IEEE TRANSACTIONS ON INFORMATION THEORY

Private Remote Sources for
Secure Multi-Function Computation

Onur Giinli, Member, IEEE, Matthieu Bloch, Senior Member, IEEE, and
Rafael F. Schaefer, Senior Member, IEEE

Abstract—We consider a distributed function computation
problem in which parties observing noisy versions of a re-
mote source facilitate the computation of a function of their
observations at a fusion center through public communication.
The distributed function computation is subject to constraints,
including not only reliability and storage but also secrecy and pri-
vacy. Specifically, 1) the function computed should remain secret
from an eavesdropper observing the public communication and
correlated observations, measured in terms of the information
leaked about the arguments of the function, to ensure secrecy
regardless of the exact function used; 2) the remote source should
remain private from the eavesdropper and the fusion center,
measured in terms of the information leaked about the remote
source itself. We derive the exact rate regions for lossless and
lossy single-function computation and illustrate the lossy single-
function computation rate region for an information bottleneck
example, in which the optimal auxiliary random variables are
characterized for binary-input symmetric-output channels. We
extend the approach to lossless and lossy asynchronous multiple-
function computations with joint secrecy and privacy constraints,
in which case inner and outer bounds for the rate regions
that differ only in the Markov chain conditions imposed are
characterized.

Index Terms—secure multiple function computation, private
remote source, lossy function computation, information bottle-
neck, rate-limited public communication.

I. INTRODUCTION

Consider a scenario in which multiple terminals that observe
dependent random sequences want to compute a function
of their sequences by exchanging messages through public
communication links [2], [3]. One application for which
this distributed function computation problem is relevant is
network function virtualization [4] via, e.g., software defined
networking. It is not always necessary for the terminal com-
puting the function, called fusion center, to observe the exact
sequences [5]. This fact allows one to reduce the public
communication rate, also called storage rate, required for reli-
able function computations by using, e.g., distributed lossless
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source coding techniques [6]. Furthermore, if the function to
compute only requires recovering a distorted version of the
original sequence, distributed lossy source coding methods [7]
further reduce the amount of public storage. This is useful
for resource-limited networks such as Internet-of-Things (IoT)
devices that make aggregated decisions using lightweight
mechanisms [5], [8]-[12]; see [13]-[17] for various extensions
of the basic function computation problem with reliability and
storage constraints.

Reliable function computation and small public storage
constraints have also been combined with secrecy constraints,
requiring that the computed function outputs be hidden from
an eavesdropper [18]. In addition to the public messages
exchanged between terminals, the eavesdropper is considered
to have access to a random sequence correlated with other
sequences. Various extensions of the basic secure function
computation or distributed source coding problems have been
analyzed in the literature [19]-[25]. Furthermore, a privacy
constraint has been added in [26] to the problem. The main
difference between secrecy and privacy is that secrecy leak-
age is measured with respect to the functions computed
while privacy leakage is measured with respect to the source
sequences themselves. A privacy leakage analysis provides
an upper bound on the secrecy leakage of future function
computations involving the terminals already participating in
earlier function computations [27], [28]. This is because the
information leaked about the sequence of a terminal might
leak information about another function computed by using
the same sequence. We extend [26] by considering separate
privacy constraints on the source of the random sequence of
the transmitting terminal that sends a public message to the
fusion center.

A common assumption in the literature is that sequences
observed by all terminals are distributed according to a joint
probability distribution. However, the correlated random se-
quences observed by terminals in a network generally stem
from a common source of information, e.g., some sensor
location information transmitted through the network before
the next function computation starts, distorted versions of
which are distributed within the network. Thus, we posit
that there exists a common true source, called the remote
source, hidden from all terminals and of which the observed
sequences are noisy versions. Such a remote source model
allows a terminal to combine multiple observed sequences to
obtain a single “higher quality” random sequence, which is
similar to applying maximal ratio combining over an additive
white Gaussian noise (AWGN) channel. This approach is



thus useful to model the quality differences between random
sequences observed by different terminals. If the function
computation network is mistakenly modeled with a visible
source model, the code construction designed for the assumed
visible source model might result in unnoticed secrecy leakage
and reduction in computation reliability, as illustrated in [28]
for key agreement.

Noisy measurements of a hidden source are generally
modeled as observations through broadcast channels (BCs)
[29] to have a generic measurement model that allows noise
components at different terminals to be correlated [30], [31].
Such a hidden source model is proposed and motivated in
[32] for authentication problems and in [30], [33] for secret-
key agreement problems with a privacy constraint. As we
detail in Section II, such a hidden source model results in two
different privacy leakage constraints measured with respect to
the hidden source, which is different from the single privacy
leakage constraint considered in [26] measured with respect
to the random sequence observed by the transmitting terminal.
Furthermore, the equivocation of the source is commonly used
in the literature to measure the secrecy leakage, which results
in rate bounds with conditional entropy terms. By replacing
the equivocation with the mutual information terms, we obtain
rate regions with simpler notation and easier interpretations.

We consider two function computation settings. The first
setting imposes a reliable (lossless) computation of the func-
tion of interest and the other one allows a fixed level of dis-
tortion between the computed function and the actual function
output (lossy function computation) [26]. These settings ad-
dress different applications. For instance, the lossless function
computation setting might model user/terminal identification,
where the exact identifier recovery is necessary; in contrast, the
lossy function computation setting might model user/terminal
authentication, where a set of users whose computed functions
are close to a pre-defined value are authenticated. We bound
the error probability for the reliable function computation task
for the lossless setting and the expected distortion for the lossy
setting, respectively, which require different proof steps. We
exactly characterize the rate regions for both settings when a
single function is computed.

We further extend the function computation with privacy
and secrecy problem by considering multiple function com-
putations with joint secrecy and privacy constraints on all
terminals involved in any function computation task. This
extension allows one to measure the total amount of informa-
tion leaked to an eavesdropper about all computed functions
within a network. This extension also allows one to correctly
characterize the privacy leakage to an eavesdropper, i.e.,
the amount of information about the hidden source leaked
to an eavesdropper who might observe all public messages
and all side information obtained during all (not necessarily
synchronous) function computations within the same network.
Multiple function computations with joint secrecy and privacy
constraints are closely related to the multi-entity and multi-
enrollment key agreement problems in [34], where the noisy
measurements of the same hidden source are used for multiple
key agreements. Both lossless and lossy function computation
settings are analyzed to provide inner and outer bounds for
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the multi-function rate regions, for which only the imposed
Markov chains differ.

A. Summary of Contributions

Our problem formulation introduces one secrecy and two
privacy constraints, in addition to reliability (or distortion)
and storage constraints, to the single function computation
problem to characterize the resulting rate regions. These results
are strict extensions of [26] as we consider a remote source
common to all terminals with side information sequences that
are noisy measurements of the remote source. Furthermore,
we also consider multiple asynchronous function computations
within the same network with joint secrecy and privacy
constraints over all terminals involved in any function compu-
tation. A summary of the main contributions is as follows.

« We derive the rate region for lossless single-function com-
putation with secrecy and privacy constraints. The remote
source model we consider corresponds to a physically-
degraded BC and when the transmitting terminal observes
the remote (noiseless) source outputs, the model reduces
to a semi-deterministic BC. Furthermore, we show that
convexification with a time-sharing random variable is
necessary.

o We next consider the lossless multi-function computa-
tions where a finite number J of functions are computed
from different noisy measurements (observed by different
terminals) of the same remote source asynchronously. We
impose one secrecy and privacy constraints that consider
the total leakage in the network, i.e., they are joint
constraints for all parties involved in any function compu-
tation. We propose inner and outer bounds for the multi-
function rate region that differ only in the Markov chain
conditions imposed on the auxiliary random variables.
The rate regions include both separate constraints for each
terminal and joint constraints for all terminals.

o All inner and outer bounds for the lossless single- and
multi-function computations are extended to the corre-
sponding lossy settings. Similar to the lossless case, we
characterize the lossy rate region for the single-function
computation, and we provide inner and outer bounds for
the multi-function computations that differ only in the
Markov chains imposed.

« We evaluate the rate region for a lossy single-function
computation problem, in which the measurement channel
of the eavesdropper is physically-degraded compared to
the measurement channel of the fusion center. We solve
an information bottleneck problem to obtain the rate
region boundary tuples.

B. Organization

In Section II, we introduce the lossless or lossy and single-
function or multi-function computation problems with a re-
mote source. In Section III, we present the rate regions for
the lossless and lossy single-function computation in addition
to inner and outer bounds with different Markov chains for the
lossless and lossy multi-function computations for any finite
number of functions. In Section IV, we solve an information
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Fig. 1. Noisy measurements of a remote source used to compute a function
securely and privately with the help of a public communication link.

bottleneck problem to illustrate the rate region for the lossy
single-function computation problem. In Section V, we con-
clude the paper.

