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Abstract

River metabolism modeled from diurnal dissolved oxygen (DO) has become a widely used metric of
ecosystem function, yet many papers provide insufficient methodological detail for replication. Only 79% of
43 sampled papers published from 2015 to 2019 mention calibration, 44% describe sensor placement, and 34%
did not describe estimation approaches such that the study could be replicated. Given spatial heterogeneity in
rivers influences metabolism, and measurement sensitivities vary with sensor model, it is important to have
appropriately detailed information in reported methods along with a fundamental understanding of how river
heterogeneity might influence metabolism. We deployed 2-8 sensors at 92 steppe river reaches to characterize
site heterogeneity, evaluating how sensor placement and type, deployment length, drift correction, data source,
local vs. remotely sensed data, and calibration can affect metabolism estimates. Estimates of gross primary pro-
duction (GPP) and ecosystem respiration (ER) were inconsistent and unpredictable depending on deployment
location within a river reach; GPP and ER rates varied up to 131% and 69%, respectively, across a river width
and up to two orders of magnitude within a reach. DO sensor brands vary in precision and accuracy; we found
even when operated within stated performance range, estimates of GPP and ER could vary by 82% and 198%,
respectively, if not calibrated beyond factory setting, as determined using field data from a sample site. Inaccura-
cies from sensor drift over weeklong deployments led to an average 48% ER overestimation, and 2% GPP over-
estimation comparing uncorrected with corrected field data. We suggest best practices for more comparable,
precise, representative, and accurate methods.

Ecosystem metabolism is central to ecosystem function and
is the basis for understanding energy flows and ecological effi-
ciencies from local to global scale. Carbon metabolism consists
of carbon fixation (gross primary production [GPP]) and bio-
logical carbon oxidation (ecosystem respiration [ER]), as well
as their balance (net ecosystem production). These properties
describing organic carbon dynamics and rates of activity delin-
eate heterotrophic and autotrophic states in lotic waters
(Demars et al. 2011; Dodds and Cole 2007) and are used by
managers to assess river condition (Chowanski et al. 2020). Net
ecosystem production roughly represents the CO, emissions or
sequestration by a river where groundwater influence is mini-
mal (Hall et al. 2016). Dissolved oxygen (DO) measurements
have commonly been used to measure metabolism in aquatic
systems as a proxy for carbon flux; they are less complicated
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than multispecies bicarbonate equilibria and are detectable
against low background concentration, though they do not
account for anoxic processes (Dodds and Cole 2007).

We contend many stream metabolism publications do not
report sufficient methods to allow replication and confident
comparison among studies. We aim to understand how equip-
ment choice, data decisions, and instrument placement in
heterogeneous waters influence metabolism determinations.
We surveyed methods used in metabolism studies, determined
how equipment and data decisions affect resulting rate esti-
mates, and evaluated sensor placement in temperate steppe
rivers to understand their influence on metabolic calculations
at the local to reach scale. Our primary goal is to quantify
potential sources of bias and error from initial experimental
design to the final step of reporting methods such that future
studies are reproducible and better characterize river
metabolism.

Advances in sensors and approaches to estimating metabo-
lism (including iterative Bayesian methods allowing for calcu-
lation of error and fit) have allowed broader estimation of



Schechner et al.

stream metabolic characteristics. The more sophisticated
models currently applied over the original accounting
methods (Odum 1956) are informed by additional metrics
including factors influencing aeration and photosynthetically
active radiation (PAR) and require deciding between direct
measurements or estimation of those metrics. Metabolism esti-
mation also requires measurements of barometric pressure,
reach geometry and hydrology, and temperature. Some met-
rics with strong effects on rate estimates have been considered
previously. For example, there is ample literature on estimat-
ing aeration, leading some to suggest there are weak relation-
ships among estimates modeled, measured, or calculated from
stream and river (hereafter river) morphology and hydrology
(Riley and Dodds 2012). GPP has been linked to water velocity
(Edwards and Owens 1962), and alongside ER to substrate size
and variability (Cardinale et al. 2002). Other metrics might
affect GPP and ER estimates but are less completely analyzed.
Open access and long-term data sets are increasingly tapped
for aggregation and synthesis (Riiegg et al. 2020; Hoellein
et al. 2013; Bernhardt et al. 2018) though the quality of those
data is not always clear or consistent, but used regardless
assuming that the quantity of data outweighs any QA/QC
issues with a particular small subset of measured sites.

Many data aggregations do not report key measurement
conditions, potentially influencing the reproducibility and
interpretation of metabolic rates and factors influencing these
rates. For example, StreamPULSE (Koenig et al. 2019), a large,
multi-institutional effort that aggregates long-term metabo-
lism data, includes metadata describing reach characteristics,
but not the specific location or habitat type where the sensor
is placed. Such aggregations generally do not document
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information on length of deployment, wiper use, and calibra-
tion procedures, which can alter precision and accuracy (Hall
and Hotchkiss, 2017). We assumed these data aggregations did
not document this information because it was not available,
which opens the question: how often are key measurement
descriptions reported in data sources? Thus, we report a sys-
tematic review of the literature as the first step of this paper
and explore which characteristics might most strongly influ-
ence estimation of rates.

