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Abstract

We propose a new unbiased estimator for estimating the utility of the optimal stopping problem. The
USE, short for ‘Multilevel Unbiased Stopping Estimator’, constructs the unbiased Multilevel Monte
arlo (MLMC) estimator at every stage of the optimal stopping problem in a backward recursive way.

n contrast to traditional sequential methods, the MUSE can be implemented in parallel. We prove
he MUSE has finite variance, finite computational complexity, and achieves ε-accuracy with O(1/ε2)

computational cost under mild conditions. We demonstrate MUSE empirically in an option pricing
problem involving a high-dimensional input and the use of many parallel processors.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

It is a pleasure to contribute to this special issue in honor of Prof. Larry Shepp, whose work
as significantly impacted a wide range of scientific disciplines. This paper focuses on optimal
topping problems, an area of stochastic control in which Prof. Shepp contributed deeply both in
erms of theory and applications. in particular in connection to mathematical finance problems;
ee, for example, [11,14,36,37].
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Our goal in this paper is on designing Monte Carlo methods for solving optimal stopping
roblems which can be easily parallelized because the estimators that we produce are unbiased,
re applicable even in non-Markovian problems and have finite variance. We are not aware of
ny other Monte Carlo estimators for optimal stopping problems which share these properties.

Monte Carlo methods are ubiquitously used for estimating high dimensional numerical
ntegrals or statistics arising in every computation-related subject. However, vanilla Monte
arlo estimators may produce systematic bias in many practical applications (in particular

hose involving optimization). The presence of such systematic bias precludes the direct use of
arallel computing architectures. Consider the following toy example in a two-stage optimal
topping problem. Suppose one is able to simulate the two-stage process (X1, X2) and is
nterested in estimating the utility

U := E [max{ f (X1),E [ f (X2) | X1]}] ,

here f is some integrable reward function. Then it is not hard to show the vanilla Monte
arlo estimator Û will systematically overestimate U by the Jensen’s inequality.

To address the issue of bias, the design of unbiased Monte Carlo estimators has recently
ttracted much attention [7–9,23,25,29,33–35,39–41] in operations research, statistics, and
achine learning communities. Many existing debiasing techniques are closely related to the
ultilevel Monte Carlo (MLMC) framework developed by Heinrich and Giles [17,18,20,21,24]
here a sequence of biased but increasingly accurate estimators are used to estimate the

unctionals of stochastic processes described by stochastic differential equations. Unbiased
stimators have been successfully developed and employed in the context of stochastic
pproximation, Markov chain Monte Carlo estimation and convergence diagnosis, quantile
stimation, and so on. In many settings, unbiased estimators provide a promising direction
o efficient parallel implementation and better uncertainty quantification.

In this paper, we study the discrete-time, finite-horizon optimal stopping problem, a
undamental problem that can be found in areas including economics, operations research,
nd financial engineering. Consider the optimal stopping problem with underlying process
X1, . . . , XT ) and reward function f . We are interested in computing the expected utility of
he optimal strategy:

UT := sup
τ∈TT

E [ f (Xτ )] , (1)

here TT denotes the set of all the stopping times taking values in {1, . . . , T }. Following the
tandard optimal stopping theory, we can define the Snell envelope by

UT−k := sup
τ∈Tk+1,T

E [ f (Xτ ) | Fk] ,

here Tk+1,T denotes the set of stopping times satisfying k + 1 ≤ τ ≤ T , k = 0, . . . , T − 1
nd Fk is the natural filtration at time k. The dynamical programming can be written as:{

U1 = E [ f (XT ) | FT−1] ,

UT−k = E
[
max

{
f (Xk+1), UT−(k+1)

}
| Fk

]
, k = 0, . . . , T − 1.

In most practical cases, UT cannot be analytically solved, and we therefore resort to Monte
arlo methods for an estimation. However, generating unbiased estimation for the utility of

he optimal problem is known as a very difficult problem. Suppose one is able to simulate the
hole process. Then the above dynamical programming backward recursion suggests a natural
onte Carlo estimator as follows. We sample tree-like paths of the whole process forward in
2
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Fig. 1. Tree-like paths for Monte Carlo simulation. Here each node in the first two levels has three children which
are i.i.d . sampled from the conditional distribution.

time and estimate each Ui backwards in time. The sampling procedure is illustrated in Fig. 1
where one samples many k-ary trees with height T . After sampling enough paths, we aggregate
the samples from bottom to top in each layer as estimators of U1, . . . , UT respectively. This
estimator is relatively easy to implement but has several limitations. Firstly, the estimator
overestimates the utility even in the simplest case T = 2, let alone the general case. Secondly,
as the estimation error propagates from one time horizon to another, the accuracy relies on
a repeated T -limit, which is difficult to quantify. The above approach is the ‘high-estimator’
suggested in the seminal paper of Broadie and Glasserman [10]. The authors also use the
similar idea to construct the ‘low-estimator’, and a confidence interval that covers the utility
by combining the two estimators. In fact, the above authors conjectured that there is no
general unbiased estimators for the optimal stopping problem, see page 1326–1327 in [10]
for details. There are also regression-based Monte Carlo simulation methods, including the
well-celebrated Longstaff–Schwartz [31] and Tsitsiklis–Van Roy [38] algorithms for option
pricing, see also [16] for extensions. Both methods approximate the solution of the original
problem by solving a sequence of regression problems in linearly parameterized subspaces.
Albeit convenient to use, the approximation error and the unavoidable bias still cause concerns
for both parallel implementation and uncertainty quantification.

In this paper, we introduce a novel unbiased estimator — the Multilevel Unbiased Stopping
Estimator (MUSE2) for the optimal stopping problem described in (1). Our estimator is inspired
y the randomized Multilevel Monte Carlo estimator described in [8,9]. The MUSE is easy to
mplement and enjoys both finite variance and finite expected computational complexity. The
omputational cost to achieve ε-accuracy is O(1/ε2), which matches the optimal rate from

the Central Limit Theorem (CLT). Our empirical studies suggest that the MUSE scales well
with the dimensionality of the underlying process — which is often viewed as a bottleneck of
classical regression-based methods. As extra byproducts, we construct confidence intervals for
the utility and propose a natural algorithm to determine the optimal stopping time based on
the MUSE.

We emphasize that our techniques are of interest in randomized Multilevel Monte Carlo
as we relax smoothness assumptions imposed in [8]. In summary, the MUSE can be viewed
as a multi-stage extension of the MLMC estimator. In two-stage problems, our estimator
(Algorithm 1) has the same expression as the randomized MLMC estimator. However, the
general optimal stopping problem is defined in a recursive way, and thus the MLMC estimator

2 In ancient Greek mythology, the Muses are the nine goddesses (the daughters of Zeus and Mnemosyne), who
preside over literature, science, and the arts.
3
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ails to directly apply. Multi-stage MUSE (Algorithm 2) generates data forwardly and then
alls for the two-stage MUSE backwardly. Moreover, MUSE relaxes the technical assumptions
f the randomized MLMC estimator. In [8], the randomized MLMC estimator is proposed to
stimate g(mµ) where mµ is the mean of a probability measure µ and g is a locally twice
ifferentiable function (Section 3, Assumption 2 in [8]), but the function of our interest is a
ultiple composition of the max function, which is not differentiable everywhere.
There is a large body of literature on solving the optimal stopping problem using the (non-

andomized) MLMC methods. For the two-stage optimal stopping problem, a slightly more
eneral version has been considered in [20]. The authors in [20] consider the problem of
stimating:

E[max
d

fd (X, Y )]− E[max
d

E[ fd (X, Y ) | X ]] (2)

where { fd} is a finite set of functions representing one’s possible strategies. The quantity
(2) represents the expected value of the partial information. The first term in (2) can be
stimated via standard Monte Carlo approach, while the second term is much more complicated.
uppose d = 2, f1(X, Y ) = f (X ) and f2(X, Y ) = E[ f (Y ) | X ] for the utility function

f given at the beginning of our paper, then the second term in (2) is the expected utility
f the two-stage optimal stopping problem. The methodology and theory of [20] are closely
onnected to our paper, though the focus is somewhat different. The main contribution of [20]
s applying the (non-randomized) MLMC method to design low-bias estimators which attains
2 mean-squared error with O(ϵ2(log ϵ)2) or O(ϵ2) computational complexity under different
ssumptions. In contrast, our effort is mostly on designing completely unbiased estimators
ith finite variance and finite computational cost. Technically, Assumption 2 in [20] is very

lose to our Assumption 4 and is posed for similar reasons (see 1.1 for detailed discussions),
hile our paper has a relatively weaker moment assumption (Assumption 2) than Assumption
on [19]. Besides [20], other related works for the two-stage optimal stopping problem

nclude [19,27,28], and the references therein.
Non-randomized MLMC methods have also been used in the general multi-stage optimal

topping problems to obtain low-bias estimators. In Belomestny, Ladkau, and Schoenmak-
rs [4], the authors designed MLMC estimators to improve the computational complexity of the
tandard Monte Carlo estimator based on their previous work [3,5]. The randomized MLMC
dea has been briefly mentioned in the Ph.D. dissertation of Dickmann [13] but not explored
n details.

