based on the
Discrete Cox Proportional Hazards Model

The discrete Cox proportional hazards NHPP SRGM [23]
correlates r covariates to the number of events in each of n
intervals. In the context of software defect discovery, these
covariates can be distinct defect testing activities allocated to
multiple tools or techniques employed for this purpose. The
matrix X, quantifies the amount of effort dedicated to each
activity in each interval. For example, X; = (X1, Xj2, .- -, Xi)
denotes the amount of each activity (1 < j < r) performed in
the i*" interval.

The mean value function predicts the number of defects
discovered up to and including the n‘" interval given covariates
x according to

n
me) = o ) pis, (0
i=1
where w > 0 denotes the number of defects that would be
discovered with infinite testing and

i-1
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is the probability that a defect is discovered in the i interval,
given that it was not discovered in the first (i — 1) intervals,
h(-) is the baseline hazard function, and B is the vector of r
parameters contained within the Cox proportional hazards
model.

9&xi; B) = exp(Byxiy + Poxip + - + Brxiy)
2.2 Hazard functions

(3)

This section presents examples of hazard functions that can
be incorporated into Equation (2). The following three hazard
functions were originally employed in the covariate software
reliability model of [24].

1) Geometric (GM):

h(b) =b “
2) Negative binomial of order two (NB2):
] ib?
MG =5 —D )

where b € (0,1) is the probability of detecting a defect.
3) Discrete Weibull of order two (DW2):

h(i;b) = 1 — pP*~G-D? 6)
To estimate the parameters of the discrete Cox proportional

hazard model (DCPH) with covariates, the log-likelihood
function [23] is
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where y is the vector of model parameters contained in the
hazard function and y; is the number of defects discovered in
the i*" interval. Substituting one of the hazard functions
specified in section 2.2 into Equation (2) produces unique log-
likelihood functions. Thus, given covariates data x and vector
of defects discovered in each of the n intervals (y;,), the model
fitting step identifies the numerical values of the total number
of vulnerabilities to be discovered (w), vector of m covariates
coefficients (f8), and hazard function parameters ().

Letting 6 = {y, B, w} denote the vector of all model
parameters, the log-likelihood expression can be reduced from
|8] to || — 1 parameters by differentiating the log-likelihood
function with respect to w, equating the results to zero, solving
for w to produce

n
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and substituting Equation (8) into the log-likelihood function
to obtain a reduced log-likelihood (RLL) function.

The maximum likelihood estimates of the remaining |6| —
1 parameters, denoted8':=6/w for compactness, is
determined by computing partial derivatives

ORLL

o ®
and

ORLL

These steps can be applied to the alternative hazard
functions in Section 2.2 to obtain the corresponding maximum
likelihood estimates of the models. Solving this system of
equations and substituting the numerical values £ and 7 into
Equation (8) produces the maximum likelihood @.

3 OPTIMAL TEST ALLOCATION BASED ON COST
CRITERION

This section formulates a software optimal release model
based on cost criteria, incorporating the covariate software
defect detection model based on the Discrete Cox Proportional
Hazards Model. In practice, this cost minimization model uses
a covariate software defect detection model fitted according to
the methods described in Section 2. Specifically, given
model M (x) fitted to test activities X, and vector of observed
failures y, we seek to allocate resources to test activities in
interval n + 1 in a manner that minimizes cost

argmin C(X) 1y
subject to
-
> aXini < B (12)
i=1

where X is the effort dedicated to each of the r covariates in
each of the intervals up to and including the (n + 1)5¢ interval,
a; is the cost associated with a unit of test activity i, X; 44 1S
the number of units of test activity i allocated in the n + 1
interval, and B > 0 is a budget constraint.

The specific form of the cost function for the optimal
release model based on cost criteria, incorporating the covariate
software defect detection model based on the Discrete Cox
Proportional Hazards Model is

CX) = aprem(x) + apost(ﬁl(x) - T/r\l(X)) +

i XX (13)

where @, and @y, respectively denote the cost of removing
a defects before or after release (@tpose > Apre), M(X) is the
estimated number of defects discovered prior to release
according to the fitted model, 7 (x) is the estimated number of
defects to be discovered throughout the software lifecycle
experiencing test activities X > X, and the final term is the cost
of all test activities applied in all n + 1 intervals prior to release.