Research questions

This article arose from our experiences attempting to mea-
sure metabolism in river segments (reaches) across biomes and
continents. We sought to determine if particular river habitats
have consistent patterns of GPP and ER and if temporal, logis-
tical, and spatial constraints could influence metabolism.
These decisions included equipment choices and methods,
temporal and spatial specifics of field deployment, and
approaches to data processing. We approached the following
questions: (1) Do estimations of rates of GPP and ER vary with
data source including sensor type and placement? (2) How
does QA/QC influence metabolism estimates? and (3) How
can we conduct the most representative, accurate, and replica-
ble metabolism field study? Answering these questions can
guide the development of best management practices when
quantifying metabolism estimates using DO sensors within
rivers. We provide a sample workflow including relevant steps
discussed in this article in Fig. 1.

We surveyed the recent metabolism literature to assess
most common practices and reporting of key metrics, and to
identify potential commonalities and bias. We follow with
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Fig. 1. Sample workflow and decision points of note in open channel one-station metabolism estimation.
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analysis of some consequences of inaccurate or imprecise esti-
mation of these metrics. Using field data, we evaluate how
estimates can be influenced by sensor precision and accuracy,
reliable sampling representative of overall river conditions
(e.g., probe placement in the river), and collection in the field
vs. remotely obtained values of light and barometric pressure.
We demonstrate that individual decision points can change
metabolism estimates by orders of magnitude, and that com-
pounded uncertainty, furthered by underreporting, prevents
responsible comparison.

Materials and procedures

Methodological review

We examined how recent metabolism papers discussed
their methods, and so used a Web of Science (ISI WoS) search
on 07 October 2019 with topic parameters [(river OR stream
OR aquatic) AND (metabolism OR NEP) AND (diurnal OR oxy-
gen)], refined by [CATEGORIES: (ECOLOGY OR LIMNOLOGY)
AND DOCUMENT TYPES: (ARTICLE)], narrowed to years
2015-2019, and focused on the top 140 results. We discarded
96 papers for not using open channel methods, focusing on
lakes or fishes, or otherwise not estimating rates of metabo-
lism. We were interested in determining (1) what model or
approach authors used to estimate rates of metabolism in riv-
ers, (2) what was the minimum length of sensor deployment,
(3) which sensors were used to monitor DO and PAR, and
(4) how authors described both calibration and sensor place-
ment. Specific paper titles and information are available in
Supporting Information Table S4.

Metabolism monitoring and estimation

We measured DO concentration and temperature at
10-min intervals using Precision Management Engineering
miniDOT sensors (Vista, California) for periods between
24 and 144 h, constrained by the logistics of mobile expedi-
tions with multiple stream ecology research objectives in
remote locations. At three additional sites, sensors were
deployed for up to 2 weeks between calibrations, for a total
period of 14 months. MiniDOT files were corrected both for
drift and initial calibration based on common average values
during pre- and postdeployment logging together in continu-
ously aerated water for at least 30 min to account for any
potential change during deployment which could be attrib-
uted to biofouling or other causes of instrument drift, includ-
ing slow adjustment to different conditions including
temperature. Our determination of accuracy is based on the
assumption that atmospheric oxygen concentrations at each
elevation are correct as are the determinations of oxygen satu-
ration concentration dissolved in water as a function of
temperature.

PAR was logged at 10-min intervals near the site using
Odyssey PAR loggers (Odyssey, Christchurch, New Zealand)
calibrated against a LI-COR Quantum Sensor (LI-COR
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Biosciences, Lincoln, Nebraska) as the manufacturer and Long
et al. (2012) recommend. Placement ranged from as close as
adjacent to the DO sensor to a few kilometers away at a
basecamp, where particularly bare landscapes made locally
deployed sensors visible and vulnerable to livestock trampling
and/or theft. DO saturation as a function of temperature was
calculated using barometric pressure, either measured at the
site with a YSI 6020 V2 handheld unit (Yellow Springs Instru-
ments, Yellow Springs, Ohio) or as a daily mean retrieved from
the nearest Weather Underground or NOAA station and
corrected for elevation. We used multiple YSI 6020 V2 hand-
held units that were calibrated against each other for baromet-
ric pressure and against the NOAA weather station at
Manhattan KS Municipal Airport. This allowed us to check if
calibration held in the field by comparing multiple calibrated
instruments.

