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Abstract—We consider a communication model in which a
transmitter attempts to communicate with a receiver over a
state-dependent channel and simultaneously estimate the state
using strictly causal noisy state observations. Motivated by joint
communication and sensing scenarios in which the physical
phenomenon of interest for sensing evolves at a much slower
rate than the rate of communication, the state is assumed to
remain constant over the duration of the transmission. We derive
a complete characterization of the optimal asymptotic trade-off
between communication rate and detection-error exponent when
coding strategies are open loop. We also show that closed-loop
strategies result in strict improvements of the trade-offs.

I. INTRODUCTION

The ability to jointly communicate and sense the wireless

environment is one of the key features currently explored for

6G communication systems [1], [2]. While communication

and sensing technologies have traditionally been indepen-

dently designed and deployed, the push towards mmWave

systems whose bandwidth can support high-resolution sensing

is enabling a convergence that promises multiple benefits

including: efficient systems with a single hardware for both

communication and sensing; increased spectral efficiency; new

applications that leverage accurate localization and sensing.

The challenges posed by joint communication and sensing

systems are therefore multi-fold, from designing efficient

hardware with multi-functional antenna arrays, to designing

dedicated signal processing algorithms, and has attracted much

interest in the context of joint communication and radar [3]–

[5].

Of particular relevance to the present work, several works

have analyzed the information-theoretic limits of joint com-

munication and sensing [3], [6]–[9] by drawing parallels

with joint communication and state estimation [10], [11].

These results formulate the information-theoretic limits of

joint communication and sensing as the characterization of a

capacity-distortion region for state-dependent channel models

in which an independent and identically distributed (i.i.d.)

state, which represents the quantity to sense, governs the

behavior channel [6], [9]. Because models are set up to

preclude any prediction, detection strategies are open-loop and

the interplay between communication and sensing reduces to a

resource allocation problem, in which the choice of a channel

input distribution dictates the trade-off.
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Motivated by the observation that the physical phenomena

sensed, e.g., the presence or absence of an obstacle, might

change on a time scale much slower than the rate of com-

munication, we study a different model in which the state of

the channel remains constant over the block-length used for

communication. In this setup, estimation is generally possible

so that a trade-off exists between the rate of communication

and the detection-error exponent. Accordingly, our results

draw on the extensive literature around controlled sensing [12],

[13] and channel estimation with pilot sequences [14], [15]

rather than the rate-distortion literature.

The main contribution of the present work is an exact

characterization of the optimal asymptotic trade-off between

communication rate and detection-error exponent when coding

strategies are open loop, i.e., the transmitter does not exploit

the state observation feedback for adaptation. Perhaps un-

surprisingly, we also show that closed-loop strategies result

in strict improvements of the trade-offs. The remainder of

the paper is organized as follows. After a brief review of

notation in Section II and a formal introduction of the model

studied in Section III, we present and derive our main result

in Section IV. We illustrate our main result numerically in

Section V.

II. NOTATION

For any discrete set X , PX is the set of all probability distri-

butions on X . For n ∈ N
∗, a sequence of length n is implicitly

denoted x ≜ (x1, · · · , xn) ∈ Xn, while xi ≜ (x1, · · · , xi) ∈
X i denotes a sequence of length i. For x ∈ Xn, p̂x denotes the

type of x, i.e., p̂x(x) =
1
n

�n
i=1 1{xi = x}. For any type P ,

T n
P is the corresponding type class, i.e., the set of all sequence

x ∈ Xn such p̂x = P . Finally, PX ,n is the set of all possible

types of length n sequence on Xn. If WY |X is a conditional

distribution on Y ∈ Y given X ∈ X , we denote I(PX ,WY |X)
the mutual information between X and Y when X ∼ PX and

Y ∼
�

x PX(x)WY |x.

III. JOINT COMMUNICATION AND SENSING MODEL

We consider the communication model illustrated in Fig. 1,

in which a transmitter attempts to communicate with a receiver

over a state-dependent Discrete Memoryless Channel (DMC),

often referred to as a compound channel in the literature, while

simultaneously probing the channel state in a strictly causal

manner through a sensing channel. Specifically, the transmitter

encodes a uniformly distributed message W ∈ [1;M ] into a978-1-6654-0579-9/22/$31.00 ©2022 IEEE
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Fig. 1. Joint communication and sensing model.

length n codeword Xn, which symbols are transmitted over

a DMC with transition probability WY Z|XS . The a priori

unknown state S is assumed to be fixed during the whole

duration of the transmission and takes value in a finite set S .

