


al. [21] developed an approach for optimal software release 
under parameter uncertainty and performed simulation studies 
to demonstrate its ability to consider multiple risk levels. 
Nagaraju and Fiondella [22] developed an online optimal 
release planning strategy in which one or more models are 
periodically during testing to assess if the optimal release time 
has passed or if additional testing should be performed.  

This paper presents a software optimal release model based 
on cost criteria, incorporating the covariate software defect 
detection model based on the Discrete Cox Proportional 
Hazards Model (DCPH) [23]. In contrast to past formulations 
based on a NHPP model that only consider a single dimension 
of time or other measures such as testing effort or coverage, the 
proposed model is multivariate. Specifically, the covariate 
software defect detection model based on the DCPH considers 
the number of defects detected as a function of one or more 
testing activities (covariates). Therefore, the problem is to 
allocate a constrained budget to these multiple alternative test 
activities of potentially different unit cost in order to maximize 
defect discover, so that they can be removed prior to release. 
This model is based on the assumption that resolving defects 
after release is more costly than those discovered to release. The 
practical advantage of this generalized approach is that the 
optimal policy identified by the model can provide direct 
guidance to software engineers on how to allocate efforts across 
multiple activities, instead of simply advising on the additional 
amount of time required to minimize costs. The approach is 
demonstrated through a data set from the literature [24]. Our 
results indicate that the approach can be utilized to allocate 
effort among alternative test activities in order to minimize cost. 

The remainder of the paper is organized as follows: Section 
2 reviews defect discovery models incorporating covariates. 
Section 3 formulates a model to minimize life cycle cost in 
terms of testing activities within the covariate model. Section 4 
illustrates the cost minimization model with numerical 
examples. Section 5 concludes and suggests future research.   

2 COVARIATE DEFECT DISCOVERY MODELS 

This section presents defect detection models with 
covariates. 

2.1 Covariate Software Defect Detection Model based on the 
Discrete Cox Proportional Hazards Model 

The discrete Cox proportional hazards NHPP SRGM [23] 
correlates 𝑟𝑟 covariates to the number of events in each of 𝑛𝑛 
intervals. In the context of software defect discovery, these 
covariates can be distinct defect testing activities allocated to 
multiple tools or techniques employed for this purpose. The 
matrix 𝐱𝐱𝑛𝑛×𝑟𝑟 quantifies the amount of effort dedicated to each 
activity in each interval. For example, 𝐱𝐱𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, . . . , 𝑥𝑥𝑖𝑖𝑖𝑖) 
denotes the amount of each activity (1 ≤ 𝑗𝑗 ≤ 𝑟𝑟) performed in 
the 𝑖𝑖𝑡𝑡ℎ interval.  

The mean value function predicts the number of defects 
discovered up to and including the 𝑛𝑛𝑡𝑡ℎ interval given covariates 
𝐱𝐱 according to 

𝑚𝑚(𝐱𝐱) = 𝜔𝜔�𝑝𝑝𝑖𝑖,𝐱𝐱𝑖𝑖

𝑛𝑛

𝑖𝑖=1

                                  (1) 

where ω > 0 denotes the number of defects that would be 
discovered with infinite testing and  

𝑝𝑝𝑖𝑖,𝐱𝐱𝑖𝑖 = �1 − (1 − ℎ(𝑖𝑖))𝑔𝑔(𝐱𝐱𝑖𝑖 ;𝜷𝜷)��(1 − ℎ(𝑘𝑘))𝑔𝑔(𝐱𝐱𝑘𝑘;𝜷𝜷)
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   (2) 

is the probability that a defect is discovered in the 𝑖𝑖𝑡𝑡ℎ interval, 
given that it was not discovered in the first (𝑖𝑖 − 1) intervals,  
ℎ(⋅) is the baseline hazard function, and 𝜷𝜷 is the vector of 𝑟𝑟 
parameters contained within the Cox proportional hazards 
model. 

𝑔𝑔(𝐱𝐱𝑖𝑖;𝛽𝛽) = exp(𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 + ∙ ∙ ∙  + 𝛽𝛽𝑟𝑟𝑥𝑥𝑖𝑖𝑖𝑖)       (3) 

2.2 Hazard functions  

This section presents examples of hazard functions that can 
be incorporated into Equation (2). The following three hazard 
functions were originally employed in the covariate software 
reliability model of [24]. 
1) Geometric (GM):   

ℎ(𝑏𝑏) = 𝑏𝑏                                    (4) 
2) Negative binomial of order two (NB2): 

ℎ(𝑖𝑖; 𝑏𝑏) =
𝑖𝑖𝑖𝑖2

1 + 𝑏𝑏(𝑖𝑖 − 1)                            (5) 

where 𝑏𝑏 ∈ (0,1) is the probability of detecting a defect.  
3) Discrete Weibull of order two (DW2):      