C. Notation

Upper case letters represent random variables and lower
case letters their realizations. A superscript denotes a se-
quence of variables, e.g., X" = X1, Xo,..., X;,..., X,,
and a subscript 7 denotes the position of a variable in a
sequence. A random variable X has probability distribution
Px . Calligraphic letters such as X denote sets, set sizes are
written as |X'| and their complements as X'°. [1:J] denotes the
set {1,2,...,J} for an integer J > 1 and [1:J]\{;j} denotes
the set {1,2,...,7 — 1,7+ 1,...,J} for any j € [1: J].
Hy(z) = —zlogz — (1 —x)log(l —z) is the binary entropy
function, where logarithms are to the base 2, and H 1()
denotes its inverse with range [0,0.5]. A binary symmetric
channel (BSC) with crossover probability p is denoted by
BSC(p). X ~ Bern(a) is a binary random variable with
PriX =1 =qa.

II. PROBLEM DEFINITIONS
A. Lossless Single-Function Computation

Consider the function computation model illustrated in
Fig. 1. Three terminals obtain noisy observations X", Y " Z",
respectively, of a single i.i.d. remote source X", through a
memoryless channel with transition probability P xPYz|X-

The source alphabet X and measurement alphabets X WV, Z
are finite sets. The objective is for the terminal observing X™
to transmit a message W = Enc(X™) over a public channel
and to enable the terminal observing Y to compute a function
FM(X™, Y™) such that

fn(XnaYn) = {f(XuYz)}1:1 (D
The terminal observing Z" and obtaining W through the
public channel is treated as an eavesdropper (Eve).

Since Py Xy 2z is fixed, the separate measurement chan-
nels P)?\X and Pyzx in Fig. 1 can be modeled as a
physically-degraded BC with transition probability P, ZIX =
PX| 5Py z x and with fixed input probability distribution Pg.

For such a BC, the case of a noiseless measurement for which
X™ = X™ can be treated as a semi-deterministic BC.

Definition 1. A tuple (R, Ry, Ripec, Repve) € RY, is
achievable if, for any ¢ > 0, there exist n > 1, an encoder,
and a decoder such that

Pr [ X", Y") £ jﬂ < (reliability)  (2)

1~
EI(XR’YR; WI|Z™) < R+ 4 (secrecy) 3)
1 log [W| < Ry +6 (storage) 4)
n
l](Xn; WIY™) < Rypec + 90 (privacyDec)  (5)
n
1

—I(X™WI|Z") < Rypye + 90 (privacyEve).  (6)
n

The region R is the closure of the set of all achievable tuples.

O

Note that the metric I(f"(X™,Y™); W|Z") might seem a
more natural way to measure the information leakage to the
eavesdropper who observes (W, Z™) of the computed function
f™(-,-). However, the analysis of this metric depends on
the specific properties of the function f(-,-). Since the data-
processing inequality ensures that I(f™(X",Y™);W[Z") <
I(X™, Y™ W|Z™) for all functions f(-,-) with equality if
f(-,-) is a bijective mapping, we instead consider the metric
in (3). The analysis then does not depend on the com-
puted function f(-,-) and provides a valid upper bound on
the proper secrecy-leakage rate metric for any f(-,-). Since
(X", Y™ W|Z") = I(X™;W|Z™) because of the Markov
chain W — X™ — (Y™, Z™), the equivocation H (X"|W,Z")
considered in previous works [26] captures the same secrecy
leakage as (3). Furthermore, the privacy leakage metrics in
(5) and (6) measure the information leakage about the remote
source to the decoder and eavesdropper, respectively, due to
function computation because the same remote source would
be measured if another function would be computed in the
same network, as in Fig. 2 below; see also [28] for motivations
to consider privacy leakage with respect to a remote source.
We remark that in (3), (5), and (6), we consider conditional
mutual information terms to take into consideration the un-
avoidable secrecy or privacy leakage due to side information
available at the fusion center or eavesdropper.

B. Lossy Single-Function Computation

Consider again the single-function computation model de-
picted in Fig. 1 and replace the reliability constraint in (2)
with an expected distortion constraint to allow a distorted
reconstruction of the function f(-,-). This defines the lossy
single-function computation model, for which the notion of
achievability is as follows.

Definition 2. A lossy tuple (Rs, Ry, Re,pec, ReEve, D) € Rgo
is achievable if, for any § >0, there exist n > 1, an encoder,
and a decoder that satisfy (3)-(6) and

E[d(f (X", Y"), f1)] < D+ ™
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Fig. 2. Noisy measurements of the same remote source used to compute
J = 2 functions (via 2J = 4 parties) securely and privately with the help of
public communication links.

where d(f™, ]/[;) = L5 d(fi, f3) is a per-letter distortion
metric. The lossy region Rp is the closure of the set of all
achievable lossy tuples. O

C. Lossless Multi-Function Computation

We next extend the lossless single-function computation
model by considering that the same remote source X" is
measured by multiple encoder and decoder pairs to compute
different functions. Consider a finite number J > 1 of
encoders Encj(X) W;, decoders DecJ(WJ,Y ) = I},
and functions f”(X” Y = {fi(Xi;,Yij ), for j €
[1: J], where X 7 is measured through the channel Pg
and (Y}",Z}') are measured through the BC Py, 7 x. The
eavesdropper observes (Zﬁ: J],W[L g1)- This multi-function
computation model is illustrated in Fig. 2 for J = 2.

Definition 3. A multi-function tuple
(Rs, Ry (1.7, Re.pec 1], Repve) € RET with j-th encoder
measurements through Pz %,1X and j-th decoder measurements
through Py 7 x for all j € [1 : J] is achievable if, for any
6 > 0, there exist n > 1, and J encoder and decoder pairs
such that

Py [ U {@E vy #5) ®)
je[1:J]

IR Yo Wil Zf.) < Bato ©

%1og Wj| < Ru; +36, viel:J] (10)

LIXWIYE) < Repees +6 vie[l:J] an

LI(X" Wi |Z) < Rege +6 (12)

The multi-function region Ry is the closure of the set of all
achievable tuples. O
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Remark 1. The storage rate constraints in (10) and the
corresponding privacy leakage rate constraints in (11) are J
separate constraints. However, the reliability constraint in (8),
the secrecy leakage constraint in (9), and the privacy leakage
rate constraint in (12) are joint constraints that depend on the
parameters of all J encoder-decoder pairs.

D. Lossy Multi-Function Computation

Similar to Section II-B, we extend the model of Section II-C
to allow distorted function computations for multiple functions
fHXT,Y)) = {fj( ij» Yi ;) i—, computed from different

measurements (X Y[ of the same remote source X".

Definition 4. A lossy multi-function tuple
(Rs; Rw,[l:.]]a Rl,Dec,[l:J] ) RZ,Evea D[l J]) € R;{)+2 with j_
th encoder measurements through Pg ,1X and j-th decoder
measurements through Py, 7| x for all j el J] is
achievable if, for any 0 > 0, there exist n>1, and J encoder
and decoder pairs that satisfy (9)-(12) and

B[a(f7 (X7, 7). F)| < Dj+6, vie[:J] (13)

where d(f", f" = Zd f“fz is a per-letter distortion

metric. The lossy multi- functzon region Ry¢p is the closure of
the set of all achievable lossy multi-function tuples. %

III. RATE REGIONS
We first recall the notion of an admissible random variable,
used in Theorems 1 and 3.

Definition 5 ([5]). A (vector) random variable U is admissible
for a function f(X,Y) if U — X — Y form a Markov chain
and H(f(X,Y)|U,Y) =0, ie., (U,Y) determine f(X,Y).0

Define [a]~ = min{a, 0} and [a]" = max{a, 0} for a € R.

A. Lossless Single-Function Computation

We characterize the region R for the lossless single function
computation problem in Theorem 1. The corresponding proof
is detailed in Appendix A.

Theorem 1. The region R is the set of all tuples
(Rs; va RZ,Dec; R[,Eve) Sdlisfying

R,>I(U; X|2) + [[(U; Z|V,Q) — I(U;Y|V,Q)]” (14)
R,>I(U; X|Y) (15)
Rf,DecZI(U;XD/) (16)

Repe>1(U; X|2)+ [I(U; Z|V,Q)—1(U;Y|V,Q)] (17

such that U is admissible for the function f ()N( ,Y) and
(Q,V)-U—-X—-X—(Y, Z) form a Markov chain. The region
R is convexified by using the time-sharing random variable Q),
which is required because of the []~ operation. One can limit
the cardinaliti'es of Q, V, and U to
and [U| < (| X]| + 4)2.

In [26], some lower bounds on the rates in the rate regions
include terms with the maximization operator [-]*. One can
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show that the rate regions in [26] that include such lower
bounds are not convex and can be enlarged by using a time-
sharing random variable @), as considered in this work.

