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Abstract—We study the covert best arm identification problem
in which an agent tries to identify the best arm while escaping
detection from an adversary. Specifically, the agent should
identify the best arm of the bandit with accuracy higher than a
predefined requirement as soon as possible and, simultaneously,
the adversary’s observations induced by pulling effective arms
should remain indistinguishable from the observations obtained
when no effective arm is pulled. Our main result is the char-
acterization of the exponent vy, which captures the asymptotic
exponential decrease of the confidence level with the square-root
of the averaged stopping time.

I. INTRODUCTION

In bandit problems, a player pulls an arm on a bandit
machine at each time instant and obtains a corresponding
reward. A standard objective for the player is to minimize his
regret [1], defined as the difference between his rewards and
those of the best arm pull strategy, over a fixed time horizon or
identify the best arm as soon as possible subject to a certain
accuracy constraint [2]. In the regret minimization problem,
the player then faces a trade-off between exploiting the most
profitable arm identified from past rewards or exploring new
arms. Standard algorithms, such as Upper Confidence Bound
(UCB) [3] or Active Arm Elimination (AAE) [4], achieve
optimal performance by only devoting a small fraction of
the time to exploration. On the other hand, the track-and-stop
algorithm has been shown to be asymptotically optimal in the
best arm identification problem [5].

Different approaches have been proposed to analyze the
performance of bandit games in the presence of adversaries.
[6], [7] investigate the regret minimization problem in the
stochastic bandit setting with bounded but unknown number
of corruption on rewards, while [8] studies the best arm
identification problem in this setting. [9] explores the case
of adversarial bandit, in which rewards are fully decided by
an adversary, using the EXP3 algorithm. Different from all of
works above, we investigate the situation in which the agent
(Alice) would like to identify the best arm of the bandit while
keeping the fact that someone is pulling arms unknown to the
adversary (Willie).

The problem formulation of this work is inspired by the
problem of “low probability of detection,” in communication
systems studied in [10], [11]. If n denotes the time duration,
the ratio of non-innocent symbols transmitted need to be
at least % so that the outputs received have a noticeable
difference from the outputs when no communication happens.
The objective of the agent in this work is to identify the best
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arm as soon as possible and make the actions of pulling arms
covert from Willie’s perspective. Similar problem formulations
can be found in [12], [13], where the covertness in hypothesis
testing problems is analyzed.

II. NOTATION

A multi-arm bandit v with K effective arms and a null
arm is a set of distributions {vg, ..., vk }. We denote v the
distribution of the kth arm of the bandit v. We denote u
the operator that maps a bandit into a vector of means, i.e.,
w(v) = [po(V), ..., ux (v)], where puy(v) is the mean of the
distribution vy, for any k£ € [0; K]. For any two different
bandits v, v', d(v, V') = ||u(v) — p(v')||so is the infinity norm
of u(v) — u(v'). For any k € [0; K] and t € N, Ty (t) is the
number of pulls on the arm k before time ¢+ 1. For any bandit
v, i*(v) = argmax, i (v) is the best arm. For any alphabet
U, we denote P the set of all probability distributions on
U. For two continuous distributions p,q on some common
set D, we define x2(P||Q) £ [ Mp(x)dm. For

z€D q(w)

any sequence of random variables {X;}£,, we denote X" =
[X1, ..., Xy] for any n € N. The notation 7(8) = Os_,0(e(9))
means there exists some constant L such that () < Le(d)
for all § small enough. Other Landau notations are defined
similarly. For any real number z, |z|* £ max(0, z).

III. PROBLEM FORMULATION

We consider the situation in which an agent (Alice) and an
adversary (Willie) are engaged in the best arm identification
problem in the stochastic bandit setting. The distribution of
the rewards obtained by Alice and Willie are determined by
the arm pulled by Alice. Let K be the number of effective
arms. We denote v = {vg, 11, ...,k } the multi-arm bandit
of Alice, and ¢ = {qo,q1,...qx} the multi-arm bandit of
Willie. The arm 0 is defined as the null arm. That is, Alice
and Willie receive rewards drawn from the distribution 1/
and ¢, respectively, when no effective arm is pulled. In this
work, we assume that the rewards are drawn from Gaussian
distributions with unknown means and unit variance, i.e., v,
and ¢, are Gaussian distributions with unit variance for all
a € A £ [0;K], and we also define £y as the set of all
Gaussian bandits with unit variance and K effective arms. In
this work, we assume that the information of ¢ is known to the
agent but v is unknown. For any pair of bandits v/, " € Eyy,
one cannot distinguish between v’ and v by pulling the null
arm, i.e., D(V)||v{) = 0 for all v/, " € Exr. Without loss of
generality, we assume that the arm 1 is the best arm, i.e., the
distribution 14 has the largest mean, and vy has zero mean.



