

al. [21] developed an approach for optimal software release
under parameter uncertainty and performed simulation studies
to demonstrate its ability to consider multiple risk levels.
Nagaraju and Fiondella [22] developed an online optimal
release planning strategy in which one or more models are
periodically during testing to assess if the optimal release time
has passed or if additional testing should be performed.

This paper presents a software optimal release model based
on cost criteria, incorporating the covariate software defect
detection model based on the Discrete Cox Proportional
Hazards Model (DCPH) [23]. In contrast to past formulations
based on a NHPP model that only consider a single dimension
of time or other measures such as testing effort or coverage, the
proposed model is multivariate. Specifically, the covariate
software defect detection model based on the DCPH considers
the number of defects detected as a function of one or more
testing activities (covariates). Therefore, the problem is to
allocate a constrained budget to these multiple alternative test
activities of potentially different unit cost in order to maximize
defect discover, so that they can be removed prior to release.
This model is based on the assumption that resolving defects
after release is more costly than those discovered to release. The
practical advantage of this generalized approach is that the
optimal policy identified by the model can provide direct
guidance to software engineers on how to allocate efforts across
multiple activities, instead of simply advising on the additional
amount of time required to minimize costs. The approach is
demonstrated through a data set from the literature [24]. Our
results indicate that the approach can be utilized to allocate
effort among alternative test activities in order to minimize cost.

The remainder of the paper is organized as follows: Section
2 reviews defect discovery models incorporating covariates.
Section 3 formulates a model to minimize life cycle cost in
terms of testing activities within the covariate model. Section 4
illustrates the cost minimization model with numerical
examples. Section 5 concludes and suggests future research.

2 COVARIATE DEFECT DISCOVERY MODELS

This section presents defect detection models with
covariates.

2.1 Covariate Software Defect Detection Model based on the
Discrete Cox Proportional Hazards Model

The discrete Cox proportional hazards NHPP SRGM [23]
correlates 𝑟𝑟 covariates to the number of events in each of 𝑛𝑛
intervals. In the context of software defect discovery, these
covariates can be distinct defect testing activities allocated to
multiple tools or techniques employed for this purpose. The
matrix 𝐱𝐱𝑛𝑛×𝑟𝑟 quantifies the amount of effort dedicated to each
activity in each interval. For example, 𝐱𝐱𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, . . . , 𝑥𝑥𝑖𝑖𝑖𝑖)
denotes the amount of each activity (1 ≤ 𝑗𝑗 ≤ 𝑟𝑟) performed in
the 𝑖𝑖𝑡𝑡ℎ interval.

The mean value function predicts the number of defects
discovered up to and including the 𝑛𝑛𝑡𝑡ℎ interval given covariates
𝐱𝐱 according to

𝑚𝑚(𝐱𝐱) = 𝜔𝜔�𝑝𝑝𝑖𝑖,𝐱𝐱𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (1)

where ω > 0 denotes the number of defects that would be
discovered with infinite testing and

𝑝𝑝𝑖𝑖,𝐱𝐱𝑖𝑖 = �1 − (1 − ℎ(𝑖𝑖))𝑔𝑔(𝐱𝐱𝑖𝑖 ;𝜷𝜷)��(1 − ℎ(𝑘𝑘))𝑔𝑔(𝐱𝐱𝑘𝑘;𝜷𝜷)
𝑖𝑖−1

𝑘𝑘=1

 (2)

is the probability that a defect is discovered in the 𝑖𝑖𝑡𝑡ℎ interval,
given that it was not discovered in the first (𝑖𝑖 − 1) intervals,
ℎ(⋅) is the baseline hazard function, and 𝜷𝜷 is the vector of 𝑟𝑟
parameters contained within the Cox proportional hazards
model.