B. Lossy Single-Function Computation
We next characterize the lossy region Rp for the lossy
single function computation problem in Theorem 2.

Theorem 2. The lossy region Rp is the set of all tuples
(Ry, Ry, Ri.pecs R Eve, D) satisfying

R,> I(U; X|2) + [I(U; Z|V,Q) — I(U; Y|V,Q)]~  (18)
R,>I(U; X|Y) (19)
Repec 2 1(U; X|Y) (20)
Repe > 1(U; X|2)+ [1(U; 2|V, Q)= 1(U; Y|V, Q)] 21)
D > E[d(f(X,Y),9(U,Y))] (22)
for some function g(-,-) such that (Q,V)—U — X-X-—

(Y, Z) form a Markov chain. One can limit the cardinalities
to |9Q] < V| <|X|+5, and [U] < (| X]+ 5)%

Proof Sketch. The achievability proof of Theorem 2 follows
from the achievability proof of Theorem 1, except that U
is not necessarily admissible, and with the addition that
PU‘ 5 and Py are chosen such that there exists a function
g(U,Y) that satisfies ¢g"(U",Y") = {g(U;,Y:)};=,; and
Eld(f*(X™,Y™),¢g" (U™, Y"™))] < D + €,, where ¢, > 0
such that €,, — 0 when n — oo. Since all sequence tuples
(™, y™, u™) are in the jointly typical set with high probability,
by the typical average lemma [35, pp. 26], the distortion
constraint (22) is satisfied. The converse proof follows from
the converse proof of Theorem 1 by replacing the admissibility
step in (82) with the steps

D+, = E[d (X", v, frw,v)) |

) iE[id (F(Eav0. W)

]E>zn:d (fi()?qt,n)vgz‘(w’ YnaXiil’Ziil)) }
Ti=1
E _Zn:d (fi(f(myi),gi(m v X Ziil)) }

Zd( (X:,Y0), 9(U:, V) |

where (a) follows since there exists a function g;(-,-) that
results in a distortion smaller than or equal to the distortion
obtained from fz(W Y™), where the distortion is measured
with respect to f;(X;,Y;) for all i € [1: n], because g;(-,-)
has additional inputs, (b) follows from the Markov chain
Yiol — (X1 2L WY, Y% ,) — fi that can be proved
by establishing conditional independence in the functional
dependence graph of the problem by using the fundamental
result in [36, Section 3.3], and (c) follows from the definition
of Uy & (W,X71,Y",,Z"') given in Appendix A-B.
The cardinality bounds follow by preserving the same prob-
ability and conditional entropy values as being preserved

(23)

in Theorem 1 with the addition of preserving the value of
g(U,Y) = ¢g(U,V,Y), following from the Markov chain
V—(U,Y)—g(U,Y). The region R p is convexified by using
a time-sharing random variable Q. O

All rate regions in [26, Section III] (and, naturally, all
previous rate regions recovered by manipulating the regions
in [26, Section III]) can be recovered from Theorems 1 and 2
by eliminating the remote source, i.e., assuming X" = X",
and by rewriting the secrecy leakage constraint in (3) as an
equivocation measure rather than a mutual information.

C. Lossless Multi-Function Computation

We provide inner and outer bounds for the multi-function
region Ry¢ defined in Section II-C in Theorem 3. The corre-
sponding proof is detailed in Appendix B.

Theorem 3. (Inner Bound): An achievable multi-function
region is the union over all Pg, Py, q, Py, v, and PX U, of
the rate tuples (R, R, [1.7], Ry Decyf1:0], Re, Eve) Such that U;
is admissible for the function f;(X;,Y;) for all j € [1 : J]
and

Ry > {I(U[l:J]§Z[1:J]|V[1:J]7 Q)—1(Up.; Y Vinay, Q)

+ I(Up.p Xpen)| Ze) (24)
ij>I(Uj;)?-le>, vie[l:J] (@29
ZRW > I(Upneg; X [Yiees) (26)
Rgpew' >1(U;; X|Y;), Viel[l:J] 27

Ry pve > {I(U[I:J]; Zn:nVinen, @) = LUy Y Vinea), Q)

+ 1(Up.g; X Z11:07) (28)
where we have
PQ‘/[I:J]U[l:J]}?[lzJ]X}/[LJ]Z[l:J]
J
= Pai, Px [ Pvio, P, 5, Px, x Priz,ix 29)
j=1

(Outer Bound): An outer bound for the multi-function region
Ry is the union of the rate tuples in (24)-(28) over all
Py, PV Qs PU Vi and P 31U, such that U; is admissible
for the function fj( 5, Y;) and (Q,V;) — U; — )~(j -X -
(X[l.J]\j,Y ;) form a Markov chain for all j € [1 : J|.
One can limit the cardinalities to X

and |U;| < (|X;] +5)2 for all j € [1: J].

Remark 2. The inner and outer bounds differ because the
outer bounds define rate regions for the Markov chains
QV)-U;-X; - X — (X[l..]]\j, Z;) forall j € [1:J),
which are larger than the rate regions deﬁned by the inner
bounds that satisfy (29).

D. Lossy Multi-Function Computation

We next give inner and outer bounds for the lossy multi-
function region R p, defined in Section II-D, in Theorem 4.



Theorem 4. (Inner Bound): An achievable lossy multi-
Junction region is the union over all Py, Py, q, Pu,v;
and P)?lej for all 5 € |1 J] of the rate tuples
(Rszw,[ltJ]7RE,DL)C,[l:J]vRf,EveyD[l:J]) satisfying

R,> {I(U[1:J];Z[1;J]|V[1:J}7 Q) —I(Up.; Yien Vi, Q)|

+ I(Upeg; X)) Zpe) (30
ij>I(Uj;X4|EG), Vie[l:J] @3
ZRM > I(Upnegy; Xpean [ Yiees) (32)
Rwemzl(U X[Y;), Viell:J] (33

Ry e > { Un.ap; 21| Vies, Q) — (U[I:J]§Y[1:J]|V[1:J]7Q)}

+I(£J[1:J]§X\21-J])
Dj = Eld(f;(X;,Y;),9;(U;,Y;))]

for a set of functions {g;(-, )}jzl and where (29) is satisfied.
(Outer Bound): An outer bound for the lossy multi-function
region Rp is the union of the rate tuples in (30) - (35)
over all Pg, Py, o, Py, v, and Pg %10, such that (Q,V;) —
U, )N( X ()?[LJ]\]-%,Z ) form a Markov chain for
all Jj € Ll . One can limit the cardinalities to |Q| < 2,
Vil <1X; \—1—6 and U;| < (|1X;] + 6)2 for all j € [1: J].

(34)

Vie[l:J]  (35)

Proof Sketch. The inner bound proof of Theorem 4 follows
from the achievability proof of Theorem 3, except that U;’s
are not necessarily admissible, and with the addition that
PU]-\ %, and Py, |y, are chosen such that there exists a set
of functions {gj(Uj,Yj)}j:l that satisfy g; FURY) =
{9Ui;,Yi )}y and E[d(f7 (X7, Y, g7 (UF, YY) <
D; + €, for all j € [1 : J], where ¢, > 0 such that
€n — 0 when n — oco. Since all sequence tuples (z7,y7, u})
are in the jointly typical set with high probability for all
j € [1 : J], by the typical average lemma, the distortion
constraints in (35) are satisfied. The outer bound proof of
Theorem 4 follows from the converse proof of Theorem 3
with the replacement of the admissibility step in (110) with
the steps given in (23) for random variables and functions with
the indices 7 = 1,2,...,J. [

IV. INFORMATION BOTTLENECK EXAMPLE

Consider the lossy single-function computation problem and
suppose X —Y — Z form a Markov chain. The characterization
of the corresponding rate region requires one to maximize a
mutual information term upper bounded by another mutual
information term that should be minimized simultaneously,
i.e., an information bottleneck.

Corollary 1. The lossy region of Theorem 2 when X —
Y — Z form a Markov chain is the set of all tuples
(Rsy Rwa RZ,DeCy RE,Evev D) satisfying

R> I(U; X|Y) = I(U; X) = I(U;Y) (36)
Ry>I(U; X|Y) = I(U; X) = I(U;Y) (37)
Ry pec > 1(U; X|Y) = I(U; X) — I(U;Y) (38)

IEEE TRANSACTIONS ON INFORMATION THEORY

RZ,Eve ZI(Ua X|Y) = I(Ua X) -
D >E[d(f(X,Y),g(U,Y))]

I(U;Y) (39)

(40)

Sfor some function g(-,-) such that U — X-X-Y- Z form a
Markov chain. One can limit the cardinality to U] < | X|+2.

