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Abstract—We consider a distributed function computation
problem in which parties observing noisy versions of a re-
mote source facilitate the computation of a function of their
observations at a fusion center through public communication.
The distributed function computation is subject to constraints,
including not only reliability and storage but also secrecy and pri-
vacy. Specifically, 1) the function computed should remain secret
from an eavesdropper observing the public communication and
correlated observations, measured in terms of the information
leaked about the arguments of the function, to ensure secrecy
regardless of the exact function used; 2) the remote source should
remain private from the eavesdropper and the fusion center,
measured in terms of the information leaked about the remote
source itself. We derive the exact rate regions for lossless and
lossy single-function computation and illustrate the lossy single-
function computation rate region for an information bottleneck
example, in which the optimal auxiliary random variables are
characterized for binary-input symmetric-output channels. We
extend the approach to lossless and lossy asynchronous multiple-
function computations with joint secrecy and privacy constraints,
in which case inner and outer bounds for the rate regions
that differ only in the Markov chain conditions imposed are
characterized.

Index Terms—secure multiple function computation, private
remote source, lossy function computation, information bottle-
neck, rate-limited public communication.

I. INTRODUCTION

Consider a scenario in which multiple terminals that observe

dependent random sequences want to compute a function

of their sequences by exchanging messages through public

communication links [2], [3]. One application for which

this distributed function computation problem is relevant is

network function virtualization [4] via, e.g., software defined

networking. It is not always necessary for the terminal com-

puting the function, called fusion center, to observe the exact

sequences [5]. This fact allows one to reduce the public

communication rate, also called storage rate, required for reli-

able function computations by using, e.g., distributed lossless
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source coding techniques [6]. Furthermore, if the function to

compute only requires recovering a distorted version of the

original sequence, distributed lossy source coding methods [7]

further reduce the amount of public storage. This is useful

for resource-limited networks such as Internet-of-Things (IoT)

devices that make aggregated decisions using lightweight

mechanisms [5], [8]–[12]; see [13]–[17] for various extensions

of the basic function computation problem with reliability and

storage constraints.

Reliable function computation and small public storage

constraints have also been combined with secrecy constraints,

requiring that the computed function outputs be hidden from

an eavesdropper [18]. In addition to the public messages

exchanged between terminals, the eavesdropper is considered

to have access to a random sequence correlated with other

sequences. Various extensions of the basic secure function

computation or distributed source coding problems have been

analyzed in the literature [19]–[25]. Furthermore, a privacy

constraint has been added in [26] to the problem. The main

difference between secrecy and privacy is that secrecy leak-

age is measured with respect to the functions computed

while privacy leakage is measured with respect to the source

sequences themselves. A privacy leakage analysis provides

an upper bound on the secrecy leakage of future function

computations involving the terminals already participating in

earlier function computations [27], [28]. This is because the

information leaked about the sequence of a terminal might

leak information about another function computed by using

the same sequence. We extend [26] by considering separate

privacy constraints on the source of the random sequence of

the transmitting terminal that sends a public message to the

fusion center.

A common assumption in the literature is that sequences

observed by all terminals are distributed according to a joint

probability distribution. However, the correlated random se-

quences observed by terminals in a network generally stem

from a common source of information, e.g., some sensor

location information transmitted through the network before

the next function computation starts, distorted versions of

which are distributed within the network. Thus, we posit

that there exists a common true source, called the remote

source, hidden from all terminals and of which the observed

sequences are noisy versions. Such a remote source model

allows a terminal to combine multiple observed sequences to

obtain a single “higher quality” random sequence, which is

similar to applying maximal ratio combining over an additive

white Gaussian noise (AWGN) channel. This approach is
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thus useful to model the quality differences between random

sequences observed by different terminals. If the function

computation network is mistakenly modeled with a visible

source model, the code construction designed for the assumed

visible source model might result in unnoticed secrecy leakage

and reduction in computation reliability, as illustrated in [28]

for key agreement.

Noisy measurements of a hidden source are generally

modeled as observations through broadcast channels (BCs)

[29] to have a generic measurement model that allows noise

components at different terminals to be correlated [30], [31].

Such a hidden source model is proposed and motivated in

[32] for authentication problems and in [30], [33] for secret-

key agreement problems with a privacy constraint. As we

detail in Section II, such a hidden source model results in two

different privacy leakage constraints measured with respect to

the hidden source, which is different from the single privacy

leakage constraint considered in [26] measured with respect

to the random sequence observed by the transmitting terminal.

Furthermore, the equivocation of the source is commonly used

in the literature to measure the secrecy leakage, which results

in rate bounds with conditional entropy terms. By replacing

the equivocation with the mutual information terms, we obtain

rate regions with simpler notation and easier interpretations.

We consider two function computation settings. The first

setting imposes a reliable (lossless) computation of the func-

tion of interest and the other one allows a fixed level of dis-

tortion between the computed function and the actual function

output (lossy function computation) [26]. These settings ad-

dress different applications. For instance, the lossless function

computation setting might model user/terminal identification,

where the exact identifier recovery is necessary; in contrast, the

lossy function computation setting might model user/terminal

authentication, where a set of users whose computed functions

are close to a pre-defined value are authenticated. We bound

the error probability for the reliable function computation task

for the lossless setting and the expected distortion for the lossy

setting, respectively, which require different proof steps. We

exactly characterize the rate regions for both settings when a

single function is computed.

We further extend the function computation with privacy

and secrecy problem by considering multiple function com-

putations with joint secrecy and privacy constraints on all

terminals involved in any function computation task. This

extension allows one to measure the total amount of informa-

tion leaked to an eavesdropper about all computed functions

within a network. This extension also allows one to correctly

characterize the privacy leakage to an eavesdropper, i.e.,

the amount of information about the hidden source leaked

to an eavesdropper who might observe all public messages

and all side information obtained during all (not necessarily

synchronous) function computations within the same network.

Multiple function computations with joint secrecy and privacy

constraints are closely related to the multi-entity and multi-

enrollment key agreement problems in [34], where the noisy

measurements of the same hidden source are used for multiple

key agreements. Both lossless and lossy function computation

settings are analyzed to provide inner and outer bounds for

the multi-function rate regions, for which only the imposed

Markov chains differ.

A. Summary of Contributions

Our problem formulation introduces one secrecy and two

privacy constraints, in addition to reliability (or distortion)

and storage constraints, to the single function computation

problem to characterize the resulting rate regions. These results

are strict extensions of [26] as we consider a remote source

common to all terminals with side information sequences that

are noisy measurements of the remote source. Furthermore,

we also consider multiple asynchronous function computations

within the same network with joint secrecy and privacy

constraints over all terminals involved in any function compu-

tation. A summary of the main contributions is as follows.

• We derive the rate region for lossless single-function com-

putation with secrecy and privacy constraints. The remote

source model we consider corresponds to a physically-

degraded BC and when the transmitting terminal observes

the remote (noiseless) source outputs, the model reduces

to a semi-deterministic BC. Furthermore, we show that

convexification with a time-sharing random variable is

necessary.

• We next consider the lossless multi-function computa-

tions where a finite number J of functions are computed

from different noisy measurements (observed by different

terminals) of the same remote source asynchronously. We

impose one secrecy and privacy constraints that consider

the total leakage in the network, i.e., they are joint

constraints for all parties involved in any function compu-

tation. We propose inner and outer bounds for the multi-

function rate region that differ only in the Markov chain

conditions imposed on the auxiliary random variables.

The rate regions include both separate constraints for each

terminal and joint constraints for all terminals.

• All inner and outer bounds for the lossless single- and

multi-function computations are extended to the corre-

sponding lossy settings. Similar to the lossless case, we

characterize the lossy rate region for the single-function

computation, and we provide inner and outer bounds for

the multi-function computations that differ only in the

Markov chains imposed.

• We evaluate the rate region for a lossy single-function

computation problem, in which the measurement channel

of the eavesdropper is physically-degraded compared to

the measurement channel of the fusion center. We solve

an information bottleneck problem to obtain the rate

region boundary tuples.

B. Organization

In Section II, we introduce the lossless or lossy and single-

function or multi-function computation problems with a re-

mote source. In Section III, we present the rate regions for

the lossless and lossy single-function computation in addition

to inner and outer bounds with different Markov chains for the

lossless and lossy multi-function computations for any finite

number of functions. In Section IV, we solve an information
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Fig. 1. Noisy measurements of a remote source used to compute a function
securely and privately with the help of a public communication link.

bottleneck problem to illustrate the rate region for the lossy

single-function computation problem. In Section V, we con-

clude the paper.

C. Notation

Upper case letters represent random variables and lower

case letters their realizations. A superscript denotes a se-

quence of variables, e.g., Xn = X1, X2, . . . , Xi, . . . , Xn,

and a subscript i denotes the position of a variable in a

sequence. A random variable X has probability distribution

PX . Calligraphic letters such as X denote sets, set sizes are

written as |X | and their complements as X c. [1 :J ] denotes the

set {1, 2, . . . , J} for an integer J g 1 and [1 :J ]\{j} denotes

the set {1, 2, . . . , j − 1, j + 1, . . . , J} for any j ∈ [1 : J ].
Hb(x) = −x log x − (1−x) log(1−x) is the binary entropy

function, where logarithms are to the base 2, and H−1
b (·)

denotes its inverse with range [0, 0.5]. A binary symmetric

channel (BSC) with crossover probability p is denoted by

BSC(p). X ∼ Bern(³) is a binary random variable with

Pr[X = 1] = ³.

II. PROBLEM DEFINITIONS

A. Lossless Single-Function Computation

Consider the function computation model illustrated in

Fig. 1. Three terminals obtain noisy observations �Xn, Y n, Zn,

respectively, of a single i.i.d. remote source Xn, through a

memoryless channel with transition probability p �X|XpY Z|X .

The source alphabet X and measurement alphabets �X ,Y,Z
are finite sets. The objective is for the terminal observing �Xn

to transmit a message W = Enc( �Xn) over a public channel

and to enable the terminal observing Y n to compute a function

fn( �Xn, Y n) such that

fn( �Xn, Y n) = {f( �Xi, Yi)}
n

i=1. (1)

The terminal observing Zn and obtaining W through the

public channel is treated as an eavesdropper (Eve).

Since P �XXY Z
is fixed, the separate measurement chan-

nels P �X|X and PY Z|X in Fig. 1 can be modeled as a

physically-degraded BC with transition probability P
XY Z| �X =

P
X| �XPY Z|X and with fixed input probability distribution P �X

.