𝑔𝑔(𝐱𝐱𝑖𝑖;𝛽𝛽) = exp(𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 + ∙ ∙ ∙ + 𝛽𝛽𝑟𝑟𝑥𝑥𝑖𝑖𝑖𝑖) (3)

2.2 Hazard functions

This section presents examples of hazard functions that can
be incorporated into Equation (2). The following three hazard
functions were originally employed in the covariate software
reliability model of [24].
1) Geometric (GM):

ℎ(𝑏𝑏) = 𝑏𝑏 (4)
2) Negative binomial of order two (NB2):

ℎ(𝑖𝑖; 𝑏𝑏) =
𝑖𝑖𝑖𝑖2

1 + 𝑏𝑏(𝑖𝑖 − 1) (5)

where 𝑏𝑏 ∈ (0,1) is the probability of detecting a defect.
3) Discrete Weibull of order two (DW2):

ℎ(𝑖𝑖; 𝑏𝑏) = 1 − 𝑏𝑏𝑖𝑖2−(𝑖𝑖−1)2 6)
To estimate the parameters of the discrete Cox proportional

hazard model (DCPH) with covariates, the log-likelihood
function [23] is

𝐿𝐿𝐿𝐿(𝛾𝛾,𝛽𝛽,𝜔𝜔) = −𝜔𝜔�𝑝𝑝𝑖𝑖,𝐱𝐱𝑖𝑖 + �𝑦𝑦𝑖𝑖 ln(𝜔𝜔)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

+ �𝑦𝑦𝑖𝑖 ln�𝑝𝑝𝑖𝑖,𝐱𝐱𝑖𝑖� −� ln(𝑦𝑦𝑖𝑖!)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 (7)

where 𝛾𝛾 is the vector of model parameters contained in the
hazard function and 𝑦𝑦𝑖𝑖 is the number of defects discovered in
the 𝑖𝑖𝑡𝑡ℎ interval. Substituting one of the hazard functions
specified in section 2.2 into Equation (2) produces unique log-
likelihood functions. Thus, given covariates data x and vector
of defects discovered in each of the 𝑛𝑛 intervals (𝑦𝑦𝑛𝑛), the model
fitting step identifies the numerical values of the total number
of vulnerabilities to be discovered (𝜔𝜔), vector of 𝑚𝑚 covariates
coefficients (𝛽𝛽), and hazard function parameters (𝛾𝛾).

Letting 𝜃𝜃 = {𝛾𝛾,𝛽𝛽,𝜔𝜔} denote the vector of all model
parameters, the log-likelihood expression can be reduced from
|𝜃𝜃| to |𝜃𝜃| − 1 parameters by differentiating the log-likelihood
function with respect to 𝜔𝜔, equating the results to zero, solving
for 𝜔𝜔 to produce

𝜔𝜔� =
∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑝𝑝𝑖𝑖,𝐱𝐱𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 (8)

and substituting Equation (8) into the log-likelihood function
to obtain a reduced log-likelihood (RLL) function.

The maximum likelihood estimates of the remaining |𝜃𝜃| −
1 parameters, denoted 𝜃𝜃′ ≔ 𝜃𝜃/𝜔𝜔 for compactness, is
determined by computing partial derivatives

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 (9)

and
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 (10)

These steps can be applied to the alternative hazard
functions in Section 2.2 to obtain the corresponding maximum
likelihood estimates of the models. Solving this system of
equations and substituting the numerical values 𝛽̂𝛽 and 𝛾𝛾� into
Equation (8) produces the maximum likelihood 𝜔𝜔�.

3 OPTIMAL TEST ALLOCATION BASED ON COST
CRITERION

This section formulates a software optimal release model
based on cost criteria, incorporating the covariate software
defect detection model based on the Discrete Cox Proportional
Hazards Model. In practice, this cost minimization model uses
a covariate software defect detection model fitted according to
the methods described in Section 2. Specifically, given
model 𝑚𝑚�(𝐱𝐱) fitted to test activities 𝐱𝐱𝑛𝑛×𝑟𝑟 and vector of observed
failures 𝐲𝐲, we seek to allocate resources to test activities in
interval 𝑛𝑛 + 1 in a manner that minimizes cost

argmin 𝐂𝐂(𝐗𝐗) (11)
subject to

�𝛼𝛼𝑖𝑖𝐗𝐗𝑖𝑖,𝑛𝑛+1

𝑟𝑟

𝑖𝑖=1

≤ 𝐵𝐵 (12)

where 𝐗𝐗 is the effort dedicated to each of the 𝑟𝑟 covariates in
each of the intervals up to and including the (𝑛𝑛 + 1)𝑠𝑠𝑠𝑠 interval,
𝛼𝛼𝑖𝑖 is the cost associated with a unit of test activity 𝑖𝑖, 𝐗𝐗𝑖𝑖,𝑛𝑛+1 is
the number of units of test activity 𝑖𝑖 allocated in the 𝑛𝑛 + 1
interval, and 𝐵𝐵 > 0 is a budget constraint.