The proof of Corollary 1 follows by applying steps identical
to the proof of [26, Corollary 3] to Theorem 2, we thus
omit it. The boundary points of the rate region defined in
Corollary 1 can be obtained by maximizing I(U;Y’) and
minimizing /(U; X') simultaneously for a fixed I(U; X) for
all P, U1% such that U — X — X —Y — Z form a Markov chain.
This problem is an information bottleneck problem [37], [38].
If the distortion metric d(-,-) is chosen to be the Hamming
distance, we then obtain the optimal function g*(u,y) for all
(u,y) €U as [26, Eq. (26)]

9" (u,y) = argmax Ppyy (flu, y) (41)
where f = f(Z,y) is a realization of the random function
output F' for any (Z,y) € X x V.

Consider a measurement channel Pz 21X and source Px for
the encoder Enc(-) such that the inverse channel P, X| X is
a BSC(p) for any 0 < p < 0.5. Furthermore, suppose the
measurement channel Py x for the decoder Dec(-) is a binary
input symmetric output channel [39, p. 21], which can be
decomposed into a mixture of binary subchannels as defined
in [40, Section III-B] [41]. We remark that the rate region
defined in Corollary 1 by (36)-(40) does not depend on the
random variable Z. Therefore, the measurement channel for
the eavesdropper does not affect the rate region as long as
the measurement channel for the eavesdropper is physically-
degraded as compared to the channel for the decoder Dec(-),
ie., Pyzx = Pziy Py|x. Since Pg y-, is fixed, the optimal
auxiliary random variable U is such that PX| v is a BSC with
crossover probability

H Y H(X|U)) -
CHX ) W)
1—-2p
which follows from [28, Theorem 3].
Suppose Px ~ Bemn(0.5), Pg/ ~ BSC(p = 0.06),

and assume that the measurement channel Py-|x consists of
M > 1 independent BSCs each with crossover probability
0.15, which satisfies the assumptions listed above. Using
auxiliary random variables satisfying (42), we depict the
projections of (Rs, Ry, R¢ pec, B¢ Eve, D) boundary tuples onto
the (Rs, Ry pve) plane in Fig. 3 for M = 1,2, 3 independent
BSC measurements by the decoder Dec(-).

Fig. 3 suggests that given a boundary point achieved by
a crossover probability calculated as in (42), any larger
secrecy-leakage rate and any larger privacyEve-leakage rate
are also achievable. Conversely, given such an achievable
boundary point, no smaller secrecy-leakage rate and no smaller
privacyEve-leakage rate is achievable. Furthermore, increasing
the number M of measurements at the decoder significantly
decreases the corresponding boundary point such that, e.g.,
when M = 3 measurements are used as compared to M =1,
the maximum secrecy-leakage rate decreases by approximately
31.45% and simultaneously the maximum privacy-leakage



GUNLU, BLOCH, AND SCHAEFER: PRIVATE REMOTE SOURCES FOR SECURE MULTI-FUNCTION COMPUTATION 7

0.4 - T T T
-
-*.
-@-

Il
W N =

M
M
M

0.3 H

0.2

0.1

PrivacyEve-leakage Rate (bits/symbol)

| | |
0.2 0.3 0.4
Secrecy-leakage Rate (bits/symbol)

Fig. 3. Secrecy-leakage rate vs. privacyEve-leakage rate projection of the
boundary tuples (Rs, Rw, R¢ pec, Re,Eve; D) for p = 0.06 and for the
number of independent BSC measurements at the decoder M = 1,2, 3.

rate to the eavesdropper decreases by approximately 58.68%.
These gains can be seen as multiplexing gains, in analogy to
multiple antenna systems for wireless communications.

V. CONCLUSION

We derived the secrecy-storage-privacyDec-privacyEve(-
distortion) regions for lossless and lossy single-function com-
putations with a remote source. The remote source model
allows to model multiple sequences observed by a single
terminal as multiple noisy measurements of a hidden source,
which allows to measure the diversity gains. The equivocation
measure common in the literature was replaced with a mutual
information metric, which resulted in simpler notation and
easier interpretations. A new privacy metric was considered
to bound the information leakage to a fusion center about the
remote source sequence. Bounds for the storage and privacy
leakage to the eavesdropper rates were shown to be different,
unlike in the previous models. Inner and outer bounds for
multiple asynchronous function computations within the same
network were given to illustrate the effects of joint constraints
for all terminals involved in any function computation. These
bounds differ only in the Markov chain conditions imposed.
We evaluated the rate region for a single-function computation
problem by solving an information bottleneck problem for
binary input symmetric output channels. In future work, we
will consider multi-function computations with multiple trans-
mitting terminals for each function computation and derive the
rate regions for two-function computations with two transmit-
ting terminals if a set of symmetry conditions are satisfied.
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APPENDIX A
PROOF OF THEOREM 1

A. Achievability Proof of Theorem 1
Proof Sketch. We use the output statistics of random binning
(OSRB) method, proposed in [42] (see also [43]) for strong
secrecy by following steps in [44, Section 1.6]. This approach
simplifies the analysis compared to previous proofs in the
literature.

Fix PU| 5 and Py such that U is admissible
and let (V",U",)?",X”,Y",Z") be ii.d. according to
PVU)?XYZ = PV\UPU‘)?P)NQXPXPYZ\X- We remark that

since all n-letter random variables are ii.d., U™ is also
admissible.

Assign two random bin indices (F,,W,) to each v™. As-
sume F, € [1:2"%] and W, € [1 : 2"/]. Similarly, assign
two indices (Fy, W,) to each u", where F, € [1 : 2"%] and
W, € [1 : 27f%]. The public message is W = (W,,W,)
and the indices F = (F,, F,) represent the public choice of
encoder-decoder pairs.

Using a Slepian-Wolf (SW) [6] decoder, one can reliably
estimate V" from (F,, W,,Y™), such that the expected value
of the error probability taken over the random bin assignments
vanishes when n — oo, if we have [42, Lemma 1]

R,+ R, > H(V|Y). (43)

Similarly, one can reliably estimate U™ from
(Fu, Wy, Y™, V™) by using a SW decoder if we have

Ry+ R, > H(U|V,Y). (44)

Thus, the reliability constraint in (2) is satisfied if (43) and
(44) are satisfied. ~

The public index F, is almost independent of X™, so it
is almost independent of (X", X™ Y™ Z™), if we have [42,
Theorem 1]

R, < H(V|X)

since it results in the expected value, which is taken over the
random bin assignments, of the variational distance between
the joint probability distributions Unif[1 : 2"%] . P5, and
PFV %« to vanish when n — oco. Furthermore, the public
index Fy is almost independent of (V™, X™), so it is almost
independent of (V" X" X™ Y™ Z™), if we have

R, < HU|V, X).
To satisfy the constraints (43)-(46), we fix the rates to

(45)

(46)

R,=H(V|X)—e¢ (47)
Ry =I1(V;X)—I(V;Y) 4 2¢ (48)
Ry=HU|V,X) —¢ (49)
Ry =I(U; X|V) = I(U;Y|V) + 2¢ (50)

for any € > 0.
Storage (Public Message) Rate: (47)-(50) result in a
storage (public message) rate Ry, of

Ry =R+ R, =I(V,U;X) = I(V,U;Y) + 4e

(@)

L I(U; X|Y) + 4e (51)

where (a) follows because V — U — X — Y form a Markov
chain.
Privacy Leakage to the Decoder: We have

(X" W, F|Y™) = [(X™WI|E,Y™) + I(X" F|Y™)

H(X"|Y™) — H(X"[W,F,V",U",Y") + 2,
H(X"Y™) — H(X"[U™, Y") + 26,

D W I(U; X|Y) + 26,

AA
1= INe

(52)

where (a) follows for some €,, > 0 with €, — 0 when n — oo
because

I(X™FIY™)=I(X" F|Y") + I(X"; Ey|Fy, Y™)
< 2e, (53)
since by (45) F, is almost independent of

(X", X", Y™, Z") and by (46) F), is almost independent of
(VX X™ Y™ Z™) and because V" determines F,; see
also [45, Theorem 1], (b) follows because V" determines
(Fy, W,), U™ determines (Fy,, W), and V*—=U" —(X™, Y™)
form a Markov chain, and (c) follows because (X™, U™, Y")
are i.i.d.