For such a BC, the case of a noiseless measurement for which
�Xn = Xn can be treated as a semi-deterministic BC.

Definition 1. A tuple (Rs, Rw, Rℓ,Dec, Rℓ,Eve) ∈ R
4
g0 is

achievable if, for any ¶ > 0, there exist n g 1, an encoder,

and a decoder such that

Pr
�
fn( �Xn, Y n) ̸= �fn

�
f ¶ (reliability) (2)

1

n
I( �Xn, Y n;W |Zn) f Rs + ¶ (secrecy) (3)

1

n
log

��W
�� f Rw + ¶ (storage) (4)

1

n
I(Xn;W |Y n) f Rℓ,Dec + ¶ (privacyDec) (5)

1

n
I(Xn;W |Zn) f Rℓ,Eve + ¶ (privacyEve). (6)

The region R is the closure of the set of all achievable tuples.

♢

Note that the metric I(fn( �Xn, Y n);W |Zn) might seem a

more natural way to measure the information leakage to the

eavesdropper who observes (W,Zn) of the computed function

fn(·, ·). However, the analysis of this metric depends on

the specific properties of the function f(·, ·). Since the data-

processing inequality ensures that I(fn( �Xn, Y n);W |Zn) f
I( �Xn, Y n;W |Zn) for all functions f(·, ·) with equality if

f(·, ·) is a bijective mapping, we instead consider the metric

in (3). The analysis then does not depend on the com-

puted function f(·, ·) and provides a valid upper bound on

the proper secrecy-leakage rate metric for any f(·, ·). Since

I( �Xn, Y n;W |Zn) = I( �Xn;W |Zn) because of the Markov

chain W − �Xn − (Y n, Zn), the equivocation H( �Xn|W,Zn)
considered in previous works [26] captures the same secrecy

leakage as (3). Furthermore, the privacy leakage metrics in

(5) and (6) measure the information leakage about the remote

source to the decoder and eavesdropper, respectively, due to

function computation because the same remote source would

be measured if another function would be computed in the

same network, as in Fig. 2 below; see also [28] for motivations

to consider privacy leakage with respect to a remote source.

We remark that in (3), (5), and (6), we consider conditional

mutual information terms to take into consideration the un-

avoidable secrecy or privacy leakage due to side information

available at the fusion center or eavesdropper.

B. Lossy Single-Function Computation

Consider again the single-function computation model de-

picted in Fig. 1 and replace the reliability constraint in (2)

with an expected distortion constraint to allow a distorted

reconstruction of the function f(·, ·). This defines the lossy

single-function computation model, for which the notion of

achievability is as follows.

Definition 2. A lossy tuple (Rs, Rw, Rℓ,Dec, Rℓ,Eve, D) ∈ R
5
g0

is achievable if, for any ¶ > 0, there exist ng 1, an encoder,

and a decoder that satisfy (3)-(6) and

E

�
d(fn( �Xn, Y n),�fn)

�
f D + ¶ (7)
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Fig. 2. Noisy measurements of the same remote source used to compute
J = 2 functions (via 2J = 4 parties) securely and privately with the help of
public communication links.

where d(fn,�fn) = 1
n

�n

i=1 d(fi,
�fi) is a per-letter distortion

metric. The lossy region RD is the closure of the set of all

achievable lossy tuples. ♢

C. Lossless Multi-Function Computation

We next extend the lossless single-function computation

model by considering that the same remote source Xn is

measured by multiple encoder and decoder pairs to compute

different functions. Consider a finite number J g 1 of

encoders Encj( �Xj) = Wj , decoders Decj(Wj , Y
n
j ) = �fn

j ,

and functions fn
j (

�Xn
j , Y

n
j ) = {fj( �Xi,j , Yi,j)}

n
i=1 for j ∈

[1 : J ], where �Xn
j is measured through the channel P �Xj |X

and (Y n
j , Zn

j ) are measured through the BC PYjZj |X . The

eavesdropper observes (Zn
[1:J],W[1:J]). This multi-function

computation model is illustrated in Fig. 2 for J = 2.

Definition 3. A multi-function tuple

(Rs, Rw,[1:J], Rℓ,Dec,[1:J], Rℓ,Eve) ∈ R
2J+2
g0 with j-th encoder

measurements through P �Xj |X
and j-th decoder measurements

through PYjZj |X for all j ∈ [1 : J ] is achievable if, for any

¶ > 0, there exist n g 1, and J encoder and decoder pairs

such that

Pr

� �

j∈[1:J]

"
fn
j ( �Xn

j , Y
n
j ) ̸= �fn

j

""
f ¶ (8)

1

n
I( �Xn

[1:J], Y
n
[1:J];W[1:J]|Z

n
[1:J])fRs+¶ (9)

1

n
log

��Wj

�� f Rw,j + ¶, ∀j ∈ [1 : J ] (10)

1

n
I(Xn;Wj |Y

n
j ) f Rℓ,Dec,j + ¶, ∀j ∈ [1 : J ] (11)

1

n
I(Xn;W[1:J]|Z

n
[1:J]) f Rℓ,Eve + ¶. (12)

The multi-function region Rmf is the closure of the set of all

achievable tuples. ♢

Remark 1. The storage rate constraints in (10) and the

corresponding privacy leakage rate constraints in (11) are J

separate constraints. However, the reliability constraint in (8),

the secrecy leakage constraint in (9), and the privacy leakage

rate constraint in (12) are joint constraints that depend on the

parameters of all J encoder-decoder pairs.

D. Lossy Multi-Function Computation

Similar to Section II-B, we extend the model of Section II-C

to allow distorted function computations for multiple functions

fn
j (

�Xn
j , Y

n
j ) = {fj( �Xi,j , Yi,j)}

n
i=1 computed from different

measurements ( �Xn
j , Y

n
j ) of the same remote source Xn.

Definition 4. A lossy multi-function tuple

(Rs, Rw,[1:J], Rℓ,Dec,[1:J], Rℓ,Eve, D[1:J]) ∈ R
3J+2
g0 with j-

th encoder measurements through P �Xj |X
and j-th decoder

measurements through PYjZj |X for all j ∈ [1 : J ] is

achievable if, for any ¶>0, there exist ng1, and J encoder

and decoder pairs that satisfy (9)-(12) and

E

�
d(fn

j ( �Xn
j , Y

n
j ),�fn

j )
�
f Dj + ¶, ∀j ∈ [1 : J ] (13)

where d(fn,�fn) =
1

n

n�

i=1

d(fi, �fi) is a per-letter distortion

metric. The lossy multi-function region Rmf,D is the closure of

the set of all achievable lossy multi-function tuples. ♢

III. RATE REGIONS

We first recall the notion of an admissible random variable,

used in Theorems 1 and 3.

Definition 5 ([5]). A (vector) random variable U is admissible

for a function f( �X,Y ) if U − �X − Y form a Markov chain

and H(f( �X,Y )|U, Y ) = 0, i.e., (U, Y ) determine f( �X,Y ).♢

Define [a]− = min{a, 0} and [a]+ = max{a, 0} for a ∈ R.

A. Lossless Single-Function Computation

We characterize the region R for the lossless single function

computation problem in Theorem 1. The corresponding proof

is detailed in Appendix A.

Theorem 1. The region R is the set of all tuples

(Rs, Rw, Rℓ,Dec, Rℓ,Eve) satisfying

Rsg I(U ; �X|Z) +
�
I(U ;Z|V,Q)− I(U ;Y |V,Q)

�−
(14)

RwgI(U ; �X|Y ) (15)

Rℓ,DecgI(U ;X|Y ) (16)

Rℓ,EvegI(U ;X|Z)+
�
I(U ;Z|V,Q)−I(U ;Y |V,Q)

�−
(17)

such that U is admissible for the function f( �X,Y ) and

(Q, V )−U− �X−X−(Y, Z) form a Markov chain. The region

R is convexified by using the time-sharing random variable Q,

which is required because of the [·]− operation. One can limit

the cardinalities of Q, V , and U to |Q| f 2, |V| f | �X| + 4,

and |U| f (| �X|+ 4)2.

In [26], some lower bounds on the rates in the rate regions

include terms with the maximization operator [·]+. One can
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show that the rate regions in [26] that include such lower

bounds are not convex and can be enlarged by using a time-

sharing random variable Q, as considered in this work.

B. Lossy Single-Function Computation

We next characterize the lossy region RD for the lossy

single function computation problem in Theorem 2.

Theorem 2. The lossy region RD is the set of all tuples

(Rs, Rw, Rℓ,Dec, Rℓ,Eve, D) satisfying

Rsg I(U ; �X|Z) +
�
I(U ;Z|V,Q)− I(U ;Y |V,Q)

�−
(18)

RwgI(U ; �X|Y ) (19)

Rℓ,DecgI(U ;X|Y ) (20)

Rℓ,EvegI(U ;X|Z)+
�
I(U ;Z|V,Q)−I(U ;Y |V,Q)

�−
(21)

D g E[d(f( �X,Y ), g(U, Y ))] (22)

for some function g(·, ·) such that (Q, V ) − U − �X − X −
(Y, Z) form a Markov chain. One can limit the cardinalities

to |Q| f 2, |V| f | �X|+ 5, and |U| f (| �X|+ 5)2.

Proof Sketch. The achievability proof of Theorem 2 follows

from the achievability proof of Theorem 1, except that U

is not necessarily admissible, and with the addition that

P
U | �X and PV |U are chosen such that there exists a function

g(U, Y ) that satisfies gn(Un, Y n) = {g(Ui, Yi)}
n
i=1 and

E[d(fn( �Xn, Y n), gn(Un, Y n))] f D + ϵn, where ϵn > 0
such that ϵn → 0 when n → ∞. Since all sequence tuples

(�xn, yn, un) are in the jointly typical set with high probability,

by the typical average lemma [35, pp. 26], the distortion

constraint (22) is satisfied. The converse proof follows from

the converse proof of Theorem 1 by replacing the admissibility

step in (82) with the steps

D + ¶n g E

�
d
�
fn( �Xn, Y n),�fn(W,Y n)

� �

=
1

n
E

� n�

i=1

d
�
fi( �Xi, Yi), �fi(W,Y n)

� �

(a)

g
1

n
E

� n�

i=1

d
�
fi( �Xi, Yi), gi(W,Y n, Xi−1, Zi−1)

� �

(b)
=

1

n
E

� n�

i=1

d
�
fi( �Xi, Yi), gi(W,Y n

i , Xi−1, Zi−1)
� �

(c)
=

1

n
E

� n�

i=1

d
�
f( �Xi, Yi), g(Ui, Yi)

� �
(23)

where (a) follows since there exists a function gi(·, ·) that

results in a distortion smaller than or equal to the distortion

obtained from �fi(W,Y n), where the distortion is measured

with respect to fi( �Xi, Yi) for all i ∈ [1 : n], because gi(·, ·)
has additional inputs, (b) follows from the Markov chain

Y i−1 − (Xi−1, Zi−1,W, Yi, Y
n
i+1) − fi that can be proved

by establishing conditional independence in the functional

dependence graph of the problem by using the fundamental

result in [36, Section 3.3], and (c) follows from the definition

of Ui ≜ (W,Xi−1, Y n
i+1, Z

i−1) given in Appendix A-B.

