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Abstract

We propose a new unbiased estimator for estimating the utility of the optimal stopping problem. The
MUSE, short for ‘Multilevel Unbiased Stopping Estimator’, constructs the unbiased Multilevel Monte
Carlo (MLMC) estimator at every stage of the optimal stopping problem in a backward recursive way.
In contrast to traditional sequential methods, the MUSE can be implemented in parallel. We prove
the MUSE has finite variance, finite computational complexity, and achieves e-accuracy with O(1 /82)
computational cost under mild conditions. We demonstrate MUSE empirically in an option pricing
problem involving a high-dimensional input and the use of many parallel processors.
© 2022 Elsevier B.V. Allrights reserved.
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1. Introduction

It is a pleasure to contribute to this special issue in honor of Prof. Larry Shepp, whose work
has significantly impacted a wide range of scientific disciplines. This paper focuses on optimal
stopping problems, an area of stochastic control in which Prof. Shepp contributed deeply both in
terms of theory and applications. in particular in connection to mathematical finance problems;
see, for example, [11,14,36,37].
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Our goal in this paper is on designing Monte Carlo methods for solving optimal stopping
problems which can be easily parallelized because the estimators that we produce are unbiased,
are applicable even in non-Markovian problems and have finite variance. We are not aware of
any other Monte Carlo estimators for optimal stopping problems which share these properties.

Monte Carlo methods are ubiquitously used for estimating high dimensional numerical
integrals or statistics arising in every computation-related subject. However, vanilla Monte
Carlo estimators may produce systematic bias in many practical applications (in particular
those involving optimization). The presence of such systematic bias precludes the direct use of
parallel computing architectures. Consider the following toy example in a two-stage optimal
stopping problem. Suppose one is able to simulate the two-stage process (X, X») and is
interested in estimating the utility

U = E[max{f(X)),E[f(X2) | Xi]}].

where f is some integrable reward function. Then it is not hard to show the vanilla Monte
Carlo estimator U will systematically overestimate U by the Jensen’s inequality.

To address the issue of bias, the design of unbiased Monte Carlo estimators has recently
attracted much attention [7-9,23,25,29,33-35,39-41] in operations research, statistics, and
machine learning communities. Many existing debiasing techniques are closely related to the
Multilevel Monte Carlo (MLMC) framework developed by Heinrich and Giles [17,18,20,21,24]
where a sequence of biased but increasingly accurate estimators are used to estimate the
functionals of stochastic processes described by stochastic differential equations. Unbiased
estimators have been successfully developed and employed in the context of stochastic
approximation, Markov chain Monte Carlo estimation and convergence diagnosis, quantile
estimation, and so on. In many settings, unbiased estimators provide a promising direction
to efficient parallel implementation and better uncertainty quantification.

In this paper, we study the discrete-time, finite-horizon optimal stopping problem, a
fundamental problem that can be found in areas including economics, operations research,
and financial engineering. Consider the optimal stopping problem with underlying process

(X1, ..., Xr) and reward function f. We are interested in computing the expected utility of
the optimal strategy:
Ur = sup E[f (Xo)], ey
€Tt
where 77 denotes the set of all the stopping times taking values in {1, ..., T'}. Following the

standard optimal stopping theory, we can define the Snell envelope by
Ur—x = sup E[f(Xo) ] Fil,
t€Tkt1,T

where T;41 1 denotes the set of stopping times satisfying k +1 <t <T,k=0,...,T — 1
and F; is the natural filtration at time k. The dynamical programming can be written as:

Ui =E[f (X7) | Fr-1l,
Ur—i = E[max { f (X)), Ur—gsn} | Fi],  k=0,...,T -1

In most practical cases, Ur cannot be analytically solved, and we therefore resort to Monte
Carlo methods for an estimation. However, generating unbiased estimation for the utility of
the optimal problem is known as a very difficult problem. Suppose one is able to simulate the
whole process. Then the above dynamical programming backward recursion suggests a natural
Monte Carlo estimator as follows. We sample tree-like paths of the whole process forward in
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Fig. 1. Tree-like paths for Monte Carlo simulation. Here each node in the first two levels has three children which
are i.i.d. sampled from the conditional distribution.

time and estimate each U; backwards in time. The sampling procedure is illustrated in Fig. |
where one samples many k-ary trees with height 7. After sampling enough paths, we aggregate
the samples from bottom to top in each layer as estimators of Uy, ..., Ur respectively. This
estimator is relatively easy to implement but has several limitations. Firstly, the estimator
overestimates the utility even in the simplest case 7 = 2, let alone the general case. Secondly,
as the estimation error propagates from one time horizon to another, the accuracy relies on
a repeated 7T'-limit, which is difficult to quantify. The above approach is the ‘high-estimator’
suggested in the seminal paper of Broadie and Glasserman [10]. The authors also use the
similar idea to construct the ‘low-estimator’, and a confidence interval that covers the utility
by combining the two estimators. In fact, the above authors conjectured that there is no
general unbiased estimators for the optimal stopping problem, see page 1326-1327 in [10]
for details. There are also regression-based Monte Carlo simulation methods, including the
well-celebrated Longstaff-Schwartz [31] and Tsitsiklis—Van Roy [38] algorithms for option
pricing, see also [16] for extensions. Both methods approximate the solution of the original
problem by solving a sequence of regression problems in linearly parameterized subspaces.
Albeit convenient to use, the approximation error and the unavoidable bias still cause concerns
for both parallel implementation and uncertainty quantification.

In this paper, we introduce a novel unbiased estimator — the Multilevel Unbiased Stopping
Estimator (MUSE?) for the optimal stopping problem described in (1). Our estimator is inspired
by the randomized Multilevel Monte Carlo estimator described in [8,9]. The MUSE is easy to
implement and enjoys both finite variance and finite expected computational complexity. The
computational cost to achieve e-accuracy is O(1/&?), which matches the optimal rate from
the Central Limit Theorem (CLT). Our empirical studies suggest that the MUSE scales well
with the dimensionality of the underlying process — which is often viewed as a bottleneck of
classical regression-based methods. As extra byproducts, we construct confidence intervals for
the utility and propose a natural algorithm to determine the optimal stopping time based on
the MUSE.

We emphasize that our techniques are of interest in randomized Multilevel Monte Carlo
as we relax smoothness assumptions imposed in [8]. In summary, the MUSE can be viewed
as a multi-stage extension of the MLMC estimator. In two-stage problems, our estimator
(Algorithm 1) has the same expression as the randomized MLMC estimator. However, the
general optimal stopping problem is defined in a recursive way, and thus the MLMC estimator

2 In ancient Greek mythology, the Muses are the nine goddesses (the daughters of Zeus and Mnemosyne), who
preside over literature, science, and the arts.
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fails to directly apply. Multi-stage MUSE (Algorithm 2) generates data forwardly and then
calls for the two-stage MUSE backwardly. Moreover, MUSE relaxes the technical assumptions
of the randomized MLMC estimator. In [8], the randomized MLMC estimator is proposed to
estimate g(m,) where m, is the mean of a probability measure p and g is a locally twice
differentiable function (Section 3, Assumption 2 in [8]), but the function of our interest is a
multiple composition of the max function, which is not differentiable everywhere.