Privacy Leakage to the Eavesdropper: We have

(X" W, F|z") Y H(W,F|Z") - H(W,FIX")

Y (W, F|Z") — H(W,, F,, V"|X")

+ H(Vn‘W’UaFvkuvFqun)
(e)
< H(W,F|Z") — H(W.,, F,,V"|X") + né,

@ W, F|Z") - HU™, VX"
+ H(U" Wy, Fy, V', X™) + né,

©
< H(W,F|Z") — HU",V"|X") + 2né,

D g(W, F|2") — nH(U,V|X) + 2n¢, (54)

where (a) follows because (W,F) — X™ — Z" form a
Markov chain, (b) follows since V" determines (F,,W,),
(c) follows for some €, > 0 such that €, — 0 when
n — oo because (F,,W,,X™) can reliably recover V"
due to the Markov chain V" — X™ — Y™ and by (43), (d)
follows because U™ determines (F,, W), (e) follows by (44)
because (W, F,, V™ X™) can reliably recover U™ due to the
inequality H(U|V,Y) > H(U|V, X) that follows from

HUV,Y)-HUV,X) = I(U;V,X) - I[(U;V,Y)

> I(U;V,X) - I(U; V.Y, X) = 0 (55)

since U — (V, X) — Y form a Markov chain, and (f) follows
because (U™, V"™, X™) are i.i.d.

We need to analyze six different decodability cases to
consider whether (F,, W, Z™) can recover V" and whether
(Fyu, W, V™, Z™) or (F,,, W,, Z™) can recover U™.

Case I: Assume

0<Ry+ R, < H(V|Z),
0< Ry+ Ry < HU|V, 2)

(56)
(57)



so that (F,,W,) are almost independent of Z" and are
also almost mutually independent, and (F,, W,,) are almost
independent of (V™ Z™) and are also almost mutually inde-
pendent. Using (54), we obtain

I(X" W, F|Z")

< H(W,)+H(F,)+H(W,)+H(F,)
—nH((U,V|X)+2ne,
n(Ry + Ry + Ry + Ry)—nH (U, V|X)+2né,
(I(U,V; X) = I(U,V;Y) + 2 + 2¢,,)

n(I(U; X) = I(U; Y[V)

’SI/\
&

A
Q“
=

—I(V;Y) + 2e + 2¢,)

/\
(\
~

n(I(U; X)
n(I(U; X)—

—I(U;Y|V) = I(V; Z) 4 e+ 2¢)
H(U;Y|V)=1(U; Z|V)|-1(U; Z) +et2e,)
En(I(U; X|Z)+[I(U; Z\V)—1(U; Y|V )4€]+2€,) (58)

where (a) follows by (47)-(50) and (b) follows from the
Markov chain V. — U — X, (¢) follows by (47), (48), and
(56) such that equality is achieved when n — oo, (d) follows
from the Markov chain V — U — Z, and (e) follows from the
Markov chain U — X — Z.

Case 2: Assume

(d)

—~
~

0<R,+R, < HV|2),
H(U|V,Z) < Ry+ Ry < HU|Z)

(59)
(60)
so that (F,,W,) are almost independent of Z™ and are
also almost mutually independent, and (F,, W,,) are almost
independent of Z™ and are also almost mutually independent;

however, (F,,W,,V™ Z™) can reliably recover U™. Using
(54), we have

I(X™;W,F|Z")

(a)
< HU™, V" Z")—nH(U,V|X)+2ne,
On(1(U; X1 2)+[1(U; Z]V)~1(U; Y|V)+e = +2¢,) (61)
where (a) follows because V" determines (F,, W,) and U™
determines (F,,, W,,), and (b) follows from the Markov chain
V —U — X — Z and by (49), (50), and (60).
Case 3: Assume
0<Ry+R, < H(V|Z),

H(U|Z) < R+ R,

(62)
(63)

so that (F,, W,) are almost independent of Z™ and are also
almost mutually independent, and (F,, W,, Z™) can reliably
recover U™. Using (54), we obtain

I(X™W, F|27)
W 2N - HW,, F|U™, 2% —nH(U, V|X)+2n¢"
Y wwr|zny e HV U, 27—
9 o (I(U: X|2)+2¢)

(U Z|V)~1

nH(U,V|X)+2ne,

(4)

=n(I(U; X|2)+ (U;Y|V)+e€]”+2€,) (64)

IEEE TRANSACTIONS ON INFORMATION THEORY

where (a) follows because U™ determines (F,,W,), (b)
follows since V" determines (F,, W,), (c) follows from the
Markov chain V —U — X — Z and because (V", U™, X™, Z"™)
are i.i.d., and (d) follows by (49), (50), and (63).

Case 4: Assume

H(V|Z) < R, + R,,
0< R,+ R, < HU|V,Z)

(65)
(66)
so that (F,, W,, Z™) can reliably recover V", and (Fy, W,,)

are almost independent of (V™ Z™) and are also almost
mutually independent. Using (54), we have

I(X™ W, F|Z")

< W2 + HW,, EAW,, Fy, 27)
—nH(U,V|X) + 2ne,

< H(V"\Z”) + H(W.,) + H(F,) — nH(U,V|X) + 2ne,
n(H(V|Z) + Ry + Ry — H(U,V|X) + 2¢€.,)

® n(H(V|Z)+ HU|V,Y) + e — H({U,V|X) + 2€,)

n(I(U; X|V)=I(U; Y|V)+I(V; X)—I1(V; Z)+2e€,+¢)
n(I(U; X) - I(U;Y|V) = 1(V; Z) + 2¢, + €
n(I(U; X)—[L(U;Y|V)=1(U; Z|V)] = I(U; Z)++2¢€),)
n(I(U; X|Z)+[I(U; Z|V)—I(U; Y |V)+€|+2€,) (67)
where (a) follows because V™ determines (F,,W,), (b)
follows because (V™, Z™) are i.i.d. and by (49) and (50), (c)
follows from the Markov chain V — U — X, (d) follows from
the Markov chain V—U — Z, and (e) follows from the Markov
chain U — X — Z.
Case 5: Assume
H(V|Z) < R, + R,, (68)
H(U|V,Z) < Ry+ R, < H(U|Z) (69)
so that (F,, W,, Z™) can reliably recover V", and (Fy, W,,)
are almost independent of Z™ and are also almost mutually

independent; however, (F,,, W,,, V"™ Z™) can reliably recover
U™. Using (54), we have

(X" W, F|2")

C

—~
S
=

6

(a)
—nH(U,V|X) + 2ne,,

(gb)H(V”|Z")+H(Wu,Fu|V",Z”)
+HWV™"W,,F,,Z") —nH(U,V|X) + 2ne,,

C HW 27 + HU V™, 27 — aH(U,V|X) + 3n€,

D (1(U; X|Z)+3¢€,)

n(I(U; X|Z)+[I(U; Z|V) = 1(U; Y|V) +€]~ +3€;,) (70)

where (a) and (b) follow because V" determines (F,, W),
(c) follows because U™ determines (F,, W) and by (68), (d)
follows because (V", Z™,U") are i.i.d. and from the Markov
chain V —U — X — Z, and (e) follows by (49), (50), and (69).

©
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Case 6: Assume

H(V|Z) < R, + R,, (71)
H(U|Z) < Ry + Ry (72)
so that (F,,W,,Z") can reliably recover V™, and

(Fy, W, Z™) can reliably recover U™. Using (54), we obtain
I(X™ W, F|Z"™)

(a)
< HWV™U"Z") —nH(U,V|X) + 2ne,

o (1(U: X|2) + 2¢)

O o(1(U; X|2)+ (U Z|V) (U Y|V)+€ = 42€,) (73)
where (a) follows because U™ determines (Fy, W) and V"
determines (F,,W,), (b) follows because (V™ U™ Z™) are
i.i.d. and from the Markov chain V — U — X — Z, and (c)
follows by (49), (50), and (72).

Secrecy Leakage (to the Eavesdropper): Consider the
secrecy leakage. We have

I(X", Y™ W,F|z) Y H(W,F|2") - HW, F|X")

(b) ~
< H(W,F|Z") — H(W,, F,,V"X") + ne,

¢ H(W,F|Z") — nH(U,V|X) + 2né, (74)
where (a) follows from the Markov chain (W, F') — X —
(Y™, zm), (b) follows since (W, F;,, X™) can reliably recover
V™ due to the Markov chain V™ — X" —Y™ and (43), and (c)
follows by (44) since (W, F,, V", X™) can reliably recover
U™ due to the inequality H(U|V,Y) > H(U|V, X) that can
be proved similarly as in (55), and because (U™, V™, X™) are
iid.

Similar to the analysis of the privacy leakage to the eaves-
dropper, we need to analyze the same six decodability cases to
consider whether (F,, W, Z"™) can recover V" and whether
(Fy, Wy, V™, Z™) or (F,, Wy, Z™) can recover U™. One can
show that all steps applied in Cases 1-6 for the privacy leakage
to the eavesdropper follow also for the Cases 1-6 for the
secrecy leakage by replacing X with X. We; therefore, list
the results for Cases 1-6 as follows.

