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Abstract—We study the covert best arm identification problem
in which an agent tries to identify the best arm while escaping
detection from an adversary. Specifically, the agent should
identify the best arm of the bandit with accuracy higher than a
predefined requirement as soon as possible and, simultaneously,
the adversary’s observations induced by pulling effective arms
should remain indistinguishable from the observations obtained
when no effective arm is pulled. Our main result is the char-
acterization of the exponent µ, which captures the asymptotic
exponential decrease of the confidence level with the square-root
of the averaged stopping time.

I. INTRODUCTION

In bandit problems, a player pulls an arm on a bandit

machine at each time instant and obtains a corresponding

reward. A standard objective for the player is to minimize his

regret [1], defined as the difference between his rewards and

those of the best arm pull strategy, over a fixed time horizon or

identify the best arm as soon as possible subject to a certain

accuracy constraint [2]. In the regret minimization problem,

the player then faces a trade-off between exploiting the most

profitable arm identified from past rewards or exploring new

arms. Standard algorithms, such as Upper Confidence Bound

(UCB) [3] or Active Arm Elimination (AAE) [4], achieve

optimal performance by only devoting a small fraction of

the time to exploration. On the other hand, the track-and-stop

algorithm has been shown to be asymptotically optimal in the

best arm identification problem [5].

Different approaches have been proposed to analyze the

performance of bandit games in the presence of adversaries.

[6], [7] investigate the regret minimization problem in the

stochastic bandit setting with bounded but unknown number

of corruption on rewards, while [8] studies the best arm

identification problem in this setting. [9] explores the case

of adversarial bandit, in which rewards are fully decided by

an adversary, using the EXP3 algorithm. Different from all of

works above, we investigate the situation in which the agent

(Alice) would like to identify the best arm of the bandit while

keeping the fact that someone is pulling arms unknown to the

adversary (Willie).

The problem formulation of this work is inspired by the

problem of “low probability of detection,” in communication

systems studied in [10], [11]. If n denotes the time duration,

the ratio of non-innocent symbols transmitted need to be

at least 1√
n

so that the outputs received have a noticeable

difference from the outputs when no communication happens.

The objective of the agent in this work is to identify the best
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arm as soon as possible and make the actions of pulling arms

covert from Willie’s perspective. Similar problem formulations

can be found in [12], [13], where the covertness in hypothesis

testing problems is analyzed.

II. NOTATION

A multi-arm bandit ¿ with K effective arms and a null

arm is a set of distributions {¿0, ..., ¿K}. We denote ¿k the

distribution of the kth arm of the bandit ¿. We denote µ
the operator that maps a bandit into a vector of means, i.e.,

µ(¿) = [µ0(¿), ..., µK(¿)], where µk(¿) is the mean of the

distribution ¿k for any k ∈ [0;K]. For any two different

bandits ¿, ¿′, d(¿, ¿′) = ||µ(¿)−µ(¿′)||∞ is the infinity norm

of µ(¿) − µ(¿′). For any k ∈ [0;K] and t ∈ N, Tk(t) is the

number of pulls on the arm k before time t+1. For any bandit

¿, i∗(¿) = argmaxk µk(¿) is the best arm. For any alphabet

U , we denote PU the set of all probability distributions on

U . For two continuous distributions p, q on some common

set D, we define Ç2(P ||Q) ≜
"

x∈D
(p(x)−q(x))2

q(x) p(x)dx. For

any sequence of random variables {Xt}∞t=1, we denote X
n ≜

[X1, ..., Xn] for any n ∈ N. The notation r(¶) = O¶→0(e(¶))
means there exists some constant L such that r(¶) ⩽ Le(¶)
for all ¶ small enough. Other Landau notations are defined

similarly. For any real number x, |x|+ ≜ max(0, x).