The transmitter has the ability to estimate the channel state

by using past observations obtained from the output Z of

the DMC, allowing it to adapt its transmission in an online

fashion. Formally, the encoder is a set of functions

fi : [1;M ]×Zi−1 → X : (w, zi−1) �→ xi ≜ fi(w, z
i−1)

define for every i ∈ [1;n] while the estimator is a function

g : Xn ×Zn → S : (xn, zn) → ŝ.

The decoder is a function

h : Yn → [1;M ] : yn �→ ŵ.

A code C then consists of the tuple ({fi}i∈[1;n], g, h), as well

as the implicitly defined associated message set [1;M ].
The performance of the system is measured in terms of

the asymptotic rate of reliable communication and asymp-

totic detection-error exponent. Formally, we define the

communication-error probability and the detection-error prob-

ability as follows

P (n)
c ≜ max

s∈S
max

w∈[1;M ]
P(h(Y n) ̸= w|W = w, S = s), (1)

P
(n)
d ≜ max

s∈S

1

M

M�

w=1

P(g(Zn) ̸= s|S = s,W = w). (2)

The rate and detection-error exponent are

R ≜
1

n
logM and E

(n)
d ≜ −

1

n
logP

(n)
d ,

respectively.

Definition 1 (Achievability). A rate/detection-error exponent

(R,E) is achievable if for any ϵ > 0, there exist a sufficiently

large n and a code C of length n such that

P (n)
c ⩽ ϵ, (3)

E
(n)
d ⩾ E − ϵ, (4)

1

n
log |C| ⩾ R− ϵ. (5)

Our objective is to characterize the set of all achievable

rate/detection-error exponent pairs, which we call with a slight

abuse of terminology the joint communication and sensing

capacity region.

Since our model allows for adaptive coding schemes that use

the feedback, we also define state-dependent error probabilities

P (n)
c,s ≜ max

w
P(h(Y n) ̸= w|W = w, S = s), (6)

P
(n)
d,s ≜

1

M

M�

w=1

P(g(Zn) ̸= s|S = s,W = w). (7)

The state-dependent detection-error exponent is defined as

E
(n)
d,s ≜ −

1

n
logP

(n)
d,s . (8)

Definition 2 (s-Achievability). Given the state S = s, a

rate/detection-error exponent (R,E) is achievable if for any

ϵ > 0, there exists a sufficiently large n and a code C of length

n such that

P (n)
c,s ⩽ ϵ, (9)

E
(n)
d,s ⩾ E − ϵ, (10)

1

n
log |C| ⩾ R− ϵ. (11)

The notion of s-achievability is required to characterize

coding schemes that learn the state s online. The non-ergodic

nature of the state would otherwise prevent us from properly

defining a notion of achievability without considering again a

worst case scenario.

Remark 1. There is an asymmetry in our definitions of the

probability of errors in (1) and (2). While (1) includes a

maximum over a possible messages w ∈ [1;M ], (2) includes

an average over all possible messages. This subtlety is only

used in our converse proof for Theorem 3 in Section IV-B and

is required to avoid having the detection performance dictated

by a codeword whose type is not representative of the code.

Remark 2. The model of Fig. 1 differs from the ones in [6],

[9], where the state is i.i.d. and changing from symbol to

symbol. Our model captures a scenario in which the coherence

time of the state is much longer than the duration of a

transmission. As a result our model also captures the ability

to adapt to the channel state in an online fashion, while the

models in [6], [9] only allow for an offline adaptation based

on a target rate/distortion pair. Neither model supersedes the

other and both capture scenarios relevant to next generation

communication networks.

IV. MAIN RESULT

We first restrict ourselves to the situation in which the

encoder does not perform any online adaptation so that

fi : [1;M ] �→ X is independent of the observation zi−1.

This corresponds to an open-loop strategy, which provides

a baseline for assessing the usefulness of adaptation. For

simplicity, we denote in this case the encoder that maps a

message w to a codeword of n symbols by f : [1;M ] �→ Xn.

We call such codes open-loop schemes and we denote the set

of all achievable rate/detection-error exponent with open-loop

schemes by Copen. The following theorem provides an exact

characterization of Copen.