Case 1: We obtain for (56) and (57) that

I(X", Y™, W,F|Z")

<n(I(U; X|Z)+[I(U; Z|V) = I({U; Y [V)+e] +2€,).
(75)

Case 2: We obtain for (59) and (60) that
I(X", Y™ W, F|Z")

<n(I(U; X|2)+[I(U; Z|V)=I({U; Y |V)+€| " +2¢€,).
(76)

Case 3: We obtain for (62) and (63) that
I(X", Y™ W, F|Z")

<n(I(U; X|2)+[I(U; Z|V)=I({U; Y |V)+€|~+2€,).
)

Case 4: We obtain for (65) and (66) that
I(X™, Y™, W,F|Z")

<n(I(U; X|2)+[I(U; Z|V)—=L(U; Y|V)+€] " 42€,).
(78)

Case 5: We obtain for (68) and (69) that
I(X™,Y";W,F|Z")

<n(I(U; X|Z)+[I(U; Z|V)=1(U; Y|V )+€]~+3€,).
(79)

Case 6: We obtain for (71) and (72) that
I(X", Y™, W,F|Z")

<n(I(U; X|Z)+[I(U; Z|V)=1(U; Y|V )+€] = 42€¢,).
(80)

Now suppose the public indices F' are generated uniformly
at random. The encoder Enc(-) generates (V™,U™) according
to PVn Un X ELE, obtained from the binning scheme above to
compute the bins W, from V" and W, from U", respectively.
This procedure induces a joint probability distribution that is
almost equal to PVU % xyz (ixed above [44, Section 1.6]. We
remark that the privacy and secrecy leakage metrics considered
above are expectations over all possible realizations F' = f.
Thus, using a time-sharing random variable ) and applying
the selection lemma [46, Lemma 2.2] to each decodability case
separately, these results prove the achievability for Theorem 1
by choosing an € > 0 such that ¢ — 0 when n — oco. O

B. Converse Proof of Theorem 1

Proof Sketch. Suppose for some §,, >0 and n > 1, there exists
a pair of encoders and decoders such that (2)-(6) are satisfied
for some tuple (Rs, Ry, R¢ pecs R Eve)-

Let V; £ (W, Y,z and  U; £
(W, X1y, Z"71), which satisfy the Markov chain
V- U — X; — X; — (Y;, Z;) for all i € [1: n] by definition
of the source statistics.

Admissibility of U: Define

€n = 5n log(|j{v|‘y|)

where Hp(0) = —dlogd — (1 — §)log(1 — 4) is the binary
entropy function, so that ¢, — 0 if §, — 0. Using (2) and
Fano’s inequality, we obtain

+ Hb((sn) (81)
n

new 2 H(F) Y =Y Y ST HIT)
=1
n _ (C) n
> H(fIf) = Y H(LW,Y")
=1

i=1

Z H(fi‘WYH7Xi_1>Zi_1)

NE

K2

A
s
-1

@
Il
-

H(fZ‘VVv Yij»hXi_laZi_lv}/’-i)

H(f:|Us,Ys:) (82)

[
-

©
I
—



where (a) follows from [31, Lemma 2] so that when n — oo,
there exists an i.i.d. random variable ™ such that H (f"|f™) =
H(f*|f") and f* — f* — (W,Y™) form a Markov chain,
(b) follows because (f™, f™) are i.i.d., (c) follows from the
Markov chain f* — (W,Y™) — f™ and permits randomized
decoding, (d) follows from the Markov chain for all ¢ € [1 : n]
Yi_l_(Xi_lazi_17WYViv 111)_f’b (83)
and (e) follows from the definition of U;.
Storage (Public Message) Rate: We have

(@) v
n(Ry +06,) > log|W| > HW|Y") - HW|X",Y")

— [(X™WY™) = HX"[Y™) - H(X"|W,Y™)

n
= H(X"Y") =Y H(X;| XL w,y")
=1
CHE Y = Y HEX LWL Y
1

(2

©

> H(X"MY™) =Y H(X; | X' 27 WY, Y)

M=

1

H(Xi|U;,Y;) = Y 1(Us X,|Yi) (84)
=1

M=

Il
-

D H(X|Y) -

(2

where (a) follows by (4), (b) follows from the Markov chain
for all s € [1: n]

Vil (XL WYY - X (85)

(c) follows from the data processing inequality applied to the
Markov chain for all ¢ € [1 : n]

(XL 2T = (XL WYY - X (86)
and (d) follows from the definition of U.
Privacy Leakage to the Decoder: We obtain

(@)
n(RZ,Dec + 5n) > H(W|Yn) - H(W|Xn)

— Z {I(W;XAXFI) - I(W;K\Yi’il)}

s
Il
—

—

(9 [I(W;X”XFEZFHEM
- I(W; Yi|Y£1, Xi_lv Zi_l)}

& {I(Wxi—l,zi‘l,ml;Xi)

— I, Y7, X 2]

< ) [I(Ui;Xi) - I(UZ-;Yi)} L > (U X;Y;)

i=1 i=1

(87)
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where (a) follows by (5) and from the Markov chain W —
X™—Y™", (b) follows from Csiszdr’s sum identity [47], (c)
follows from the Markov chains
Ziil - (Xiilvifij-l) - (XMW)
Ziil - (Xiilayvﬁ-l) - (}/1’ W)

(88)
(89)

(d) follows because X ™ is i.i.d. and the measurement channels

are memoryless, (e) follows from the definition of U;, and (f)

follows from the Markov chain U; — X; —Y; for all i € [1: n].
Privacy Leakage to the Eavesdropper: We obtain

n(Rl,Eve + 5n)

2 [HW[Z") = HW|Y™)] + [HW[Y") - HW[X")]

3

= {I(W;E\Yﬁl) — (W Zi|Zi—1)}
=1

+

n
i=1

W XX = WYl
O S (WYY 27 — T3 2027 V)|

1=

—_
3

3 IOV XX Y LW Yl X
i=1

3

(¢

~
—

HW3 YV, 270 = IOV Zi| 27, Vi) |
=1
+
=1

IW; X XL Y,, 27

IV YV, X 2

=
H'M:
I

[V, 275 Y) 1, 27 Y 2)|

I(W Xi_layviTJLthi_l;Xi)

>

1

n

I

—1(W, YizlrlﬂXi_lﬂzi_l;Yi)

ZbS 1V ¥ = 1V 20
=1

+ (U3 Vi X)) = 1(U3, Vi Vo) |

I

«
Il
—

— I(U;, Vi; Z;) + 1(Us, Vi; X;)

+ (U3 Z:|Vi) — 1(U; Yi| Vi)

NS
=3 [10s X3120) + 10 V)~ 10 Vil VD) | 00)

1=

—~

[

where (a) follows by (6) and from the Markov chain W —
X™—Z™, (b) follows from Csiszér’s sum identity, (c) follows
from the Markov chains in (88) and (89), (d) follows because
X™ is i.i.d. and the measurement channels are memoryless,
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(e) follows from the definitions of V; and U;, and (f) follows
from the Markov chain V; — U; — X; — Z; for all i € [1 : n].
Secrecy Leakage (to the Eavesdropper): We have
n(Rs + 6,)
(a)
> [HW|Z™)—

) N [
) I

+ [nH(X|Y) - Y HEIX LW, yn)}
) i=1

HWY™)|+[HW[Y™)-HW|X",Y")]

(W3 YilYi) = 1(W; 24127

3

—
3]
-~

LU R AL BN AV AR 6]

s
Il
—

+ [nHE)Y) = 3 B W YY)

i=1
@ S~ 1 i—1 i—1 yn
ES LA CTAR OB (AR GNYA
i=1
+ [nHEY) = > HEIXTL 2L WYY

i=1

—

= Zn: [I(Vi;Yi) —I(Vi; Z;) + I(Ui,w;)?im)}

%

~

Il
—

1=
IngE

©
Il
A

[1Vis Y0 =1V Z0) 41U, Vis X) = LU, Vi i)

—I(Uy, Vi; Zi)+1(U;, Vi; X;)

I

©
I
—

+ (L(Us; Zi| Vi) = 1(Us; Y3 Vi)

—~

M-

9)

= 3 [1ws K zo+ 1 ws ziv - 1w i)l | - on

=1

where (a) follows by (3), (b) follows because (X™ Y™)
are iid., (c) follows from Csiszar’s sum identity and the
Markov chain in (85), (d) follows because X™ is i.i.d. and
the measurement channels are memoryless, and from the data
processing inequality applied to the Markov chain in (86), (e)
follows from the definitions of V; and U;, (f) follows from
the Markov chain (U;, Vi) — X; — Y for all i € [1 : n], and
(g) follows from the Markov chain V; — U; — X; — Z; for all
i€ [1:n)].

Introduce a uniformly distributed time-sharing random vari-
able @ ~ Unif[1 : n] independent of other random variables.
Define X = Xq, X = Xq, Y =Y, Z2 =2, V = Vg,
U=(Uq,Q),and f = fg sothat (Q,V)-U—-X-X—(Y,2)
form a Markov chain. The converse proof of Theorem 1
follows by letting d,, — 0.