III. PROBLEM FORMULATION

We consider the situation in which an agent (Alice) and an

adversary (Willie) are engaged in the best arm identification

problem in the stochastic bandit setting. The distribution of

the rewards obtained by Alice and Willie are determined by

the arm pulled by Alice. Let K be the number of effective

arms. We denote ¿ = {¿0, ¿1, ..., ¿K} the multi-arm bandit

of Alice, and q = {q0, q1, ...qK} the multi-arm bandit of

Willie. The arm 0 is defined as the null arm. That is, Alice

and Willie receive rewards drawn from the distribution ¿0
and q0, respectively, when no effective arm is pulled. In this

work, we assume that the rewards are drawn from Gaussian

distributions with unknown means and unit variance, i.e., ¿a
and qa are Gaussian distributions with unit variance for all

a ∈ A ≜ [0;K], and we also define EN as the set of all

Gaussian bandits with unit variance and K effective arms. In

this work, we assume that the information of q is known to the

agent but ¿ is unknown. For any pair of bandits ¿′, ¿′′ ∈ EN ,

one cannot distinguish between ¿′ and ¿′′ by pulling the null

arm, i.e., D(¿′0||¿′′0 ) = 0 for all ¿′, ¿′′ ∈ EN . Without loss of

generality, we assume that the arm 1 is the best arm, i.e., the

distribution ¿1 has the largest mean, and ¿0 has zero mean.



The fact that the null arm has zero mean is known by the

agent.

The reward distributions of Alice and Willie are connected

to a common arm a ∈ A. Specifically, at each time step

t, Alice selects an arm At ∈ A from the control policy

Ãt ≜ PAt|Xt−1,At−1 ; Alice receives the reward Xt ∼ ¿Ak
;

and Willie receives the reward Zt ∼ qAt
. Let Ä be the

stopping time adapted to the filtration (Ft)
∞
=0 with Ft =

Ã(X1, A1, ..., Xt, At). At time Ä , Alice decides on the best

arm according to the rule È : XÄ ×A
Ä �→ [1;K]. Let ¶ > 0

be the parameter defining how accurate the decision on the

best arm is. Then, the overall policy ¼ ≜ ({Ãt}∞t=1, Ä, È) is a

triple and has the confidence level ¶ if

P¿(È(X
Ä ,AÄ ) ̸= i∗(¿)) < ¶ for all ¿ ∈ EN , (1)

where P¿ is the probability measure under the bandit ¿.

The objective of Alice is to identify the best arm as

soon as possible while keeping the fact that Alice is pulling

arms undetected by (covert from) Willie. The covertness is

measured in terms of the divergence. Specifically, we say that

the policy ¼ is ¸-covert if for all ¿, q ∈ EN ,

lim
¶→0

P¿ (D(PZn ||qn0 ) < ¸ for all 0 ⩽ n ⩽ Ä) = 1. (2)

We denote by Λ(¸) the set of policies that satisfy the confi-

dence requirement in (1) and are ¸-covert. We are interested

in the exponent µ¿,q(¼), which is the ratio between − log ¶
and the square root of the expected stopping time Ä , defined

as

µ¿,q(¼) ≜ lim inf
¶→0

− log ¶
�

E¿(Ä)
, (3)

where the expectation E¿ is taken over the probability measure

P¿ . Then, we have the following definition of achievability in

the covert arm identification problem.

Definition 1 (Achievability). The exponent r is achievable if

there exists a policy ¼ ∈ Λ(¸) such that

µ¿,q(¼) ⩾ r. (4)

The optimal exponent µ∗¿,q is the supremum of all achievable

exponents, i.e.,

µ∗¿,q = sup
¼∈Λ(¸)

µ¿,q(¼). (5)

The following theorem gives the lower bound on µ∗¿,q(¸).

Theorem 2. Let q. For all ¿ ∈ EN , if there is no distribution

P̄ over A \ {0} such that
�

a∈A\{0} P̄ (a)qa = q0, then we

have

µ∗¿,q ⩾
�

2¸max
P̄

min¿′∈EAlt(¿)

�

a∈A\{0} P̄ (a)D(¿a||¿′a)
�

Ç2(
�

a∈A\{0} P̄ (a)qa||q0)
.

We say that the control policy {Ãt}∞t=1 converges almost

surely if there exists some P ∗ ∈ PA and C <∞ such that for

any a ∈ A the probability PAt|Xt−1At−1(a) = P ∗(a) for all

t ⩾ C| log ¶|, and the corresponding overall policy ¼ is called

an almost surely convergent policy. If we restrict ourselves to

almost surely convergent policies, the exponent can be upper

bounded by the theorem below.