The cardinality bounds follow by preserving the same prob-

ability and conditional entropy values as being preserved

in Theorem 1 with the addition of preserving the value of

g(U, Y ) = g(U, V, Y ), following from the Markov chain

V − (U, Y )−g(U, Y ). The region RD is convexified by using

a time-sharing random variable Q.

All rate regions in [26, Section III] (and, naturally, all

previous rate regions recovered by manipulating the regions

in [26, Section III]) can be recovered from Theorems 1 and 2

by eliminating the remote source, i.e., assuming �Xn = Xn,

and by rewriting the secrecy leakage constraint in (3) as an

equivocation measure rather than a mutual information.

C. Lossless Multi-Function Computation

We provide inner and outer bounds for the multi-function

region Rmf defined in Section II-C in Theorem 3. The corre-

sponding proof is detailed in Appendix B.

Theorem 3. (Inner Bound): An achievable multi-function

region is the union over all PQ, PVj |Q, PUj |Vj
, and P �Xj |Uj

of

the rate tuples (Rs, Rw,[1:J], Rℓ,Dec,[1:J], Rℓ,Eve) such that Uj

is admissible for the function fj( �Xj , Yj) for all j ∈ [1 : J ]
and

Rsg
�
I(U[1:J];Z[1:J]|V[1:J], Q)−I(U[1:J];Y[1:J]|V[1:J], Q)

�−

+ I(U[1:J]; �X[1:J]|Z[1:J]) (24)

Rw,jgI(Uj ; �Xj |Yj), ∀j ∈ [1 : J ] (25)

J�

j=1

Rw,j g I(U[1:J]; �X[1:J]|Y[1:J]) (26)

Rℓ,Dec,jgI(Uj ;X|Yj), ∀j ∈ [1 : J ] (27)

Rℓ,Eveg
�
I(U[1:J];Z[1:J]|V[1:J], Q)−I(U[1:J];Y[1:J]|V[1:J], Q)

�−

+ I(U[1:J];X|Z[1:J]) (28)

where we have

P
QV[1:J]U[1:J]

�X[1:J]XY[1:J]Z[1:J]

= PQ|V[1:J]
PX

J�

j=1

PVj |Uj
P
Uj | �Xj

P �Xj |X
PYjZj |X . (29)

(Outer Bound): An outer bound for the multi-function region

Rmf is the union of the rate tuples in (24)-(28) over all

PQ, PVj |Q, PUj |Vj
, and P �Xj |Uj

such that Uj is admissible

for the function fj( �Xj , Yj) and (Q, Vj) − Uj − �Xj − X −

( �X[1:J]\j , Yj , Zj) form a Markov chain for all j ∈ [1 : J ].

One can limit the cardinalities to |Q| f 2, |Vj | f | �Xj | + 5,

and |Uj | f (| �Xj |+ 5)2 for all j ∈ [1 : J ].

Remark 2. The inner and outer bounds differ because the

outer bounds define rate regions for the Markov chains

(Q, Vj)−Uj − �Xj −X− ( �X[1:J]\j , Yj , Zj) for all j ∈ [1 : J ],
which are larger than the rate regions defined by the inner

bounds that satisfy (29).

D. Lossy Multi-Function Computation

We next give inner and outer bounds for the lossy multi-

function region Rmf,D, defined in Section II-D, in Theorem 4.
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Theorem 4. (Inner Bound): An achievable lossy multi-

function region is the union over all PQ, PVj |Q, PUj |Vj
,

and P �Xj |Uj
for all j ∈ [1 : J ] of the rate tuples

(Rs, Rw,[1:J], Rℓ,Dec,[1:J], Rℓ,Eve, D[1:J]) satisfying

Rsg
�
I(U[1:J];Z[1:J]|V[1:J], Q)−I(U[1:J];Y[1:J]|V[1:J], Q)

�−

+ I(U[1:J]; �X[1:J]|Z[1:J]) (30)

Rw,jgI(Uj ; �Xj |Yj), ∀j ∈ [1 : J ] (31)

J�

j=1

Rw,j g I(U[1:J]; �X[1:J]|Y[1:J]) (32)

Rℓ,Dec,jgI(Uj ;X|Yj), ∀j ∈ [1 : J ] (33)

Rℓ,Eveg
�
I(U[1:J];Z[1:J]|V[1:J], Q)−I(U[1:J];Y[1:J]|V[1:J], Q)

�−

+ I(U[1:J];X|Z[1:J]) (34)

Dj g E[d(fj( �Xj , Yj), gj(Uj , Yj))] ∀j ∈ [1 : J ] (35)

for a set of functions {gj(·, ·)}
J
j=1 and where (29) is satisfied.

(Outer Bound): An outer bound for the lossy multi-function

region Rmf,D is the union of the rate tuples in (30) - (35)

over all PQ, PVj |Q, PUj |Vj
, and P �Xj |Uj

such that (Q, Vj) −

Uj − �Xj − X − ( �X[1:J]\j , Yj , Zj) form a Markov chain for

all j ∈ [1 : J ]. One can limit the cardinalities to |Q| f 2,

|Vj | f | �Xj |+ 6, and |Uj | f (| �Xj |+ 6)2 for all j ∈ [1 : J ].

Proof Sketch. The inner bound proof of Theorem 4 follows

from the achievability proof of Theorem 3, except that Uj’s

are not necessarily admissible, and with the addition that

P
Uj | �Xj

and PVj |Uj
are chosen such that there exists a set

of functions {gj(Uj , Yj)}
J
j=1 that satisfy gnj (U

n
j , Y

n
j ) =

{gj(Ui,j , Yi,j)}
n
i=1 and E[d(fn

j (
�Xn
j , Y

n
j ), gnj (U

n
j , Y

n
j ))] f

Dj + ϵn for all j ∈ [1 : J ], where ϵn > 0 such that

ϵn → 0 when n → ∞. Since all sequence tuples (�xn
j , y

n
j , u

n
j )

are in the jointly typical set with high probability for all

j ∈ [1 : J ], by the typical average lemma, the distortion

constraints in (35) are satisfied. The outer bound proof of

Theorem 4 follows from the converse proof of Theorem 3

with the replacement of the admissibility step in (110) with

the steps given in (23) for random variables and functions with

the indices j = 1, 2, . . . , J .

IV. INFORMATION BOTTLENECK EXAMPLE

Consider the lossy single-function computation problem and

suppose X−Y −Z form a Markov chain. The characterization

of the corresponding rate region requires one to maximize a

mutual information term upper bounded by another mutual

information term that should be minimized simultaneously,

i.e., an information bottleneck.

Corollary 1. The lossy region of Theorem 2 when X −
Y − Z form a Markov chain is the set of all tuples

(Rs, Rw, Rℓ,Dec, Rℓ,Eve, D) satisfying

Rsg I(U ; �X|Y ) = I(U ; �X)− I(U ;Y ) (36)

RwgI(U ; �X|Y ) = I(U ; �X)− I(U ;Y ) (37)

Rℓ,DecgI(U ;X|Y ) = I(U ;X)− I(U ;Y ) (38)

Rℓ,EvegI(U ;X|Y ) = I(U ;X)− I(U ;Y ) (39)

D g E[d(f( �X,Y ), g(U, Y ))] (40)

for some function g(·, ·) such that U − �X−X−Y −Z form a

Markov chain. One can limit the cardinality to |U| f | �X|+2.

The proof of Corollary 1 follows by applying steps identical

to the proof of [26, Corollary 3] to Theorem 2, we thus

omit it. The boundary points of the rate region defined in

Corollary 1 can be obtained by maximizing I(U ;Y ) and

minimizing I(U ; �X) simultaneously for a fixed I(U ;X) for

all P
U | �X such that U − �X−X−Y −Z form a Markov chain.

This problem is an information bottleneck problem [37], [38].

If the distortion metric d(·, ·) is chosen to be the Hamming

distance, we then obtain the optimal function g∗(u, y) for all

(u, y)∈U×Y as [26, Eq. (26)]

g∗(u, y) = argmax
f

PF |UY (f |u, y) (41)

where f = f(�x, y) is a realization of the random function

output F for any (�x, y) ∈ �X × Y .

Consider a measurement channel P �X|X and source PX for

the encoder Enc(·) such that the inverse channel P
X| �X is

a BSC(p) for any 0 f p f 0.5. Furthermore, suppose the

measurement channel PY |X for the decoder Dec(·) is a binary

input symmetric output channel [39, p. 21], which can be

decomposed into a mixture of binary subchannels as defined

in [40, Section III-B] [41]. We remark that the rate region

defined in Corollary 1 by (36)-(40) does not depend on the

random variable Z. Therefore, the measurement channel for

the eavesdropper does not affect the rate region as long as

the measurement channel for the eavesdropper is physically-

degraded as compared to the channel for the decoder Dec(·),
i.e., PY Z|X = PZ|Y PY |X . Since P �XXY Z

is fixed, the optimal

auxiliary random variable U is such that P �X|U is a BSC with

crossover probability

H−1
b (H(X|U))− p

1− 2p
(42)

which follows from [28, Theorem 3].

