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Abstract—We consider a communication model in which a
transmitter attempts to communicate with a receiver over a
state-dependent channel and simultaneously estimate the state
using strictly causal noisy state observations. Motivated by joint
communication and sensing scenarios in which the physical
phenomenon of interest for sensing evolves at a much slower
rate than the rate of communication, the state is assumed to
remain constant over the duration of the transmission. We derive
a complete characterization of the optimal asymptotic trade-off
between communication rate and detection-error exponent when
coding strategies are open loop. We also show that closed-loop
strategies result in strict improvements of the trade-offs.

I. INTRODUCTION

The ability to jointly communicate and sense the wireless
environment is one of the key features currently explored for
6G communication systems [1], [2]. While communication
and sensing technologies have traditionally been indepen-
dently designed and deployed, the push towards mmWave
systems whose bandwidth can support high-resolution sensing
is enabling a convergence that promises multiple benefits
including: efficient systems with a single hardware for both
communication and sensing; increased spectral efficiency; new
applications that leverage accurate localization and sensing.
The challenges posed by joint communication and sensing
systems are therefore multi-fold, from designing efficient
hardware with multi-functional antenna arrays, to designing
dedicated signal processing algorithms, and has attracted much
interest in the context of joint communication and radar [3]-
[5].

Of particular relevance to the present work, several works
have analyzed the information-theoretic limits of joint com-
munication and sensing [3], [6]-[9] by drawing parallels
with joint communication and state estimation [10], [11].
These results formulate the information-theoretic limits of
joint communication and sensing as the characterization of a
capacity-distortion region for state-dependent channel models
in which an independent and identically distributed (i.i.d.)
state, which represents the quantity to sense, governs the
behavior channel [6], [9]. Because models are set up to
preclude any prediction, detection strategies are open-loop and
the interplay between communication and sensing reduces to a
resource allocation problem, in which the choice of a channel
input distribution dictates the trade-off.
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Motivated by the observation that the physical phenomena
sensed, e.g., the presence or absence of an obstacle, might
change on a time scale much slower than the rate of com-
munication, we study a different model in which the state of
the channel remains constant over the block-length used for
communication. In this setup, estimation is generally possible
so that a trade-off exists between the rate of communication
and the detection-error exponent. Accordingly, our results
draw on the extensive literature around controlled sensing [12],
[13] and channel estimation with pilot sequences [14], [15]
rather than the rate-distortion literature.

The main contribution of the present work is an exact
characterization of the optimal asymptotic trade-off between
communication rate and detection-error exponent when coding
strategies are open loop, i.e., the transmitter does not exploit
the state observation feedback for adaptation. Perhaps un-
surprisingly, we also show that closed-loop strategies result
in strict improvements of the trade-offs. The remainder of
the paper is organized as follows. After a brief review of
notation in Section II and a formal introduction of the model
studied in Section III, we present and derive our main result
in Section IV. We illustrate our main result numerically in
Section V.

II. NOTATION

For any discrete set X', P is the set of all probability distri-
butions on X'. For n € N*, a sequence of length n is implicitly
denoted x = (71, ,z,) € X", while 2 £ (21, ,2;) €
X' denotes a sequence of length 7. For x € X™, p, denotes the
type of x, i.e., px(z) = = > | 1{z; = «}. For any type P,

7 is the corresponding type class, i.e., the set of all sequence
x € X" such pyx = P. Finally, Py ,, is the set of all possible
types of length n sequence on ™. If Wy |x is a conditional
distribution on Y € ) given X € X, we denote I(Px, Wy |x)
the mutual information between X and Y when X ~ Px and

III. JOINT COMMUNICATION AND SENSING MODEL

We consider the communication model illustrated in Fig. 1,
in which a transmitter attempts to communicate with a receiver
over a state-dependent Discrete Memoryless Channel (DMC),
often referred to as a compound channel in the literature, while
simultaneously probing the channel state in a strictly causal
manner through a sensing channel. Specifically, the transmitter
encodes a uniformly distributed message W € [1; M] into a



Fig. 1. Joint communication and sensing model.

length n codeword X™, which symbols are transmitted over
a DMC with transition probability Wy z/xs. The a priori
unknown state S is assumed to be fixed during the whole
duration of the transmission and takes value in a finite set S.
The transmitter has the ability to estimate the channel state
by using past observations obtained from the output Z of
the DMC, allowing it to adapt its transmission in an online
fashion. Formally, the encoder is a set of functions

fi it [LM] x 2070 5 X s (w, 27 = 2 & fi(w, 27
define for every ¢ € [1;n] while the estimator is a function
g: X" xZ" =S (2", ") = 8.
The decoder is a function
h:Y" =1, M]:y" — .