Rates of GPP, ER, and aeration were simultaneously esti-
mated alongside standard deviations (SDs) over each 24 h
period using the BASE model (v2.3, BAyesian Single-station
Estimation, Grace et al. 2015) in R (R Core Team, 2013) run
with 200,000 iterations and 10-min interval data, and a 6 of
1.07177. We discarded sites where we were unable to model
the data with good fit as evaluated by posterior predictive
check, modeled vs. estimated data correlation, chain conver-
gence, deviance, and information criteria from the model, as
well as a visual evaluation of model fit. We did not estimate
the relationship between aeration and discharge in this article
as would be necessary for longer deployments in hydrologi-
cally variable rivers.

Note the BASE model output is in mass O, per volume per
time, so results do not rely on accuracy of measurement of
river hydrology and morphology (e.g., average velocity, depth,
width). If we assume a DO temporal pattern is truly represen-
tative of the whole channel, then average depth upstream in
the zone influencing the measurement can be used to convert
the estimate to per unit area. However, when we place numer-
ous probes in one lateral transect, we cannot know the average
depth upstream of the parcel of water above each probe. Thus,
our results are reported per unit volume and do not use mea-
sures of average depth, which also requires knowledge of aver-
age velocity and gas exchange to know how far upstream the
measurement was influenced (Demars et al. 2011).

We calculated the upstream zone of influence as the esti-
mated 80% turnover distance as in Hall et al. (2016)
(1.61 * Velocity [m d ']/K [aeration, in d™ 1)) and report it
alongside our metabolism estimates to show how sensitive the
calculation of this distance is to the aeration (and velocity)
estimation. We did not evaluate or incorporate uncertainty
associated with our discharge (and subsequently depth, width,
and velocity) sampling methods, but saw no clear increase
over our 10 discharge transects. Additionally, we avoided
visible lateral or groundwater inflows, which disproportion-
ately affect respiration estimates, as explored in detail by
McCutchan et al. (1998). Further, we made multiple discharge
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measurements along the zone of influence and did not see
substantial increases in discharge that would be associated
with significant groundwater input.

We used the model put forth by Riley and Dodds (2012) to
estimate the initial slope of the photosynthesis-irradiance
curve (@) and the maximum rate of photosynthesis (Ppax) to
evaluate differential responses of GPP to light (Jassby and
Platt 1975). The relative variation in these metrics is evaluated
using the coefficient of variation (CV, the SD divided by
the mean).

Hydrology

Velocity profiles were taken at 10 evenly spaced transects
over at least a calculated 15-min flow distance upstream of the
DO measurement points using either a handheld flowmeter
(Marsh McBirney, Hach, Loveland, Colorado) and topset rod
at 10 points per transect at 0.6 * depth, or in deeper and non-
wadeable rivers using an acoustic Doppler velocimeter
(Sontek, Xylem, San Diego, California) pulled across each tran-
sect perpendicular to flow direction and corrected to width
rather than track distance. River widths were taken at tran-
sects, and intermediate points between them, for a total of
19 locations to better characterize variability. We diagrammed
site probe placement, indicating characteristics such as relative
depth, location along a river width, substrate type, and other
relevant details including undercut, bar, and canopy or
other vegetation presence.

Study sites

We evaluated river reaches in three ecoregions of the
U.S. and Mongolian temperate steppes in summers of 2016-
2019, in addition to three locations on the Kansas River for
14 months in 2018-2019. We discuss four of these reaches in
detail and include estimates from paired sensors at 23 sites
(Supporting Information Table S1). Discharge values ranged
from 0.04 to 53 m® s~! among sites and captured a wide range
of flow conditions. Mongolian rivers had generally open cano-
pies with unstable banks accompanied by heavily grazed ripar-
ian zones, and livestock nutrient inputs. Rivers in the
U.S. more often had forested riparian zones, flow controlled
by upstream impoundments, stabilized channels, established
riparian grasses, and cropland nutrient input.

We studied 98 discrete valley-scale hydrogeomorphic units
across 19 river networks in temperate steppes of Mongolia
and the U.S. These units are delineated as geomorphologically
distinct using the GIS-based program RESonate (Williams
et al. 2013; Maasri et al. 2019) to extract valley-scale hydrogeo-
morphic variables from existing geospatial data. We used 10 vari-
ables for this delineation extracted at 10 km sample intervals:
elevation, mean annual precipitation, valley width, valley floor
width (i.e., floodplain), valley width-to-valley floor width ratio,
river channel sinuosity, down valley slope, geology, and left and
right valley slopes. This approach ensured we had a wide range
of river systems for this assessment.
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We selected reaches as two riffle-pool-riffle sequences and
where in situ hydrology measurements could account for the
majority of flow, therefore avoiding braided river sections
with more than three parallel channels and river confluence
sections. We also avoided reaches in proximity to urban
areas, bridges, or other significant anthropogenic features.
Reaches had at least a 15 min travel time as calculated by a
single velocity transect, with a minimum of 300 m and a
maximum of 2 km. We deployed at least two sensors in an
area of active/representative flow—a phrase we commonly
encountered in the literature—but with intent to minimize
visibility toward lowering risk of human disturbance. For
example, we tied probes to large, submerged rocks or
suspended them from overhanging branches. We addition-
ally, based on probe availability at each site, sampled numer-
ous representative or potentially overlooked but contributing
“habitats” such as backwaters, debris dams, undercuts, and
deep pools. In each of these multiple probe deployments, we
used the same type of sensor and calibrated them together
before and after deployment to minimize variance not attrib-
utable to deployment location. Descriptions of specific place-
ment locations by sampled reach for sites discussed in detail
are in Table 1.