ℎ(𝑖𝑖; 𝑏𝑏) =  1 − 𝑏𝑏𝑖𝑖2−(𝑖𝑖−1)2                            6) 
To estimate the parameters of the discrete Cox proportional 

hazard model (DCPH) with covariates, the log-likelihood 
function [23] is  
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where 𝛾𝛾 is the vector of model parameters contained in the 
hazard function and 𝑦𝑦𝑖𝑖 is the number of defects discovered in 
the 𝑖𝑖𝑡𝑡ℎ interval. Substituting one of the hazard functions 
specified in section 2.2 into Equation (2) produces unique log-
likelihood functions. Thus, given covariates data x and vector 
of defects discovered in each of the 𝑛𝑛 intervals (𝑦𝑦𝑛𝑛), the model 
fitting step identifies the numerical values of the total number 
of vulnerabilities to be discovered (𝜔𝜔), vector of 𝑚𝑚 covariates 
coefficients (𝛽𝛽), and hazard function parameters (𝛾𝛾).  

Letting 𝜃𝜃 = {𝛾𝛾,𝛽𝛽,𝜔𝜔} denote the vector of all model 
parameters, the log-likelihood expression can be reduced from 
|𝜃𝜃| to |𝜃𝜃| − 1 parameters by differentiating the log-likelihood 
function with respect to 𝜔𝜔, equating the results to zero, solving 
for 𝜔𝜔 to produce  

𝜔𝜔� =
∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1
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𝑛𝑛
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                                    (8) 



and substituting Equation (8) into the log-likelihood function 
to obtain a reduced log-likelihood (RLL) function. 

The maximum likelihood estimates of the remaining |𝜃𝜃| −
1 parameters, denoted 𝜃𝜃′ ≔ 𝜃𝜃/𝜔𝜔 for compactness, is 
determined by computing partial derivatives  

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                                           (9) 

and  
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                                        (10) 

These steps can be applied to the alternative hazard 
functions in Section 2.2 to obtain the corresponding maximum 
likelihood estimates of the models. Solving this system of 
equations and substituting the numerical values 𝛽̂𝛽 and 𝛾𝛾� into 
Equation (8) produces the maximum likelihood 𝜔𝜔�. 

3 OPTIMAL TEST ALLOCATION BASED ON COST 
CRITERION 

This section formulates a software optimal release model 
based on cost criteria, incorporating the covariate software 
defect detection model based on the Discrete Cox Proportional 
Hazards Model. In practice, this cost minimization model uses 
a covariate software defect detection model fitted according to 
the methods described in Section 2. Specifically, given 
model  𝑚𝑚�(𝐱𝐱) fitted to test activities 𝐱𝐱𝑛𝑛×𝑟𝑟 and vector of observed 
failures 𝐲𝐲, we seek to allocate resources to test activities in 
interval 𝑛𝑛 + 1 in a manner that minimizes cost  

argmin 𝐂𝐂(𝐗𝐗)                                      (11) 
subject to  

�𝛼𝛼𝑖𝑖𝐗𝐗𝑖𝑖,𝑛𝑛+1

𝑟𝑟
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≤ 𝐵𝐵                                  (12) 

where 𝐗𝐗 is the effort dedicated to each of the 𝑟𝑟 covariates in 
each of the intervals up to and including the (𝑛𝑛 + 1)𝑠𝑠𝑠𝑠 interval, 
𝛼𝛼𝑖𝑖 is the cost associated with a unit of test activity 𝑖𝑖, 𝐗𝐗𝑖𝑖,𝑛𝑛+1 is 
the number of units of test activity 𝑖𝑖 allocated in the 𝑛𝑛 + 1 
interval, and 𝐵𝐵 > 0 is a budget constraint. 

The specific form of the cost function for the optimal 
release model based on cost criteria, incorporating the covariate 
software defect detection model based on the Discrete Cox 
Proportional Hazards Model is 

𝐂𝐂(𝐗𝐗) = 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚�(𝐗𝐗) + 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑚𝑚�(𝐱𝐱)  −𝑚𝑚�(𝐗𝐗)� +
       ∑ 𝛼𝛼𝑖𝑖 ∑ 𝐗𝐗𝑖𝑖,𝑗𝑗𝑛𝑛+1

𝑗𝑗=1
𝑟𝑟
𝑖𝑖=1           (13) 

where 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝 and 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 respectively denote the cost of removing 
a defects before or after release (𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 > 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝), 𝑚𝑚�(𝐗𝐗) is the 
estimated number of defects discovered prior to release 
according to the fitted model, 𝑚𝑚�(𝐱𝐱) is the estimated number of 
defects to be discovered throughout the software lifecycle 
experiencing test activities 𝐱𝐱 > 𝐗𝐗, and the final term is the cost 
of all test activities applied in all 𝑛𝑛 + 1 intervals prior to release. 