The fact that the null arm has zero mean is known by the
agent.

The reward distributions of Alice and Willie are connected
to a common arm a € A. Specifically, at each time step
t, Alice selects an arm A, € A from the control policy
v Py xt-1,at-1; Alice receives the reward X; ~ v4,;
and Willie receives the reward Z; ~ qa,. Let 7 be the
stopping time adapted to the filtration (F;), with F; =
o(Xy, A1, ..., X, Ar). At time 7, Alice decides on the best
arm according to the rule ¢ : X7 x A7 — [1; K]. Let 6 > 0
be the parameter defining how accurate the decision on the
best arm is. Then, the overall policy A £ ({7}, 7,%) is a
triple and has the confidence level ¢ if

P, ((X7,AT) #i"(v)) < 0 for all v € Ep, (1)

where P, is the probability measure under the bandit v.

The objective of Alice is to identify the best arm as
soon as possible while keeping the fact that Alice is pulling
arms undetected by (covert from) Willie. The covertness is
measured in terms of the divergence. Specifically, we say that
the policy A is n-covert if for all v, q € Ep,

}iII(I)PV (D(Pzr|lqy) <mforall 0<Kn<7)=1. (2)
—

We denote by A(n) the set of policies that satisfy the confi-
dence requirement in (1) and are n-covert. We are interested
in the exponent ~y, ,()), which is the ratio between —logd
and the square root of the expected stopping time 7, defined
as

—logd
E,(7)
where the expectation [E,, is taken over the probability measure

P, . Then, we have the following definition of achievability in
the covert arm identification problem.

Yv.q(A) = lim inf ; 3)

5—0

Definition 1 (Achievability). The exponent r is achievable if
there exists a policy A\ € A(n) such that

Vv.q(A) =7 “)

The optimal exponent y;, , is the supremum of all achievable
exponents, i.e.,

Yog = SUP Yug(A). 5)

AEA(n)
The following theorem gives the lower bound on v} , (7).

Theorem 2. Let g. For all v € Ey, if there is no distribution
P over A\ {0} such that 3 ¢ 4\ 0y (a)qa = qo, then we
have

minv/efxm(u) ZaGA\{O} p(a)D(VaHVg)
Ve (Saea oy P0)ial )

Yo,q = V/ 21 max

We say that the control policy {m;}$°, converges almost
surely if there exists some P* € P4 and C' < oo such that for
any a € A the probability Py, jx+-1a:-1(a) = P*(a) for all

t > C|logd|, and the corresponding overall policy A is called
an almost surely convergent policy. If we restrict ourselves to
almost surely convergent policies, the exponent can be upper
bounded by the theorem below.

Theorem 3. Let A be an almost surely convergent policy, then

miny/ v a p a D Vg l/;
Vrg(A) < \/%max €Eu(v) 2 eA\{o]; (a)D(vallvy)
" \/ X2(2Zaea(oy P(@)dalla0)

The result in Theorem 2 can be interpreted as follows.
It is known that the agent can not choose effective arms
too often to maintain covertness. Therefore, the policy we
propose in Sec. IV is composed of a probability o with
which effective arms are chosen and a probability distribution
P on effective arms. A large value of the divergence term
MiN,egy,(v) Dae A\ {0} P(a)D(vy||v)) results in a shorter
stopping time. On the other hand, X2(3_,c 4\ {03 £’(4)4allq0)
is the chi-square distance between the null distribution and the
reward distribution induced by the distribution P. A smaller
chi-square distance implies that Willie is harder to distinguish
the reward distribution ¢ 4\ (0} P(a)q, from the null one.
This means the agent can choose effective arms more often, i.e.
larger a , when the probability of choosing each effective arms
is given by aP. Therefore, the best distribution on effective
arms needs to have a good trade-off between maximizing the
divergence and minimizing the chi-square distance. Finally,
when the covertness constraint 7 is more relaxed, the agent can
choose effective arms more often and speed up the estimation
of the best arm.