A code C then consists of the tuple ({fi}ic[1;n], 9, 1), as well
as the implicitly defined associated message set [1; M].

The performance of the system is measured in terms of
the asymptotic rate of reliable communication and asymp-
totic detection-error exponent. Formally, we define the
communication-error probability and the detection-error prob-
ability as follows
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The rate and detection-error exponent are
1 n 1 n
R % —log M and Eé )2 ——lochf ),
n n
respectively.

Definition 1 (Achievability). A rate/detection-error exponent
(R, E) is achievable if for any ¢ > 0, there exist a sufficiently
large n and a code C of length n such that

P <, (3)
E" > E—¢ 4)
1
~log|c| > R—e 5)

Our objective is to characterize the set of all achievable
rate/detection-error exponent pairs, which we call with a slight
abuse of terminology the joint communication and sensing
capacity region.

Since our model allows for adaptive coding schemes that use
the feedback, we also define state-dependent error probabilities

P 2 maxP(h(Y") £ w|W =w, S = s), (6)

M
ma 1 .
AR i Y P(g(Z") #£s|S =5 W =w). (]
w=1

The state-dependent detection-error exponent is defined as
1 .
E{Y) £ ——log P}y, (8)
. n ;

Definition 2 (s-Achievability). Given the state S = s, a
rate/detection-error exponent (R, E) is achievable if for any
€ > 0, there exists a sufficiently large n and a code C of length
n such that

P e, 9)
E{" > E -« (10)
—log|C| > R—¢ 11

The notion of s-achievability is required to characterize
coding schemes that learn the state s online. The non-ergodic
nature of the state would otherwise prevent us from properly
defining a notion of achievability without considering again a
Worst case scenario.

Remark 1. There is an asymmetry in our definitions of the
probability of errors in (1) and (2). While (1) includes a
maximum over a possible messages w € [1; M|, (2) includes
an average over all possible messages. This subtlety is only
used in our converse proof for Theorem 3 in Section IV-B and
is required to avoid having the detection performance dictated
by a codeword whose type is not representative of the code.

Remark 2. The model of Fig. 1 differs from the ones in [6],
[9], where the state is i.i.d. and changing from symbol to
symbol. Our model captures a scenario in which the coherence
time of the state is much longer than the duration of a
transmission. As a result our model also captures the ability
to adapt to the channel state in an online fashion, while the
models in [6], [9] only allow for an offline adaptation based
on a target rate/distortion pair. Neither model supersedes the
other and both capture scenarios relevant to next generation
communication networks.

IV. MAIN RESULT

We first restrict ourselves to the situation in which the
encoder does not perform any online adaptation so that
fi : [1;M] — X is independent of the observation z*~1.
This corresponds to an open-loop strategy, which provides
a baseline for assessing the usefulness of adaptation. For
simplicity, we denote in this case the encoder that maps a
message w to a codeword of n symbols by f : [1; M] +— X™.
We call such codes open-loop schemes and we denote the set
of all achievable rate/detection-error exponent with open-loop
schemes by Copen. The following theorem provides an exact
characterization of Copen.



Theorem 3. The joint communication and sensing capacity
region of open-loop schemes is

(R, E)eR% :
Copen = R < minges H(PX7 WY\X,S) (12)
rxePx | E < ¢(Px)
where

o(Px) = migmin o, =D Px(e

x log (Z WZMS(Z)EWZ%S/(Z)lé) . (13)

Proof. See Section IV-A and Section IV-B. O

A couple of comments are in order. First, since open-
loop schemes do not exploit the information about the state
contained in past noisy observations of the state, achievable
rates are necessarily upper bounded by the compound channel
capacity maxp, Mminses H(Px,Wyp(ﬁs). This is a weakness
of all open-loop schemes. Second, because of the open-loop
nature of the coding schemes, the interplay between commu-
nication and sensing is captured by the choice of a distribution
Px that governs the empirical statistics of the codewords and
is set offline. This is similar to what is obtained in other
information-theoretic approaches based on rate-distortion [6],

[9].