The rest of this paper is organized as follows. After setting up the notation and describing
he assumptions in Section 1.1, in Section 2 we introduce the MUSE and prove its theoretical
roperties. In Section 3 we showcase several applications of the MUSE through numerical

examples. In Section 4 we conclude our paper with a discussion on its limitations and potential
generalizations. Detailed proofs of Theorems 1 and 2 are deferred to Appendix A.

1.1. Notations and assumptions

Let (Ω ,B(Ω )) be a Polish space equipped with Borel σ -algebra B(Ω ). Let (X , ∥ · ∥) be a
complete separable normed space equipped with Borel σ -algebra B(X ). Given a fixed positive
integer T and an adapted X− valued stochastic process {X i }

T
i=1 with filtration {Fi }

T
i=1, we

denote by π1:T the joint distribution of (X1, . . . , XT ). Given X i = xi for 1 ≤ i ≤ k, we denote
by πk+1:T (· | {xi }

k
i=1) the conditional distribution of (Xk+1, . . . , XT ), and πk+1(· | {xi }

k
i=1) the
marginal conditional distribution of Xk+1. We will use the convention {x0} = ∅ and therefore

4
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1 denotes the (unconditioned) marginal distribution of X1. Let f : X → R be an integrable
eward function. We denote by UT the utility of the optimal stopping problem as described in
1) and the conditional utility

UT−k(x1, . . . , xk) := sup
τ∈Tk+1,T

Eπk+1:T

[
f (Xτ ) | {xi }

k
i=1

]
(3)

hich corresponds to the utility function if one starts the T −k-stage optimal stopping problem
fter observing the first k outcomes {xi }

k
i=1. For simplicity, we write πk+1:T , πk+1, and UT−k

hen there is no confusion about the dependency on {xi }
k
i=1. The geometric distribution taking

alues in {0, 1, . . .} with parameter r is denoted by Geo(r ). Given a non-negative discrete
andom variable N , we denote its probability mass function by p(n) := P(N = n). In particular,
pr (n) denotes P(Geo(r ) = n) = r (1− r )n .

Before formally describing the MUSE, we introduce the following assumption ensuring that
he underlying process can be simulated. This assumption is standard and can be found in
lmost every Monte Carlo-based optimal stopping algorithm, such as [31,38].

ssumption 1 (Path Simulation). Given fixed integers 0 ≤ k ≤ T − 1, n ≥ 1 and a trajectory
xi }

k
i=1, we have a simulator S which takes {xi }

k
i=1 as inputs and outputs n i.i.d. samples

Xk+1(1), . . . , Xk+1(n) with distribution πk+1(· | {xi }
k
i=1).

Besides the simulation assumption, we also introduce several technical assumptions. The
USE can always be constructed as long as the simulation assumption is satisfied, but several

esired properties such as finite variance are justified under these technical assumptions.

ssumption 2 (Moment Assumption). There exists δ > 0, such that E
[
∥X i∥

2+δ
]

< ∞ for all
≤ i ≤ T .

ssumption 3 (Linear Growth). f : X → R satisfies | f (x)| ≤ L (1+ ∥x∥) for some L > 0.

ssumption 4 (Regularity Condition on Conditional Expectation). There exists a constant
> 0, such that

P (|UT−k(X1, . . . , Xk)− f (Xk)| < ε) < Cε

old for all ε > 0 and 1 ≤ k ≤ T − 1.

Assumption 4 essentially requires the density of UT−k(X1, . . . , Xk)− f (Xk) to be bounded
t zero. This can be verified directly when (X1, . . . , XT ) is an independent process and each

X i has a bounded density. In general, we expect Assumption 4 to hold if the random vector
X1, . . . , XT ) has a density, and the reward function f is smooth except for finitely many
oints.

To be specific, suppose (X1, . . . , Xk) follows the joint distribution π1:k , then in Assumption 4
e require∫

1 (|UT−k(x1, . . . , xk)− f (xk)| < ε) π1:k(dx1, . . . , dxk) ≤ Cε.

ote that it is common to assume the underlying information to enjoy certain nice regularity in
igh-dimensional optimal stopping. For instance, similar regularity assumptions can be found
n [4] (Proposition 3.1 and Theorem 3.4 (iv)), and [20] (Assumption 2).
5
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We would like to emphasize that the main objective of our technical assumptions here
s to bound the variance and expected computational cost simultaneously, which are crucial
roperties for the efficiency of any unbiased MLMC estimator. The finite variance enables the
entral Limit Theorem, which in turn gives an asymptotically exact confidence interval of the

rue utility. The computational cost result allows us to control the expected amount of time
or simulating one estimator. Putting the two properties together shows our estimator achieves
2-expected mean squared error within O(1/ε2) expected computational cost, see Corollary 1
or details. We also refer the readers to [8] and [39] for more discussions on the variance, the
omputational cost and their trade-off for unbiased MLMC methods.

. Multilevel Unbiased Stopping Estimator (MUSE)

We present our main results in this section. We start with the two-stage MUSE in Section 2.1.
he general/multi-stage MUSE is described in Section 2.2 and it is constructed by recursively
alling the two-stage MUSE. Two related applications, including the construction of the
onfidence interval and an algorithm for finding the optimal stopping time, are discussed in
ection 2.3.

.1. MUSE for two-stage optimal stopping problems

Two-stage optimal stopping is a special and simplest non-trivial case among the finite-
orizon optimal stopping problems. To build a better intuition for the MUSE, we start with
escribing the MUSE under this simplified setting, which serves as both a base case and
otivation for the general estimator.
Given the bivariate distribution π1:2 of (X1, X2). The utility of the two-stage optimal

topping problem can be written as:

U2 = E [max{ f (X1),E [ f (X2) | X1]}] =
∫
Ω

max{ f (x1),E [ f (X2) | x1]}π1(dx1). (4)

herefore, after sampling x1 ∼ π1 from the simulator S , it suffices to construct an unbiased
stimator of gx1 (E [ f (X2) | x1]) where gx1 (a) := max{ f (x1), a}. It is also clear that a vanilla
stimator max{ f (x1), f (x2)} with (x1, x2) ∼ π1:2 will be biased here, as such an estimator has

expectation∫
Ω×Ω

max{ f (x1), f (x2)}π1(dx1)π2(dx2 | x1) ≥
∫
Ω

max{ f (x1),E [ f (X2) | x1]}π1(dx1),

nd therefore overestimates the utility. The debiasing strategy follows from the observation
f [8,17]. Let {n0, n1, . . .} be an increasing sequence of positive integers. For each ni , let

f (X2)ni be the empirical average of ni i.i.d. samples of f (X2) with X2 ∼ π2(· | {x1}). By
irtue of the law of large numbers, we have gx1 (E [ f (X2) | x1]) = limk→∞ gx1 ( f (X2)nk ) almost
urely. Then we can write gx1 (E [ f (X2) | x1]) as the following telescoping summation:

gx1 (E [ f (X2) | x1]) = lim
k→∞

gx1

(
f (X2)nk

)
= gx1

(
f (X2)n0

)
+

∞∑
k=1

gx1

(
f (X2)nk

)
− gx1

(
f (X2)nk−1

)
. (5)

f one can construct estimator ∆n with expectation

E
[
g

(
f (X )

)
− g

(
f (X )

)]
(6)
x1 2 nk x1 2 nk−1

6
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(
f (X2)n0

)
, a randomized estimator of gx1 (E [ f (X2) | x1]) can

e constructed as ∆N /pN , where N is a non-negative integer-valued random variable with
robability mass function P[N = n] = pn . The following heuristic calculation explains why
ne would expect ∆N /pN to be unbiased:

E
[
∆N

pN

]
= E

[
E
[
∆N

pN

⏐⏐⏐⏐ N
]]
= E

[
∞∑

k=0

∆k

pk
· pk

]
=

∞∑
k=0

E [∆k]

= lim
k→∞

E
[
gx1

(
f (X2)nk

)]
= gx1 (E [ f (X2) | x1])

here the third equality interchanges the order between expectation and (infinite) summation,
he last equality interchanges the order between limit and expectation.