We also analyzed a more heavily instrumented site where
sensors were placed along a horizontal and vertical transect.
We placed four sensors along the surface tied to a wire, and
two just above the bottom propped up on rocks, one in the
thalweg and the second in an undercut (Fig. 8a).

Assessment

Literature review

We reviewed recent metabolism literature to document
the amount of reported methodological detail. Our goal was
to determine if the papers followed the basic scientific yard-
stick of allowing an independent reader to be able to repli-
cate the measurement and subsequent estimation of rates
from such measurements. Instrument calibration was men-
tioned in 79% of papers. Only 44% made any reference to
sensor location or attachment point in the reach. About
one-third (34%) of papers simply stated that rate estimates
were calculated as in Odum (1956); even this classic paper
provides seven possible ways of calculating aeration/diffu-
sion. Of the papers that reported using light loggers, 41%
stated they used HOBO (Onset Computer Corporation,
Bourne, Massachusetts) sensors, while Long et al. (2012)
showed HOBO are not cosine corrected (as is standard for
estimation of sunlight flux for photosynthetic rates) and
have high individual variation. Long et al. (2012) showed
that light measures with these sensors could be improved by
developing an exponential calibration adjustment from a
LiCOR sensor and averaging output from multiple sensors.
These papers did not mention using this method, though
they may have done so.
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Sensitivity analysis: Equipment choice

Equipment choice is an early decision point that could influ-
ence quality of estimates; we identified the eight most com-
monly used sensors in recent literature (based on the literature
analysis of 43 papers described in the introduction, citations are
provided in Supporting Information Table S4), with accuracies
and resolutions as reported by manufacturers (Table 2).

We used a sensitivity analysis to identify how this range of
accuracies, up to 5%, might result in different estimates. We
found that adding + 0.1, 0.2, and 0.4 mg L1 (1.3%, 2.7%, 5.3%
difference relative to saturation at the site we used to make this
calculation) to each DO reading over 24 h was responsible for a
maximum 82% difference in GPP but a 198% difference in ER
(Fig. 2) as compared to the calibrated and drift-corrected trace we
collected in the field from a relatively metabolically active site.
To be explicit, we use percentage difference among separate
points to refer to the absolute value of their difference over their
average, rather than the equation for percentage change in one
point over time, the difference between the final and initial
value over the initial value. This illustrates how two probes, both
within factory calibration but not calibrated against supersatu-
rated water and/or each other, deployed in the same location
could result in substantial differences in estimates of GPP and
ER. Our tests assume sensors have similar precision which we
therefore assume in our tests, while correcting for drift more
directly addresses issues related to accuracy. Repeated measures
in the form of multiple sensors should additionally improve pre-
cision, but calibration promotes accuracy. We picked and dis-
cussed this site on the Tongue river intentionally to illustrate the
effects of high aeration and reasonably high GPP. It was, there-
fore, added in addition to sites discussed in greater detail in this
text, and is present in Table 1.

These data make it clear that relying upon factory calibra-
tion alone can possibly lead to more inaccurate estimates than
those obtained with data generated with careful field

Methodological influence on metabolism

calibration procedures, and ER rates may be more strongly
influenced by poor calibration than GPP. This probably
occurred because GPP is estimated from diurnal changes in
DO coupled with departure from saturation, whereas ER is
estimated solely by departure from DO saturation.

Spatial sensor placement affected metabolism estimates
The placement of sensors in river channels affected the esti-
mates derived from models for GPP and ER. In particular, one
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Fig. 2. Rate estimate (& SD) variation when each DO reading is adjusted
by adding up to 0.4 mg L' (5.3%), based on one 24-h period on the
Tongue River. Specific values available in Supporting Information
Table S3.

Table 2. Manufacturer-reported accuracy and resolution of commonly used commercial DO loggers as well as the effects of individual
sensor uncertainty on a sample rate from a set of field data used to estimate GPP and ER from one 24-h period on the Zakhvan river.
Estimates are derived from adding the amount of DO reported by each company as accuracy to each reading over 24 h, as compared
to the estimates of GPP and ER from modeling the actual data based on calibrated, drift corrected probes, both from the BASE model.