Suppose PX ∼ Bern(0.5), P �X|X ∼ BSC(p = 0.06),
and assume that the measurement channel PY |X consists of

M > 1 independent BSCs each with crossover probability

0.15, which satisfies the assumptions listed above. Using

auxiliary random variables satisfying (42), we depict the

projections of (Rs, Rw, Rℓ,Dec, Rℓ,Eve, D) boundary tuples onto

the (Rs, Rℓ,Eve) plane in Fig. 3 for M = 1, 2, 3 independent

BSC measurements by the decoder Dec(·).
Fig. 3 suggests that given a boundary point achieved by

a crossover probability calculated as in (42), any larger

secrecy-leakage rate and any larger privacyEve-leakage rate

are also achievable. Conversely, given such an achievable

boundary point, no smaller secrecy-leakage rate and no smaller

privacyEve-leakage rate is achievable. Furthermore, increasing

the number M of measurements at the decoder significantly

decreases the corresponding boundary point such that, e.g.,

when M = 3 measurements are used as compared to M = 1,

the maximum secrecy-leakage rate decreases by approximately

31.45% and simultaneously the maximum privacy-leakage
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Fig. 3. Secrecy-leakage rate vs. privacyEve-leakage rate projection of the
boundary tuples (Rs, Rw, Rℓ,Dec, Rℓ,Eve, D) for p = 0.06 and for the
number of independent BSC measurements at the decoder M = 1, 2, 3.

rate to the eavesdropper decreases by approximately 58.68%.

These gains can be seen as multiplexing gains, in analogy to

multiple antenna systems for wireless communications.

V. CONCLUSION

We derived the secrecy-storage-privacyDec-privacyEve(-

distortion) regions for lossless and lossy single-function com-

putations with a remote source. The remote source model

allows to model multiple sequences observed by a single

terminal as multiple noisy measurements of a hidden source,

which allows to measure the diversity gains. The equivocation

measure common in the literature was replaced with a mutual

information metric, which resulted in simpler notation and

easier interpretations. A new privacy metric was considered

to bound the information leakage to a fusion center about the

remote source sequence. Bounds for the storage and privacy

leakage to the eavesdropper rates were shown to be different,

unlike in the previous models. Inner and outer bounds for

multiple asynchronous function computations within the same

network were given to illustrate the effects of joint constraints

for all terminals involved in any function computation. These

bounds differ only in the Markov chain conditions imposed.

We evaluated the rate region for a single-function computation

problem by solving an information bottleneck problem for

binary input symmetric output channels. In future work, we

will consider multi-function computations with multiple trans-

mitting terminals for each function computation and derive the

rate regions for two-function computations with two transmit-

ting terminals if a set of symmetry conditions are satisfied.
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[9] O. Günlü, O. İşcan, V. Sidorenko, and G. Kramer, “Code constructions
for physical unclonable functions and biometric secrecy systems,” IEEE

Trans. Inf. Forensics Security, vol. 14, no. 11, pp. 2848–2858, Nov.
2019.

[10] J. Ren, B. D. Boyle, G. Ku, S. Weber, and J. M. Walsh, “Overhead
performance tradeoffs - A resource allocation perspective,” IEEE Trans.

Inf. Theory, vol. 62, no. 6, pp. 3243–3269, June 2016.
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APPENDIX A

PROOF OF THEOREM 1

A. Achievability Proof of Theorem 1

Proof Sketch. We use the output statistics of random binning

(OSRB) method, proposed in [42] (see also [43]) for strong

secrecy by following steps in [44, Section 1.6]. This approach

simplifies the analysis compared to previous proofs in the

literature.

Fix P
U | �X and PV |U such that U is admissible

and let (V n, Un, �Xn, Xn, Y n, Zn) be i.i.d. according to

P
V U �XXY Z

= PV |UPU | �XP �X|XPXPY Z|X . We remark that

since all n-letter random variables are i.i.d., Un is also

admissible.

Assign two random bin indices (Fv,Wv) to each vn. As-

sume Fv ∈ [1 : 2n
�Rv ] and Wv ∈ [1 : 2nRv ]. Similarly, assign

two indices (Fu,Wu) to each un, where Fu ∈ [1 : 2n
�Ru ] and

Wu ∈ [1 : 2nRu ]. The public message is W = (Wv,Wu)
and the indices F = (Fv, Fu) represent the public choice of

encoder-decoder pairs.

Using a Slepian-Wolf (SW) [6] decoder, one can reliably

estimate V n from (Fv,Wv, Y
n), such that the expected value

of the error probability taken over the random bin assignments

vanishes when n → ∞, if we have [42, Lemma 1]

�Rv +Rv > H(V |Y ). (43)

Similarly, one can reliably estimate Un from

(Fu,Wu, Y
n, V n) by using a SW decoder if we have

�Ru +Ru > H(U |V, Y ). (44)

Thus, the reliability constraint in (2) is satisfied if (43) and

(44) are satisfied.

The public index Fv is almost independent of �Xn, so it

is almost independent of ( �Xn, Xn, Y n, Zn), if we have [42,

Theorem 1]

�Rv < H(V | �X) (45)

since it results in the expected value, which is taken over the

random bin assignments, of the variational distance between

the joint probability distributions Unif[1 : 2n
�Rv ] · P �Xn and

P
Fv

�Xn to vanish when n → ∞. Furthermore, the public

index Fu is almost independent of (V n, �Xn), so it is almost

independent of (V n, �Xn, Xn, Y n, Zn), if we have

�Ru < H(U |V, �X). (46)

To satisfy the constraints (43)-(46), we fix the rates to

�Rv = H(V | �X)− ϵ (47)

Rv = I(V ; �X)− I(V ;Y ) + 2ϵ (48)

�Ru = H(U |V, �X)− ϵ (49)

Ru = I(U ; �X|V )− I(U ;Y |V ) + 2ϵ (50)

for any ϵ > 0.

Storage (Public Message) Rate: (47)-(50) result in a

storage (public message) rate Rw of

Rw = Rv +Ru = I(V, U ; �X)− I(V, U ;Y ) + 4ϵ

(a)
= I(U ; �X|Y ) + 4ϵ (51)

where (a) follows because V − U − �X − Y form a Markov

chain.

Privacy Leakage to the Decoder: We have

I(Xn;W,F |Y n) = I(Xn;W |F, Y n) + I(Xn;F |Y n)

(a)

f H(Xn|Y n)−H(Xn|W,F, V n, Un, Y n) + 2ϵn
(b)
= H(Xn|Y n)−H(Xn|Un, Y n) + 2ϵn
(c)
= nI(U ;X|Y ) + 2ϵn (52)

where (a) follows for some ϵn > 0 with ϵn → 0 when n → ∞
because

I(Xn;F |Y n) = I(Xn;Fv|Y
n) + I(Xn;Fu|Fv, Y

n)

f 2ϵn (53)

since by (45) Fv is almost independent of

( �Xn, Xn, Y n, Zn) and by (46) Fu is almost independent of

(V n, �Xn, Xn, Y n, Zn) and because V n determines Fv; see

also [45, Theorem 1], (b) follows because V n determines

(Fv,Wv), U
n determines (Fu,Wu), and V n−Un−(Xn, Y n)

form a Markov chain, and (c) follows because (Xn, Un, Y n)
are i.i.d.

Privacy Leakage to the Eavesdropper: We have

I(Xn;W,F |Zn)
(a)
= H(W,F |Zn)−H(W,F |Xn)

(b)
= H(W,F |Zn)−H(Wu, Fu, V

n|Xn)

+H(V n|Wv, Fv,Wu, Fu, X
n)

(c)

f H(W,F |Zn)−H(Wu, Fu, V
n|Xn) + nϵ′n

(d)
= H(W,F |Zn)−H(Un, V n|Xn)

+H(Un|Wu, Fu, V
n, Xn) + nϵ′n

(e)

f H(W,F |Zn)−H(Un, V n|Xn) + 2nϵ′n
(f)
= H(W,F |Zn)− nH(U, V |X) + 2nϵ′n (54)

where (a) follows because (W,F ) − Xn − Zn form a

Markov chain, (b) follows since V n determines (Fv,Wv),
(c) follows for some ϵ′n > 0 such that ϵ′n → 0 when

n → ∞ because (Fv,Wv, X
n) can reliably recover V n

due to the Markov chain V n − Xn − Y n and by (43), (d)
follows because Un determines (Fu,Wu), (e) follows by (44)

because (Wu, Fu, V
n, Xn) can reliably recover Un due to the

inequality H(U |V, Y ) g H(U |V,X) that follows from

H(U |V, Y )−H(U |V,X) = I(U ;V,X)− I(U ;V, Y )

g I(U ;V,X)− I(U ;V, Y,X) = 0 (55)

since U − (V,X)− Y form a Markov chain, and (f) follows

because (Un, V n, Xn) are i.i.d.

We need to analyze six different decodability cases to

consider whether (Fv,Wv, Z
n) can recover V n and whether

(Fu,Wu, V
n, Zn) or (Fu,Wu, Z

n) can recover Un.

Case 1: Assume

0 f Rv + �Rv < H(V |Z), (56)

0 f Ru + �Ru < H(U |V, Z) (57)
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so that (Fv,Wv) are almost independent of Zn and are

also almost mutually independent, and (Fu,Wu) are almost

independent of (V n, Zn) and are also almost mutually inde-

pendent. Using (54), we obtain

I(Xn;W,F |Zn)

fH(Wv)+H(Fv)+H(Wu)+H(Fu)

−nH(U, V |X)+2nϵ′n

f n(Rv + �Rv +Ru + �Ru)−nH(U, V |X)+2nϵ′n
(a)
= n(I(U, V ;X)− I(U, V ;Y ) + 2ϵ+ 2ϵ′n)

(b)
= n(I(U ;X)− I(U ;Y |V )− I(V ;Y ) + 2ϵ+ 2ϵ′n)

(c)

f n(I(U ;X)− I(U ;Y |V )− I(V ;Z) + ϵ+ 2ϵ′n)

(d)
= n(I(U ;X)−[I(U ;Y |V )−I(U ;Z|V )]−I(U ;Z)+ϵ+2ϵ′n)

(e)
= n(I(U ;X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ϵ]−+2ϵ′n) (58)

where (a) follows by (47)-(50) and (b) follows from the

Markov chain V − U − X , (c) follows by (47), (48), and

(56) such that equality is achieved when n → ∞, (d) follows

from the Markov chain V −U −Z, and (e) follows from the

Markov chain U −X − Z.

