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Abstract—We consider a non-adaptive controlled sensing sce-
nario in which the actions of the decision maker are corrupted
by an adversary. The objective of the decision maker is to
either detect the presence of the corruption or make a correct
decision. Accordingly, the performance of a controlled sensing
strategy is measured in terms of the error probability when
there is no adversary, denoted Pz, and the error probability
when an adversary is present, denoted Pr ;. Our main result
is Stein-lemma like characterization of the optimal achievable
error exponent of Pr o subject to a constraint on Pr ;. We also
illustrate the result with numerical examples.

I. INTRODUCTION

Given a set of parameters © and a set of distributions
{po}oco, the goal of hypothesis testing is to design a strategy
allowing a decision maker to figure out the true parameter
0 by observing a fixed number of samples generated from
pg. Classical results for this setting including the Chernoff-
Stein’s lemma for |©| = 2, which characterizes the optimal
type-1 error exponent when the type-II error probability is
upper bounded by a non-trivial small value, and the Cher-
noff information, which characterizes the optimal Bayesian
error exponent [1]. The hypothesis testing problem is called
sequential when the decision maker can observe samples until
a stopping time criterion is met, and active when the decision
maker can take an action a from a set A to determine the
distribution pg from which the observation is generated [2]-
[4]. Active hypothesis testing is also called controlled sensing,
which is the terminology adopted here. Recent progress in the
area include (sometimes partial) characterizations of the error
exponents and expected stopping times of controlled sensing
in all combinations of adaptive/non-adaptive sequential/non-
sequential settings [3], [4], thereby shedding light on the
benefits of adaptivity and sequentiality. Other works have also
explored variations of the problem, including the characteriza-
tion of mis-classification probabilities [5]. Unlike these works,
our objective is to analyze the performance of controlled
sensing in the presence of an adversary.

Depending on the attacker model, different security per-
formance metrics may be defined. In the case of passive
eavesdropping attacks, the evasive hypothesis testing problem
in [6] attempts to minimize the error exponent of the adversary
while ensuring an acceptable performance for the decision
maker. The covert hypothesis testing problem in [7], [8]
studies how to perform hypothesis testing problem with low
probability of detection, by hiding the existence of the test
from an eavesdropping adversary. In the case of active attacks,
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the adversary may actively degrade the performance of the
hypothesis testing by varying the observed samples or the
controlling action. When the samples are corrupted, [9] inves-
tigates hypothesis testing rules that are robust to adversarial
attacks. We investigate here the problem of controlled sensing
with corruptions on the actions instead of samples, which to
the best of our knowledge, has not been studied yet.

When the controlling action is corrupted, the decision maker
might become utterly unable to detect the true hypothesis,
so that a proper problem formulation is needed. A similar
challenge can be found in the problem of authentication [10]-
[13]. Therein, a codeword is transmitted through a state-
dependent channel while an adversary attempts to degrade the
communication quality by varying the state sequence [13].
The objective for the receiver is then to either decode the
message correctly or identify the existence of an adversarial
attack. Inspired by these works, we study the performance
of controlled sensing with corrupted commands by defining
two kinds of error probabilities: the error probability when
the adversary is not present and the error probability when the
adversary is present. As in the Chernoff-Stein lemma, our work
characterizes the optimal exponent of the first error probability
while ensuring a non-trivial upper bound on the second error
probability.

The rest of the paper is organized as follows. In Section II,
we review the notation used throughout the paper. In Sec-
tion III, we introduce the exact model of interest and present
our main results, which characterizes an exact error probability
exponent. In Section IV, we develop our achievability proof
and in Section V we derive a matching converse.