Theorem 3. Let ¼ be an almost surely convergent policy, then

µ¿,q(¼) ⩽
�

2¸max
P̄

min¿′∈EAlt(¿)

�

a∈A\{0} P̄ (a)D(¿a||¿′a)
�

Ç2(
�

a∈A\{0} P̄ (a)qa||q0)
.

The result in Theorem 2 can be interpreted as follows.

It is known that the agent can not choose effective arms

too often to maintain covertness. Therefore, the policy we

propose in Sec. IV is composed of a probability ³ with

which effective arms are chosen and a probability distribution

P̄ on effective arms. A large value of the divergence term

min¿′∈EAlt(¿)

�

a∈A\{0} P̄ (a)D(¿a||¿′a) results in a shorter

stopping time. On the other hand, Ç2(
�

a∈A\{0} P̄ (u)qa||q0)
is the chi-square distance between the null distribution and the

reward distribution induced by the distribution P̄ . A smaller

chi-square distance implies that Willie is harder to distinguish

the reward distribution
�

a∈A\{0} P̄ (a)qa from the null one.

This means the agent can choose effective arms more often, i.e.

larger ³ , when the probability of choosing each effective arms

is given by ³P̄ . Therefore, the best distribution on effective

arms needs to have a good trade-off between maximizing the

divergence and minimizing the chi-square distance. Finally,

when the covertness constraint ¸ is more relaxed, the agent can

choose effective arms more often and speed up the estimation

of the best arm.

IV. PROOF OF THEOREM 2

We first specify the policy ¼ = ({Ãt}∞t=1, Ä, È). Let ¿̂(t)
be the estimated bandit of ¿ at the time t, i.e., ¿̂k(t) ∼
N
�

1
Tk(t)

�t
ℓ=1Xt1(At = k), 1

!

for all k ∈ A \ {0}, and

EAlt(¿̂(t)) = {¿′ ∈ EN : i∗(¿̂(t)) ∩ i∗(¿′) = ∅}. Then, we

define

Lt ≜ inf
¿′∈EAlt(¿̂(t))

K
�

k=1

Tk(t)D(¿̂k(t)||¿′k), (6)

and the stopping rule Ä is

Ä = inf{t : Lt > ´t(¶)}, (7)

where ´t(¶) = k log(t2 + t) + f−1(¶) and f(x) = exp(K −
x)(x/K)K . For any P̄ ∈ PA\{0} and ¿′′ ∈ EN , we define

À(P̄ , ¿′′) ≜
inf¿′∈EAlt(¿′′)

�

k∈[1;K] P̄ (k)D(¿′′k ||¿′k)
�

Ç2

�

�

k∈[1;K] P̄ (k)qk||q0
!

and

·(P̄ , ¿′′) ≜
2¸

Ç2

�

�

k∈[1;K] P̄ (k)qk||q0
!

×
inf¿′∈EAlt(ν′′)

�

k∈[1;K] P̄ (k)D(¿′′k ||¿′k)
| log 4¶| .



Algorithm 1: Covert Arm Identification Algorithm

Input: ¶, ¸
Initialization: s := 0, t := 0

1 while Zt < ´t(¶) do

2 if argmink∈[1;K] Tk(t) ⩽
√
s then

3 P̄t(a) := 1(a = argmink∈[1;K] Tk(t))
∀a ∈ [1;K]

4 else

5 P̄t := argmaxP̄ À(P̄ , ¿̂(t))

6 ³t := ·(P̄t, ¿̂(t))

7 PAt+1|Xt,At(a) :=

�

1− ³t if a = 0

³tP̄t(a) if a ̸= 0

8 Draw At+1 from the distribution PAt+1|Xt,At .

9 if At+1 ̸= 0 then

10 s := s+ 1

11 t := t+ 1

Output: i∗(¿̂(t))

Then, the policy of determining the arms is defined in

Algorithm 1. Note that if there are multiple arms having

the same minimum number of times being pulled, then

argmink∈[1;K] Tk(t) would randomly pick one among them.

Finally, the identified best arm at the time Ä is È(XÄ ,AÄ ) =
i∗(¿̂(Ä)).

