Materials Characterization 196 (2023) 112636

MATERIALS

CHARACTERIZATION

Contents lists available at ScienceDirect

Materials Characterization

materialstoday

journal homepage: www.elsevier.com/locate/matchar

FI. SEVIER

Check for

What are the Tower’s method products: Metal-hydroxides or e
metal-glycerolates?

Josué M. Gongalves ™ %1 Trlan S. Lima ™', Abhi‘jmit H. Phakatkar ¢, Rafael S. Pereira d
Paulo R. Martins °, Koiti Araki”, Liicio Angnes ™ Reza Shahbazian-Yassar ®

& Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States

Y Instituto de Quimica, Universidade de Sao Paulo, Av. Prof. Lineu Prestes 748, 05508-000 Sao Paulo, SP, Brazil

¢ Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA

d Centro de Engenharia, Modelagem e Ciéncias Sociais Aplicadas, Universidade Federal do ABC, 09210-580 Santo André, SP, Brazil
¢ Instituto de Quimica, Universidade Federal de Goias, Av. Esperanga s/n, 74690-900 Goiania, GO, Brazil

ARTICLE INFO ABSTRACT

Keywords:

Synthesis

Tower’s method

Nickel hydroxide
Nickel-glycerolate

Transmission electron microscopy

It has been long believed that colloidal nickel hydroxide nanoparticles are produced by the reaction of nickel
salts, glycerol and potassium hydroxide known as the Tower method. In the present work, we challenge this
belief and reveal the reasons for error in identification of nickel products produced by the Tower method. We
propose that Ni-based precursor complexes are the primary products of the Tower method reaction, and these
precursors undergo transition to layered Ni-glycerolate derivatives upon thermal treatment. We demonstrated
the presence of Ni%* coordinated to different types of O-donor ligands (glycerol, glycerolate ion, acetate ion and/
or OH") forming Ni-complex precursors. Using in-situ transmission electron microscopy, we showed that Ni-
based precursor complexes can be converted to nickel nanoparticles upon exposure to electron beam, but no
evidence of nickel hydroxide nanoparticle formation was found. The nickel hydroxide nanoparticles are only
formed upon further reaction of Ni-glycerolate precursors with an aqueous alkaline solution. Those new findings
shed light on the nature of the metal derivatives obtained by the reaction of Ni?* and glycerol in the Tower
method and provide more solid foundation to design electrode materials for batteries, supercapacitors, elec-
trocatalysts and electrochemical sensors.

1. Introduction hydroxides have been prepared using such a strategy, especially based

on the sol-gel method reported by Tower [1] and by Rocha and col-

The method of synthesis of colloidal nickel hydroxide proposed by
Tower almost a century ago [1] was adapted over time and has been
widely used more recently [2]. Nonetheless, the X-ray diffraction
pattern of the generated “nickel-hydroxide” is analogous to other
layered materials with similar chemical composition, especially of Ni-
glycerolates prepared by solvothermal process (Fig. 1). In fact, the
crystal structure of the material actually produced in the reaction of
nickel salts and glycerol (in the presence or absence of potassium hy-
droxide) is not clearly defined yet, despite been extensively used in the
preparation of nanomaterials for electrochemical applications, adding to
the uncertainties regarding the nature of that material and its crystal
structure. For instance, many mono- and bimetallic transition metal

laborators [2]. Basically, the synthesis reported by Rocha et al. [2]
consists of dissolving the metal-acetate in glycerin at 50 °C, under
vigorous stirring, cooling down to room temperature and then reacting
with 1:2 M ratio of KOH in n-butanol (Fig. 1a), and keeping the reaction
mixture under stirring for six hours. Interestingly, the electroactive
materials prepared in this way and subjected to thermal treatment at
240°C for 30min in an oven exhibit enhanced stability for repeated
redox cycling, indicating that thermal treatment plays a key role in
defining the electrode material properties [2] for energy storage
application.

