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Abstract—This work considers mitigation of information leak-
age between communication and sensing operations in joint
communication and sensing systems. Specifically, a discrete mem-
oryless state-dependent broadcast channel model is studied in
which (i) the presence of feedback enables a transmitter to
simultaneously achieve reliable communication and channel state
estimation; (ii) one of the receivers is treated as an eavesdrop-
per whose state should be estimated but which should remain
oblivious to a part of the transmitted information. The model
abstracts the challenges behind security for joint communication
and sensing if one views the channel state as a characteristic of
the receiver, e.g., its location. For independent and identically
distributed (i.i.d.) states, perfect output feedback, and when part
of the transmitted message should be kept secret, a partial
characterization of the secrecy-distortion region is developed. The
characterization is exact when the broadcast channel is either
physically-degraded or reversely-physically-degraded. The char-
acterization is also extended to the situation in which the entire
transmitted message should be kept secret. The benefits of a joint
approach compared to separation-based secure communication
and state-sensing methods are illustrated with a binary joint
communication and sensing model.

I. INTRODUCTION

The vision for next generation mobile communication net-
works includes a seamless integration of the physical and
digital world. Key to its success is the network’s ability to
automatically react to changing environments thanks to tight
harmonization of communication and sensing [1]. For instance,
a mmWave joint communication and radar system can be used
to detect a target or to estimate crucial parameters relevant to
communication and adapt the communication scheme accord-
ingly [2]. Joint communication and sensing (JCAS) techniques
are envisioned more broadly as key enablers for a wide range
of applications, including connected vehicles and drones.

Several information-theoretic studies of JCAS have been
initiated, drawing on existing results for joint communication
and state estimation [3]-[6]. Motivated by the integration
of communication and radar for mmWave vehicular applica-
tions, [7] considers a model in which messages are encoded
and sent through a state-dependent channel with generalized
feedback both to reliably communicate with a receiver and
to estimate the channel state by using the feedback and
transmitted codewords. The optimal trade-off between the
communication rate and channel-state estimation distortion is
then characterized for memoryless JCAS channels and i.i.d.
channel states that are causally available at the receiver and
estimated at the transmitter by using a strictly causal channel

output. Follow up works have extended the model to multiple
access channels [8] and broadcast channels [9].

The nature of JCAS mandates the use of a single modality
for the communication and sensing functions so that sensing
signals carry information, which then creates situations in
which leakage of sensitive information can occur. For example,
a target illuminated for sensing its range has the ability to
gather potentially sensitive information about the transmitted
message [10]. As the sensing performance and secrecy perfor-
mance are both measured with respect to the signal received at
the sensed target, there exists a trade-off between the two [2].
To capture and characterize this trade-off, we extend the JCAS
model in [7] by introducing an eavesdropper in the network.
The objective of the transmitter is then to simultaneously
communicate reliably with the legitimate receiver, estimate
the channel state, and hide a part of the message from
the eavesdropper. The channel state is modeled as a two-
component state capturing the characteristics of each individual
receiver, the feedback is modeled as perfect output feedback
for simplicity, and the transmitted message is divided into two
parts, only one of which should be kept (strongly) secret (this
is called partial secrecy in [11]). We develop inner and outer
bounds for the secrecy-distortion region of this partial-secrecy
scenario under a strong secrecy constraint when i.i.d. channel
states are causally available at the corresponding receivers.
The bounds match when the JCAS channel is physically- or
reversely-physically-degraded and the outer bound also applies
to the case of noisy generalized feedback. We also extend these
characterizations to the case in which the entire transmitted
message should be kept secret. The proposed secure JCAS
models can be viewed as extensions of the wiretap channel
with feedback models [12]-[19]. Our achievability proof lever-
ages the output statistics of random binning (OSRB) method
[20]-[22] to obtain strong secrecy. A binary JCAS channel
example with multiplicative Bernoulli states illustrates how
secure JCAS methods may outperform separation-based secure
communication and state-sensing methods.