A. Confidence Analysis

The confidence analysis follows from the proof of Lemma

33.7 in [5]. We summarize the main idea behind the proof

below. The event i∗(¿̂(Ä)) ̸= 1 implies ¿ ∈ EAlt(¿̂(Ä)). Then,

P (i∗(¿̂(Ä)) ̸= 1) ⩽ P (¿ ∈ EAlt(¿̂(Ä)) (8)

⩽ P

f

K
�

k=1

Tk(Ä)D(¿̂k(Ä)||¿k) ⩾ ´Ä (¶)

f

.

(9)

In the case of Gaussian bandit, D(¿̂k(Ä)||¿k) =
1
2 (µk(¿̂(Ä))− µk(¿))

2
. The following Lemma [5] provides a

concentration bound on the value of µk(¿̂(Ä)).

Lemma 4. Let {Xt}∞t=1 be a sequence of Gaussian ran-

dom variables with mean µ and unit variance. Let µ̂n =
1
n

�n
t=1Xt, then

P

�

∃n ∈ N :
n

2
(µ̂n − µ)2 ⩾ log(1/¶) + log(n(n+ 1))

!

⩽ ¶

for any ¶ > 0.

Lemma 4 upper bounds the probability that

Tk(Ä)D(¿̂k(Ä)||¿k) ⩾ log(1/¶) + log (Tk(Ä)(Tk(Ä) + 1))

by ¶ for all k ∈ [1;K] regardless of Tk(Ä). However, the event

on the right hand side of (9) is related to the combination of

different divergence terms. The lemma below [5] extends the

result in Lemma 4.

Lemma 5. Let g : N �→ R be increasing, and for each k ∈
[1;K], let Sk = {Sk1, Sk2, · · · } be an infinite sequence of

random variables such that for all ¶ ∈ (0, 1),

P (∃n ∈ N : S1n ⩾ g(n) + log(1/¶)) ⩽ ¶. (10)

Then, provided that the sequences {Sk}Kk=1 are independent

and x > 0,

P

f

∃s ∈ N
K :

K
�

k=1

Sksk ⩾ kg

f

K
�

k=1

sk

f

+ x

f

⩽
� x

K

!K

exp(K − x). (11)

Now, let sk = Tk(Ä), Sksk = D(¿̂k(Ä)||¿k) for all k ∈
[1;K] and g(n) = log(n2 + n). Note that the estimations of

the empirical distributions of different arms are independent,

so are the sequences {Sk}Kk=1. Applying Lemma 5, we have

P

f

K
�

k=1

Tk(Ä)D(¿̂k(Ä)||¿k) ⩾ ´Ä (¶)

f

⩽ P

f

K
�

k=1

Sksk ⩾ k log(n2 + n) + f−1(¶)

f

⩽ ¶

B. Divergence Analysis

We first define

P̄ ∗ ≜ argmax
P̄∈PA\{0}

À(P̄ , ¿)

as well as

³∗ ≜ ·(P̄ ∗, ¿).

Let B(¿, ϵ) ≜ {¿′ ∈ EN : d(¿, ¿′) < ϵ}, B(P̄ ∗, ϵ) ≜ {P̄ ∈
PK : ||P̄ − P̄ ∗||∞ < ϵ} and B(³∗, ϵ) ≜ {³ ∈ R : | ³

³∗ −
1| ⩽ ϵ}, and let Ä¿ ≜ sup{t : d(¿̂(t), ¿) > ϵ}, ÄP̄ (ϵ) ≜
sup{t : ||P̄t − P̄ ∗||∞ > ϵ} and Ä³(ϵ) ≜ sup{t : | ³t

³∗ − 1| >
ϵ}. The following lemma shows that Ä¿(ϵ) = O¶→0(| log ¶|),
ÄP̄ (ϵ) = O¶→0(| log ¶|) and Ä³(ϵ) = O¶→0(| log ¶|) with high

probability for all ϵ > 0.

Lemma 6. For all ϵ > 0, it holds that

Ä¿(ϵ) = O¶→0(| log ¶|)
ÄP̄ (ϵ) = O¶→0(| log ¶|)
Ä³(ϵ) = O¶→0(| log ¶|)

with probability greater than 1− ϵ.