There is a large body of literature on solving the optimal stopping problem using the (non-
randomized) MLMC methods. For the two-stage optimal stopping problem, a slightly more
general version has been considered in [20]. The authors in [20] consider the problem of
estimating:

E[max fa(X, Y)] — E[max E[ fs(X, ¥) | X]] @

where {f;} is a finite set of functions representing one’s possible strategies. The quantity
(2) represents the expected value of the partial information. The first term in (2) can be
estimated via standard Monte Carlo approach, while the second term is much more complicated.
Suppose d = 2, fi(X,Y) = f(X) and £o(X,Y) = E[f(Y) | X] for the utility function
f given at the beginning of our paper, then the second term in (2) is the expected utility
of the two-stage optimal stopping problem. The methodology and theory of [20] are closely
connected to our paper, though the focus is somewhat different. The main contribution of [20]
is applying the (non-randomized) MLMC method to design low-bias estimators which attains
€? mean-squared error with O(e?(log €)?) or O(e?) computational complexity under different
assumptions. In contrast, our effort is mostly on designing completely unbiased estimators
with finite variance and finite computational cost. Technically, Assumption 2 in [20] is very
close to our Assumption 4 and is posed for similar reasons (see 1.1 for detailed discussions),
while our paper has a relatively weaker moment assumption (Assumption 2) than Assumption
1 on [19]. Besides [20], other related works for the two-stage optimal stopping problem
include [19,27,28], and the references therein.

Non-randomized MLMC methods have also been used in the general multi-stage optimal
stopping problems to obtain low-bias estimators. In Belomestny, Ladkau, and Schoenmak-
ers [4], the authors designed MLMC estimators to improve the computational complexity of the
standard Monte Carlo estimator based on their previous work [3,5]. The randomized MLMC
idea has been briefly mentioned in the Ph.D. dissertation of Dickmann [13] but not explored
in details.

The rest of this paper is organized as follows. After setting up the notation and describing
the assumptions in Section 1.1, in Section 2 we introduce the MUSE and prove its theoretical
properties. In Section 3 we showcase several applications of the MUSE through numerical
examples. In Section 4 we conclude our paper with a discussion on its limitations and potential
generalizations. Detailed proofs of Theorems 1 and 2 are deferred to Appendix A.

1.1. Notations and assumptions

Let (12, B({2)) be a Polish space equipped with Borel o-algebra B({2). Let (X, | - ||) be a
complete separable normed space equipped with Borel o-algebra B(X). Given a fixed positive
integer T and an adapted X'— valued stochastic process {X;}”_, with filtration {7;}_,, we
denote by .7 the joint distribution of (X, ..., X7). Given X; = x; for 1 <i < k, we denote
by w417 | {xi}f.‘zl) the conditional distribution of (X4, ..., X7), and mwey1(- | {x; }le) the
marginal conditional distribution of X;;;. We will use the convention {x¢} = & and therefore
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m; denotes the (unconditioned) marginal distribution of X;. Let f : X — R be an integrable
reward function. We denote by Uy the utility of the optimal stopping problem as described in
(1) and the conditional utility
Uroi,..ox) = sup B [f (X0 | i ] 3)
T€Tk41,7

which corresponds to the utility function if one starts the T — k-stage optimal stopping problem
after observing the first k outcomes {xi}f.‘:l. For simplicity, we write 1.7, Tr+1, and Ur_g
when there is no confusion about the dependency on {x; }le. The geometric distribution taking
values in {0, 1, ...} with parameter r is denoted by Geo(r). Given a non-negative discrete
random variable N, we denote its probability mass function by p(n) := P(N = n). In particular,
pr(n) denotes P(Geo(r) =n) =r(l —r)".

Before formally describing the MUSE, we introduce the following assumption ensuring that
the underlying process can be simulated. This assumption is standard and can be found in
almost every Monte Carlo-based optimal stopping algorithm, such as [31,38].

Assumption 1 (Path Simulation). Given fixed integers 0 < k <7 — 1,n > 1 and a trajectory
{xi}le, we have a simulator S which takes {x,‘}f.‘:1 as inputs and outputs n i.i.d. samples
Xi+1(1), ..., Xgy1(n) with distribution 7y (- | {xi}le).

Besides the simulation assumption, we also introduce several technical assumptions. The
MUSE can always be constructed as long as the simulation assumption is satisfied, but several
desired properties such as finite variance are justified under these technical assumptions.

Assumption 2 (Moment Assumption). There exists § > 0, such that E [|| X;[|*"*] < oo for all
1<i<T.

Assumption 3 (Linear Growth). f : X — R satisfies | f(x)| < L (1 + ||x||) for some L > 0.

Assumption 4 (Regularity Condition on Conditional Expectation). There exists a constant
C > 0, such that

PUr (X1, ..., Xi) — f (X)) <&) <Ce
hold foralle >0and 1 <k <T — 1.

Assumption 4 essentially requires the density of Ur_r(X1, ..., Xi) — f(Xi) to be bounded
at zero. This can be verified directly when (X1, ..., Xr) is an independent process and each
X; has a bounded density. In general, we expect Assumption 4 to hold if the random vector
(X1, ..., Xr) has a density, and the reward function f is smooth except for finitely many
points.

To be specific, suppose (X1, ..., Xi) follows the joint distribution 7., then in Assumption 4
we require

/ L(Ur_iris o) — f (10| < &) mix(dxi, ... dxe) < Ce.

Note that it is common to assume the underlying information to enjoy certain nice regularity in
high-dimensional optimal stopping. For instance, similar regularity assumptions can be found
in [4] (Proposition 3.1 and Theorem 3.4 (iv)), and [20] (Assumption 2).
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We would like to emphasize that the main objective of our technical assumptions here
is to bound the variance and expected computational cost simultaneously, which are crucial
properties for the efficiency of any unbiased MLMC estimator. The finite variance enables the
Central Limit Theorem, which in turn gives an asymptotically exact confidence interval of the
true utility. The computational cost result allows us to control the expected amount of time
for simulating one estimator. Putting the two properties together shows our estimator achieves
g2-expected mean squared error within O(1/&?) expected computational cost, see Corollary 1
for details. We also refer the readers to [8] and [39] for more discussions on the variance, the
computational cost and their trade-off for unbiased MLMC methods.

2. Multilevel Unbiased Stopping Estimator (MUSE)

We present our main results in this section. We start with the two-stage MUSE in Section 2.1.
The general/multi-stage MUSE is described in Section 2.2 and it is constructed by recursively
calling the two-stage MUSE. Two related applications, including the construction of the
confidence interval and an algorithm for finding the optimal stopping time, are discussed in
Section 2.3.