II. NOTATION

For any discrete set X, Py is the set of all probability
distributions on X. For n € N*, a sequence of length 7 is
denoted as 2" £ (r1,---,x,) € X", where x; is the ith
element of 2™ for any i € [1;n]. For any 2" € X™, pyn
denotes the type of 2, ie., pyn(a) = 230 I(z; = a)
for all @ € X. For any type P, T"(P) is the corresponding
type class with sequence length n, i.e., the set of all sequence
x™ € X" such p,» = P. We drop the superscript n when
there is no ambiguity on the sequence length. Let ) be another
discrete set. We denote Py, x the set of all conditional distri-
butions. Given a sequence z"” € X" and y" € V", we define
Pynjan as the empirical conditional type, i.e., pyn|qn(bla) =
S Lz =a,y; =b)/ > L(z; = a) for all a € X and
be Y. Nynyn(bya) 23" 1(y; =b,x; =a) foralla € X
and b € Y. For any conditional type Py|x € Py|x, we also



define Tn (Py| x) as the conditional type class of Py x, ie.,
the set of sequence y™ € V" such that pyn|;» = Py x. Given
two conditional distributions Wy x and Py |x, we set

|Wy‘X—Py|X‘ ES ].’)I}aX ‘Wy|X(b| ) Py|X(b|a)|
We also let
C (Prix [Wyix|@) = o =3 Q)
x log (Z PY|X(Z/|33)£WYX(?J|$)1_K>
Yy

denote the Chernoff information given an input type (). We
also define the relative entropy given an input type as

D (Pyx|[Wyx|Q) & Eq [D (Pyx (|X)||Wyx (-1X))].
III. PROBLEM FORMULATION AND MAIN RESULTS

We consider a controlled sensing problem in which the
actions chosen by the decision maker are corrupted. Let ©
be the finite set of hypotheses, A be the finite set of actions
and n be the time horizon. Without loss of generality, we
assume A is also a group with the addition operator —+.
In a conventional controlled sensing problem, at each time
t € [1;n], the observation y; is generated from a known
distribution P{i‘ «(la¢) that depends on the true hypothesis
0 € © and the chosen action a;. We consider here a
setting in which the action chosen by the decision maker
is potentially corrupted and shifted by an amount w drawn
according an unknown distribution Py € P4. To avoid
confusing terminology, we call commands the sequence of
random variables {A;}}; determined by the decision maker,
and actions the sequence of random variables {X;}} ; that
effectively influences the distribution of observations. We
denote by C' the variable that indicates the corruption status.
When C' = —1, the action corresponding to a command A; is
Xt~ > wea Pw(w)(A¢+w), where the operator + is the ad-
dition over the group .A; when C' = 0, the action is equal to the
command and X; = A;. Note that when C = —1, the effective
kernel from which observations are drawn after corruption is
( Y\XOPW)@I‘/‘CH) = ZweA Py (w) Y|x(yt|at+w) In our
model, the set of actions X is equal to A.

We restrict our focus to deterministic non-adaptive (also
called open-loop) strategies, for which the command sequence
is A" = a" for some a" € A" determined without the
knowledge of Y. The probability of receiving y™ € Y™ given
the hypothesis § € © and the command sequence a™ without
corruption is given by

P(y"10,a",0) £ T] P x (yela).
t=1

Similarly, when C' = —1, the probability of receiving y" € )"
under the corruption probability Py is given by

b2 11 (3 et

t=1 \weA

P(y"0,a", — Py x (yelar + w)> .

After obtaining observations, the decision function ¢ : Y™ +—
© U {—1} either maps the observations to the estimated
hypothesis or —1 to declare an existence of corruptions.
A deterministic open loop policy A £ (a”, ¢) is a tuple
characterized by a™ and ¢. Given the policy A\, we define
two kinds of error probabilities Pp; o and Pg _; as follows.

max P(y" ¢ 6~ ({6})]0,a",0),
rgleaé( P(yn ¢ ¢_1({97 _1})‘97 anv _1)‘

The definition of Pg _, implies that, in the presence of
corruptions, the decision maker makes a correct decision
either by identifying the correct hypothesis or identifying the
presence of corruptions. The reason behind this definition is
elaborated in Remark 1. We have the following definition of
achievability.

Ppo(A) =
Pp 4 () =

Definition 1 (Achievability). Policy A\ achieves the exponent
v if for any € > 0 it holds that

h_}m —*10gPE0()\) Z (1
nh_)rr;o Pp _1(\) <e ()

for any Py. We denote y(\) the supremum of all achievable
exponent for a given policy .