II. PROBLEM DEFINITION

We consider the secure JCAS model shown in Fig. 1,
which includes a transmitter equipped with a state estimator, a
legitimate receiver, and an eavesdropper (Eve). The transmitter
attempts to reliably transmit a uniformly distributed message
M = (Mi,Ms) € M = M; x My through a memo-
ryless state-dependent JCAS channel with known statistics
Py v,7s,5,x and iid. state sequence (S7,Sy) € St x Sy
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Fig. 1. JCAS model with partial secrecy, where only Ms should be kept
secret from Eve, for j = 1,2 and ¢ = [1 : n]. We mainly consider JCAS
with perfect output feedback, where Z; 1 = (Y1,;—1, Y2,i—1).

generated according to a known joint probability distribution
Ps,s,. The transmitter calculates the channel inputs X™ as
X; = Enc;(M,Z*') € X for all i = [1 : n], where Enc;(")
is an encoding function and Z°~! € Zi~! is the delayed
channel output feedback. The legitimate receiver that observes
Y1, € Y1 and Sy, for all channel uses ¢ = [1 : n] should
reliably decode both A; and M by forming the estimate
M = Dec(Y7",S7), where Dec(-) is a decoding function.
The eavesdropper that observes Y5; € ), and Sy ; should
be kept ignorant of Ms. Finally, the transmitter estimgt\eg the
state sequence (S7,S%) as g;\“b = Estj(X",Z") € S; for
j = 1,2, where Est;(-,-) is an estimation function. Unless
specified otherwise, all sets S1, Sa, §1, §2, X, Vi, Yo, and Z
are finite.

For simplicity, we consider the perfect output feedback case
in which for all ¢ = [2 : n] we have

Zi—1 = Y1,i-1,Y2,-1). (1)

Although this is explicitly used in our achievability proofs,
some of our converse results hold for generalized feedback. We
next define the strong secrecy-distortion region for the problem
of interest.

Definition 1. A secrecy-distortion tuple (Rp, Ra, D1, Ds) is
achievable if, for any ¢ > 0, there exist n > 1, one e/n\coder,
one decoder, and two estimators Est; (X", Y{",Y3") = S7 such
that

1
—log|M;| > R; —¢ for j=1,2 (rates) 2
n
Pr[M# M] <9 (reliability) 3)
I(M2;Y5'|S%) <6 (strong secrecy) (4)
E[d;(S7, g“j?‘)] <D;+§ for j=1,2 (distortions) 5)

where d;(s",s") = L ™" d;(s;,3;) for j=1,2 are bounded

per-letter distortion metrics.

The secrecy-distortion region Rpspor is the closure of the
set of all achievable tuples with partial secrecy and perfect
output feedback.

The use of per-letter distortion metrics d; (-, -) in conjunction
with i.i.d. states simplifies the problem to a rate distortion
region characterization [7]-[9]; in fact, past observations are
independent of present and future ones, lending the transmitter
no state prediction ability to adapt its transmission on the fly.
Analyzing JCAS models with memory leads to conceptually
different results, see, e.g., [23].

Remark 1. The strong secrecy condition (4) is equivalent
to I(My;Y5",S8) < 4 since the transmitted message is
independent of the state sequence.

III. BOUNDS FOR JCAS WITH PARTIAL-SECRECY

We next provide inner and outer bounds for the secrecy-
distortion region Rps por; only a proof sketch is provided, full
details are available in [24, Section VI].

Define [a]* = max{a,0} for a € R.

Proposition 1 (Inner Bound). Rpspor includes the union
over all joint distributions Py Py \yPx|v of the rate tuples
(Rl, R27 D1, D2) such that

Ry < I(U;Y11541) (6)
R2 S mln{R’Q, (I(V, Y1|51) — Rl)} (7)
D; > E[d;(S;, Sj))] for j =1,2 (8)
where
Pyvxyivas:s, = Puv Pvix Px Ps, s, Pyiva|sis. x5, (9)
Ry = [I(V;Y1S1,U) — I(V;Y3| S5, U)] "
+ H(Y1|Y3,52,51,V) (10)

and Est;(x,yhyg) = §; for j = 1,2 are per-letter state
estimators such that d;(x,y1,y2) is equal to

argmin Y Ps,xviv (5], y1,92) d;(s5,5). (11)
5683' S]‘GS_,'
One can limit |U| to
(min{|X], V1], |Va|}+2) (12)

and |V| 1o

Proposition 2 (Outer Bound). Rps por is included in the union
over all joint distributions Py x of the rate tuples in (8) and

R1 S I(V;Yl\Sl)
Ry < min { (H(Vi, 811, 52) = H($1]Y2, 5, V),

(I(V, Y1|Sl) — Rl)}

where (9) with constant U follows and we can apply the
deterministic per-letter estimators Est}(x,y1,y2) = §; for
j = 1,2 by using (11). One can limit the cardinality to

V[ < (min{[ &, [, [Val}+1).