2.1. MUSE for two-stage optimal stopping problems

Two-stage optimal stopping is a special and simplest non-trivial case among the finite-
horizon optimal stopping problems. To build a better intuition for the MUSE, we start with
describing the MUSE under this simplified setting, which serves as both a base case and
motivation for the general estimator.

Given the bivariate distribution w5 of (X, X;). The utility of the two-stage optimal
stopping problem can be written as:

Uz = E[max{f (X)), E[f(X2) | X;:}] = fgmax{f(m), E[f(X2) | xi]}mi(dxy). “

Therefore, after sampling x; ~ m; from the simulator S, it suffices to construct an unbiased
estimator of g, (E[f(X>) | x1]) where g,,(a) :== max{f(x;), a}. It is also clear that a vanilla
estimator max{ f(x1), f(x2)} with (x1, xo) ~ ., will be biased here, as such an estimator has
expectation

/Q Qmax{f(xl), f)}mi(dxy)ma(dx, le)zﬂ?max{f(xl),E[f(Xz)Ix]]}m(dxl),

and therefore overestimates the utility. The debiasing strategy follows from the observation
of [8,17]. Let {ng,ni,...} be an increasing sequence of positive integers. For each n;, let
f(X2),, be the empirical average of n; i.i.d. samples of f(X,) with X, ~ m(- | {x1}). By
virtue of the law of large numbers, we have g,, (E[ f(X2) | x1]) = limi_, o &x, (f(X2),,) almost
surely. Then we can write g, (E[f(X>2) | x;]) as the following telescoping summation:

g ELF(X2) | 0] = lim g, (FX2))

=g, (FODne) + Y &v (FX2hny) = 8y (FXDn,_,) - ©)

k=1
If one can construct estimator A, with expectation

E[gx (fX2Dn) — &0 (F XD y)] (©6)
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for k > 1 and E[A¢] = gy, (f(Xz),,O), a randomized estimator of g, (E[f(X2) | x(]) can
be constructed as Ay/py, where N is a non-negative integer-valued random variable with
probability mass function P[N = n] = p,. The following heuristic calculation explains why
one would expect Ay/py to be unbiased:

2] Bl2 ] o[ o]

o Pk
= lim E[g,, (T(X2)] = gn ELf(X2) | 11])

where the third equality interchanges the order between expectation and (infinite) summation,
the last equality interchanges the order between limit and expectation.

The above is the core idea of the unbiased MLMC estimator in [8,9,35]. However, it remains
to justify several theoretical issues, such as the validity of the above interchange and the
estimator’s variance. An extra subtlety is the tradeoff between the sampling complexity and
the variance. The expected sampling complexity for generating one estimator Ay /py is of the
order of Z/fio pini. Clearly, it is desirable that the estimator has both finite variance and finite
expected sampling complexity.

Rhee and Glynn [35] show the estimator Ay/py is unbiased and of finite variance if
> o E[A7]/px < 0o in a more general context. If one is interested in estimating quantities
of the form g(IE[X]), Blanchet and Glynn [8] show one can choose n; = 2k and N ~ Geo(1 —
273/2) provided that X has bounded 6th order moment and g is locally twice differentiable and
grows moderately. However, the assumption of [8] is not satisfied even in this simple two-stage
case, as the function g, (a) = max{f(x;), a} here is non-differentiable at f(x;). The absence
of smoothness assumptions on the function g,, causes technical challenges and calls for better
theoretical guarantees in analyzing the unbiased MLMC estimator.

Now we are ready to describe the two-stage MUSE and discuss its theoretical properties.
Algorithm 1 is referred to as the two-stage MUSE in contrast to the general/multi-stage MUSE
described later. Roughly speaking, one first samples x; ~ m;, then constructs the standard
unbiased MLMC estimator Ay /py for g, (E[f(X>) | x1]) using a geometric random variable
N and 2V i.id. samples of X, with distribution 75(x; | {x1}). The estimator A, described in
Step 4 is crucial for theoretical analysis. It is often referred to as the ‘antithetical difference’
estimator in the literature [8,9]. The intuition is that the antithetic construction reduces the
VaEriance. As elaborated later in the theoretical analysis, the estimator Ay equals O if both

o
Szzp’,v—:ll and Szz,f,v:ll are on the same side of f(X(1)). This observation turns out to be the
key for controlling the expected computational complexity and variance simultaneously. We
want to emphasize that the main contribution of the two-stage MUSE is more theoretical
rather than the methodological. Algorithmically, the two-stage MUSE is very similar to the
unbiased MLMC estimator. Theoretically, two-stage MUSE is the first unbiased estimator with
theoretical guarantees for dealing with non-smooth functions.

Our main theoretical results on the two-stage MUSE are described in Theorem 1. Notice
that the computational cost for Algorithm | is a random variable depending on N. If we
define the computation time for sampling one random variable and performing one arithmetic
operation as ‘one unit’, then the expected computational complexity is of the order of E [ZN ] =

ZEO:] 2" p,(n).

Theorem 1. Consider a two-stage process (X1, X»). Suppose Assumptions 1, 2 (with § < 1/4)
and 3 hold, and suppose Assumption 4 is satisfied with T = 2, i.e.,

PELf(X2) | X11 = f(XD] =€) < Ce (N
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Algorithm 1: Two-stage Multilevel Unbiased Stopping Estimator (Two-stage MUSE)
Input: A simulator S of a two-stage process (X, X;), parameter r € (1/2, 1).
Qutput: An unbiased estimator of E [max{f(X,), E[ f(X>2) | X1}].
Step 1. Sample N from geometric distribution Geo(r).
Step 2. Sample X;(1). Conditioning on X;(1), sample 2" i.i.d. X, (1), ..., X» (2).
Step 3. Calculate the following three quantities:
SzN =f X))+ + f(X2(2 N)),
2N P = X))+ FA) 4+ f(X2(2Y = 1)), (sum over odd indices)
2N = f )+ fFX@)+---+ f (X2(2N)) . (sum over even indices)

Step 4. Calculate (note that Ay := max {f (X;(1)), f (X2(1)})

Ay =max{f<xl<1>) SZ”}

0

1 S
-3 |:maxlf(X1(1)) VT }+max{f(X1(1)) 221\7 i }:|

Return: Y := Ay /p,(N).

 2495/(80-+408)
foralle > 0. Letr =1-2 /10 ¢ (1/2, 1) in Algorithm 1. Then, the resulting estimator

Y in Algorithm 1 has the following properties:

(D) E[Y] = E[max { f(X1), E[f(X2) | X11}].
(2) The expected computational complexity of Y is finite.

B E [|Y|2+1%] <C.L* [14+E[IX21%7]], where C is a constant independent of (X1, X»).

The proof of Theorem 1 is deferred to Appendix A. As shown in Theorem 1, the two-
stage MUSE is unbiased, has both finite (2 + %)th moment (thus finite variance) and finite
expected computational complexity. We also want to highlight a seemingly small theoretical
improvement that turns out to be crucial in designing the multi-stage MUSE. In the existing
literature, such as [8,9], the estimator is guaranteed to have a finite second moment given the
original random variable has a higher (say 6th) moment. In our case, we prove the estimator
has (2+ I‘S—O)th moment given the original random variable has (2 + §)th moment, which makes
the whole algorithm iterable in the multi-stage case.