This formulation of achievable exponents is inspired by
Stein’s lemma, which analyzes the maximum type-I error ex-
ponent under a fixed constraint on the type-II error probability.
The asymmetry introduced in Definition 1 implies that we do
not demand an exponentially decaying error probability when
corruptions happen. The objective of the present work is to
analyze the supremum of all achievable exponents

& sup Y(A). 3)
Remark 1. When there are corruptions on the action se-
quence, the decision maker might not be able to identify the
true hypothesis correctly. We illustrate this by the following
example of binary channels. Let § € {0,1}, A =X = {0,1}
and Y = {0,1}. The channels are specified in Table I
In this example, one can observe that sending X; = 1

TABLE I

TABLE FOR P¢, . (0]z) FOR ALL z € {0,1} AND § € {0,1}.

Y|X

1o |1

0.9
1 0.1 |1

Sor all t € [1;n] is the best for distinguish the two chan-
nels in the conventional setting without adversaries because
¢ (P (I0]| P (D)
form ¢(y") = L(py»(0) > T) for any 0 < T < 1 can
perfectly detect the hypothesis without any error. However,
there exists some Py, such that either PQ‘X o Pw(0|1) > T

or PY|X o Py (0|1) < T for all 0 < T < 1. This means that

= oo. Estimators that have the



no detector can correctly identify the true hypothesis with a
non-zero error exponent for all Py if the decision maker must
choose a hypothesis. However, one can nevertheless identify
the existence of an adversary by examining the empirical type
of y™. In this example, any Py with non-zero Py (1) will be
detected because y™ can only be an all 1 or an all 0 sequence
in the conventional setting. Therefore, we allow the decision
maker to output the —1 symbol to declare the presence of an
adversary.

Our main results is the following characterization of ~*.

Theorem 2. The optimum exponent ~v* is

* = sup min min min minD(Pe o P HPGI ‘ ),
v Qp9€@0’759 <PW vix © Pw || Pyx|Q

¢ (Phx||Px|@) ) @

Recall that a channel W is degraded with respect to (w.r.t.)
another channel W if there exists a distribution P such that
W' =W o P. Then, we have the following corollary.

Corollary 3. If there exists a pair (0,0"), where 6 € © and
0" £ 0, such that P}€|X is a degraded channel w.r.t Pg‘X, then
~¥* = 0.

Remark 2. We illustrate Corollary 3 by the following example.
Let 0 € {0,1}, A = {0,1} and Y = {0,1}. When 6 = 0,
the transition probability PQ‘ x s a symmetric channel with
cross-over probability p. When 6 = 1, P;,  Is a symmetric
channel with cross-over probability q. Assume without loss of
generality that 1/2 > q > p > 0. When Pw(1) = {5,
Pg‘ yoPw = P}l,| » and the decision maker is unable to
correctly declare the existence of corruptions.

Before proving Theorem 2, we provide a high level in-
tuition about the proof and the meaning of this theorem,
also illustrated in Fig. 1. Without loss of generality, we fix
@ as the type of the command sequence in the discussion
below. When an adversary exists, given two hypotheses 6
and 6, the corresponding corrupted distributions P{ﬁl v o Pw

and Pf,/l y © Py vary according to the choice of Py We
illustrate this by plotting the red dash line in Fig. 1. Let
£9 ES {Pg\X OPW : PW S 'PA} and ﬁg/ = {PXG’,IX OPW :
Py € P4} be the trajectories of Pl(;l « © Py and P{i/l o Pw.
When Ly and Ly overlap, i.e., there exists some Py, and Py},
such that Py, o Py = P{i/l « © Py}, the decision maker cannot
distinguish between

HE

H' £ true parameter ¢ with corruption distribution P/,

true parameter 6 with corruption distribution P}y, ;

This means

P(p(Y™) #0|H) +P(op(Y™) #0'|H) > 1, 5

and hence there is no detector that can achieve a non-zero
error exponent for all § € © and for all Py when an adversary
exists and Lg N Lo # () for some 6" # 6. The intersection of
Ly and Ly is marked as the blue dash line region in Fig. 1.
Therefore, we allow the decision maker to output the —1
symbol when pynjqn € Lo N Ly for some ' # 6, and the
decision maker only outputs an estimation of the hypothesis
when D (ﬁan HP{i‘X ’Q) < A for some @ € ©. By choosing
A smaller than