(14)

15)

(16)



Proof Sketches for Propositions 1 and 2: We use the
OSRB method [21], [22] for the achievability proofs, applying
the steps in [25, Section 1.6], see also [26]. While the strictly
causal observation of the i.i.d. state through feedback does not
provide opportunities to improve reliability, feedback offers
significant opportunities to improve secrecy. Hence, we apply
a block Markov coding scheme that consists of b > 2
transmission blocks, each with n channel uses, to transmit
(b — 1) independent messages M (k) = (M;(k), Ma(k)). In
every block, secret keys are distilled from the states and used
to protect messages in the subsequent block. In the following,
all n-letter random variables are i.i.d. according to (9) for all
k = [1 : b], obtained by fixing Pyy, Py|x, and Py so that
there exist associated per-letter estimators Est;(x,y1, y2) = 3‘;
for j = 1,2 that satisfy

E[d; (S}, Est? (X", Y]",Y5"))] < Dj + e, 17)

where ¢, > 0 such that ¢, — 0 when n — oo. The block k&
under consideration is indicated by adding the argument (k)
to the variables, e.g., M (k) refers to the message in block k,
etc.

For all blocks £ = |1 b] we construct codes as
follows. For every sequence u"™(k), independently and uni-
formly assign two random bin indices (F,(k), Wy(k)) such
that Fy(k) € [1 : 2"%] and Wy(k) € [1 : 2] To
each v"(k), independently and uniformly assign three random
indices (Fy(k), Wy(k), Ly(k)) such that F,(k) € [1 : 27,
Wy(k) € [1 : 2"%], and Ly(k) € [1 : 2"f]. Finally,
to each yf'(k — 1), independently and uniformly assign a
random index Ly (k — 1) € [1 : 2"%]. Conceptually, the
indices F'(k) = (Fyu(k), Fy(k)) represent the public choice of
an independent encoder-decoder pair in block & € [1 : b,
while the indices W (k) = (Wy(k), Wy (k), L,(k)) represent
the messages that should be reliably reconstructed at the
decoder. Only W, (k) should be directly kept secret from
the eavesdropper. L, (k) represents a non-secure additional
message that should be reliably reconstructed at the decoder
and can be kept secret by applying a one-time pad as used
in the chosen-secret model [27]-[29]. The role of the index
Ly, (k — 1), which is known at all legitimate parties thanks to
the perfect output feedback, is to provide the required key
for the one-time pad in block k. The messages of interest
for our original problem, are obtained for all k = [2 : §]
as M (k) = Wy(k) and Ms(k) = (Wy(k), Ly(k)), so that
R, = R, and Ry = R, + R,. The rate region is obtained by
deriving sufficient conditions on the rates introduced above to
ensure that all indices have the desired reliability or secrecy
properties.

In slightly more details, the indices Fy(k) and W, (k) are
almost independent and uniformly distributed for all k = [1 : ¥]
if [21, Theorem 1]

Ry+ R, < H(U).

The indices (Fy(k), Wy(k), Fy(k), Wy(k), Ly(k)) are almost
mutually independent and uniformly distributed for all £ =

(18)

[1:0]if [21, Theorem 1]

Ry+Ry+ Ry + R, + R, < H(V,U). (19)

The indices Fy(k) and W, (k) are also almost independent of
(Y7 (k), S5 (k),U™(k)) and uniformly distributed for all k =
[1:0]if

Ry, + R, < H(V|Ys, S5, U). (20)

The random bin index Ly (k—1) is almost independent of
(YZn(k - 1)7 Sg(k - 1)v S?(k‘ - 1)7 Vn(k - 1)7 Un(k - 1)) and
uniformly distributed for all k = [2: b] if