Nickel hydroxide (Ni(OH),) derivatives are known to be versatile
and multifunctional materials, that are being explored as
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electrocatalysts for water-splitting [3] and electrochemical sensors [4],
and as active materials in electrochromic devices [5], nickel-metal hy-
dride (NiMH) batteries [6], hybrid supercapacitors [7] and light-
stimulated actuators [8]. Many mono- and bimetallic Ni-based hydrox-
ides prepared by Tower’s method were recently reported and all pre-
sented a diffraction peak at around 10.6°, assigned to the (003)
reflection, as expected for layered alpha-nickel hydroxide phase mate-
rials (a-Ni(OH)5) [9-11]. For instance, Gomes et al. [9] described that
a-Ni(OH), nanoparticles with 25% of Mn?+ (named a-NiMn-hydroxide)
exhibited outstanding electrochemical and charge-discharge properties,
evidenced by the high specific charge capacity of 417.5Cg ™}, more than
three times larger than for a-Ni(OH),, allied to an excellent charge
retention capacity of 86.5%, even after 5000 galvanostatic char-
ge-discharge processes at 25Ag~!. Curiously, metal-glycerolates (M-
Gly), another class of layered materials that have been extensively re-
ported in recent years [12], also show a diffraction peak at 10.6°. For
example, a facile solvothermal method was described by Ding et al. [13]
to synthesize micron-sized NiMn-glycerolate (NiMn-Gly) solid spheres
exhibiting a diffraction peak at 10.68°, corresponding to the interlayer
spacing of a lamellar material exhibiting a structure made of stacked
metal—oxygen sheets separated by glycerolate anions [14]. The question
is “what nickel material has been obtained by Tower’s method: the
hydroxide (Ni(OH),) or the glycerolate?

It is easy to notice the structural similarity of NiMn-Gly and afore-
mentioned a-NiMn-hydroxide nanoparticles after heat processing at
240°C, despite the apparent differences. The first one is supposed to be
stacked nickel and manganese hydroxide layers with counterions and
other molecules in the interlamellar space, whereas the last one has a
structure of nickel and manganese cations bridged by glycerolate ligands
generating a material that is better described as a coordination polymer.
In this case, the coordination of glycerolate ions to the metal ions (Ni and
Mn) leading to formation of M-Gly microspheres is induced by the sol-
vothermal processing at 180 °C, for 10 h (Fig. 2b). Similarly, the
enhanced electrochemical stability of NiMn-hydroxide is achieved upon
thermal processing at 240 °C where water is evaporated out favoring the
deprotonation processes generating glycerolate ligands. In addition, the
electrode modified with NiMn-Gly microspheres delivered a specific
capacitance of 719C g~ ! at the current density of 1.0 A g~!, a charge-
capacity superior to that of a-Ni(OH),.
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Fig. 2. (a) XRD pattern of Ni-Gly-KOH-240 (black line) and Ni-Gly-240 (red
line). (b) More or less organized metal hydroxide/acetate lamellar material
should be formed upon addition of KOH and heat treatment, but only acetate
can act as bridging ligand connecting the metal ions thus generating ordered
materials in a much shorter range. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of
this article.)

It is also important to highlight that most of the works describing the
development of materials prepared by the Tower’s method, or other
similar reactions, describe the characterization of the Ni(OH)5 nano-
particles (colloidal solution of nickel hydroxide) after a dialysis or
“washing” process to eliminate the excess of glycerol [2]. However,
there is a great possibility of Ni-Gly been the actual product of the
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Fig. 1. (a) Scheme showing the sol-gel synthesis adapted from Tower’s method; and (b) Conventional solvothermal synthesis of M-glycerolate.
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Tower’s method, where the metal hydroxides are generated only after
the heat treatment. In fact, Khonina et al. [15] reported that the re-
actions of iron(m) or iron(ur) cations with glycerol proved to proceed only
in the presence of an equivalent amount of sodium hydroxide to give
glycerolates with various chemical compositions, as confirmed by
Mossbauer and infrared spectroscopy, X-ray diffractometry and
elemental analysis. Accordingly, Ni(OH), nanoparticles may be formed
during the dialysis or “washing” step of the material, since water can
promote the hydrolysis of Ni-Gly [16,17].