Theorem 3. The joint communication and sensing capacity

region of open-loop schemes is

Copen =
�

PX∈PX





(R,E) ∈ R
2
+ :

R ⩽ mins∈S I(PX ,WY |X,s)
E ⩽ ϕ(PX)



 (12)

where

φ(PX) = min
s∈S

min
s′ ̸=s

max
ℓ∈[0,1]

−
"

x

PX(x)

× log

�

"

z

WZ|x,s(z)
ℓ
WZ|x,s′(z)

1−ℓ

"

. (13)

Proof. See Section IV-A and Section IV-B.

A couple of comments are in order. First, since open-

loop schemes do not exploit the information about the state

contained in past noisy observations of the state, achievable

rates are necessarily upper bounded by the compound channel

capacity maxPX
mins∈S I(PX ,WY |X,s). This is a weakness

of all open-loop schemes. Second, because of the open-loop

nature of the coding schemes, the interplay between commu-

nication and sensing is captured by the choice of a distribution

PX that governs the empirical statistics of the codewords and

is set offline. This is similar to what is obtained in other

information-theoretic approaches based on rate-distortion [6],

[9].

Corollary 4. If there exists x0 ∈ X such that for all x ∈ X
there exists a permutation Ãx on Z such that for every s ∈ S

WZ|X,s(z|x) =WZ|X,s(Ãx(z)|x0), (14)

then

Copen =





(R,E) ∈ R
2
+ :

R ⩽ maxPX
mins∈S I(PX ,WY |X,s)

E ⩽ maxPX
ϕ(PX)



 (15)

where ϕ(·) is defined in (13).

In other words, there is no trade-off between rate and

detection-error exponent in this case and one simultaneously

achieves the optimal communication rate and the optimal

detection performance.

Proof. For every x ∈ X\{x0},
�

z∈Z

WZ|X,s(z|x)
ℓWZ|X,s′(z|x)

1−ℓ (16)

=
�

z∈Z

WZ|X,s(Ãx(z)|x0)
ℓWZ|X,s′(Ãx(z)|x0)

1−ℓ (17)

=
�

Ã
−1
x (z′)∈Z

WZ|X,s(z
′|x0)

ℓWZ|X,s′(z
′|x0)

1−ℓ (18)

=
�

z∈Z

WZ|X,s(z|x0)
ℓWZ|X,s′(z|x0)

1−ℓ. (19)

Thus, we know that the detection-error exponent is invariant

to the input type under this scenario.

One of the compound channel families that falls into such

a category is the set of Binary Symmetric Channels (BSCs).

The maximal detection-error exponent and the compound

capacity are then simultaneously achieved with a uniform input

distribution.

The following theorem shows that closed-loop schemes,

which exploit the feedback to adapt to the state, provide im-

mediate improvements. Specifically, the theorem characterizes

an inner bound of the set Cs
closed of s-achievable rate/detection-

error exponent pairs.

Theorem 5. Given each state s ∈ S , the state-dependent joint

communication and sensing capacity region satisfies

Cs
closed §

�

PX∈PX





(R,E) ∈ R
2
+ :

R ⩽ I(PX ,WY |X,s)
E ⩽ Ès(PX)



 , (20)

where

Ès(PX) = min
s′ ̸=s

max
ℓ∈[0,1]

−
�

x

PX(x)

× log

��

z

WZ|X,s(z|x)
ℓWZ|X,s′(z|x)

1−ℓ

�
. (21)

Theorem 5 is obtained by considering a simple strategy in

which the transmitter learns the state, informs the receiver,

and uses a code adapted to the learned channel state. The

exact characterization of the optimal tradeoffs for closed-

loop schemes is left of future work and presents non-trivial

challenges, chief among them the absence of a known opti-

mal detection error-exponent for multi-hypothesis controlled

sensing [12].

A. Achievability Proof of Theorem 3

We show that all (R,E) pairs within the region Copen are

achievable. Since we restrict ourselves to open-loop schemes,

we may fix PX as the type of all codewords. Fix any ϵ > 0.

By [16, Theorem 10.2], there exists a code with encoder f

and decoder h such that f(w) ∈ T n
PX

, the rate is at least

mins∈S I(PX ,WY |X,s) − ϵ, and maxw P(h(Y n) ̸= w|S =
s) < ϵ for all s ∈ S . Then, the detection-error exponent ϕ(PX)
is given by the Lemma 6 modified from [12, Theorem 1].