Corollary 4. If there exists xg € X such that for all x € X
there exists a permutation 7, on Z such that for every s € S

Wz x,s(2|1) = Wz x (72 (2)]20), (14)
then
(R,E)eR? :
Copen = R < maxp, minges ]I(Px, WY|X,5) (15)

E < maxp, ¢(Px)
where ¢(-) is defined in (13).

In other words, there is no trade-off between rate and
detection-error exponent in this case and one simultaneously
achieves the optimal communication rate and the optimal
detection performance.

Proof. For every x € X\{zo},

> Waixs(2la) Wy x,o (2]2) (16)
z2€EZ
= > Waixo(ma(2)w0) W x o (72 (2)|20) ° (17)
z2€EZ
= D Wyx(#wo) Wapx o (2'w0) ¢ (18)
ﬂ{l(z/)ez
=Y W, (2l20) W x o (2|20) (19)
z€EZ
Thus, we know that the detection-error exponent is invariant

to the input type under this scenario. O

One of the compound channel families that falls into such
a category is the set of Binary Symmetric Channels (BSCs).

The maximal detection-error exponent and the compound
capacity are then simultaneously achieved with a uniform input
distribution.

The following theorem shows that closed-loop schemes,
which exploit the feedback to adapt to the state, provide im-
mediate improvements. Specifically, the theorem characterizes
an inner bound of the set C .4 of s-achievable rate/detection-
error exponent pairs.

Theorem 5. Given each state s € S, the state-dependent joint
communication and sensing capacity region satisfies

(R,E) eR? :
Cclmed R < H(PX7 WY\X,S) ; (20)
PxePx Eg’l/)s(PX)
where
¥s(Px) = min max —ZPX

s'#s 0€]0,1]

x log (Z WZ|X,S(z|x)£WZXys/(z|x)1_e> . 2D

Theorem 5 is obtained by considering a simple strategy in
which the transmitter learns the state, informs the receiver,
and uses a code adapted to the learned channel state. The
exact characterization of the optimal tradeoffs for closed-
loop schemes is left of future work and presents non-trivial
challenges, chief among them the absence of a known opti-
mal detection error-exponent for multi-hypothesis controlled
sensing [12].

A. Achievability Proof of Theorem 3

We show that all (R, E) pairs within the region Copeq are
achievable. Since we restrict ourselves to open-loop schemes,
we may fix Px as the type of all codewords. Fix any € > 0.
By [16, Theorem 10.2], there exists a code with encoder f
and decoder h such that f(w) € Tp, , the rate is at least
minges I(Px, Wy |x,s) — €, and max, P(h(Y™) # w|S =
s) < eforall s € S. Then, the detection-error exponent ¢( Px)
is given by the Lemma 6 modified from [12, Theorem 1].

Lemma 6. Suppose that the the codeword corresponding to
the message w € [1; M| has type PX € Px, the conditional
detection-error exponent Eq,, = — X logmaxses P(g(Z") #
s|S = s,W = w) in an open loop scheme is asymptotically
upper bounded by

Py) 2 -¥p
¢(Px) & minmin max Z (.

x log (Z WZIX,S(Z|33)ZWZX,s’(z|x)1_e> .

Moreover, it is also asymptotically achievable by a maximum
likelihood estimator.

Taking the union over all possible Px leads to the region
in (12).



B. Converse Proof of Theorem 3

Assume that the rate/detection-error exponent pair (R, E)
is achievable. Then, for all € > 0, there exists n sufficiently
large and a code C such that

log |C|

n

P(h(Y" W=wS=
max max (h(Y™) # w| w, S = s)