Case 2: Assume

0 f Rv + �Rv < H(V |Z), (59)

H(U |V, Z) < Ru + �Ru < H(U |Z) (60)

so that (Fv,Wv) are almost independent of Zn and are

also almost mutually independent, and (Fu,Wu) are almost

independent of Zn and are also almost mutually independent;

however, (Fu,Wu, V
n, Zn) can reliably recover Un. Using

(54), we have

I(Xn;W,F |Zn)

(a)

f H(Un, V n|Zn)−nH(U, V |X)+2nϵ′n
(b)
= n(I(U ;X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ϵ]−+2ϵ′n) (61)

where (a) follows because V n determines (Fv,Wv) and Un

determines (Fu,Wu), and (b) follows from the Markov chain

V − U −X − Z and by (49), (50), and (60).

Case 3: Assume

0 f Rv + �Rv < H(V |Z), (62)

H(U |Z) < Ru + �Ru (63)

so that (Fv,Wv) are almost independent of Zn and are also

almost mutually independent, and (Fu,Wu, Z
n) can reliably

recover Un. Using (54), we obtain

I(Xn;W,F |Zn)

(a)

f H(Un|Zn)+H(Wv, Fv|U
n, Zn)−nH(U, V |X)+2nϵ′n

(b)

f H(Un|Zn)+H(V n|Un, Zn)−nH(U, V |X)+2nϵ′n
(c)
= n(I(U ;X|Z)+2ϵ′n)

(d)
= n(I(U ;X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ϵ]−+2ϵ′n) (64)

where (a) follows because Un determines (Fu,Wu), (b)
follows since V n determines (Fv,Wv), (c) follows from the

Markov chain V −U−X−Z and because (V n, Un, Xn, Zn)
are i.i.d., and (d) follows by (49), (50), and (63).

Case 4: Assume

H(V |Z) < Rv + �Rv, (65)

0 f Ru + �Ru < H(U |V, Z) (66)

so that (Fv,Wv, Z
n) can reliably recover V n, and (Fu,Wu)

are almost independent of (V n, Zn) and are also almost

mutually independent. Using (54), we have

I(Xn;W,F |Zn)

(a)

f H(V n|Zn) +H(Wu, Fu|Wv, Fv, Z
n)

− nH(U, V |X) + 2nϵ′n

f H(V n|Zn) +H(Wu) +H(Fu)− nH(U, V |X) + 2nϵ′n

f n(H(V |Z) +Ru + �Ru −H(U, V |X) + 2ϵ′n)

(b)
= n(H(V |Z) +H(U |V, Y ) + ϵ−H(U, V |X) + 2ϵ′n)

= n(I(U ;X|V )−I(U ;Y |V )+I(V ;X)−I(V ;Z)+2ϵ′n+ϵ)

(c)
= n(I(U ;X)− I(U ;Y |V )− I(V ;Z) + 2ϵ′n + ϵ

(d)
= n(I(U ;X)−[I(U ;Y |V )−I(U ;Z|V )]−I(U ;Z)+ϵ+2ϵ′n)

(e)
= n(I(U ;X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ϵ]−+2ϵ′n) (67)

where (a) follows because V n determines (Fv,Wv), (b)
follows because (V n, Zn) are i.i.d. and by (49) and (50), (c)
follows from the Markov chain V −U −X , (d) follows from

the Markov chain V −U−Z, and (e) follows from the Markov

chain U −X − Z.

Case 5: Assume

H(V |Z) < Rv + �Rv, (68)

H(U |V, Z) < Ru + �Ru < H(U |Z) (69)

so that (Fv,Wv, Z
n) can reliably recover V n, and (Fu,Wu)

are almost independent of Zn and are also almost mutually

independent; however, (Fu,Wu, V
n, Zn) can reliably recover

Un. Using (54), we have

I(Xn;W,F |Zn)

(a)

f H(V n|Zn) +H(Wu, Fu|Wv, Fv, Z
n)

− nH(U, V |X) + 2nϵ′n
(b)

f H(V n|Zn) +H(Wu, Fu|V
n, Zn)

+H(V n|Wv, Fv, Z
n)− nH(U, V |X) + 2nϵ′n

(c)

f H(V n|Zn) +H(Un|V n, Zn)− nH(U, V |X) + 3nϵ′n
(d)
= n(I(U ;X|Z)+3ϵ′n)

(e)
= n(I(U ;X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ϵ]−+3ϵ′n) (70)

where (a) and (b) follow because V n determines (Fv,Wv),
(c) follows because Un determines (Fu,Wu) and by (68), (d)
follows because (V n, Zn, Un) are i.i.d. and from the Markov

chain V −U−X−Z, and (e) follows by (49), (50), and (69).
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Case 6: Assume

H(V |Z) < Rv + �Rv, (71)

H(U |Z) < Ru + �Ru (72)

so that (Fv,Wv, Z
n) can reliably recover V n, and

(Fu,Wu, Z
n) can reliably recover Un. Using (54), we obtain

I(Xn;W,F |Zn)

(a)

f H(V n, Un|Zn)− nH(U, V |X) + 2nϵ′n
(b)
= n(I(U ;X|Z) + 2ϵ′n)

(c)
= n(I(U ;X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ϵ]−+2ϵ′n) (73)

where (a) follows because Un determines (Fu,Wu) and V n

determines (Fv,Wv), (b) follows because (V n, Un, Zn) are

i.i.d. and from the Markov chain V − U − X − Z, and (c)
follows by (49), (50), and (72).

Secrecy Leakage (to the Eavesdropper): Consider the

secrecy leakage. We have

I( �Xn, Y n;W,F |Zn)
(a)
= H(W,F |Zn)−H(W,F | �Xn)

(b)

f H(W,F |Zn)−H(Wu, Fu, V
n| �Xn) + nϵ′n

(c)

f H(W,F |Zn)− nH(U, V | �X) + 2nϵ′n (74)

where (a) follows from the Markov chain (W,F ) − �Xn −
(Y n, Zn), (b) follows since (Wv, Fv, �Xn) can reliably recover

V n due to the Markov chain V n− �Xn−Y n and (43), and (c)
follows by (44) since (Wu, Fu, V

n, �Xn) can reliably recover

Un due to the inequality H(U |V, Y ) g H(U |V, �X) that can

be proved similarly as in (55), and because (Un, V n, �Xn) are

i.i.d.

Similar to the analysis of the privacy leakage to the eaves-

dropper, we need to analyze the same six decodability cases to

consider whether (Fv,Wv, Z
n) can recover V n and whether

(Fu,Wu, V
n, Zn) or (Fu,Wu, Z

n) can recover Un. One can

show that all steps applied in Cases 1-6 for the privacy leakage

to the eavesdropper follow also for the Cases 1-6 for the

secrecy leakage by replacing X with �X . We; therefore, list

the results for Cases 1-6 as follows.

Case 1: We obtain for (56) and (57) that

I( �Xn, Y n;W,F |Zn)

fn(I(U ; �X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ϵ]−+2ϵ′n).
(75)

Case 2: We obtain for (59) and (60) that

I( �Xn, Y n;W,F |Zn)

f n(I(U ; �X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ϵ]−+2ϵ′n).
(76)

Case 3: We obtain for (62) and (63) that

I( �Xn, Y n;W,F |Zn)

f n(I(U ; �X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ϵ]−+2ϵ′n).
(77)

Case 4: We obtain for (65) and (66) that

I( �Xn, Y n;W,F |Zn)

f n(I(U ; �X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ϵ]−+2ϵ′n).
(78)

Case 5: We obtain for (68) and (69) that

I( �Xn, Y n;W,F |Zn)

fn(I(U ; �X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ϵ]−+3ϵ′n).
(79)

Case 6: We obtain for (71) and (72) that

I( �Xn, Y n;W,F |Zn)

fn(I(U ; �X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ϵ]−+2ϵ′n).
(80)

Now suppose the public indices F are generated uniformly

at random. The encoder Enc(·) generates (V n, Un) according

to P
V nUn| �XnFvFu

obtained from the binning scheme above to

compute the bins Wv from V n and Wu from Un, respectively.

This procedure induces a joint probability distribution that is

almost equal to P
V U �XXY Z

fixed above [44, Section 1.6]. We

remark that the privacy and secrecy leakage metrics considered

above are expectations over all possible realizations F = f .

Thus, using a time-sharing random variable Q and applying

the selection lemma [46, Lemma 2.2] to each decodability case

separately, these results prove the achievability for Theorem 1

by choosing an ϵ > 0 such that ϵ → 0 when n → ∞.

B. Converse Proof of Theorem 1

Proof Sketch. Suppose for some ¶n>0 and n g 1, there exists

a pair of encoders and decoders such that (2)-(6) are satisfied

for some tuple (Rs, Rw, Rℓ,Dec, Rℓ,Eve).
Let Vi ≜ (W,Y n

i+1, Z
i−1) and Ui ≜

(W,Xi−1, Y n
i+1, Z

i−1), which satisfy the Markov chain

Vi − Ui − �Xi −Xi − (Yi, Zi) for all i ∈ [1 : n] by definition

of the source statistics.

Admissibility of U: Define

ϵn = ¶n log(| �X||Y|) +
Hb(¶n)

n
(81)

where Hb(¶) = −¶ log ¶ − (1 − ¶) log(1 − ¶) is the binary

entropy function, so that ϵn → 0 if ¶n → 0. Using (2) and

Fano’s inequality, we obtain

nϵn g H(fn|�fn)
(a)
= H(fn| sfn)

(b)
=

n�

i=1

H(fi| sfi)

g

n�

i=1

H(fi| sfn)
(c)

g

n�

i=1

H(fi|W,Y n)

g

n�

i=1

H(fi|W,Y n, Xi−1, Zi−1)

(d)
=

n�

i=1

H(fi|W,Y n
i+1, X

i−1, Zi−1, Yi)

(e)
=

n�

i=1

H(fi|Ui, Yi) (82)
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where (a) follows from [31, Lemma 2] so that when n → ∞,

there exists an i.i.d. random variable sfn such that H(fn|�fn) =

H(fn| sfn) and �fn − sfn − (W,Y n) form a Markov chain,

(b) follows because (fn, sfn) are i.i.d., (c) follows from the

Markov chain fn − (W,Y n) − sfn and permits randomized

decoding, (d) follows from the Markov chain for all i ∈ [1 : n]

Y i−1 − (Xi−1, Zi−1,W, Yi, Y
n
i+1)− fi (83)

and (e) follows from the definition of Ui.

