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Abstract—We consider a non-adaptive controlled sensing sce-
nario in which the actions of the decision maker are corrupted
by an adversary. The objective of the decision maker is to
either detect the presence of the corruption or make a correct
decision. Accordingly, the performance of a controlled sensing
strategy is measured in terms of the error probability when
there is no adversary, denoted PE,0, and the error probability
when an adversary is present, denoted PE,1. Our main result
is Stein-lemma like characterization of the optimal achievable
error exponent of PE,0 subject to a constraint on PE,1. We also
illustrate the result with numerical examples.

I. INTRODUCTION

Given a set of parameters Θ and a set of distributions

{p¹}¹∈Θ, the goal of hypothesis testing is to design a strategy

allowing a decision maker to figure out the true parameter

¹ by observing a fixed number of samples generated from

p¹. Classical results for this setting including the Chernoff-

Stein’s lemma for |Θ| = 2, which characterizes the optimal

type-I error exponent when the type-II error probability is

upper bounded by a non-trivial small value, and the Cher-

noff information, which characterizes the optimal Bayesian

error exponent [1]. The hypothesis testing problem is called

sequential when the decision maker can observe samples until

a stopping time criterion is met, and active when the decision

maker can take an action a from a set A to determine the

distribution pa¹ from which the observation is generated [2]–

[4]. Active hypothesis testing is also called controlled sensing,

which is the terminology adopted here. Recent progress in the

area include (sometimes partial) characterizations of the error

exponents and expected stopping times of controlled sensing

in all combinations of adaptive/non-adaptive sequential/non-

sequential settings [3], [4], thereby shedding light on the

benefits of adaptivity and sequentiality. Other works have also

explored variations of the problem, including the characteriza-

tion of mis-classification probabilities [5]. Unlike these works,

our objective is to analyze the performance of controlled

sensing in the presence of an adversary.

Depending on the attacker model, different security per-

formance metrics may be defined. In the case of passive

eavesdropping attacks, the evasive hypothesis testing problem

in [6] attempts to minimize the error exponent of the adversary

while ensuring an acceptable performance for the decision

maker. The covert hypothesis testing problem in [7], [8]

studies how to perform hypothesis testing problem with low

probability of detection, by hiding the existence of the test

from an eavesdropping adversary. In the case of active attacks,
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the adversary may actively degrade the performance of the

hypothesis testing by varying the observed samples or the

controlling action. When the samples are corrupted, [9] inves-

tigates hypothesis testing rules that are robust to adversarial

attacks. We investigate here the problem of controlled sensing

with corruptions on the actions instead of samples, which to

the best of our knowledge, has not been studied yet.

When the controlling action is corrupted, the decision maker

might become utterly unable to detect the true hypothesis,

so that a proper problem formulation is needed. A similar

challenge can be found in the problem of authentication [10]–

[13]. Therein, a codeword is transmitted through a state-

dependent channel while an adversary attempts to degrade the

communication quality by varying the state sequence [13].

The objective for the receiver is then to either decode the

message correctly or identify the existence of an adversarial

attack. Inspired by these works, we study the performance

of controlled sensing with corrupted commands by defining

two kinds of error probabilities: the error probability when

the adversary is not present and the error probability when the

adversary is present. As in the Chernoff-Stein lemma, our work

characterizes the optimal exponent of the first error probability

while ensuring a non-trivial upper bound on the second error

probability.

The rest of the paper is organized as follows. In Section II,

we review the notation used throughout the paper. In Sec-

tion III, we introduce the exact model of interest and present

our main results, which characterizes an exact error probability

exponent. In Section IV, we develop our achievability proof

and in Section V we derive a matching converse.