R—¢

NV

€

M
1 1 n

- logr?eaécﬂ wz::lIP’(g(Z )F£s|S=s5,W=w)>FE—c¢

Since there is at most a polynomial number of types, there

exists a set of types 7 such that, for all Px € T, the subcode

Cry = {f(w) : Pyw) = Px} C C satisfies

P(h(Y™ W=w,5=s)< 22
I?Eag'(war{l?E}épx) ( ( ) # w| v S) ¢ @
and
log|C log |C
08[Crx| [ loglCl 5o p g 23)
n n
for some § vanishing with €. By [16, Corollary 6.4],
log |C
% < min[(Px, Wy x.,) + 7 (24)
S

for some 7 vanishing with e. Choose now P% € 7T such that

P} = argmin ¢(Px) (25)
PxeT
with ¢(-) defined in (13). Then,
E—e¢
1 1 <
< —logmax - g::lIF’(Q(Z”) # 518 =5W=w)

(@ 1 1
< ——logmax—- ) P(g(Z") £5|S =5 W =w)
wef(Cry )

b 1
< —= logmagP(g(Z”) #s|S=s,W=w)+§
n s€

(c)
< ¢(Py) + 4,

where (a) follows since all terms in the sum are non-negative
and keeping only the terms corresponding to messages in Cpy ;

Py

(b) follows by lower-bounding ¢~ noting that the detection
error is the same for any message with the same type Py, and
using (23); (c¢) follows by Lemma 6. Combining (24) and (26),
we conclude that for all € > 0, there exist 7,0 > 0 vanishing
with € and a type P% such that

(26)

R <minl(Py, Wy |x,s) +T+€e+0
E < ¢(P%)+6+e

Since ¢, T, § can be chosen arbitrarily small as the block length
n goes to infinity, E is upper bounded by ¢(Px) for some
Px € Px and the rate R is achieved by this Px. Taking the
union over all possible Px completes the result of converse
of Theorem 3.

27)
(28)

C. Proof of Theorem 5

Fixing some s € S and Py € Px, we show that the
tuple (R, E) is achievable whenever R < [(Px, Wy x )
and E < vs(Px). We start with defining the code
C = ({fitienn)»9,h). The state estimator is defined as
an maximum likelihood estimator, ie., g(z~', z71) =
argmax . g H;;} W2|z,,s(2e). Fixing any A; > 0, we define
Pf; = agmaxp . epy ., ¢(Px) and pick a length nA,
sequence v = (vq, ..., VA, n) from the type class TP;?. Then,
for 1 <4 < Ain, the encoder is defined as

fi(w, z’;l) = v; (29)

for all w € [1;M] and 2= € Zi=1. At time Ayn + 1, the
transmitter would estimate the state by using the maximum
likelihood estimator g(xz1™,2%1™). Then, the transmitter
would convey the information of the estimated state to the
receiver by encoding the estimated state s into a codeword.
Since |S| does not grow with n, there exist a length Agn
channel code ( f ,§) with arbitrarily small error probability,
where f : S — X227 s the encoder and § : Y22" — S
is the decoder. Denoting X(3) = (21(3), ..., 2a,n(5)) = f(3)
as the codeword corresponding to §. Then, for Ajn < i <
(A1 4+ Asg)n, the encoder is defined as

filw, 271) = iman(g(@®, 257)) (30)

for all w € [1; M] and 2*~1 € 271,

It is known that for every Px € Py, there exists a channel
code such that the rate is at least I(Px, Wy |x,s) — 27 for
any 7 > 0 for all sufficiently large n. Therefore, for the fixed
Px € Px, there exist an (n,¢) channel code for the state s
channel with rate I(Px, Wy |x ) — 27 for any ¢,7 > 0. Let
the channel code for the state s channel be characterized by
(fs, hs), where fy : [1; M] — X(1=81-82)n jg the encoder
and h, : Y(ImA1=A82)n (1 M] is the decoder. Denoting
X(w,s) = (Z1(w, 8), ..., Ta—A,—2,)n(w, 8)) = fs(w) as the
codeword corresponding to the message w € [1; M]. Then, for
(A1 + As)n < i < n, we define the encoder as

fi(w7 Zi_l) = j.i*(AlJrAz)n(wv g(mA1n7 ZAln)) (31)

for all w € [1;M] and 2! € Z'~!. Finally, the message
decoder is

h(y'rl) = iL»( Agm ) (yZLA1+A2)n+1) (32)