Storage (Public Message) Rate: We have

n(Rw + ¶n)
(a)

g log |W| g H(W |Y n)−H(W | �Xn, Y n)

= I( �Xn;W |Y n) = H( �Xn|Y n)−H( �Xn|W,Y n)

= H( �Xn|Y n)−

n�

i=1

H( �Xi| �Xi−1,W, Y n)

(b)
= H( �Xn|Y n)−

n�

i=1

H( �Xi| �Xi−1,W, Y n
i+1, Yi)

(c)

g H( �Xn|Y n)−

n�

i=1

H( �Xi|X
i−1, Zi−1,W, Y n

i+1, Yi)

(d)
= nH( �X|Y )−

n�

i=1

H( �Xi|Ui, Yi) =

n�

i=1

I(Ui; �Xi|Yi) (84)

where (a) follows by (4), (b) follows from the Markov chain

for all i ∈ [1 : n]

Y i−1 − ( �Xi−1,W, Y n
i+1, Yi)− �Xi (85)

(c) follows from the data processing inequality applied to the

Markov chain for all i ∈ [1 : n]

(Xi−1, Zi−1)− ( �Xi−1,W, Y n
i+1, Yi)− �Xi (86)

and (d) follows from the definition of Ui.

Privacy Leakage to the Decoder: We obtain

n(Rℓ,Dec + ¶n)
(a)

g H(W |Y n)−H(W |Xn)

=

n�

i=1

�
I(W ;Xi|X

i−1)− I(W ;Yi|Y
n
i+1)

�

(b)
=

n�

i=1

�
I(W ;Xi|X

i−1, Y n
i+1)− I(W ;Yi|Y

n
i+1, X

i−1)
�

(c)
=

n�

i=1

�
I(W ;Xi|X

i−1, Zi−1, Y n
i+1)

− I(W ;Yi|Y
n
i+1, X

i−1, Zi−1)
�

(d)
=

n�

i=1

�
I(W,Xi−1, Zi−1, Y n

i+1;Xi)

− I(W,Y n
i+1, X

i−1, Zi−1;Yi)
�

(e)
=

n�

i=1

�
I(Ui;Xi)− I(Ui;Yi)

�
(f)
=

n�

i=1

I(Ui;Xi|Yi) (87)

where (a) follows by (5) and from the Markov chain W −
Xn − Y n, (b) follows from Csiszár’s sum identity [47], (c)
follows from the Markov chains

Zi−1 − (Xi−1, Y n
i+1)− (Xi,W ) (88)

Zi−1 − (Xi−1, Y n
i+1)− (Yi,W ) (89)

(d) follows because Xn is i.i.d. and the measurement channels

are memoryless, (e) follows from the definition of Ui, and (f)
follows from the Markov chain Ui−Xi−Yi for all i ∈ [1 : n].

Privacy Leakage to the Eavesdropper: We obtain

n(Rℓ,Eve + ¶n)

(a)

g [H(W |Zn)−H(W |Y n)] + [H(W |Y n)−H(W |Xn)]

=

n�

i=1

�
I(W ;Yi|Y

n
i+1)− I(W ;Zi|Z

i−1)
�

+

n�

i=1

�
I(W ;Xi|X

i−1)− I(W ;Yi|Y
n
i+1)

�

(b)
=

n�

i=1

�
I(W ;Yi|Y

n
i+1, Z

i−1)− I(W ;Zi|Z
i−1, Y n

i+1)
�

+

n�

i=1

�
I(W ;Xi|X

i−1, Y n
i+1)−I(W ;Yi|Y

n
i+1, X

i−1)
�

(c)
=

n�

i=1

�
I(W ;Yi|Y

n
i+1, Z

i−1)− I(W ;Zi|Z
i−1, Y n

i+1)
�

+
n�

i=1

�
I(W ;Xi|X

i−1, Y n
i+1, Z

i−1)

−I(W ;Yi|Y
n
i+1, X

i−1, Zi−1)

"

(d)
=

n�

i=1

�
I(W,Y n

i+1, Z
i−1;Yi)−I(W,Zi−1, Y n

i+1;Zi)
�

+
n�

i=1

�
I(W,Xi−1, Y n

i+1, Z
i−1;Xi)

− I(W,Y n
i+1, X

i−1, Zi−1;Yi)

"

(e)
=

n�

i=1

�
I(Vi;Yi)− I(Vi;Zi)

+ I(Ui, Vi;Xi)− I(Ui, Vi;Yi)
�

=

n�

i=1

�
− I(Ui, Vi;Zi) + I(Ui, Vi;Xi)

+ (I(Ui;Zi|Vi)− I(Ui;Yi|Vi))

"

(f)

g

n�

i=1

�
I(Ui;Xi|Zi)+[I(Ui;Zi|Vi)−I(Ui;Yi|Vi)]

−
�

(90)

where (a) follows by (6) and from the Markov chain W −
Xn−Zn, (b) follows from Csiszár’s sum identity, (c) follows

from the Markov chains in (88) and (89), (d) follows because

Xn is i.i.d. and the measurement channels are memoryless,
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(e) follows from the definitions of Vi and Ui, and (f) follows

from the Markov chain Vi − Ui −Xi − Zi for all i ∈ [1 : n].
Secrecy Leakage (to the Eavesdropper): We have

n(Rs + ¶n)

(a)

g [H(W |Zn)−H(W |Y n)]+[H(W |Y n)−H(W | �Xn, Y n)]

(b)
=

n�

i=1

�
I(W ;Yi|Y

n
i+1)− I(W ;Zi|Z

i−1)
�

+
�
nH( �X|Y )−

n�

i=1

H( �Xi| �Xi−1,W, Y n)
�

(c)
=

n�

i=1

�
I(W ;Yi|Y

n
i+1, Z

i−1)− I(W ;Zi|Z
i−1, Y n

i+1)
�

+
�
nH( �X|Y )−

n�

i=1

H( �Xi| �Xi−1,W, Y n
i+1, Yi)

�

(d)

g

n�

i=1

�
I(W,Y n

i+1, Z
i−1;Yi)− I(W,Zi−1, Y n

i+1;Zi)
�

+
�
nH( �X|Y )−

n�

i=1

H( �Xi|X
i−1, Zi−1,W, Y n

i+1, Yi)
�

(e)
=

n�

i=1

�
I(Vi;Yi)− I(Vi;Zi) + I(Ui, Vi; �Xi|Yi)

�

(f)
=

n�

i=1

�
I(Vi;Yi)−I(Vi;Zi)+I(Ui, Vi; �Xi)−I(Ui, Vi;Yi)

�

=

n�

i=1

�
−I(Ui, Vi;Zi)+I(Ui, Vi; �Xi)

+ (I(Ui;Zi|Vi)−I(Ui;Yi|Vi))

"

(g)

g
n�

i=1

�
I(Ui; �Xi|Zi)+[I(Ui;Zi|Vi)−I(Ui;Yi|Vi)]

−
�

(91)

where (a) follows by (3), (b) follows because ( �Xn, Y n)
are i.i.d., (c) follows from Csiszár’s sum identity and the

Markov chain in (85), (d) follows because Xn is i.i.d. and

the measurement channels are memoryless, and from the data

processing inequality applied to the Markov chain in (86), (e)
follows from the definitions of Vi and Ui, (f) follows from

the Markov chain (Ui, Vi) − �Xi − Yi for all i ∈ [1 : n], and

(g) follows from the Markov chain Vi −Ui − �Xi −Zi for all

i ∈ [1 : n].
Introduce a uniformly distributed time-sharing random vari-

able Q ∼ Unif[1 : n] independent of other random variables.

Define X = XQ, �X = �XQ, Y = YQ, Z = ZQ, V = VQ,

U=(UQ,Q), and f = fQ so that (Q, V )−U− �X−X−(Y, Z)
form a Markov chain. The converse proof of Theorem 1

follows by letting ¶n → 0.

Cardinality Bounds: We use the support lemma [47,

Lemma 15.4]; see also [35, Appendix C]. One can pre-

serve P �X
by using | �X| − 1 real-valued continuous functions.

We have to preserve two expressions for the two cases

such that I(U ;Z|V,Q = q) > I(U ;Y |V,Q = q) and

I(U ;Z|V,Q = q) f I(U ;Y |V,Q = q) for all q ∈ Q,

so one can limit the cardinality |Q| of Q to |Q| f 2.

Furthermore, we have to preserve five more expressions, i.e.,

H( �X|U, V, Z), H( �X|U, V, Y ), H(X|U, V, Y ), H(X|U, V, Z),
and (I(U ;Z|V )− I(U ;Y |V )). Thus, one can limit the cardi-

nality |V| of V to |V| f | �X|+ 4. Similarly, in addition to the

| �X|− 1 real-valued continuous functions, one should preserve

the same five expressions for the auxiliary random variable U .

To satisfy the Markov condition (Q, V )−U− �X−X−(Y, Z),

one can limit the cardinality |U| of U to |U| f (| �X|+ 4)
2
.

APPENDIX B

PROOF OF THEOREM 3

A. Achievability (Inner Bound) Proof of Theorem 3

The achievability proof follows by using the OSRB method,

as described below.

Proof Sketch. Similar to Appendix A-A, fix P
Uj | �Xj

and PVj |Uj
such that Uj is admissible for the

function fj( �Xj , Yj) for all j ∈ [1 : J ] and let

(V n
[1:J], U

n
[1:J],

�Xn
[1:J], X

n, Y n
[1:J], Z

n
[1:J]) be i.i.d. according to

(29). We remark that since all n-letter random variables are

i.i.d., Un
j is also admissible for all j ∈ [1 : J ].