II. NOTATION

For any discrete set X , PX is the set of all probability

distributions on X . For n ∈ N
∗, a sequence of length n is

denoted as xn ≜ (x1, · · · , xn) ∈ Xn, where xi is the ith
element of xn for any i ∈ [1;n]. For any xn ∈ Xn, p̂xn

denotes the type of xn, i.e., p̂xn(a) = 1
n

�n

i=1 1(xi = a)
for all a ∈ X . For any type P , T n(P ) is the corresponding

type class with sequence length n, i.e., the set of all sequence

xn ∈ Xn such p̂xn = P . We drop the superscript n when

there is no ambiguity on the sequence length. Let Y be another

discrete set. We denote PY|X the set of all conditional distri-

butions. Given a sequence xn ∈ Xn and yn ∈ Yn, we define

p̂yn|an as the empirical conditional type, i.e., p̂yn|an(b|a) =
�n

i=1 1(xi = a, yi = b)/
�n

i=1 1(xi = a) for all a ∈ X and

b ∈ Y . Nyn,xn(b, a) ≜
�n

i=1 1(yi = b, xi = a) for all a ∈ X
and b ∈ Y . For any conditional type PY |X ∈ PY|X , we also



define Txn(PY |X) as the conditional type class of PY |X , i.e.,

the set of sequence yn ∈ Yn such that p̂yn|xn = PY |X . Given

two conditional distributions WY |X and PY |X , we set
�

�WY |X − PY |X

�

�

∞
≜ max

a∈X ,b∈Y
|WY |X(b|a)− PY |X(b|a)|.

We also let

C
�

PY |X

�

�WY |X

�

�Q
�

≜ max
ℓ∈[0,1]

−
�

x

Q(x)

× log

�

�

y

PY |X(y|x)ℓWY |X(y|x)1−ℓ

"

denote the Chernoff information given an input type Q. We

also define the relative entropy given an input type as

D
�

PY |X

�

�WY |X

�

�Q
�

≜ EQ

�

D
�

PY |X(·|X)
�

�WY |X(·|X)
��

.

III. PROBLEM FORMULATION AND MAIN RESULTS

We consider a controlled sensing problem in which the

actions chosen by the decision maker are corrupted. Let Θ
be the finite set of hypotheses, A be the finite set of actions

and n be the time horizon. Without loss of generality, we

assume A is also a group with the addition operator +.

In a conventional controlled sensing problem, at each time

t ∈ [1;n], the observation yt is generated from a known

distribution P ¹
Y |X(·|at) that depends on the true hypothesis

¹ ∈ Θ and the chosen action at. We consider here a

setting in which the action chosen by the decision maker

is potentially corrupted and shifted by an amount w drawn

according an unknown distribution PW ∈ PA. To avoid

confusing terminology, we call commands the sequence of

random variables {At}
n
t=1 determined by the decision maker,

and actions the sequence of random variables {Xt}
n
t=1 that

effectively influences the distribution of observations. We

denote by C the variable that indicates the corruption status.

When C = −1, the action corresponding to a command At is

Xt ∼
�

w∈A PW (w)(At+w), where the operator + is the ad-

dition over the group A; when C = 0, the action is equal to the

command and Xt = At. Note that when C = −1, the effective

kernel from which observations are drawn after corruption is

(P ¹
Y |X ◦PW )(yt|at) ≜

�

w∈A PW (w)P ¹
Y |X(yt|at+w). In our

model, the set of actions X is equal to A.

We restrict our focus to deterministic non-adaptive (also

called open-loop) strategies, for which the command sequence

is An = an for some an ∈ An determined without the

knowledge of Y n. The probability of receiving yn ∈ Yn given

the hypothesis ¹ ∈ Θ and the command sequence an without

corruption is given by

P (yn|¹, an, 0) ≜
n
�

t=1

P ¹
Y |X(yt|at).

Similarly, when C = −1, the probability of receiving yn ∈ Yn

under the corruption probability PW is given by

P (yn|¹, an,−1) ≜
n
�

t=1

�

�

w∈A

PW (w)P ¹
Y |X(yt|at + w)

"

.

After obtaining observations, the decision function ϕ : Yn �→
Θ ∪ {−1} either maps the observations to the estimated

hypothesis or −1 to declare an existence of corruptions.

A deterministic open loop policy ¼ ≜ (an, ϕ) is a tuple

characterized by an and ϕ. Given the policy ¼, we define

two kinds of error probabilities Pn
E,0 and Pn

E,−1 as follows.

Pn
E,0(¼) ≜ max

¹∈Θ
P (yn /∈ ϕ−1({¹})|¹, an, 0),

Pn
E,−1(¼) ≜ max

¹∈Θ
P (yn /∈ ϕ−1({¹,−1})|¹, an,−1).