2.2. MUSE for general optimal stopping problems

In this section, we propose the multi-stage MUSE algorithm (Algorithm 2) which aims to
provide an unbiased estimator for the general optimal stopping problem (1). The multi-stage
MUSE, as described in Algorithm 2, can be viewed as a recursive extension of the two-stage
MUSE. To get an unbiased estimator of Uy, one feeds (0; @; S, rq, ..., rr—1) into Algorithm 2.
After sampling x; from the unconditioned distribution and N; ~ Geo(r), it suffices to construct
2M unbiased estimators of Ur_;(x;) to build the MLMC estimator. Meanwhile, an unbiased
estimator of Ur_;(x) can be viewed as another optimal stopping problem with horizon 7' — 1
and underlying process m,.7, and therefore we call the same algorithm recursively after adding
x; into the trajectory history.
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Algorithm 2: Multi-stage Multilevel Unbiased Stopping Estimator (Multi-stage MUSE)
Input: Time index k. Trajectory history H = {xj, ..., x;} or &. A simulator S of the
conditional distribution my_, parameters ryi1,...,rr—1 € (1/2, 1).
Output: An unbiased estimator of Ur_; in (3).
if k=T —1 then
Sample one x7 from the conditional distribution of 77 given H.
Return Y := f(x7).

end
else
Sample x;4; from the condition distribution my; given H.
Add x;4 to the trajectory history H.
Sample Ny ~ Geo(rg41).
Call Algorithm 2 for 2Nk+1 times with inputs (H; S, ryy2- -+, rr—1), label the
outputs by Yi1(1), ..., Yk+1(2Nk+]).
Calculate the following three quantities:
Ssz+1 = Yk+l(1) + - Yk+1(2Nk+l)a
Sov—t = Yer1 (D 4+ Y1 3) - + Y QM — 1),

S Ng+1-1 — Yk+1(2) + Yk+l(4) -+ Yk+1(2Nk+l).
Calculate (note that Ag := max { f(x¢11), Yea(D})

Sow,
Vit
AN :max{f(xk+1), Ner }

g0 SE
1 2N -1 N1 1
-3 |:max {f(ka) VT } + max if(XkH) e [ |

Return: Y := Ay, /pr,; (Nig1).

end

The next theorem studies the theoretical properties of the multi-stage MUSE. The computa-
tional complexity of Algorithm 2 comes from the sampling complexity, which is of the order
of E [HT ! 2NAT

Theorem 2. With Assumptions 1, 2, 3, and 4, consider the input

0;@;8,r1,...,r7-1)

in Algorithm 2, where

_2+9(5-10i+1_T)/(80+40(54|0"+1_T))

rp=1-2 2451007 e(1/2,1)

for 1 <i < T —1. Then, the resulting estimator Y in Algorithm 2 has the following properties:

(D) E[Y] = .
(2) The expected computational complexity is O (lOT )

3) Var (Y) = 0 (1072).
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To illustrate the iterative structure of multi-stage MUSE, we sketch the proof of Theorem 2 in
below. The detailed proof is deferred to Appendix A. By the standard dynamical programming
for optimal stopping, we have

UrXir-1) =E[f(X7) | X1:7—1],
Ur—(X1x) = E[max { f (X)) Ur—rnX1ae )} | Xix], 0<k<T —2.

Here, for a generic d-tuple (v, ..., vg), let v;;; == (v;, ..., v;) for 1 <i < j < d for notational
convenience. By applying the techniques in the proof of Theorem 1, one can show that for
each stage, the output Yr_; always has a moment of order greater than 2, and is unbiased for
Ur_i. The proof of the moment bounds is iterable because of the careful technical analysis in
Theorem 1. Moreover, by a proper choice of the parameters ry, ..., rr—_;, the expected sampling
complexity for each stage is bounded. As a result, the total expected sampling complexity is
also bounded.

Corollary 1. Let Assumptions 2 and 4 hold. For any ¢ > 0, and a fixed time horizon T, we
can construct an estimator Y that satisfies the following properties:

o The expected computational complexity for constructing Y is O(1/¢&?).
e The expected mean squared error between Y and the true utility is bounded by €,
ie, E[(Y — Up)?’] <&

Proof of Corollary 1. We fix a positive integer n. Calling Algorithm 2 n times yields n i.i.d.
unbiased estimators Y, ..., Y, of Ur. Then,

2 2
1 - 1 n 1
E (Z ; Yi - UT> =E (; ,-;(Yi - E[Y,-])> = Var(r)).

Taking n = Var(Y;)/e? (note that Var(Y;) < oo by Theorem 2) and define ¥ := % Y Y It
follows from the above calculation that £ [(Y — UT)2] < &%. Moreover, since sampling each
Y; has expected computational complexity O(1), the expected computational complexity for
constructing Y is O(1/¢?), as desired. [

Finally we comment on some practical issues when implementing the MUSE for multi-
stage optimal stopping problems. One drawback of our algorithm is that the computational
complexity (the constant hidden in O(1/€?) in Corollary 1) grows exponentially with time
horizon T'. Therefore, our algorithm is prohibitively slow when T becomes large. We believe
this is expected due to the comprehensive multi-stage structure of the optimal stopping problem
(1). In fact, the same phenomenon happens in the Monte Carlo-based methods, including
the popular algorithms of Broadie and Glasserman [10], Longstaff and Schwartz [31] and
Tsitsiklis and Van Roy [38]. It is known in Glasserman and Yu [22] that the number of
sample paths required for the regression coefficients to converge grows exponentially in the
degree of basis functions under the worst-case scenario. Zanger [42] proved the expected
L? error has an O((log"/> N)N~'/2) convergence rate (N is the number of sample paths)
given the approximation architecture has a finite Vapnik—Chervonenkis (VC) dimension. Their
error bound also scales exponentially with respect to the time horizon, see Theorem 3.3
of [42]. Meanwhile, we emphasize that besides Assumption 4, there is currently no specific
distributional assumption on the underlying process. Therefore, there is a potential for designing
computationally efficient estimators given additional distribution assumptions. Moreover, if the

10
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unbiased requirement can be relaxed, then it is possible to design fast algorithms while retaining
the O(1/€?) complexity. One can potentially either choose a fixed level based on the standard
MLMC approaches [18], or use a truncated geometric random variable to replace the geometric
random variable N in Algorithm 2 as described in the recent work [1]. These ideas open up
exciting possibilities for new algorithms, but are already beyond the target of our paper.