Assign two random bin indices (Fv,j ,Wv,j) to each vnj ,

and assume Fv,j ∈ [1 : 2n
�Rv,j ] and Wv,j ∈ [1 : 2nRv,j ] for

all j ∈ [1 : J ]. Similarly, for all j ∈ [1 : J ] assign two

indices (Fu,j ,Wu,j) to each un
j , where Fu,j ∈ [1 : 2n

�Ru,j ] and

Wu,j ∈ [1 : 2nRu,j ]. The public message is Wj = (Wv,j ,Wu,j)
and indices Fj = (Fv,j , Fu,j) represent the public choice of

encoder-decoder pairs for all j ∈ [1 : J ].
For all j ∈ [1 : J ], using a Slepian-Wolf (SW) decoder, one

can reliably estimate V n
j from (Fv,j ,Wv,j , Y

n
j ) if we have

�Rv,j +Rv,j > H(Vj |Yj) (92)

and one can reliably estimate Un
j from (Fu,j ,Wu,j , Y

n
j , V n

j )
by using a SW decoder if we have

�Ru,j +Ru,j > H(Uj |Vj , Yj). (93)

Thus, applying the union bound, we can show that the relia-

bility constraint in (8) is satisfied if (92) and (93) are satisfied

for all j ∈ [1 : J ].
The public index Fv,j is almost independent of �Xn

j , so it is

almost independent of

(V n
[1:J]\{j}, U

n
[1:J]\{j},

�Xn
[1:J], X

n, Y n
[1:J], Z

n
[1:J]), if we have

�Rv,j < H(Vj | �Xj), ∀j ∈ [1 : J ]. (94)

The public index Fu,j is almost independent of (V n
j , �Xn

j ), so

it is almost independent of

(V n
[1:J], U

n
[1:J]\{j},

�Xn
[1:J], X

n, Y n
[1:J], Z

n
[1:J]), if we have

�Ru,j < H(Uj |Vj , �Xj), ∀j ∈ [1 : J ]. (95)

To satisfy the constraints (92)-(95), similar to Appendix A,

we fix the rates to

�Rv,j=H(Vj | �Xj)−ϵ, ∀j ∈ [1 : J ] (96)

Rv,j=I(Vj ; �Xj)−I(Vj ;Yj)+2ϵ, ∀j ∈ [1 : J ] (97)

�Ru,j=H(Uj |Vj , �Xj)−ϵ, ∀j ∈ [1 : J ] (98)

Ru,j=I(Uj ; �Xj |Vj)−I(Uj ;Yj |Vj)+2ϵ, ∀j ∈ [1 : J ] (99)
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for any ϵ > 0.

Storage (Public Message) Rate: (96)-(99) result in a

storage (public message) rate Rw,j of

Rw,j = Rv,j +Ru,j = I(Vj , Uj ; �Xj)− I(Vj , Uj ;Yj) + 4ϵ

(a)
= I(Uj ; �Xj |Yj) + 4ϵ, ∀j ∈ [1 : J ] (100)

where (a) follows because Vj −Uj − �Xj −Yj form a Markov

chain for all j ∈ [1 : J ].
Privacy Leakage to the Decoder: We have

I(Xn;Wj , Fj |Y
n
j )

(a)

fnI(Uj ;X|Yj)+2ϵn, ∀j ∈ [1 :J ] (101)

where (a) follows for some ϵn > 0 with ϵn → 0 when n → ∞
by applying the steps in (52).

Privacy Leakage to the Eavesdropper: Suppose

an additional virtual joint encoder assigns 4J
indices (Fv,[1:J],Wv,[1:J], Fu,[1:J],Wu,[1:J]) to each

realization tuple (vn1 , v
n
2 , . . . , v

n
J , u

n
1 , u

n
2 , . . . , u

n
J) ∈

V1 × V2 × . . .× VJ × U1 × U2 × . . .× UJ such that

J�

j=1

( �Rv,j +Rv,j) > H(V[1:J]|Y[1:J]), (102)

J�

j=1

( �Ru,j +Ru,j) > H(U[1:J]|V[1:J], Y[1:J]). (103)

Thus, (Wv,[1:J], Fv,[1:J], Y
n
[1:J]) can reliably recover V n

[1:J] and

(V n
[1:J],Wu,[1:J], Fu,[1:J], Y

n
[1:J]) can reliably recover Un

[1:J].

Therefore, we have for the total storage rate that

J�

j=1

Rw,j =

J�

j=1

(Rv,j +Ru,j)

(a)

g I(U[1:J], V[1:J]; �X[1:J])− I(U[1:J], V[1:J];Y[1:J])

(b)
= I(U[1:J]; �X[1:J]|Y[1:J]) (104)

where (a) follows by (102) and (103), and because (94)

and (95) ensure that (Fv,[1:J], Fu,[1:J]) are almost mutu-

ally independent of �Xn
[1:J] since

�J

j=1(
�Rv,j + �Ru,j) <

H(U[1:J], V[1:J]| �X[1:J]) such that equality is achieved when

n → ∞ and (b) follows from the Markov chain V[1:J]−U[1:J]−
�X[1:J] − Y[1:J].

Consider the privacy leakage to the eavesdropper. We have

I(Xn;W[1:J], F[1:J]|Z
n
[1:J])

(a)
= H(W[1:J], F[1:J]|Z

n
[1:J])−H(W[1:J], F[1:J]|X

n)

(b)
= H(W[1:J], F[1:J]|Z

n
[1:J])− nH(U[1:J], V[1:J]|X)

+
J�

j=1

�
H(V n

j |V n
[1:j−1],W[1:J], F[1:J], X

n)

+H(Un
j |U

n
[1:j−1], V

n
[1:J],W[1:J], F[1:J], X

n)
�

(c)

fH(W[1:J], F[1:J]|Z
n
[1:J])

− nH(U[1:J], V[1:J]|X) + 2Jnϵ′n (105)

where (a) follows from the Markov chain Zn
[1:J] − Xn −

(W[1:J], F[1:J]), (b) follows since Un
j determines (Wu,j , Fu,j)

and V n
j determines (Wv,j , Fv,j) for all j ∈ [1 : J ], and

(Un
[1:J], V

n
[1:J], X

n) are i.i.d., and (c) follows for some ϵ′n > 0
such that ϵ′n → 0 when n → ∞ because (Fv,j ,Wv,jX

n) can

reliably recover V n
j due to the Markov chain V n

j −Xn − Y n
j

and (92), and because (Wu,j , Fu,j , V
n
j , Xn) can reliably re-

cover Un
j due to the inequality H(Uj |Vj , Yj) g H(Uj |Vj , X),

proved in (55), for all j ∈ [1 : J ].
We consider the six decodability cases considered in

Appendix A-A by replacing [(Rv + �Rv), (Ru + �Ru)]

with
���J

j=1(Rv,j + �Rv,j)
�
,
��J

j=1(Ru,j + �Ru,j)
��

,

respectively, and

[H(V |Z), H(U |V, Z), H(U |Z)] with

[H(V[1:J]|Z[1:J]), H(U[1:J]|V[1:J], Z[1:J]), H(U[1:J]|Z[1:J])],
respectively. Using these replacements, applying the steps

in (58),(61), (64), (67), (70), and (73) in combination with

(105), and by choosing trivial rates that satisfy (102) and

(103), one can show that

I(Xn;W[1:J], F[1:J]|Z
n
[1:J])

f n[I(U[1:J];Z[1:J]|V[1:J])−I(U[1:J];Y[1:J]|V[1:J]) +ϵ]−

+ n(I(U[1:J];X|Z[1:J]) + 3Jϵ′n). (106)

Secrecy Leakage (to the Eavesdropper): Consider the

secrecy leakage. We have

I( �Xn
[1:J], Y

n
[1:J];W[1:J], F[1:J]|Z

n
[1:J])

(a)
= H(W[1:J], F[1:J]|Z

n
[1:J])−H(W[1:J], F[1:J]| �Xn

[1:J])

(b)

fH(W[1:J], F[1:J]|Z
n
[1:J])

−H(Un
[1:J], V

n
[1:J]|

�Xn
[1:J])+2Jnϵ′n (107)

where (a) follows from the Markov chain (W[1:J], F[1:J]) −
�Xn
[1:J]− (Y n

[1:J], Z
n
[1:J]), (b) follows for some ϵ′n > 0 such that

ϵ′n → 0 when n → ∞ because Un
j determines (Wu,j , Fu,j)

and V n
j determines (Wv,j , Fv,j), and (Wv,j , Fv,j , �Xn

j ) can

reliably recover V n
j due to the Markov chain V n

j − �Xn
j − Y n

j

and (92), and similarly (Wu,j , Fu,j , V
n
j , �Xn

j ) can reliably

recover Un
j because H(Uj |Vj , Yj) g H(Uj |Vj , �Xj), which

can be proved as in (55).

By using the same joint virtual encoder used for the privacy-

leakage to the eavesdropper analysis above and replacing X

by �X[1:J] in the analyses of (106), we obtain from (107) that

I( �Xn
[1:J], Y

n
[1:J];W[1:J], F[1:J]|Z

n
[1:J])

f n[I(U[1:J];Z[1:J]|V[1:J])−I(U[1:J];Y[1:J]|V[1:J])+ϵ]−

+ n(I(U[1:J]; �X[1:J]|Z[1:J]) +3Jϵ
′
n). (108)

Suppose the public indices F[1:J] are generated uniformly at

random. The encoder Encj(·) generates (V n
j , Un

j ) according to

P
V n
j
Un

j
| �Xn

j
Fv,jFu,j

obtained from the binning scheme above to

compute the bins Wv,j from V n
j and Wu,j from Un

j for all j ∈
[1 : J ]. This procedure induces a joint probability distribution

that is almost equal to P
V[1:J]U[1:J]

�X[1:J]XY[1:J]Z[1:J]
fixed above

[44, Section 1.6]. We remark that the privacy and secrecy

leakage metrics considered above are expectations over all
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possible realizations F[1:J] = f[1:J]. Thus, using a time-

sharing random variable Q such that PQV[1:J]
= PQ

J�

j=1

PVj |Q

and applying the selection lemma to each decodability case

separately, these results prove the achievability for the rate

tuples given in Theorem 3 by choosing an ϵ > 0 such that

ϵ → 0 when n → ∞.

B. Converse (Outer Bound) Proof of Theorem 3

Proof Sketch. Suppose for some ¶n>0 and n g 1, there exists

a pair of encoders and decoders such that (8)-(12) are satisfied

for some tuple (Rs, Rw,[1:J], Rℓ,Dec,[1:J], Rℓ,Eve).

Let Vi,j ≜ (Wj , Y
n
i+1,j , Z

i−1
j ) and Ui,j ≜

(Wj , X
i−1, Y n

i+1,j , Z
i−1
j ), which satisfy the Markov chain

Vi,j − Ui,j − �Xi,j − Xi − ( �Xi,[1:J]\j , Yi,j , Zi,j) for all

i ∈ [1 : n] and j ∈ [1 : J ] by definition of the source

statistics.

Admissibility of Uj: Define

ϵn = max
j∈[1:J]

�
¶n,j log(| �Xj ||Yj |) +

Hb(¶n,j)

n

�
(109)

so that ϵn → 0 if max
j∈[1:J]

¶n,j = ¶n → 0. Applying the union

bound to (8) and using Fano’s inequality, we obtain

nϵngH(fn
j |

�fn
j )

(a)

g
n�

i=1

H(fi,j |Ui,j , Yi,j), ∀j ∈ [1 : J ] (110)

where (a) follows applying the steps in (82) and from the

definition of Ui,j .