In order to estimate the optimal effort allocation of multiple
test activities X* that minimizes cost of release, we take partial
derivatives of the total cost Equation (13) with respect to the
amount of effort to be allocated to each covariate in interval n +

1 to produce the following system of equations
aC(Xi,n+1) —

aXi,n+1
and solve numerically, since this system of equations lacks

closed form solution, due to the nonlinear nature of Equations
(2) and (3).

0 (14)

3.1 Application of Optimal Test Allocation based on Cost
Criterion

This section describes how to apply optimal test allocation
based on cost criterion. Toward this end, we contrast this
process with the steps performed in the context of traditional
approaches [4] for optimal software release models based on
the NHPP without covariates. In this simpler context, the
following three steps to estimate the optimal release time are
typically taken:

e (S.1) Fit a model to the complete failure data to obtain
parameter estimates using a software reliability growth
model without covariates.

e (S.2) Establish a numerical version of the optimal release
equation, by substituting the maximum likelihood
estimates obtained in step (S.1) into a single dimensional
version of Equation (13) with 7i(t) and m(T) for the
lifecycle (t) and release time (T'), where t > T, as well as
term ¢ X T that accounts for the cost of testing prior to
release.

e (S.3) Plot this numerical version of the single dimensional
cost as a function of time according to the cost equation
established in step (S.2) to graphically illustrate the trend
and identify the minimum with a numerical solver. This
trend is typically bathtub shaped because the cost of
failures initially motivates additional testing, but
eventually increases because the cost of testing outweighs
the risk associated with releasing the software with a small
number of remaining defects.

In contrast to the traditional procedure for identifying the
optimal release time of software, the software optimal release
model based on cost criteria, incorporating the covariate
software defect detection model based on the Discrete Cox
Proportional Hazards Model generalizes time (T) to the
multiple test activities performed (X). The proposed approach
thus constitutes a portfolio allocation problem in which limited
resources are divided among multiple alternative test activities.

4 ILLUSTRATIONS

This section illustrates the software optimal release model
based on cost criteria, incorporating the covariate software
defect detection model based on the Discrete Cox Proportional
Hazards Model formulated in Section 3. All illustrations are
based on the DS1 dataset [24], which consists of n =17
intervals (weeks) and composed of three covariates, including
execution time (E) in hours, failure identification work (F) in
person hours, and computer time failure identification (C) in
hours as well as the corresponding number of defects
discovered as a result of these test activities. To simplify the
exposition and enable clear visualizations, two covariates are



used. Specifically, the illustrations use the E and C covariates
with the negative binomial hazard function, which is
appropriate, since past studies [23] identified that this subset of
covariates produced the most accurate predictions of future
defect discovery. For concreteness, the cost parameters were set
to apre = $10, o5 = $500, and @y = a, = $3, while the
software lifecycle was set to @ = 60.0153, which denotes the
estimated number of defects that would be discovered with
infinite testing (n — oo in Equation (1)) when only the first 9 of
17 intervals were used to fit the model. This approach of fitting
the model with only 9 intervals was taken to illustrate how to
use the optimal release model based on cost criteria,
incorporating the covariate software defect detection model
interactively by predicting how to allocate test activities for
interval 10. In practice, the model could then be refit based on
the results obtained by applying effort in interval 10 and the
process repeated for subsequent intervals.

The first example graphically illustrates the estimated cost
curve as a function of additional application of the E and C
covariates, while the second example performs a sensitivity
study on the optimal cost attainable under budgets of various
sizes.

4.1 Optimal test activity allocation based on cost criterion

This example graphically illustrates the optimal test
activity allocation for two covariates. Toward this end, nine of
17 intervals of the DS1 data set were fit to the negative binomial
hazard function using the E and C covariates.