The above is the core idea of the unbiased MLMC estimator in [8,9,35]. However, it remains
o justify several theoretical issues, such as the validity of the above interchange and the
stimator’s variance. An extra subtlety is the tradeoff between the sampling complexity and
he variance. The expected sampling complexity for generating one estimator ∆N /pN is of the
rder of

∑
∞

k=0 pknk . Clearly, it is desirable that the estimator has both finite variance and finite
xpected sampling complexity.

Rhee and Glynn [35] show the estimator ∆N /pN is unbiased and of finite variance if
∞

k=0 E
[
∆2

k

]
/pk <∞ in a more general context. If one is interested in estimating quantities

of the form g(E [X ]), Blanchet and Glynn [8] show one can choose nk = 2k and N ∼ Geo(1−
−3/2) provided that X has bounded 6th order moment and g is locally twice differentiable and
rows moderately. However, the assumption of [8] is not satisfied even in this simple two-stage
ase, as the function gx1 (a) = max{ f (x1), a} here is non-differentiable at f (x1). The absence
f smoothness assumptions on the function gx1 causes technical challenges and calls for better
heoretical guarantees in analyzing the unbiased MLMC estimator.

Now we are ready to describe the two-stage MUSE and discuss its theoretical properties.
lgorithm 1 is referred to as the two-stage MUSE in contrast to the general/multi-stage MUSE

described later. Roughly speaking, one first samples x1 ∼ π1, then constructs the standard
unbiased MLMC estimator ∆N /pN for gx1 (E [ f (X2) | x1]) using a geometric random variable
N and 2N i.i.d. samples of X2 with distribution π2(x2 | {x1}). The estimator ∆n described in
Step 4 is crucial for theoretical analysis. It is often referred to as the ‘antithetical difference’
estimator in the literature [8,9]. The intuition is that the antithetic construction reduces the
variance. As elaborated later in the theoretical analysis, the estimator ∆N equals 0 if both
SE

2N−1

2N−1 and
SO

2N−1

2N−1 are on the same side of f (X1(1)). This observation turns out to be the
ey for controlling the expected computational complexity and variance simultaneously. We
ant to emphasize that the main contribution of the two-stage MUSE is more theoretical

ather than the methodological. Algorithmically, the two-stage MUSE is very similar to the
nbiased MLMC estimator. Theoretically, two-stage MUSE is the first unbiased estimator with
heoretical guarantees for dealing with non-smooth functions.

Our main theoretical results on the two-stage MUSE are described in Theorem 1. Notice
that the computational cost for Algorithm 1 is a random variable depending on N . If we
efine the computation time for sampling one random variable and performing one arithmetic
peration as ‘one unit’, then the expected computational complexity is of the order of E

[
2N
]
=

∞

n=1 2n pr (n).

Theorem 1. Consider a two-stage process (X1, X2). Suppose Assumptions 1, 2 (with δ < 1/4)
and 3 hold, and suppose Assumption 4 is satisfied with T = 2, i.e.,

P |E[ f (X ) | X ]− f (X )| ≤ ε < Cε (7)
( 2 1 1 )

7
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Algorithm 1: Two-stage Multilevel Unbiased Stopping Estimator (Two-stage MUSE)
Input: A simulator S of a two-stage process (X1, X2), parameter r ∈ (1/2, 1).
Output: An unbiased estimator of E [max{ f (X1),E[ f (X2) | X1]}].
Step 1. Sample N from geometric distribution Geo(r ).
Step 2. Sample X1(1). Conditioning on X1(1), sample 2N i.i.d. X2 (1) , . . . , X2

(
2N
)
.

Step 3. Calculate the following three quantities:

S2N = f (X2(1))+ · · · + f
(
X2
(
2N )) ,

SO
2N−1 = f (X2(1))+ f (X2(3))+ · · · + f

(
X2
(
2N
− 1

))
, (sum over odd indices)

SE
2N−1 = f (X2(2))+ f (X2(4))+ · · · + f

(
X2(2N )

)
. (sum over even indices)

Step 4. Calculate (note that ∆0 := max { f (X1(1)) , f (X2(1))})

∆N =max
{

f (X1(1)) ,
S2N

2N

}
−

1
2

[
max

{
f (X1(1)) ,

SO
2N−1

2N−1

}
+max

{
f (X1(1)) ,

SE
2N−1

2N−1

}]
.

Return: Y := ∆N /pr (N ).

for all ε > 0. Let r = 1−2−
2+9δ/(80+40δ)

2+δ/10 ∈ (1/2, 1) in Algorithm 1. Then, the resulting estimator
Y in Algorithm 1 has the following properties:

(1) E[Y ] = E [max { f (X1),E [ f (X2) | X1]}].
(2) The expected computational complexity of Y is finite.
(3) E

[
|Y |2+

δ
10

]
≤ C̃ ·L2+δ

[
1+ E

[
∥X2∥

2+δ
]]

, where C̃ is a constant independent of (X1, X2).

The proof of Theorem 1 is deferred to Appendix A. As shown in Theorem 1, the two-
stage MUSE is unbiased, has both finite (2 + δ

10 )th moment (thus finite variance) and finite
xpected computational complexity. We also want to highlight a seemingly small theoretical
mprovement that turns out to be crucial in designing the multi-stage MUSE. In the existing
iterature, such as [8,9], the estimator is guaranteed to have a finite second moment given the
riginal random variable has a higher (say 6th) moment. In our case, we prove the estimator
as (2+ δ

10 )th moment given the original random variable has (2+ δ)th moment, which makes
he whole algorithm iterable in the multi-stage case.

.2. MUSE for general optimal stopping problems

In this section, we propose the multi-stage MUSE algorithm (Algorithm 2) which aims to
rovide an unbiased estimator for the general optimal stopping problem (1). The multi-stage
USE, as described in Algorithm 2, can be viewed as a recursive extension of the two-stage
USE. To get an unbiased estimator of UT , one feeds (0;∅;S, r1, . . . , rT−1) into Algorithm 2.
fter sampling x1 from the unconditioned distribution and N1 ∼ Geo(r1), it suffices to construct
N1 unbiased estimators of UT−1(x1) to build the MLMC estimator. Meanwhile, an unbiased
stimator of UT−1(x1) can be viewed as another optimal stopping problem with horizon T − 1
nd underlying process π2:T , and therefore we call the same algorithm recursively after adding

x into the trajectory history.
1

8
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Algorithm 2: Multi-stage Multilevel Unbiased Stopping Estimator (Multi-stage MUSE)
Input: Time index k. Trajectory history H = {x1, . . . , xk} or ∅. A simulator S of the
conditional distribution πT−k , parameters rk+1, . . . , rT−1 ∈ (1/2, 1).

Output: An unbiased estimator of UT−k in (3).
if k = T − 1 then

Sample one xT from the conditional distribution of πT given H .
Return Y := f (xT ).

end
else

Sample xk+1 from the condition distribution πk+1 given H .
Add xk+1 to the trajectory history H .
Sample Nk+1 ∼ Geo(rk+1).
Call Algorithm 2 for 2Nk+1 times with inputs (H ;S, rk+2 · · · , rT−1), label the
outputs by Yk+1(1), . . . , Yk+1(2Nk+1).