The specific form of the cost function for the optimal
release model based on cost criteria, incorporating the covariate
software defect detection model based on the Discrete Cox
Proportional Hazards Model is

𝐂𝐂(𝐗𝐗) = 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚�(𝐗𝐗) + 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑚𝑚�(𝐱𝐱) −𝑚𝑚�(𝐗𝐗)� +
 ∑ 𝛼𝛼𝑖𝑖 ∑ 𝐗𝐗𝑖𝑖,𝑗𝑗𝑛𝑛+1

𝑗𝑗=1
𝑟𝑟
𝑖𝑖=1 (13)

where 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝 and 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 respectively denote the cost of removing
a defects before or after release (𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 > 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝), 𝑚𝑚�(𝐗𝐗) is the
estimated number of defects discovered prior to release
according to the fitted model, 𝑚𝑚�(𝐱𝐱) is the estimated number of
defects to be discovered throughout the software lifecycle
experiencing test activities 𝐱𝐱 > 𝐗𝐗, and the final term is the cost
of all test activities applied in all 𝑛𝑛 + 1 intervals prior to release.

In order to estimate the optimal effort allocation of multiple
test activities 𝐗𝐗∗ that minimizes cost of release, we take partial
derivatives of the total cost Equation (13) with respect to the
amount of effort to be allocated to each covariate in interval 𝑛𝑛 +

1 to produce the following system of equations
𝜕𝜕𝐂𝐂�𝐗𝐗𝑖𝑖,𝑛𝑛+1�
𝜕𝜕𝐗𝐗𝑖𝑖,𝑛𝑛+1

= 𝟎𝟎 (14)

and solve numerically, since this system of equations lacks
closed form solution, due to the nonlinear nature of Equations
(2) and (3).

3.1 Application of Optimal Test Allocation based on Cost
Criterion

This section describes how to apply optimal test allocation
based on cost criterion. Toward this end, we contrast this
process with the steps performed in the context of traditional
approaches [4] for optimal software release models based on
the NHPP without covariates. In this simpler context, the
following three steps to estimate the optimal release time are
typically taken:
• (S.1) Fit a model to the complete failure data to obtain

parameter estimates using a software reliability growth
model without covariates.

• (S.2) Establish a numerical version of the optimal release
equation, by substituting the maximum likelihood
estimates obtained in step (S.1) into a single dimensional
version of Equation (13) with 𝑚𝑚�(𝑡𝑡) and 𝑚𝑚�(𝑇𝑇) for the
lifecycle (𝑡𝑡) and release time (𝑇𝑇), where 𝑡𝑡 > 𝑇𝑇, as well as
term 𝑐𝑐 × 𝑇𝑇 that accounts for the cost of testing prior to
release.

• (S.3) Plot this numerical version of the single dimensional
cost as a function of time according to the cost equation
established in step (S.2) to graphically illustrate the trend
and identify the minimum with a numerical solver. This
trend is typically bathtub shaped because the cost of
failures initially motivates additional testing, but
eventually increases because the cost of testing outweighs
the risk associated with releasing the software with a small
number of remaining defects.
In contrast to the traditional procedure for identifying the

optimal release time of software, the software optimal release
model based on cost criteria, incorporating the covariate
software defect detection model based on the Discrete Cox
Proportional Hazards Model generalizes time (𝑇𝑇) to the
multiple test activities performed (𝐗𝐗). The proposed approach
thus constitutes a portfolio allocation problem in which limited
resources are divided among multiple alternative test activities.

4 ILLUSTRATIONS

This section illustrates the software optimal release model
based on cost criteria, incorporating the covariate software
defect detection model based on the Discrete Cox Proportional
Hazards Model formulated in Section 3. All illustrations are
based on the DS1 dataset [24], which consists of 𝑛𝑛 = 17
intervals (weeks) and composed of three covariates, including
execution time (E) in hours, failure identification work (F) in
person hours, and computer time failure identification (C) in
hours as well as the corresponding number of defects
discovered as a result of these test activities. To simplify the
exposition and enable clear visualizations, two covariates are