Hereon we report a systematic characterization of Ni and/or NiCo-
based electrode materials prepared by Tower’s method, comparing the
products generated in the presence and absence of KOH to elucidate
their structures. In particular, unveiled are the structural properties of
the resultant materials before the thermal processing at 240°C and the
dialysis or “washing” step, and after these processes, as well as their
electrochemical properties, in order to shed light on that fundamental
question.

2. Experimental

All reagents and solvents were of analytical grade and used as
received. Anhydrous glycerin, isopropyl alcohol, n-butyl alcohol and
potassium hydroxide (KOH) were purchased from Synth. Nickel acetate
tetrahydrate (Ni(CH3COO),-4H20) was obtained from Sigma-Aldrich,
whereas cobalt acetate tetrahydrate (Co(CH3COO),-4Ho0) was ac-
quired from Synth. All aqueous solutions were prepared with ultrapure
deionized water from a MilliQ purification system (DI-water, p > 18.2
MQ cm).

2.1. Preparation of Ni-Gly-KOH and Ni-Gly

The Ni-Gly-KOH was prepared as previously reported [18], by dis-
solving 4.82 mmol of nickel acetate tetrahydrate (Ni(CH3COO)3-4H50)
in 25 mL of anhydrous glycerin at 50 °C. Then, 9.64 mmol of KOH,
dissolved in 25 mL of anhydrous n-butanol, was added dropwise into the
stirred solution of nickel acetate, at room temperature. Ni-Gly corre-
sponds simply to the previously prepared nickel acetate solution in
anhydrous glycerin. The bimetallic nickel-cobalt materials (NixCoj.x-
Gly), where x = 0.6, was prepared similarly to pure nickel derivatives, in
the presence and absence of KOH, as ascribed above, and denoted as
NiCo-Gly-KOH and NiCo-Gly, respectively.

The Ni-Gly-KOH-180 and Ni-Gly-KOH-240, and the Ni-Gly-180 and
Ni-Gly-240 samples were prepared as films by depositing the respective
non-thermally treated materials on glass slips and vacuum drying them
at 180 or 240 °C for 30 min. The materials were carefully characterized
by spectroscopic, XRD and electron microscopy techniques to determine
their morphology and structure.

2.2. Preparation of Ni-Gly-KOH-240 and Ni-Gly-240 modified FTO
electrodes

Fluorine doped tin oxide (FTO) glass pieces (1.0 x 2.5 cm) were
carefully washed with soap and rinsed with isopropanol:water (1:1)
mixture. Then, a 1 cm? area was delimited on the surface with a scotch
tape and 100 pL of Ni-Gly-KOH, or Ni-Gly, was spin-coated on them. In
sequence, the tape was removed, and the modified electrode heated at
240 °C for 30 min to produce stable films of the monometallic materials.
The same procedure was adopted for the bimetallic materials NiCo-Gly-
KOH-240 and NiCo-Gly-240.

2.3. Characterization

The samples were characterized by X-ray diffractometry (XRD) in a
Bruker D2 Phaser diffractometer equipped with a Cu Ka source (1 =
1.5418 1°\, 30kV, 15 mA, step = 0.05°), in the 2theta range from 5 to 70°.
Infrared spectra were recorded in a Bruker ALPHA Fourier-transform
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infrared spectroscopy (FTIR) spectrophotometer. UV-vis absorption
spectra were registered in a Hewlett Packard 8453A diode-array UV-Vis
spectrophotometer, in the 190 to 1100 nm range, using 10.0 mm quartz
cuvettes.

Chemical surface analyses were carried out by X-ray photoelectron
spectroscopy (XPS), using a K-Alpha X-ray photoelectron spectrometer
(Thermo Fisher Scientific, UK), equipped with a hemispherical electron
analyzer and an Al Ka microfocused monochromatized source with
resolution of 0.1 eV. Survey (full-range) and high-resolution spectra for
carbon were acquired using a spot size of 400 pm and pass energy of 200
and 50 eV, respectively. The data were analyzed using the Thermo
Avantage Software (Version 5.921).