Figure 1 shows a plot of the cost curve based on this fitted
model and the numerical parameters given in Section 4.
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Figure 1 - Impact of test activity allocation on cost under
negative binomial hazard function fitted to E and C covariates
of DS1

Figure 1 indicates that the model predicts that allocating no
additional testing to activity E or C would result in a cost
exceeding 10,000. The minimum of Equation (13) according to
the fitted model is C* = 561.12 is obtained when Ej, = 0 and
Cip = 22.51. The interpretation of Ej, = 0 is that no additional
effort should be allocated to the test activity corresponding to
execution time, but that some additional effort should be

allocated to computer time failure identification (C). Efy may
be zero because Bz < B , which would indicate that the rate of
defect discovery given application of activity E is substantially
lower than the corresponding rate for activity C. If both EJ, and
Ci, were equal to zero, then the model would effectively be
recommending software release because no additional effort is
anticipated to be required. Figure 1 also indicates that for values
of C;¢ > Cj, the cost increases. A less pronounced increase is
also visible for test activity allocations where E;, > EJ,. These
increasing trends occur because the number of remaining
defects that would be discovered between release and the end
of the software lifecycle denoted by the term (r’fz(x) — r’fz(X))
in Equation (13) is relatively small compare to the cost of
allocating additional effort to test activities, even when the
number of remaining defects is scaled by the relatively high
cost of post release failures (apos¢)-

4.2 Sensitivity of optimal cost to test activity allocation based
on cost criterion under different budget constraints

This example illustrates the impact of the size of the budget
B on the optimal test activity allocation recommended by the
fitted model. Toward this end, we solved Equation (13) for
values B € {10,11, ..., 40}, allocating effort to covariates E and
C in order to identify the cost attainable given B. The results of
this analysis are shown in Figure 2.
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Figure 2 — Minimum cost attainable under optimal test activity

allocation given budget B

Figure 2 indicates that cost decreases up until the optimal
allocation B = 22.51 is reached. The figure also shows that the
marginal utility of adding on additional unit to the budget is
decreasing and that, for all values greater than B = 23,
increasing the budget does not reduce the cost further.

To provide an alternative perspective to Figure 2, Figure 3
shows the contour plot of the cost function (Equation (13)
shown in Figure 1) with the optimal allocation for each value of
B superimposed on this contour plot as the black line with circle
at the upper endpoint indicating the optimal allocation.

Here, the range of E;; and C;, were chosen to make the
contours clear. Since all values of Ej, = 0, this indicates that
the fitted model predicts that allocating additional time to this



activity will not compensate the cost of performing the testing
because few additional defects would be found.

25

Figure 3 — Contour plot of cost function with optimal test
activity allocation given budget B superimposed

5 CONCLUSIONS AND FUTURE RESEARCH

This paper presented a software optimal release model
based on cost criteria, incorporating the covariate software
defect detection model based on the Discrete Cox Proportional
Hazards Model (DCPH). Unlike previous formulations which
were based on a NHPP model that only considered a single
dimension of time or other measures such as testing effort or
coverage, the proposed model is multivariate. In particular, the
covariate software defect detection model based on the DCPH
considered the number of defects detected as a function of one
or more testing activities (covariates). Therefore, the problem
was to allocate a constrained budget to multiple alternative test
activities of potentially different unit cost in order to maximize
defect discover, so that they can be removed prior to release.
The practical advantage of this generalized approach is that the
optimal policy identified by the model provides direct guidance
to software engineers on how to allocate efforts across multiple
activities, instead of simply advising on the additional amount
of time required to minimize costs. The approach was
demonstrated through a data set from the literature. Our results
indicated that the approach can be utilized to allocate effort
among alternative test activities in order to minimize cost.

Future research will develop stable and efficient algorithms
to identify the optimal test activity allocation when more
covariates are considered and the dimensionality of the problem
increases. Additional directions worthy of pursuit include (1)
methods to consider parametric uncertainty [19-21] in order to
establish confidence in release decisions and (2) online
procedures [22] to iteratively allocate test activities, so that the
approach aligns with application during the software testing
process, as engineers work to improve the reliability of the
software to a desired level in order to ensure it is suitable for
release.
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