Ry, = Ry, < H(Y1|Y3,55,51,V). 1)

Using a Slepian-Wolf [30] decoder, one can reliably recon-
struct U™ (k) from (Y{"(k), ST (k), Fy(k)) for all k = [1: ] if
[21, Lemma 1]

Ry, > H(U|Y1, S). (22)

The decoder can then reliably reconstruct V"(k) from
(Y7'(k), ST (k), Fy(k),U™(k)) for all k= [1:9] if

R, > H(V|Y,S,U). (23)

Applying Fourier-Motzkin elimination [31] to (18)-(23), and
using the typical average lemma [32, pp. 26] and selection
lemma [33, Lemma 2.2] the proof of the inner bound follows.

The proof of the outer bound follows by using standard
properties of the Shannon entropy and by defining V; £
(My, Mo, Y™, Si71) such that V; — X, — (Y3 4, Ya.;, S1.4, Sa.4)
form a Markov chain for all 7 € [1 : n]. [ |

Remark 2. Since we consider perfect feedback as in (1),
the outer bound proposed in Proposition 2 is also valid for
the general JCAS problem depicted in Fig. 1, in which the
feedback Z;_; can be any noisy version of (Y7 ,-1,Y2,-1).

We next characterize the exact strong secrecy-distortion
regions for physically-degraded and reversely-physically-
degraded JCAS channels with partial secrecy and perfect
output feedback, defined below; see also [9, Definition 2].

Definition 2. A JCAS channel Py,y,|s,s,x is physically-
degraded if we have

Py v,15:8,x = Ps, Pyi)5: x Pyy8519: 77 - (24)

The channel is reversely-physically-degraded if the degradation
order is changed and

Py, v,15,85,x = Ps, Pyy)5, x Py, 51155 Yz - (25)

The physically-degraded corresponds to a situation in which
the observations (Y3', S%) of the eavesdropper are degraded
versions of observations (Y7",S7) of the legitimate receiver
with respect to the channel input X".

Theorem 1. Rps por for a physically-degraded JCAS problem
with partial secrecy and perfect output feedback is the region
defined in Proposition 2.



Proof Sketch: Since the outer bound given in Proposi-
tion 2 does not assume any degradedness, the converse proof
for Theorem 1 follows from the outer bound. Furthermore, the
achievability proof for Theorem 1 follows by modifying the
proof of the inner bound in Proposition 1. We next provide a
sketch of the modifications for a physically-degraded JCAS.

First, U™ is eliminated from the achievability proof. Sec-
ond, to each v"(k) we assign four random bin indices
(Fy(k), Wy, (k), W\, (k), Ly(k)) such that Fy(k) € [1 : 2nf],
Wy, (k) € [1:2"Ba], W, (k) € [1 : 27f], and L(k) €
[1 : 275] for all k = [1 : b] independently such that
Mi(k) = Wy, (k) and My(k) = (Wy,(k), Ly(k)). As in (23),
we impose the reliability constraint

R, > H(V|Y1,S1) (26)

as in (20) and (21) we impose the strong secrecy constraints
Ry, + R, < H(V|Ys, S5) 27)
EV < H(Y]|Y27SQ,S1,V) (28)

and as in (19) we impose the mutual independence and
uniformity constraint

Ry, + Ry, + Ry + R, < H(V). (29)

We remark that we have H(V|Y2,S2) > H(V|Y1,S;) for
all physically-degraded JCAS channels, i.e., we obtain

[L(V3Y1]Sy) = I(V; Y2|S2)]"

@ HV|Ys,S) — HVIV1,S)  (30)

where (a) follows because V is independent of (S7,.S2) and
since

V—X—(Y1,81) — (Y2,8) (31)

form a Markov chain for these JCAS scenarios. Define

2dee = (V3 Y1[S1) = I(V; V2| So)] T + H(V1Y2, 52, 81, V)

@ H(V|Ys, 85) — H(V|Y1, 81) + H(Y1|YVa, S5, 51, V)

= H(Y1,V[Y2,52,51) — H(V[Y1, S1) + H(S1[Y2, 52)
— H(5,]Y2,52,V)

= H(V|Ys, S2,51,Y1) — H(V|Y1,81) + H(Y1|Y2, S2, S1)
+ H(S1]Y2, S2) — H(S1]Ya, S2, V)

(b)

= H(Y1,51[Y2,52) — H(5:1]Y2, 52, V) (32)

where (a) follows by (30) and (b) follows from the Markov
chain in (31).