Transmission electron microscopy (TEM) and high-resolution trans-
mission electron microscopy (HRTEM) images were collected by a JEOL
ARM200CF equipment. Energy dispersive X-ray spectroscopy (EDS) was
performed using an aberration corrected JEOL ARM200CF equipment
with a cold field emission gun operated at 200 kV, and equipped with an
Oxford X-max 100TLE windowless X-ray detector.

Cyclic voltammetry measurements were carried out using an Eco-
Chemie Autolab PGSTAT30 potentiostat/galvanostat and a conven-
tional three electrodes cell, constituted by the modified FTO working
electrode, an Ag/AgCl (3.0 mol L™! in KCl) reference, and a platinum
wire as the counter electrode.

3. Results and discussion

Tower’s method, and other similar protocols, have been widely re-
ported in the literature aiming the preparation of electroactive materials
based on Ni(OH), for different applications, especially electrode mate-
rials for batteries and supercapacitors, electrocatalysts and electro-
chemical sensors. This multifunctionality is mainly associated with the
presence of Ni*/3* jons that act as active sites, but organic compounds
are present in considerable amounts even after exhaustive attempts of
purification by washing, dialysis, and/or thermal treatment at 240 °C for
30 min [19-21]. Furthermore, the unexpected similarity of the Ni-Gly
and a-Ni(OH), XRD patterns clearly indicates that more studies are
fundamental to unravel the actual structure of the generated materials,
especially in the Tower’s method and in other similar reactions using
glycerol as solvent.

In that regard, Ni-Gly-KOH-240 (and NiCo-Gly-KOH-240), prepared
as described by Rocha et al. [2], was compared with the material pre-
pared by thermal processing in the absence of KOH (Ni-Gly-240).
Initially the material precursors were characterized by XRD. Interest-
ingly, KOH seems to increase the degree of crystallinity of the material
generated after thermal treatment at 240 °C for 30 min (named Ni-Gly-
KOH-240), as confirmed by the rise of a sharp peak around 10.5° almost
absent in the Ni-Gly-240 material obtained in the same conditions,
except for the KOH (Fig. 2a). Similar result was obtained for the bime-
tallic NiCo system (NiCo-Gly-KOH-240 and NiCo-Gly-240), as shown in
Fig. S1.

The presence of the diffraction peak at 10.5° does not provides
conclusive information about what is formed upon heat treatment since
it is in the 26 range that can be attributed to both a-Ni(OH), and Ni-Gly,
as reported in the literature and listed in Table S1. The appearance of an
intense diffraction peak at 10.5° in the XRD of Ni-Gly-KOH-240 must be
related to the formation of more or less organized lamellar structures
due to the presence of hydroxyl bridging ligands connecting the Ni?*
ions, as well as acetate ligands, and/or glycerolate ligands formed by
reaction of glycerol with hydroxide, and elimination of water during the
thermal treatment process. In the absence of KOH this reaction is
improbable and only acetate can act as a weaker bridging ligand, as
schematized in Fig. 2b, leading to the formation of structures with much
shorter range of organization (small peak at ~11°). In fact, in the
absence of KOH, the formation of alcoholate metal complexes such as
with glycerolate (pKa = 14.4) is not sufficiently favored, but the equi-
librium can be significantly shifted by OH™ (pKa ~ 14) given its similar
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basicity.

In fact, the Tower’s method is basically about the preparation of
nickel hydroxide nanoparticles gels that can be more or less easily
peptidized, as discussed in the literature [1]. The Ni%* and KOH stoi-
chiometry was changed to 1:2 in the modified method to consistently get
clear “sols”, as described by Rocha et al. [2]. Nevertheless, the charac-
teristic electrochemical features of “Ni(OH), in the alpha phase (a-Ni
(OH),)” only become apparent upon heat treatment at 240 °C for 30
min, demonstrating the key role of this process. In addition, clearly
demonstrate the possibility that the actual material generated in the
process may not be the one expected. To shed light on this question, a
detailed transmission electron microscopy study was carried out
analyzing the Ni-Gly-KOH by in-situ TEM. Thereunto, an aliquot of Ni-
Gly-KOH sol (Fig. S2), prepared by the modified Tower’s method, was
diluted in isopropanol, deposited on a copper grid covered with amor-
phous lacey carbon film and dried under a heating lamp, at temperatures
below 40 °C, to assure the integrity of the sample.