used. Specifically, the illustrations use the E and C covariates
with the negative binomial hazard function, which is
appropriate, since past studies [23] identified that this subset of
covariates produced the most accurate predictions of future
defect discovery. For concreteness, the cost parameters were set
to 𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝 = $10, 𝛼𝛼𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 = $500, and 𝛼𝛼1 = 𝛼𝛼2 = $3, while the
software lifecycle was set to 𝜔𝜔� = 60.0153, which denotes the
estimated number of defects that would be discovered with
infinite testing (𝑛𝑛 → ∞ in Equation (1)) when only the first 9 of
17 intervals were used to fit the model. This approach of fitting
the model with only 9 intervals was taken to illustrate how to
use the optimal release model based on cost criteria,
incorporating the covariate software defect detection model
interactively by predicting how to allocate test activities for
interval 10. In practice, the model could then be refit based on
the results obtained by applying effort in interval 10 and the
process repeated for subsequent intervals.

The first example graphically illustrates the estimated cost
curve as a function of additional application of the E and C
covariates, while the second example performs a sensitivity
study on the optimal cost attainable under budgets of various
sizes.

4.1 Optimal test activity allocation based on cost criterion

This example graphically illustrates the optimal test
activity allocation for two covariates. Toward this end, nine of
17 intervals of the DS1 data set were fit to the negative binomial
hazard function using the E and C covariates.

Figure 1 shows a plot of the cost curve based on this fitted
model and the numerical parameters given in Section 4.

Figure 1 - Impact of test activity allocation on cost under

negative binomial hazard function fitted to E and C covariates
of DS1

Figure 1 indicates that the model predicts that allocating no
additional testing to activity E or C would result in a cost
exceeding 10,000. The minimum of Equation (13) according to
the fitted model is 𝐂𝐂∗ = 561.12 is obtained when E10∗ = 0 and
C10∗ = 22.51. The interpretation of E10∗ = 0 is that no additional
effort should be allocated to the test activity corresponding to
execution time, but that some additional effort should be

allocated to computer time failure identification (C). E10∗ may
be zero because 𝛽̂𝛽𝐸𝐸 ≪ 𝛽̂𝛽𝐶𝐶 , which would indicate that the rate of
defect discovery given application of activity E is substantially
lower than the corresponding rate for activity C. If both E10∗ and
C10∗ were equal to zero, then the model would effectively be
recommending software release because no additional effort is
anticipated to be required. Figure 1 also indicates that for values
of C10 > C10∗ , the cost increases. A less pronounced increase is
also visible for test activity allocations where E10 > E10∗ . These
increasing trends occur because the number of remaining
defects that would be discovered between release and the end
of the software lifecycle denoted by the term �𝑚𝑚�(𝐱𝐱) −𝑚𝑚�(𝐗𝐗)�
in Equation (13) is relatively small compare to the cost of
allocating additional effort to test activities, even when the
number of remaining defects is scaled by the relatively high
cost of post release failures (𝛼𝛼𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠).

4.2 Sensitivity of optimal cost to test activity allocation based
on cost criterion under different budget constraints

This example illustrates the impact of the size of the budget
B on the optimal test activity allocation recommended by the
fitted model. Toward this end, we solved Equation (13) for
values 𝐵𝐵 ∈ {10,11, … , 40}, allocating effort to covariates E and
C in order to identify the cost attainable given 𝐵𝐵. The results of
this analysis are shown in Figure 2.

Figure 2 – Minimum cost attainable under optimal test activity

allocation given budget B

Figure 2 indicates that cost decreases up until the optimal
allocation 𝐵𝐵 = 22.51 is reached. The figure also shows that the
marginal utility of adding on additional unit to the budget is
decreasing and that, for all values greater than 𝐵𝐵 = 23,
increasing the budget does not reduce the cost further.

To provide an alternative perspective to Figure 2, Figure 3
shows the contour plot of the cost function (Equation (13)
shown in Figure 1) with the optimal allocation for each value of
B superimposed on this contour plot as the black line with circle
at the upper endpoint indicating the optimal allocation.

Here, the range of E10 and C10 were chosen to make the
contours clear. Since all values of E10∗ = 0, this indicates that
the fitted model predicts that allocating additional time to this

activity will not compensate the cost of performing the testing
because few additional defects would be found.