Calculate the following three quantities:

S2Nk+1 = Yk+1(1)+ · · · + Yk+1(2Nk+1 ),

SO
2Nk+1−1 = Yk+1(1)+ Yk+1(3) · · · + Yk+1(2Nk+1 − 1),

SE
2Nk+1−1 = Yk+1(2)+ Yk+1(4) · · · + Yk+1(2Nk+1 ).

Calculate (note that ∆0 := max { f (xk+1), Yk+2(1)})

∆Nk+1 =max
{

f (xk+1),
S2Nk+1

2Nk+1

}
−

1
2

[
max

{
f (xk+1),

SO
2Nk+1−1

2Nk+1−1

}
+max

{
f (xk+1),

SE
2Nk+1−1

2Nk+1−1

}]
.

Return: Y := ∆Nk+1/prk+1 (Nk+1).
end

The next theorem studies the theoretical properties of the multi-stage MUSE. The computa-
ional complexity of Algorithm 2 comes from the sampling complexity, which is of the order
f E

[∏T−1
k=1 2Nk

]
.

heorem 2. With Assumptions 1, 2, 3, and 4, consider the input

(0;∅;S, r1, . . . , rT−1)

n Algorithm 2, where

ri = 1− 2
−

2+9(δ·10i+1−T )/(80+40(δ·10i+1−T ))
2+δ·10i−T ∈ (1/2, 1)

for 1 ≤ i ≤ T −1. Then, the resulting estimator Y in Algorithm 2 has the following properties:

(1) E[Y ] = UT .
(2) The expected computational complexity is O

(
10T 2

)
.

(3) Var (Y ) = O
(

10T 2
)

.

9
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To illustrate the iterative structure of multi-stage MUSE, we sketch the proof of Theorem 2 in
below. The detailed proof is deferred to Appendix A. By the standard dynamical programming
for optimal stopping, we have{

U1(X1:T−1) = E [ f (XT ) | X1:T−1] ,

UT−k(X1:k) = E
[
max

{
f (Xk+1) , UT−(k+1)(X1:k+1)

}
| X1:k

]
, 0 ≤ k ≤ T − 2.

ere, for a generic d-tuple (v1, . . . , vd ), let vi : j := (vi , . . . , v j ) for 1 ≤ i ≤ j ≤ d for notational
onvenience. By applying the techniques in the proof of Theorem 1, one can show that for
ach stage, the output YT−k always has a moment of order greater than 2, and is unbiased for
T−k . The proof of the moment bounds is iterable because of the careful technical analysis in
heorem 1. Moreover, by a proper choice of the parameters r1, . . . , rT−1, the expected sampling
omplexity for each stage is bounded. As a result, the total expected sampling complexity is
lso bounded.

orollary 1. Let Assumptions 2 and 4 hold. For any ε > 0, and a fixed time horizon T , we
an construct an estimator Y that satisfies the following properties:

• The expected computational complexity for constructing Y is O(1/ε2).
• The expected mean squared error between Y and the true utility is bounded by ϵ2,

i.e., E
[
(Y −UT )2]

≤ ε2.

roof of Corollary 1. We fix a positive integer n. Calling Algorithm 2 n times yields n i.i.d.
nbiased estimators Y1, . . . , Yn of UT . Then,

E

⎡⎣(1
n

n∑
i=1

Yi −UT

)2
⎤⎦ = E

⎡⎣(1
n

n∑
i=1

(Yi − E[Yi ])

)2
⎤⎦ = 1

n
Var(Y1).

aking n = Var(Y1)/ε2 (note that Var(Y1) <∞ by Theorem 2) and define Y := 1
n

∑n
i=1 Yi . It

follows from the above calculation that E
[
(Y −UT )2]

≤ ε2. Moreover, since sampling each
Yi has expected computational complexity O(1), the expected computational complexity for
onstructing Y is O(1/ε2), as desired. □

Finally we comment on some practical issues when implementing the MUSE for multi-
tage optimal stopping problems. One drawback of our algorithm is that the computational
omplexity (the constant hidden in O(1/ϵ2) in Corollary 1) grows exponentially with time

horizon T . Therefore, our algorithm is prohibitively slow when T becomes large. We believe
his is expected due to the comprehensive multi-stage structure of the optimal stopping problem
1). In fact, the same phenomenon happens in the Monte Carlo-based methods, including
he popular algorithms of Broadie and Glasserman [10], Longstaff and Schwartz [31] and
sitsiklis and Van Roy [38]. It is known in Glasserman and Yu [22] that the number of
ample paths required for the regression coefficients to converge grows exponentially in the
egree of basis functions under the worst-case scenario. Zanger [42] proved the expected

L2 error has an O((log1/2 N )N−1/2) convergence rate (N is the number of sample paths)
iven the approximation architecture has a finite Vapnik–Chervonenkis (VC) dimension. Their
rror bound also scales exponentially with respect to the time horizon, see Theorem 3.3
f [42]. Meanwhile, we emphasize that besides Assumption 4, there is currently no specific
istributional assumption on the underlying process. Therefore, there is a potential for designing
omputationally efficient estimators given additional distribution assumptions. Moreover, if the
10
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nbiased requirement can be relaxed, then it is possible to design fast algorithms while retaining
he O(1/ϵ2) complexity. One can potentially either choose a fixed level based on the standard

MLMC approaches [18], or use a truncated geometric random variable to replace the geometric
random variable N in Algorithm 2 as described in the recent work [1]. These ideas open up
exciting possibilities for new algorithms, but are already beyond the target of our paper.

2.3. Confidence interval and optimal stopping time

A confidence interval (CI) is crucial if one is not merely interested in getting a point
estimate, but also expects to assess the quality of such estimation. Fortunately, since many
.i.d. estimators of UT can be constructed by repeatedly calling Algorithm 2, the 1 − α

confidence interval (CI) of the utility can be constructed as follows: Let Y1, . . . , Yn be n
unbiased estimators of UT generated by the MUSE. Let Y be their empirical mean and s the
tandard deviation. Then, two types of CIs can be built via

(CLT)
[
Y − zα/2 · s/

√
n, Y + zα/2 · s/

√
n
]
, where zα/2 is the (1−α/2)th quantile of N (0, 1).

(Bootstrap [15]) [Y ⋆
α/2, Y ⋆

1−α/2], where Y ⋆
α/2, Y ⋆

1−α/2, are the α/2th and (1−α/2)th empirical
quantile of the bootstrap averages.

In principle, both methods are valid as the number of simulated estimators goes to infinity.
he first CI is based on the Central Limit Theorem, and the convergence rate depends on the
igher-order cumulants. The second CI uses the empirical distribution to approximate the actual
nderlying distribution, which is non-parametric and is (monotone) transformation-respecting
[15], Chapter 12). It is known that the percentile bootstrap may not work well when the data
as a significant skewed distribution. In these cases one may consider alternative methods such
s the BCa (bias corrected accelerated) bootstrap [12].

Besides estimating UT , we are also interested in finding the optimal stopping time τ ∗ such
hat E [ f (Xτ∗)] = UT . By standard dynamical programming,

τ ∗ = inf {k ≥ 1 : UT−k(X1, . . . , Xk) ≤ f (Xk)} .

hough UT−k is not analytically available, the MUSE provides us with powerful tools for
stimating UT−k at each round. The algorithm for the optimal stopping time is as follows:

Algorithm 3: Optimal Stopping Time via MUSE
Input: Simulator of the process (X1, . . . , XT ), tolerance level ε.
Output: A stopping time τ̂ .
Sample X1 = x1.
for k ← 1 to T − 1 do

Call Algorithm 2 with history (x1, . . . , xk) n times to get i.i.d. unbiased estimators
Y1, . . . , Yn of UT−k .

if f (xk) > Y − ε return k. else Sample Xk+1 = xk+1.
if k + 1 = T return T .

end

There are multiple ways of choosing ε, which clearly depend on the decision maker’s risk
sensitivity. One promising option would be to choose ε adaptively, according to the CIs derived
y the MUSE.
11
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. Numerical experiments

.1. Optimal stopping of independent random variables

The optimal stopping problem for independent random variables has been extensively
tudied in the literature. In this example, we consider the case where X1, . . . , XT are i.i.d.