. . . 0 o'
min min min D (P o PWHP ‘ )
020 0140 o Y| X Y|X Q),

we can guarantee that pyn|,n & Lo N Lo for all 6 # 6 when
D (ﬁyn|an P{il X‘Q) < A for some 6§ € O. Finally, the term

i C (Pix|[Px @)
sup pnip min O \ Py x vix|@

(6)

in Theorem 2 corresponds to the best achievable exponent
when there is no adversary.
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Fig. 1. The space of all conditional types. Each location in the figure is a
specific conditional type. The sets Ly and Ly/ are the red dash lines. The
blue dash line region contains the conditional types in Ly N Ly/. The decision
maker output the —1 symbol when the conditional empirical type is located
in the area with grey background.

IV. ACHIEVABILITY PROOF OF THEOREM 2

We first specify the policy as follows. Let the sequence of
command A™ = a" for some a” € A" and have the type
Par = Q. The decision function ¢ is defined as

4™ = {—1 if D (B o

arg maxgpeo P(y"|0,a™,0)

Ply|@)=a woeo
otherwise.

The policy A is then well defined. We also define gzNS as the ML
estimator, i.e.,

n — P n 0 l’ll
o(y™) arg max (y"0,a",0)

for all y" € Y". The probability Pz ,(A) can be upper
bounded by

P _y(N) < maxmin(P(y" ¢ 67 ({6})/6,a", 1),



P(y" ¢ 67 ({-1D)l0.a",~1)), (D)
where we have use the fact that
{y": o(y") € ©\ {01} € {y" : d(y") € ©\ {6} } .

Note that for any 0 € ©,

P(y" ¢ 9~ ({6})]6.a", 1)
<> Y1 <W > 1> P(y"|6,a", 1),
0/ £0 yneyn

We show in Appendix A that the ML estimator
0/
P(y"|¢",a™,0) 2 P(y"|6,a",0)
6
is equivalent to
~ 9 0’ R 9’
D (fyrar Py|X’Q) =D (B PY‘X‘Q). ®)

We define Ey_,¢/ as the set of all conditional types in P(Y|X)
that satisfies (8), i.e.,

Eoor = {pyp( : (D (PY\X“pg)’|X‘Q) =D

Moreover, for any type Py‘ x € Py|x, the probability of
receiving any y" in the type class 7 (Py|x) under the
command sequence a” and the corruption probability Py is
given by

P(yn S Ewl(Py‘X”H,an, - )
Then, the probability P(y" ¢
upper bounded by

P(y" ¢ o~ ({0})10,a", 1)

< Z Z oD (Pyx || Py xoPw|Q)

0’70 Py‘xe%ﬁg/

e—nD(ISY‘X ||P§‘X0PW|Q)'

~H({6})10, a”

<
é

,—1) can be

, s s D 6
—nmings 4 mmPY|X€59_>e/ D(PY‘X ||PY|X°PW ‘Q)

< poly(n)e

If the corruption distribution Py is such that

min _ min D (15 HPG o P ’ ) >0, 9
0'£0 Py x €. o1 vix||Pyix o Pw|@ 2
then lim,, oo P(y™ ¢ (25_1({9})\9, a™,—1) = 0. On the other

hand, if (9) does not hold, then it means there exists some
6 co \ {0} and some PY‘X € &,_,; satisfying PY|X =
PY|X o Py . This implies PY‘X oPy €&, and

—6
D <P10/\X o PWHPE%X‘Q) = C (P}0’|XHP}0;|X‘Q) (10)
as shown in Appendix B. Moreover, for all ' # 0,
D (Pxef\x ° PWHP}0//|X‘Q)

> D (Piyx o Pw| Plix|@) -
Igévngl;n vix © Pw || Py x|@

(11
By defining

A . . . . 0 0’
A= gé%g};%mm (rg‘ng (PY‘X o PWHPle‘Q) ,

(Prix|otix]@)) }-

o (Rurinla) )

one can observe that

D (PYx o Pw|[PYx|@) = A (12)
for all §’ € ©. We define the threshold A as
AEAN—1q (13)

for some 1 > 0. Then, Ve > 0 and for all Py that does not
satisfies (9), the probability P(y"™ ¢ ¢~ 1({—1}|0,a", —1) can
be upper bounded by
P(o(y") #
<P(