Interestingly, no nanoparticles could be found in the sol sample after
evaporation of isopropanol and n-butanol (Fig. S3 and Fig. 3). This new
finding is evidenced by the homogeneous elemental distribution of C, O,
K and Ni in the individual EDS mapping, and the composite image of all
of them overlayed on the respective STEM image (Fig. S3), showing no
evidence of nanoparticles at all. Accordingly, the nanoparticles visual-
ized in the HRTEM images reported by Rocha et al. [2] may be generated
in the heating process, or induced in-situ by the electron beam during the
TEM analysis, as consequence of structural reorganization, nucleation
and growth. In fact, the electron beam impinging on the material
induced the formation of Ni nanoparticles as shown in Fig. 3. A careful
analyses indicated que formation especially of nickel metal nano-
particles, as confirmed by the presence of 0.193 nm apart interference
fringes that can be attributed to the (111) planes of cubic phase Ni’
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(Fig. 4a-4b). Similar result is obtained by calcination of the material
around 600 °C, as confirmed by the strong magnetism characteristic of
nickel metal, demonstrating that glycerol is a good reducing agent at
high temperatures and can be useful in the synthesis of Ni® nanoparticles
[22,23]. In addition, the nanoparticles size showed to be dependent on
the thickness of the film exposed to the electron beam (Fig. 4c-4d), as
well as the exposure time during the in-situ reaction. Using the electron
beam to probe the structure and morphology of materials, as well as
source of heat and electrons, is very convenient since allow monitoring
the evolution of a material as a function of exposition time in detail,
providing invaluable information about the evolution process. After a
careful study, it was possible to conclude that such a nucleation and
growth process does not occur exclusively by mass diffusion type
mechanism but involves also the coalescence of nanoparticles (Video 1),
especially when the distances between them are lower than 2-3 nm and
their size <15 nm [24].

Based on the aforementioned considerations and the XRD/TEM re-
sults it is possible to infer that the reaction of Ni(CH3COO)y-4H50 in
glycerol and in the presence of KOH probably yields solutions containing
Ni-glycerolate complexes and/or clusters (Eq. 1). In fact, the formation
of metal-glycerolate in the presence and absence of base has been re-
ported in the literature [25]. In addition, no significant differences are
observed in the electronic spectra of the materials in the presence and
absence of KOH (Fig. 5), indicating that the first coordination sphere in
both cases is similar. The presence of the 3A2g(F) - 3T1g(P) transition
around 400 nm, 3Ax,(F) — 3T14(F) at 670 nm and >Agy(F) — 3Tou(F) at
1100 nm suggests the Ni?* ions are coordinated to O-donors [26]. In
other words, they are coordinated by acetate, hydroxide and glycerol/
glycerolate eventually forming clusters with a bright green clear colour,
as expected for Ni2t ions coordinated to those O-donor ligands. In
addition, the presence of Ni(OH); nanoparticles can be ruled out, as

Fig. 3. A series of TEM images of a Ni-Gly-KOH film taken at different e-beam exposure times, monitoring the in-situ nucleation and growth of nanoparticles induced

by the electron beam.
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Fig. 5. UV-Vis spectra of Ni-Gly-KOH (black line) and Ni-Gly (red line). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

expected for the insignificant contribution of light scattering in the ab-
sorption spectra shown in Fig. 5, and almost not perceptible turbidity
(light scattering, Fig. S2). In fact, scattering can greatly modify the
UV-Vis spectrum depending on size of the scatterers which can be very
different from true absorption and named “extinction spectrum” [27].