2.3. Confidence interval and optimal stopping time

A confidence interval (CI) is crucial if one is not merely interested in getting a point
estimate, but also expects to assess the quality of such estimation. Fortunately, since many
i.i.d. estimators of Uy can be constructed by repeatedly calling Algorithm 2, the 1 — «
confidence interval (CI) of the utility can be constructed as follows: Let Y;,...,Y, be n
unbiased estimators of U7 generated by the MUSE. Let ¥ be their empirical mean and s the
standard deviation. Then, two types of CIs can be built via

e (CLT) [Y — zaj2 - 5//n. Y + Zay2 - 5/4/11], Where 245 is the (1 —a/2)th quantile of AV(0, 1).
e (Bootstrap [15]) [Y} ), Yi_, ], where Y}, ), Y1, », are the a/2th and (1 —«/2)th empirical
quantile of the bootstrap averages.

In principle, both methods are valid as the number of simulated estimators goes to infinity.
The first CI is based on the Central Limit Theorem, and the convergence rate depends on the
higher-order cumulants. The second CI uses the empirical distribution to approximate the actual
underlying distribution, which is non-parametric and is (monotone) transformation-respecting
([15], Chapter 12). It is known that the percentile bootstrap may not work well when the data
has a significant skewed distribution. In these cases one may consider alternative methods such
as the BC, (bias corrected accelerated) bootstrap [12].

Besides estimating Uy, we are also interested in finding the optimal stopping time % such
that E[ f (X;+)] = Ur. By standard dynamical programming,

™ =inflk > 1: Ur_1 (X1, ..., Xp) < f(Xp)}.

Though Ur_; is not analytically available, the MUSE provides us with powerful tools for
estimating Uy_; at each round. The algorithm for the optimal stopping time is as follows:

Algorithm 3: Optimal Stopping Time via MUSE

Input: Simulator of the process (X1, ..., X7), tolerance level ¢.
Output: A stopping time 7.
Sample X| = x;.
fork < 1toT —1do
Call Algorithm 2 with history (xi, ..., x;) n times to get i.i.d. unbiased estimators
Yl,..., Y,, of UT,/{.
if f(xp) > Y — ¢ return k. else Sample Xy = Xg41-

ifk+1=T returnT.
end

There are multiple ways of choosing ¢, which clearly depend on the decision maker’s risk
sensitivity. One promising option would be to choose ¢ adaptively, according to the Cls derived
by the MUSE.

11
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3. Numerical experiments

3.1. Optimal stopping of independent random variables

The optimal stopping problem for independent random variables has been extensively
studied in the literature. In this example, we consider the case where X, ..., Xy are i.i.d.
N(0, 1) random variables with reward f(x) = x. Standard calculation yields U; = 0, U, =
E[|X]]1/2 and Uy = E [max{X,, Ux_}] so that the utility can be solved numerically. With each
fixed time horizon, three estimators — MUSE and two vanilla Monte Carlo estimators MC1 and
MC2 are implemented. MC1 is a naive Monte Carlo estimator. For each T, it samples 107 paths
and estimates Uy by the average of the maximum in each path, which is clearly biased. MC2
is a refinement of MCI1 but still biased. It samples tree-like paths as described in Section 1,
Fig. 1. In our case, the simulated data forms a forest that consists of 1000 complete 5-ary
trees of depth 7. MC2 estimates the utility using the dynamical programming formula Ur =
E [max {X;, Ur_1(X1)}] in a backward recursive way. Given the history X, ..., X,_;, the
utility of U;(Xy, ..., X,—1) can be easily estimated by averaging the samples in the last layer.
Similarly, we can use the formula U,(Xy,..., X,—2) = E[max{X,_;, Ui(Xy, ..., X,—1)}]
to estimate U, after replacing the quantity U,(Xy,..., X,—1) by its estimator described
above. Then we estimate Us, Uy, ... and finally Uy. Formally, the final estimator 0T =
(Z}Q?O 0;’ ))/1000 is the average of the 1000 estimators from each tree. For each i, the estimator
0;” of tree i is of the form 0;” = (Z‘;’-zl maX{Xﬁi’)l, U;i)_l})/S, where the number 5 comes
from the 5-ary tree design, X ﬁi)l is the root node of the ith tree, and U;')_l is the estimator for
Ur—1(X g{)l) using the dynamical programming procedure mentioned above.

The only hyperparameter for the MUSE is the success probability r for the geometric
distribution. Larger r leads to shorter computational time but larger variance, and vice versa.
We implement a simple experiment to determine r. For each r in {0.51,0.52,...,0.7}, we
run 10° MUSEs for horizon T = 3 and examine their empirical performances. Our results are
summarized in Fig. 2. The cost of time decays significantly when r increases. Furthermore, we
also calculate the self-normalized variance [8] as a measure of efficiency. The self-normalized
variance is defined as the product between the expected time and the variance for every single
estimator. It is clear from the right subplot of Fig. 2 that the self-normalized variance initially
decays and then increases as r increases, with a minimum at around 0.6, therefore we choose
r = 0.6 in the numerical experiments henceforth.

After setting up the hyperparameter, we implement the three methods for 7 € {2,...,7}.
Our results are presented in Fig. 3. Both MC1 (red curve) and MC2 (green curve) systematically
overestimate the true utility (black dotted line), as expected. The accuracy of MCI is poor
while MC2 has much better accuracy, sometimes comparable with the MUSE. The MUSE
(blue curve) uses parameters r; = 0.6 for each stage,’ and averages of 10° estimators for each
T. It typically has the most accurate result among all three methods. To better understand
the empirical convergence behavior of the MUSE, we also show the traceplot for the running
average of the MUSE for each horizon in the right subplot of Fig. 3. It is clear from the
traceplot that the CIs typically covers the ground truth, though the convergence becomes much
slower when T is increasing.

3 To ease the computation burden, the parameters chosen here do not strictly follow Theorem 2.

12
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Fig. 2. Left: The cost of time for generating 10° MUSEs with different success probabilities. Right: The
self-normalized variance of the MUSEs with different success probabilities.

0.2-

Horizon
L R L L L L L TR T e PR R R L R R P T
7
Method &
] 6
5 MC1 z «
0 o MC2 D e
€ 075 4
MUSE ¢ 075
= 3
o
2
0.0 S SRR P R SN S LRt SRS, 50
2 3 4 5 6 7 0 250000 500000 750000 1000000
Horizon Number of Estimators

Fig. 3. Left: Comparison between the errors of the MUSE (blue), MC1 (red), and MC2 (green) for estimating the
utility for i.i.d. standard Gaussian random variables. Blue error bars stand for the 95% confidence intervals of the
MUSE. Black dotted line stands for the ground truth (error = 0). Right: The traceplot of the running averages of
the MUSE with different horizons. Black dotted line stands for the ground truth. Colored dashed lines stand for
the running 95% CIs of the MUSE. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

3.2. Pricing the Bermudan options with high-dimensional inputs on a computer cluster

In this section we consider a more challenging setup, where the underlying process X, =
(X ,(1), X ,(dj) takes values in a high-dimensional space R?. The example we are considering
here is a standard one — pricing the high-dimensional Bermudan-basket put options. The
underlying process is a d-dimensional independent geometric Brownian motion with drift y —§
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Table 1
Comparison between different methods when d = 5. SGM and BKS stand for results reported by [30] and [6]
respectively. LSM stands for Longstaff—-Schwartz method, reported by [30].