(0, 1) random variables with reward f (x) = x . Standard calculation yields U1 = 0, U2 =

[|X1|] /2 and Uk = E [max{X1, Uk−1}] so that the utility can be solved numerically. With each
xed time horizon, three estimators — MUSE and two vanilla Monte Carlo estimators MC1 and
C2 are implemented. MC1 is a naive Monte Carlo estimator. For each T , it samples 107 paths

nd estimates UT by the average of the maximum in each path, which is clearly biased. MC2
s a refinement of MC1 but still biased. It samples tree-like paths as described in Section 1,
ig. 1. In our case, the simulated data forms a forest that consists of 1000 complete 5-ary

rees of depth T . MC2 estimates the utility using the dynamical programming formula UT =

[max {X1, UT−1(X1)}] in a backward recursive way. Given the history X1, . . . , Xn−1, the
tility of U1(X1, . . . , Xn−1) can be easily estimated by averaging the samples in the last layer.
imilarly, we can use the formula U2(X1, . . . , Xn−2) = E [max {Xn−1, U1(X1, . . . , Xn−1)}]

o estimate U2 after replacing the quantity U1(X1, . . . , Xn−1) by its estimator described
bove. Then we estimate U3, U4, . . . and finally UT . Formally, the final estimator ÛT =∑1000

i=1 Û (i)
T )/1000 is the average of the 1000 estimators from each tree. For each i , the estimator

ˆ (i)
T of tree i is of the form Û (i)

T := (
∑5

j=1 max{X (i)
1,1, Û (i)

T−1})/5, where the number 5 comes
rom the 5-ary tree design, X (i)

1,1 is the root node of the i th tree, and Û (i)
T−1 is the estimator for

T−1(X (i)
1,1) using the dynamical programming procedure mentioned above.

The only hyperparameter for the MUSE is the success probability r for the geometric
istribution. Larger r leads to shorter computational time but larger variance, and vice versa.
e implement a simple experiment to determine r . For each r in {0.51, 0.52, . . . , 0.7}, we

un 106 MUSEs for horizon T = 3 and examine their empirical performances. Our results are
ummarized in Fig. 2. The cost of time decays significantly when r increases. Furthermore, we
lso calculate the self-normalized variance [8] as a measure of efficiency. The self-normalized
ariance is defined as the product between the expected time and the variance for every single
stimator. It is clear from the right subplot of Fig. 2 that the self-normalized variance initially
ecays and then increases as r increases, with a minimum at around 0.6, therefore we choose
= 0.6 in the numerical experiments henceforth.
After setting up the hyperparameter, we implement the three methods for T ∈ {2, . . . , 7}.

ur results are presented in Fig. 3. Both MC1 (red curve) and MC2 (green curve) systematically
verestimate the true utility (black dotted line), as expected. The accuracy of MC1 is poor
hile MC2 has much better accuracy, sometimes comparable with the MUSE. The MUSE

blue curve) uses parameters ri = 0.6 for each stage,3 and averages of 106 estimators for each
T . It typically has the most accurate result among all three methods. To better understand
he empirical convergence behavior of the MUSE, we also show the traceplot for the running
verage of the MUSE for each horizon in the right subplot of Fig. 3. It is clear from the
raceplot that the CIs typically covers the ground truth, though the convergence becomes much
lower when T is increasing.

3 To ease the computation burden, the parameters chosen here do not strictly follow Theorem 2.
12
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Fig. 2. Left: The cost of time for generating 106 MUSEs with different success probabilities. Right: The
elf-normalized variance of the MUSEs with different success probabilities.

Fig. 3. Left: Comparison between the errors of the MUSE (blue), MC1 (red), and MC2 (green) for estimating the
tility for i.i.d. standard Gaussian random variables. Blue error bars stand for the 95% confidence intervals of the

MUSE. Black dotted line stands for the ground truth (error = 0). Right: The traceplot of the running averages of
the MUSE with different horizons. Black dotted line stands for the ground truth. Colored dashed lines stand for
the running 95% CIs of the MUSE. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

3.2. Pricing the Bermudan options with high-dimensional inputs on a computer cluster

In this section we consider a more challenging setup, where the underlying process Xt :=

X (1)
t , . . . , X (d)

t

)
takes values in a high-dimensional space Rd . The example we are considering

ere is a standard one — pricing the high-dimensional Bermudan-basket put options. The
nderlying process is a d-dimensional independent geometric Brownian motion with drift γ−δ
13
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Table 1
Comparison between different methods when d = 5. SGM and BKS stand for results reported by [30] and [6]
respectively. LSM stands for Longstaff–Schwartz method, reported by [30].

Method LSM (s.e.) SGM direct (s.e.) SGM LB (s.e.) BKS (95% CI) MUSE (s.e.)

d = 5 2.163(0.001) 2.141(0.008) 2.134(0.012) [2.154, 2.164] 2.161(0.004)

Table 2
Results of the MUSE under different dimensions. The second column
reports the means and standard errors of the MUSEs. The third column
reports the average computation time over the 500 processors.

d MUSE (s.e.) Average time (s) per processor

5 2.161 (0.004) 15.922
10 0.985 (0.002) 14.787
20 0.355 (0.001) 16.004

100 0.0043 (< 10−4) 18.271
1000 0(0) 32.191

and volatility σ where all parameters will be specified later. Bermudan-basket option has utility
f (t, Xt ) = e−γ t max{0, K −

∑d
i=1 X (i)

t /d} at each t , where K is the strike price and e−γ is
ften referred to as the discounting factor. Bermudan option is only exercisable in a discrete
et of times, which transforms the pricing problem to solving the optimal stopping problem:
T := supτ∈{T1,...,Tk }

E [ f (τ, Xτ )], where 0 ≤ T1 ≤ · · · ≤ Tk ≤ T are all the exercisable
ates. It has been observed [26] that the computational cost for standard regression-based
ethods typically scales superlinearly with dimension d, which discourages their uses in the

igh-dimensional setups. Existing experiments on Bermudan options often assume d ≤ 20,
hough it can be as large as 5000 in practice [2].

In our experiment we adopt the standard parameters in [6,30] where T = 3 (years),
= 0.2, γ = 0.05, δ = 0, K = X (i)

0 = 100 for every i . Owners can exercise the option
t the initial time or after 1, 2, 3 years. We first benchmark our result with the results reported
n [6,30] when d = 5, next we present our results for d ∈ {10, 20, 100, 1000}. For each d, we
se 107 MUSEs generated by a 500-core CPU-based computer cluster, where the parameters
i are set to be 0.6 for each stage. The results when d = 5 is presented in Table 1, the MUSE
atches the results from other methods while preserving unbiasedness and having a relatively

mall standard error.
Table 2 records the estimates and the standard errors of the MUSE when d is increasing.

here are no existing benchmark results for large d thus we are not able to compare with
he ground truth. But the law of large numbers shows the utility should converge to 0 as d
oes to infinity, which matches our result here. We also record the average computing time for
very processor in the last column of Table 2, the computation time scales sublinearly with
he dimensionality d, which may be benefited from the use of vectorization in simulating the
-dimensional geometric Brownian motion. We also plot the histogram of the computing time
mong 500 cores when d = 100 in Fig. 4. It is clear from Fig. 4 that the computing times are
elatively short (less than 15 seconds) for most clusters even in this high-dimensional regime.
here are a small proportion of clusters that uses much longer time. This fact indicates the
USE has a high variance in its computational complexity, which is in line with our theoretical
14
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Fig. 4. Histogram of computational times among 500 processors when d = 100. The black dotted line is the
verage computation time, which is 18.271 s.

ntuitions. Finally, it seems the MUSE scales well with d , which may be another appealing
feature besides parallel computing.

4. Conclusion and future work

Optimal stopping problems play an important role in modern decision-making processes.
However, existing simulation algorithms introduce unavoidable bias in estimating the utility. In
this paper, an unbiased estimator, the MUSE, is proposed and analyzed. Our estimator is easy to
implement and enjoys unbiasedness, finite variance, and finite computational complexity after
choosing the parameters appropriately. A key ingredient of the general MUSE is the iterative
use of the two-stage MUSE, which preserves unbiasedness at every stage by the multilevel
approach.