Cardinality Bounds: We use the support lemma [47,
Lemma 15.4]; see also [35, Appendix C]. One can pre-
serve Py by using |X| — 1 real-valued continuous functions.
We have to preserve two expressions for the two cases
such that I(U; Z|V,Q = ¢q) > I(U;Y|V,Q = ¢q) and
IU;ZIV,Q = q) < I(U;Y|V,Q = q) for all ¢ € Q,

so one can limit the cardinality |Q| of Q to |Q| < 2.
Furthermore, we have to preserve five more expressions, i.e.,
H(X|U,V, Z), H(X|U,V,Y), H(X|U,V,Y), H(X|U,V, Z),
and (I(U; Z|V) = I(U;Y|V)). Thus, one can limit the cardi-
nality [V| of V' to [V| < |X| + 4. Similarly, in addition to the
| X'| — 1 real-valued continuous functions, one should preserve
the same five expressions for the auxiliary random variable U.
To satisfy the Markov condition (Q,V)-U-X-X—(Y, Z),
one can limit the cardinality |U/| of U to U] < (|X| + 4)2. O
APPENDIX B
PROOF OF THEOREM 3
A. Achievability (Inner Bound) Proof of Theorem 3

The achievability proof follows by using the OSRB method,
as described below.

Proof Sketch. Similar to Appendix A-A, fix PUj| %,
and Py,y, such that U; is admissible for the
function f;(X j,Y;) for all j € [l J] and let

(V[;{J},UHZJ],X“ J],X Y[1 J],Z[’{IJ]) be i.i.d. according to
(29). We remark that since all n-letter random variables are
iid., U} is also admissible for all j € [1: J].

Assign two random bin indices (Fy ;, Wy, ;) to each v,
and assume F,; € [1 : 2"Fvi] and W, ; € [1 : 2"F%i] for
all j € [1 : J]. Similarly, for all j € [1 : J] assign two
indices (F, ;, Wy, ;) to each uf, where F, ; € [1 : 2"fs] and
Why,; € [1: 27fui]. The public message is W; = (Wy ;, Wy ;)
and indices F; = (F, ;, Fy ;) represent the public choice of
encoder-decoder pairs for all je:J.

For all j € [1 : J], using a Slepian-Wolf (SW) decoder, one
can reliably estimate V" from (Fy j, Wy ;,Y]") if we have

Ryj+ Ry > H(Vj|Y)) (92)

and one can reliably estimate U}* from (£, Wy ;, Y/, V")
by using a SW decoder if we have

Roj + Ruj > HU|V;,Y)). (93)

Thus, applying the union bound, we can show that the relia-
bility constraint in (8) is satisfied if (92) and (93) are satisfied
for all j € [1:J]. B

The public index Fy ; is almost independent of X7, so it is
almost independent of _

Vg Uitn iy X X Vi)
R, ;< H(V;|X)), viell:J. o)
The public index Fy ; is almost independent of (V", )?j"), S0

it is almost independent of
Vi Uty Xty X Vi 21, )» 1 we have

[’LJ]), if we have

Ry < H(U;|V;, X;), viel:J.  ©5)

To satisfy the constraints (92)-(95), similar to Appendix A,
we fix the rates to

Ry ;=H(V;|X;)— Viell:J] (96)
Ry =1(Vy; X;)=1(V;; ;) +26, Viel:J] O
Ry;=H(U;|V;, X;)—e, Vie[l:J] (98)
Ru,;=I(U;; X;|Vi)—I(Uy; Y;|Vi)+26, Vi€ [1:J] (99)



for any € > 0.
Storage (Public Message) Rate: (96)-(99) result in a
storage (public message) rate Ry, ; of

Ry = Ryj+ Ruy = 1(V;, U5 X;) —

W U X,1Y;) + 4e,

I(V;,U;;Y;) + de
Vje([l:J] (100)

where (a) follows because V; — U, — X; — Y; form a Markov
chain for all j € [1: J].
Privacy Leakage to the Decoder: We have

(@)
I(X™ W, Fj|Y) <nl(Uj; X|Y;) 426, Vi € [1:J] (101)

where (a) follows for some €,, > 0 with €, — 0 when n — oo
by applying the steps in (52).

Privacy Leakage to the Eavesdropper: Suppose
an  additional  virtual joint encoder  assigns 4.J
indices (FU7[1:J],W J[L: J], u,[1: J] Wu,[l:J]) to each
realization  tuple (v1 U8, U ut ul, ) €
Vi X Vo x...xVyxUy xUy x ... x Uy such that

J ~
> (Ruj+Ryg) > H(Vig Vi), (102)
j=1
J ~
S (Ruj + Rug) > HUpn Vi), Yies).  (103)
j=1
Thus, (W 1.9, F, ,[1 7 [?z J]) can relial'aly recover V[? J] and
Vi W), Fu 1015 Y] ) can reliably recover U}y .

Therefore, we have for the total storage rate that

M&

J
Ryj =Y (Ry;+Ru;)
1 j=1

S IVE

= 1(Up. Viea) Yien)

I(U[l:J]a Vi )N([l:J])
I (104)

Uy Xen | Yien)

where (a) follows by (102) and (103) and because (94)
and (95) ensure that (F (] Fuy 1 J} are almost mutu-

ally independent of X[ Ly since 375 ( (R, v,j T R uj) <
H(Up.q, Vi J]|X[1: 7]) such that equality is achieved when
n — oo and (b) follows from the Markov chain V. ;j—Up..5)—
X — Y-

Consider the privacy leakage to the eavesdropper. We have

=

IX™ Wiy, FunlZi.p)

(@)

= HWp.gy, Fu.nlZii.y) — HWpegy, Fapn|X™)

o H(W[1~]]aF[1~]]|Z[1:J]) —nH(Up.s), Vi1 X)
+ Z [ ViV = Wieaps Flae, X™)

HWUFNUR a9 Vit Wiy Fre X7)

(c)
HW.gy, FunlZi.p)

*TLH(U[lJ],‘/[lJ]lX) +2JTL€; (105)
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where (a) follows from the Markov chain Zfj , — X" —
(Wii.a» Fii.n)» (b) follows since U determines (W, j, Fu, ;)
and V' determines Wy, Fy ;) forall j € [1 : J], and
(U[1 Vi ) X™) are i.i.d., and (c) follows for some €, > 0
such that €/, — 0 when n — oo because (F, ;, W, ;X" ) can
reliably recover V)" due to the Markov chain V" — X™ —Y"
and (92), and because (Wajs Fuj, V" ,X™) can reliably re-
cover U due to the inequality H (U |V], Y;) > H{U;|V;, X),
proved in (55), for all j € [1: J].

We consider the six decodability cases considered in
Appendix A-A by replacing [(R, + R,),(R, + Ry)]
with [(S7L(Roy + Rug))s (S7o0(Buy + Rup))s
respectively, and
[H(V|Z),H(U|V,Z),H(U|Z)] with
[HViealZpea)s HUp:n Vi), Zien), HUpe | Zpe))s
respectively. Using these replacements, applying the steps
in (58),(61), (64), (67), (70), and (73) in combination with
(105), and by choosing trivial rates that satisfy (102) and
(103), one can show that

IX™ Wiy, FunlZi.p)
<n[I(Un.p; Zpg)| Vi) — (U[1 )3 Y J]\V[r 7)) +el”

Secrecy Leakage (to the Eavesdropper): Consider the
secrecy leakage. We have

IX (e Yooy Wiy Fren | Z.)
(a)
HWp.gy, FunlZii.y) — H Wiy, Fu. ]]|X[1 J7)
(b)
S H(Wi.p: FunlZi.g)
H(UR 5, Vi | X5 )+ 20, (107)

where (a) follows from the Markov chain (Wi sy, Fli.5)) —

[1 J] (Y[’f 20 J]) (b) follows for some €], > 0 such that
¢, — 0 when n — oo because UJ* determines (WUJ,FUJ)
and V" determines (W, ;, Fy ;). and (vaFw,X ) can
reliably recover V" due to the Markov chain V" — )Z'j" -Yr
and (92), and similarly (W, ir Fujs VJ’Z X”) can reliably
recover UJ' because H(U;|V;,Y;) > H(U,;|V;, X;), which
can be proved as in (55).