Method LSM (s.e.) SGM direct (s.e.) SGM LB (s.e.) BKS (95% CI) MUSE (s.e.)
d=>5 2.163(0.001) 2.141(0.008) 2.134(0.012) [2.154, 2.164] 2.161(0.004)
Table 2

Results of the MUSE under different dimensions. The second column
reports the means and standard errors of the MUSEs. The third column
reports the average computation time over the 500 processors.

d MUSE (s.e.) Average time (s) per processor
5 2.161 (0.004) 15.922
10 0.985 (0.002) 14.787
20 0.355 (0.001) 16.004
100 0.0043 (< 107 18.271
1000 0(0) 32.191

and volatility o where all parameters will be specified later. Bermudan-basket option has utility
f@,X;) = e " max{0, K — Z?:l X,(i)/d} at each ¢, where K is the strike price and e is
often referred to as the discounting factor. Bermudan option is only exercisable in a discrete
set of times, which transforms the pricing problem to solving the optimal stopping problem:
Ur = SUP;e(ry.... Tk}E[f (t,Xy)], where 0 < T} < --- < T < T are all the exercisable
dates. It has been observed [26] that the computational cost for standard regression-based
methods typically scales superlinearly with dimension d, which discourages their uses in the
high-dimensional setups. Existing experiments on Bermudan options often assume d < 20,
though it can be as large as 5000 in practice [2].

In our experiment we adopt the standard parameters in [6,30] where T = 3 (years),
o =02,y =00546 =0,K = Xg) = 100 for every i. Owners can exercise the option
at the initial time or after 1, 2, 3 years. We first benchmark our result with the results reported
in [6,30] when d = 5, next we present our results for d € {10, 20, 100, 1000}. For each d, we
use 107 MUSEs generated by a 500-core CPU-based computer cluster, where the parameters
r; are set to be 0.6 for each stage. The results when d = 5 is presented in Table 1, the MUSE
matches the results from other methods while preserving unbiasedness and having a relatively
small standard error.

Table 2 records the estimates and the standard errors of the MUSE when d is increasing.
There are no existing benchmark results for large d thus we are not able to compare with
the ground truth. But the law of large numbers shows the utility should converge to 0 as d
goes to infinity, which matches our result here. We also record the average computing time for
every processor in the last column of Table 2, the computation time scales sublinearly with
the dimensionality d, which may be benefited from the use of vectorization in simulating the
d-dimensional geometric Brownian motion. We also plot the histogram of the computing time
among 500 cores when d = 100 in Fig. 4. It is clear from Fig. 4 that the computing times are
relatively short (less than 15 seconds) for most clusters even in this high-dimensional regime.
There are a small proportion of clusters that uses much longer time. This fact indicates the
MUSE has a high variance in its computational complexity, which is in line with our theoretical
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Count

“Time for d = 100

Fig. 4. Histogram of computational times among 500 processors when d = 100. The black dotted line is the
average computation time, which is 18.271 s.

intuitions. Finally, it seems the MUSE scales well with d, which may be another appealing
feature besides parallel computing.

4. Conclusion and future work

Optimal stopping problems play an important role in modern decision-making processes.
However, existing simulation algorithms introduce unavoidable bias in estimating the utility. In
this paper, an unbiased estimator, the MUSE, is proposed and analyzed. Our estimator is easy to
implement and enjoys unbiasedness, finite variance, and finite computational complexity after
choosing the parameters appropriately. A key ingredient of the general MUSE is the iterative
use of the two-stage MUSE, which preserves unbiasedness at every stage by the multilevel
approach.

In the theoretical part of this paper, we focus on bounding the variance and computational
complexity of the MUSE. Though finite variance and finite complexity are guaranteed, these
upper bounds may be too crude to shed light on practical applications. Moreover, theoretical
guarantees on the applications described in Section 2.3, such as regret bounds for Algorithm 3,
are worth investigating.

In the numerical studies, experiments in Section 3 suggest the MUSE is able to provide
accurate estimation for the utilities, especially when T is small or moderate. The MUSE also
seems to scale well with the dimensionality of the underlying process, as shown in Section 3.2.
On the other hand, our estimator’s variance and computational complexity grow significantly
with the horizon length. Running Algorithm 2 can easily be prohibitive with large horizons. It
remains a key challenge to design scalable algorithms while maintaining unbiasedness, or at
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least controlling bias at a negligible level under the large-horizon regime. As a closing remark,
unbiasedness is undoubtedly an appealing property in parallel computation, but it could come
with higher computational cost or lower statistical accuracy. Therefore, studying the trade-offs
between unbiasedness, computational budget constraints, and accuracy may be of paramount
interest to both theorists and practitioners. We hope future studies will provide much-needed
insight toward achieving practical unbiasedness with sustainable cost and high accuracy.

While our paper focus on the optimal stopping problem, we believe our technique can
potentially be extended to more general setups. The optimal stopping is a subfamily of the
stochastic control problems, where one picks the optimal time to stop. One natural extension
is the case where the one needs to choose one out of K possible actions at each stage. Moreover,
our paper considers the optimal problem with finite horizon. Another natural extension is to
consider the infinite horizon stopping problem with discounted reward.
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Appendix A. Auxiliary results

Lemma 1 (/32] Marcinkiewicz—Zygmund Inequality). If X1, ..., X,, are independent random
variables with E[X;] =0 and E [|Xi|”] < oo for some p > 2. Then,

P n /2
E[ } <C,E (Z |X,»|2> ,
[ i=1

n
DX
i=1
where C;, is a constant that only depends on p. If we further assume that X, ..., X, are i.i.d.

Then,
E [

Corollary 2. Let (Z,, Z,) be a 2—stage stochastic process, and there exists p > 2, such that
sup;_;, E [IZ,~|P] < oo. Conditioning on Zy, sample i.i.d. Z,(1), ..., Zy(n). Then,

n P
1 E(|Z;,|?
EHZZZz(i)—JE[Zlel] ]scp-M

nP/2
i=l

! 1 [1¢ P E|X,|?
’ 2 / 1
:| =C,E W[ZZ 1 |1 Xi] :| =C,- nrlz

1 n
w X

El

where C), is a universal constant only depends on p.
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Proof of Corollary 2. Since E[|Z,|”] < oo, we have that E [|Z,|7 | Z; = z;] exists almost
surely. Let m., be the joint measure of (Z;, Z;), applying Lemma 1 to the conditional
distribution (- | z1) yields

p:|

1 < ]
E H; ; Z5(i) — ElZ, | Z1]
> 2y(i) —ElZy | Z1]

:/QE[%"

p

Zy = Zl:| mi1(dzy)

/ —pE [1Z: = E[Zy | Z P | Z1 = z1] mi(dz)

2" P17, — —
< I [E[1Z2171Z1 = z1] + |E[Z2] Z1 = 2111P] 71 (dz)
o

C/ZP ) C/Zp ,
< [ EElZr 1 2= ] me) = 2RIz O

Appendix B. Proofs of main theorems

We first present the proof of Theorem 1.