In order to estimate the optimal effort allocation of multiple 
test activities 𝐗𝐗∗ that minimizes cost of release, we take partial 
derivatives of the total cost Equation (13) with respect to the 
amount of effort to be allocated to each covariate in interval 𝑛𝑛 +

1 to produce the following system of equations 
𝜕𝜕𝐂𝐂�𝐗𝐗𝑖𝑖,𝑛𝑛+1�
𝜕𝜕𝐗𝐗𝑖𝑖,𝑛𝑛+1

= 𝟎𝟎                                 (14) 

and solve numerically, since this system of equations lacks 
closed form solution, due to the nonlinear nature of Equations 
(2) and (3). 

3.1 Application of Optimal Test Allocation based on Cost 
Criterion 

This section describes how to apply optimal test allocation 
based on cost criterion. Toward this end, we contrast this 
process with the steps performed in the context of traditional 
approaches [4] for optimal software release models based on 
the NHPP without covariates. In this simpler context, the 
following three steps to estimate the optimal release time are 
typically taken: 
• (S.1) Fit a model to the complete failure data to obtain 

parameter estimates using a software reliability growth 
model without covariates.  

• (S.2) Establish a numerical version of the optimal release 
equation, by substituting the maximum likelihood 
estimates obtained in step (S.1) into a single dimensional 
version of Equation (13) with  𝑚𝑚�(𝑡𝑡) and 𝑚𝑚�(𝑇𝑇) for the 
lifecycle (𝑡𝑡) and release time (𝑇𝑇), where 𝑡𝑡 > 𝑇𝑇, as well as 
term 𝑐𝑐 × 𝑇𝑇 that accounts for the cost of testing prior to 
release. 

• (S.3) Plot this numerical version of the single dimensional 
cost as a function of time according to the cost equation 
established in step (S.2) to graphically illustrate the trend 
and identify the minimum with a numerical solver. This 
trend is typically bathtub shaped because the cost of 
failures initially motivates additional testing, but 
eventually increases because the cost of testing outweighs 
the risk associated with releasing the software with a small 
number of remaining defects. 
In contrast to the traditional procedure for identifying the 

optimal release time of software, the software optimal release 
model based on cost criteria, incorporating the covariate 
software defect detection model based on the Discrete Cox 
Proportional Hazards Model generalizes time (𝑇𝑇) to the 
multiple test activities performed (𝐗𝐗). The proposed approach 
thus constitutes a portfolio allocation problem in which limited 
resources are divided among multiple alternative test activities. 

4 ILLUSTRATIONS 

This section illustrates the software optimal release model 
based on cost criteria, incorporating the covariate software 
defect detection model based on the Discrete Cox Proportional 
Hazards Model formulated in Section 3. All illustrations are 
based on the DS1 dataset [24], which consists of  𝑛𝑛 = 17 
intervals (weeks) and composed of three covariates, including 
execution time (E) in hours, failure identification work (F) in 
person hours, and computer time failure identification (C) in 
hours as well as the corresponding number of defects 
discovered as a result of these test activities. To simplify the 
exposition and enable clear visualizations, two covariates are 



used. Specifically, the illustrations use the E and C covariates 
with the negative binomial hazard function, which is 
appropriate, since past studies [23] identified that this subset of 
covariates produced the most accurate predictions of future 
defect discovery. For concreteness, the cost parameters were set 
to 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝 = $10, 𝛼𝛼𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 = $500, and 𝛼𝛼1 = 𝛼𝛼2 = $3, while the 
software lifecycle was set to  𝜔𝜔� = 60.0153, which denotes the 
estimated number of defects that would be discovered with 
infinite testing (𝑛𝑛 → ∞ in Equation (1)) when only the first 9 of 
17 intervals were used to fit the model. This approach of fitting 
the model with only 9 intervals was taken to illustrate how to 
use the optimal release model based on cost criteria, 
incorporating the covariate software defect detection model 
interactively by predicting how to allocate test activities for 
interval 10. In practice, the model could then be refit based on 
the results obtained by applying effort in interval 10 and the 
process repeated for subsequent intervals. 

The first example graphically illustrates the estimated cost 
curve as a function of additional application of the E and C 
covariates, while the second example performs a sensitivity 
study on the optimal cost attainable under budgets of various 
sizes. 

4.1 Optimal test activity allocation based on cost criterion  

This example graphically illustrates the optimal test 
activity allocation for two covariates. Toward this end, nine of 
17 intervals of the DS1 data set were fit to the negative binomial 
hazard function using the E and C covariates. 