The definition of Pn
E,−1 implies that, in the presence of

corruptions, the decision maker makes a correct decision

either by identifying the correct hypothesis or identifying the

presence of corruptions. The reason behind this definition is

elaborated in Remark 1. We have the following definition of

achievability.

Definition 1 (Achievability). Policy ¼ achieves the exponent

µ if for any ϵ > 0 it holds that

lim
n→∞

−
1

n
logPn

E,0(¼) ⩾ µ (1)

lim
n→∞

Pn
E,−1(¼) < ϵ (2)

for any PW . We denote µ(¼) the supremum of all achievable

exponent for a given policy ¼.

This formulation of achievable exponents is inspired by

Stein’s lemma, which analyzes the maximum type-I error ex-

ponent under a fixed constraint on the type-II error probability.

The asymmetry introduced in Definition 1 implies that we do

not demand an exponentially decaying error probability when

corruptions happen. The objective of the present work is to

analyze the supremum of all achievable exponents

µ∗ ≜ sup
¼

µ(¼). (3)

Remark 1. When there are corruptions on the action se-

quence, the decision maker might not be able to identify the

true hypothesis correctly. We illustrate this by the following

example of binary channels. Let ¹ ∈ {0, 1}, A = X = {0, 1}
and Y = {0, 1}. The channels are specified in Table I.

In this example, one can observe that sending Xt = 1

TABLE I
TABLE FOR P ¹

Y |X
(0|x) FOR ALL x ∈ {0, 1} AND θ ∈ {0, 1}.

θ

x
0 1

0 0.9 0

1 0.1 1

for all t ∈ [1;n] is the best for distinguish the two chan-

nels in the conventional setting without adversaries because

C
�

P 0
Y |X(·|1)

�

�

�
P 1
Y |X(·|1)

�

= ∞. Estimators that have the

form ϕ(yn) = 1(p̂yn(0) > T ) for any 0 < T < 1 can

perfectly detect the hypothesis without any error. However,

there exists some PW such that either P 0
Y |X ◦ PW (0|1) > T

or P 1
Y |X ◦ PW (0|1) < T for all 0 < T < 1. This means that





P (yn /∈ ϕ−1({−1})|¹, an,−1)
�

, (7)

where we have use the fact that

{yn : ϕ(yn) ∈ Θ \ {¹}} ¢
�

yn : ϕ̃(yn) ∈ Θ \ {¹}
�

.

Note that for any ¹ ∈ Θ,

P (yn /∈ ϕ̃−1({¹})|¹, an,−1)

⩽
�

¹′ ̸=¹

�

yn∈Yn

1

�

P (yn|¹′, an, 0)

P (yn|¹, an, 0)
⩾ 1

 

P (yn|¹, an,−1).

We show in Appendix A that the ML estimator

P (yn|¹′, an, 0)
¹′

≷
¹

P (yn|¹, an, 0)

is equivalent to

D
�

p̂yn|an

�

�

�P ¹
Y |X

�

�

�Q
� ¹′

≷
¹

D
�

p̂yn|an

�

�

�P ¹′

Y |X

�

�

�Q
�

. (8)

We define E¹→¹′ as the set of all conditional types in P(Y |X)
that satisfies (8), i.e.,

E¹→¹′ ≜
!

P̄Y |X :
�

D
�

P̄Y |X

�

�

�
p
¹
Y |X

�

�

�
Q
�

⩾ D
�

P̄Y |X

�

�

�
p
¹′

Y |X

�

�

�
Q
���

.

Moreover, for any type P̄Y |X ∈ PY|X , the probability of

receiving any yn in the type class Tan(P̄Y |X) under the

command sequence an and the corruption probability PW is

given by

P (yn ∈ Tan(P̄Y |X)|¹, an,−1) ⩽ e−nD(P̄Y |X∥P θ
Y |X◦PW |Q).