Proof of Theorem 1. We first show that E[Y] = E [max { f(X;), E[ f(X3) | X1]}]. Note that
the X, X, are integrable,

E[Y]

= E[ELY | N]] (B.1)

- ZIE[An] (B.2)
n=0

= Z (IE |:max {f(X1(1)), %H E |:max {f(Xl(l)) 2%; 11 }i|> +
n=1
E [max {f (X1(1)), f (X2(1)}]
= 11m]E|:max{f(X1(l)) }]—]E[f(Xl(l)),Sl]

+ E[max {f (X1(1)), f (X2(1)}]
= E [max {f (X1(1)), 11m %” (B.3)
= E[max{f (Xi(1)),E[f(X2) | Xi(DI}. (B.4)

Here the law of large number is applied to guarantee the equality between (B.3) and (B.4), and
the equality of (B.1), and (B.2) is established by the interchanging the order of summation and
expectation, which is legitimate due to the fact that

D B[4 < oo. (B.5)
n=0
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To verify the inequality (B.5), note that max{x, a} is a 1-Lipschitz function of x for any fixed
a, we have

0l = L max 7 00, 2} max ] £ a0
) 1 > on 1 > on—1

!
2

Son SE_
max{f(xl(l)),zin}—max{f(Xl( ), 231 1”

|S /2}171

on—1

2n 1/2’" 1|

By Corollary 2, and note that | f(x)| < L(1 + ||x||), we have

Y ElA
n=0

1
_ _ 245
< 2L2+5 1+ sup [ [”X ”2+3]]% _’_li E Szon T Sé::l 1
= i 1.2 ] 2 — on—1

<2L°* |1+ sup [E[IX; ||2+5]]% +3
L i=1,2

- n=1

L
1A | Cos2?PE [ F(X)1PP] |
Z 2(n—1)(2+8)/2

[e.9]
=2L*" 1+ sulpz[ [IIX ||2+5]]% szig L2553 [1 +E| X, ||2+5 3 Z

n

22

< Q.

Next, we show that Y satisfies the properties (2) and (3) in Theorem 1. Namely, finite
expected sampling complexity and bounded 2 4 6/10 moment. In order to bound the 2+ /10
moment of Y, we introduce the following events:

E; = {[E[f(X2) | X;(D] - fF(Xi(D)] < e},
E = {|Szn 27— ELA(X) | XD = e/2),
Ey:={|Sg /2" = 55./2""| = ¢/2}.

on—1

Observe that
E[|4, 1) = E[|A.1PP°LES N ES N ES)] +E[|1A, 77/ L(E, U E, U E3)].
On the event E{ N ES N Ef, we have

IEL£(X2) | Xi(1)] — £(X1(1)] > &,
|9 /2"t — E[f(Xz) | X1(D]] < &/2,

|Sp1/2" 7 = 851 /2" 7 < e/2.
Thus, both SO /2" " and SE n—1/2"7 !"are on the same side of f(X(1)). Since Sy = S? 1 T
SZE,,,I, we get
Sy 1 SO St
A, = max {f(Xl(l)), 27} 3 |:maX {f(Xl(l)) = } + max {f(Xl(l)) = ”
=0.

18



Z. Zhou, G. Wang, J.H. Blanchet et al. Stochastic Processes and their Applications xxx (xxxx) xxx

In other words,
E[|4, P L(E; N ES N ES)] = 0. (B.6)

Next, we bound the term E [|A,[**/'°1(E, U E, U E3)]. By Holder’s inequality (with param-
eter p = (2+6)/(246/10), and g = (20 4 108)/(95). It is straight forward to verify that
1/p+1/qg =1),
E[14,*1(E, U E> U E3)]
2+5/10

< [E [|A |(2+8/10)"2i3r/510]] 2 -E[L(E, UE,U E3)]20381*05

[ [|A |2+8]] H/; - (P(Ey) + P(E») +[P’(E3))20+105 .

Take ¢ = by the assumption in (7),

2)1/4’
P(E;) < Ce.

Now, we bound the probabilities P(E;) and P(E3). By Corollary 2, there exists a universal
constant C»,s > 0, such that

1
BED) = (B [S5 — BLFOQ) | X017

- 1 C2+821+8L2+6 [1 +IE[||X2”2+5]]
= (g/2)2 Y (n—1)(2+5)/2

— C2+522+35/2L2+5 . [l + ]E [||X2||2+5]] e

1
G+ n—2+8)
< G222 14+ E )1 X2 e
Similarly,
P(E3) < Coys2 2L PR [1 4 E [ X2)2H]] &

Moreover, recall that

1Al < = |Szn /2" =S
by Corollary 2 agaln we have
248/10 245/10 1
EOARANH < (€t [+ BIGEE]) T g
T2
< (Gt [+ B[P o

Thus, there exists universal constant C’ > 0, such that

E[|1A,**1(E| U E» U E3)]

2+8/10 1
<C' (L*P[1+E 1X, ”2+8 S5t 008 .
( [ [ ]]) ) (” SO0 )”
<C'L*P[1+E[I1X21*"]] 1% ) (B.7)
2(1+80+405)
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Now, combining (B.6) and (B.7),

|A |2+8/10
[|Y|2+5/10] < 21+5/IOZ [ 5710 ]
n=0 n

1

95 2+95/(80+406)
02(1+80+405)”2— 2/+5/1o n-(1+5/10)

1
95/(80+408)—38/10 \ "
== 7 [

< CL*™ [1 +E[I1X21*]] < oo,

¢

IA

C/
_L2+5 [1 +E [||X2||2+5]]
r

n

Nk

C/
= —L*P[1+E[IX21*"]]
.

Il
=}

n

where C is a universal constant independent of the process (X, X»), and we have also used
the fact that — = > 0 when 6 < 1/4. Finally, the sampling complexity of Y is

80+408

n
ZZ Pn S Z ( 95/(80+408)—. 5/10)
2+5/10
Thus, the expected computational cost of Y is also finite. In sum, our estimator Y satisfies all
the desired properties in Theorem 1. [J

Next, we provide the full proof of Theorem 2.

Proof of Theorem 2. By the standard dynamical programming for optimal stopping, we have

UiXir-) =E[f(X7) | Xi:r—1],
Ur—x(X1) = E[max { f (Xis1) . Ur—gpyXiaD)} | Xin], 0<k<T -2.

Let Y7_;(x14) denote the output (which is a random variable) of Algorithm 2 given the input
history x;; which is sampled from X... For simplicity, let §; := §- 10T for0 <k < T—1.
We will prove by a backward induction to show that:

@ Enp, o Y1k Ger)] = Ur i (x12),  0<k<T -1

(b) The expected sampling complexity = H1T=_kl+1 Ci <00,0<k <T—2.As aresult, the
expected computational complexity is also finite.