Applying the Fourier-Motzkin elimination to (26)-(29) and
using steps similar to those in the proof for Proposition 1,
given in [24, Section VI], the achievability proof follows. M

Lemma 1. Rpspor for a reversely-physically-degraded JCAS
problem with partial secrecy and perfect output feedback is
the union over all joint distributions Py x of the rate tuples
satisfying (8), (14), and

R2 Smln {H(Y1|Y2,SQ,51), (I(V,Y1|51)—R1)} (33)

for joint distributions as in (9) but with constant U, and we can
apply the deterministic per-letter estimators Est;'f (x,y1,y2) =
3j for j = 1,2 by using (11). One can limit the cardinality to

The proof for Lemma 1 is given in [24, Section III] and
follows by showing that the inner and outer bounds in Propo-
sitions 1 and 2, respectively, match after elimination of U™
from the proof of achievability, as in the proof for Theorem 1
above.

IV. BOUNDS FOR JCAS WITH SINGLE SECURE MESSAGE

We next give inner and outer bounds for the JCAS problem
with perfect output feedback, in which there is a single mes-
sage M = M, that should be kept secret from an eavesdropper,
i.e.,, My = @ in Fig. 1. For this problem, the definitions
of an achievable secrecy-distortion tuple (R, Di,D3) and
corresponding strong secrecy-distortion region Rpor follow
similarly as in Definition 1 by eliminating (M7, R;) and by
replacing (Ms, Ra, Rpspor) With (M, R, Rpor), respectively.

Proposition 3. (Inner Bound): Rpor includes the union over
all joint distributions Py x of the rate tuples (R, D1, D5)
satisfying (8) and

R <min{Rj, I(V;Y1]S1)} (35
where
Py xviv,8,8, = Pv|x Px Ps,5, Py, v,|8,5.x,  (36)
5 = [L(V;Y1]S81) = I(V; Y2 S:)] *
+ H(Y1|Y2,52,51,V) (37)
and apply the deterministic  per-letter  estimators

Estj(z,y1,y2) = 8; for j = 1,2 by using (11). One

can limit the cardinality as in (16).

Proposition 4. (Outer Bound): Rpor is included in the union
over all Px of the rate tuples satisfying (8) and

R S IniIl{(H(Yl,Sl|Y2,SQ) - H(51|E,SQ,X)),

I(X; y1|sl)} (38)

where we can apply the deterministic per-letter estimators
Est} (z,y1,y2) = 85 for j = 1,2 by using (11).

The proof of the inner bound in Proposition 3 follows
by eliminating U™ in the proof of the inner bound for
Proposition 1 such that Ry = R,, = 0 and by imposing
(26)-(29) after replacing R,, with R, since for this case we
have M (k) = (Wy(k), Ly(k)) for all k = [1 : b]. See [24,
Section IV] for the proof of the outer bound.

Similar to Section III, we characterize the exact strong
secrecy-distortion regions for the JCAS problem with per-
fect output feedback when the JCAS channel Py, y,|s,s,x
is physically-degraded, as in (24), or reversely-physically-
degraded, as in (25).



Theorem 2. Rpor for a physically-degraded JCAS problem
with perfect output feedback is the region defined in Proposi-
tion 4.

Proof: Since the outer bound given in Proposition 4 is
valid for any JCAS channel, the converse proof for Theorem 2
follows from Proposition 4. Furthermore, the achievability
proof for Theorem 2 follows by modifying the proof of the in-
ner bound for Theorem 1 such that we assign V" (k) = X" (k)
for all k = [1 : b] and then apply the same OSRB steps for
X" (k) rather than V" (k). |

Lemma 2. Rpor for a reversely-physically-degraded JCAS
problem with perfect output feedback is the union over all Px
of the rate tuples in (8) and

R <min {H(Y1]Y2,52,51), I(X;Y1]51)} (39)

where we can apply the deterministic per-letter estimators
Est(2,y1,y2) = 8; for j = 1,2 by using (11).