71|67an7 71)

n,_1>

+ 1 | min min D (Py XHPGI ‘Q) <A
( 0" Py x€B(PY, yxoPwc) | YiX

(14)

N [4
Dyn|an _PY\XOPW‘ > €
oo

The first term on the right hand side (14) goes to zero
when n — oo for any € > 0 by concentration inequalities,
and the second term is greater than A = A — 1 by the
continuity property of divergence when we choose e suffi-
ciently small. Therefore, for any n > 0, there exists some
e > 0 such that lim, . P(¢(y") # —1/0,a",—1) = 0
whenever Py does not satisfy (9). Then, we have shown that
limy, o0 Pg _q (\) = 0 for all Py,. We next proceed to derive
the exponent for Pf ; as follows.

PE,O(A) < IgnaX (P((b(yn> — _1|9)Gn70)

+ > P(oy") =0'6,a" 0)>
By denoting

/20
Epy1 = {py\x :D (pY|XHP19/|X‘Q) > A}v

the first term inside the maximization of (15) can be upper
bounded by

P((b(yn) = _1|07an70)

15)

< P (D (Byrjar | PE1x1Q) = Al6,a,0)  (16)

< Z e~ "D (Prix|| PV x| Q) (17)
Py x€&9 1

< poly(n)e™"A (18)

for all & € ©. Moreover, it is known that

max P(¢(y e_"min"'?“’C(Pg‘XHP‘%X)Q),

— /! n <
0'4£0 ) 9|0,(l 70)\

and hence

lim ——logPE o= A

n— oo

19)



by the fact that the error probability is dominated by the
term with the minimum exponent. Finally, the achievability
is proved by choosing the type ) that maximize A and make
7 arbitrarily small.

V. CONVERSE PROOF OF THEOREM 2

We prove the converse of Theorem 2 by contradiction. Let’s
fix the pair (0,6’), where § € © and 6’ # 6 and also fix the
type of the command sequence (). We assume that there exists
some \* = (¢7,a™), where pon = @, such that

Y(\#) > min D (P o PWHP@IX‘Q) .
w
For all Wy | x € Py|x and € > 0, we define

B(Wy|x,€) £ {Py|x € Pyjx : |Pyix — Wy x| <e}.

Then, by tl}e continuity property of the divergence, there exists
some PS}Q and ¢ small enough such that

: 6 0’
min D (P o F|| Y1 |Q)

for all Py x € B(P}9’|X o Pgl}e,,e). Note that for any y™ €
Tom (Py‘ x) and for all Py‘ x, the probability of receiving y™

when the true hypothesis is ' can be express as

e—n(H(PﬂX|Q)+D(PY\X||P')9’/\X|Q>)

(20)

2n

This means for al{Py‘X € B(Pf/‘X o Pg[}e’ , €), the number of
sequence in 7Tgn (Py|x) that are decoded into the set {—1} U
O\ {0} is less than e (Fv1x)=¢ for some ¢ > 0, otherwise,

P(o(y") #0'10',a",0)

> 2

Py | x €B(PY

>

0,6/ n (P
‘XOPW e Y €Tan (Py|x)

w o~ (H(Pyix[|@)+D(Py x| PY|x|@))
> o P (Prix[[PY x|@)

_ A#
> e )7

which contradicts with the assumption that the policy achieves
the exponent y#. Therefore, we conclude that for all Py x €

0,0’
B(Pf,IX o Py ),

{v e T (Prix) o) € (-1} VO (0} }]
Tar (Pr1)]

for some £ > 0. Finally, when the true hypothesis/is 0, the
value of P _; under the corruption distribution Pgl}‘9 is lower
bounded by

Py 21— P(pynian & B(PL x o PR €)0,a",—1)
- Z P(Tan (Py)x)|0,a", 1)
pY|X€B(P§9/|X0P€V’9’$5)

{y™ € Tan (Py|x) : ¢(y™) # 0'}|
Tan (Pyx)| '

< e—n&

(22)