IV. PROOF OF THEOREM 2
We first specify the policy A = ({m;}2,,7,%). Let D(t)
be the estimated bandit of v at the time ¢, i.e., Ug(t) ~
N (ke Shey Xal (A = ), 1) for all k € A\ {0}, and
Ean(P(t)) = {V € En : *(0(t)) Ni* (') = 0}. Then, we

define
K
Lis it kzzl Tu(®) D@k ()], (6)
and the stopping rule 7 is
T =inf{t: L; > B(9)}, (7)

where §(0) = klog(t* +t) 4+ f~'(0) and f(z) = exp(K —
z)(z/K)X. For any P € P\ (o} and v € Exr, we define

N ian’EgAln(V”)Zke[l;K] P(k)D(vy/|vy,)

P
Ve (Sretg PIaclan)

(P, 2 28
%2 (e PR)axlla0)

o 0fyegn g Dreqik) P(k)D(v||v;)
| log 44 '




Algorithm 1: Covert Arm Identification Algorithm

Input: J,7n

Initialization: s := (), t:=0
1 while Z, < 3;(6) d
2 if argmingepi;x Tk( ) < /s then
3 Py(a) = 1(a = arg mingep; k] Tr(t))

Va € [1; K]
4 else
5 L P, := argmaxp &(P, 0(t))
6 ay = (P, (1))
l—a; ifa=0

7 Pagaixeacla) = aiPi(a) ifa#0
8 Draw A1 from the distribution Py, |xt At
9 if A;+1 # 0 then
10 | s=s+1
11 t=t+1

Output: i*(i(t))

Then, the policy of determining the arms is defined in
Algorithm 1. Note that if there are multiple arms having
the same minimum number of times being pulled, then
argming ¢y, g Tx(t) would randomly pick one among them.
Finally, the identified best arm at the time 7 is (X", A7) =

it (0(7)).
A. Confidence Analysis

The confidence analysis follows from the proof of Lemma
33.7 in [5]. We summarize the main idea behind the proof
below. The event i*((7)) # 1 implies v € Ear(P(7)). Then,

P (@(r) #1) <P (v € Ean(0(7)) (8)
(Zn mllvi) 2 ma)).

€))

In the case of Gaussian bandit, D(0y(7)||lvx) =

L (u(0(7)) — pi(v))?. The following Lemma [5] provides a
concentration bound on the value of ux(2(7)).

Lemma 4. Let {X;}?°, be a sequence of Gaussian ran-
dom variables with mean p and unit variance. Let [, =
1 n

n i1 X, then

P (an eN: g(,&n — )% > log(1/6) + log(n(n + 1))) <6
for any 6 > 0.

Lemma 4 upper bounds the probability that
Ty (1) D0k (7)[|vk) = log(1/6) + log (Tw(7)(Th(7) + 1))

by 0 for all k € [1; K] regardless of T} (7). However, the event
on the right hand side of (9) is related to the combination of
different divergence terms. The lemma below [5] extends the
result in Lemma 4.

Lemma 5. Let g : N — R be increasing, and for each k €

[1; K], let S, = {Sk1,Ska, -} be an infinite sequence of

random variables such that for all 6 € (0,1),
P(3In e N: Si, = g(n) +1og(1/6)) <6 (10)

Then, provided that the sequences {Sk}le are independent

and x > 0,
K K
P (Els eNFY Sk, > kg (Zsk> +x>
k=1
K
< (E) exp(K — z).

k=1
I (1D

Now, let s = Tx(7), Sks, = D(Px(7)||vx) for all k& €
[1; K] and g(n) = log(n® + n). Note that the estimations of
the empirical distributions of different arms are independent,
so are the sequences {Sk}kK_l. Applying Lemma 5, we have

(o

(2% klog(n® +n) + f~ <>><6

)lvr) = 57(5)>

B. Divergence Analysis
We first define

P* 2 argmax ¢(P,v)
PEPA\{()}
as well as
a* & ((P*,v).

Let B(v,e) £ {V/ € &y = d(v,V)) < e} B(P*,e) £ {P €

Kk ||P — P*||oc < €} and B(a*,€) £ {aER -
1| < €}, and let 7, = sup{t : d(9(t),v) > e}, TP() =
sup{t : ||P; — P*||oc > €} and 7,(¢) = sup{t : -1 >
e}. The following lemma shows that 7, (¢) = O[;_>0(| log d1),

Tp(€) = Os5-0(| log §]) and 7, (€)
probability for all € > 0.