Storage (Public Message) Rate: We have for all j ∈ [1 : J ]
that

n(Rw,j+¶n)
(a)

g log |Wj |
(b)

g

n�

i=1

I(Ui,j ; �Xi,j |Yi,j) (111)

where (a) follows by (10) and (b) follows by applying the

steps in (84) and from the definition of Ui,j .

Privacy Leakage to the Decoder: We obtain for all j ∈
[1 : J ] that

n(Rℓ,Dec,j + ¶n)
(a)

g H(Wj |Y
n
j )−H(Wj |X

n)

(b)

g
n�

i=1

I(Ui,j ;Xi|Yi,j) (112)

where (a) follows by (11) and from the Markov chain Wj −
Xn − Y n

j and (b) follows by applying the steps in (87) and

from the definition of Ui,j .

Sum-Storage Rate: We have for all j ∈ [1 : J ] that

n

J�

j=1

(Rw,j+¶n)
(a)

g log

�����
J�

j=1

|Wj |

�����

gH(W[1:J]|Y
n
[1:J])−H(W[1:J]| �Xn

[1:J], Y
n
[1:J])

= H( �Xn
[1:J]|Y

n
[1:J])−

n�

i=1

H( �Xi,[1:J]| �Xi−1
[1:J], Y

n
[1:J],W[1:J])

(b)
= H( �Xn

[1:J]|Y
n
[1:J])

−

n�

i=1

H( �Xi,[1:J]| �Xi−1
[1:J], Y

n
i+1,[1:J], Yi,[1:J],W[1:J])

(c)

g H( �Xn
[1:J]|Y

n
[1:J])

−

n�

i=1

H( �Xi,[1:J]|X
i−1
[1:J], Z

i−1
[1:J], Y

n
i+1,[1:J], Yi,[1:J],W[1:J])

(d)
=

n�

i=1

I(Ui,[1:J]; �Xi,[1:J]|Yi,[1:J]) (113)

where (a) follows by (10), (b) follows from the Markov chain

for all i ∈ [1 : n]

Y i−1
[1:J] − ( �Xi−1

[1:J],W[1:J], Y
n
i,[1:J])−

�Xi,[1:J] (114)

(c) follows from applying the data processing inequality to the

Markov chain for all i ∈ [1 : n]

(Xi−1, Zi−1
[1:J])− ( �Xi−1

[1:J],W[1:J], Y
n
i,[1:J])−

�Xi,[1:J] (115)

and (d) follows because ( �Xn
[1:J], Y

n
[1:J]) are i.i.d. and from the

definition of Ui,j for all j ∈ [1 : J ].

Privacy Leakage to the Eavesdropper: We obtain

n(Rℓ,Eve + ¶n)

(a)

g [H(W[1:J]|Z
n
[1:J])−H(W[1:J]|Y

n
[1:J])]

+ [H(W[1:J]|Y
n
[1:J])−H(W[1:J]|X

n)]

(b)
=

n�

i=1

�
I(W[1:J];Yi,[1:J]|Y

n
i+1,[1:J], Z

i−1
[1:J])

− I(W[1:J];Zi,[1:J ]|Z
i−1
[1:J], Y

n
i+1,[1:J])

�

+
n�

i=1

�
I(W[1:J];Xi|X

i−1, Y n
i+1,[1:J])

−I(W[1:J];Yi,[1:J]|Y
n
i+1,[1:J], X

i−1)
�

(c)
=

n�

i=1

�
I(W[1:J];Yi,[1:J]|Y

n
i+1,[1:J], Z

i−1
[1:J])

− I(W[1:J];Zi,[1:J ]|Z
i−1
[1:J], Y

n
i+1,[1:J])

�

+

n�

i=1

�
I(W[1:J];Xi|X

i−1, Y n
i+1,[1:J], Z

i−1
[1:J])

−I(W[1:J];Yi,[1:J]|Y
n
i+1,[1:J], X

i−1, Zi−1
[1:J])

�
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n(Rs + ¶n)
(a)

g [H(W[1:J]|Z
n
[1:J])−H(W[1:J]|Y

n
[1:J])] + [H(W[1:J]|Y

n
[1:J])−H(W[1:J]| �Xn

[1:J], Y
n
[1:J])]

(b)
=

n�

i=1

�
I(W[1:J];Yi,[1:J]|Y

n
i+1,[1:J])− I(W[1:J];Zi,[1:J]|Z

i−1
[1:J])

�
+
�
nH( �X[1:J]|Y[1:J])−

n�

i=1

H( �Xi,[1:J]| �Xi−1
[1:J],W[1:J], Y

n
[1:J])

�

(c)
=

n�

i=1

�
I(W[1:J];Yi,[1:J]|Y

n
i+1,[1:J], Z

i−1
[1:J])− I(W[1:J];Zi,[1:J]|Z

i−1
[1:J], Y

n
i+1,[1:J])

�

+
�
nH( �X[1:J]|Y[1:J])−

n�

i=1

H( �Xi,[1:J]| �Xi−1
[1:J],W[1:J], Y

n
i+1,[1:J], Yi,[1:J])

�

(d)

g

n�

i=1

�
I(W[1:J], Y

n
i+1,[1:J], Z

i−1
[1:J];Yi,[1:J])− I(W[1:J], Z

i−1
[1:J], Y

n
i+1,[1:J];Zi,[1:J])

�

+
�
nH( �X[1:J]|Y[1:J])−

n�

i=1

H( �Xi,[1:J]|X
i−1, Zi−1

[1:J],W[1:J], Y
n
i+1,[1:J], Yi,[1:J])

�

(e)
=

n�

i=1

�
I(Vi,[1:J];Yi,[1:J])− I(Vi,[1:J];Zi,[1:J]) + I(Ui,[1:J], Vi,[1:J]; �Xi,[1:J]|Yi,[1:J])

�

(f)
=

n�

i=1

�
I(Vi,[1:J];Yi,[1:J])−I(Vi,[1:J];Zi,[1:J]) + I(Ui,[1:J], Vi,[1:J]; �Xi,[1:J])− I(Ui,[1:J], Vi,[1:J];Yi,[1:J])

"

=

n�

i=1

�
−I(Ui,[1:J], Vi,[1:J];Zi,[1:J]) +I(Ui,[1:J], Vi,[1:J]; �Xi,[1:J]) + I(Ui,[1:J];Zi,[1:J]|Vi,[1:J])− I(Ui,[1:J];Yi,[1:J]|Vi,[1:J])

"

(g)

g
n�

i=1

�
[I(Ui,[1:J];Zi,[1:J]|Vi,[1:J ])−I(Ui,[1:J];Yi,[1:J]|Vi,[1:J])]

− + I(Ui,[1:J]; �Xi,[1:J]|Zi,[1:J])
�

(116)

(d)
=

n�

i=1

�
I(W[1:J], Y

n
i+1,[1:J], Z

i−1
[1:J];Yi,[1:J])

−I(W[1:J], Z
i−1
[1:J], Y

n
i+1,[1:J];Zi,[1:J])

�

+

n�

i=1

�
I(W[1:J], X

i−1, Y n
i+1,[1:J], Z

i−1
[1:J];Xi)

− I(W[1:J], Y
n
i+1,[1:J], X

i−1, Zi−1
[1:J];Yi,[1:J])

�

(e)
=

n�

i=1

�
I(Vi,[1:J];Yi,[1:J])− I(Vi,[1:J];Zi,[1:J])

+ I(Ui,[1:J], Vi,[1:J];Xi)

−I(Ui,[1:J], Vi,[1:J];Yi,[1:J])
�

=

n�

i=1

�
−I(Ui,[1:J], Vi,[1:J];Zi,[1:J])+I(Ui,[1:J], Vi,[1:J];Xi)

+ I(Ui,[1:J];Zi,[1:J]|Vi,[1:J])

− I(Ui,[1:J];Yi,[1:J]|Vi,[1:J])

"

(f)

g
n�

i=1

�
I(Ui,[1:J];Xi|Zi,[1:J])

+
�
I(Ui,[1:J];Zi,[1:J]|Vi,[1:J])

−I(Ui,[1:J];Yi,[1:J]|Vi,[1:J])
�−�

(117)

where (a) follows by (12) and from the Markov chain

W[1:J]−Xn−Zn
[1:J], (b) follows from Csiszár’s sum identity,

(c) follows from the Markov chains for all i ∈ [1 : n]

Zi−1
[1:J] − (Xi−1, Y n

i+1,[1:J])− (Xi,W[1:J]) (118)

Zi−1
[1:J] − (Xi−1, Y n

i+1,[1:J])− (Yi,[1:J],W[1:J]) (119)

(d) follows because Xn is i.i.d. and the measurement channels

are memoryless, (e) follows from the definitions of Vi,j and

Ui,j for all j ∈ [1 : J ], and (f) follows from the Markov

chain Vi,[1:J] − Ui,[1:J] −Xi − Zi,[1:J] for all i ∈ [1 : n].
Secrecy Leakage (to the Eavesdropper): We have (116)

given at the top of this page, where (a) follows by (9),

(b) follows since ( �Xn
[1:J], Y

n
[1:J]) are i.i.d., (c) follows from

Csiszár’s sum identity and the Markov chain in (114), (d)
follows because Xn is i.i.d. and the measurement channels are

memoryless, and from the data processing inequality applied

to the Markov chain in (115), (e) follows from the definitions

of Vi,[1:J] and Ui,[1:J], (f) follows from the Markov chain

(Ui,[1:J], Vi,[1:J])− �Xi,[1:J]−Yi,[1:J] for all i ∈ [1 : n], and (g)

follows from the Markov chain Vi,[1:J] − Ui,[1:J] − �Xi,[1:J] −
Zi,[1:J] for all i ∈ [1 : n].

Introduce a uniformly distributed time-sharing random vari-

able Q ∼ Unif[1 : n] independent of other random variables.

Define X=XQ, �Xj= �XQ,j , Yj=YQ,j , Zj=ZQ,j , Vj=VQ,j ,

Uj = (UQ,j ,Q), and fj = fQ,j so that (Q, Vj)− Uj − �Xj −

X−( �X[1:J]\j , Yj , Zj) form a Markov chain for all j ∈ [1 : J ].
The converse proof of Theorem 3 follows by letting ¶n → 0.

Cardinality Bounds follow by using the support lemma as

in Appendix A-B.