Lemma 6. Suppose that the the codeword corresponding to

the message w ∈ [1;M ] has type PX ∈ PX , the conditional

detection-error exponent Ed,w ≜ − 1
n
logmaxs∈S P(g(Zn) ̸=

s|S = s,W = w) in an open loop scheme is asymptotically

upper bounded by

ϕ(PX) ≜ min
s

min
s′ ̸=s

max
ℓ∈[0,1]

−
�

x

PX(x)

× log

��

z

WZ|X,s(z|x)
ℓWZ|X,s′(z|x)

1−ℓ

�
.

Moreover, it is also asymptotically achievable by a maximum

likelihood estimator.

Taking the union over all possible PX leads to the region

in (12).



B. Converse Proof of Theorem 3

Assume that the rate/detection-error exponent pair (R,E)
is achievable. Then, for all ϵ > 0, there exists n sufficiently

large and a code C such that

log |C|

n
⩾ R− ϵ

max
s∈S

max
w∈[1;M ]

P(h(Y n) ̸= w|W = w, S = s) ⩽ ϵ

−
1

n
logmax

s∈S

1

M

M�

w=1

P(g(Zn) ̸= s|S = s,W = w) ⩾ E − ϵ.

Since there is at most a polynomial number of types, there

exists a set of types T such that, for all PX ∈ T , the subcode

CPX
≜ {f(w) : p̂f(w) = PX} ¢ C satisfies

max
s∈S

max
w∈f−1(CPX

)
P(h(Y n) ̸= w|W = w, S = s) ⩽ ϵ (22)

and

log |CPX
|

n
>

log |C|

n
− ¶ ⩾ R− ϵ− ¶ (23)

for some ¶ vanishing with ϵ. By [16, Corollary 6.4],

log |CPX
|

n
< min

s
I(PX ,WY |X,s) + Ä (24)

for some Ä vanishing with ϵ. Choose now P ∗
X ∈ T such that

P ∗
X ≜ argmin

PX∈T
ϕ(PX) (25)

with ϕ(·) defined in (13). Then,

E − ϵ

⩽ −
1

n
logmax

s∈S

1

M

M�

w=1

P(g(Zn) ̸= s|S = s,W = w)

(a)

⩽ −
1

n
logmax

s∈S

1

M

�

w∈f−1(CP∗
X
)

P(g(Zn) ̸= s|S = s,W = w)

(b)

⩽ −
1

n
logmax

s∈S
P(g(Zn) ̸= s|S = s,W = w) + ¶

(c)

⩽ ϕ(P ∗
X) + ¶, (26)

where (a) follows since all terms in the sum are non-negative

and keeping only the terms corresponding to messages in CP∗
X

;

(b) follows by lower-bounding
|CP∗

X
|

|C| , noting that the detection

error is the same for any message with the same type P ∗
X , and

using (23); (c) follows by Lemma 6. Combining (24) and (26),

we conclude that for all ϵ > 0, there exist Ä, ¶ > 0 vanishing

with ϵ and a type P ∗
X such that

R ⩽ min
s

I(P ∗
X ,WY |X,s) + Ä + ϵ+ ¶ (27)

E ⩽ ϕ(P ∗
X) + ¶ + ϵ. (28)

Since ϵ, Ä, ¶ can be chosen arbitrarily small as the block length

n goes to infinity, E is upper bounded by ϕ(PX) for some

PX ∈ PX and the rate R is achieved by this PX . Taking the

union over all possible PX completes the result of converse

of Theorem 3.

C. Proof of Theorem 5

Fixing some s ∈ S and PX ∈ PX , we show that the

tuple (R,E) is achievable whenever R ⩽ I(PX ,WY |X,s)
and E ⩽ Ès(PX). We start with defining the code

C = ({fi}i∈[1;n], g, h). The state estimator is defined as

an maximum likelihood estimator, i.e., g(xi−1, zi−1) =
argmaxs∈S

�i−1
ℓ=1WZ|xℓ,s(zℓ). Fixing any ∆1 > 0, we define

P
#
X = argmaxPX∈PX,∆1n

ϕ(PX) and pick a length n∆1

sequence v = (v1, ..., v∆1n) from the type class T
P

#
X

. Then,

for 1 ⩽ i ⩽ ∆1n, the encoder is defined as

fi(w, z
i−1) = vi (29)

for all w ∈ [1;M ] and zi−1 ∈ Zi−1. At time ∆1n + 1, the

transmitter would estimate the state by using the maximum

likelihood estimator g(x∆1n, z∆1n). Then, the transmitter

would convey the information of the estimated state to the

receiver by encoding the estimated state s̃ into a codeword.