1(6"(y") € {1} UO\{¢'}

By the law of large number
lim P(pyrjan ¢ B(PY)x 0 P e)6,a",—1) =0

for any ¢ > 0, and

Jim > P(Tan (Py|x)|0, ", ~1)
PY‘XEB(P,f,lxoPgV’gI,e)
[{y" € Tar (Pyix) : 05™) # 03 _
| Tar (Py )]

by the fact that there are at most a polynomial number of types
and 1Y €Tan (P x):¢(y")#6'} |
[Tan (Py|x)I

< e~ ™, Hence, we have

lim P _,=1
noo Bl ’

(23)

which contradicts with the achievability definition of the
exponent. This argument is true for any (6, 6’) pairs. So, for
all X that has input type @), it holds that

. . . 0 4
¥(A) < minmig min D (PY\X ° PWHPY|X‘Q) - @

We also know that

~¥(A) < minmin C (P}€|XHP19/l\X‘Q)

2
00 040 25

from the result of multi-hypotheses testing. Finally, the con-
verse proof to the Theorem is done by choosing a type () that
maximizes the minimum on the right hand side of (24) and
(25).

VI. NUMERICAL EXAMPLES

In this section, we present two numerical examples to
illustrate our main result. We consider a set of binary channels

has in Table II and I, where A = X = {0,1}, Y = {0,1}

and © = {0,1,2}. The commands chosen by the decision
maker are the input of the channel. Any distribution ) € Py
is a Bernoulli distribution and is characterized by a parameter
q € [0,1] and we denote it by B(q). Then, we define

Con () 2 C (P x| 1| B(@))
Egp(g) £ min <rg33D (Piyx = Pw| P [ B(@))  Can <q>>,

and 5(q) £ mingeo ming g min Egg: (¢) is the best exponent
we can obtain by using the policy with input type B(q).

In our first example, i.e., channels specified in Table II, one
can observe that the decision maker can not estimate the true
hypothesis by keeping choosing the same input. The input 0
is the best for distinguishing # = 2 from # = 0 and 6 = 1,
but this input is not helpful for distinguish § = 0 from 6 = 1.
This phenomenon can be seen from Fig.2, where Cp 2 and
(1,2 decrease with the parameter ¢ while Cj ; increases with
gq. In the conventional multi-hypotheses scenario, the optimum
value of ¢ needs to strike a balance in the aforementioned
trade-off and has the value approximately equal to 0.83 in our
first example.



When the adversary exists, the optimal value of ¢ changes.
To see this point, we first observe that ¢ = 0 is supposed to
be the value that is good for distinguish between § = 0 and
0 = 2. However, under such value of ¢, when Py (1) = 1/3,
it holds that

Ppx(0]0) x Py (0) + Py (0[1) x (1 — P (0))
9 1
—09XZ4+03x==07
Xgtiexy
= P, x(0]0)

which leads to a zero value of Ep . A similar phenomenon
happens to distinguishing § = 1 and § = 2 by using ¢ = 1 as
well. There exists some Py such that

Py x (0[1) x Py (0) 4+ Py x(0[0) x (1 — Pw(0))
= P} x(0[1)

in our example. From the Fjs curve in Fig. 2, it can be
observed that a high value of ¢ has a bad performance in
distinguishing # = 1 and # = 2 when an adversary exists, and
this leads to a decreased value of the optimal q. The optimal
~* happens when g ~ 0.73, which is lower than its counterpart
in the conventional setting.

In Fig. 2, there exists a unique positive v*. In contrast,
the best achievable exponent v* in our second example, i.e.,
channels specified in Table III, is zero as shown in Fig.3. This
result comes from Corollary 3 and the fact that P32’| y is a
degraded channel w.r.t. P31’| <

TABLE II
TABLE FOR P{ﬂ‘X(O\z) FOR ALL z € {0,1} AND 0 € {0, 1, 2}.
xT
0 0 1
0 09 | 0.3
1 09 | 0.2
2 0.7 | 0.3

0.035

0.030

0.025

o
=)
=
S
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Achievable Exponent

o
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Fig. 2. Trajectories of 7(q), Ey g/(q) and Cy ¢/ (q) for some (0, 0") pairs
when channels are specified in Table II.

TABLE III
TABLE FOR Pg‘X(O\x) FOR ALL z € {0,1} AND 6 € {0, 1, 2}.