= Os_0(]log d|) with high

Lemma 6. For all € > 0, it holds that
7 (€) = O50(]log d|)
7p(€) = Os0(| log d)
Ta(€) = Os-0(|log d])
with probability greater than 1 — e.

For all 0 < n
expressed as

< 7, the divergence D(Pzn||(qo)®™) can be

D(Pyn||(

ZEZ, .

Let Tmax(€) = max(7p(¢€), 7o(€)). Then, for any n < 7 and
fixed ¢ > 0, we have

D(Pz~||(q0)*")

D(Pz,iz-1lg0)) - (12)



Tmax (€)

< > Bz (D
t=1

(Pz,1z¢-1110)) + I = Tmax ()|

X sup sup D|(1—-a)gp+a
PeB(P*,e) aEB(a* )

Tmax (€)

< > Bz (D

t=1
0‘7
PEB(P*,e) aeB(a*e) 2 ke[1;K]

Z P(k’)Qk>

ke[ K]

Tmax (€)

(Pzt\zf«—lHQO)) +|”_ |+

X sup sup Z P(k)qr

qo) +0(a2)>
<n<( 2) ( ( 21: k)qx qo) +h(€)+06ﬁ0(1)>>
(Il gél)
(€)

where h(e) is some function such that lim. ,oh(e) = 0,
and (13) follows from the fact that max(7p(€), 7o(€)) =
Os0(|logd|) and Ezi-1 (D(Pg,z:-1]lq0)) = O (W)
for all £ € N. Moreover, we can upper bound the stopping
time 7 by the following lemma.
1 /
X E(1 +e ))

Lemma 7. For any € > 0, it holds that

P(r<- | log 6|7* :
infree, ) Zke[l;K] P*(k)D(vi||vy,)
Then, with probability 1 — ¢/,

>1— e~ Ds—0(llogde"
D(Pzn||(g0)®™)

*

a
< 5 | xe Z P*(k)qx||qo | + h(e) + 05-0(1)
ke[1;K)
[log d|(1 + €') ( 1 >

Xz = + 05

0, o) Sucr PNV [Tog ]

h
<n(l+€) 1+ (6} + 05-0(1)
X2 (Zke[l;K] P*(k)QkHQO)

1
*OH)(l )

for all n < 7. Since we can make ¢, €' arbitrarily small, this
implies
lim P (D(Pzn Oy <) =1
lim P (D(Pzn/(g0)*") < n)
foralln <7
C. Characterization of Exponent
Note that Lemma 7 implies that
|log 4] 1

: — x —(1+¢)
infy ey ) Zke[l;K] P*(k)D(villvy) o

E,[r] <
(14)

for any ¢ > 0 when ¢ is small enough, and Theorem 2 is
obtained by plugging in (14) into the expression of v, 4(\).

V. PROOF OF THEOREM 3

Let the control policy m; converge almost surely to P7,
then there exists some finite constant C' such that 7, = P#
for all ¢ > C|log d|. We further define

o 21— P#(0)
pit o P
a#’

For any v/ € Eau(v), we define the event £ = {y)(X7, A7) ¢
i*(v')}. Then,

20 2P, (W(XT, A7) ¢i"(v)) + P ($(X7, A7) ¢ i (V"))
>PAE%+P( ) (15)
% < ZIE [Ty (7 yk||yk)> (16)

where (16) is from the Bretagnolle-Huber inequality and the
divergence decomposition lemma. From [5], we already know
that the averaged stopping time E, (7) is Qs_0(|logd|) for
all policies in order to satisfy the confidence level constraint
when there is no covertness constraint. In our context, one
can show that E,(7) = Qs_,0(|logd|?) by the fact that only
a small fraction of arms pulled are effective. This implies that
for 6 small enough,

T

Ti(r) =D 1A = k)
ZTIIOE‘H T
= > A4=k+ > 1A =k).
t=1 t=C|log §|+1
Then,
E, [Tk (7)] < C|log 8| + E, [7]P* (k)

<
SErP#(E) (1 +0550(1) . (17)

Combining (16) and (17), we obtain

10g( ) ZP#

Since the above inequality is true for all v/ € Ezy(v), we can
take the infimum of all v/ € Ex(v) and obtain

D(villvg,) (14 05-50(1)) -

log (45)
. K
inf, cegw) Dopet P#(k)D(vg||v},)