Figure 1 shows a plot of the cost curve based on this fitted 
model and the numerical parameters given in Section 4.   

 

 
Figure 1 - Impact of test activity allocation on cost under 

negative binomial hazard function fitted to E and C covariates 
of DS1 

Figure 1 indicates that the model predicts that allocating no 
additional testing to activity E or C would result in a cost 
exceeding 10,000. The minimum of Equation (13) according to 
the fitted model is 𝐂𝐂∗ = 561.12 is obtained when E10∗ = 0 and 
C10∗ = 22.51. The interpretation of E10∗ = 0 is that no additional 
effort should be allocated to the test activity corresponding to 
execution time, but that some additional effort should be 

allocated to computer time failure identification (C). E10∗  may 
be zero because 𝛽̂𝛽𝐸𝐸 ≪ 𝛽̂𝛽𝐶𝐶  , which would indicate that the rate of 
defect discovery given application of activity E is substantially 
lower than the corresponding rate for activity C. If both E10∗  and 
C10∗  were equal to zero, then the model would effectively be 
recommending software release because no additional effort is 
anticipated to be required. Figure 1 also indicates that for values 
of C10 > C10∗ , the cost increases. A less pronounced increase is 
also visible for test activity allocations where E10 > E10∗ . These 
increasing trends occur because the number of remaining 
defects that would be discovered between release and the end 
of the software lifecycle denoted by the term �𝑚𝑚�(𝐱𝐱)  −𝑚𝑚�(𝐗𝐗)� 
in Equation (13) is relatively small compare to the cost of 
allocating additional effort to test activities, even when the 
number of remaining defects is scaled by the relatively high 
cost of post release failures (𝛼𝛼𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠). 

4.2 Sensitivity of optimal cost to test activity allocation based 
on cost criterion under different budget constraints 

This example illustrates the impact of the size of the budget 
B on the optimal test activity allocation recommended by the 
fitted model. Toward this end, we solved Equation (13) for  
values 𝐵𝐵 ∈ {10,11, … , 40}, allocating effort to covariates E and 
C in order to identify the cost attainable given 𝐵𝐵. The results of 
this analysis are shown in Figure 2. 

 

 
Figure 2 – Minimum cost attainable under optimal test activity 

allocation given budget B 

Figure 2 indicates that cost decreases up until the optimal 
allocation 𝐵𝐵 = 22.51 is reached. The figure also shows that the 
marginal utility of adding on additional unit to the budget is 
decreasing and that, for all values greater than 𝐵𝐵 = 23, 
increasing the budget does not reduce the cost further. 

To provide an alternative perspective to Figure 2, Figure 3 
shows the contour plot of the cost function (Equation (13) 
shown in Figure 1) with the optimal allocation for each value of 
B superimposed on this contour plot as the black line with circle 
at the upper endpoint indicating the optimal allocation. 

Here, the range of E10 and C10 were chosen to make the 
contours clear. Since all values of E10∗ = 0, this indicates that 
the fitted model predicts that allocating additional time to this 



activity will not compensate the cost of performing the testing 
because few additional defects would be found.  

 

 
Figure 3 – Contour plot of cost function with optimal test 

activity allocation given budget 𝐵𝐵 superimposed 

5 CONCLUSIONS AND FUTURE RESEARCH 

This paper presented a software optimal release model 
based on cost criteria, incorporating the covariate software 
defect detection model based on the Discrete Cox Proportional 
Hazards Model (DCPH). Unlike previous formulations which 
were based on a NHPP model that only considered a single 
dimension of time or other measures such as testing effort or 
coverage, the proposed model is multivariate. In particular, the 
covariate software defect detection model based on the DCPH 
considered the number of defects detected as a function of one 
or more testing activities (covariates). Therefore, the problem 
was to allocate a constrained budget to multiple alternative test 
activities of potentially different unit cost in order to maximize 
defect discover, so that they can be removed prior to release. 
The practical advantage of this generalized approach is that the 
optimal policy identified by the model provides direct guidance 
to software engineers on how to allocate efforts across multiple 
activities, instead of simply advising on the additional amount 
of time required to minimize costs. The approach was 
demonstrated through a data set from the literature. Our results 
indicated that the approach can be utilized to allocate effort 
among alternative test activities in order to minimize cost. 

Future research will develop stable and efficient algorithms 
to identify the optimal test activity allocation when more 
covariates are considered and the dimensionality of the problem 
increases. Additional directions worthy of pursuit include (1) 
methods to consider parametric uncertainty [19-21] in order to 
establish confidence in release decisions and (2) online 
procedures [22] to iteratively allocate test activities, so that the 
approach aligns with application during the software testing 
process, as engineers work to improve the reliability of the 
software to a desired level in order to ensure it is suitable for 
release. 
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