Reported accuracy

GPP

(mgO,L'd7, ER(mgO,L "'d", as

Sensor between 0 and 8 mg L' Resolution as compared to 1.74) compared to 10.29)
Campbell Oxyguard 0.2mgL™" 0.2mg L™’ 1.77 10.23
Driesen + Kern Logger 0.05% 1% 1.75 10.10
Hach Hydrolab 0.2mgL™" 0.01 mg L™! 1.77 10.23
Hach Lange 0.1mgL™" 0.10% 1.85 9.89
HOBO Logger 0.2mgL™" 0.02mg L™! 1.77 10.23
PME MiniDOT 5% 0.05 umol L™ 1.79 10.14
YSI ProODO 0.1 mgL™" 0.01 mg L' 1.85 9.89
Orion Oxygen Probes 2% 0.1 mgL™’ 1.79 10.14
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site showed how deployment locations distributed vertically
and horizontally across a river cross section can yield widely
varying estimates (Fig. 3): over 36 h, four sensors cycled
between 8.9 and 9.9 mg L™! daily, while a fifth sensor (Fig. 3,
Sensor D) placed in a flowing macrophyte-dominated fine sed-
iment area cycled into hypoxia daily, despite being located
within 1 m of another sensor that had a minimum oxygen
concentration just below 9 mgL™' (Fig. 3, Sensor A). The
other sensors varied substantially from the median calculated
while disregarding the macrophyte site, with estimates of GPP
differing (Bayesian mean + SD not overlapping, shown in
Table 1) between all but two sensors.

The GPP functional characteristics calculated from diurnal
DO curves as in Riley and Dodds (2012) exhibited variability
in estimates of a (the slope of the initial response to light) and
the maximum photosynthetic rate (Ppax) for each sensor at
two sites (Fig. 4). Pmax and a estimates were comparable at all
sensor locations at Delgermurun (CV 0.13 and 0.35, respec-
tively) and Tensleep (1.09 and 0.27, respectively). Thus, rely-
ing on single-point measures to calculate these photosynthetic
parameters may be more reasonable than for metabolism rate
estimates.

Absolute and relative ER values varied more than GPP at
two of three sample sites (Fig. 5, CV GPP vs. ER, 0.63

Methodological influence on metabolism

vs. 0.24 at Tensleep, 0.05 vs. 0.12 at Delgermurun, and 1.85
vs. 2.06 at Eg). Inconsistent differences appeared when esti-
mates were aggregated by broad characterization as side or
center and shallow or deep (Fig. 6). For example, the sensor
described in Delgermurun as “Thalweg/Deep” is present in
both “center” and “deep” categories.

Sensor placement was important in many sites (Fig. 7).
Each end of each line in this figure connects GPP and ER esti-
mates from one probe at a given site with that of a second
probe in the same cross section. For example, the line could
show a contrast between one shallow and one deep sensor, or
one side and one center sensor within the channel. Locations
with greater ER were also generally those with greater GPP,
but ER rates were greater in magnitude and variability: the
median difference in GPP between two paired sensors was
0.72 g O, L™' d! (SD 4.51), while the median difference in ER
was 2.23 g0, L™' d7' (SD 9.54). Site information for these
sensors is detailed in Supporting Information Table S1.

While diurnal DO trends appear similar at a highly
instrumented transect (Fig. 8c), rate estimates (Fig. 8b) were
sensitive to the apparently minor differences in the diurnal
DO (maximum DO varied less than 1% but GPP and ER varied
up to 131% and 69%, respectively). It was unexpected that B
and C would have such disparate estimates, but we believe
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Fig. 3. DO concentrations over 36 h on the Eg river plotted full-scale and zoomed in for five sensors A-E as well as the median of sensors A, B, C, E, and
a diagram of their arrangement in the reach. Average reach width was 39.8 m and distance between sensor sets was 575 m.
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this difference is due to the fact that B was located in the sensors be averaged even in well-mixed areas to better incor-
thalweg and related to C having the biggest error associated porate localized heterogeneity in single station estimates.

with its estimate. We were interested in the fact that sensors B

and F also had highest P,,x despite having the least similar, or Refining calibration procedures

rather most exceptional, placements. This, alongside the We ran all sensors together in DO-saturated water to
spread evident in some instances represented in Fig. 7, sup-  identify sensors that were clear outliers to minimize bias by
ports Demars et al.’s (2015) recommendation that multiple equipment as is common in other QA/QC protocols. This
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LIg e . 56-06 - .
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Fig. 4. Rates of « (initial slope of response to light) and Py, for each sensor at two sites calculated for one 24-h period. Note differing axis ranges. CV
for Pmax and a for Tensleep were 1.09 and 0.27, respectively, and were 0.13 and 0.35 for Delgermurun.
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Fig. 5. Volumetric rates of metabolism (+ SD) at different locations in one area along each river length, as well as their median. The Tensleep site is a
direct array (all sensors attached to a cable running across a river width), while the Delgermurun and Eg sensors are at multiple locations within a 15 min
travel time reach. The Eg sensor labeled by the “Side/Veg” bar has dramatically greater rates of production and respiration (GPP 27.57 + 8.78,
ER —252.75 + 74.55), and is shown in more detail in Fig. 3.
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Fig. 6. Median rates by habitat designation as side or center and shallow or deep at three sites. For example, all sites within a river in Fig. 4 that have
Side as part of the location description on the x-axis are included in the “Side” median bar.
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Fig. 7. GPP and ER estimates for each of two paired sensors at a given
location (37 pairs at 23 sites, shallow vs. deep or side vs. center, note log
scale). Each line connects estimates from two separate probes deployed in
the same river transect.