In the theoretical part of this paper, we focus on bounding the variance and computational
complexity of the MUSE. Though finite variance and finite complexity are guaranteed, these
upper bounds may be too crude to shed light on practical applications. Moreover, theoretical
guarantees on the applications described in Section 2.3, such as regret bounds for Algorithm 3,
are worth investigating.

In the numerical studies, experiments in Section 3 suggest the MUSE is able to provide
accurate estimation for the utilities, especially when T is small or moderate. The MUSE also
seems to scale well with the dimensionality of the underlying process, as shown in Section 3.2.
On the other hand, our estimator’s variance and computational complexity grow significantly
with the horizon length. Running Algorithm 2 can easily be prohibitive with large horizons. It
remains a key challenge to design scalable algorithms while maintaining unbiasedness, or at
15
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east controlling bias at a negligible level under the large-horizon regime. As a closing remark,
nbiasedness is undoubtedly an appealing property in parallel computation, but it could come
ith higher computational cost or lower statistical accuracy. Therefore, studying the trade-offs
etween unbiasedness, computational budget constraints, and accuracy may be of paramount
nterest to both theorists and practitioners. We hope future studies will provide much-needed
nsight toward achieving practical unbiasedness with sustainable cost and high accuracy.

While our paper focus on the optimal stopping problem, we believe our technique can
otentially be extended to more general setups. The optimal stopping is a subfamily of the
tochastic control problems, where one picks the optimal time to stop. One natural extension
s the case where the one needs to choose one out of K possible actions at each stage. Moreover,
ur paper considers the optimal problem with finite horizon. Another natural extension is to
onsider the infinite horizon stopping problem with discounted reward.
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ppendix A. Auxiliary results

emma 1 ([32] Marcinkiewicz–Zygmund Inequality). If X1, . . . , Xn are independent random
ariables with E[X i ] = 0 and E

[
|X i |

p] <∞ for some p > 2. Then,

E

[⏐⏐⏐⏐⏐
n∑

i=1

X i

⏐⏐⏐⏐⏐
p]
≤ C ′pE

⎡⎣( n∑
i=1

|X i |
2

)p/2
⎤⎦ ,

here C ′p is a constant that only depends on p. If we further assume that X1, . . . , Xn are i.i.d.
hen,

E

[⏐⏐⏐⏐⏐1n
n∑

i=1

X i

⏐⏐⏐⏐⏐
p]
≤ C ′pE

⎡⎣ 1
n p/2

[
1
n

n∑
i=1

|X i |
2

]p/2
⎤⎦ ≤ C ′p ·

E|X1|
p

n p/2 .

orollary 2. Let (Z1, Z2) be a 2−stage stochastic process, and there exists p > 2, such that
upi=1,2 E

[
|Z i |

p] <∞. Conditioning on Z1, sample i.i.d. Z2(1), . . . , Z2(n). Then,

E

[⏐⏐⏐⏐⏐1n
n∑

i=1

Z2(i)− E[Z2 | Z1]

⏐⏐⏐⏐⏐
p]
≤ C p ·

E
[
|Z2|

p]
n p/2 ,

here C is a universal constant only depends on p.
p
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roof of Corollary 2. Since E
[
|Z2|

p] < ∞, we have that E
[
|Z2|

p
| Z1 = z1

]
exists almost

urely. Let π1:2 be the joint measure of (Z1, Z2), applying Lemma 1 to the conditional
istribution π2(· | z1) yields

E

[⏐⏐⏐⏐⏐1n
n∑

i=1

Z2(i)− E[Z2 | Z1]

⏐⏐⏐⏐⏐
p]

=

∫
Ω

E

[⏐⏐⏐⏐⏐1n
n∑

i=1

Z2(i)− E[Z2 | Z1]

⏐⏐⏐⏐⏐
p ⏐⏐⏐⏐ Z1 = z1

]
π1(dz1)

≤

∫
Ω

C ′p
n p/2 E

[
|Z2 − E[Z2 | Z1]|p | Z1 = z1

]
π1(dz1)

≤

∫
Ω

C ′p2p−1

n p/2

[
E
[
|Z2|

p
|Z1 = z1

]
+ |E[Z2|Z1 = z1]|p

]
π1(dz1)

≤

∫
Ω

C ′p2p

n p/2 E
[
|Z2|

p
| Z1 = z1

]
π1(dz1) =

C ′p2p

n p/2 E[|Z2|
p]. □

ppendix B. Proofs of main theorems

We first present the proof of Theorem 1.

roof of Theorem 1. We first show that E[Y ] = E [max { f (X1),E [ f (X2) | X1]}]. Note that
he X1, X2 are integrable,

E[Y ]

= E [E [Y | N ]] (B.1)

=

∞∑
n=0

E[∆n] (B.2)

=

∞∑
n=1

(
E
[

max
{

f (X1(1)) ,
S2n

2n

}]
− E

[
max

{
f (X1(1)) ,

S2n−1

2n−1

}])
+

E [max { f (X1(1)) , f (X2(1))}]

= lim
n→∞

E
[

max
{

f (X1(1)) ,
S2n

2n

}]
− E [ f (X1(1)) , S1]

+ E [max { f (X1(1)) , f (X2(1))}]

= E
[

max
{

f (X1(1)) , lim
n→∞

S2n

2n

}]
(B.3)

= E [max { f (X1(1)) ,E[ f (X2) | X1(1)]}] . (B.4)

Here the law of large number is applied to guarantee the equality between (B.3) and (B.4), and
he equality of (B.1), and (B.2) is established by the interchanging the order of summation and
xpectation, which is legitimate due to the fact that

n∑
E [|∆n|] <∞. (B.5)
n=0
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o verify the inequality (B.5), note that max{x, a} is a 1-Lipschitz function of x for any fixed
, we have

|∆n| ≤
1
2

⏐⏐⏐⏐⏐max
{

f (X1(1)) ,
S2n

2n

}
−max

{
f (X1(1)) ,

SO
2n−1

2n−1

}⏐⏐⏐⏐⏐
+

1
2

⏐⏐⏐⏐⏐max
{

f (X1(1)) ,
S2n

2n

}
−max

{
f (X1(1)) ,

SE
2n−1

2n−1

}⏐⏐⏐⏐⏐
≤

1
2

⏐⏐SO
2n−1/2n−1

− SE
2n−1/2n−1

⏐⏐ .
y Corollary 2, and note that | f (x)| ≤ L(1+ ∥x∥), we have

∞∑
n=0

E [|∆n|]

≤ 2L2+δ

[
1+ sup

i=1,2

[
E
[
∥X i∥

2+δ
]] 1

2+δ

]
+

1
2

∞∑
n=1

⎡⎣E
⎡⎣⏐⏐⏐⏐⏐ SO

2n−1

2n−1 −
SE

2n−1

2n−1

⏐⏐⏐⏐⏐
2+δ
⎤⎦⎤⎦ 1

2+δ

≤ 2L2+δ

[
1+ sup

i=1,2

[
E
[
∥X i∥

2+δ
]] 1

2+δ

]
+

1
2

∞∑
n=1

[
C2+δ22+δE

[
| f (X2)|2+δ

]
2(n−1)(2+δ)/2

] 1
2+δ

= 2L2+δ

[
1+ sup

i=1,2

[
E
[
∥X i∥

2+δ
]] 1

2+δ

]
+ C

1
2+δ

2+δ L2
1+δ
2+δ

[
1+ E∥X2∥

2+δ
] 1

2+δ

∞∑
n=1

√
2

2
n
2

<∞.

Next, we show that Y satisfies the properties (2) and (3) in Theorem 1. Namely, finite
xpected sampling complexity and bounded 2+ δ/10 moment. In order to bound the 2+ δ/10
oment of Y , we introduce the following events:

E1 := {|E[ f (X2) | X1(1)]− f (X1(1))| < ε} ,

E2 :=
{⏐⏐SO

2n−1/2n−1
− E[ f (X2) | X1(1)]

⏐⏐ ≥ ε/2
}
,

E3 :=
{⏐⏐SO

2n−1/2n−1
− SE

2n−1/2n−1
⏐⏐ ≥ ε/2

}
.