For all 0 ⩽ n ⩽ Ä , the divergence D(PZn ||(q0)¹n) can be

expressed as

D(PZn ||(q0)¹n) =

n
�

t=1

EZt−1

�

D(PZt|Zt−1 ||q0)
�

. (12)

Let Ämax(ϵ) = max(ÄP̄ (ϵ), Ä³(ϵ)). Then, for any n ⩽ Ä and
fixed ϵ > 0, we have

D(PZn ||(q0)
¹n)



⩽

Ämax(ϵ)
�

t=1

EZt−1

�

D(PZt|Zt−1 ||q0)
�

+ |n− Ämax(ϵ)|
+

× sup
P̄∈B(P̄∗,ϵ)

sup
³∈B(³∗,ϵ)

D



(1− ³)q0 + ³





�

k∈[1;K]

P̄ (k)qk





ø

ø

ø

ø

ø

ø

ø

ø

ø

ø

ø

ø

q0





⩽

Ämax(ϵ)
�

t=1

EZt−1

�

D(PZt|Zt−1 ||q0)
�

+ |n− Ämax(ϵ)|
+

× sup
P̄∈B(P̄∗,ϵ)

sup
³∈B(³∗,ϵ)





³2

2
Ç2





�

k∈[1;K]

P̄ (k)qk

ø

ø

ø

ø

ø

ø

ø

ø

ø

ø

ø

ø

q0



+ o(³2)





⩽ n





(³∗)2

2



Ç2





�

k∈[1;K]

P̄
∗(k)qk

ø

ø

ø

ø

ø

ø

ø

ø

ø

ø

ø

ø

q0



+ h(ϵ) + o¶→0(1)









+O¶→0

�

1

| log ¶|

�

, (13)

where h(ϵ) is some function such that limϵ→0 h(ϵ) = 0,

and (13) follows from the fact that max(ÄP̄ (ϵ), Ä³(ϵ)) =

O¶→0(| log ¶|) and EZt−1

�

D(PZt|Zt−1 ||q0)
�

= O
�

1
| log ¶|2

!

for all t ∈ N. Moreover, we can upper bound the stopping

time Ä by the following lemma.

Lemma 7. For any ϵ′ > 0, it holds that

P

�

Ä ⩽
| log ¶|

inf¿′∈EAlt(¿)

�

k∈[1;K] P̄
∗(k)D(¿k||¿′

k)
×

1

³∗
(1 + ϵ

′)

 

⩾ 1− e
−Ωδ→0(| log ¶|)ϵ′

.

Then, with probability 1− ϵ′,

D(PZn ||(q0)¹n)

⩽
³∗

2



Ç2





�

k∈[1;K]

P̄ ∗(k)qk

ø

ø

ø

ø

ø

ø

ø

ø

ø

ø

ø

ø

q0



+ h(ϵ) + o¶→0(1)





× | log ¶|(1 + ϵ′)

inf¿′∈EAlt(¿)

�

k∈[1;K] P̄
∗(k)D(¿k||¿′k)

+O¶→0

�

1

| log ¶|

�

⩽ ¸(1 + ϵ′)



1 +
h(ϵ)

Ç2

�

�

k∈[1;K] P̄
∗(k)qk

ø

ø

ø

ø

ø

ø
q0

! + o¶→0(1)





+O¶→0

�

1

| log ¶|

�

for all n ⩽ Ä . Since we can make ϵ, ϵ′ arbitrarily small, this

implies

lim
¶→0

P
�

D(PZn ||(q0)¹n) ⩽ ¸
�

= 1

for all n ⩽ Ä .

C. Characterization of Exponent

Note that Lemma 7 implies that

E¿ [Ä ] ⩽
| log ¶|

inf¿′∈EAlt(¿)

�

k∈[1;K] P̄
∗(k)D(¿k||¿′k)

× 1

³∗ (1 + ϵ′)

(14)

for any ϵ′ > 0 when ¶ is small enough, and Theorem 2 is

obtained by plugging in (14) into the expression of µ¿,q(¼).

V. PROOF OF THEOREM 3

Let the control policy Ãt converge almost surely to P#,

then there exists some finite constant C such that Ãt = P#

for all t > C| log ¶|. We further define

³# ≜ 1− P#(0)

P̄# ≜
P#

³#
.