Ni** +nL = [Ni(L)n]*” (L =2 (OH™ + (C3Hs505)” ) +2 CH;CO0™)) (1)
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Fig. 4. (a) TEM image and (b) a corresponding fast
Fourier transform (FFT) pattern indicating the
selected plane corresponding to the Ni cubic crystal
structure. (c) Nucleation and growth of Ni nano-
particles induced by the TEM electron beam on lacey
carbon support Ni-Gly-KOH film. (d) The amount of
precursor influences the growth of Ni nanoparticles
induced by the TEM electron beam. The bottom part
of the image corresponds to the hole in the lacey
carbon support film where a larger amount of pre-
cursor material was trapped.

The Ni-containing material as synthesized by reaction with glycerol,
in the presence and absence of KOH (Ni-Gly-KOH and Ni-Gly), were also
characterized by FTIR (Fig. S4a) and compared with glycerol and n-
butanol. All spectra were very similar but a low intensity band at 1558
em ™! (Fig. S4b), which can be attributed to asymmetric O-C-O stretching
vibration modes of carboxylates ions of the Ni-acetate used as reagent,
was significantly intensified in Ni-Gly-KOH, but did not provide any
additional information. However, the FTIR spectra after thermal treat-
ment at 180 (Ni-Gly-KOH-180) and 240 °C (Ni-Gly-KOH-240) showed
the disappearance of the 2935 and 2876 cm™! bands (Fig. 6a), assigned
to symmetric and antisymmetric methylene (-CHy) stretching modes,
consistent with the oxidation of glycerol to compounds containing
carboxylate groups. This assumption is supported by the intensification
of the bands at 1560, 1410 and 1348 cm™! attributed to 0-C-O
stretching vibrational modes [28], and confirmed by the disappearance
of the bands in the 1260 cm™! to 800 cm™! range mainly assigned to
C—O stretching modes of primary and secondary alcohols, characteristic
of glycerol [20,28] (Fig. 6b). This conclusion is also supported by the
decrease of the relative intensity of the band at 3400 cm ! (broad peak)
of the Ni-Gly-KOH-180 after thermal treatment for 120 min compared to
30 min (at room temperature the amount of n-butanol is relatively high
and makes comparison impossible). In fact, the decrease of the O—H
stretching mode of hydroxyl groups, [29,30] upon thermal treatment,
indicates dehydration and elimination of water, probably forming C—=C
bonds.

The surface chemical composition and coordination shell in Ni-Gly-
KOH-240 were further analyzed by X-ray photoelectron spectroscopy
(XPS). The XPS survey spectrum showed that it is constituted mainly by
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Fig. 6. (a) FTIR spectra of Ni-Gly-KOH before (black line, Ni-Gly-KOH) and after thermal treatment at 180 (red line, Ni-Gly-KOH-180) and 240 °C (blue line, Ni-Gly-
KOH-240) for 30 min. (b) Comparison of the FTIR spectra for Ni-Gly-KOH after heat treatment for 30 and 120 min at 180 °C. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Ni, K, O and C (Fig. 7a), as expected for a sample containing organic
material and without a previous washing process. The high-resolution
XPS Ni 2p deconvoluted spectra for Ni-Gly-KOH-240, shown in
Fig. 7c, is in good agreement with the reference spectrum of a standard
Ni%* sample. In fact, only two spin-orbit doublets can be observed,
assigned to Ni 2p3/» and Ni 2p;,o at 855.3 eV and 872.8 eV, and the
corresponding shake-up satellites close to the peaks which can be
attributed to the presence of Ni>™ coordinated to O-donors in the ma-
terial [31]. In addition, the spin-orbital coupling energy separation of
17.5 eV of Ni 2p3,5 and Ni 2py /2 is characteristic of Ni?* [32,33]. Also, it
is important to mention that the presence of a shoulder at 854.26 eV may
be associated with the formation of NiO [20] thus supporting our
assumption. On the other hand, it is also clearly visible an another
shoulder at 881.3 eV, typically assigned to the presence of some oxidized
Ni3* cation. The high-resolution Cls spectrum of the Ni-Gly-KOH-240
film shows four main peaks at 284.1, 284.6, 285.3, and 287.9 eV,

corresponding to the C=C, C—C, C—0, and C=0 (Fig. 7b), which im-
plies that some oxidized organic molecules with C/O functional groups,
such as acetate, are present after the thermal treatment. Furthermore,
the significant presence of C—=0 and C—C bonds is consistent with the
FTIR results. Finally, the high-resolution Ols spectrum were deconvo-
luted into four components at 530.2, 530.7, 531.4, and 532.4 eV which
were assigned to oxygen forming Ni—O, C—O, C-OH and C—=O0 bonds
(Fig. 7d).