procedure occasionally identified sensors that had varied
widely from factory calibration or that were malfunctioning.
Such sensors generally could not be calibrated properly. We
observed that even with calibration, sensors can drift fol-
lowing deployment (related to, e.g., biofouling or physical
changes in the optical dyes used in the sensors over time).
Our sensors were not fitted with wipers which could have
decreased biofouling, and as such were not suitable for long
deployment. We compared estimates for 3 weeks of data
from 1 yr at the same site (Fig. 9) with correction based on
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pre- and postdeployment bubbling to the same data without
drift correction. Drift-corrected mean ER varied from
uncorrected by up to 100% and GPP by up to 4%. While
biofouling may explain drift, we cannot rule out other
potential sources, and calibration based on before/after
readings corrects for these as well, and should be considered
for probes with and without wipers.

Barometric pressure source can affect estimates

Here we assessed differences among potential barometric
pressure values. We compared a value collected at the site
using a ProODO (Yellow Springs Instruments, Ohio, U.S.A.)
handheld unit with barometric pressure sensor, as well as
hourly average, daily average, and monthly average from the
nearest weather station with historical data as corrected to site
altitude (NOAA, Worland, Wyoming, 68 km away). We also
used the daily average at the NOAA site and as provided at sea
level to evaluate the importance of adjusting to site altitude
(2709 m, Fig. 10). As the saturation value of the atmosphere is
a function of barometric pressure, not accounting for daily
variation of atmospheric pressure could alter results based on
changing influx or efflux rates of sub- and supersaturated DO,
respectively.

In general, estimates should be based on continuous baro-
metric pressure data, but in a typical day, a single value may
suffice if weather patterns do not lead to strong swings in
barometric pressure. The variable data estimated lower rates of
both GPP and ER compared to the daily mean of the same
data. Altitude correction is essential, and even a 500 m differ-
ence can have a large impact on measurements.

Light measurement

We note that some of the uncalibrated light probes com-
monly used do not provide accurate estimates of PAR, though
they may have responses to light that are directly correlated
with PAR values from cosine-corrected sensors. These data can
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overlaid DO concentration over 24 h (c), and a, Pmax for each sensor (d) all at one site and location on the Tensleep River.
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Fig. 9. Average rates of GPP and ER (& SD) for three separate full weeks of data in three different seasons of continuous monitoring on the Kansas River
near Manhattan, Kansas, with and without drift correction based on pre- and postdeployment runs in oxygen-saturated water.

be used to link diurnal DO traces to GPP by linking changes in
light to rates of change in DO. However, if the parameters describ-
ing functional relationships of GPP to light (¢ and Py,,x) are to be
investigated and reported such that others can use the estimates,
they should be based on calibrated measures of PAR. Bookkeeping
models (Odum 1956) would be less affected by this difference as
only sunrise and sunset times are relevant, though these times
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could still deviate from spatially derived values based on local
shading. Local shading would not be a problem on an open land-
scape with modest topographic relief. Models including the BLAM
(Julian et al. 2008) can incorporate topographic shading alongside
a range of hydrogeomorphic variables to estimate light at the
water surface or at depth, but require much additional effort and
only averaged accurate within 39% over more than a week of use.
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After losing several PAR sensors to theft, we looked to alter-
natives including placing sensors at nearby and more protec-
ted basecamps, as well as by calculating diurnal PAR using
geographic location, as included in and recommended by the
StreamMetabolizer package (Appling et al. 2017) This model is
widely used (Appling et al. 2018; Judd et al. 2009). Modeling
light assumes that the location of the sensor is in an
unobstructed reach on a clear day, as clouds can dramatically
change PAR. When we compared the difference between
measured and calculated PAR, we had considerably different
estimates for both GPP and ER at one site (Delgermurun
1.74 £ 0.03 vs. 2.10 + 0.02, —10.29 £ 0.16 vs. —12.64 £ 0.10,
respectively), and smaller differences at another site
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Fig. 10. Estimates of GPP and ER for one 24-h period as vary by baro-
metric pressure source: based on a single handheld sonde measure at the
Tensleep site in the Bighorn National Forest, Wyoming (collected), daily
mean barometric pressure as obtained from NOAA at the Worland, Wyo-
ming airport 68 km away and corrected to site elevation (2709 m),
monthly elevation-corrected mean (NOAA monthly average corrected to
site elevation), using hourly variable elevation-corrected data obtained
from NOAA, daily mean as would be miscalculated by adding 500 m to
the site elevation (plus 500 m), daily mean sea level uncorrected to alti-
tude, and daily mean from the NOAA station in Worland based on station
altitude (1239 m). Specific parameters available in Supporting Information
Table S2.