Since |S| does not grow with n, there exist a length ∆2n

channel code (f̂ , ĝ) with arbitrarily small error probability,

where f̂ : S �→ X∆2n is the encoder and ĝ : Y∆2n �→ S
is the decoder. Denoting x̂(s̃) = (x̂1(s̃), ..., x̂∆2n(s̃)) = f̂(s̃)
as the codeword corresponding to s̃. Then, for ∆1n < i ⩽
(∆1 +∆2)n, the encoder is defined as

fi(w, z
i−1) = x̂i−∆1n(g(x

∆1n, z∆1n)) (30)

for all w ∈ [1;M ] and zi−1 ∈ Zi−1.

It is known that for every P̄X ∈ PX , there exists a channel

code such that the rate is at least I(P̄X ,WY |X,s) − 2Ä for

any Ä > 0 for all sufficiently large n. Therefore, for the fixed

PX ∈ PX , there exist an (n, ϵ) channel code for the state s

channel with rate I(PX ,WY |X,s) − 2Ä for any ϵ, Ä > 0. Let

the channel code for the state s channel be characterized by

(f̃s, h̃s), where f̃s : [1;M ] �→ X (1−∆1−∆2)n is the encoder

and h̃s : Y(1−∆1−∆2)n �→ [1 : M ] is the decoder. Denoting

x̃(w, s) = (x̃1(w, s), ..., x̃(1−∆1−∆2)n(w, s)) = f̃s(w) as the

codeword corresponding to the message w ∈ [1;M ]. Then, for

(∆1 +∆2)n < i ⩽ n, we define the encoder as

fi(w, z
i−1) = x̃i−(∆1+∆2)n(w, g(x

∆1n, z∆1n)) (31)

for all w ∈ [1;M ] and zi−1 ∈ Zi−1. Finally, the message

decoder is

h(yn) = h̃
ĝ
�

y
∆2n

∆1n+1

�

�
yn(∆1+∆2)n+1

�
(32)

for all yn ∈ Yn. The state dependent error probability of

communication is

P (n)
c,s = max

w
P(h(Y n) ̸=W |W = w, S = s)

⩽ P(g(Y ∆1n) ̸= s|S = s) + P(ĥ(Y ∆2n
∆1n+1) ̸= s|S = s)

+ max
w

P

�
h̃s

�
yn(∆1+∆2)n+1

�
̸= w

���W = w, S = s
�
,

which is arbitrarily small when n is sufficiently large by our

construction of the code. The overall rate of communication

is

R =
1

n
log en(1−∆1−∆2)I(PX ,WY |X,s) (33)



= (1−∆1 −∆2)I(PX ,WY |X,s) (34)

By making ∆1,∆2 arbitrarily small, we conclude that

I(PX ,WY |X,s) is achievable. Moreover, the error probability

of detection is

P(g(Xn, Zn) ̸= s|S = s)

=
1

M

M�

w=1

P(g(Xn, Zn) ̸= s|S = s,M = w)

=
1

M

M�

w=1

�

s′ ̸=s

�

s′′∈S

P(g(Xn, Zn) = s′, g(X∆1n, Z∆1n) = s′′|S = s,M = w).

For each s′ ̸= s and s′′ ∈ S , defining the set

As′,s′′ ≜
�

z
n : g(f(w, z

n), zn) = s
′
, g(f(w, z

∆1n), z∆1n) = s
′′
"

,

then for any ℓ ∈ [0, 1],

P(g(Xn
, Z

n) = s
′
, g(X∆1n, Z

∆1n) = s
′′|S = s,M = w)

=
"

zn∈As′,s′′

n
�

i=1

�

"

x∈X

WZ|x,s(zi)P(Xi = x|Zi−1
, w)

"

=
"

zn∈As′,s′′

�

∆1n
�

i=1

WZ|vi,s(zi)

"





(∆1+∆2)n
�

i=∆1n+1

WZ|x̂i−∆1n(s′′),s(zi)