Then, the probability P (yn /∈ ϕ̃−1({¹})|¹, an,−1) can be

upper bounded by

P (yn /∈ ϕ̃−1({¹})|¹, an,−1)

⩽
�

¹′ ̸=¹

�

P̄Y |X∈Eθ→θ′

e−nD(P̄Y |X∥P θ
Y |X◦PW |Q)

⩽ poly(n)e
−nminθ′ ̸=θ minP̄Y |X∈E

θ→θ′
D(P̄Y |X∥P θ

Y |X◦PW |Q)

If the corruption distribution PW is such that

min
¹′ ̸=¹

min
P̄Y |X∈Eθ→θ′

D
�

P̄Y |X

�

�

�P ¹
Y |X ◦ PW

�

�

�Q
�

> 0, (9)

then limn→∞ P (yn /∈ ϕ̃−1({¹})|¹, an,−1) = 0. On the other

hand, if (9) does not hold, then it means there exists some

¹̃ ∈ Θ \ {¹} and some P̄Y |X ∈ E¹→¹̃ satisfying P̄Y |X =
P ¹
Y |X ◦ PW . This implies P ¹

Y |X ◦ PW ∈ E¹→¹̃, and

D
�

P ¹
Y |X ◦ PW

�

�

�P ¹
Y |X

�

�

�Q
�

⩾ C
�

P ¹
Y |X

�

�

�P ¹̃
Y |X

�

�

�Q
�

(10)

as shown in Appendix B. Moreover, for all ¹′ ̸= ¹,

D
�

P ¹
Y |X ◦ PW

�

�

�P ¹′

Y |X

�

�

�Q
�

⩾ min
PW

min
¹′′ ̸=¹

D
�

P ¹
Y |X ◦ PW

�

�

�P ¹′′

Y |X

�

�

�Q
�

. (11)

By defining

Λ̃ ≜ min
¹∈Θ

min
¹′ ̸=¹

min

�

min
PW

D
�

P ¹
Y |X ◦ PW

�

�

�P ¹′

Y |X

�

�

�Q
�

,

C
�

P ¹
Y |X

�

�

�
P ¹′

Y |X

�

�

�
Q
�

"

,

one can observe that

D
�

P ¹
Y |X ◦ PW

�

�

�P ¹′

Y |X

�

�

�Q
�

⩾ Λ̃ (12)

for all ¹′ ∈ Θ. We define the threshold Λ as

Λ ≜ Λ̃− ¸ (13)

for some ¸ > 0. Then, ∀ϵ > 0 and for all PW that does not

satisfies (9), the probability P (yn /∈ ϕ−1({−1}|¹, an,−1) can

be upper bounded by

P (ϕ(yn) ̸= −1|¹, an,−1)

⩽ P
��

�

�p̂yn|an − P ¹
Y |X ◦ PW

�

�

�

∞
> ϵ
�

�

�¹, an,−1
�

+ 1

�

min
¹′

min
P̄Y |X∈B(P θ

Y |X
◦PW ,ϵ)

D
�

P̄Y |X

�

�

�
P ¹′

Y |X

�

�

�
Q
�

< Λ

"

.

(14)

The first term on the right hand side (14) goes to zero

when n → ∞ for any ϵ > 0 by concentration inequalities,

and the second term is greater than Λ = Λ̃ − ¸ by the

continuity property of divergence when we choose ϵ suffi-

ciently small. Therefore, for any ¸ > 0, there exists some

ϵ > 0 such that limn→∞ P (ϕ(yn) ̸= −1|¹, an,−1) = 0
whenever PW does not satisfy (9). Then, we have shown that

limn→∞ Pn
E,−1(¼) = 0 for all PW . We next proceed to derive

the exponent for Pn
E,0 as follows.

Pn
E,0(¼) ⩽ max

¹∈Θ

�

P (ϕ(yn) = −1|¹, an, 0)

+
�

¹′ ̸=¹

P (ϕ̃(yn) = ¹′|¹, an, 0)

"

. (15)

By denoting

E¹→−1 ≜
�

P̄Y |X : D
�

P̄Y |X

�

�

�P ¹
Y |X

�

�

�Q
�

⩾ Λ
�

,

the first term inside the maximization of (15) can be upper

bounded by

P (ϕ(yn) = −1|¹, an, 0)

⩽ P
�

D
�

p̂yn|an

�

�

�P ¹
Y |X |Q

�

⩾ Λ
�

�

�¹, an, 0
�

(16)

⩽
�

P̄Y |X∈Eθ→−1

e−nD(P̄Y |X∥P θ
Y |X |Q) (17)

⩽ poly(n)e−nΛ (18)

for all ¹ ∈ Θ. Moreover, it is known that

max
¹′ ̸=¹

P (ϕ̃(yn) = ¹′|¹, an, 0) ⩽ e
−nminθ′ ̸=θ C

�

P θ
Y |X

�

�

�
P θ′

Y |X

�

�

�
Q
�

,

and hence

lim
n→∞

−
1

n
logPn

E,0 ⩾ Λ. (19)



by the fact that the error probability is dominated by the

term with the minimum exponent. Finally, the achievability

is proved by choosing the type Q that maximize Λ̃ and make

¸ arbitrarily small.