Methodological influence on metabolism

(Eg 0.91 + 0.03 vs. 0.95 + 0.02, —3.75 £+ 0.08 vs. —3.79 + 0.07).
Total daily irradiance for Delgermurun was measured at
32molm=2 d' but calculated by StreamMetabolizer at
52mol m? d~!, while at Eg was measured at 53 mol m~2 d~*
but calculated at 44 mol m 2 d~'. Both sites were in relatively
flat, open areas, so shading from canopy cover or topography
cannot explain this variability. Calculated light curves will miss
these interfering factors (e.g., cloud cover, canopy, topography,
or other shadows) affecting both sensors and rivers (Fig. 11) that
can change estimates. Part of the ability to calculate GPP can be
based on DO responses to these shorter-term light fluctuations.

Discussion

We show evidence of methodological bias and underreporting
in metabolism estimates and literature, but by no means have
provided an exhaustive examination of each methodological deci-
sion point. We highlight some of the decisions to be considered
and attempt to prioritize methodological practices most likely to
reflect reality, given site and resource constraints.

We show that system heterogeneity can influence metabo-
lism measures. Heterogeneity has become better appreciated
by lotic ecologists as the discipline has matured (Fausch
et al. 2002, Frissell et al. 1986), but is still not often directly
addressed in whole-river metabolism study, though the heteroge-
neity on scales from biofilm assemblage to the river continuum
has been documented (Cardinale et al. 2002) and may be used
(e.g., by incorporating lateral and subchannel inflows) to better
assess aquatic-terrestrial linkages and watershed context
(Demars 2019). Demars et al.’s (2015) equations to calculate the
percentage turnover of DO typically indicate 80% gas turnover
rates in hundreds of meters for small streams and in kilometers
for rivers. Our data suggest DO measured in well-mixed, main
flow areas are most likely to provide results averaging across
more upstream heterogeneity, though some sites on the sides or
bottoms of main channels can deviate substantially from areas
of main flow. Demars (2019) specifically averaged multiple diur-
nal curves to account for such heterogeneity, noting that this
propagates additional uncertainty from each individual sensor.
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Fig. 11. Collected and calculated PAR at two sites over 24 h, where each timestep represents one reading from each 10-min interval.

669

A ‘6 120T “9S8STHS1

dny woxy p

ASURDIT SUOWIWO)) 2Anea1) ajqeoridde auyy £q pauIA0S are SA[ONIE V() {asn JO SN 10} AIRIqIT duI[u() A[IA\ UO (SUOHIPUOD-PUB-SULIA}/W0d" KA[1M" KIRIqI[ouT[uo//:sd)y) SUONIPUOY) pue SWIa], ) 39S *[£Z0T/S0/1] U0 Areiqry aurjuQ L3[1p\ ‘ouay epeAdN JO ANsioatun) £q [SHO[ WO[/Z001"01/10p/wod Kafim: &



Schechner et al.

Sensor deployment in a location of intermediate depth is
also important as thermal stratification can cause the diurnal
oxygen cycle to deviate from the main channel and can inter-
fere with obtaining good model fit. This is particularly prob-
lematic if the sensor is below the thermocline but also could
be important downstream as stratification breaks. Such stratifi-
cation may be responsible for some of the wide differences in
Fig. 7, as sensors were placed in relatively deeper or bankside
locations. We found evidence of daily thermal stratification of
pools in at least one of our sites, and as such would avoid
pools for sensor placement, also discussed in Siders
et al. (2017). Additionally, we did not quantify the effects of
groundwater inflow (though we saw no visible increases in dis-
charge over the 10 measured transects). Groundwater influx
could be part of the reason we saw different oxygen dynamics
at a shallow vs. deep sensor at the same thalweg location, con-
sideration of groundwater evaluation as discussed in Hall and
Tank (2005) seems prudent.

Including the additional sources of uncertainty we exam-
ined in modeling and estimation could be done in the form of
additional priors to Bayesian models, or by adding the uncer-
tainty ranges associated with heterogeneity to bookkeeping
approaches, improved by Monte Carlo simulations as in
Demars (2019). The additional error from any particular met-
ric may seem insignificant relative to the error internalized in
our models. We showed sample sites not chosen to represent
extreme conditions. Site heterogeneity aside, the sensitivity
analysis representing sensor calibration (GPP and ER showing
a maximum 82% and 198% difference, respectively), baromet-
ric pressure source given correct altitude (20%, 15% differ-
ence), light source (19%, 20% difference), and drift correction
(4%, 100% difference) demonstrate how this error can com-
pound quickly (summed percent difference 125%, 333%).