The proof for Lemma 2 is given in [24, Section IV] and
follows by showing that the inner and outer bounds in Propo-
sitions 3 and 4, respectively, match after assigning V" = X"
in the proof of achievability, i.e., we choose V = X that is
allowed by (36).

V. BINARY JCAS CHANNEL WITH MULTIPLICATIVE
BERNOULLI STATES EXAMPLE

We next consider a JCAS with perfect output feedback
example, in which JCAS channel input and output alphabets
are binary with multiplicative Bernoulli states, i.e., we have

lesl'X7

where Pg,5,(0,0) = (1 —gq), Ps;s,(1,1) = qo, and
Ps,5,(1,0) = g(1—«) for fixed ¢, € [0,1], so the JCAS
channel satisfies (24) [9, Section IV-A].

Define the binary entropy function, for any ¢ € [0, 1], as

(41)

Yo=055-X (40)

Hy(c) = —cloge — (1 —¢)log(1l —¢).

Lemma 3. The strong secrecy-distortion region Rpor for a
binary JCAS channel with multiplicative Bernoulli states char-
acterized by parameters (q, «), and with Hamming distortion
metrics is the union over all p = Pr[X = 1] of the rate tuples

R < q(1 - a)Hy(p) 42)
Dy = (1-p)-min{qg, (1 —q)} (43)
Dy > (1 — p) - min{qa, (1 — qa)}. (44)

Proof Sketch: The proof follows by evaluating the strong
secrecy-distortion region Rpor defined in Theorem 2 since the
JCAS channel considered is physically-degraded. Proofs for
(43) and (44) follow by choosing Est;(l,yl,yQ) = y,; and
Est;(0,y1,y2) = 1{Pr[S; = 1] > 0.5} for j = 1,2 that
result from (11), which are equivalent to the proofs for [9,
Egs. (27¢) and (27d)]. We next have I(X;Y1|S1) = ¢Hy(p),

which is equivalent to the proof for [9, Eq. (27a)] with r = 1.
Furthermore, we obtain

H(Y1,51|Y2, S2) — H(S1]Y2, 89, X)

W H(S1|S5) + H(Y1|S1, Ya, S5) — H(S1]S5)

b
Y Pg,s, (1,0)H(Y]Sy = 1,8, = 0)

©

= PSIS2(]‘7 O)H(X) = q(]' - a)Hb(p) (45)

where (a) follows since S; — Sy — (Y2, X) form a Markov
chain for the considered JCAS channel, (b) follows since if
51 = 0, then }/1 = O, and if (Sl,SQ) = (1, 1), then Y1 = YQ,
and (c) follows since Y7 = X that is because of S; = 1 and
since X is independent of (S1, S2). Therefore, we have

R < min { (H(Y, $1[Y2, $2) = H($1|Y2, 52, X)),
I(X;Y1|Sl)}
=q(1 —a)Hy(p)

which follows since a < 1. |
We remark that for the considered example, the rate
of the securely transmitted message is upper bounded by
(I{()/l7 Sl D/g, SQ)—H(Sl |Y2, Sg, X)) rather than I(X, Y1 |Sl),
the latter of which is the upper bound for the rate for the same
example when there is no secrecy constraint [9, Corollary 4].
Thus, the amount of rate loss due to the strong secrecy
constraint is gaHp(p) for this JCAS example. Furthermore,
one can show that JCAS methods achieve significantly better
performance than separation-based secure communication and
state-sensing methods. First, one can show that the maximum
secure communication rate in (42) is achieved with p = 0.5,
whereas the minimum distortions in (43) and (44) are achieved
with p = 1 that results in zero communication rate. Then,
applying time sharing between the tuples achieved by the
separation based methods to convexify and enlarge the region,
we observe that the secrecy-distortion region that can be
achieved by applying the JCAS methods is strictly larger than
the region being achieved by the separation based methods.
These analyses are analogous to the comparisons between joint
and separation-based secrecy and reliability methods for the
secret key agreement problem, as discussed in [34]-[36].

(46)
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