Observe that

E
[
|∆n|

2+δ/10]
= E

[
|∆n|

2+δ/101(Ec
1 ∩ Ec

2 ∩ Ec
3)
]
+ E

[
|∆n|

2+δ/101(E1 ∪ E2 ∪ E3)
]
.

On the event Ec
1 ∩ Ec

2 ∩ Ec
3, we have

|E[ f (X2) | X1(1)]− f (X1(1))| ≥ ε,⏐⏐SO
2n−1/2n−1

− E[ f (X2) | X1(1)]
⏐⏐ ≤ ε/2,⏐⏐SO

2n−1/2n−1
− SE

2n−1/2n−1
⏐⏐ ≤ ε/2.

Thus, both SO
2n−1/2n−1 and SE

2n−1/2n−1 are on the same side of f (X1(1)). Since S2n = SO
2n−1 +

SE
2n−1 , we get

∆n = max
{

f (X1(1)),
S2n

2n

}
−

1
2

[
max

{
f (X1(1)),

SO
2n−1

2n−1

}
+max

{
f (X1(1)),

SE
2n−1

2n−1

}]
= 0.
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n other words,

E
[
|∆n|

2+δ/101(Ec
1 ∩ Ec

2 ∩ Ec
3)
]
= 0. (B.6)

ext, we bound the term E
[
|∆n|

2+δ/101(E1 ∪ E2 ∪ E3)
]
. By Hölder’s inequality (with param-

ter p = (2 + δ)/(2 + δ/10), and q = (20 + 10δ)/(9δ). It is straight forward to verify that
/p + 1/q = 1),

E
[
|∆n|

2+δ/101(E1 ∪ E2 ∪ E3)
]

≤

[
E
[
|∆n|

(2+δ/10)· 2+δ
2+δ/10

]] 2+δ/10
2+δ
· E[1(E1 ∪ E2 ∪ E3)]

9δ
20+10δ

≤
[
E
[
|∆n|

2+δ
]] 2+δ/10

2+δ · (P(E1)+ P(E2)+ P(E3))
9δ

20+10δ .

Take ε = 1
2n/4 , by the assumption in (7),

P(E1) ≤ Cε.

Now, we bound the probabilities P(E2) and P(E3). By Corollary 2, there exists a universal
constant C2+δ > 0, such that

P(E2) ≤
1

(ε/2)2+δ
E
[⏐⏐SO

2n−1 − E[ f (X2) | X1(1)]
⏐⏐2+δ

]
≤

1
(ε/2)2+δ

·
C2+δ21+δ L2+δ

[
1+ E

[
∥X2∥

2+δ
]]

2(n−1)(2+δ)/2

= C2+δ22+3δ/2L2+δ
·
[
1+ E

[
∥X2∥

2+δ
]]

ε ·
1

2( 1
4+

δ
4 )n−(2+δ)

≤ C2+δ22+3δ/2L2+δ
·
[
1+ E

[
∥X2∥

2+δ
]]

ε.

Similarly,

P(E3) ≤ C2+δ24+5δ/2L2+δE
[
1+ E

[
∥X2∥

2+δ
]]

ε.

Moreover, recall that

|∆n| ≤
1
2

⏐⏐SO
2n−1/2n−1

− SE
2n−1/2n−1

⏐⏐ ,
y Corollary 2 again, we have[

E
[
|∆n|

2+δ
]] 2+δ/10

2+δ ≤
(
C2+δ L2+δ

[
1+ E

[
∥X2∥

2+δ
]]) 2+δ/10

2+δ ·
1

(2n)
2+δ/10

2

≤
(
C2+δ L2+δ

[
1+ E

[
∥X2∥

2+δ
]]) 2+δ/10

2+δ ·
1
2n

.

hus, there exists universal constant C ′ > 0, such that

E
[
|∆n|

2+δ/101(E1 ∪ E2 ∪ E3)
]

≤ C ′
(
L2+δ

[
1+ E

[
∥X2∥

2+δ
]]) 2+δ/10

2+δ
+

9δ
20+10δ ·

1

2
(

1+ 9δ
80+40δ

)
n

≤ C ′L2+δ
[
1+ E

[
∥X2∥

2+δ
]] 1

2
(

1+ 9δ
80+40δ

)
n
. (B.7)
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ow, combining (B.6) and (B.7),

E
[
|Y |2+δ/10]

≤ 21+δ/10
∞∑

n=0

E
[
|∆n|

2+δ/10]
p1+δ/10

n

≤
C ′

r
L2+δ

[
1+ E

[
∥X2∥

2+δ
]] ∞∑

n=0

1

2
(

1+ 9δ
80+40δ

)
n2−

2+9δ/(80+40δ)
2+δ/10 n·(1+δ/10)

=
C ′

r
L2+δ

[
1+ E

[
∥X2∥

2+δ
]] ∞∑

n=0

1(
2

9δ/(80+40δ)−δ/10
2+δ/10

)n

≤ C̃ L2+δ
[
1+ E

[
∥X2∥

2+δ
]]

<∞,

where C̃ is a universal constant independent of the process (X1, X2), and we have also used
he fact that 9δ

80+40δ
−

δ
10 > 0 when δ < 1/4. Finally, the sampling complexity of Y is

E
[
2N ]
=

∞∑
n=0

2n pn ≲
∞∑

n=0

1(
2

9δ/(80+40δ)−δ/10
2+δ/10

)n <∞.

hus, the expected computational cost of Y is also finite. In sum, our estimator Y satisfies all
he desired properties in Theorem 1. □

Next, we provide the full proof of Theorem 2.

roof of Theorem 2. By the standard dynamical programming for optimal stopping, we have{
U1(X1:T−1) = E [ f (XT ) | X1:T−1] ,

UT−k(X1:k) = E
[
max

{
f (Xk+1) , UT−(k+1)(X1:k+1)

}
| X1:k

]
, 0 ≤ k ≤ T − 2.

et YT−k(x1:k) denote the output (which is a random variable) of Algorithm 2 given the input
istory x1:k which is sampled from X1:k . For simplicity, let δk := δ ·10k+1−T for 0 ≤ k ≤ T −1.
e will prove by a backward induction to show that:

(a) Eπk+1:T [YT−k(x1:k)] = UT−k(x1:k), 0 ≤ k ≤ T − 1.
(b) The expected sampling complexity =

∏T−1
i=k+1 Ci < ∞, 0 ≤ k ≤ T − 2. As a result, the

expected computational complexity is also finite.
(c) Eπ1:T

[
|YT−k(x1:k)|2+δk

]
<
(∏T−1

i=k+1 C̃i

)
·L2+δ

[
1+ E

[
∥XT ∥

2+δ
]]

, for all 0 ≤ k ≤ T−2.

ere Ci , C̃i (1 ≤ i ≤ T−1) are some positive constants independent of the underlying process.
When k = T − 1, we have YT−k(x1:T−1) = f (XT ) with XT sampled from πT (· | {xi }

T−1
i=1 ),

hus (a) holds by definition. When k = T − 2, we have (a), (b) and (c) are guaranteed exactly
y Theorem 1.

Suppose that (a), (b) and (c) are held for k + 1, where 0 ≤ k ≤ T − 3. Conditioning on
he input history x1:k (sampled from X1:k), let us sample xk+1 from πk+1

(
· | {xi }

k
i=1

)
. Then, we

ample Nk+1 ∼ Geo(rk+1), and get i.i.d.

Y (x )(1), . . . , Y (x )
(
2Nk+1

)
.
T−(k+1) 1:k+1 T−(k+1) 1:k+1
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dapting the same notations as before, we define

S2Nk+1 =

2Nk+1∑
i=1

YT−(k+1) (x1:k+1) (i),

SO
2Nk+1−1 =

2Nk+1−1∑
i=1

YT−(k+1) (x1:k+1) (2i − 1),

SE
2Nk+1−1 =

2Nk+1−1∑
i=1

YT−(k+1) (x1:k+1) (2i).

hen, YT−k(x1:k) = ∆Nk+1/prk+1 (Nk+1), where ∆Nk+1 is defined in Algorithm 2. Note that by
he induction hypothesis, we have

Eπk+2:T

[
YT−(k+1)(x1:k+1)

]
= UT−(k+1)(x1:k+1),

nd

Eπ1:T

[
|YT−k+1(x1:k+1)|2+δk+1

]
<

(
T−1∏

i=k+2

C̃i

)
· L2+δ

[
1+ E

[
∥XT ∥

2+δ
]]

.

e first show that YT−k(x1:k) is an unbiased estimator of UT−k(x1:k).