By using the same joint virtual encoder used for the privacy-
leakage to the eavesdropper analysis above and replacing X
by X[1.s] in the analyses of (106), we obtain from (107) that

IX( Y Woens Fleanl Z5.)
< n[I(Up.; Zl-J]|V[1 0) = LU0 Y| Vi) el ™
+ n(I(Un.gp; Xpen Z)) 43 7€) (108)

Suppose the public indices F];. ;) are generated uniformly at
random. The encoder Enc;(-) generates (V}", U}") according to
PV”U“ X0 F R obtained from the binning scheme above to
compute the bms Wy ; from V" and W, ; from U}* for all j €
[1: J]. This procedure 1nduces a joint probabrhty distribution
that is alrrlost equal to PV[1 AU X XY Z1. fixed above
[44, Section 1.6]. We remark that the privacy and secrecy

leakage metrics considered above are expectations over all
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possible realizations Fj;.;; = f[1.7. Thus, using a time-
J
sharing random variable @) such that Pyy;,,,, = P H Py

=1
and applying the selection lemma to each decodablhty case

separately, these results prove the achievability for the rate
tuples given in Theorem 3 by choosing an € > 0 such that
e — 0 when n — oo. O

B. Converse (Outer Bound) Proof of Theorem 3

Proof Sketch. Suppose for some §,, >0 and n > 1, there exists
a pair of encoders and decoders such that (8)-(12) are satisfied
for some tuple (R, Ry [1:7], Re,pec,[1: J],Rg Eve)-

Let Vi, £ (Wj,Yﬁrlj,Zl_ ) and U, L
(W;, X1 vn, J,Z;:*l), which satisfy the Markov chain
Vij — Uy — Xij — Xi — (Xipenns Yig, Ziy) for all
i € [1 :n]and j € [1 : J] by definition of the source
statistics.

Admissibility of Uj: Define
(60 08151 (109)

€, = max
jE[1:J]

)+ Hb(5n,j))

so that €, — 0 if m[ax] 0n,j = 0n — 0. Applying the union
JE[1:J
bound to (8) and using Fano’s inequality, we obtain

ne, > H(f]|f7)

(a) n
> H(fi;|Uij Yig), Vje[l:J]

i=1

(110)

where (a) follows applying the steps in (82) and from the
definition of U, ;.

Storage (Public Message) Rate: We have for all j € [1: J]
that

(a) Ok ~
(R, j+0,) > log Wy > > T(U; j; Xi;

=1

Yi;) (1D
where (a) follows by (10) and (b) follows by applying the
steps in (84) and from the definition of U ;.

Privacy Leakage to the Decoder: We obtain for all j €
[1:J] that

(@)
n(Ry, Dec,j +0n) > H(W;|Y[") — H(W;|X™)

®
> ZI(UW-;XZ-D@J) (112)
i=1
where (a) follows by (11) and from the Markov chain W; —
X" —Y]" and (b) follows by applying the steps in (87) and
from the definition of U ;.
Sum-Storage Rate: We have for all j € [1 : J] that

J
11wl
j=1
>HWp.nlYi.g) — HWinl XG.: Yig)

= H(X{. 0 Yitn) = 2 HX e X( 0 Yt Wies)
=1

J
(@)
n Z(RWJ +0,) > log

= H(X 1J]|Y[1J)

_ZH 7,[1]

> H(Xﬁ.]] |}/[711J])

v i—1 i—1
— ZH(Xi,[lzJ X[1 J] Z[1 J]’}/;+1 [1:J]> Y‘,[ltJ]’W[l:J])

i=1

d n
:Z 1J]> 1J]|Y[1J)

[1 J]’ Y e Yaess W)

(113)

where (a) follows by (10), (b) follows from the Markov chain
for all 4 € [1 : n]

Y[iJl] (XffJ] Wi, Yite) — X1 (114)

(c) follows from applying the data processing inequality to the
Markov chain for all ¢ € [1 : n]

(XN 2z ) - (XffJ]aW[lJszu )~

[1:J] X, 1101

(115)

and (d) follows because ()Z'[T{ZJPY?:J]) are i.i.d. and from the
definition of U; ; for all j € [1: Jﬁ.

Privacy Leakage to the Eavesdropper: We obtain

n(RZ,Eve + 5n)

(@)
> [HWn.nlZf1.p) — H(

+ [HWnanlYig) —
() i
2 Z {I( 15 Yi e Y g Zu;}])
=1

= I(Whi.ay; Zia- ]|Z[11}]?}/z+1[1J]):|

Wi [Yi.g)]
H<W[1:J} |Xn)]

n

+ Z {[(W[l:J};Xz’\XFlefll,[LJ])

=1

— I (Wi Yo Y s J]aXi_l):|

:Z[ W[1J Y[1J| i+1,[1:J]> Z[Zl;])
—I(Wp.g; Zi,[l:J]|Z[i;}]’ Yirjrl,[lrJ])}

n

. 1—1 n 1—1
+ Z [I(W[lthXi‘X 7)/7;+1¢[1:.]]7Z[1:J])
i=1

—I(Wheas YapenlYiia J]ﬂXZ 1 Z[l1 }})}



(a)
n) = [H(W[LJ]|Zﬁ:J])*H(W[1:J]|Y[?;J])]JF
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[H (WY ) — HWien | Xf g Vi)

[I(Wu 73 Yo pnn Y pey) — IWhes Zi,[l:J]lzfi}])} + [nH(X[lzJ]D/[l:J]) - ZH(Xi,[1:,I}|X[i;}]7W[LJ],Y[?;J])}

_I(W[l 23 Yi e Y ey

— I(Wiaani Ziaea 12350 Vi o)

_nH()?[LJ”Y[l:J]) - Z H(X [1: J]‘X 1:J) W[l J]szH [1:J]> Y; J[1: J])}

1 ]]aYz—i-l [1: J]vZ [1: J])]

_I(W[lrJ] ) Yij—l,[l:J]v Z[il_;}] ; Yz‘,[l:J])

[ H (X [Yi) - ZH(X@[LJHXF e Wiea)s Vit s Ya J])}

I(Vi s Yies) — IVigeas Zipes) + Ui i, ‘G7[1;J];)~Q,[1:J]|ng[1:J])}

IVa e Yipen) =L Vi peys Zipen) + IUs oy, Vo) X)) — I(Ui,[I:J]aVi,[l:J]Q}/i,[lzJ])‘|

~I(Ui ey Vi) Zipen) I Uiy Vipogs Xopen) + LU pens Zipen [Vipen) — IUs ey Yoo |W,[1:J])]

[[I(Ui,[l:J]Q Zi Vi) = LU 1y Yo e Vi e~ + I(Ui,[l:JﬁXi,[l:J]|Zi,[1:J]):| (116)

|:[(W[1:J}7}211,[1:J]’Z[1 J]’ i,[1: J])

— (W), 2 [1 J]’ Y s Zi: J])}

—I(Wp.g, Y e

[I(W,[LJ];}Q,[LJ]) —I(Vi 1215 Zi1eny)
+ I(Ui g7, Vi X

—I(U; 1.0, Vi s Yi,[l:J])]

—I(U; .00, Vi) Zijiea) L (Ui 1y Vi X

+ LU 1:075 Zi 120 | Vi j1:7)

—I(U; p1.0: Ya, | Vi, [1J)]

f n
> Z{ Ui p0y; Xil Zi i)
[](Ui,[LJ];Zz‘,[l:.]]|Vi,[1:J])

—I(Ui,[l:J]§ Yi,[l:J] |Vi,[1:J]ﬂ 7}

where (a) follows by (12) and from the Markov chain
—X"=Z . (b) follows from Csiszar’s sum identity,

(c) follows from the Markov chains for all ¢ € [1 : n]
Zﬁ }] (XL ) — (Xa W) (118)
Ziiy — (XTLYE ) = Yipesp, W) (119)

(d) follows because X™ is i.i.d. and the measurement channels
are memoryless, (e) follows from the definitions of V; ; and
U forall j € [1: J], and (f) follows from the Markov
chain V1.5 — Us j1.5) — Xi — Zi 1) for all i € [1: n].

Secrecy Leakage (to the Eavesdropper): We have (116)
given at the top of this page, where (a) follows by (9),
(b) follows since (X[}, Y[}, ;) are iid., (c) follows from
Csiszar’s sum identity and the Markov chain in (114), (d)
follows because X" is i.i.d. and the measurement channels are
memoryless, and from the data processing inequality applied
to the Markov chain in (115), (e) follows from the definitions
of Vi .y and U 1.7, (f) follows from the Markov chain
(Ui, jiea1s Viyie)) — Xipeg) — Yo forall i € 1 n]iand (9)
follows from the Markov chain V; (1.7 — U j1.5] — Xy [1.9) —
Z; 1. forall i € [1:n].

Introduce a uniformly distributed time-sharing random vari-
able @ ~ Unif[1 : n] independent of other random variables.
Define X=Xq, X;=Xq,;. Y;=Yq,;, Zj=2q,; Vi=Va,
Uj = (~UQ,J‘,Q), and fj = fQ’j so that (Q,ij)— Uj - Xj —
X —(X[1:0)\j, Yy, Z;) form a Markov chain for all j € [1 : J].
The converse proof of Theorem 3 follows by letting d,, — 0.

Cardinality Bounds follow by using the support lemma as
in Appendix A-B. O