T
P 0 1

09 | 0.3

1 0.8 | 0.2

2 0.7 | 0.3

0.035
0.030 S

0.025 -

Achievable Exponent

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Input B(q)

Fig. 3. Trajectories of ¥(q), Ey,¢/(q) and Cy ¢/ (q) for some (6,6") pairs
when channels are specified in Table III.

VII. CONCLUSION

In this work, we study the problem of controlled sensing
with corruption commands and analyze the error exponent in
a setting inspired by the works in authentication and Stein’s
lemma. A characterization of the optimal exponent is given in
our main theorem, and the rigorous proof to the theorem is also
given. We also provide some numerical examples to illustrate
the theorem. We have assume throughout the work that the
adversary influences the hypothesis testing by generating the
noise sequence identically and independently from a certain
corruption distribution. However, a stronger adversary who
has the information of decision maker’s observations can be
considered. Our future work is to analyze such scenario.

APPENDIX A
PROOF OF (8)
The event P(y"|0',a™,0) > P(y™|0,a™,0) implies

P(y"|¢’,a",0)

1
& P(y10, am,0)

>0,

where the log likelihood ratio can be written as
P(y™|0',a™,0)
P(y"|0,a™,0)
o it W7 (vl

thl Wff\x(ytmt)
MocaTley (W wla)

Maca ey (Wyx (vla)

log

=1

> Nyn’an (y,a)

= log )Nyn,an(y,a)



WY x (Wla

> > Nywan(y.a)log

0
acAyey W |X( )
x(wla)
=n Z Q(a Zpynlan (yla) log 9
acA yey Wy | x (Wla)
(y‘a) ﬁ nlan
=n ) Qa) ) Pyrjan(yla) log log =2
; % v W$|X(y\ a) " Pyl (yla)
=n (D (Tay"la" W}%X’Q) -D (ﬁy"\a" W)%x‘@)) .

Therefore, we have shown that the event P(y"™
P(y™|0,a™,0) is equivalent to

D (ﬁynw Wf/‘XHQ) D (ﬁyn‘an

APPENDIX B
PROOF OF (10)

We derive the minimum of D (Pyl XHPY\ X‘Q) when

Py| x € &y by using the method Lagrange multiplier as
follows. Let J(Py|x, ¢, {cz}zex) be defined as

J(Py|x,¢ {ca}uex)
b (il

¢ (0 (Pox|Pixe)

Wé\x‘@) >0
(1]
(2]
[4]

[5]

(o)

+ ZCZ ZPY\X(y“r)_

TEX yey

[7]

[8]
[9]

Py 10
Q(x) . P"‘ Yep=0 Va,y 1O

b (| #f0) - (nlFife) -
By solving the above equality and using the fact that
Y yey Prix(ylz) = 1 for all 2 € X, we obtain that the
optimum ]5{;‘ +(y|z) has the following form
5 Pg\x(ylw)zpﬁ]x(ylx)l’
PZ(y‘x) = po ¢ po’
Zyey y\x(i‘/|$) \X(y|$)
where ¢ is chosen such that
D (P Phsf@) = 2 (7| PYix]e).
Let P;‘X(yh:) = Py. for some ¢* satisfying (26). Then, the

minimum divergence becomes

D (P;\XHP%)(’Q)

Take derivative of J w.rt. each Py x(y|x) and ¢, we have

PY|X(TI\I)

<1 og + 1—|—Clog
(11]
[12]

[13]

(26)

= Z Qz Z PY\X (ylz)log —g———— YIX(y| i

e e Py (vle)
1) (0 (A Ea]0) - D (A i)
- ZYQ ) log ;}PY\X y\ﬂf) PY| (y|$)

faSS ye

py‘x€59*>9/

log Z P10/|X(y|$)e*P1€\X(y|$)1_

- Q)

reEX yeY
~ i Z Q(x)log 3_ P (yle) PY (yle) .

yey

where the last equality comes from the fact the value of ¢ that
(y|a) minimizes

> Q

reX

Ylog >~ P (ylz) Py x (ylz)'
yey

lies within [0, 1] and is exactly the one satisfying (26). So, we
|0',a™,0) > have shown that

min D (pY|XHP}0’|X‘Q) =C (PSO/\XHPg\X‘Q> :
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