©) By [Yr—iGer)lPH%] < (1‘[ e E) LY [14+E[IX7)*]], forall 0 <k <T-2.

Here C;, C; (1 <i < T —1) are some positive constants independent of the underlying process.
When k =T — 1, we have Yy_;(x1.7-1) = f(X7) with X7 sampled from 77 (- | {xi}iT:jl),
thus (a) holds by definition. When k = T — 2, we have (a), (b) and (c) are guaranteed exactly
by Theorem 1.
Suppose that (a), (b) and (c) are held for k 4+ 1, where 0 < k < T — 3. Conditioning on
the input history x;. (sampled from X ), let us sample x4y from iy (- | {x;}5_,). Then, we
sample Ny ~ Geo(rry1), and get i.i.d.

Yr e+ 1+, ooy Yr—ger (X 1k41) (2N"“) .
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Adapting the same notations as before, we define

2Nk+1

SyNepr = Z Y71y (K1et1) (0),
i=1
oNk+1-1

SZONk+| = Z Yr—erny (Krae1) (2 = 1),
i=1
oNe1-1
SE

WN1-1 = Z Y71y (K1e1) (20).

i=1
Then, Y7 _x(x14) = Ang,,/Proyi (Niy1), where Ay, is defined in Algorithm 2. Note that by
the induction hypothesis, we have

Ergong [Y7—teen@10)] = Ur—geen 1),

and

By (Y71 Grap D754 ] < ( I1 C) L [1+E[I1x,17]].

=k+2

We first show that Y7_;(x;4) is an unbiased estimator of Ur_(x14).

IE7Tk+l:T [YT*k(xlik)]

= Z E”kJrl:T [An]

n=0

> Sy Son-
= Z (E”kJrl:T |:max {f (Xkt1) 5 2_2n}i| —En i |:max {f (k1) 5 zi_ll}iD +
n=1

Er\ . [max { f Grr) s Yr—gsn@raeD(D}]

Son
=EBrig [max {f(xk+1) lim 2%”

=Erp [max { f 1), Ur—asyras) ] = Ur—i(en).
Next, we bound the expected value E, . [|YT_k(x1;k)|2+‘sk ] For simplicity, in the following

proof, we use P and [E as abbreviations of P, . and E .
Following the same idea in the proof of Theorem 1, we introduce three events:

E = {|UT ke Xres) — fOoerD)| < e}
Ey = {|80.1/2"" = Ur—asn(x1asn)| = /2],
Ey = {|Spo1/2" " = 850 /2" | = e/2}.

We start with bounding the probability of event E|. Take ¢ = # (the same as Theorem 1),
by Assumption 4, we have

P(E}) = / 1 ({|Ur—gs1y@rasr) — fas)| < &}) miua(dxi, . .., dxgsr) < Ce.
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Similar to the proof of Theorem 1, by conditioning on x4, we can apply Lemma 1 to get

248
B < C2+5k+121+5k+1 [l +E I:iYT*(k+1)| k41 | xl;k]]
mepr (B2) = (g/2)% k1 ’ 2(n=1D(2+8+1)/2

2+
< Cpyy, 220112 [1 +E |:|YT—(k+1)(x1:k+l)| = Xl;k]] e.

Thus, we can bound the probability of event E), under .7 by

P(E}) = /PnkH;T(Eé)ﬂl:k(dxl:k)

P

[ 248
< Coys 27021 / E |:|YT—(k+1)(x1:k+l)‘ faal Xl:k] ﬂl:k(dxlzk)] &

r 24,
— C2+5k+122+36k+1/2 1+E |:|YT7(k+1)(X1;k+1)| k+l]] &

Similarly,
, [ 244,
P(E3) = C2+5k+124+58k+]/2 1+E [|YT—(k+1)(X1:k+1)‘ " Hl]] ¢
Moreover,
248 s 2+8; 1
[E[lA,[e]] 7% < (C2+5k+1 [1 +E I:|YT—(k+l)(X1:k+1)| + k+1:|]>2+3k+1 . o
2z
243y 1
245 pEE Ty
< (ka+1 [1 +E[}YT_(,(+1)(X1M)| + Hl]]) RN

Following the same technique in the proof of Theorem 1, there exists universal constant C’ > 0
independent of the underlying process and 7', such that

E[|4, P 1(E] U E5 U E})]

245 93k 41

, 245 204y T 207105, 1
< C ([1+E[|YT_(k+1)(X1:k+1)| +k+l]]) Pt %111

o (M sy )
5 1

245
c’ [1 +E I:|YT7(k+1)(x1:k+1)| * k“]]

o5 :
+1
2(1+80+405k+1 )”

245 DBk1 i
Here we have used the fact that 5 er + 55 08T = 1. Noticing that

E[|A, " L(Ef N EY NEY)] =0,

we get
E [1¥7— o) 71%]
00 E Al 2468k
S
=0 [P ()]
o0
Sk+1
= - [l +E[|YT (k+1)(X1k+1)| " ]] Z 95k+1/(80+405k+1) 5
. s ( zw)
<

c,m(]‘[ )LH [1+E[1x717+]] (ﬁ C)L”‘*[HE[IIX 1]

=k+1
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where in the last inequality we have applied the induction hypothesis (c). Note that 95,1 /(80+
408k+1) — 8 > 0 when § < 1/4, we have

[o.¢]
SR :
k+1 - = oot Z 9811 /(B0+4081 4 —o% \ "
+ n=0 (2 2+8; )

_C 1
PR,
= < : te that 2% > 1 f 0
= i eSO (note that 2* > 1 + « for a > 0)
C' (24 8;11/10)(80 4 405
_ .( + 8k+1/10)(80 + k1) % = 8101/10)
Pt kg1 — (8 4 48k41)k41
' 3-90 1
S— 7 G <d<1/4
Tit1 1—-46 8k+1
¢ & =k k+2—T
- T (Bk+1 =96 -10 ) (B.8)
Fe 81— 43)
< 00

is a constant independent of underlying process. Finally, since we have called Algorithm 2 for
2N+l times to construct Yr_g(x14)(@) (1 < i < 2Met1), the expected sampling complexity of
computing Y7_;(x1) is

T-1 T-1
ERV]- [T 6= ] G <oe.
i=k+2 i=k+1
where
1

- .
- n —
(2WW> 8(1 — 49)

oo
Cipr =ER%H] <Y
n=0

107*, (B.9)

As a result, the expected computational complexity is also finite. To sum up, (a), (b) and (c)
are satisfied for k. Thus, the proof by induction is completed. In particular, together with (B.8)
and (B.9), there exist universal constant D > 0 independent of the underlying process and T,
such that the resulting estimator Y7 in Algorithm 2 satisfying:

(D) E[Yr] =Ur ,
(2) Expected computational complexity is ]_[iT=1 C; < D -107" (by (B.9)).
(3) The variance of Y7 is bounded by

T—1
( ]‘[ 6}) LU+ E[IX717]] < D- 1077 . 2+ [L+E[IX717]]. O
i=k+1
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