This means that there is a positive €/ > 0 such that

E,[r

WV

(1 - 06—>0(1)) :

log (i)
Plr= 20 (1 —05-0(1))
= . K —
< 1nfu’€£Au(u) Zk:l P#(k)D(z/kH%)
2 6///. (18)
Next, from [11], the covertness constraint implies that
1= D(Pzn|lg5™) = nD(Pz||qo) (19)



for all n < 7, where
_ 1<
Py(z) £ =3 Py (2)
nia
1 n K
IS
t=1 k=0
Note that

fzﬂt

when n = Qs5_,0(|log §|?) by the assumption that the policy
converges. Then, the covertness constraint and (18) imply that

(k)(1+ 05-0(1)) (20)

1 1
N> ‘;{g (45;1 (Z P*(k )
mfu’esm(u) Zk:l P#(k)D VkHVk
log (416)

~ a#inf, reEan(v) K _y P#(k)D(vk||v},)

<( r (Z ) - M«a#ﬁ)

when ¢ is sufficiently small. Therefore,
# < 277

X2 (Zszl p# k)QkHQO)

. K =
y nfy e, ) Yony P7 (k)D(vk|v},)
log(75)

(0%

)
and

2
E,[r] > < log (45) )
v = . K —
infregy ) Dope1 P (k) D(villvy,)
X2 (Zszl P#(k)QkHCIO)
X
2n

(1 - 05%0(1))
Taking the infimum over all possible P#, we conclude that

. K =
J/2nsup inf,reep ) Doret P#(k)D(VkHVI/c).

7 (n) < U
P K 5
\/X2 (Zk:1 p# k)QkHQO)
APPENDIX A
PROOF OF LEMMA 6
We first introduce some notations. Let N(t) =

S_, 1(A; # 0) be the number of pulls on effective arms
up to time ¢, and o(s) is the estimated bandit with s number
of pulls on effective arms. Note that if N(t) = s for some
t € N and s < ¢, then (t) = (s) because pulling on null
arms does not make any difference in estimating the bandit.
For any k € A\ {0} and s € N, we also define T} (s) as the
number of pulls on the arm k when effective arms have been
pulled s times. Then, for any € > 0, we define 7, (¢) as

sup{s : [[1(#(5)) = p(V)lloc = €}, 2y

ie., 7,(€) is the greatest value of s such that ||u(P(s)) —
1w(V)||o = €. We then show that 7,(¢) is bounded for all
€ > 0. Define the random variable

A - 2log(2¢Ks(s+ 1))
Sinfcl>1:d(uw(s),v) < = r Sp.
L { > 1:d(pu(i(s),v) < \/ i T (o) for all }

Then, for any = € R,

P(L>x)
<P (d(,u(l)(s))w) - \/210%(21’](8(8:&- 1))

minge(1;x] Tk (s)

N 2log(2zKs(s+ 1))
P (luk(V(S)) — (V)| > \/ o(s) >

for some s)

M=
NE

B
I
—
w
Il
-

2exp(—log(2zKs(s + 1))

M
M8

w
Il
_
W
Il
-

SN

which implies

log L

Therefore, E ((log L)?) is bounded. We can upper bound 7, (¢)

by
) " 2log(2LEs(s +1))
u( ) 1+ p{ \/ mlnke[l,K] Tk( ) z }

We know that Ty(s) = Q(y/s) for all k € [1;K] by the
construction of Algorithm 1. Then, above upper bound on
7, (€) implies that E(7,(€)) = O(E((log L)?)) = Os_0(1) for
all € > 0. Therefore, 7, (¢) < oo is bounded for all € > 0. Note
that oy = @5*>0

m for all ¢. Then, by concentration
inequalities and the fact that 7(€) is bounded, this implies that
T,(€) = Os_0 (| log §|) with probability 1 — €' for any €' > 0.

Finally, note that P; is a continuous function of #(t). For
any v € Enr, we define

infu’Er‘JAu(V”) Eke[l;K] P(k)D(VIZHVI/c)

\/X2 (Zke[l;K] P(k‘)%HQO)

P*(v") £ argmax
PePx

as well as
w(e) = sup{z : [|P*(v) — oo <
Then, 75(e) < 7u(w(e)) = Os-0(]logd]) with probabil-

ity arbitrarily close to one. The conclusion that 7,(¢) =
Os5-0(]log d]) can be made by a similar argument.

P e VW' € B(v,z)}.
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