Eπk+1:T [YT−k(x1:k)]

=

∞∑
n=0

Eπk+1:T [∆n]

=

∞∑
n=1

(
Eπk+1:T

[
max

{
f (xk+1) ,

S2n

2n

}]
− Eπk+1:T

[
max

{
f (xk+1) ,

S2n−1

2n−1

}])
+

Eπk+1:T

[
max

{
f (xk+1) , YT−(k+1)(x1:k+1)(1)

}]
= Eπk+1:T

[
max

{
f (xk+1) , lim

n→∞

S2n

2n

}]
= Eπk+1:T

[
max

{
f (xk+1) , UT−(k+1)(x1:k+1)

}]
= UT−k(x1:k).

Next, we bound the expected value Eπ1:T

[
|YT−k(x1:k)|2+δk

]
. For simplicity, in the following

proof, we use P and E as abbreviations of Pπ1:T and Eπ1:T .
Following the same idea in the proof of Theorem 1, we introduce three events:

E ′1 :=
{⏐⏐UT−(k+1)(x1:k+1)− f (xk+1)

⏐⏐ < ε
}
,

E ′2 :=
{⏐⏐SO

2n−1/2n−1
−UT−(k+1)(x1:k+1)

⏐⏐ ≥ ε/2
}
,

E ′3 :=
{⏐⏐SO

2n−1/2n−1
− SE

2n−1/2n−1
⏐⏐ ≥ ε/2

}
.

We start with bounding the probability of event E ′1. Take ε = 1
2n/4 (the same as Theorem 1),

y Assumption 4, we have

P(E ′1) =
∫

1
({⏐⏐UT−(k+1)(x1:k+1)− f (xk+1)

⏐⏐ < ε
})

π1:k+1(dx1, . . . , dxk+1) ≤ Cε.
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Similar to the proof of Theorem 1, by conditioning on x1:k , we can apply Lemma 1 to get

Pπk+1:T (E ′2) ≤
1

(ε/2)2+δk+1
·

C2+δk+121+δk+1
[
1+ E

[⏐⏐YT−(k+1)
⏐⏐2+δk+1

| x1:k

]]
2(n−1)(2+δk+1)/2

≤ C2+δk+122+3δk+1/2
[
1+ E

[⏐⏐YT−(k+1)(x1:k+1)
⏐⏐2+δk+1

| x1:k

]]
ε.

hus, we can bound the probability of event E ′2 under π1:T by

P(E ′2) =
∫

Pπk+1:T (E ′2)π1:k(dx1:k)

≤ C2+δk+122+3δk+1/2
[

1+
∫

E
[⏐⏐YT−(k+1)(x1:k+1)

⏐⏐2+δk+1
| x1:k

]
π1:k(dx1:k)

]
ε

= C2+δk+122+3δk+1/2
[
1+ E

[⏐⏐YT−(k+1)(x1:k+1)
⏐⏐2+δk+1

]]
ε.

imilarly,

P(E ′3) ≤ C2+δk+124+5δk+1/2
[
1+ E

[⏐⏐YT−(k+1)(x1:k+1)
⏐⏐2+δk+1

]]
ε.

oreover,[
E
[
|∆n|

2+δk+1
]] 2+δk

2+δk+1 ≤

(
C2+δk+1

[
1+ E

[⏐⏐YT−(k+1)(x1:k+1)
⏐⏐2+δk+1

]]) 2+δk
2+δk+1

·
1

(2n)
2+δk

2

≤

(
C2+δk+1

[
1+ E

[⏐⏐YT−(k+1)(x1:k+1)
⏐⏐2+δk+1

]]) 2+δk
2+δk+1

·
1
2n

.

ollowing the same technique in the proof of Theorem 1, there exists universal constant C ′ > 0
ndependent of the underlying process and T , such that

E
[
|∆n|

2+δk1(E ′1 ∪ E ′2 ∪ E ′3)
]

≤ C ′
([

1+ E
[⏐⏐YT−(k+1)(x1:k+1)

⏐⏐2+δk+1
]]) 2+δk

2+δk+1
+

9δk+1
20+10δk+1

·
1

2
(

1+
9δk+1

80+40δk+1

)
n

≤ C ′
[
1+ E

[⏐⏐YT−(k+1)(x1:k+1)
⏐⏐2+δk+1

]] 1

2
(

1+
9δk+1

80+40δk+1

)
n
.

ere we have used the fact that 2+δk
2+δk+1

+
9δk+1

20+10δk+1
= 1. Noticing that

E
[
|∆n|

2+δk1(E ′c1 ∩ E ′c2 ∩ E ′c3 )
]
= 0,

we get

E
[
|YT−k(x1:k)|2+δk

]
≤ 21+δk

∞∑
n=0

E
[
|∆n|

2+δk
][

prk+1 (n)
]1+δk

=
C ′

rk+1

[
1+ E

[⏐⏐YT−(k+1)(x1:k+1)
⏐⏐2+δk+1

]] ∞∑
n=0

1(
2

9δk+1/(80+40δk+1)−δk
2+δk

)n

≤ C̃k+1

(
T−1∏

C̃i

)
L2+δ

[
1+ E

[
∥XT ∥

2+δ
]]
=

(
T−1∏

C̃i

)
L2+δ

[
1+ E

[
∥XT ∥

2+δ
]]

,

i=k+2 i=k+1
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here in the last inequality we have applied the induction hypothesis (c). Note that 9δk+1/(80+
40δk+1)− δk > 0 when δ < 1/4, we have

C̃k+1 : =
C ′

rk+1

∞∑
n=0

1(
2

9δk+1/(80+40δk+1)−δk
2+δk

)n

=
C ′

rk+1
·

1

2
9δk+1/(80+40δk+1)−δk

2+δk − 1

≤
C ′

rk+1
·

1
9δk+1/(80+40δk+1)−δk

2+δk

(note that 2α
≥ 1+ α for α > 0)

=
C ′

rk+1
·

(2+ δk+1/10)(80+ 40δk+1)
9δk+1 − (8+ 4δk+1)δk+1

(δk = δk+1/10)

≤
C ′

rk+1
·

3 · 90
1− 4δ

·
1

δk+1
(δk+1 < δ < 1/4)

=
C ′

rk+1
·

3
δ(1− 4δ)

· 10T−k (δk+1 = δ · 10k+2−T ) (B.8)

<∞

is a constant independent of underlying process. Finally, since we have called Algorithm 2 for
2Nk+1 times to construct YT−k(x1:k)(i) (1 ≤ i ≤ 2Nk+1), the expected sampling complexity of
computing YT−k(x1:k) is

E[2Nk+1] ·
T−1∏

i=k+2

Ci =

T−1∏
i=k+1

Ci <∞,

where

Ck+1 := E[2Nk+1 ] ≲
∞∑

n=0

1(
2

9δk+1/(80+40δk+1)−δk
2+δk

)n ≤
3

δ(1− 4δ)
· 10T−k . (B.9)

As a result, the expected computational complexity is also finite. To sum up, (a), (b) and (c)
re satisfied for k. Thus, the proof by induction is completed. In particular, together with (B.8)
nd (B.9), there exist universal constant D > 0 independent of the underlying process and T ,
uch that the resulting estimator YT in Algorithm 2 satisfying:

(1) E[YT ] = UT

(2) Expected computational complexity is
∏T

i=1 Ci < D · 10T 2
(by (B.9)).

(3) The variance of YT is bounded by(
T−1∏

i=k+1

C̃i

)
· L2+δ

[
1+ E

[
∥XT ∥

2+δ
]]

< D · 10T 2
· L2+δ

[
1+ E

[
∥XT ∥

2+δ
]]

. □
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