Figure 3 – Contour plot of cost function with optimal test

activity allocation given budget 𝐵𝐵 superimposed

5 CONCLUSIONS AND FUTURE RESEARCH

This paper presented a software optimal release model
based on cost criteria, incorporating the covariate software
defect detection model based on the Discrete Cox Proportional
Hazards Model (DCPH). Unlike previous formulations which
were based on a NHPP model that only considered a single
dimension of time or other measures such as testing effort or
coverage, the proposed model is multivariate. In particular, the
covariate software defect detection model based on the DCPH
considered the number of defects detected as a function of one
or more testing activities (covariates). Therefore, the problem
was to allocate a constrained budget to multiple alternative test
activities of potentially different unit cost in order to maximize
defect discover, so that they can be removed prior to release.
The practical advantage of this generalized approach is that the
optimal policy identified by the model provides direct guidance
to software engineers on how to allocate efforts across multiple
activities, instead of simply advising on the additional amount
of time required to minimize costs. The approach was
demonstrated through a data set from the literature. Our results
indicated that the approach can be utilized to allocate effort
among alternative test activities in order to minimize cost.

Future research will develop stable and efficient algorithms
to identify the optimal test activity allocation when more
covariates are considered and the dimensionality of the problem
increases. Additional directions worthy of pursuit include (1)
methods to consider parametric uncertainty [19-21] in order to
establish confidence in release decisions and (2) online
procedures [22] to iteratively allocate test activities, so that the
approach aligns with application during the software testing
process, as engineers work to improve the reliability of the
software to a desired level in order to ensure it is suitable for
release.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant Number 1749635. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

REFERENCES

1. M. Xie, Software reliability modelling, World Scientific,
1991.

2. H. Pham. Software reliability. Springer Science &
Business Media, 2000.

3. K. Trivedi, Probability & statistics with reliability,
queuing and computer science applications. John Wiley &
Sons, 2008.

4. K. Okumoto, and A. Goel, “Optimum release time for
software systems based on reliability and cost criteria,”
Journal of Systems and Software, vol. 1, pp 315-318, 1979-
1980.

5. S. Yamada, and S. Osaki, “Cost–reliability optimal release
policies for software systems,” IEEE Transactions
on Reliability, vol.34, pp. 422-424, (Dec.) 1985.

6. H. Pham, and X. Zhang, “NHPP software reliability and
cost models with testing coverage,” European Journal of
Operational Research, vol. 145, pp 443-454, (Mar.) 2003.

7. H. Pham, “Software reliability and cost models:
Perspectives, comparison, and practice.” European
Journal of Operational Research, vol. 149, pp 475-489,
(Sep.) 2003.

8. R. Lai, M. Garg, P. K. Kapur, and S. Liu, “A study of when
to release a software product from the perspective of
software reliability models,” Journal of Software, vol.6,
pp. 651-661, (Apr.) 2011.

9. C.Y. Huang and M.R. Lyu, Optimal release time for
software systems considering cost, testing-effort, and test
efficiency. IEEE Transactions on Reliability, 54(4),
pp.583-591, (Dec.) 2005.

10. H. Pham and H. Wang, “A quasi-renewal process for
software reliability and testing costs,” IEEE Transactions
on Systems, Man, and Cybernetics – Part A: Systems and
Humans, vol. 31, pp. 623-631, (Nov.) 2001.

11. H. Pham, and X. Zhang, “A software cost model with
warranty and risk costs,” IEEE Transactions on
Computers, vol. 48, pp 71–75, (Jan.) 1999.

12. S.M. Ross, “Software reliability: The stopping rule
problem,” IEEE Transactions on Software Engineering,
11(12), pp.1472-1476, (Dec.) 1985.

13. S.R. Dalal and C.L. Mallows, “Some graphical aids for
deciding when to stop testing software,” IEEE Journal on
Selected Areas in Communications, 8(2), pp.169-175,
(Feb.) 1990.

14. N.D. Singpurwalla, “Determining an optimal time interval
for testing and debugging software,” IEEE Transactions on
Software Engineering, 17(4), p.313, (Apr.) 1991.

15. M. Yang and A. Chao, “Reliability-estimation & stopping-

rules for software testing, based on repeated appearance of
bugs,” IEEE Transactions on Reliability, 44(2), pp. 315-
321, (June) 1995.

16. S.S. Gokhale, “Architecture-based software reliability
analysis: Overview and limitations,” IEEE Transactions on
Dependable and Secure Computing, 4(1), pp.32-40, (Jan.-
Mar.) 2007.

17. M. R. Lyu, S. Rangarajan, and A. P. A. van Moorsel.,
“Optimal allocation of test resources for software
reliability growth modeling in software development”
IEEE Transactions on Reliability, vol. 51, pp 183-192,
(Jun.) 2002.