I\Yain+1

for all y* € Y". The state dependent error probability of
communication is

P = maxP(h(Y™) # W|W = w, S = s)
SP(g(YAM") # 5|8 = 5) + P(A(YAZ, ) # sIS = 5)
+ mgx]P’ (iLS (yZ‘AlJrAQ)nH) # w’W =w,S = s) ,

which is arbitrarily small when n is sufficiently large by our
construction of the code. The overall rate of communication
is

1
R= - log en(1=21=22)[(Px , Wy | x.2) (33)



= (1— A1 — Ag)I(Px, Wy x.5) (34

By making Aj,As arbitrarily small, we conclude that
I(Px, Wy x,s) is achievable. Moreover, the error probability
of detection is

Pg(X", Z2") # s|S = s)

M
= = Y P((X", Z2") £ 8|S = 5,M = w)

P(g(X",Z2") =&, g(X2 ", Z2%") = §"|S = 5, M = w).

For each s’ # s and s’ € S, defining the set

Ao 2 {25 g(f(w, 2"),2") = ', g(f (w, 2 ="},
then for any ¢ € [0, 1],

Pg(X", Z") = &', g(X21", 251" =
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>
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where for all x € X
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n
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1{z;(w,s") = x})

Because above inequality is true for all ¢ € [0, 1], we have

P(g(X™, Z") = ¢, g(X2", 221" = §"|S = 5, M = w)

< exp ( <£Iél[g>§ - qu,,
X 1Og (Z WZ|$,S’(Z)ZWZ|:1:,S(Z)1_Z> )) (35)

Note that for all w € [1; M], the code x(w, s”) has the type
Px. By making Ay, A, sufficiently small, we have |z (x) —
Px (z)| < n for any » > 0 and any s” € S. Since the smallest
exponent will dominate the error probability in (35), we have
the detection-error exponent

E( S) > min min max — E qs (z
s €S s'#5£€[0,1]

X IOg (Z WZI’SI(Z)KWZM’S(Z)l_Z)

= ws(PX) —5(77),

where &(n) is some continuous function in 7 and
lim,,—,0 £(n) = 0. By choosing Ay, A, and 7 arbitrarily small
and n sufficiently large, we obtain Ec(l? > 1s(Px). By taking

the union of all Py, we conclude that the capacity region Cilint

is at least
< I(Px, s
U {rpyere {BSHPC W) g
Px €Px Eéws(PX)

V. NUMERICAL ILLUSTRATION

We finally present two numerical examples to illustrate our
main results. We fist define the channel Wy 7| x 5 as in Table 1.
In this example, we assume Y = Z = X = {0,1} and
Wz x,5 = Wy x,s- Note that it is impossible to distinguish
the state S' by only transmitting X = 0 or X = 1 because for
each X € {0, 1} there exists a pair (s, s") such that W x ; =
Wz x,s- Moreover, the input distribution of Px is near uni-
form if one tries to maximize the capacity. However, the uni-
form distribution on X is not the best for estimating .S because
the distance between Wz x—o s=1 and Wz x—o 5—2 is greater
than the distance between Wz x—1,5—¢ and Wz x—1 s-1, and
hence, the optimal codeword for detection should have a higher
weight on X = 1. The joint communication and sensing
capacity region corresponding to Table I is given in Fig. 2. One
can see that, beyond a certain rate, the optimum error exponent
of detection is not achievable. In contrast, the channel given in
Table II is BSC and, according to Corollary 4, the best error
exponent of detection can always be achieved regardless of
the type of codewords. The joint communication and sensing
capacity region corresponding to Table II is given in Fig. 3.

TABLE I
TABLE FOR Wz | x 5(0) = Wy x, 5(0) FOR ALL X € {0,1} AND
5 €{0,1,2}.
X
S 0 1
0 09 | 03
1 09 | 0.2
2 0.7 | 0.2
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Fig. 2. Capacity region Copen and achievable region Cj. = corresponding to
the channel of Table 1.

Joint

TABLE II
TABLE FOR Wz | x 5(0) = Wy x, 5(0) FOR ALL X € {0,1} AND
S € {0,1,2}.
X
S 0 1
0 09 | 0.1
1 0.8 | 0.2
2 0.7 | 0.3
0.007 A
0006 1
z
= 0.005 1
g
2 0.004 -
"
€3]
2 0.003 1
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=
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Fig. 3. Capacity region Copen corresponding to the channel of Table II.
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