V. CONVERSE PROOF OF THEOREM 2

We prove the converse of Theorem 2 by contradiction. Let’s

fix the pair (¹, ¹′), where ¹ ∈ Θ and ¹′ ̸= ¹ and also fix the

type of the command sequence Q. We assume that there exists

some ¼# = (ϕ#, an), where p̂an = Q, such that

µ(¼#) > min
PW

D
�

P ¹
Y |X ◦ PW

�

�

�P ¹′

Y |X

�

�

�Q
�

. (20)

For all WY |X ∈ PY|X and ϵ > 0, we define

B(WY |X , ϵ) ≜
�

P̄Y |X ∈ PY|X :
�

�P̄Y |X −WY |X

�

�

∞
⩽ ϵ
�

.

Then, by the continuity property of the divergence, there exists

some P ¹,¹′

W and ϵ small enough such that

min
PW

D
�

P ¹
Y |X ◦ PW

�

�

�P ¹′

Y |X

�

�

�Q
�

< D
�

P̄Y |X

�

�

�P ¹′

Y |X

�

�

�Q
�

< µ(¼#) (21)

for all P̄Y |X ∈ B(P ¹
Y |X ◦ P ¹,¹′

W , ϵ). Note that for any yn ∈

Tan(P̄Y |X) and for all P̄Y |X , the probability of receiving yn

when the true hypothesis is ¹′ can be express as

e
−n

�

H(P̄Y |X |Q)+D
�

P̄Y |X

�

�

�
P θ′

Y |X

�

�

�
Q
��

This means for all P̄Y |X ∈ B(P ¹
Y |X ◦P ¹,¹′

W , ϵ), the number of

sequence in Tan(P̄Y |X) that are decoded into the set {−1} ∪

Θ\{¹′} is less than enH(P̄Y |X)−À for some À > 0, otherwise,

P (φ(yn) ̸= θ
′|θ′, an

, 0)

⩾
�

P̄Y |X∈B(Pθ
Y |X

◦P
θ,θ′

W
,ϵ)

�

yn∈Tan (P̄Y |X )

1(φ#(yn) ∈ {−1} ∪Θ \ {θ′})

× e
−n

�

H(P̄Y |X∥Q)+D
�

P̄Y |X

�

�

�
Pθ′

Y |X

�

�

�
Q
��

⩾ e
−nD

�

P̄Y |X

�

�

�
Pθ′

Y |X

�

�

�
Q
�

> e
−nµ(¼#)

,

which contradicts with the assumption that the policy achieves

the exponent µ#. Therefore, we conclude that for all P̄Y |X ∈

B(P ¹
Y |X ◦ P ¹,¹′

W , ϵ),
�

�

�

�

yn ∈ Tan(P̄Y |X) : ϕ(yn) ∈ {−1} ∪Θ \ {¹′}
��

�

�

|Tan(P̄Y |X)|
⩽ e−nÀ

for some À > 0. Finally, when the true hypothesis is ¹, the

value of Pn
E,−1 under the corruption distribution P ¹,¹′

W is lower

bounded by

Pn
E,−1 ⩾ 1− P (p̂yn|an /∈ B(P ¹

Y |X ◦ P ¹,¹′

W , ϵ)|¹, an,−1)

−
�

P̄Y |X∈B(P θ
Y |X

◦P θ,θ′

W
,ϵ)

P (Tan(P̄Y |X)|¹, an,−1)

×
|{yn ∈ Tan(P̄Y |X) : ϕ(yn) ̸= ¹′}|

|Tan(P̄Y |X)|
. (22)

By the law of large number

lim
n→∞

P (p̂yn|an /∈ B(P ¹
Y |X ◦ P ¹,¹′

W , ϵ)|¹, an,−1) = 0

for any ϵ > 0, and

lim
n→∞

�

P̄Y |X∈B(P θ
Y |X

◦P θ,θ′

W
,ϵ)