18. R. Pietrantuono, S. Russo and K.S. Trivedi, “Software
reliability and testing time allocation: An architecture-
based approach,” in IEEE Transactions on Software
Engineering, vol. 36, pp. 323-337, (May-June.) 2010.

19. M. Zhao, and M. Xie, “Robustness of optimum software
release policies,” In Proc. of the IEEE International
Symposium on Software Reliability Engineering, pp. 218 –
225, 1993.

20. B. Yang, H. Hu, and L. Jia, “A study of uncertainty in
software cost and its impact on optimal software release
time,” IEEE Transactions on Software Engineering, vol.
34, pp. 813-825, (Nov/Dec) 2008.

21. M. Xie, X. Li and S. H. Ng, “Risk-based software release
policy under parameter uncertainty,” In Proc. of the
Institution of Mechanical Engineers, Part O: Journal of
Risk and Reliability, 225(1), pp. 42-49, 2011.

22. V. Nagaraju, and L. Fiondella, “Online Optimal Release
Time for Non-homogeneous Poisson Process Software
Reliability Growth Model,” In Proc. of the Annual
Reliability and Maintainability Symposium, 2020.

23. V. Nagaraju, C. Jayasinghe, and L. Fiondella, “Optimal test
activity allocation for covariate software reliability and
security models,” Journal of Systems and Software, vol.
168, p. 110643, (Oct.) 2020.

24. K. Shibata, K. Rinsaka, and T. Dohi, “Metrics-based
software reliability models using non-homogeneous
Poisson processes,” In Proc. of the IEEE International
Symposium on Software Reliability Engineering, pp. 52-
61, (Nov.) 2006.

BIOGRAPHIES

Ebenezer Yawlui
Department of Electrical & Computer Engineering
University of Massachusetts – Dartmouth

285 Old Westport Road
North Dartmouth, MA 02747, USA

e-mail: eyawlui@umassd.edu

Ebenezer Yawlui is a MS student in the Department of
Electrical & Computer Engineering at the University of
Massachusetts Dartmouth. He received his BS (2020) in
Electrical Engineering from Regional Maritime University,
Ghana.

Priscila Silva, MS
Department of Electrical & Computer Engineering
University of Massachusetts – Dartmouth
285 Old Westport Road
North Dartmouth, MA 02747, USA

e-mail: psilva4@umassd.edu

Priscila Silva is a PhD student in the Department of Electrical
& Computer Engineering at the University of Massachusetts
Dartmouth. She received her MS (2022) in Computer
Engineering from UMassD.

Vidhyashree Nagaraju, PhD
Tandy School of Computer Science, University of Tulsa
800 South Tucker Drive
Tulsa, OK 74104, USA

e-mail: vidhyashree-nagaraju@utulsa.edu

Vidhyashree Nagaraju is an Assistant Professor in the Tandy
School of Computer Science at the University of Tulsa. She
received her PhD (2020) in Computer Engineering from
UMassD.

Lance Fiondella, PhD
Department of Electrical & Computer Engineering
University of Massachusetts – Dartmouth
285 Old Westport Road
North Dartmouth, MA 02747, USA

e-mail: lfiondella@umassd.edu

Lance Fiondella is an Associate Professor in the Department of
Electrical & Computer Engineering at the University of
Massachusetts Dartmouth and the Director of the University’s
Cybersecurity Center, a NSA/DHS Center of Academic
Excellence in Cyber Research (CAE-R). He received his PhD
(2012) in Computer Science & Engineering from the University
of Connecticut.

https://ieeexplore.ieee.org/author/37085553701
https://ieeexplore.ieee.org/author/37691749200

	1 INTRODUCTION
	2 COVARIATE DEFECT DISCOVERY MODELS
	2.1 Covariate Software Defect Detection Model based on the Discrete Cox Proportional Hazards Model
	2.2 Hazard functions

	3 OPTIMAL TEST ALLOCATION BASED ON COST CRITERION
	3.1 Application of Optimal Test Allocation based on Cost Criterion

	4 ILLUSTRATIONS
	4.1 Optimal test activity allocation based on cost criterion
	4.2 Sensitivity of optimal cost to test activity allocation based on cost criterion under different budget constraints

	5 Conclusions and Future Research
	Acknowledgments