×





n
�

i=(∆1+∆2)n+1

WZ|x̃i−∆1n−∆2n(w,s′′),s(zi)





⩽
"

zn∈Zn

∆1n
�

i=1

�

WZ|vi,s′(zi)
�ℓ �

WZ|vi,s(zi)
�1−ℓ

×

(∆1+∆2)n
�

i=∆1n+1

�

WZ|x̂i−∆1n(s′′),s′(zi)
�ℓ �

WZ|x̂i−∆1n(s′′),s(zi)
�1−ℓ

×

n
�

i=(∆1+∆2)n+1

�

WZ|x̃i−(∆1+∆2)n(w,s′′),s′(zi)
�ℓ

×
�

WZ|x̃i−(∆1+∆2)n(w,s′′),s(zi)
�1−ℓ

= exp

�

n
"

x

qs′′(x) log

�

"

z

WZ|x,s′(z)
ℓ
WZ|x,s(z)

1−ℓ

""

,

where for all x ∈ X

qs′′(x) =
1

n

�
∆1n�

i=1

1{vi = x}+

(∆1+∆2)n�

i=∆1n+1

1{x̂i(s
′′) = x}

+

n�

i=∆1n+∆2n+1

1{x̃i(w, s
′′) = x}

�
.

Because above inequality is true for all ℓ ∈ [0, 1], we have

P(g(Xn, Zn) = s′, g(X∆1n, Z∆1n) = s′′|S = s,M = w)

⩽ exp

�
− n

�
max
ℓ∈[0,1]

−
�

x

qs′′(x)

× log

��

z

WZ|x,s′(z)
ℓWZ|x,s(z)

1−ℓ

���
(35)

Note that for all w ∈ [1;M ], the code x̃(w, s′′) has the type

PX . By making ∆1,∆2 sufficiently small, we have |qs′′(x)−
PX(x)| ⩽ ¸ for any ¸ > 0 and any s′′ ∈ S . Since the smallest

exponent will dominate the error probability in (35), we have

the detection-error exponent

E
(n)
d,s ⩾ min

s′′∈S
min
s′ ̸=s

max
ℓ∈[0,1]

−
�

x

qs′′(x)

× log

��

z

WZ|x,s′(z)
ℓWZ|x,s(z)

1−ℓ

�

⩾ Ès(PX)− À(¸),

where À(¸) is some continuous function in ¸ and

lim¸→0 À(¸) = 0. By choosing ∆1,∆2 and ¸ arbitrarily small

and n sufficiently large, we obtain E
(n)
d,s ⩾ Ès(PX). By taking

the union of all PX , we conclude that the capacity region Cs
Joint

is at least

�

PX∈PX

!
(R,E) ∈ R

2
+ :

!
R ⩽ I(PX ,WY |X,s)

E ⩽ Ès(PX)
. (36)

V. NUMERICAL ILLUSTRATION

We finally present two numerical examples to illustrate our

main results. We fist define the channel WY Z|X,S as in Table I.

In this example, we assume Y = Z = X = {0, 1} and

WZ|X,S = WY |X,S . Note that it is impossible to distinguish

the state S by only transmitting X = 0 or X = 1 because for

each X ∈ {0, 1} there exists a pair (s, s′) such that WZ|X,s =
WZ|X,s′ . Moreover, the input distribution of PX is near uni-

form if one tries to maximize the capacity. However, the uni-

form distribution on X is not the best for estimating S because

the distance between WZ|X=0,S=1 and WZ|X=0,S=2 is greater

than the distance between WZ|X=1,S=0 and WZ|X=1,S=1, and

hence, the optimal codeword for detection should have a higher

weight on X = 1. The joint communication and sensing

capacity region corresponding to Table I is given in Fig. 2. One

can see that, beyond a certain rate, the optimum error exponent

of detection is not achievable. In contrast, the channel given in

Table II is BSC and, according to Corollary 4, the best error

exponent of detection can always be achieved regardless of

the type of codewords. The joint communication and sensing

capacity region corresponding to Table II is given in Fig. 3.

TABLE I
TABLE FOR WZ|X,S(0) = WY |X,S(0) FOR ALL X ∈ {0, 1} AND

S ∈ {0, 1, 2}.

S

X
0 1

0 0.9 0.3
1 0.9 0.2
2 0.7 0.2