The presence of organic compounds even after thermal treatment is
also confirmed by cyclic voltammetry (Fig. 8). In fact, in the first vol-
tammetric cycle (Fig. 8a and 8b), an irreversible oxidation process ap-
pears at approximately 0.45 V vs. Ag/AgCl, as expected for the oxidation
of organic molecules promoted by electrode materials with Ni*t as
electrocatalytic active sites [11]. In addition, the anodic peak (shoulder)
at 0.38 V vs. Ag/AgCl is attributed to the oxidation of Ni(OH), to
NiOOH, whereas a low-intensity cathodic peak at 0.27 V vs. Ag/AgCl is
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Fig. 7. (a) XPS survey spectrum, and high-resolution XPS spectra for (b) Cls, (c) Ni 2p and (d) O1s for Ni-Gly-KOH-240.
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Fig. 8. (a-b) First 3 cyclic voltammograms (1st, 2nd and 3rd) and (c-d) the 5th, 10th, 20th, 30th, 50th, 100th, 150th e 200th following successive cyclic voltam-
mograms of a Ni-Gly-KOH (a and c) and Ni-Gly-240 (b-d) modified FTO electrodes after thermal treatment at 240 °C for 30 min. v = 50 mV s, in 1.0 mol L ™!

KOH solution.

related to the corresponding reverse reaction. The results here show that
the redox peaks of Ni(OH), and NiOOH do not appear with high in-
tensity in the first scan (the red curves in Fig. 8a and Fig. 8b), indicating
a low amount of Ni(OH),/NiOOH-based sites. Note that both electrode
materials present an increase of the current as a function of the number
of CV cycles (Fig. 8c and 8d). This behavior is attributed to the pro-
gressive diffusion of the electrolyte solution into the film, generating
more and more Ni-hydroxide redox active sites. Furthermore, it is
important to mention that the in-situ formation of new Ni-hydroxide
sites occurs under alkaline conditions concomitantly with the oxida-
tion of organic molecules present in both electrode materials. In general,
metal—glycerolate based materials tend to be converted to the corre-
sponding metal oxyhydroxide or metal hydroxide based materials
exhibiting excellent electrocatalytic activity under alkaline conditions
[12]. This is a well-reported strategy used to prepare electrocatalysts for
oxygen evolution reaction (OER) and hybrid supercapacitors based on
metal-glycerolates, oxides and sulfides [34].

Finally, it is important to mention that Rocha et al. [2] reported the
formation of a-Ni(OH), nanoparticles based on the analysis of the solid
material by transmission electron microscopy which may have been
formed in-situ by the electron beam during the measurement. However,
many works in the literature show that there is formation of metal-
glycerolate [25] or metal-glycerol complex [35] in similar reaction
systems involving metal ions and glycerol in the presence or absence of
KOH. Furthermore, the hydrolysis reaction of metal glycerolates
generally results in the formation of the thermodynamically stable p-Ni
(OH); phase [16,17], in contrast to the a-Ni(OH); reported by Rocha
et al. [2].

In order to shed light on this dilemma, it is important to examine the
pPKy’s of glycerol, n-butanol, water and acetic acid whose acid-base re-
actions are more or less contributing to the material formed in the
Tower’s and other similar reactions. When a nickel salt is dissolved in
glycerol, the most probable reaction is a relatively strong electrostatic
interaction of Ni?* ions with the counter ion and coordination/solvation
by glycerol. The incorporation of alcohols such as isopropanol should