The mathematics behind metabolism calculations from DO
from a single station measurement assume homogeneity in
the channel. In practice, river biogeochemists assume moni-
toring of 1-2 (usually 1) locations averages all areas and meta-
bolically relevant actors (Hall and Hotchkiss 2017). However,
several different scales of heterogeneity may interfere with
such averaging. Reichert et al. (2009) and Dodds et al. (2018)
document substantial, multiscale metabolic heterogeneity,
both examining data from serial reaches and offering empiri-
cal approaches to demonstrating heterogeneity and calculat-
ing appropriate reach lengths based on upstream influence
distance. These data in aggregate suggest careful determina-
tion of what constitutes a “representative” reach required to
obtain results reflecting general metabolic rates in a river. Few
studies we are aware of do this in addition to Reichert
et al. (2009), Demars et al. (2015), and Dodds et al. (2018).

Comments and recommendations

We found a number of decision points that influenced
metabolism estimates potentially leading to variable estimates.
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The largest differences in resultant rate estimates in this assess-
ment were associated with deployment location and account-
ing for sensor accuracy and drift, though a and P,,x were
more variable within than among sites. Less important
were differences associated with saturation calculations (baro-
metric pressure value as long as altitude correction was
employed) and categorical channel position (shallow vs. deep,
side vs. center designation). ER was more sensitive to most
methodological choices than was GPP. McCutchan et al.
(1998) found that the greater sensitivity of ER decreased at
higher magnitudes of GPP and ER, and reflects larger uncer-
tainty in ER than in GPP in streams with lower rates of each.
This result is likely because GPP is driven by diurnal variation
and is less affected by aeration uncertainty, while ER estimates
are derived directly from the exact difference of DO from satu-
rating concentrations.

We found sensors placed in different areas of active flow
gave different rate estimates of metabolism. Sensors placed in
the thalweg but off the bottom gave the closest to mean rates.
Equipment choice clearly influenced outcomes, improved fur-
ther by careful calibration and QA/QC procedures. Finally,
locally measured vs. remotely sensed light and barometric
pressure resulted in different rate estimates, to a lesser degree
assuming low topographic relief and accurate altitude.

Calibration of all sensors used for metabolism estimates is
important. However, given that many papers do not report
calibration protocols, it is difficult to know how to assess the
reliability of estimates presented in those papers. Our data
show that calibration of DO probes can be one of the most
important factors influencing estimates of metabolism.

Increasing reporting of methods increases the value and util-
ity of data. Our review found incomplete methods reporting of
sensor preparation, data QA/QC, deployment location, model-
ing approach, and parameter sources. Any of these differences
in methods would have altered metabolism estimates, some
substantially. Without including this basic information in
papers, data-harvesting initiatives, monitoring networks, and
management decision-making, our analysis suggests that the
possibility to repeat the measurements is not being met by a
considerable portion of the literature. This information is also
fundamental for comparative and meta-analysis.

Our recommendations are generally simple enough to
adopt, and we empirically show that following general opera-
tional guidelines and reporting can improve the value and pre-
cise comparison of estimates among studies. In order of
priority with respect to measurement methods, (1) Carefully
calibrate all sensors before and after deployment (particularly
DO sensors), and correct for drift based on calibration before
and after the period of measurement. Do not rely on factory
“calibrations”; (2) Deploy sensors in or as close as possible to
the thalweg. Ensure that sensors are not placed along/are ori-
ented away from the bottom or sides of the channel and not
placed in areas with poor mixing with the rest of the channel;
(3) Whenever possible use supporting data (light, barometric
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pressure) taken in the river or as near as possible, and logged
at the same frequency as the DO; (4) pay particular attention
to the fact that barometric pressure may be reported corrected
to sea level; (5) report all measurement and calculation
approaches, including calibration procedures, probe place-
ment, data cleaning steps, and programs used for estimation.
The percentage error associated with each of these steps may
vary with site conditions. We omit many points of consider-
ation that would be crucial for longer-term deployment,
which would be best served by a preliminary study evaluating
different habitats and upstream zone of influence.

Next steps

Finer spatial scale data could provide a more complete
accounting of DO flux across an entire cross section of a river.
This estimate could be accomplished by deploying arrays of
calibrated DO sensors in tandem with data from an acoustic
Doppler velocimeter yielding discharge estimates associated
with each DO measurement point. This would allow complete
accounting of DO flux for each timepoint, and avoid problems
of representativeness. This could also aid in the process of
linking the contribution of small habitat differences to reach-
scale production and respiration, and in identification of
greater or lesser need for increased sampling intensity. This
approach would be costly, require substantial effort, and only
give an estimate for one cross section of a river system.

A much broader, more detailed, and comprehensive model-
ing effort may specifically quantify all known error based on
synthetic data and a range of possible physical factors includ-
ing those not discussed here. This effort could be based on
observed ranges of aeration, GPP, ER, barometric pressure,
temperature, and light variability. This type of sensitivity anal-
ysis could more specifically rank the potential biases we docu-
ment in this current paper, and create response curves of
sensitivity of estimations that could be used to refine equip-
ment choices, approaches to sampling and measurement, and
data analysis.
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