For any ¿′ ∈ EAlt(¿), we define the event E ≜ {È(XÄ , AÄ ) /∈
i∗(¿′)}. Then,

2¶ ⩾ P¿ (È(X
Ä , AÄ ) /∈ i∗(¿)) + P¿′ (È(XÄ , AÄ ) /∈ i∗(¿′))

⩾ P¿(E
c) + P¿′(E) (15)

⩾
1

2
exp

f

−
K
�

k=1

E¿ [Tk(Ä)]D(¿k||¿′k)
f

, (16)

where (16) is from the Bretagnolle–Huber inequality and the

divergence decomposition lemma. From [5], we already know

that the averaged stopping time E¿(Ä) is Ω¶→0(| log ¶|) for

all policies in order to satisfy the confidence level constraint

when there is no covertness constraint. In our context, one

can show that E¿(Ä) = Ω¶→0(| log ¶|2) by the fact that only

a small fraction of arms pulled are effective. This implies that

for ¶ small enough,

Tk(Ä) =

Ä
�

t=1

1(At = k)

=

C| log ¶|
�

t=1

1(At = k) +

Ä
�

t=C| log ¶|+1

1(At = k).

Then,

E¿ [Tk(Ä)] ⩽ C| log ¶|+ E¿ [Ä ]P
#(k)

⩽ E¿ [Ä ]P
#(k) (1 + o¶→0(1)) . (17)

Combining (16) and (17), we obtain

log

�

1

4¶

�

⩽ E¿ [Ä ]

K
�

k=1

P#(k)D(¿k||¿′k) (1 + o¶→0(1)) .

Since the above inequality is true for all ¿′ ∈ EAlt(¿), we can

take the infimum of all ¿′ ∈ EAlt(¿) and obtain

E¿ [Ä ] ⩾
log
�

1
4¶

�

inf¿′∈EAlt(¿)

�K
k=1 P

#(k)D(¿k||¿′k)
(1− o¶→0(1)) .

This means that there is a positive ϵ′′′ > 0 such that

P

f

Ä ⩾
log
�

1
4¶

�

inf¿′∈EAlt(¿)

�K
k=1 P

#(k)D(¿k||¿′k)
(1− o¶→0(1))

f

⩾ ϵ′′′. (18)

Next, from [11], the covertness constraint implies that

¸ ⩾ D(PZn ||q¹n
0 ) ⩾ nD(P̄Z ||q0) (19)



for all n ⩽ Ä , where

P̄Z(z) ≜
1

n

n
�

t=1

PZt
(z)

=
1

n

n
�

t=1

K
�

k=0

Ãt(k)qk(z).

Note that

1

n

n
�

t=1

Ãt(k) = P#(k)(1 + o¶→0(1)) (20)

when n = Ω¶→0(| log ¶|2) by the assumption that the policy
converges. Then, the covertness constraint and (18) imply that

¸ ⩾
log
�

1
4¶

�

inf¿′∈EAlt(¿)

�K

k=1 P
#(k)D(¿k||¿′

k)
D

�

K
�

k=0

P
#(k)qk

ø

ø

ø

ø

ø

ø

ø

ø

ø

ø

q0

 

⩾
log
�

1
4¶

�

³# inf¿′∈EAlt(¿)

�K

k=1 P̄
#(k)D(¿k||¿′

k)

×

�

(³#)2

2
Ç2

�

K
�

k=1

P̄
#(k)qk

ø

ø

ø

ø

ø

ø

ø

ø

ø

ø

q0

 

− o¶→0((³
#)2)

 

when ¶ is sufficiently small. Therefore,

³# ⩽
2¸

Ç2

�

�K
k=1 P̄

#(k)qk

ø

ø

ø

ø

ø

ø
q0

!

× inf¿′∈EAlt(¿)

�K
k=1 P̄

#(k)D(¿k||¿′k)
log( 1

4¶ )
,

and

E¿ [Ä ] ⩾

f

log
�

1
4¶

�

inf¿′∈EAlt(¿)

�K
k=1 P̄

#(k)D(¿k||¿′k)

f2

×
Ç2

�

�K
k=1 P̄

#(k)qk

ø

ø

ø

ø

ø

øq0

!