decrease their solubility leading to formation of particles, as described
by Wang et al. [36] that autoclaved 7.5 mL of glycerol, 0.145 g of Ni
(NO3)2.6H20 and 52.5 mL of isopropanol at 180 °C for 12 h, to get solid
Ni-glycerate (should be called Ni-glycerolate) after cooling naturally
until the room temperature. Isopropanol is similar to n-butanol (pKa
16.1) and is much less acidic than glycerol (pKa 14.4) and nitric acid, a
strong mineral acid. Thus, nitrate ion, neither the hydration water
molecules, does not have enough basicity to deprotonate glycerol and
generate glycerolates, but isopropanol can induce the formation of
nickel acetate precipitate. Considering the obtained solid and a char-
acteristic XRD peak at ~10°, probably the high temperature was enough
to dissolve it all and the slow precipitation led to formation of a layered
material.

Considering the Tower’s method, the reaction of KOH in alcohol
solution with nickel acetate dissolved in glycerol results in the formation
of a gel, whereas a sol is always formed upon reaction with 2 equivalent
of KOH or less [2]. Clearly acetate (acetic acid pKa 4.8) cannot
deprotonate glycerol (pKa = 14.4) to glycerolate such that acetate li-
gands must be coordinated to the Ni?" ions while their remaining co-
ordination sites are occupied by glycerol molecules. However, KOH
(pKa ~ 14) is a strong enough base to generate glycerolate in solution,
but the relative amount of hydroxide is not enough to convert it in large
extent, such that both ought to be coordinated to the Ni?* sites, as well
as neutral glycerol molecules to complete the coordination sphere. In
addition, it is known that metal oxides [15,37,38] and metal hydroxides
[37-39] can react with glycerol to form metal-glycerolates upon thermal
treatment, depending on their basicity and the concomitant removal of
water molecules formed in the reaction to shift the reaction to the right.

Finally, the reducing properties of organic molecules at high tem-
peratures is well established, as well as the capability of hydroxide/
oxide ligands in stabilizing metal ions, such that the formation of Ni
metal or NiO upon heat treatment will depend on the relative amounts of
NiZ*, hydroxide and organic molecules, mainly as glycerolate/glycerol
(and acetate) present in the material. But, considering the 1:2 proportion
of Ni>T/OH ™~ utilized in the reaction, the formation of Ni(OH), seems to



J.M. Gongalves et al.

be rather improbable, corroborating our hypothesis that Ni(OH), is only
formed when the Ni?*-hydroxide/glycerolate/acetate is put in contact
and react with an aqueous alkaline solution, due to the hydrolysis of the
material prepared by Tower’s method.

4. Conclusion

Tower’s method has been extensively used in the development of
electroactive materials for several electrochemical applications. How-
ever, based on XRD data, the materials resulting from the Tower’s
method show strikingly similar structures to metal-glycerolates pre-
pared by solvothermal methods using similar reagents. In this sense, Ni-
based materials were carefully prepared and analyzed by structural,
morphological, spectroscopic, and electrochemical characterization
techniques. However, HRTEM images and UV-vis measurements
showed no evidence of nanoparticles. In addition, a lamellar structure is
only formed in the material incorporating KOH indicating its key role in
the glycerol deprotonation reaction. Furthermore, a systematic study by
FTIR spectroscopy brought compelling evidence on the possible dehy-
dration reaction of glycerol induced by thermal treatment, and of the
nickel-complex derivatives, promoting the formation of metal glycer-
olates with more or less organized lamellar structure, as evidenced by
the sharp XRD peak at 10.5°. Summarizing, Ni-glycerolate is the most
probable product of Tower’s method after thermal processing, as a
consequence of the reaction of glycerol with OH™ followed by elimi-
nation of water during the thermal treatment up to 240 °C. However,
metallic nickel nanoparticles are obtained at higher calcination tem-
peratures, and/or irradiation with electron beam during electron mi-
croscopy assays, indicating that nickel hydroxide nanoparticles are only
formed upon further reaction with an aqueous alkaline solution. In
short, Ni-Gly materials obtained by Tower’s method are interesting as
precursors for the design and preparation of new electrode nano-
materials for energy conversion and storage such as supercapacitors, as
well as electrocatalysts and electrochemical sensors.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.matchar.2022.112636.
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