P (Tan(P̄Y |X)|¹, an,−1)

×
|{yn ∈ Tan(P̄Y |X) : ϕ(yn) ̸= ¹′}|

|Tan(P̄Y |X)|
= 0

by the fact that there are at most a polynomial number of types

and
|{yn∈Tan (P̄Y |X):ϕ(yn) ̸=¹′}|

|Tan (P̄Y |X)|
< e−nÀ. Hence, we have

lim
n→∞

Pn
E,−1 = 1, (23)

which contradicts with the achievability definition of the

exponent. This argument is true for any (¹, ¹′) pairs. So, for

all ¼ that has input type Q, it holds that

µ(¼) ⩽ min
¹∈Θ

min
¹′ ̸=¹

min
PW

D
�

P ¹
Y |X ◦ PW

�

�

�P ¹′

Y |X

�

�

�Q
�

. (24)

We also know that

µ(¼) ⩽ min
¹∈Θ

min
¹′ ̸=¹

C
�

P ¹
Y |X

�

�

�P ¹′

Y |X

�

�

�Q
�

(25)

from the result of multi-hypotheses testing. Finally, the con-

verse proof to the Theorem is done by choosing a type Q that

maximizes the minimum on the right hand side of (24) and

(25).

VI. NUMERICAL EXAMPLES

In this section, we present two numerical examples to

illustrate our main result. We consider a set of binary channels

as in Table II and III, where A = X = {0, 1}, Y = {0, 1}
and Θ = {0, 1, 2}. The commands chosen by the decision

maker are the input of the channel. Any distribution Q ∈ PX

is a Bernoulli distribution and is characterized by a parameter

q ∈ [0, 1] and we denote it by B(q). Then, we define

C¹¹′(q) ≜ C
�

P ¹
Y |X

�

�

�P ¹′

Y |X

�

�

�B(q)
�

E¹¹′(q) ≜ min

�

min
PW

D
�

P ¹
Y |X ◦ PW

�

�

�P ¹′

Y |X

�

�

�B(q)
�

, C¹¹′(q)

"

,

and µ̄(q) ≜ min¹∈Θ min¹′ ̸=¹ minE¹¹′(q) is the best exponent

we can obtain by using the policy with input type B(q).
In our first example, i.e., channels specified in Table II, one

can observe that the decision maker can not estimate the true

hypothesis by keeping choosing the same input. The input 0
is the best for distinguishing ¹ = 2 from ¹ = 0 and ¹ = 1,

but this input is not helpful for distinguish ¹ = 0 from ¹ = 1.

This phenomenon can be seen from Fig.2, where C0,2 and

C1,2 decrease with the parameter q while C0,1 increases with

q. In the conventional multi-hypotheses scenario, the optimum

value of q needs to strike a balance in the aforementioned

trade-off and has the value approximately equal to 0.83 in our

first example.
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Therefore, we have shown that the event P (yn|¹′, an, 0) >
P (yn|¹, an, 0) is equivalent to
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APPENDIX B

PROOF OF (10)

We derive the minimum of D
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when

P̄Y |X ∈ E¹→¹′ by using the method Lagrange multiplier as

follows. Let J(P̄Y |X , ·, {cx}x∈X ) be defined as

J(P̄Y |X , ·, {cx}x∈X )

= D
�

P̄Y |X

�

�

�P ¹
Y |X

�

�

�Q
�

+ ·
�

D
�

P̄Y |X

�

�

�P ¹
Y |X

�

�

�Q
�

−D
�

P̄Y |X

�

�

�P ¹′

Y |X

�

�

�Q
��

+
�

x∈X

cx





�

y∈Y

P̄Y |X(y|x)− 1



 .

Take derivative of J w.r.t. each P̄Y |X(y|x) and ·, we have
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By solving the above equality and using the fact that
�

y∈Y P̄Y |X(y|x) = 1 for all x ∈ X , we obtain that the

optimum P̄ ∗
Y |X(y|x) has the following form
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Let P̄ ∗
Y |X(y|x) = P̄ℓ∗ for some ℓ∗ satisfying (26). Then, the

minimum divergence becomes
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where the last equality comes from the fact the value of ℓ that
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lies within [0, 1] and is exactly the one satisfying (26). So, we

have shown that
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