2¸
(1− o¶→0(1))

Taking the infimum over all possible P̄#, we conclude that

µ∗(¸) ⩽
�

2¸ sup
P̄#

inf¿′∈EAlt(¿)

�K
k=1 P̄

#(k)D(¿k||¿′k)
�

Ç2

�

�K
k=1 P̄

#(k)qk

ø

ø

ø

ø

ø

øq0

!

.

APPENDIX A

PROOF OF LEMMA 6

We first introduce some notations. Let N(t) ≜
�t

ℓ=1 1(At ̸= 0) be the number of pulls on effective arms

up to time t, and ¿̃(s) is the estimated bandit with s number

of pulls on effective arms. Note that if N(t) = s for some

t ∈ N and s ⩽ t, then ¿̂(t) = ¿̃(s) because pulling on null

arms does not make any difference in estimating the bandit.

For any k ∈ A \ {0} and s ∈ N, we also define T̃k(s) as the

number of pulls on the arm k when effective arms have been

pulled s times. Then, for any ϵ > 0, we define Ä̃¿(ϵ) as

sup{s : ||µ(¿̃(s))− µ(¿)||∞ ⩾ ϵ}, (21)

i.e., Ä̃¿(ϵ) is the greatest value of s such that ||µ(¿̃(s)) −
µ(¿)||∞ ⩾ ϵ. We then show that Ä̃¿(ϵ) is bounded for all
ϵ > 0. Define the random variable

L ≜ inf

�

ℓ ⩾ 1 : d(µ(¿̃(s), ¿) ⩽

�

2 log(2ℓKs(s+ 1))

mink∈[1;K] T̃k(s)
for all s

�

.

Then, for any x ∈ R,

P (L > x)

⩽ P

f

d(µ(¿̃(s)), ¿) >

�

2 log(2xKs(s+ 1))

mink∈[1;K] T̃k(s)
for some s

f

⩽

K
�

k=1

∞
�

s=1

P

f

|µk(¿̃(s))− µk(¿)| >
�

2 log(2xKs(s+ 1))

T̃k(s)

f

⩽

K
�

k=1

∞
�

s=1

2 exp(− log(2xKs(s+ 1)))

=
1

x
,

which implies

E
�

(logL)2
�

⩽

� ∞

0

P((logL)2 > x)dx

=

� ∞

0

P(L > ex/2)dx

⩽ 2

Therefore, E
�

(logL)2
�

is bounded. We can upper bound Ä̃¿(ϵ)
by

Ä̃¿(ϵ) ⩽ 1 + sup

�

s :

�

2 log(2LKs(s+ 1))

mink∈[1;K] T̃k(s)
⩾ ϵ

�

.

We know that T̃k(s) = Ω(
√
s) for all k ∈ [1;K] by the

construction of Algorithm 1. Then, above upper bound on

Ä̃¿(ϵ) implies that E(Ä̃¿(ϵ)) = O(E((logL)2)) = O¶→0(1) for

all ϵ > 0. Therefore, Ä̃¿(ϵ) <∞ is bounded for all ϵ > 0. Note

that ³t = Θ¶→0

�

1
| log ¶|

!

for all t. Then, by concentration

inequalities and the fact that ¿̃(ϵ) is bounded, this implies that

Ä¿(ϵ) = O¶→0 (| log ¶|) with probability 1− ϵ′ for any ϵ′ > 0.

Finally, note that P̄t is a continuous function of ¿̂(t). For

any ¿′′ ∈ EN , we define

P̄ ∗(¿′′) ≜ argmax
P̄∈PK

inf¿′∈EAlt(¿′′)

�

k∈[1;K] P̄ (k)D(¿′′k ||¿′k)
�

Ç2

�

�

k∈[1;K] P̄ (k)qk||q0
!

as well as

É(ϵ) ≜ sup{x : ||P̄ ∗(¿)− P̄ ∗(¿′′)||∞ ⩽ ϵ ∀¿′′ ∈ B(¿, x)}.

Then, ÄP̄ (ϵ) ⩽ Ä¿(É(ϵ)) = O¶→0(| log ¶|) with probabil-

ity arbitrarily close to one. The conclusion that Ä³(ϵ) =
O¶→0(| log ¶|) can be made by a similar argument.
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